This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp

REGIONAL COPPER-NICKEL STUDY
SOILS OF THE STUDY AREA

Minnesota Environmental Quality Board

Author: William A. Patterson, III

Norman E. Aaseng

28 June 1978

TABLES

- Table 1. The distribution of soil series within each soil assocation that occurs in the Study Area.
- Table 2. Acreage distributions, by development zone, for soil associations in the Study Area.
- Table 3. Summaries of characteristics for soils series occurring within the Study Area.
- Table 4. Classification scheme for soils occurring in the Study Area.
- Table 5. Soil landscape units occurring within the Study Area.
- Table 6. Cross tabulation of soil associations and soil landscape units for the MINNESITE Area.
- Table 7. Summary of soil chemical analyses performed on samples collected in 1976.
- Table 8. Summary of soil chemical analyses performed on samples collected in 1977.
- Table 9. Total element concentrations in soils of the Study Area compared with world-wide average values.

Abstract

Page 1

The following report comprises a summarization of physicial, chemical, and typological characteristics of soils of the Regional Copper-Nickel Study Area (Study Area). Data have been collected either directly by the Regional Copper-Nickel Study (RCNS) or from published sources.

Typological information was obtained from the Minnesota Land Management Information System (MLMIS). Because data from MLMIS are not self-explanatory, a detailed summary of soil mapping and classification conventions is included in the first section of the report. Summaries of physical characteristics of soils are taken from standard Soil Series Interpretations sheets that are published by the Soil Conservation Service (SCS). Sheets for series occurring in the Study Area are presented in the Appendix. Brief summaries of the properties of individual heavy metals as they occur in soils are taken from Aubert and Pinto (1977). These summaries are followed by a discussion of the chemical characteristics of soils of the Study Area.

Most data were obtained by the RCNS during 1976 and 1977. Although soil sampling was not extensive and did not include the full range of soil conditions in the Study Area, the data presented in this report provide base-line estimates of soil chemical conditions in an environment that is essentially pollution free.

SOILS OF THE RCNSA

Abstra	act .	• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	۰	1
•	Table	e of (Cont	ent	S		•	•	•		•		•	•		•	. •	•	•	•	•	•		1a
	List	of Ta	able	S		•		•		•					•	•	•			•		•	•	1b
	List	of F	igur	es .			•	•		•		•	•	•		•	•	•	•					10
Soil 1	Гурої	ogy.				•	•	•			•	•		•	•	•		•	•					2
Trace	E1em	ents ·	in S	oil	s.		•	•	•		•	•		•	۰	•	•		•	•				14
	Boro	n			0	•	•		•	•		•				•	•	•	•		•	•		15
	Chr.or	nium .				٠	•	•	• ·					•	•		•	•			•	•	•	16
	Coba	lt.			•	•	•	•	•				•	•	•				•	•	•			17
	Coppe	er.			•	•	•	•				•	•	•	•	•	•	•	•	•	•		•	18
	Lead			• •			•	•		•	•		•	•	•			•		•	•		•	20
	Manga	anese.	•	• •		•	•	•	•	•	٠	•	•	•	•		•	•	•	•	•	•		21
	Nicke	el	• •		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•			23
	Zinc		•			•	•		•	•		•	•	0		•	•	•	٠	•		•	•	24
Soil C	Chemio	cal Ch	nara	cte	ri	zat	tio	ons	S .			•	•	•	•	•	•	•	•	•	•	•	•	26
	1976	Samp1	ing	• •	•	•	•		•	•	•	•		•	•		•		•		•	•	•	26
	1977	Sampl	ing	• •	•	•		•	•	•	•	•	0				•	•				•	•	30
Litera	ture	Cited	l																					
Glossa	ıry																							
Appendix																								

FIGURES

Figure 1. Computer-generated map of Soil Associations in the Study Area.

To the soil scientist, the term "soil" refers to "the collection of natural bodies on the earth surface, in places modified or even made by man of earthy materials, containing living matter and supporting or capable of supporting plants out of doors" (SSS 1975). By definition, then, soils are limited to the uppermost few meters of the earth's crust. They are derived from parent material (i.e. rock ground to a more or less fine texture) that has been subjected to a number of soil forming processes. The five factors that are generally recognized as being important in the formation of soils are parent material, climate, time, vegetation and topography.

Soils are described by profiles that are sections through surface materials down to the more-or-less unweathered parent material. Unweathered surfaces that are exposed following glaciation, volcanic activity, erosion or the activities of man are subjected to soil forming processes over time. Selective leaching and accumulation (illuviation) of these materials results in the development of characteristic layers (or horizons) in soils. Horizons have been identified that can be recognized from place to place, and these form the basis for soil classification systems. Several such systems have been devised, but the most recent and comprehensive is that proposed by the Soil Survey Staff, Soil Conservation Service, U.S.D.A.

Their efforts resulted in the recent publication of Agriculture Handbook
No. 436: Soil Taxonomy, A basic system for making and interpreting soil surveys (SSS 1975).

Within the system proposed by the Soil Survey Staff, the following categories are recognized. Categories are arranged in hierarchical fashion with orders being the highest category.

<u>Orders</u> are differentiated by the presence or absence of diagnostic horizons or features that are marks in the soil of differences in the degree and kind of dominant sets of soil forming processes that have gone on. Ten orders are recognized.

<u>Suborders</u> are selected to reflect the most important variables within an order. These may have to do with the presence or absence of a diagnostic horizons, or the specific effects of any of the five soil forming factors. Currently 47 suborders are recognized.

<u>Great groups</u> are differentiated by placing together soils that have in common the following properties—close similarities in: kind, arrangement and degree of expression of horizons; soil moisture and temperature regime; and base status. About 185 great groups have been identified in the United States.

Subgroups Three kinds of subgroups are recognized:

- -those that conform to the central concept of the great group
- -those that are intergrades or transitional forms to other
 orders, suborders, or great groups.
- -those that are extragrades (e.g. those that are not representative of the great group but that are not transitional to any other known kind of soil).

Approximately 970 subgroups have been identified in the United States.

<u>Families</u> In this category, groups within a subgroup have been formed so that soils with similar physical and chemical properties that affect their responses to management and manipulation for use are combined.

Factors that are considered are:

- 1. Particle-size distributions in horizons of major biological activity below plow depth (\sim 12")
- 2. Minerology of the same horizons that are considered in naming particle-size classes.
- Temperature regime.
- 4. Thickness of the soil penetrable by roots.

About 4,500 families are currently recognized in the United States.

<u>Series</u> are the lowest category in the system. Two kinds of distinctions are made between series. First, a series cannot range across the limits between two families or between two classes of any higher category. Second, distinctions between similar series of a family represent restrictions in at least one of the ranges in properties of the family. About 10,500 series have been recognized in the United States. They are usually named after the geographic location of the originally described profile.

within a given geographic location, soils may be mapped at several levels of detail. In the most detailed mapping, soil series distributions are determined so that maps are accurate when units of 5-10 acres (2-4 ha) are examined. Most of the agricultural areas in Minnesota are mapped at this level, as are some smaller, special-use areas. Soil surveys for counties that have been mapped in detail can be obtained from the SCS. For most of the forested counties in Minnesota, detailed soil mapping has not yet been completed. It is likely that it will be 5-10 years before detailed soil survey maps are available for the seven-county Arrowhead Region. For the Studies Area we are, therefore, forced to rely upon the more generalized soil association maps available through the MLMIS. Within

the MLMIS, soils are identified in variable V15. Data levels of V15 are segregated by units referred to as soil associations-groups of two or three soil series that occur together on the landscape. Series within an association usually have similar family characteristics.

The distribution of soil series within each soil association that occurs in the Study Area is presented by terrestrial biology zone in Table 1.

Soil association (SA) descriptions include series names and a brief characterization of lanscape features. Within each association are shown the dominant series and their subgroup and family relationships. Specialized terms used in family descriptions are:

dysic- indicates pH<4.5 in all organic horizons.

euic- indicates pH>4.5 in at least some organic horizons.

mixed- indicates minerology that is <40 percent of any one mineral other than quartz or feldspars.

montmorillonitic- indicates minerology that is more than half montmontmorillonite and noutronite by weight or a mixture that has more montmorillonite than any other one clay mineral.

skeletal- rock fragments 2 mm in diameter or greater make up 35 percent or more by volume.

Examination of the distribution of soil series within the associations shows that associations transcend subgroup (and higher category) boundaries.

Thirty-two named and an additional five unnamed series have been identified in the Study Area. These series are distributed among 21 subgroups, 15 great groups, 11 suborders and 5 orders. Maps generated by MLMIS show that the 35 series are distributed among 23 soil associations. Although the distribution of series and subgroups within a soil association is known (see Table 1), the MLMIS map of V15 for the Study Area (Figure 1) does not

show these levels of classification. Table 2 gives acreage distributions, grouped by terrestrial biology zone, for soil associations. Standard Soil Survey Interpretations for all series are found in Appendix A. Important aspects of these interpretations have been summarized in Table 3.

The complete classification for all series described in the Study Area is presented in Table 4. Included are association affiliations for the series. Note that a given series may occur in more than one association (either as a major or a minor component). In order to interpret Table 2, brief descriptions of the categories are presented in the following section. Descriptions are taken more-or-less verbatum from Agriculture Handbook No. 436. Specialized terms included in the descriptions are defined in the Glossary.

Category Descriptions

- 1. <u>Alfisols</u> have an argillic horizon-that is, a horizon in which layer-latice silicate clays have accumulated, by illuviation, to a significant extent. Alfisols have moderate to high base saturation and water is held at <15 bar tension during at least 3 months each year when the soil is warm enough for plants to grow. Alfisols may have any of a variety of cemented layers in the lower horizons. The surface horizon of typical Alfisols contains 2.0-2.25% organic matter, and .8-1.0% clay and has a base saturation of about 87%. At 50cm these values are about .2%, 2% and 87% respectively.
- IA. Aqualfs are gray and mottled Alfisols that have an aquic moisture regime, or are artificially drained and have characteristics associated with wetness (e.g. mottles or iron-manganese concretions > 2mm in diameter).
 - IA. 1. <u>Fragiaqualfs</u> are Aqualfs that have groundwater perched above a fragipan at some period and saturating the soil at another. Fragiaqualfs were formerly called Planosols.
 - IAla. Aeric Fragiaqualfs are somewhat better drained than typical Fragiaqualfs. They usually have enough slope that water does not stand on the surface.
 - IA.2. Ochraqualfs have an ochric horizon and do not have a natric horizon or a fragipan. Ground water fluctuates from a level near the surface to one below the argillic horizon. These soils were formerly classified mostly as Planosols and Low-Humic Gley soils.

IA2a. Typic Ochraqualfs

IA2b. Aeric Ochraqualfs

These two soils are distinguished by the latter having somewhat better airation and, hense, a ligher color and less mottling.

IB. <u>Boralfs</u> are the more-or-less freely drained Alfisols of cool places. They have a frigid or cryic temperature regime and are typically strongly acid in the surface horizons. Most are forested, especially with coniferous cover.

- IB1. Eutroboralfs are Boralfs that have a frigid temperature regime, an argillic horizon, the top of which is usually within 60 cm of the soil surface, and no natric horizon or fragipan. They were formerly called Grey Wooded soils.
 - IBla. <u>Typic Eutroboralfs</u> are freely drained soils that are deep or moderately deep to bed rock.
 - 1B1b. Aquic Eutroboralfs are wetter than those above and have mottles within the upper 25 cm of the argillic horizon.
- II. <u>Entisols</u> Entisols are relatively young mineral soils that are highly variable but have in common a virtual absence of horizons.
- IIA. Aquents are wet Entisols. They may be in deltas on the margins of lakes where the soil is continuously saturated with water, in flood plains of streams where the soils is saturated at some time of year, or in wet, very sandy deposits. They are bluish or gray and mottled.
 - IIA1. Fluvaquents are primarily wet soils of flood plains and deltas. Most have either fine or coarse stratifications that reflect deposition of sediments under changing currents and in shifting channels. They typically have higher organic carbon contents than most wet mineral soils. These soils were formerly considered to be Alluvial or Low-Humic Gley soils.

- or mottled-gray colors. Water tables are usually at or near the surface. These soils were formerly called Low-Humic Gley soils and Regosols.
 - IIA2a. <u>Humaqueptic Psammaquents</u> have a thin A1 horizon that resembles an umbric epipedon. Base saturations are <50% in more than half the subhorizons in the upper 1m.
 - IIA2b. Mollic Psammaquents have a thin A1 horizon that resembles a mollic epipedon
- IIB. <u>Psamments</u> are mainly Entisols in poorly graded (well sorted) sands in sandy parent materials that were sorted in an earlier geologic period. Ground water is deeper than 50 cm and usually is much deeper. These soils have low water-holding capacity. Gravelly and very gravelly soils are excluded from this group.
 - IIB1. <u>Udipsamments</u> are Psamments of humid regions. They are mostly brownish and freely drained and have some weatherable minerals (>5%) in the sand fraction. Mean summer and winter soil temperatures at a depth of 50 cm differ by 5°C or more. These soils were formerly mostly considered to be Regosols.
 - IIB1a. Typic Udipsamments
 - Alfic Udipsamments unlike a., these soils have argillic horizons and have a base saturation >35% in some horizon.
 - c. Spodic Udipsamments have an albic horizon.
- IIC. Orthents are Entisols of recently eroded surfaces, but they are not present in areas that have high water tables.
- IIC1. Udorthents are Orthents of midlatitudes that have a udic moisture

regime. They commonly occur in recently exposed regolith, in slightly consolidated rock or thin regolith over bedrock.

- IIC1a. Typic Udorthents. These soils are deep or moderately deep to bedrock have deep ground water, low animal activity and thin layers or none of fine pyroclastic deposits. Few of these soils are cultivated.
- III. <u>Histosols</u> are soils that are dominantly organic. They contain at least 12-18% organic carbon if saturated by water and at least 20% o.c. if they are never saturated. By volume, Histosols are well over 50% organic matter. Most are saturated or nearly saturated with water most of the year. Suborders are defined by moisture regime and the degree of decomposition of the organic materials. Decomposition is often a function of temperature and great groups are defined in part by soil temperature regimes.
 - IIIA. <u>Fibrists</u> consist largely of plant remains so little decomposed that they are not destroyed by rubbing and their botanic origin can be readily determined. They tend to have the lowest ash content and bulk density of the Histosols. These soils were formerly called Bog soils.
 - IIIA1. Sphagnofibrists are those fibrists derived mainly from Sphagnum spp. and associated herbaceous plants.
 - IIIAla. <u>Typic Sphagnofibrists</u> occur as raised bogs or high moors in closed depressions and as blanket bogs in more or less dissected landscapes. They are seldom cultivated but have important uses as fuel and mulches.

- Hemic Sphagnofibrists differ from IIIAla in that they
 have more than 23 cm of subsurface and bottom layers
 occupied by humic materials and more than 12.5cm of the
 same layers occupied by sapric materials.
- IIIB. <u>Hemists</u> are Histosols in which the decomposition of organic materials has proceeded to the point where the botanic origin of as much as 2/3 of the material cannot be determined or the materials can be largely destroyed by rubbing between the fingers. Hemists were formerly called Bog soils.
 - IIIB1. Borohemists are Hemists that have a frigid but not cryic temperature regime.
 - IIIBla. <u>Typic Borohemists</u> are soils that consist of thick, continuous hemic materials.
 - IIIC. <u>Saprists</u> consist of almost completely decomposed plant remains. They occur where ground water levels tend to fluctuate within the soil. They were formerly called Bog soils.
 - IIICa. <u>Borosaprists</u>, like Borohemists, have a frigid but not cryic temperature regime.
 - IV. <u>Inceptisols</u> are soils of humid regions that have altered horizons that have lost bases or iron and aluminum but retain some weatherable minerals.
 - IVC. Aquepts are wet Inceptisols with poor to very poor drainage. Generally they have black surface horizons and mottled gray subsurface horizons. They typically occur in very flat plains, depressions or flood plains.

- IVA1. <u>Humaquepts</u> are nearly black or peaty, very wet, acid aquepts of humid midlatitudes. Formerly they were called Humic-Gley or Half-Bog soils.
 - IVAla. <u>Histic Humaquepts</u> have a histic epipedon, are the wettest of the Humaquepts, and are intergrades to the Histosols.
- IVA2. <u>Haplaquepts</u> are light colored, gray aquepts that do not have a fragipan or duripan but that have ground water that stands at or near the surface for long periods. Formerly they were called Low-Humic Gley and Humic Gley soils.
 - IVA2a. Aeric Haplaquepts are lighter colored than Typic Haplaquepts because of either shorter periods of saturation of the whole soil or somewhat deeper groundwater.
 - IVA2b. Mollic Haplaquepts have darker surface horizons than Typic Haplaquepts and have relatively high base saturations.
- IVB. <u>Ochrepts</u> are light colored, brownish more or less freely drained Inceptisals. Most have an ochric epipedon and a cambic horizon.
 - IVB1. Fragiocherepts are loamy soils that have a brownish cambic horizon and a fragipan at a depth of about 50cm. Perched ground water above the pan is common at some time during the year. Formerly they were included with Sols Bruns Acids.
 - IVBla. Typic Fragiochrepts are soils that have no distinct mottles in the upper 30 cm and have an ochric epipedon.
 - IVB2. <u>Dystrochrepts</u> are brownish, acid Ochrepts of humid regions. They have an ochric epipedon on a cambic horizon. Formerly they were considered to be Lithosols and Alluvial soils.
- IVB2a. <u>Typic Dystrochrepts</u> are soils that are moderately deep to deep PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

to bedrock, are freely drained and acid, and have an ochric epipedon.

- IVB2b. <u>Lithic Dystrochrepts</u> usually have hardrocks at depths of 25-50 cm.
- V. <u>Spodosols</u> have a spodic horizon-thatis, a horizon in which amorphous mixtures of organic matter and aluminum, with or without iron, have accumulated. Most have little clay. Particle—size classes are mostly sandy, sandy-skeletal, coarse-loamy, loamy-skeletal or coarse-silty. These soils are most extensive in coal, humid climates and are naturally infertile.
 - VA. Orthods are more or less freely drained Spodosols that have a horizon of accumulation with neither Al, Fe or organic matter predominating. Moisture regimes are udic or occassionally zeric.
 - VA1. <u>Haplorthods</u> have an albic over a spodic horizon. They were formerly called Podzol or Brown Podzolic soils.
 - VAla. Typic Haplorthods are deep, freely drained Haplorthods that have a single sequum and a moderate amount of organic carbon in the spodic horizon.

In addition to the soil associations (SA's) defined by the SCS, soils of the Superior National Forest (SNF) have been independently classified by D. H. Prettyman, Forest Soil Scientist, U. S. Forest Service, Duluth. Prettyman's classification scheme is based upon soil landscape units (SLU's), which incorporate soil texture and glacial landforms. Prettyman has collected data for several parameters that are useful to foresters who are responsible for managing lands within the SNF.

The Minnesota Department of Natural Resources has produced a computerized resource inventory of both SLU's and SA's for a 560 sq mile area (referred to as the MINESITE Area) that lies south and east of Ely. Table 5 lists SLU's that occur within the MINESITE Area.

Although the systems of Prettyman and the SCS are not directly analogous, SLU's are somewhat simlar to SA's in that SLU's are dominated by soils of a given series but contain inclusions of soils from other series. Table 6 is a cross-tabulation of SLU's and SA's that was produced by the staff of the MINESITE Project. The table shows that SLU's tend to be more specific than SA's for mineral soils, whereas the reverse is true for organic soils.

Trace Elements in Soils

In the following section, the status of trace elements in soils is reviewed on a world-wide basis. Typical elemental concentrations are presented as are the factors that govern the abundance and availability of individual elements. Where toxicity and/or deficiency problems have been noted, these are discussed. The summaries are abstracted from a more extusive review that was recently presented by Aubert and Pinta (1977).

Boron:

Average total boron contents of soils range from 20-50 ppm with variations due to parent material and soil types, which reflect the differences between geographical regions and climatic zones. Extremely low contents have been associated with podzolic sandy soils where concentrations may be less than 5 ppm. Calcarious soils in drier climates may have boron concentrations in excess of 150 ppm.

Available boron is typically expressed as that fraction of total boron that is soluble in hot water (Berger and Truog 1939). Average concentrations range from 0.1 to 1-2 ppm. Thus, water soluble boron typically represents 0.1-3.5% of total boron, although under some conditions the proportion may rise to 65-80% (in saline alkali soils of arid regions).

Several factors contribute to variations in total and "plant-available" boron in soils. Concentrations vary directly with humus and organic matter concentrations, and differences in distribution among horizons in a soil follow variations in humus content. Boron availability varies also with soil texture. Plants are better able to remove boron from coarse-textured soils. pH affects the availablity of boron in soils, for under basic conditions boron is in the form of compounds less easily soluble than under acid conditions. Boron may become deficient in very acid soils, for it may become leached from surface horizons. Concentrations are generally highest where rainfall is deficient.

The upper and lower limits of plant tolerance to available boron fall within a narrow range of between 0.1-0.2 and 1.5 ppm and may vary with plant species. Deficiencies are most likely to occur in acid leached soils, coarse-textured soils and calcareaous soils and may also occur under conditions of excessive cultivation and liming. Deficiencies are corrected PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW liming.

Chromium:

Average total chromium contents of soils range from 100-300 ppm, although extreme values range from traces to 3,000-4,000 ppm. Parent rocks rather than pedalogical processes play a major role in governing soil concentrations of chromium, which is a relatively stable element.

Chromium is only very slightly soluble in weak reagents. Available chromium extracted with 2.5% acetic acid from soils in Scotland was .01-.4% of total chromium, whereas in France 1N ammonium acetate extractable chromium was 0.1-1% of total chiromium.

Concentrations of chromium in soil horizons within a profile vary directly with humus content. Concentrations are also higher in finer textured soils compared to coarse-textured soils and are proportional to iron-oxide contents. Toxicity of chromium depends upon the valence of particular ions with the trivalent compounds being the least toxic (Grosman 1966). Soluble sulphate and nitrate compounds are more toxic than insoluble oxide or phosphate compounds. Toxicity increases as soil acidity increases and soil assimilable phosphoric acid decreases. Toxicity can be ameliorated by adding limestone and monobasic calcium phosphate.

Cobalt:

Average total cobalt contents of soils range from about 10 to 15 ppm. Extreme values may range from 0.05 to 300 ppm. Variations are attributable to both parent rocks and pedological process, especially those associated with climatic variations. In temperate and boreal regions total cobalt contents range from 0.05 to 200 ppm. Peat soils are typically low in cobalt with values rarely exceeding 5-10 ppm, even under wide variation in climatic conditions.

Available cobalt (extracted with 2.5% acetic acid) generally is in the range of 0.05 to 1 ppm. Upper and lower limits in the U.S. are 3.74 and 0.008 ppm (extracted with 2.5% acetic acid). Available cobalt as a percent of total cobalt varies widely from less than 1% to as much as 46% in leached soils in the U.S. Stronger reagent (e.g.1N nitric acid and 1N HCl) will extract greater amounts of "available" cobalt.

Cobalt accumulates in soil horizons that have high humus contents, for cobalt is fixed by humus. Cobalt is also sorbed by clay minerals, and its distribution in the profile follows that of clay. Available cobalt content depends upon the redox potential of soils. High acidity also facilitates the solubilization of cobalt compounds and aids their elimination by leaching.

Soils containing <5 ppm total cobalt may not be capable of supplying plants with quantities essential to animals. Because of the role it plays in the formation of haemoglobin, cobalt is an important element for animals. In the U.S. Alban and Kubata (1960) state that available cobalt contents should not be lower than 0.2 ppm. Deficiencies are corrected by fertilization with cobalt sulphate. Toxicity problems are not reported by Aubert and Pinta (1977).

Copper:

On a world-wide basis, average total copper concentrations range from 15 to 40 ppm, although extremes vary from traces to 200-250 ppm. Variations are due primarily to different contents of parent rocks and, to a lesser extent, to variations in soil types that correspond to climatic zones and geographic regions. Podzols over sulphide-rich bedrock in New Brunswick have copper conentrations that are five to six times greater than those in soils not over sulphide-rich bedrock. In general, the effects of parent rocks on copper contents are greatest in podzols and leached and peaty soils. Basic or neutral pH soils rich in humus contain more copper than acid pH soils. Chernozems, some saline soils and vertisols are among the soils richest in copper.

Copper has an important role in plant and animal plysiology, and therefore it is important to know "plant-available" concentrations. These vary according to extraction reagents, which include strong diluted acid (1N HCl and 1N nitric acid) and chelating agents (E.D.T.A.). Ammonium acetate and acetic acid exchangeable copper may be quite low (less than 5% of total), whereas higher concentrations (5-20% of total) are obtained by extracting with E.D.T.A. Strong reagents may extract 20-40% or more of the total copper in soils.

Concentrations of total copper vary directly with humus and adequately evolved organic matter. Copper concentrations also vary with clay contents, and in some leached and impoverished soils B horizons may be richer in copper than A_2 horizons. "Plant-available" copper is highly dependent upon soil pH. Availability generally decreases with increasing pH, but in peaty soils humic acids at pH 2.5-3.5 and fulvic acids at pH 6 form insoluble copper compounds that are unavailable to plants.

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

Toxicity levels may vary with plant species. Toxicity increases with decreasing pH in soils with equal "available" copper, because activity of copper ions increases when pH decreases. In general, toxicity problems arise when concentrations of "available" copper exceed 25-50 ppm. Toxicity is corrected by additions of organic matter and by liming. As a result of these practices, Copper is fixed and becomes insoluble. "Available" copper less than 0.5 to 3 ppm and total copper less than 7 to 8 ppm results in the development of deficiency symptoms for many crops. Deficiencies are removed by fertilization with copper compounds.

Lead:

The average amount of lead in soils is 15-25 ppm. Extreme values range from traces (in some tropical soils) to 1,200 ppm (in podzols of Canada). In temperate and boreal regions, concentrations are often higher than average. Lead contents in soils are influenced by concentrations of the element in the parent rocks from which soils are formed. Wide variations between horizons in a profile are generally not observed although concentrations may vary in relation to humus and organic matter concentrations. Thus lead is frequently found to be highest in surface horizons.

"Available" lead is usually expressed as that fraction that is extractable with 2.5% acetic acid (pH 2.5) or dilute nitric acid. Typically, 1-10% of total lead is extracted with acetic acid although as much as 30% (acetic acid) and 60% (nitric acid) of the total lead in soils may be extracted.

Near industrial sources, concentrations of lead in soils may reach 5,000 ppm. These levels are toxic to both plants and animals. Toxicity varies with soil pH, with lead being more toxic at low concentrations in soils of high pH.

Manganese:

Total manganese concentrations in soil have been reported to vary from traces (in podzols of Poland) to 10,000 ppm (in unleached alkali soils of Chad). Average values are 50 to 1000 ppm. Variations rarely relate to soil typology but are often high among soils of the same type in a climatic region. Concentrations tend to be lower in podzol soils than in loam or clay soils, but variations are frequently related to variations in the content of parent rocks. Within a profile, manganese concentrations vary with variations in humus and organic matter content. The accumulation of manganese is frequently due to biogenetic factors. Deep rooted plants take up Mn from subsurface horizons, and the element is concentrated in surface horizons that have high organic matter contents. Manganese concentrations also vary with soil texture—sandy soils are generally lower in Mn than clayey soils.

Manganese may occur in two forms in soils: the divalent Mn²⁺, which is soluble, mobile and readily available; and the tetravalent Mn⁴⁺, which is practically insoluble, non mobile and unavailable. The different forms of "available" manganese are comprised of these cations. The sum of the "soluble," "exchangable," and reducible manganese corresponds to active manganese. Because different extracting reagents result in very different values for "plant-available" manganese, it is particularly important that extracting reagents be specified when "plant-available" manganese is reported. Depending upon the extracting reagents used, "available" Mn may make up as little as 1-2% to as much 65% or more of total Mn. "Available" manganese contents are inversely related to soil pH. In summary, pedogenic and climatic factors, and redox potential and cultivation conditions all play a role in determining "available" manganese.

Manganese deficiencies are most common on alkaline soils but may also occur on highly acid soils where excessive leaching of Mn occurs. Depending upon extracting reagents and the form of manganese determined, deficiencies for plant growth may exist at levels from <1 ppm to 100 ppm.

Toxicity is most frequently observed in acid soils, especially where organic matter is rapidly decomposed leaving high concentrations of assimilable Mn.

Toxicity can be corrected either by enriching soils with organic matter or by liming to raise soil pH.

Nickel:

In temperate and boreal regions, average total nickel contents are 20-30 ppm. Values may range from traces to 500 ppm. Little information is available on "plant-available" nickel, but studies in Scotland indicate that about 2% of total nickel is extracted by 2.5% acetic acid. In the U.S.S.R. "available" nickel may comprise 15% or more of total nickel when soils are extracted with 1N HC1.

Although nickel contents of soils vary primarily with respect to concentrations in parent rocks, other factors affect nickel's distribution in soils. These factors include soil type and degree of evolution, fine fraction and metallic sesquioxide contents and, especially, humus content, for nickel is essentially a biogenic accumulation element.

Zinc:

The average zinc contents of soils range from 50 to 100 ppm, although extreme values range from traces to 900 ppm. Variations occur chiefly in in response to variations in the contents of the rocks from which soils are derived. Within a profile, zinc concentrations follow the distribution of humus and thus tend to be highest in surface horizons. In podzolic soils, zinc accumulates in illuviated B horizons. In general, fine-textured soils have higher zinc concentrations than coarse-textured soils, for clay holds zinc.

Zinc is an essential plant and animal nutrient, but it can become toxic if concentrations are too high. Extracting agents for which "available" zinc data exist are as discussed under "Copper". In the average, "available" zinc concentrations are 5-20% of total zinc, although values may attain 25-90%.

Zinc is solubilized under acid conditions. Thus, more zinc is available in acid soils unless leaching carries it away. Leaching under acid conditions in humid climates is quite common, however, and zinc deficiencies frequently occur under these circumstances. Deficiencies, in the case of crop plants are compounded by the fact that plants remove more zinc from soils and harvesting permanetly removes the element from the soil. Under alkaline conditions, zinc may be unavailable and deficiences may also occur. Although total zinc concentrations are high in fine-textured soils, clay binds zinc to such an extent that it is unavailable for plant growth. High concentrations of soil phosphorus may also limit the availablity of zinc.

Zinc deficiences are commonly observed when "available" zinc concentrations are less than 5 ppm. Corrective measures include the application of zinc fertilizers (e.g. zinc sulphate) and the weak liming of acid soils. PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

Zinc rarely is toxic under natural conditions, but some problems have been reported when "available" (1N HCL extraction) zinc occurs at 100 ppm. Liming can be employed to eliminate zinc toxicity.

Soil Chemical Characterizations

Soil chemical properties were determined as a part of the Plant Pathology (1976) and Terrestrial Biology (1977) sampling programs. Sampling in each year had different objectives, and, as a result, different designs were employed.

In 1976 sampling was over a broader area than in 1977. Unlike 1977, however, soils were not a criterion in site selection, and some SA's (e.g. 5, 7, and 58) were sampled frequently, whereas others were not sampled at all (most noticeably SA 9). Parameters sampled in 1976 included cation exchange capacity (CEC), pH, base saturation, SO_4^- , and F. Also extractable (with EDTA) Fe, Cu, Zn, Cr, Cd, Ni, and Pb, and available (ammonium acetate extraction) Ca, Mg, K, Na, and Mn were determined. Two soil depth intervals (0-6" excluding the forest floor, and 6-12") were sampled. Soils for analysis were obtained from 34 sites. Twelve sample per depth per site were collected and pooled. Thus, a single value for each parameter was obtained for each depth interval at each site. Sites were sampled twice—once in mid June and once in mid August. Soil associations covering approximately 60% of the Study Area were sampled, although only one site each occurred on SA's 4, 49, and 57. By contrast, SA 5 was sampled at 11 sites.

1976 Sampling

The results of the 1976 soil sampling are presented in Table 7 and are discussed systematically by parameter.

<u>Base Saturation</u>. Base saturation integrates soil exchangeable hydrogen and cation exchange capacity data. Soils from the Study Area can be combined into three groups of similar base saturation. Mineral soils appear to have values either greater than 40 percent (SA's 5 and 6) or less than about 30 percent (SA's 4, 7, 8, 10, and 49). Soils of the

latter class are generally coarser textured and/or are quite shallow. Soils with higher base saturations do not have correspondingly higher CEC values. This suggests that differences are more related to the higher ratio of bases to H⁺ than to the greater availability of exchange sites. Within the mineral soils, base saturations are typically less in 6 to 12 inch intervals. Organic soils differ from mineral soils in that they generally have much higher CEC and base saturations. This is not true, however, in the very acid soils of SA 57. pH in these Borohemists are 4.0-4.3; nearly one unit lower than other soils, which are in the range 5.0-5.8.

 $S0_4^-$. Sulfate levels in mineral soils were not observed to vary with SA. Mineral soil levels are, however, much lower than levels in organic soils. The former generally are in the range 15-25 ppm, whereas the latter are typically >45 ppm. Differences associated with sampling depth were observed only in organic soils where sulfate levels decrease with increasing depth.

Calcium and magnesium. Concentrations of these two major cations parallel, to some extent, values for base saturation. Among the mineral soils, values are highest in SA's 5 and 6. The organic SA 58 has concentrations that are respectively 4-5 and 10 times higher for Ca and Mg compared to mineral soils. Calcium concentrations for SA 57 are typical of the highest mineral soil values, whereas Mg concentrations are twice those in SA's 5 and 6. Except for SA 58, concentrations in the 6-12 inch interval are one half to one third those in the 0-6 inch interval.

Flouride. Concentrations of flouride are uniformly 6-11 ppm for all soils.

More often than not values are higher in the 6-12 inch interval but not

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

significantly so.

Manganese. The organic soil SA 58 has the highest manganese values (150 ppm), although these high values are confined to the 0-6 inch interval. Among the mineral soils, values for Mn are highest (40-65 ppm) in the surface horizons of SA's 5, 10, and 49. Values for other soils were consistently 20-25 ppm. Analyses for 6-12 inch intervals are one tenth to one third those of surface intervals for all soils.

Copper. Mineral soil copper concentrations range from .2-.6 ppm except in SA 8 where values in the 0-6 inch interval average 1.0 ppm. Values in organic soils are higher (1.5-3.0 ppm), but more variable. Concentrations generally decrease slightly with depth. High copper concentrations (2.6 for June and 1.7 ppm for August) were observed for SA 8 at plot P2O. This plot has shallow soils over Gabbro bedrock and lies just east of the So. Kawishiwi River. Because of the shallow soils, the 6-12 inch interval was not sampled at this plot. Foliage of aspen leaves sampled at the site did not have high concentrations of Cu.

<u>Iron</u>. Iron concentrations in organic soils are typically 5-6 times higher than in mineral soils. The latter are in the range 75-250 ppm, whereas the former range from 700-1200 ppm. Except in SA's 6, 49, and 58 mineral soil values at 6-12 inches are one half to two thirds those at 0-6 inches.

Zinc. Values for Zn are two to several times higher in surface soils. No clear differences exist between mineral and organic material. Some mineral soils clearly have higher values than others. Values within SA's are quite variable. Abnormally high values (10-20 ppm) were consistently observed in 0-6 inch soils at plots P24 and P25. Both of these plots are on SA 5 in

the NW portion of the Study Area.

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

<u>Nickel</u>. Concentrations of Ni are highest in peat soils. Within mineral soils, the highest values are at the surface. Values generally exceed 1 ppm only in organic soils.

<u>Cadmium.</u> Concentrations of Cd are: mostly <.1 ppm--the lower detection limit. Only occasionally were values of .2-.3 ppm observed.

<u>Chromium</u>. As with Cd, Cr values were generally at or below the detection limit of .1 ppm. Values higher than .1 ppm were observed only during the June sampling period, and values never exceeded .8 ppm.

<u>Lead</u>. Concentrations of Pb were higher in 0-6 inch intervals than in soils of 6-12 inch intervals, and they were higher in peat than in mineral soils.

Within mineral soils, SA's 5 and 8 had concentrations approximately twice those in SA's 6, 7, and 49. The highest lead concentrations were observed on SA 5 at plots P25 and P28.

1977 Sampling

Sampling in 1977 was more intensive, but was largely restricted to the MINESITE Area. Fourty-eight sites were selected among the most prevalent soil and vegetation types. Soils were sampled only during late July except at two sites where samples were also collected in early June and mid September. For sites with mineral soil, 12 samples each were obtained for the forest floor and the 0-5 cm and 5-10 cm intervals. In peat soils, sampling intervals were 0-5, 5-10, and 55-60 cm. After drying, samples were quantitatively pooled so that, for each site, three samples from each depth interval were available for analysis. Parameters evaluated were total (nitric-perchloric acid digestion) K, Mg, Ca, P, Sr, Ba, Cu, Zn, Mn, Fe, Al, Ti, V, Be, Si, B, Ag, As, Pb, Zr, Th, Co, Cd, Cr, Ni, Mo, Se, and Na.

Soil chemical analysis data are summarized for 9 elements; Cu,Ni,Fe,Mn,Zn, Ca,Mg,P, and K. Means and standard error of the means (SEM), calculated as a percent of the mean, were determined for these elements in each of the five soil associations that were sampled in 1977. An overall mean and variability quotient (SEM/ \overline{X} *100) of the four mineral soil associations combined were also calculated for each element. The results are presented in Table 8. Relationships between element concentration, soil depth, and litter are discussed, as are comparisons of mineral and organic soils, and individual SA's.

ORGANIC SOILS

Only SA 58 was sampled. Generally, concentrations of most elements (Zn,Fe,Mn,Mg,P and K) decreased with increasing soil depth. The reverse was true for Ni and Ca, however, and Cu followed no apparent trend.

Variability in concentration (as measured by Vq=SEM/ \overline{X} *100) increased with soil depth for Cu,Mn,Zn,Mg, and P. Only for Fe did variability decrease with increasing soil depth. Ni,Ca, and K showed no trend. Of those elements that exhibited an increase in variability with depth, the rate of increase Vq occurred more rapidly between the 0-5 cm and 5-10 cm depths for Mg,Zn and Mn and

between the 5-10 cm and 55-60 cm depth for Cu and P. Overall, the variability of the average metal concentrations in organic soil were relatively high. Vq values were all over 10% except for Cu,Zn,K, and P at the 0-5 cm depth, and for Cu at 5-10 cm depth. The largest values were found for Fe (19-27%) and Mn (18-37%), whereas those of K were consistently low.

For most elements, the variability of the three samples within a site was generally lower than the variability of the average values from all eight plots. The Vq values were under 10% for all metals except K at the 55-60 cm depth and Fe and Mn at all three depths. Values for Vq ranged from 29.7% (Mn) to 5.1% (P) at the 5-10 cm depth, from 39.6 (Ni) to 4.8% (P) at the 5-10 cm depth, and from 19.9 (Mn) to 7.8 (P) at the 55-60 cm depth. There was no relationship between depth and variability.

MINERAL SOILS

Chemical analysis of mineral soils included samples from SA's 5, 7, 8, and 50. Average concentrations of most elements (Cu,Fe,Mg,P, and K) increased with depth. Only Ni and Mn decreased. Zn showed no depth-related trends.

All elements except Zn, Mn, and P were found in greater concentrations in the soil than in the litter. All average concentrations in the soil

were less than an order of magnitude higher than the litter concentrations.

There was less variability in the average element concentration of soil than litter for all elements except Cu, and P. This decrease in variability at a greater depth may be due to the absence of soil disturbance and the sporadic influx of various elements from organic matter.

The overall variability of both litter and soil was relatively low. Vq values for litter were under 10% for all elements except Mn (10.5%) and Ni (12.1%). Only Ni (13.6%) at the 0-5 cm interval had a Vq greater than 10% in soil. The highest Vq for the 5-10 cm interval also occurred with Ni. The lowest variability in litter was for Cu (2.5%) whereas the lowest variability in both the 0-5 cm (2.9%) and 5-10 cm (2.7%) intervals was for K.

COMPARISON OF ORGANIC AND MINERAL SOIL

Average forest-floor values for the four SA's on mineral soil were higher for all metals at all depths compared to organic soils. The average metal concentration of organic soil at the 0-5 cm depth, however, was usually within the range of average litter values. Only Cu, Ni, and Zn concentrations for organic soils were below the range of litter values, although litter and organic soil averages differed greatly only for Zn. The differences between litter and organic soil values generally increased with increasing organic soil depth. Cu, Ni, and Ca reached their highest concentrations at the 55-60 cm interval in organic soils and were exceptions.

Although Vq vaules for the combined mineral soil group were much lower than those of the organic soil group, a direct comparison is not appropriate, for large differences exist in the number of sites in each group. Generally, metal concentrations increased with depth in mineral soil but decreased with depth in organic soil. Ni followed no depth-related trend in either soil type. Mn and Zn in mineral soil, and Ca and Cu in organic soil also showed no depth-related trends.

COMPARISONS OF MINERAL SOIL ASSOCIATIONS

At both depths, the average concentrations of all elements, except K, varied with SA. The highest average concentrations were nearly always found in SA 7, whereas the lowest were always found in SA 50. SA 8 and 5 generally ranked second and third respectively. No apparent relationship existed between soil association and litter element concentration.

For both litter and mineral soil a comparison of average and Vq values for mineral soil associations reveals that deviant values (those that differ greatly from those of the other three soil associations) nearly always occurred in SA 7 or 50. In SA 7, unusally high average values were found in both soil depths for Ni and Zn, and in the 5-10 cm soil layer for Mn. High average values were also found in the litter for Ni and Mg. In SA 50, low average values were found for Fe at both soil depths and for P at the 0-5 cm layer. Mean concentrations for K for both soil depths were much greater compared to other soil associations. In the litter, high average values were found for Mn, Ca, and Fe. The only atypical average value found in soil associations other than SA 7 or 50 was for Zn in the litter of SA 5.

Extremes in variability were all confined to SA 7 and 50. Unusually high Vq vaules were found in the litter of SA 7 for Ni, and the 5-10 cm soil depth for Mg. Variability in SA 50 was high in the litter for Mn and Fe. Very low Vq values were found in the litter of SA 50 for Zn and in the 5-10 cm interval of SA 7 for Mn.

The observed chemical relationships among the four soil associations appear to relate to soil texture. The highest average concentrations (except for K) were found on SA 7, which is classified as a gravelly soil. SA 5 and 8, which were similar and had lower values than SA 7, are finer textured and are classified as loamy soils. SA 50, which had the lowest concentrations for all but K, is classified as clay soil.

Several additional factors may account for the low values reported for SA 50. First, SA 50 originated from calcareous Des Moines to be till, whereas the other soils originated from the more granitic Rainy Lobe till. Second, SA 50 is represented by only 3 plots. All other soil associations were sampled in at least 8 plots. This one would expect higher Vq values for SA 50 compared to other soil associations. Third, sampling of SA 50 was confined to plots with coniferous vegetation, whereas the other three mineral soil associations were sampled under both coniferous and deciduous vegetation. Increased leaching and slower element cycling rates would result in lower values in surface soil horizons under conifers.

Table 9 compares total soil concentrations obtained for soils sampled during 1977 with world-wide values from Aubert and Pinta (1977). Values for soils of the RCNSA are within the range of world-wide average values for all elements except nickel. Values for this element are two to three times the world-wide average values. Variations within the RCNSA appear to be related to origin of parent rocks. Soils of SA 50 are derived from rocks of marine sedimentary origin and are relatively low in Ni (30-50 ppm). Soils of all other SA's originated from granitic rocks and it would appear that the nickel contained in these rocks influenced soil concentrations. Soils derived from these granitic rocks have higher concentrations for several other metals compared to SA 50, but values do not exceed the range of world-wide values.

Table 1. V15-SOIL ASSOCIATIONS DATA LEVEL DEFINITIONS

DATA LEVEL		OPORTION OF JOR SOILS (%)
1	Ontonagon-Bergland nearly level to gently sloping association	
	A) Ontonagon, Typic Eutroboralf, very fine, mixed B) Bergland, Aeric Haplaquept, very fine, mixed C) Minor soils	75 15 10
4	Ahmeek-Ronneby undulating association	
	A) Ahmeek, Typic Fragiochrepts, coarse-loamy, mixed B) Ronneby, Aeric Fragiaqualfs, coarse-loamy, mixed C) Minor soils	65 15 20
5	Newfound-Newfound (wet) undulating association	
	A) Newfound, Typic Fragiochrepts, coarse-loamy, mixed B) Newfound, (wet), Aeric Fragiaqualfs, coarse-loamy, mixe C) Minor soils	65 ed 15 20
6	Unnamed-Toivola undulating association	
	 A) Unnamed, Typic Haplorthods, coarse-loamy over sandy skeletal B) Toivola, Typic Udorthents, sandy-skeletal, mixed C) Minor soils 	75 15 10
7	Toivola-Unnamed-Cloquet undulating to steep undifferentiated association	
	A) Toivola, Typic Udorthents, sandy-skeletal, mixed B) Unnamed, Typic Haplorthods, coarse-loamy over sandy-	60
	skeletal, mixed C) Cloquet, Typic Dystrochrepts, coarse-loamy over	15
	sandy or sandy-skeletal, mixed D) Minor soils	15 10
8	Mesaba-Barto undulating to hilly association	•
	 A) Mesaba, Typic Dystrochrepts, coarse-loamy, mixed B) Barto, Lithic Dystrochrepts, loamy, mixed C) Quetico, Lithic Dystrochrepts, loamy, mixed D) Minor soils 	45 40 5 10
9	Conic-Insula undulating to hilly association	
DDE! !!/!	A) Conic, Typic Fragiochrepts, coarse-loamy, mixed B) Insula, Lithic Dystrochrepts, loamy, mixed C) Quetico, Lithic Dystrochrepts, loamy, mixed NARY DRAPT REPORT, SUBJECT TO REVIEW	45 35 10 10

Table 1. V15-SOIL ASSOCIATIONS DATA LEVEL DEFINITIONS contd.

DATA LEVEL		OPORTION OF AJOR SOILS (%)
10	Quetico-Bedrock outcrop undulating to very steep complex	
	A) Quetico, Lithic Dystrochrepts, loamy, mixed B) Bedrock Outcrop C) Minor soils	60 30 10
.11	Indus-Wildwood nearly level association	
	A) Indus, Typic Ochraqualfs, very fine, montmorillonitic B) Wildwood, Histic Humaquepts, Very fine, montmorillonitic C) Taylor, Aquic Eutroboralfs, very fine, montmorillonitic D) Minor soils	65 20 5
12	Taylor-Indus nearly level to undulating association	,
	A) Taylor, Aquic Eutroboralfs, very fine, montmorillonitic B) Indus, Typic Ochraqualfs, very fine, montmorillonitic C) Wildwood, Histic Humaquepts, very fine, montmorillonitic D) Minor soils	45 35 : 10
17	Nebish-Mooselake-Shooker hilly association	
	A) Nebish, Typic Eutroboralfs, fine-loamy, mixed B) Mooselake, Typic Borohemists, euic C) Shooker, Aeric Ochraqualfs, fine-loamy, mixed D) Minor soils	50 30 5 15
25	Cormant-Shawano nearly level association	
	A) Cormant, Mollic Psammaquent, mixedB) Shawano, Typic Udipsamments, mixedC) Minor soils	65 20 15
26	Menahga-Cutfoot undulating association	
	A) Menahga, Typic Udipsamments, mixedB) Cutfoot, Alfic Udipsamments, mixedC) Minor soils	60 30 10
31	Alluvial Land, nearly level type	
	A) Fluvaquents B) Borosaprists C) Minor soils	60 30 10

Table 1. V15-SOIL ASSOCIATIONS DATA LEVEL DEFINITIONS contd.

DATA LEVEL	DESCRIPTION	PROPORTION OF MAJOR SOILS (%)
34	Spooner-Unnamed-Baudette nearly level association	
	 A) Spooner, Typic Ochraqualfs, fine-silty, mixed B) Unnamed, Mollic Haplaquept (fine-silty) C) Baudette, Aquic Eutroboralfs, fine-silty, mixed D) Minor soils 	50 25 10
35	Mesaba-Barto undulating association	
	 A) Mesaba, Typic Dystrochrepts, coarse-loamy, mixed B) Barto, Lithic Dystrochrepts, loamy, mixed C) Quetico, Lithic Dystrochrepts, loamy, mixed D) Minor soils 	45 40 5 10
41	Cloquet-Emmert undulating association	
	 A) Cloquet, Typic Dystrochrepts, coarse-loamy over sandy or sandy-skeletal B) Emmert, Typic Udorthents, sandy-skeletal, mixed C) Minor soils 	75 15 10
48	Nemadji-Newson nearly level association	
-	A) Nemadji, Spodic Udipsamments, mixedB) Newson, Humaqueptic Psammaquents, mixedC) Minor soils	60 25 15
49	Unnamed-Hibbing nearly level association	
	A) Unnamed, Aquic Eutroboralfs, fine, mixedB) Hibbing, Typic Eutroboralfs, fine, mixedC) Minor soils	60 30 10
50	Hibbing-Unnamed undulating association	
	A) Hibbing, Typic Eutroboralfs, fine, mixedB) Unnamed, Aquic Eutroboralfs, fine, mixedC) Minor soils	60 30 10
57	Greenwood nearly level association	
	A) Greenwood, Typic Borohemists, dysicB) Minor soils	65 35
58	Mooselake nearly level association	
	A) Mooselake, Typic Borohemists, euicB) Minor soils	65 35

Table 1. V-15 SOIL ASSOCIATIONS DATA LEVEL DEFINITIONS contd.

DATA LEVEL	DEFINITION	PROPORTION OF MAJOR SOILS (%)
59	Waskish-Lobo nearly level association	
ette de la companya d	A) Waskish, Typic Spagnofibrist, dysicB) Lobo, Hemic Sphagnofibrist, dysicC) Minor soils	50 35 15
60	Mine	
62	Water	

Page 42

Table 2.

		TER	RESTRIAL	BIOLOGY	ZONE			
oil ssociation	1	2	3	4	5	6	7	Area Totals
1	0	0	0	0	0	0	0	.01
	(o) ^a	(0)	(o)	(0)	(o)	(160)	(0)	(160)
4	0	0	0	0	. 1	.1	0	.05
	(o)	(0)	(0)	(0)	(80)	(640)	(0)	(720)
5	. 4	8.8	5.2	50.0	40.9	8.6	5.6	13.52
	(720)	(5840)	(2600)	(65240)	(49360)	(42920)	(17800)	(184480)
6	0	2.5	0	0	2.9	.8	. 36	.67
	(0)	(1680)	(0)	(0)	(3480)	(3880)	(80)	(9120)
7 .	12.0	54.8	14.6	5.5	6.2	10.6	6.4	11.20
	(21240)	(36160)	(7280)	(7160)	(7440)	(53080)	(20360)	(152720)
8	68.1	.1	24.4	11.7	1.0	1.0	5.8	12.71
	(120880)	(120)	(12120)	(15320)	(1160)	(5240)	(18520)	(173360)
9	. 2.4	0	3.0	0	0	8.4	65.1	18.71
	(4280)	(0)	(1480)	(0)	(0)	(42000)	(207480)	(255240)
10	0	0	0	0	0	.3	.8	. 32
	(0)	(0)	(0)	(0)	<u>(</u> 0)	(1680)	(2640)	(4320)
11	0	0	0	0	0	2.0	.3	.80
4-	(0)	(0)	(0)	(0)	(0)	(10 080)	(800)	(10880)
12	0	0	0	0	0	.1	.2	.09
	(0)	(0)	(0)	(0)	(0)	(520)	(760)	(1280)
17	0	0	0	0	0	0	0	0
	(0)	(0)	(0)	(0)	(0)	(0)	(40)	(40)
25	0	1	0	0	0	1.8	0	.67
	(0)	(40)	(0)	(0)	(0)	(9080)	(0)	(9120)
26	4.0	0	0	0	0	11.7	.3	4.88
	(7040)	(0)	(0)	(0)	(0)	(58480)	(1080)	(66600)

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

Page 43

Table 2.

		TER	RESTRIAL	BIOLOGY	ZONE			
oil ssociation	1	2	3	4	5	6	7	Area Totals
31	0	0	. 0	0	0	.5	0	.18
×9.4	(o)	(0)	. (0)	(0)	(0)	(2480)	(0)	(2480)
34	0	0	0	0	0	.5	0	.20
	(o)	(0)	(0)	(0)	(0)	(2720)	(0)	(2720)
35	.4	0	1.3	0	0	.9	0	. 32
	(840)	(0)	(640)	(0)	(0)	(2840)	(0)	(4320)
41	.4	0	0	0	0	10.6	.1	3.95
,	(760)	(o)	(0)	(0)	(0)	(52880)	(200)	(53840)
48	0	0	0	0	0	.2	0	.07
	(0)	(0)	(o)	(0)	(o)	(880)	(0)	(880)
49	0	0	0	1.0	•5	2.5	0	1.05
**************************************	(0)	(o)	(0)	(1320)	(560)	(12480)	(0)	(14360)
50	0	0	1.8	3.6	1.8	8.2	0	3.58
	(0)	(o)	(880)	(4680)	(2200)	(41120)	(0)	(48880)
57	.8	0	0	.3	1.2	8.0	1.1	3.43
	(1360)	(o)	(o)	(360)	(1400)	(40040)	(3600)	(46760)
58	9.5	33.3	17.7	25.9	43.3	19.7	8.0	18.90
	(16800)	(21960)	(.8760)	(33720)	(52200)	(98880)		(257800)
59	0	. 2	0	0	1.0	.3	0	.20
	(o)	(160)	(o)	(o)	(1240)	(1320)	(0)	(2720)
60	.2	0	31.0	1.7	. 0	3.1	. 1	2.52
	(440)	(o)	(15840)	(2240)	(0)	(15720)	(160)	(34400)
62	1.8	.1	0	.3	1.3	.3	6.2	1.98
	(3200)	(40)	(0)	(400)	(1520)		(19880)	(26960)
	100.0	99.1	99.9	100.0	100.2	100.2	100.3	101.01
. (1	7 7.560)(6	36.000)(4	19 . 600) (1	30 , 440) (1	20 .640) (501-040)(318 - 880 \	(1,364,160)

a. numbers in () are acres

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

Table 3

SOIL PROPERTIES

Soil Series	Soil Association Affiliations	Depth (in)	Texture 1	Coarse Fraction 3" (%)	Permeability (in/hr)	Available Water Capacity (in/in)	pН	Shrink Swell Potential	Page 44
Ontonagon	la	0-6	Sicl	0	.26	.1820	4.5-6.0	Mod.	
		6-24	С	0	.062	.1014	5.0-7.8	High	
		24-60	С	0	•06	.1014	7.4-8.0	High	
Bergland	1ь	0-6	cl	0	.062	.1316	5.1-6.0	High	
		6-25	c1	0	.062	.1014	6.0-7.3	High	
		25-60	cl	0	.06	.1014	7.3-8.4	High	
Ahmeek	4a	0-16	1-fs1	-	.6-2.0	.152	5.1-6.0	Low	
		16-60	fs1	0-4	.26	.0713	5.1-7.3	Low	
			fs	0-4	.62	.0711	6.6-7.3	Low	
Ronneby	4b	0-11	sil	0-5	.6-2.0	.2024	5.1-6.0	Low	
-		11-50	fsl	0-5	.26	.0713	6.1-7.3	Low	
		58-60	fsl	0-5	.26	Transp and	6.6-7.8	Low	
Newfound	5a	0-16	gsl	·	2.0-6.3	.1014	4.5-6.0	Low	
		16-50	gs1	-	0.6-0.2	.0509	5.1-6.0	Low	
		(fragipa						-5	
Newfound(wet)	5ь	0-11	gl	0-5	0.6-2.0	.1618	5.1-5.5	Low	
		11-45	gs l	0-5	0.2-0.6	.0813	5.1-6.0	V.Low	
		45-60	gs1	0-5	0.2-0.6		5.1-6.0	V.Low	
Unnamed	6a;7b	0-15	s1	0-5	0.6-2.0	.1824	4.5-6.5	Low	
(Typic Haplorthod)		15-60	gcs	0-10	20	.0204	4.5-6.5	V.Low	
m = 2 1 -	(1.7	0.15		0.10					
Toivola	6b;7a	0-15	vgls	0-10	20	.0305	5.1-6.5	Low	
		15-60	vgls	5-20	20		5.1-6.5	Low	
Cloquet	.7c;41a	8-0	s1	0-1	.6-2.0	.2224	4.5-6.0	Low	
		8-14	s1	0-1	.6-2.0	.1821	4.5-6.0	Low	
		14-60	gcs	0-10	20	.0204	5.6-6.5	Low	

Soil Series	Soil Association Affiliations	Depth (in)	Texture ¹	Coarse Fraction 3" (%)	Permeability (in/hr)	Available Water Capacity (in/in)	рН	Shrink Swell Potential
Mesaba	8a;35a	0-28	gsl	· _	2.0-6.3	.1014	5.1-6.0	Low t
Barto	8b;35b	0-15 15+	gcsl rock	-	. 2.0-6.3	.1014	5.1-6.0	Low
Quetico	8c;9c;10a;35c	0-8 8+	1 rock	· · -	.63-2.0	.1520	4.5-5.5	Low
Conic	· 9a	0-15 15-30	gs1 gs1	<u>-</u>	2.0-6.3 .062	.1014 .0509	4.0-6.0 4.5-6.0	Low Low
Insula	9Ъ	0-15 15+	gsl	-	2.0-6.3	.1014	5.1-6.0	Low
Bedrock Outcrop	10ь		uad and uad	-	·			
Indus	11a;12b	0-5 5-23 23-60	c1/c11 c1 c1	- - -	.0620 .0620 .0620	.1316 .1014 .0913	5.6-6.5 5.6-7.8 7.5-8.0	Mod-High High High
Wildwood	11b;12c	0-6 6-18 18-60	muck cl cl	0 0	.06-0.6 .06-2.0 .0620	.3548 .1014 .0913	5.6-6.5 5.6-7.3 7.4-8.4	High High
Taylor	11c;12a	0-6 6-21 21-60	sil cl sicl	0 0 0	.6320 .0620 .0620	.2224 .1014 .0913	5.6-6.5 5.6-6.5 7.4-8.4	<u> </u>
Nebish	17a	0-3 3-9 9-33 33-60	1 s1 c11 1	- -	.6-2.0 2-6 0.2-2.0 0.6-2.0	.2022 .1315 .1519 .1719	6.6-7.3 6.6-7.3 6.1-6.5 7.4-7.8	Low
Mooselake	17b;58a	0-60	muc ky peat	0	10-20	.4858	5.1-6.5	High

Soil Series	Soil Association Affiliations	Depth (in)	Texture 1	Coarse Fraction 3" (%)	Permeability (in/hr)	Available Water Capacity (in/in)	рН	Shrink- Swell Potential
Shooker	17c	0-12 12-36 36-60	sl,csl,l cll,l,scl l,sl	- 1 - -	.6-6.0 .2-2.0 .6-6.0	.1322 .1519 .1119	6.6-7.3 6.6-7.3 7.9-8.4	Low 40 Mod.
Cormant	25a	0-6 6-60	lfs,fs,ls fs,s,lfs		6.0-20 6.0-20	.0812 .0610	6.1-7.3 6.1-7.8	Low Low
Shawano	26c	0-60	fs	-	6.0-20	.0810	5.6-6.5	Low
Menahga	26a	0-4 4-60	lcs cs,s	-	6-20 6-20	.1012 .0507	4.5-6.0 4.5-6.0	Low Low
Cutfoot	26ъ	0-13 13-40 28-30 40-60	ls cs cs s	0-2 0-5 0-5 0.5	6-20 20 6-20 20	.1012 .0305 .0507 .0204	5.1-6.0 5.1-6.0 5.6-6.5 5.6-7.8	V.Low V.Low V.Low
Fluvaquents	31a	too variable to rate		- .				
Borosaprists	31b	0-36 36-60	muck 1	0 0	6-10 .0606	.43 .1118	4-5.0 4.5-7.3	High Low to Mod.
Spooner	34a	0-15 15-22 22-60	vfsl 1 sil	0 0 0	2-6 .6-2.0 .6-2.0	.222 .1719 .222	6.1-7.8 6.1-7.8 7.4-8.4	Low Low to Mod. Low
Unnamed (Mollic Haplaquept)	34b	0-7 7-60	muck-si si	0	.6-2.0 .26	•25 •22	5.1-6.5 5.1-6.5	Mod.
Baudette	34c	0-8 8-15 15-60	1 cll sil	0 0 0	.6-2.0 .26 .6-2.0	.2022 .1519 .2022	6.6-7.3 6.1-7.3 7.4-8.4	Low Mod Low

Soil Series	Soil Association Affiliations	Depth (in)	Texture ¹	Coarse Fraction 3" (%)	Permeability (in/hr)	Available Water Capacity (in/in)	pН	Shrink- Swell Potential	Page
Emmert	41b	0-5 5-60	gs1	0-10 0-10	2-6 20+	.0610 .0204	5.1-6.5 5.5-6.5	Low Low	e 47
		J-00	vgcs1	0-10	20+	•02-•04	J.J-0.J	LOW	
Nemadji	48a	0-9	fs	0	6.3-20	.0614	4.5-6.0	Low	
-		9-60	fs	0	6.3-20	.0507	5.1-6.0	Low	
Newson	48ъ	0-5	mucky sand	0	2-20	.0722	5.1-6.0	High	
		5-60	S	0	6.3-20	.0507	5.1-6.0	Low	
Selkirk	49a;50b	0-9	1	0	.6-2.0	.2022	4.5-6.0	Low	
		9-36	c1	0	.0620	.1014	5.1-8.1	Mod.	
		36-60	sicl	0	.0620	.0915	7.4-8.4	Mod.	
Hibbing	49b;50a	0-8	1	0	.6-2.0	.222	4.5-6.0	Low	
		8-34	c1	0	.062	.114	5.1-8.4	Mod.	
		34-60	c1	0	.062	.114	7.4-8.4	Mod.	
Greenwood	57a	0-20	fibric pea	t 0	6-20+	.5870	3.5-4.5	High	
		20-70	hemic peat	0	.6-6.0	.4858	4-5	High	
Waskish	59a	0-60	fibric pea	t -	12-20	•55-•65	3.4-4.5	High	
Lobo	59Ъ	0-38	fibric pea	t -	6-20	.5565	3.4-4.5	High	
		38-60	humic peat	***	2-6.3	. 45 55	4-4.5	High	

coarse

c1 = clay 1 = loam

= sand

si = silt v = very g = gravelly f = fine

	Soil			Borrow Source For					
	Association		Natural	Depth to	Depth to	Road	* ************************************		Top
Series	Affiliation	Flooding	Drainage	Water Table	Bedrock	Fill	Sand	Gravel	Soil
Ontonagon	la	None	well to mod.well	>5'	>5'	Poor	N.S.	N.S.	Poor
Bergland	1ъ	occasional ponding	poor	seasonally <1'	>10'	Poor	N.S.	N.S.	Poor
Ahmeek	4a	None	well to mod.well	<20' in spring	>10'	Fair	N.S.	N.S.	Fair
Ronneby	4b	None	somewhat poor	<u>×</u> 2' except mid-summer	>5'	Fair	N.S.	N.S.	Fair
Newfound	5a	None	well	>5'	>5'	Good- Fair	Poor.	Poor	Poor
Newfound(wet)	5b	None	somewhat poorly-poor	<pre><2' except mid-summer</pre>	>5'	Fair- Poor	Poor	Poor	Fair- Poor
Unnamed	6a;7b	None	excessive	>5'	40-120"	Good	Good	Good	Poor
Toivola	6b;7a	None	excessive	>5'	>61	Good	Poor	Good	Poor
Cloquet	7c;41a	None	excessive	>6'	>6'	Good	Fair	Good	Fair
Mesaba	8a;35a	None	well	20-40"	20-40"	Fair	Poor	Poor	Poor
Barto	8b;35b	None	well	5'	8-20"	Fair	N.S.	N.S.	Poor
Quetico	8c;9c;10a;35c	None	somewhat excessive	>51	<u><</u> 8"	Poor	N.S.	N.S.	Poor
Conic	9a	None	well		20-40"	Fair	Poor	Poor	Poor
Insula	9ъ	None	well	>5'	8-20"	Fair	Poor	Poor	Poor
Bedrock Outcre	ор 10ь	None	well	>10 *	0-4"	Poor	N.S.	N.S.	N.S.

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

Soil Association			Natural Depth to Depth to			Borrow Source For			
Series	Affiliation	Flooding	Drainage	•	epth to Bedrock	Road Fill	Sand	Gravel	Top Soil
Indus	lla;12b	slight	poorly, somewhat poorly	seasonally 1-3'	>5'	Poor	N.S.	N.S.	Poor
Wildwood	11b;12c	occasionally ponded	very poorly	0.5-2'	>51	Poor	N.S.	N.S.	Poor
Taylor	11c;12a	None	well and mod. well	>51	>51	Poor	N.S.	N.S.	Poor
Nebish	17a	None	well	>5-10' seasonally high	>10 '	Fair	N.S.	N.S.	Poor
Mooselake	17b;58a	None	very poorly	near surface	>51	Poor	N.S.	N.S.	Poor
Shooker	17c	occasionally ponded	poorly	1-5' seasonally high	>10 '	Poor	N.S.	N.S.	Poor
Cormant	25a	occasionally ponded	poorly	0-4 1	>51	Poor	Good	N.S.	Poor
Shawano	25b	None	excessive	>61	>6 1	Good	Good	N.S.	Poor
Menahga	26a	None	excessive	>6'	>51	Good	Good	N.S.	Poor
Cutfoot	26ъ	None	excessive	> 6 1	>5'	Good	Good	Poor	Poor
Fluvaquents	31a	frequent	wet(poor)	variable with stream flow	>51 to	Poor o Fair	Poor	N.S.	Poor
Borosaprists	31ъ	occasional	very poor	near surface	>51	Poor	N.S.	N.S.	Poor
Spooner	34a	slight sc	poor to omewhat poor	1-3'	>10 '	Poor	N.S.	N.S.	Poor

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

	Soil		M	D 11 1	D .1 .		rrow S	ource F		
Series	Association Affiliation	Flooding	Natural Drainage V	Depth to Water Table	Depth to Bedrock	Road Fill	Sand	Gravel	Top Soil	
Unnamed (Mollic Haplaquept)	34ъ	occasionally flooded often ponded	very poor	0-2 *	>5'	Poor	N.S.	N.S.	Poor	
Baudette	34c	slight	mod. well to well	3-6'	>10'	Fair	N.S.	N.S.	Good to Fair	-
Emmert	41b	None	excessive	>10 '	>10'	Good	Good	Good	Poor	
Nemadji	48a	None	somewhat poor	2 '	>10'	Fair	Good	N.S.	Poor	
Newson	48ь	occasionally ponded	poor, very poor	1'	>10 9	Poor	Good	N.S.	Poor	
Selkirk	49a;50b	occasional brief	somewhat poo to poor	or 1-3'	>5'	Fair	N.S.	N.S.	Fair	
Hibbing	49b;50a	None	well and mod. well	>5'	·>10 *	Fair	N.S.	N.S.	Fair	
Greenwood	57a	None	poor (bog)	surface	>5'	Poor	N.S.	N.S.	Poor to Fair	
Waskish	59a	None	poor (bog)	0-2'	>51	Poor	N.S.	N.S.	Poor to Fair	
Lobo	59Ь	None	poor (bog)	0-2'	>5'	Poor	N.S.	N.S.	Poor to Fair	

Woodland Suitability

Series	Soil Association Affiliation	Avail P	lable K	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	Potential Frost Action	Sanitary Landfill	Sewage Absorption Fields	Sewage Lagoon	Road Location
Ontonagon	la	low	low	sli.~mod.(0-12) ² sev. (12-25)	modsev.	modsev.	modsev.	mod.	severe	severe	sli.(0-2) mod.(2-6) sev. >6	severe
Bergland	1ь	low	low	slight	severe	severe	severe	mod.	severe.	severe	slight	severe
Ahmeek	4 a	mod.	mod.	sli. (0-12) modsev.(12-25)	slimod.	slight	modsev.	high	sli. (0-12) mod.(12-25)	severe	sev. >6	severe
Ronneby	4ъ	low	low	slight	moderate	moderate	modsev.	high	severe	severe	severe	moderate
Newfound	5a			slisev.	slimod.	slight	mod.	low	moderate	severe	severe	slisev.
Newfound(wet)	5ъ			slight	moderate	slight	modsev.	high	severe	severe	severe	severe
Unnamed (Typic Haplorthod)	6a;7b	-		sli.(0-12) mod.(12-35)	sli.~mod.	modsev.	slight	low	severe	sli.(0-8) mod.(8-15) sev.(15+)	severe	slight moderate severe
Toivola	6b ; 7a			slight increases w. slope	mod.(0-12) increases w. slope	modsev.	1ow		severe	sli.(0-6) mod.(6-12) sev.(12+)	severe	slight moderate severe
Cloquet	7c;41a	low	low	sli.(0-12) modsev.(12-33)	slight modsev.	moderate moderate	slimod.	low	severe	sli.(0-6) mod.(6-12) sev.(12+)	severe	slight moderate severe
Mesaba	8a;35a			slight sev. (steep sl)	slight sev.(steep sl)	slight	' moderate	low	severe	severe	severe	severe

Woodland Suitability (contd.)

Series	Soil Association Affiliation	Avail P	lable K	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	Potential Frost Action	Sanitary A	Sewage baorption Fields	Sewage Lagoon	Road Location
Barto	8b;35b	****		modsevere (steep sl)	slisev. (steep sl)	slight	slight	low	severe	severe	severe	severe
Quetico	8c;9c;10a;35c			modsev.	modsev.	slight	slight	low	severe	severe	severe	severe
Conic	9a			modsev.	slisev.	slight	moderate		severe	severe	severe	severe
Insula	9ъ			modsev.	slisev. (steepsl)	slight	slight	low	severe	severe	severe	severe
Bedrock Outcrop	10ь		60°-qq-110°	severe	severe	severe	severe	low	severe	severe	severe	severe
Indus	lla;12b			slight	moderate	. moderate	severe	moderate	severe	severe	severe	severe
Wildwood	11b;12c	***		slight	severe	moderate	severe	moderate	severe	severe	severe	severe
Taylor	llc;12m			slimod.(0-12) sev.(12-25)	modsev.	slisev.	modsev.	moderate	severe	severe	sli.(0-2 mod.(2-6 sev.(>6)	
Nebish	17 a			sli. (2-12) mod. >12	sli.(2-12) mod. >12	slight	moderate	moderate	sli.(0-12) mod.(12-25) sev. (>25)	moderate sev. >12%	mod. sev. >6%	moderate
Mooselake	17b;58a			slight	severe	severe	severe	high	severe	severe	severe	severe
Shooker	17c			slight	moderate	moderate	severe	high	severe	severe severe	moderate severe	severe
Cormant	25a			slight	moderate	moderate	moderate	moderate	severe	sli.(0-6)	sev.	sli.(0-6)

Woodland Suitability (contd.)

Series	Soil Association Affiliation	Avail P	lable K	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	Potential Frost Action	Sanitary Landfill	Sewage Absorption Fields	Sewage Lagoon	Road Location
Shawano	25ь			slight	elight	severe	modsev.	low	severe	mod.(>6)	severe	mod.(>6)
Menahga	26a							low	severe	sli.(0-8) mod.(>8)	severe	sli.(0-8) mod.(>8)
Cutfoot	26ь			sli.(0-12)	sli.(0-12)	severe	slight	low	s evere	sli.(0-8) mod.(8-15) sev.(>15)	severe	sli.(0-8) mod.(0-15) sev.(>15)
Fluvaquents	31a			slight	severe	severe	severe	high	severe	severe	severe	severe
Borosaprists	31ь			slight	severe	severe	severe	high	severe	severe	severe	severe
Spooner	34a			slight	moderate	moderate	severe	high	severe	severe	severe	severe
Unnamed (Mollic Haplaquept)	34Ъ			slight	severe	severe	severe	high	8evere	severe	severe	severe
Baudette	34c			slimod.(12)	slimod(12)	slight	severe	moderate	moderate	severe	moderate	moderate
Emmert	41b	low	low	sli.(0-12) modsev.(12-25)	sli.(0-12) mod.(12-25)	moderate	slimod.	low	severe	sli.(0-6) mod.(6-12) sev.(>12)	moderate	sli.(0-6) mod.(6-12) sev.(>12)
Nemadji	48a	low	low	slight	moderate	moderate	modsev.	moderate	severe	severe	severe	moderate
убявов	48ъ	low	low	slight	severe	severe	severe	moderate	severe	severe	severe	moderate
Selkirk	49a;50b			slight	moderate	moderate	modsev.	moderate	severe	severe	slight	severe

Woodland Suitability (contd.)

	Soil Association	Avai:	lable		Equipment	Seeding	Plant	Potential Frost	Sanitary	Sewage Absorption	Sevage	Road
Series	Affiliation	P	K	Erosion Hazard	Limitations	Mortality	Competition	Action	Landfill	Fields	Lagoon	Location
Hibbing	49b;50a	low	low	sli.(0-12) mod.(12-25)	sli.(0-12) mod.(12-25)	slight	modsli.(0-12) modsev.(12-25)		severe	severe	slight	severe
Greenwood	57a			slight	severe	severe	severe	high	severe	severe	severe	severe
Waskish	59a			slight	severe	severe	severe	high	severe	severe	severe	severe
Lobo	59Ъ ·			slight	severe	severe	severe	high	severe	severe	severe	severe

values in () are percent slope
mod. = moderate

sli. = slight
sev. = severe
sl. = slope

<u> </u>	
	Series Affiliations
I. Alfisols	
A. Aqualfs	
1. Fragiaqualfs	
a. Aeric	Ronneby (4B) Newfound (Wet) (5B)
2. Ochraqualfs	
a. Typic	Indus (11A, 12B) Spooner (34A)
b. Aeric	Shooker (17C)
B. Boralfs	
1. Eutroboralfs	•
a. Typic	Ontonagon (1A) Nebish (17A) Hibbing (49B, 50A)
b. Aquic	Taylor (11C, 12A) Baudette (34C) Unnamed (49A, 50B)
II. Entisols	
A. Aquents	
1. Fluvaquents	Unnamed (31A)
2. Psammaquents	
a. Humaqueptic	Newson (48B)
b. Mollic	Cormant (25A)
B. Psamments	
1. Udipsamments	
a. Typic	Shawano (25B) Menahga (26A)
b. Alfic	Cutfoot (26B)
c. Spodic PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW	Nemadji (48A)

		Series Affiliations
	C. Orthents	
	1. Udorthents	
	a. Typic	Toivila (6B, 7A) Emment (41B)
III	I. Histosols	
	A. Fibrists	
	1. Sphagnofibrists	
	, a. Typic	Waskish (51A)
	b. Hemic	Lobo (59B)
	B. Hemists	
	1. Borohemists	
	a. Typic	Mooselake (17B, 58A) Greenwood (57A)
	C. Saprists	
	1. Borosaprists	Unnamed (31B)
IV	. Inceptisols	
	A. Aquepts	
	1. Humaquepts	
	a. Histic	Wildwood (11B, 12C)
	2. Haplaquepts	
	a. Aeric	Bergland (1B)
	b. Mollic	Unnamed (34B)
	B. Ochrepts	
	1. Fragiochrept	
	a. Typic	Ahmeek (4A) Newfound (5A) Conic (9A)

TABLE 4 contd.

Series Affiliations

2. Dystrochrepts

a. Typic

Cloquet (7C, 41A) Mesaba (8A, 35A)

b. Lithic

Barto (7B, 35B) Quetico (7C, 9C, 10A, 35C)

Insula (9B)

V. Spodosols

A. Orthods

1. Haplorthods

a. Typic

Unnamed (6A, 7B)

SOIL LANDSCAPE UNIT

								SO	L ASSOCIATIO	N .					
		-	0	5	6	7	8	26	35	57	49	~ 50	62	58	59
	٥		6658	4	0	0	38	0	0	. 0	0	0	97	2	¢.
	l		2	628	0	[7116]	1349	106	4411	. 0	0	0	49	1301	6
	\$		2	(0257)	11	706	152	0	0	77	0	1	12	1513	ā
	3		6	346	0	578	(9897) 17467	0	80	0	0	0	1014	1517 537	i
	4		1	346	0	1504	17467	0	274	0	0	n	39	537	i i
	5		U	155	0	0	Õ	0	0	0	0	0	. 0	25	c c
	6	-	6	[KUT]	. 0	71	. 0	. 0	. 0	74	3	13	0	1533	· ·
	7		1	5د 13	0	69	978	0	. 0	0	0	4	3	1341	č
	В		8	2568	0	1007	1003	442	[217]	54	51	31	Ĉ	612	
-	9		Đ	58	0	. 660	914	0	,	0	0	'n	J	139	.,
ž	10		Û	7	0	192	401	0	0	0	0	0	Ó	42	ň
-	11)	0	Ó	58	1	Ó	Ö	Ö	Ó	n	ō	4	3
4	12		ť	850	. 0	408	. 9	0	0	0	. 0	0	ů	597	
5	13		4	565	υ	B1751	688	0	19	0	0	n	Ö	663	
3	14		0	U	0	63	0	0	, 0	Ō	0	9	. 0	83	6
Ę	15		0	0	0	161	23	0	Ó	Ō	. 0	9	ŏ	7	í
-	16		1	113	0	14	1	Ō	D	ō	0	n	ō	138	
3	17		0	159	U	252	844	0	56	0	0	0	0	. 236	·
2	16		.1	قُود ہے		_16	317 3574) 167	0	٠ ٥	0	. 0	n	٥		
	15		20	5051	24	2677	35741	9	62	77 <u>1</u> 1	4	25	210	21 25502	521
	20		3	9	0	30	167	6	0	0	. 0	0	2	5	المجيدا
	15		59	â	0	6	53	0	8	0	0	8	1451	20	:
	2 2 2 3		C	0	0	o	0	0	0	0		0	U	0	r.
	23		0	106	0	0	0	0	. 0	9	190	[586]	0	49	
	24		ũ	65	· . G	. 0	0	. 0	. 0	0	0	. 0	0	75	Λ.
	25		ũ	70	0	0	0	0	0	0	0	205	0	75 37.	0
	•														•

7. SUMMARY OF 1976 SOIL CHEMICAL ANALYSES

n	Percent of Area	Depth (in)	C.E.C. (meg./100g.)	Base Sat- uration - %	рН	SO ₄ = (ppm)	Ca ⁺⁺ (ppm)	Mg ⁺⁺ (ppm)	F1 ppm
	0.1	0-6 6-12	31.3-2-8.8* 21.6-1	28.2-2-7.1 14.7-1	5.0-2-0 5.3-1	16-2-14.3 23-1	1420-2-1.4 444-1	204-2-15.9 78-1	7.8-2 10.3-1
	13.5	0-6 6-12	23.4-19-4.5 15.2-9-6.0	41.3-19-4.5	5.4-20-1.1 5.7-10-2.1	17-20-6.0 14-10-7.6	1535-20-6.7 626-10-14.7	219-20-9.9 84-10-9.4	————————————————————————————————————
;	0.7	0-6 6-12	26.4-2-2.5	40.0-2-6.5 23.6-2-34.8	5.3-2-2.8 5.5-2-0	19-2-13.2 18-2-14.3	1780-2-10.1 758-2-42.5	222-2-5.0 104-2-22.7	7
7	11.2	0-6 6-12	23.6-16-5.9	28.9-16-5.9 22.7-13-9.1	5.5-16-1.0 5.8-10-1.0	18-16-10.3 18-13-21.6	1077-16-10.9 572-13-16.1	167-16-8.5 104-13-14.3	6. B 16
3	12.7	0-6 6-12	28.4-2-2.3 23.1-1	21.8-2-0.9	5.0-6-1.7 5.3-1	20-6-13.7 19-1	950-6-4.5 347-1	159-6-4.4 64-1	7 % 6-; 7. 1-(
0	0.3	0-6 6-12	24.7-3-20.0 17.9-1	32.4-3-9.9 23.9-1	5.1-4-3.3 5.2-2-0	22-4-21.6 24-2-60.0	1256-4-11.0 365-2-54.7	216-4-13.6 107-2-66.8	7. H 2-2
9	1.1	0-6 6-12	18.9-2-0 13.7-2-11.3	26.3-2-6.1 14.5-2-1.0	5.3-2-0.9 5.5-2-1.8	15-2-20.0 26-2-17.0	775-2-7.3 287-2-13.9	132-2-1.5 67-2-9.0	8. B 2-9 9. B 2-0
7	3.4	0-6 6-12	57-1 -	17.5-1	4.3-2-4.7 4.0-1	56-2-0.9 45-1	1755-2-8.3 1200-1	422-2-2.3 265-1	11 > ·1- 6. Y -0
58	18.9	0-6 6-12	79.8-9-10.5 119.1-1	56.1-9-7.7 62.7-1	5.5-10-0.7 5.6-5-2.1	105-10-15.9 97-5-19.4	4528-10-9.1 4806-5-16.7	2757-10-14.9 2940-5-27.9	8.(\vec{\vec{\vec{\vec{\vec{\vec{\vec{

NOTE: n is number of analyses, most sites were sampled twice. Thus, for example x's for S.A. #49 were obtained by averaging values from one site that was sampled twice.

F1	Mn	Cu	Fe	Zn	Ni	Cd	Cr	Pb
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
7.8-2.	22.7-2-57.4	.4-2-0	245-2-11.1	2.9-2	.6-2	0-2-0	0-2-0	2.1-2-90.8
10.3-1-0	2.1-1-0	0.3-1-0	128-1-0	.4-1-0	.4-1-0	0-1-0	0-1-0	
8.8-22-5.4	46.4-22-16.1	.6-22-10.4	177-22-9.2	5.7-22-18.4	.7-22-11.8	.04-22-35.1	.1-22-30.6	1.6-22-41.4
7.7-12-7.1	5.5-12-36.1	.3-12-18.2	74-12-12.0	0.4-12-20.0	.1-12-28.1	0.00-12-96.8	0.005-12-60.0	.2-12-528
9.3-2-3.2 9.3-2-3.2	24.1-2-0.4 6.8-2-	.5-2-16.7 .5-2-14.0	136-2-41.1 151-2-27.0	6.5-2-43.0 0.9-2-14.9	.5-2-33.3	.10-2-100.0 0-2-0	0-2-0	.8-2-6.6 .2-2-0 H
6.2-16-6.3 5.4-43-49.2	23.4-16-15.9 8.0-13-38.1	.3-16-8.7	120-16-12.6 75-13-21.1	2.3-16-33.3	.3-16-16.1	0-16-0 0-13-0	.2-16-37.5 .05-13-67.8	.7-16-1 <u>1</u> 1 .3-13-3 <u>26</u> 5
7.7-6-3.4 7.4-1-0	23.0-6-24.2 3.4-1-0	1.0-6-38.3	183-6-9.2 115-1-0	2.3-6-33.0 0.4-1	.6-6-11.0	0-6-0 0-1-0	.2-6-54.0 0-1-0	1.0-6-1 0/6 0-1-0 E
7.4-4-2.5	65.8-4-29.1	.6-4-20.2	216-4-7.5	4.1-4-19.4	.8-4-8.1	.03-4-100.0	.1-4-57.7	1.3-4-1 a.5
7.9-2-22.0	8.5-2-84.9	.6-2-7.0	121-2-43.8	0.3-2-41.3	.3-2-33.3	0-2-0	0-2-0	.2-2-33 m
8.8-2-9.1	42.8-2-8.9	.6-2-7.2	160-2-5.4	3.1-2-16.2	.7-2-7.7	0-2-0	.3-2-100	.7-2-7. LL
9.6-2-0	1.75-2-82.9	.4-2-28.7	140-2-17.6	0.3-2-20.1	.2-2-50.2	0-2-0	.35-2-100	0-2-0 Y
11.9-1-0	23.7-2-26.9	1.7-2-87.7	710-2-43.8	7.3-2-85.9	1.9-2-31.5	.2-1-0	.1-1-0	3.1-2-1 >
6.2-1-0	0-1-0	0-1-0	0-1-0	0-1-0	0-1-0	N.S.	N.S.	0-1-0 &
8.0-10-11.8	151.0-9-78.1	2.7-9-25.2	1072-9-24.2	4.3-9-27.2	4.5-9-19.4	.11-7-30.9	0-7-0	2.5-9-2 \(\frac{2}{2}\) .7-4-76 \(\frac{1}{2}\)
8.2-4-24.3	15.6-4-48.0	2.5-4 - 27.7	1192.8-4-38.4	2.9-4-52.5	4.6-4-23.8	.15-4-43.0	0-4-0	

le 8. CHEM. λ L ANALYSIS SUMMARY FOR SOIL ASSOCIATIONS

									·				age
. 9	l Damaant l	Donth		Cu	(ppm)	Ni	(ppm)	Mn	(%)	Zn	(ppm)	Fe	(%) e
R FO.	Percent of Area	<u>Depth</u> (cm)	n	x	(SEM%)	X	(SEM%)	x	(SEM%)	X	(SEM%)	<u>x</u>	SEM
PRELIMINARY		Litter	11	14.2	(7.0)	9.5	(20.2)	948	(20.5)	120.5	(10.3)	11,930	(12.9)
Ē	13.5	0-5	11	25.8	(6.2)	75.6	(12.0)	.080	(11.3)	71.0	(10.0)	4.43	(3.7)
A R		5-10	11	27.0	(3.3)	55.8	(10.1)	.063	(10.7)	66.9	(4.8)	4.78	(6.3)
		Litter	10	12.8	(4.2)	19.7	(14.4)	768	(11.7)	90.5	(12.3)	11,700	(11.3)
R _A	11.2	0-5	10	26.4	(6.6)	154.3	(25.2)	.100	(7.6)	94.7	(6,4)	6.00	(4.7)
DRAFT REPORT,		5-10	10	29.8	(8.7)	115.3	(11.5)	.080	(3.6)	92.4	(5.3)	6.26	(2.4)
- . - x													
Щ		Litter	13	13.1	(.4.6)	7.6	(24.1)	986	(10.5)	97,6	(10.6)	10,800	(13.4)
6	12.7	0-5	13	27.3	(13.4)	71.4	(13.8)	.076	(9.4)	77.6	(5.5)	5.22	(5.3)
- 7		5-10	13	30.4	(13.3)	82.2	(10.9)	.064	(8.6)	80.1	(4.4)	5.45	(4.8)
, SUBJE		Litter	3	11.1	(5.2)	9.1	(19.0)	2,080	(40.0)	95.4	(22.6)	15,490	(4.3)
580	3.6	0-5	3 ~	15.1	(10.7)	49.5	(35.1)	.061	(23.7)	67.8	(9.3)	2.89	(.4)
EC		5-10	3	16.2	(2.9)	28.2	(12.3)	.051	(14.7)	65.9	(7.8)	3.60	(5.8)
CT30	18.9	0-5	8	10.1	(6.8)	6.7	(18.2)	383	(18.2)	45.2	(6.8)	12,870	(26.5)
Ö		5-10	. 8	8.7	(9.6)	7.0	(26.8)	286	(32.6)	33.7	(13.2)	9,830	(26.4)
REVI		55-60	8	10.6	(22.5)	13.7	(12.7)	151	(37.4)	11.7	(16.3)	4,990	(19.2)
- '''		33-00		10.0	(22.3)	13.7	\12.17	131	(37.4)	11.7	(10.3)	4,330	(13.2)
UFTAND C≨BIN	41.0 ED		·										
(5,7,8	1	Litter	37	13.0	(2.5)	11.5	(12.1)	1,003	(10.5)	102	(6.2)	11,760	(6.6)
	1	0-5	37	25.6	(5.9)	93.2	(13.6)	82.5	(5.6)	78.7	(3.5)	5.00	(3.8)
		5-10	37	28.1	(6.0)	78.9	(8.4)	66.8	(4.8)	78.3	(3.4)	5.26	(3.5)
		5 10		-0.1	(0.0)	,0.5	(0.7)	00.0	(7.0)	, 5.5	(3.7)	3.20	(3.3)

į.

8. PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW Continued Page 61 Ca (%) Mg (%) P (%) K (%) Percent Depth of Area $\overline{\mathbf{x}}$ (cm) SEM SEM X X SEM SEM X n 10,790 (8.7)Litter 2,150 (9.7)910 (4.1)1,510 (10.5)0-5 13.5 2.03 (5.6)1.22 (2.6)(11.0)(2.8)11 .135 1.10 5-10 3.8) 2.12 (6.5)1.35 .129 8.6) 1.14 3.1) Litter 11,970 (15.2)3,330 (7.1)696 (7.9)(6.8)1,230 11.2 0-5 2.88 (9.9)1.62 (5.7).163 (9.7).92 (3.8)10 5-10 (6.1)2.05 (14.5)(9.7)(2.7)3.02 .164 .94 12,600 (17.2)Litter 2,040 (6.5)881 (7.1)1,320 (9.6)12.7 0-5 2.31 (3.8)(7.0)1.48 (3.4).145 1.02 (4.9)13 5-10 (5.3)(3.3)4.1) 2.36 1.61 .154 (11.7)1.03 Litter 5,700 (8.3)2,150 (14.0)817 (7.3)1,520 (5.1)3.6 0-5 1.35 (6.4).99 (4.1).088 (3.3)1.42 (2.4)3 5-10 (6.4)(2.9)(5.8)1.42 (2.8)1.51 1.21 .120 (15.3)5,990 (18.2)2,300 747 (10.2)1,026 (6.7)Litter 58 18.9 0-5 6,290 (20.3)2,280 (16.3)720 (10.8)794 (13.1)8. 5-10 (16.8)(13.8)286 (10.3)6,490 (17.4)1,820 534 (5.1)11,530 (8.1)2,430 (5.4)836 (3.8)1,370 Litter 37 0-5 (5.7)1.05 2.23 1.40 (3.2).142 (5.3)(2.9)5-10 (5.6)(6.1)(2.7)2.41 1.53 (2.8).146 1.07

Dle 9. Total element concentrations in soils of the RCNSA compared with world-wide average values.

	Aubert and	Pinta (1977)	Cu-Ni Study Averages (ppm)							
				Soil As	sociat	ion				
	Ave (ppm)	Range (ppm)	50	5	8	7	A11	Depth (cm)		
В	20-50	< 5-150						0-5		
								5-10		
Cr	100-300	t, 3-4,000					117	0-5		
							111	5-10		
Со	10-15	.05-300					17	0-5		
							19	5-10		
Cu	15-40	t - 200-250	15	26	27	26	26	0-5		
	And green have a significant and an include		16	27	30	30	28	5-10		
РЪ	15-25	t - 1,200						0-5		
								5-10		
Mn	500-1000	t - 10,000	610	800	760	1,000	825	0-5		
		·	510	650	640	800	668	5-10		
Ni	20-30	t - 500	50	76	71	154	93	0-5		
			28	56	82	115	79	5-10		
Zn	50-100	t - 900	68	71	78	95	83	0-5		
			66	67	80	92	83	5-10		
			1					1		

LITERATURE CITED

- Alban, L. A., and J. Kubota. 1960. A study of extractable soil cobalt of the southern United States. Soil Sci. Soc. Am. Proc. 24:183-185.
- Aubert, H., and M. Pinta. 1977. Trace elements in soils. Elsevier Scientific Publ. Co., Amsterdam. 395 pp.
- Berger, K. C., and E. Truog. 1939. Boron determination in soils and plants using the quinalizarin reaction. Ind. Eng. Chem. 11:540-545.
- Grosman, R. 1966. Le chrome dans le sol et la plante. Bull. Assoc. Fr. Etude Sol 3:115-124.
- Soil Survey Staff (SSS). 1975. Soil Taxonomy. Agri. Handbook No. 436. USDA Soil Conservation Service, Washington. 754 pp.

GLOSSARY

- albic horizon A horizon from which clay and free iron oxides have been leached or in which oxides have been segregated to the extent that the color of the soil is determined by the color of the primary sand and silt particles.
- aquic An aquic moisture regime is one that implies a reducing regime virtually free of dissolved oxygen. It occurs in soil that is saturated by ground water or water of the capillary fringe.
- cambic horizon The cambic horizon is one that has been altered either physically or chemically and that has a texture, in the fine earth fraction, of very fine sand, loamy very fine sand, or finer. This horizon has lost, through leaching, sesquioxides or bases, including carbonates. The cambic horizon is a subsurface horizon.
- cryic A cryic temperature regime implies mean annual soil temperatures higher than 0° C (32°F.) and lower than 8° C (47°F.).
- duripan A duripan is a subsurface horizon that is cemmented to such a degree by silica that fragments from the air-dry horizon do not slake even after periods of prolonged soaking in water or HCl.
- epipedon An epipedon is a horizon that forms at the soil surface. To be considered an epipedon a horizon must have been either appreciably darkened by organic matter or elluviated or have rock structures that have been destroyed.
- fragipan A fragipan is a loamy or, occassionally, a sandy, brittle subsurface horizon that has a very low content of organic matter, has a high bulk density relative to horizons above it, and has a hard or very hard consistency.
- frigid A frigid soil temperature regime is one that has a mean annual soil temperature of less than 8°C (47°F) and a difference between mean winter and mean summer soil temperature that is more than 5°C (47°F .) at a depth of 50 cm (or at the base of the unconsolidated parent material whichever is shallower).
- histic A histic epipedon is a thin, surface horizon of peat or muck. Under natural conditions the horizon is saturated with water for 30 or more consecutive days during the year.
- illuviation Illuviation refers to the accumulation, in a horizon, of materials (e.g., clay, and iron and aluminum compounds) that have leached from horizons above.
- lithic A lithic contact represents a boundary between soil and coherent underlying material. Such a contact is diagnostic at the subgroup level if it is within 50 cm of the surface of a mineral soil.

- mollic A mollic epipedon is a relatively thick, dark colored humus rich surface horizon in which bivalent cations are dominant on the exchange complex and the grade of structure is moderate to strong.
- mottle This term means "marked with spots of contrasting colors". Mottled soil horizons are saturated with water at some period during the year and have a temperature $>5^{\circ}$ C during at least part of the time that they are saturated.
- natric Natric horizons are subsurface horizons. They are special kinds of argillic horizons that have high concentrations of sodium (over 15% of CEC). Because sodium affects the dispersion of clay, natric horizon soils have characteristic prismatic or columnar structures.
- ochric An ochric epipedon is a surface horizon that is light in color and contains <1 percent organic matter.
- sequum A sequum is a sequence of an eluvial horizon and its subjacent B
 (illuviated) horizon.
- spodic A spodic horizon is a subsurface horizon that has an illuvial accumulation of free sesquioxides and organic matter.
- udic A udic soil moisture regime applies to soils that, in most years, are not dry in any part for as long as 90 days (cummulative).
- umbric An umbric epipedon is similar to a mollic epipedon but is less than
 50% base saturated.
- xeric A xeric moisture regime is found in Mediterranean climates. Soils dry in all parts for 45 or more consecutive days within the 4 months that follow the summer solstice in 6 or more years out of 10. They are moist in all parts for 45 or more consecutive days within the 4 months that follow the winter solstice in 6 or more years out of 10. Mean annual soil temperatures are lower than 22°C, and mean annual winter and summer temperatures differ by more than 5°C at a depth of 50 cm.

APPENDIX

Soil Survey Interpretations sheets for soil series in the Study Area.

MN-SOILS-3 11-71 (File Code SOILS-12)

U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

Series:

SOIL SURVEY INTERPRETATIONS 1

Revised Draft GTM, PPL 2-72

This series consists of nearly level to hilly, well and moderately well drained soils formed in reduct brown clayer material. These soils are on lake plains. Native vegetation is forest. The surface layer is very dark gray silty clay loam about 3 inches thick. The subsoil is reddish brown, clay about 18 inches thick. The underlying material is reddish brown clay. Permeability is very slow. The available water capacity is moderate and organic matter content is low. The availability of phosphorous is low, and of potassium is low.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil Horizona (inches)	Classification			Coarse Fract.				LL PI	Permea-	Avall. Water	Soil Reac-	Shrink Swell		
	USDA Texture	Unified	AASHO	>3 in. %	4	10	40	200			in./hr.	Capac. In./in.	rH Tion	Poten- tial
0-6	Silty clay-loar	CL ·	A-6	0	9-100	99-100	95-100	90-98	30-40	10-20	0.2-0.6	.1820	4.5- 6.0	Moderate
6-24	Clay	СН	A-7	0	100	99-100	99-100	90-98	65 - 90	3 5 -5 5	0.06- 0.20	0.10- 0.14	5.0- 7.8	High
24-60	Clay .	СН	A-7	0	100	99-100	99-100	90-98	65-90	35–55	less than 0.06	0.10- 0.14	7.L- 8.0	High

Depth to water table; Greater than 5 feet

Hydrologic group: C

Depth to bedrock: Greater than 5 feet

Corrosivity - uncoated steel: Moderate

Corrosivity - concrete: Low

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Poor: low tearing strength; high shrink-swell potential
Sand	Not suited
Gravel	Not suited
Tepsoil	Poor: poor workability

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields		
•	Severe:	very slow permeability
Sewage Lagoons		on 0-2 percent slopes Severe: more than 6 percent slopes
Shallow Excavations		
	Severe:	poor workability
Owellings: With Basements XVXXXVXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	_	
-	Savere:	high shrink-swell potential
Senitery Landfill		
(trench type)	Severe:	poor trafficability and workability
Local Roads and Streets		
	Severe:	low bearing strength
Potential Frost Action	Moderate	

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	1
	low permeability
Embankments, Dikes, and Levees	Low to medium shear strength; fair to poor compaction characteristics
Desinage of Cropland and Pasture	Very slow permeability
Irrigation	Slow infiltration rate; slow permeability
Terraces and Diversions	Poor workability
Grassed Haterways	Poor workability

17 Use in conjunction with Guile to Sul Survey Interpretation Sheets.

Page 1 of 3 5,8-29,789

KN-501LS-3	
11-71	
(File Code_SOLLS-12)
Ontonagon	

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Aress	Severe: very slow perreability and clayer surface textures
Picnic Arens	Severe: clayey surface textures
The second of	Severe: very slow permeability and clayey textures
Paths and Tratis	

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Soll K	1.023	Oats	Corn	Legume - Grass	Eluegrass Pasture
0-2% slopes 2-6% slopes 6-12% slopes 2-12% slopes 12-25% slopes	IIIs IIIe IVe IVe VIe	.43	3-2	₽/A 45 40 40	T/A 14 12 12 12 12	Hay Fasture T/A AUM 3.5 5.2 3.5 5.2 2.7 4.0 2.7 4.0	AUM 4.1 4.1 3.3 3.3

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production	
	,	·	

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Weiland Wildlife
V)	Fair	Fair	Good	Good.	Good	Poor	Poor	Fair	Good	Poor

WOODLAND SUITABILITY

Phases of	Ordi-	Potential Productivity			Woodland Mana	Suitable Species		Other		
	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
All	3с	Red Pine Aspen White Pine hite Spruce Northern	72 72 72 72	Slight to Modera 0-12% slopes Severe 12-25% sl	Severe	Moderate to Severe	Moderate to Severe	Red Pine White Spruce White Pine	White Spruce Red Pine White Pine	

RANGE

hases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (15./ac.)					
		,					
		·					

WINDBREAK

Group	Adapted Trees to Placit	Tree Height Prediction at 20 Years Age	Relative	
			1	

MN-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

Minnesota

MLRA Rovised Draft KHL 2-72

SOIL SURVEY INTERPRETATIONS 1/

This series consists of nearly level, poorly drained soils formed in reddish brown clayey material.

These soils are on lake plains. Native vegetation is forest. The surface layer is black clay about 6 inches thick. The subsoil is dark reddish gray in the upper part and reddish brown in the lower part. Texture is clay about 19 inches thick. The underlying naterial is reddish brown clay. Permeability is very slow. The available water capacity is moderate and organic matter content is high. The availability of phosphorous is low and of potassium is low.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major "Sull	Classification			Coarse Fract.	Percentage less than 3 inches Passing Sieve No				LL	PI	Permes-	Avail. Water	Soll Reac-	Shrink Swell
Horizons (inches)	USDA Texture	Unified	AASHO	>3 In.	4	10	40	200			in./hr.	Capac. In./in.	tion pH	Poten- tial
0-6	Clay	СН	A-7	0	100	99- 100	99- 100	90-98	70-90	40-55	0.06- 0.20	.13- .16	5.1- 6.0	High
6-25	Clay	CH	A-7	0 '	100	99- 100	99- 100	90-98	70-90	40-55		0.10- 0.14	6.0- 7.3	High
25-60	Clay	CH.	A-7	0	100	99- 100	99- 100	90-98	70-90	40-55		0.17 0.10-	7.3 8.4	High
•						1								

Flooding Occasionally ponded

Hydrologic group: D

Depth to water table: Within 1 foot of the surface in early summer

Depth to bedrock: Greater than 10 feet

and late fall.

Corrosivity - uncosted steel: Moderate

Corrosivity - concrete: LOW

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Poor: low bearing strength; high shrink-swell potential
Sand	Not suited
Gravel	Not suited
Topsell	Poor: poor workability

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields		•
	Severe:	very slow permeability; high water table
Sewage Lagoona		
	Slight:	very slow permeability
Shallow Excavations		
	Severe:	poor workability
Dwellings: With Basements		
36000CC/83500CCCK	Severe:	seasonal high water table
Sanitary Landfill		
(trench type)	Severe:	seasonal high water table; poor workability
Local Roads and Streets		
	Severe:	low bearing strength; seasonal high water table
Potential Frost Action	Moderate	

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	Very slow permeability
Embankments, Dikes, and	Levees Low to recium shear strength; fair to poor compaction characteristics
Drainage of Cropland and	Pasture Very slow permeability
Irrigation	Slow infiltration rate
Terraces and Diversions	Generally not needed, nearly level
Grassed Waterways	Generally not needed, nearly level

HN-SOILS-3 11-71 (File Code SOILS-12)

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	Severe: very slow permeability and clayey surface texture; high water table
Picnic Areas	Soyone; clayey surface textures; high water table
	Severe: high water table; very slow permeability and clayey textures
Paths and Trails	Sovere: high water table; clayey surface texture

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS--(High level management)

Phases of Series	Capability	Salt K	Loss	Oats	Corn Silage	Hluegrass Pasture	Legume - Grass
All	IV#			B/A L5	ፕ/ል 24	МЛА 1.1	Hay Pasture T/A AUM 3.5 5.2

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production	
	,		

WILDLIFE HABITAT SUITABILITY

	1		Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaccous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
VII	Very Poor	Poor	Poor	Poor	Poor	Good	Good	Poor	Poor	Good

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity		Woodland Mana	gement Haza	irds	Suitable	Other	
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
A11	3w ,	Mack Spruce Mack Ash	40-50 40-50	Slight	Severe	Severe	Severe	Tamarack Black Spruce Mack Ash Elm	Black Spruce	

RANGE

Phases of Series	Pange Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)									
		•						•			
								•			
					•	•					
							•				

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vizor
	·		
	•		

MN-SOII.S-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

Ahmeen 1510. STATE Minnesota MLRA _ GTA', RRL 2-72

SOIL SURVEY INTERPRETATIONS $^{1/}$

This series consists of nearly level to steep, well and moderately well drained soils formed in sandy loan till. These soils are on moraines and broad drumlins. Native vegetation is forest. The surface layer is very dark brown silt loam about 2 inches thick. The subsoil is dark brown, very friable, fine sandy loam about 14 inches thick in the upper part. The lower part is reddish brown firm sandy loam about his inches thick. The underlying material is reddish brown fine sandy loam. Permeability is noderately slow. The available water capacity is low and organic matter content is low. The availability of phosphorous is moderate, and of potassium is moderate. These soils have very dense lower subsoils and underlying material. Cobbles are common throughout the profile. ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Class	Classification			Percentage less than J inches Passing Sieve No				LL	PI	Permea- bility	Avail. Water	Soil Reac-	Shrink Swell
Horizons (inches)	USDA Texture	Unlfled	AASHO	>3 in. 7.	4	10	40	200			in./hr.	Capec. in./in.	tion pH	Poten- tial
0-16	loam and Fine sand	ĺ	4-1	-	90-100	35 -10 0	70-90	50-60	14-20	0-1	0.6-2.0	0.15-	5.1- 5.0	Low
16-60	Tine sand	y SM	A-4 or A-2	0-4	85-100	75-95	65-90	30-40	14-20	0-1	0.2-0.6	0.07-	5.1- 7.3	Low
60-75	ine sand	y SM	A-4 or A-2	0-4	85-100	75-95	65-90	30-40	14-20	0-1	0.5-2.0	0.11 0.12	6.6- 7.3	Low
•		,												

Flooding None

Hydrologic group: Normally perched at depths of 20 inches or less

Depth to water table: in early spring on nearly level areas

Depth to bedrock: Greater than 10 feet

Corrosivity - uncoated steel: Moderate

Corrosivity - concrete: Moderate

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Fair: medium shear strength; low to medium compressibility; low shrink-swell
Sand	Not suitable
Grawe1	Not suitable
Topsoil	Fair: moderately thin

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

ı	Severe: moderate slow permeability
Sewage Lagoons	
L	Severe: on slopes more than 6 percent
Shallow Excavations	
	Slight: occasional large boulder; Moderate: 6-12% slopes; Severe: over 12% slopes
Dwellings: With Basements Wobcot becomes	Slight Moderate: 6-12 percent slopes Severe: over 12 percent slopes
Sanitary Landfill (Trench type)	Slight: 0-12 percent; coarse fragments are common; difficult to dig when dry. Moderate: 12-25 percent slopes
Local Roads and Streets	
	Severe: high susceptibility to frost heave
Potential Frost Action	High

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	Moderately slow permeability
Embankmenta, Dikes, s	
Drainage of Cropland a	and Pasture Generally not needed; well or moderately well drained
Irrigation	Moderate slow permeability; low available water holding capacity
Terraces and Diversion	Favorable on slopes less than 12 percent; subsoils low in fertility
Greesed Waterways	Moderately slp4 permeability; subspil low in fertility

9894 858 LIBCOLE MISS 1414

^{1.} Use in conjunction with Guide to Soil Survey Interpretation Sheets.

Page 1 of 9 5,8-29,789

^{2/} Ficause of high bulk density that restricts root penetration, these layers supply very little maisture to plants

n .		_	~	\sim
$\boldsymbol{\nu}$	Эſ	Δ	- /	/

hm-solls-3 11-71 (File Code Solls-12) Ahmeek

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	Moderately slow permeability; Sewere: over 12 percent slopes
Picnic Areas	Slight: 0-6 percent slopes Moderate: 6-12 percent slopes Severe: over 12 percent slope
Playgrounds	Moderate: moderately slow permeability Severe: over 6 percent slopes
Paths and Trails	Slight: 0-13 percent slopes Moderate: over 18 percent slope

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of	Capability	Soll	Loss		Corn	Bluegrass	
Series	Capability	F.	1	Cata	Silaze	Pasture	Legura-Grass .
Commence				B/A	T/A	151A	T/A AUM
0-12% slopes	Πc	37	3.2	80	14	5.3	4.5 6.7
2-6% slopes	IIe			80	12	5.3	4.5 6.7
6-12% slopes	IIIe			70	10	4.1	3.5 5.2
2-12% slopes	IIIe			70-80	10-12	4.1-5.3	3.5-4.5 5.2-6.7
12-18% slopes	IVe					3.5	
18-25% slopes	VIe					3.5	
12-25% slopes	VIe					3.5	

PASTURELAND AND HAYLAND

Phases of Series	Group		Species, Yield in AUMs for Dryland (Irrigated)	ted) Forage Production	
			•		
	1 , 1	•			•
				•	-

WILDLIFE HABITAT SUITABILITY

	Potential for							Potential for-		
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
0-6% 6-12% 12-25%	Good Fair Poor	Good Fair Fair	Good Good Good	Good Good Good	Good Good Good	Poor Very Poor Very Poor	(-)	1	Good Good Good	Poor Very Poo Very Poo

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity		Woodland Mana	gement Huzs	ards	Suitable	Species	Other
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	· Seeding Mortality	Plant Competition	To Favor	To Plant	
9-12%		Aspen Red Pine	70 60	Slight	Slight	Slight	Moderate to	1	Red Pine Black Spri	ce
12-25%	21	White Pine Jack Pine		Moderate to	Moderate	Slight	Severe Moderate	Red Oak	White Spri	ce
		Northern Handwoods		Severe			'to Severe	White Spru Alpen	ce Red Oal	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
		•

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor	
			ĺ	
		1	1	

MN-SOILS-3						
11-71						
(File	Code	SOILS-12)				

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

10000	
SERIES _	
STATE Minne	into.

SOIL SURVEY INTERPRETATIONS 1/

MLRA 90 Revised Draft GDN, RPL 2-72

This series consists of slightly concave and nearly level, somewhat poorly drained soils formed in sandy loam till. These soils are on the base of slopes and level ground moraines. Native vegetation is forest. The surface layer is black silt loam about h inches thick. The subsurface layer is grayish brown silt loam about 7 inches thick. The subsoil is reddish brown sandy loam about 17 inches thick. The underlying material is dark reddish brown fine sandy loam. Permeability is moderately slow. The available water capacity is low and organic matter content is medium. The availability of phosphorous potassium is low. Subsoil is very dense. Most areas are used for forest and pasture. The rajor limitation to use is the hazard of wetness.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll Horizons (inches)	Classification			Coarse Fract.	1		ss than Sieve Ni	3 inches	- 1 1 P			Avail. Water	Soil Reuc-	Shrink Swell
	USDA Texture	Unified	AASHO	>3 in. %	4	10	40	200			bility in./hr.	Capac. in./in.	tion pH	Poten- tial
0-11	Silt loam	ML	A-L	0-5	95-100	95-100	85-95	50 - 65	15-25	1-3	p.6-2.0	0.20- 0.24	5.1- 6.0	Low
	Fine sandy loam	SM	A-4	0-5	85-95	80-90	70-80	30-50	14-20	0-1	0.2-0.6	0.07- 0.13	6.1- 7.3	Low
	Fine candy loam	SM	A-L	0-5	85-95	80-90	70-80	30-50	14-20	0-1	2-0.6	2/	6 .6-7. 8	Low

Flooding None

Hydrologic group: H

Depth to water table: Normally perched at depths of 2 feet or less ex-Depth to bedrock: Greater than 5 feet cept for parts of July, August & September during the growing season.

Corrosivity - uncoated steel: Moderate Corrosivity - concrete: Low

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Fair: medium shear strength; low shrink-swell
Sand	Not suitable
Gravel	Not suitable
Topsoil	Fair: loamy material; few stones

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fleids	·
. •	Severe: somewhat poorly drained; seasonal high water table; moderate permeability
Sewage Lagoons	
	Severe: seasonal high water table; occasional ponding
Shallow Excavations	
	Severe: somewhat poorly drained
Dwellings: With Basements	
Naciono General de la constante de la constant	Severe: somewhat poorly drained; seasonal high water table; occasional ponding
Sanitary Landfill	
(trench type)	Severe: seasonal high water table; occasional ponding
Local Roads and Streets	
	Moderate: screwhat poorly drained; moderate to high susceptibility to frost action
Potential Frost Action	High

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	Moderately slow permeability
Embankments, Dikes, and	Levees Low to meanium piping resistence; medium to low compressibility and shear strength
Drainage of Cropland and	Pasture Somewhat poorly drained; seasonal high water table; moderately low permeability
irrigation	Moderately slow permeability; high water table
Terraces and Diversions	Generally not needed, nearly level
Grassed Waterways	Generally not needed, nearly level
	·

9804-866 LINCOLN BESS. 1976

1/ Use in conjunction with Guide to Soil Survey Interpretation Sheets.

2/ Decause of high bulk density that restricts root penetration, only the upper 2 feet of these horizons supplies noisture to MN-SOILS-3 11-71 (File Code SOILS-12) Ronneby

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	
	Severe: seasonally high water table; occasional ponding
Ficnic Areas	Severe: seasonable high water table
Playgrounds	Severe: somewhat poorly drained; seasonable high water table
Paths and Trails	Noderate: somewhat poorly drained

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Soll	1.0 % S		Corn Silage	Sluegrass Pasture	legume - Grass	
a1	IIIw			B/A 80	T/A 14	AUM 3.5	Hay Fasture T/A AUM 4.5 6.7	
				·				

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production							
	į								
l	, [
. [i	•							
	ı								

WILDLIFE HABITAT SUITABILITY

f	r		Potential for-							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous 'Plents	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
All .	Poor	Fair	Good	Fair	Good	Good	Good	Fair	Good	Good

WOODLAND SUITABILITY

Phases of	Ordi-	Potential Productivity		Potential Productivity Woodland Management Hazards		rds	Suitable Specie					Suitable Species		Other
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant					
VJJ	2W	Red Pine White Pine WhiteSpruce Northern Hardwoods	60 60 60 60-70	Slight	Moderate	Moderate	Moderate to Severe	White Pine White Spruce Northern Harckcodo	White Spruce Mack Spruce Northern Hardwoods					

RANGE

Phases of Series	Range Site Name	Climux Vegetation and Productivity of Air-Dry Herbage (lb./ac.)

WINDBREAK

Group	Adapted Trees to Piant	Tree Height Prediction at 20 Years Age	Relative Vigor
		·	
·		•	
	·		
			1

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SERIES Mirnesota 89, 00 MLRA Rev. DHF-ELF 11/71

SOIL SURVEY INTERPRETATIONS 1/

This series consists of gently sloping to steep well drained soils formed in more than 40 inches of brownish, medium and strongly acid gravelly sandy loam over bedrock. At depths of 14 to 29 inches there occurs a well developed fraginan ranging in thickness from 10 to 35 inches or more. Percent of coarse fragment typically is 25 to 35 percent. The fraginan restricts root constration. The terrain is sloping to hilly and is located in the Laurentian Shield country of northeastern Minnesota.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Class	Classification		Coarse Fract.	1 ' ''			LL	Permea- PI bility	Avail. Soil Water Reac-	Shrink Swell			
Horizons (inches)	USDA Texture	Unified	AASHO	>3 in. %	4	10	40	200			in./hr.	Capac. in./in.	tion pH	Poten- tial
C to 16	Gravelly sandy loam	SM	A-2		50 -7 5	40-65	30-55	20-35	10-20	C-4	2.0-6.3	0.1C- 0.14	4.5 - 6:0	Low
16 to 50 (fragipar	, -,	SM	A-2		50-75	40-65	30-55	20-35	10-20	0-4	C.06-C.2	.05 <u>-</u> .09	5.1 - 6.0	Lou

Flooding None

Pond Reservoir Areas

Depth to water table! Below 5 feet

Corrosivity - uncoated steel: Low

Hydrologic group:

Depth to bedrock: Below 5 feet

Corrosivity - concrete: Moderate

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Good to fair: slopes to 25%; difficult to dig if dry
Send	Poor
Gravel	Poor
Topsoll	Poor: high coarse fragment content

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields	
	Severe: slow permeability, shallow to fraginan
Sewage Lagoons	Severe: most slopes over 6 percent
Shallow Excavations	Moderate to severe: high coarse fragment content, difficult to dig when dry, slopes to 25%
Dwellings; With Basements Without Basements	Slight to severe: features favorable except for slope which ranges from 2 to 25 percen
Sanitary Landfill	Moderate: high content of coarse fragments; difficult to dig when dry, slopes to 25 percent
Local Roads and Streets	Slight to severe: features favorable except for slope
Potential Frost Action	Leu

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	High	coarse fr	agment	content,	slope to	25 per	rcent				
Embankments, Dikes, and	Levees	Stable f	ill, mo	derately	pervious,	high	coarse	fragment	content.		
Drainage of Cropland and	Pasture										
irrigation	:										
Terruces and Diversions				•		•					•
Grassed Waterways						·				•	
	ATTICLE TO THE RESIDENCE OF THE RESIDENC		ar-a								

DECREE OF SOIL LIMITATION	AND MAJOR FEATURES	AFFECTING RECREATION USES
DEGREE OF SOIL LIMITATION	KIND MAJOR I LIKE ORES	

Camp Areas	Moderate to severe: slow permeability, sloping to hilly terrain
Pienic Areas	Moderate to severe: sloping to hilly terrain
Playgrounds	Severe: most slopes over 6 percent
Paths and Trails	Slight to moderate sloping to hilly terrain

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS--(High level management)

Phases of . Series	Capability	Solt K	Loss			
2 to 18 percent slopes	VIe	.37	3,2			
18 to 25 percent slopes	VIe					·

PASTURELAND AND HAYLAND

Phases of Series	Group ·	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
	·	en e
	1	

WILDLIFE HABITAT SUITABILITY

	1		Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
•	Poor	Fair	Fair	Fair	Fair	V. Poor	V. Poor	Poor .	Fair	Verv.
•				·						

WOODLAND SUITABILITY

Phases of Ordi-	Potential P	roductivity	L	Woodland Mana	Suitable Species		Other			
Scries	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
All		White bird Trembling		Slight	Slight	Slight	Moderate		Red pine Jack pine	
		White pine	•	severe	moderate				White spr	1
-		Red pine White spru	e .	on steep slopes	er					

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
	1 1	
	l	
₹'	.]	
	1	
	1	

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
	•	Ì	
	•	1	

OTHER

Low potential porductivity. Moderate to low natural feritility; no native plants suitable for grazing. Watershed - Deep to bedrock; morhumus; permeability 0.06-0.2"/hr.; moderate runoff; well drained.

MG-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE BOIL CONSERVATION SERVICE

	, 0
SERIES	
STATE	Mirmesota
MLRA _	89,90

SOIL SURVEY INTERPRETATIONS 1/

This series consists of slightly concave and nearly level, account poorly and poorly drained soils formed in sandy loan glacial till under a nixed decidence-conference forest. Typically they have black leam surface herizons; nottled dark brown and brown leam subsurface herizons; motified dark brown sandy leam subsoil horizons and dark brown sandy leam underlying material. A fraginan typically begins at 18 inches. Slopes are less than 2 percent. Most areas are forested.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Mujor Soll	Clas	silication		Coarse Fract.	, .		ss than . Sleve No	linches	LL	Pi	Permea- bility	Avail. Water	Soil Reac-	Shrink Swell
Horizons (inches)	USDA Texture	Unified	AASHO	>3 in.	4	1,0	40	200			in./w.	Capac. In./in.	tion pH	Poten- tial
0-11	GR-L	HI-CL	A−l ↓	0-5	90-100	70-80	60-75	55-65	15-30	0-10	0.6-2.0	.1618	5.1-5.	Low
11-45	GR-SL	SM S	V-5	0-5	85-95	70-80	55-65	20-30	10-20	0-4	0.2-0.6	.0813	5.1-6.	V.Lew
45-60	GR-SL	M2	A-2	0-5	85-95	70– 80	55-65	20–30	10-20	0-4	0.2-0.6	2/	5.1-6.	V.Low
		·		 .									,	
F1	L	L	L		Ц				Hydrolog	de aron	2: C	نـــــــــــــــــــــــــــــــــــــ		

Flooding None ,

less Death to bedrack:

drojošie štonb: C

Greater than five feet.

Depth to water table: Normally perched at depths of 2 ft. or less except for parts of July-September.

Corroslvity - uncoated steed: Low

Corrosivity - concrete: Moderate

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Koadilli	Fair to Poor - high water table
Sand	Poor
Gravel	Poor
Topsoll	Fair to Poor - small stones, high water table

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Sayara - perca alculy, wat

Sewage Lagoons
Sayara - wat

Shullow Excusations
Sayara - wet

Dwellings:
With Basements Sayara - wet
Without Basements Moderate to severe - wet

Sanitary Landfill
Area: Sayara - wat

Local Roads and Streets
Sayara - wat, frost action

Potential Frost Action Titles

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas
Medarately alow remeability: govewhat poorly and poorly drained.
Embankmenta, Dikes, and Levees
Medium shear struggth, redium to high susceptibility to piping
Drainage of Criptund and Pasture
Moderately alow permeability
Irrigation
Somewhat roomly and propely drained; moderately slow permeability
Terraces and Diversions
Generally not readed
Grassed haterways
Gazerally not needed

1.7 Use in conjunction with Gut to to \$ at Survey Interpretation Sheets,

Page 1 of 3 6,8-29,768 MN-SOILS-3 11-71 (File Code

Plants Shrubs Cover Devel.	file Code	SOILS	5-12	2)					•						•	
Please of Series Phase of Series Craim and Series WILDLIFE HABITAT SUITABILITY Phase of Series WILDLIFE HABITAT SUITABILITY Phase of Series Craim and Series WILDLIFE HABITAT SUITABILITY Phase of Series WILDLIFE HABITAT SUITABILITY Phase of Series WILDLIFE HABITAT SUITABILITY WOODLAND SUITABILITY Phase of Series WILDLIFE HABITAT SUITABILITY WOODLAND SUITABILITY Phase of Series WOODLAND SUITABILITY Phase of Series WOODLAND SUITABILITY Phase of Series Range Site Nore RANGE Phase of Series Range Site Nore WINDERSAK Crown Adapted Trees to Plant WINDERSAK Tree history Prediction Relative Provided Provi			DE	GREE	of soil	LIMI	TATIO	N AI	ND MA	JOR FEA	TURE	SAFI	FECTING R	ECREATIO	N USES	····
Pierrice Capability Notice Noti	Camp Areas		Moderate to severe - Wet													
Passes of Series Crein and Gresses Plant Port Pair Pair	Picnic Ares	. 9														
Phases of Orals and Grasses, Pair Series All Poor Fair Fair Fair Good, Pair Fair Fair Good, Pair Fair Fair Fair Fair Fair Fair Fair F	Playground															
Phases of Series Capability No. No. POSTURELAND AND HAYLAND Phases of Series Croin and Greases, Series Phases of Series Series Phases of Series Series Phases of	Paths and T	Trails			_											
Phases of Series Capability Notitions All III Poor Fair Earlies All Poor Fair Fair Fair Fair Fair Fair Fair Fair Phases of Condition Potential Fraductivity Woodland Management Manag																
Phases of Series Crope Potential Productivity Pair			C٨	PABILI			SFA	CTOF	RS, AN	D POTEN	TIAL	YIEL	DS-(High lo	evel manag	ement)	
Phases of Series Group Species, Yield in AUMs for Dryland (Irrigated) Forage Production WILDLIFE HABITAT SUITABILITY Potential for Potential for Potential for Strike Seed Crops Herbscen Herbscen Herbscen Food and Pilents Cover Strike Seed Crops Legumes Herbscen Trees and Pilents Cover Devel. All Poor Pair Fair Fair Fair Good Fair Fair Fair Fair Fair WOODLAND SUITABILITY WOODLAND SUITABILITY Woodland Management Maserds Suitable Species Other Series Ordic Important Site Ecosion Ecos			_													
WILDLIFE HABITAT SUITABILITY Phases of Series Seed Crops Legumes Plant Series Seed Crops Legumes Plant Series Trees and Conserved Plant Series Series Plant Productivity Moderate Slight Noderate to Appen Red Pins White Pins White Pins Plant Series Range Plant Red Pins White Spruce Range Plant Red Pins White Spruce Range Plant R	All			IIIw		1 1		-			İ					
WILDLIFE HABITAT SUITABILITY Phases of Series Seed Crops Legumes Plant Series Seed Crops Legumes Plant Series Trees and Conserved Plant Series Series Plant Productivity Moderate Slight Noderate to Appen Red Pins White Pins White Pins Plant Series Range Plant Red Pins White Spruce Range Plant Red Pins White Spruce Range Plant R			١		.			- 1			. }					
WILDLIFE HABITAT SUITABILITY Phases of Series Seed Crops Legumes Plant Series Seed Crops Legumes Plant Series Trees and Conserved Plant Series Series Plant Productivity Moderate Slight Noderate to Appen Red Pins White Pins White Pins Plant Series Range Plant Red Pins White Spruce Range Plant Red Pins White Spruce Range Plant R								.		. 1	1					
WILDLIFE HABITAT SUITABILITY Phases of Series Seed Crops Legumes Plant Series Seed Crops Legumes Plant Series Trees and Conserved Plant Series Series Plant Productivity Moderate Slight Noderate to Appen Red Pins White Pins White Pins Plant Series Range Plant Red Pins White Spruce Range Plant Red Pins White Spruce Range Plant R	•										1			•	•	
WILDLIFE HABITAT SUITABILITY Phases of Series Seed Crops Legumes Plant Series Seed Crops Legumes Plant Series Trees and Conserved Plant Series Series Plant Productivity Moderate Slight Noderate to Appen Red Pins White Pins White Pins Plant Series Range Plant Red Pins White Spruce Range Plant Red Pins White Spruce Range Plant R			-					- 1								
WILDLIFE HABITAT SUITABILITY Pheses of Series Seed Crops Legumes Hebicary Plants Seed Conferous Food and Water Cover Devel. All Poor Pair Fair Fair Fair Good Fair Fair Fair Fair Fair Fair Fair Fair	•		<u>.</u>					PAST	TUREL	AND ANI	HAY	LAND)			
WILDLIFE HABITAT SUITABILITY Phases of Series Crain and Seed Crops Crain and Seed Crops Herbaceous Wild Herbaceous Trees and Plants Switch Cover Devel. All Poor Pair Fair Fair Fair Good Pair Fair Fair Fair Fair Fair WOODLAND SUITABILITY WOODLAND SUITABILITY Phases of Ordination Trees Index Herbaceous Woodland Wanavenent Hazards Switchile Species Other Series Other Trees Index Head Limitations Norsality Competition To Favor To Plant All 2v Aspen Slight Hoderate Slight Noderate to Severe White Pine White Spruce Red Pine R. Vin. Pine N. Ped Oak Red Pine RANGE RANGE Climas Vegetation and Productivity of Air-Dry Herbage (ib./ac.) WINDBREAK Tree Height Prediction Relative Relative Relative Relative Relative Red Pine Relative Relativ		of	. (Group				Speci	es, Yle	id in AUM	for Dr	yland	(Irrigated) Fo	rage Produc	tion	
Phases of Series Crais and Grasses, Legumes Crais and Seed Crops Crais and Seed Crops Crais and Seed Crops Crais and Herbaceous Flants Cover C																
Phases of Series Crais and Grasses, Legumes Crais and Seed Crops Crais and Seed Crops Crais and Seed Crops Crais and Herbaceous Flants Cover C		- 1		•												
Phases of Series Crais and Grasses, Legumes Crais and Seed Crops Crais and Seed Crops Crais and Seed Crops Crais and Herbaceous Flants Cover C			,													
Phases of Series Crais and Grasses, Legumes Crais and Seed Crops Crais and Seed Crops Crais and Seed Crops Crais and Herbaceous Flants Cover C					<u> </u>											
Phases of Series Grain and Grasses, Legumes Herbaceous Plants Strubs ····									ABITAT S	UITAE	BILIT	Y ,				
Series Grain and Sead Crops Legumes Plants Shrubs Plants Cover Devel. Wildlife Wildlife Wildlife All Poor Pair Fair Fair Fair Fair Good Fair Fair Fair Fair Fair Fair Fair Fair	Phases of	-				l w				T	Wet	land	Shallow			1
WOODLAND SUITABILITY Phases of Series Ordination Productivity Woodland Management Hazerds Suitable Species Othe Important Site Erosion Equipment Seeding Plant To Favor To Plant Aspen E. Wn. Pire N. Fed Oald Red Pine Phases of Series Range Site Name Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.) WINDBREAK Group Adapted Trees to Plant Tree Height Prediction Relative Site of the production Site of th		G						Tre	Trees and Diunte		Foo	d and	Water		,	Wetland
Phases of Series Ordination Potential Productivity Woodland Management Hazards Suitable Species Othe Important Trees Index Hazard Limitations Mortality Competition To Favor To Plant E. Wh. Pire N. Ped Oak Red Pine N. Ped Oak Red Pine Range Red Pine Range Range Red Pine Range Rang	All	1	P00:	F	Fair	Fair Fa			lr Fair		ood.	Fair	Fair	Fair	Fair	
Phases of Series Ordination Potential Productivity Woodland Management Hazards Suitable Species Othe Important Trees Index Hazard Limitations Mortality Competition To Favor To Plant E. Wh. Pire N. Ped Oak Red Pine N. Ped Oak Red Pine Range Red Pine Range Range Red Pine Range Rang								1								
Phases of Series Ordination Potential Productivity Woodland Management Hazards Suitable Species Othe Important Trees Index Hazard Limitations Mortality Competition To Favor To Plant E. Wh. Pire N. Ped Oak Red Pine N. Ped Oak Red Pine Range Red Pine Range Range Red Pine Range Rang						<u> </u>		<u> </u>		L			11			1
Series in atton Trees Index Hazard Equipment Seeding Plant To Favor To Plant Index Hazard Limitations Mortality Competition To Favor To Plant		<u> </u>	_	Pater	al d Dane			WOO						· .		1
All 2v Aspen E. Wh. Pire N. Fed Oak Red Pine RANGE RANGE RANGE Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.) WINDBREAK Group Aspen Red Pine White Spruce RANGE Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.) WINDBREAK Tree Height Prediction Relative Vigor		1		Import	ant	Site	E		n E	quipment	Seed	ing	Plant	To Fav		
E. Wn. Pirke N. Fed Oak Red Pine RANGE RANGE Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.) WINDBREAK Group Adapted Trees to Plant Tree Height Prediction al 70 Years Age Vigor			-	1 ree	**	Index	'	lazarı	d Li	mitations	Morta	lity	Competition	,		Η.
RANGE Phases of Series Range Site Name Climax Vegetation and Productivity of Air-Dry Herbage (ib./ac.) WINDBREAK Group Adapted Trees to Plant Tree Height Prediction at 70 Years Age Vigor	All .	2v			D		S	ligh	t Mo	derate	Slig	ht		1	- 1	-
RANGE Phases of Series Range Site Name Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.) WINDBREAK Group Adapted Trees to Plant Tree Height Prediction at 70 Years Age Vigor							1		1			1	Severe			Pine
Phases of Series Range Site Name Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.) WINDBREAK Group Adapted Trees to Plant Tree Height Prediction at 70 Years Age Vigor				Red Pi	ne				-			1				
WINDBREAK Group Adapted Trees to Plant Tree Height Prediction at 70 Years Age Vigor									1	RANGE	l					
Group Adapted Trees to Plant Tree Height Prediction Relative at 70 Years Age Vigor	Phases of S	erios	F	Range Sit	le Name				Climex	Vegetation	and Pr	oducti	vity of Air-E	ry Herbage	(lb./ac.)	
Group Adapted Trees to Plant Tree Height Prediction Relative at 70 Years Age Vigor						1										-
Group Adapted Trees to Plant Tree Height Prediction Relative at 70 Years Age Vigor															· •	
Group Adapted Trees to Plant Tree Height Prediction Relative at 70 Years Age Vigor						1	•							•		
Group Adapted Trees to Plant Tree Height Prediction Relative at 70 Years Age Vigor				•									•	• •	•	•
Group Adapted Trees to Plant Tree Height Prediction Relative at 70 Years Age Vigor		· · · · · · · · · · · · · · · · · · ·	Ļ۰			<u> </u>			9177	WD P P P P P P P P P P P P P P P P P P P						
at 70 Years Age Vigor	Grave		Т			A 4.					<u> </u>	<u> </u>	Tree He	ight Predict	Ion	Relative
OTHER	Group		-			Ada	- Pres I	1462	to Plan			\dashv				
OTHER	•											1			.	
OTHER												.		•	ł	
OTHER															İ	
OTHER															1	
										THER						
				_												
	•													•		

was wed (Edberthedon, T

MN-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL SURVEY INTERPRETATIONS 1/

SERIES	
STATE Minnesots	
MLRA	

This series consists of deep excessively drained soils formed in loamy material over stratified sand and gravel under deciduous and coniferous forest on plane and convex slopes of outwash plains, easiers, and kames. Typically, they have black, sandy loam surface layers 1 inch thick; dark grayish brown, samiy loam subsurface layers 2 inches thick; dark reddish brown and reddish brown, sandy loam subsoil 12 inches thick; and yellowish brown, gravelly very coarse sand underlying material. Slopes range from 1 to 60 percent. Most areas are forested.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil			Classification		Coarse Percentage less than 3 inches Fract. Passing Sieve No					PI	Permea- bility	Avall. Water	Soil Reac-	Shrink Swell
Horizons (inches)	USDA Texture	Unliled	AASHO	>3 in.	4	10	40	200	LL		in./hr.	Capuc. in./in.	tion pH	Poten- tial
0-15	SL	SM	A-L	0-5	90–100	80-95	55-7 5	35-50		NP	0.6-2.0	.1824	4.5- 6.5	Low
15-60	CR-COS	CW, GP, SP	A-1	0-10	40-85	35-75	10-45	0-5	-	ИP	> 20	.0204	4.5- 6.5	A. Poa
٠.									٠					
	,													
Flooding	None		<u> </u>	!	انــــــــــــــــــــــــــــــــــــ			•	Hydrolo	gic grou	p: B	L		

Depth to water table: greater than five feet

Depth to bedrock: 40-120 inches

Corrosivity - uncoated steel: Low

Corrosivity - concrete: Moderate .

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Rosdfill	Good
Sand	Good
اجه Gra	Good
Topsoil	Poor: thin layer, small stones

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields 0-8%: Blight 8-15%: moderate-slope 15+%: severe-slope Sewage Lagoons Severe: geepage Shallow Excavations 0-15%: moderate-small stones; 15+%: severe-slope wellings: 0-8%: slight; 8-15%: moderate-slope; 15+%: severe-slope Without Basements anitary Landfill (Trench and Area) Severe: seepage seal Roads and Streets 0-94: slight: 8-154: moderate-slope: 1544: severe-slope Potential Frost Action

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	·
	Seepage
Embankments, Dikes, and	Levres
	Seedage
Drainage of Cropland and	
	Not mosted
Irrigation	
	Slope, neepage
Terraces and Diversions	
	Slope, ton mandy
Grassed Waterways	
	Slore, droughty
Expanded Ponda Acui	For Pad: Toop to water

MN-50ILS-3 11-71 (File Code SOILS-12)

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Comp Areas	0-54: nlight; 8-15%: moderate-slope; 15+%: mevers-slope
Picnic Areas	0-76; alimbt: 8-155; moderate-alope: 15-5; severa-alope
Playgrounds	0-2%: slight; 2-6%: moderate-slope; 6+%: gevere-slope.
Patha and Tralis	0-15성: elight: 15-2점: moderate-eloge: 25-점: severe-elope

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Soil L	T T		
0-2% 2-6% 6-12% 12-18% 18-35%	38 32 48 63 72			 	

PASTURELAND AND HAYLAND

Phases of Series	. Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
	,	
e savige		

WILDLIFE HABITAT SUITABILITY

Phases of Series	T		Potential for-							
	Grain and Seed Crops	Grasses, Legumes	Wild Herhaceous Plants	Hardwood Trees and Shrubs	Conferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
0-12%	Fair	Cood	Good	Fair	Fair	V.Poor	V.Poor	Good	Good	V.Poor
12-35%	Poor	Poor	Good	Fair	Fair	V.Poor	V.Poor	Fair	Fair	V.Poor

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity		Woodland Mana	Suitable	Other			
Series	nollan	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
0-12%		Red Pine E.Wh.Pine Jack Pine	55 55 60	Slight	Slight	Moderate	Slight		Red Pine Wh.Spruce	>
12-35%	48	Mh.Spruce	60 55	Moderate	Moderate	Severe	Slight		Red Pine	
		Ballia Lang	77		PANCE				Jack Fire	

	Jack Pine 6	RANGE		
Phases of Series	hydricaledness b	Climax Vegetatio	(Air-Dry Herbage (ib./ac.)	
· •-			•	
				•

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
0-12%	Northern White-Cedar, Red Pine, Russian-Olive, White Spruce, Jack Pine, Siberian Crabapple, Eastern Red Cedar, Eackberry, Silver Euffaloberry Siberian Peashrub, Bur Oak, Tatarian Honeysuckle	11,20,15 18,20,12 15,18,12 10,18,10	

MN-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL SURVEY INTERPRETATIONS 1/

SERIES		
STATE	Minnagota	
MLRA	E9 & 90−2	
		_

This ceries consists of nearly level to very steep, excessively drained soils formed in outwash material. These soils are on outwash eskers and ice-contact glacial deposits. Native vegetation was forest. The surface layer is dark reddish brown decomposed plant remains about 2 inches thick. The subsurface layer is may very gravelly coarse sandy loam about 5 inches thick. The subsoil is strong brown, gravelly loamy sand about 10 inches thick. The underlying material is brown very gravelly coarse sand. Fermeability is very rapid. The available water capacity is very low and organic matter content is low. These soils contain many cobbles and boulders.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil Horizons (Inches)	Class	Classification			Percentage less than 3 inches Passing Sieve No			LL	PI	Permes- bility	Avail. Water	Soil Resc-	Shrink Swell	
	USDA Texture	Unified	AASHO	>3 in.	4	10	40	200			In./hr.	Capac. in./in.	tion pH	Poten- tial
0-15	Very Gravelly loamy sand	CW, GP cr SP	A-l	0–10	20–60	10– 50	4-30	0–5	NP		Greater than -20.	0.03- .0.05		Low
15-60 	Very Gravelly loam sand	GW, GP or SP	L-l	5–20	20–60	10-50	1,-30	0–5	NP	NP	Greater than 20	0.02- 0.04	5.1- 6.5	Low

Flooding None

Depth to water table: Greater than 5 feet

Hydrologic group: A

Depth to bedrock: Normally greater than 6 feet

Corrosivity - uncosted steel: Low

Corrosivity - concrete: Low

SUITABILITY OF SOIL	AS SOURCE OF SELECTED MATER	IAL AND FEATURES AFFECTING USE

Roadfill	Good: high phear strengh; low compressibility
Send	Poor: quantity of sand is low
Gravel	Good: stones and boulders
Topsoll	Poor: coarse textured; stones and boulders

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields	Slight:	very rapid permeability; moderate on 6 to 12 percent slopes; severe on slopes over 12 percent; hazard of polluting underground water
Sewage Lagoons	Severe:	very rapid permeability; coarse textured
Shallow Excevations	Severe:	stones and boulders; very gravelly
Dwellings; With Basements t	Slight:	on 0 to 6 percent slopes; moderate on 6 to 12 percent slopes; severe on more than 12 percent slopes
Sanitary Landfill (trench type)	Severe:	very rapid permeability; coarse textured
Local Roads and Streets	Slight:	on 0 to 6 percent slopes; moderate on 6 to 12 percent slopes; severe on more than 12 percent slopes.
Potential Front Action		

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	Eigh compacted permeability
Embankments, Dikes, and L	High compacted permeability; low compressibility; high shear strength
Drainage of Cropland and Po	asture
	liot readed: excessivelly drained
Irrigetion	Very low available water capacity
Terraces and Diversions	Coarse textured; stones and boulders
Grassed Waterways	Coarse textured; stones and boulders

1 Use in conjunction with while to Soil Survey Interpretation Sheets.

MN-SOILS-3 11-71 (File Code SOILS-12)

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Comp Areas	Moderate; many coarse fragments at the surface; 0 to 12 percent slopes; severe on more
Picnic Areas	Mccarate: Lany course tragments at the surface; 0 to 12 percent slopes; severe on more than 12 percent slopes.
Playgrounds	Severe: many coarse framents at the surface
Faths and Tralia	Moderate: many course framents at the surface; 0 to 25 percent slopes; severe more than 25 percent slopes

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

					,			
Phoses of Series	Capability	5011 E	Loss		·			
0 to 12% slopes	VIB	.20	3	-	-	-		
12-18% slopes	VIs			No inf	rmation a	t this tin	me	
18-35% в1орев	VIIB							
	• .							

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
•		

WILDLIFE HABITAT SUITABILITY

	1		Pote	ential for					Potential for	
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wettand Food and Cover	Shallow Water Deval.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
All	very poor	poor	poor	very poor	very poor	very poo	r very	poor	very poor	very poo

WOODLAND SUITABILITY

Phases of Series	Ordi-	Potential P	roductivity	1	Woodland Mana	Suitable	Other			
	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
All	ļв		ſ	increases	Moderate 0- 12% slopes p increases with steep slopes	to	Iow	Jack Pire	Jack Pira	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
.		
Ī		·
	l	

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
	•		

- 1
aux.
Clog
C.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SOIL SURVEY INTERPRETATIONS 1/

This series consists of nearly level to steep, excessively drained soils formed in 1 to 2 feet of loamy material over stratified sand and gravel. These soils are on plans and convex slopes of outwash plains, eskers and kanes. Native vegetation was forest. In a representative profile the surface layer is black sandy loam about 1 inch thick. The subsoil is dark brown, very friable, sandy loam about 13 inches thick. The underlying material is reddish brown gravelly coarse sand. Permeability is moderate in the upper part of the profile and very rapid in the lower part of the profile. The available water capacity is low and organic matter content is low. The availability of phosphorus is low, and of potassium is low.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil	Class	ification		Coarse Fract.			ss than Sieve No	J inches	LL	Pi	Permea- bility	Avail. Water	Soil Reac-	Shrink Swell
Horizons (inches)	USDA Texture	Unilled	AASHO	>3 in. %	4	10	40	200			in./hr.	In./in.	tion pH	Poten- tial
8-0	eandy loam	MZ	A-L	0-1	90–100	80-99	55 - 75	3550	NP	NP	0.6-2.0	0.22- 0.24	4.5-6.0	low
8-14	losm sandy	SM .	A-4	0-1	90–100	80 <u>-9</u> 5	55 - 75	35 -50	NP	NP	0.6-2.0	0.18-	4.5–6.0	low
14-60	gravelly coarse sand,	GW,GP or SP	A-l	0-10	40-85	35 - 75	10-45	0-5	NP	NP	Greater than 20	0.02-	5.6-6.5	low
	sand,													

Flooding None

.

Depth to water table: More than 6 feet Corresivity - uncosted steel: Yery low

Hydrologic group: B

Depth to bedrock: More than 6 feet

Corrosivity - concrete: Moderate

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Resdilli	Good: high spear strength; low commessability; low shmipk-swell
Sand	Fair: mixed with gravel; needs screening; deposits are generally thick.
Gravel	Good: stratified sand and gravel; some stones and boulders; water table is deep
Topsoli	Fair: upper 1 to 2 feet is sandy loam material; may have some coarse fragments.

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields	Slight: very rapid rermeability 2/ Moderate: 6-12 percent slopes 2/ Severe: on more than 12 percent slopes 2/
Sewage Lagoons	Severe: very rapid permeability; coarse textured material
Shallow Excavations	
	Severe: many coarse fragments
Owellings: With Basements	Slight: high shear strength; low shrink-swell; low compressibility; excessively draine
	Moderate: 6-12 percent slopes Severe: greater than 12 percent slopes
Sanitary Landfill	
(Trench type)	Severe: very rapid permeability 2/
Local Roads and Streets	Severe: on more than 12 percent; good natural drainage; low susceptibility to frost Slight: 0-6 percent slopes Moderate: 6-12 percent slopes heaving
Potential Frost Action	Loy

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas Very	rapid permeability
Embankments, Dikes, and Levess	High shear strength; good compaction characteristics; high compacted permeability low compressibility; good resistance to minime.
Drainage of Cropland and Pasture	generally not needed, excessively drained
Irrigation	low evailabel vater holding carreity
Terraces and Diversions	Corrae textured material below depths of 1 to 2 feet; low available water holding capacity
Grossed Waterways	Coarse Toxtured material below depths of 1 to 2 feet; low available water holding capacity.

^{1 &#}x27;Use in conjunction with Guide to Soil Survey Interpretation Sheets.

		DEGRE!	E OF	soil	LIMITA	TION	AND	MAJ	OR FEA	TU	RES AFF	ECTING R	ECREATIO	ON USES		
Semp Areas											6 percent					
Sienic Area	•											edola in	1			
Playground	,	Sligh			rcent :			oder	ate: 2	-6	percent :	olopes Se	vere: ov	er 6 per	ent	Blope
Paths and T	rails	Sli	t: 0-	6 per	cent ol	oper	Mo:	dera	te: Blo	pe	s over 6	percent				
<u> </u>		CAPABI	LITY.	SOIL	LOSS	FAC'	TORS.	AND	POTEN	TI.	AL YIELI	OS-(High le	evel manag	ement)		
Phases		7		Soll I			7		Blue		18:4					
Serie	<u> </u>	Capa	bility	K		lata Bu/Ac		1776 1776 178		i pri		Ac. AUM	J			
0-2% 810		111	В	.24		70	. 10	B		.0	3.5	5.0		•		
2-6% Blo	-e s	III			ı	70	- 1	8		.0	3.5					
6-12% old 2-12% sl		IVe IVe			1 6	60 60-70)	7 7-8		.0	3.9					
12-16,5 в	a ecci	VIe				~	-	-		0,	_					
18-25% s. 12-25 %					- 1		_	- ·		.0 .0	_	entrees.			•	
	عوت	177				P	ASTIL	251.4	ND ANI) н	AYLAND					
Phases	pt	Group	Ţ.	-								Irrigated) Fo	rage Produc	tion		
Series																
	I															•
			1.									-				
		•	- 1								•		•			
L						WIL	DLIFE	HAI	BITAT S	רוט	TABILITY					
	L				Potential for								Potential f	or		
Phases of Series		ain and	Gras		Wild	1	Hardwo		Conlierou	2	Wetland Food and	Shallow Water	Openland	Woodland		Pelland
	See	d Crops	Legu	umes Plants		Shrubs		-	Plants	\dashv	Cover	Devel.	Wildlife	Wildlife	+	Wildlife
0-12%	F	air	sir Good		Good	Fair	Fair Fair		ery	ery Poor	Yery poor	Good	Good	fer	A boon	
				İ	1		1								-	•
12-35%	<u>l</u> p	200	Pop		Cood		Fair		Fair			Vary poc	Fair	Good .	ter	y poor
									D SUITA							
Phases of Series	Ordi	Im	ential ortant		Site	Erc	noise		uipment		eeding	Plant	To Fev	or To Pla		Other
series .		 -	rees		Index	1	zard		itutions		ortality	Competition	`			
0-12%		Red	Pine e Pir		55 55	Sli	ght:0	SL	ight	1/2	oderate	Slight to Moderate		> Red ind Jack		
	3в	1	Pine	1	60	``	"	Mod	lerate			12002470	White			
	•	Whit	pruce e		50	1	to	Ser	to vere	M	oderate		1			
12-35 7.				ــــــــــــــــــــــــــــــــــــــ		1 .	are		ANGE	L						
Phases of S	eries	Range	Site N	isme			Clin			B C*	d Productiv	ity of Air-I	Ory Herbase	(ib./ac.)		
		 							-					(101,711,	-	
		•														
		ŀ											•			
		ĺ												•		
		J						WIN	DBREAL	ς						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Group					Adapt	ed Tr	ees to	Plent					ight Predict Years Aga			Intive igor
				-												<u> </u>
		l							•		l					
											. [.		
			•											Ì		
		<u> </u>										-				
								O	THER							· · · · · · · · · · · · · · · · · · ·

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SOIL SURVEY INTERPRETATIONS 1/

an asolo	Arson	
M38	MEG	
SERIES	•	
STATE .	Minneso'a	0/71
MLRA _	90, 00	
Rev. Dil	P 11/71	

This series consists of gently sloping to steep well drained soils formed in 20 to 40 inches of dark brown, medium acid, gravelly sandy loam glacial till that is underlain by bedrock. The dominated hedrock is gabbro and granite. Surface stones typically occupy less than 5 percent of surface and varies locally to 30 percent. Subsurface coarse fragment content typically is 25 percent. These soils occur on sloping to hilly terrain in the Laurentian Shield country of northeastern Minnesota.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil Horizons (inches)	Classification			Coarse Fract.		Percentage less than 3 inches Passing Sieve No			LL	PI	Permes- bility	Avail. Water	Soli Reac-	Shrink Swell
	USDA Texture	Unified	АЛ5НО	>3 in. %	4	10	40	200			In./hr.	Capec. in./in.	tion pH	Poten- tial
0 to 28	Gravelly sandy loam	sm	A-2		5085	40-75	30-55	25-35	10-20	0-4	2.0 to 6.3	0.10 to 0.14	5.1 to 6.0	Low
÷							, , , , , , , , , , , , , , , , , , , ,							

Flooding None

Depth to water table: 20 to 40 inches

Corrosivity - uncoated steel: Low

Hydrologic group: C

Depth to bedrock: 20 to 40 inches

Corrosivity - concrete: moderate to high

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Fair: limited volume of material, poor on slopes over 18 percent
Send	Poor
Gravel	Poor
Topsoil	Poor: low natural fertility; 25% coarse fragments

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

		·
Septic Tank Filter Fields	Severe:	bedrock at 20 to 40 inches, sloping to hilly terrain
Sewage Lagoons	Severe:	bedrock at 20 to 40 inches, sloping to hilly terrain
Shallow Excavations	Severe:	bedrock at 20 to 40 inches
Dwellings: With Besements Without Besements	Severe:	bedrock at 20 to 40 inches; sloping to hilly terrain
Senitary Landfill	Severe:	bedrock at 20 to 40 inches; sloping to hilly terrain
Local Roads and Streets	Severe:	bedrock at 20 to 40 inches, sloping to hilly terrain
Potential Frost Action	Lou	

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas Bedrock at 20 to 40 inches, no or very few available sites	
Embankments, Dikes, and Levees Bedrock at 20 to 40 inches, high content of coarse fragments	
Drainage of Cropland and Peature	
Irrigation .	
Terraces and Diversions	
Grassed Waterways	

1/ Use in conjunction with Guide to Soil Survey Interpretation Sheets.

Page 1 of 2

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	Noderate to sloping to hilly terrain
Picnic Areas	Moderate to severe; sloping to hilly terrain
Playgrounds	Severe: sloping to hilly terrain
Paths and Trails	Slight to moderate: sloping to hilly terrain

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Soll K	Loss			 	
2 to 18 percent Blopes	VIe	.37	2,2	•			
18 to 35 percent slopes	VIIe					·	

PASTURELAND AND HAYLAND

Phases of Scries	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production										
		1			•							
		ļ	, -	-								
		· .		•		•						
		1										
		1				• •						
						•						

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openiand Wildlife	Woodland Wildlife	Wetland Wildlife
All	V. Poor	Fair	Fair	Fair	Fair	V. Poor	V. Poor	Poor	Fair	Very poo

WOODLAND SUITABILITY

Phases of	Ordi-	Potentla! Productivity			Woodland Mana	Sultable	Species	Other		
1	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
A11		Jack pine Trembling 2 White pine White sprue Red pine	-	Slight to severe on steeper slopes	Slight to severe on steeper slopes	Slight	Moderate	j	Jack pine Red pine White spr	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)									
					:						
	l i										
					•						
	[•								
		•									

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
			•
		•	

OTHER

Potential productivity is low. Moderate to low natural fertility; no native plants suitable for grazing. Watershed - Shallow to bedrock; erodibility class III; mor humus; *infiltration 0.15-0.3"/hr, permeability 2-6.3"/nr; moderate runoff; well drained. * Infiltration rates need further consideration.

870+7C71 InCOT II +088 4431

FOR INTERIM USE

Page 2 of 2

Subject to change on completion of coordination between M.RA'S

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

89,90 MLRA BHP-LLB 11/71

SOIL SURVEY INTERPRETATIONS 1/

This series consists of gently sloping to steep well drained soils formed in 8 to 20 inches of brownish and reddish gravelly coarse sandy loam, glacial till underlain by bedrock. Coarse fragment content typically is about 20 percent. Soils are subject to seasonal drouthiness. These soils occur on sloping to hilly terrain in the Laurentian Shield country of northeastern Minnesota.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soli Horizons (inches)	Classification			Coarse Fract.	Percentage less than 3 inches Passing Steve No				LL	PI	Permea- bility	Avail. Water	Soll Reac-	Reac- Swell	
	USDA Textura	Unlied	AASHO	>3 in.	4	. 10	40	200			in./hr.	Capac. In./in.	tion pH	Poten- tial	
0-15	Gravelly coarse sandy loam	SM	A-2		50-85	40-75	30-44	25-35	10-20	0-4	2.0 to 6.3	0.10 to 0.14	5.1 to 6.0	Low	
15+	Bedrock -	• -						-	•				-	-	

Flooding None

Depth to water table: 5 feet

Corrosivity - uncoated steel: Low

Depth to bedrock: 8 to 20 inches

Corrosivity - concrete: Moderate to high

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Road(111	Fair; limited volume of material; poor on slopes over 16 percent
Sand	Unsuited
Gravel	Unsuited
Topsoil	Poor; low natural fertility; shallow to bedrock

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields	Severe: shallow to bedrock
Sewage Lagoons	Severe: shallow to bedrock; moderately rapid permeability; sloping to hilly terrain
Shallow Excavations	Severe: shallow to bedrock, sloping to hilly terrain
Dwellings: With Basements Without Basements	Severe: shallow to bedrock, sloping to hilly terrain
Senitary Land(iii	Severe: shallow to bedrock, sloping to hilly terrain
Local Roads and Streets	Severe: shallow to bedrock, sloping to hilly terrain
Potential Frost Action	Low

MAJOR SOIL FEATURES AFFECTING SELECTED USES

<u> </u>
Pond Reservoir Areas Shallow to bedrock, no or very few suitable sites
Embankments, Dikes, and Levees Moderately rapid parmeability, shallow to bedrock
Drainage of Cropland and Pasture
Irrigation
Terraces and Diversions
Gressed Waterways
•

1/ Use in conjunction with Guide to Soll Survey Interpretation Sheets.

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

• •	Moderate or severe on slopes over 18%; shallow to bedrock; low natural tertility; subject to compaction; low natural carrying capacity for intensive use
• • • • • • • • • • • • • • • • • • • •	Moderate, severe on slopes over 13 percent, shallow to bedrock; sloping to hilly terrain; low natural fertility
	Severe: sloping to hilly terrain; subject to compaction; low natural carrying capacity for intensive use
Paths and Trails	Slight, moderate on slopes over 18 percent: sloping to hilly terrain

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

				 	 ,
Phases of Series	Capability	Soft K	Lass		
2 to 16% slope	VIe	.37	2,2		
18-35% slope	VIIe				
					·

PASTURELAND AND HAYLAND

Phases of Scries	Group		S	pecles,	Yield in	AUMs for D	ryland (Ir	igated)	Forage 1	Productio	n	
··											•	
							-				•	
		1										
·		l										

WILDLIFE HABITAT SUITABILITY

			Fotential for-							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Hardwood Herbaceous Trees and Plants Shrubs		Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
All .	- Poor	Fair	Fair	Fair	Fair	V. Poor	V. Poor	Poor -	Fair	Very poor

WOODLAND SUITABILITY

. Phases of	Ordi-	Potential P	roductivity		Woodland Man-	Suituble	Species	Other		
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
All		Jack pine Trembling	50 50	Moderate	Slight	Slight	Slight	1	Jack pine Red pine	
		aspen White spruc		severe on steepe slopes	severe on				,	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
		•
		•

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
		•	
•			
			<u> </u>

OTHER

Potential productivity is low. Low natural fertility. No native plants suitable for graving. Watershed - shallow to bedrock; erodibility class III; morhumus; *infiltration 0.15 to 0.3"/hr.; permeability 2 to 6.3"/hr.; noderate runoff; well drained. *Infiltration rate needs further consideration.

6800-1641=60 = = = 10 10 1071

FOR INTERIM USE

Subject to change on completion of coordination between MLRA'S

Page 2 of 2

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SOIL SURVEY INTERPRETATIONS !

952 SERIES MIRRESOTA

MIRA
Rev. DHI-ELE 11/71

This series consists of somewhat excessively drained soils formed in 4 to 8 inches of dark trown and strong brown, strongly and very strongly acid loam over hedrock. Bedrock outcrompings are common. The terrain is broken, irregular and sloping to hilly. These soils occur within the Laurentian Shield country of northeastern Minnesota.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Class	sification		Conrse Fract.			ss than Sieve Na	3 inches	LL	PI	Permen- bility	Avail. Water	Soil Reac-	Shrink Swell
Horizons (inches)	USDA Texture	Unlfied	AASHO	>3 in.	. 4	10	40	200			in./hr.	Capac. in:/in.	tion pH	Poten- tial
0 to 8	Loam	ML-CL	A-4		75-95	70-90	60-80	55-70	10-30	4	0.63 to 2.0	0.15 to 0.20	4.5 to 5.5	Low
8+.	Bedrock													
				_										

Flooding None

Depth to water table: Over 5 feet

Corrosivity - uncoated steel: Low

Hydrologic group: D

Depth to bedrock: 8 inches or less

Corrosivity - concrete: Moderate to high

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Rosd(III Poor: shallow soil, outcrops of bedrock are common

Sand Unsuited

Gravel Unsuited

Topsoil Poor: extremely shallow to bedrock

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields	Severe: extremely shallow to bedrock; sloping to hilly terrain
Sewage Lagoons	Severe: extremely shallow to bedrock; sloping to hilly terrain
Shallow Excavations	Severe: extremely shallow to bedrock; sloping to hilly terrain
Dwellings: With Basements Without Basements	Severe: extremely shallow to bedrock; sloping to hilly terrain; low clay content; well drained
Senitary Landfill	Severe: extremely shallow to bedrock; sloping to hilly terrain
Lucal Roads and Straets	Severe: extremely shallow to bedrock; sloping to hilly terrain
Potential Frost Action	Low

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas Shallow to bedrock, no suitable sites	
Embankments, Dikes, and Levees Shallow to bedrock, limited volume of material	
Drainage of Cropland and Pasture	,
Irrigation	
Terraces and Diversions	
Grassed Waterways	
·	

1/ Use in conjunction with Guide to Soil Survey Interpretation Sheets.

Page 1 of 2

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Comp Areas	Severe: irregular, broken sloping to hilly terrain; extremely shallow soils; soils subject to compaction; low natural fertility
Picnic Areas	Severn: irregular, broken, sloping to hilly terrain
Playgrounds	Severe: irregular, broken, sloping to hilly terrain; extremely shallow soils
Paths and Trails	Moderate on 5 to 18 percent slopes and severe on slopes over 18 percent; irregular, broken, sloping to hilly terrain

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS--(High level management)

Phases of Series	Capability	Soit K	Loss	•	
5 to 18 percent slopes	VIIs	-	-		
18 to 35 percent slopes	VIIs			,	·
·					

PASTURELAND AND HAYLAND

Phoses of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
	,	en en en en en en en en en en en en en e

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Conlierous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
	V. Poor	Poor	Poor	Poor	Poor	V. Poor	V.Poor	Poor	Роот	Very poor

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity		Woodland Mana	Suitable	Species	Other		
Series	nation	Important	Site	Erosion	Equipment	Seeding	Plant	To Favor	To Plant	
Series Harton	Trees 1	Index	Hazard	Limitations	Mortality	Competition	10 12001	10 Fight		
All		Jack pine	<40	Moderate to	Moderate to	Slight	Slight		Jack pine	
				severe	severe					

RANGE

Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (:b./ac.)
	•
	•
	Kange Site Name

WINDBREAK

Group	Adapted Trees to Pient	Tree Height Prediction at 20 Years Age	Relative Vigor		
		•			
		•	1		

OTHER

Watershed - Extremely shallow to hedrock; morhumus; permeability 0.63-2.0"/hr.; rapid runoff; low storage; somewhat excessively drained.

Pube ICPFINCOF# MESS 1815

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SOIL SURVEY INTERPRETATIONS 1/

		V
	'ح	
e s	,~	
\checkmark		

STATE Minnesots

MLRA E9, 90
Rev. DHP
Date: 2/72

This series consists of gently sloping to steep well drained soils formed in 20 to 40 inches of brownish medium to very strongly acid, gravelly sandy loam glacial till that is underlain by bedrock. Occurring at depths of 10 to 24 inches is a 5 to 16 inch thick fragipan. These soils occur in the Laurentian Shield country of northeastern Minnesota.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil Horizons (inches)	Classification			Coarse Fract.	Percentage less than 3 laches Passing Sieve No				LL	Pi	Permies-	Avall. Water	Soil Reac-	Shrink Swell
	USDA Texture	Unified	AASHO	>3 in.	4	-10	40	200			in./hr.	Cepac. in./in.	tion pH	Poten- tini
0 to 15	Gravelly sandy loam	SM	A2		50-75	40-65	30-55	20-35	10-20	0-4	2.0-6.3	0.10 to 0.14	4,0 to 6.0	Lov
15 - 30 (Fragipar	Gravelly) sandy loam	SM	A2		50-75	40-65	30 - 55	20-35	10-20	0-4	0.06-0.2	.05- .09	4,5 to 6,0	Low
												-		

Flooding None

Depth to water table: Naturally well drained

.

Depth to bedrock: 20 to 40 inches

Corrosivity - uncoated steel: Low

Corrosivity - concrete: moderate to high

SUITA	ABILITY OF SOIL	. AS SOURCE (OF SELECTED	MATERIAL	AND FEATURES	AFFECTING USE	
dill Fair:	Limited volume	of material,	poor on slope	s over 12 j	percent		

Roadfill	Fair:	Limited	volum	e or	material	poor	on	stopes	DAGE	16 P	ercent	- 				 	
Sand	Poor															 	
Gravel																	
Topsoil	Poor:	Low natu	ural f	erti:	lity; high	coar	se i	Eragment	cont	en t ;	less	than	40"	to	bedrock	 	

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields
Severe bedrock at 20 to 40 inches; hardpan; sloping to hilly terrain

Sewage Lazoona

Severe bedrock at 20 to 40 inches, sloping to hilly terrain

Shallow Excavations

Severe bedrock at 20 to 40 inches, fifficult to dig if dry

Dwellings:

With Basements

With Basements
Without Basements
Severe bedrock at 20 to 40 inches; sloping to hilly terrain

Sanitary Landfill

Severe: bedrock at 20 to 40 inches, sloping to hilly terrain

Local Roads and Streets

Severe: bedrock at 20 to 40 inches seepage along hardpan; sloping to hilly terrain

Potential Front Action Low

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas Bedrock at 20 to 40 inches, no or very few available sites									
Embankments, Dikes, and Levees Bedrock at 20 to 40 inches, high content of coarse fragments									
Drainage of Cropland and Pasture									
Linigation									
Terraces and Diversions									
Grossed huterways									
·									

1/ Use in conjunction with Guide to Soil Survey Interpretation Sheets.

Page 1 of 2

DEGREE OF SOIL LIMITATION	AND MAJOR FEATURES	AFFECTING RECREATION USES
---------------------------	--------------------	---------------------------

Camp Areas	Moderate to severe: sloping to hilly terrain
Picnic Areas	Moderate to severe; sloping to hilly terrain
Playgrounds	Severe: sloping to hilly terrain
Paths and Trails	Slight to moderate: sloping to hilly terrain

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

		•		 	 		
Phases of Series	Capability	Soll E	Loss				
2 to 18 percent alope	VIe	.37	2,2			•	
18 to 35 percent slope	VIIe						

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Fo	orage Production
	•		
<i>t.</i>			•
		•	• • •
•	'	• •	

WILDLIFE HABITAT SUITABILITY

		Potential for									
Phases of Series	Grain and Grasses Seed Crops Legume		Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	OpenIand Wildlife	Woodland Wildlife	Wetland Wildlife	
All	Y. Poor	Fair	Fair	Fair	Fair	V. Poor	V. Poor	poor	fair	poor	
	•										

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity	!	Woodland Mana	Suitable	Chier			
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
VJJ		Trembling aspen Jack pine	50-60	Moderate	Slight	Slight	Moderate		Jack pine	
		White spru	ce	severe on hilly terrain	Severe				Red pine	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)						
		•						
	l j							
	1	· ·						
	1							

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
			l

OTHER

Potential productivity is low. Low natural fertility. No plants suitable for grazing.

Watershed - Shallow to bedrock; erodibility class III; mor humas; *infiltration C.15-0.5"/hr.

permeability 0.06-0.2"/hr.; moderate runoff; well drained. "Infiltration rates reed further consideration

STOR SCHEMEDER MISS. WIT

FOR INTERIM USE Subject to change on completion between MLRA'S

Page 2 of 2

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SOIL SURVEY INTERPRETATIONS 1/

SERIES	
STATE	Minnesota
MLRA	89, 90 P-FIR 11771

This series consists of gently sloping to steep well drained soils formed in 8 to 20 inches of dark ellowish brown to dark brown, medium to strongly acid, gravelly sandy loam glacial till that is underlain by bedrock. Coarse fragments occupy about 25 percent of the soil material. These soils under vitible 11 laurentian Shield country of northeastern Minnesota.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil	Class	ification		Coarse Fract.			ss than Sieve No	3 inches	LL	PI	Permea- bility	Avail. Water	Soli Reac-	Shrink Swell
Horizons . (inches)	USDA Texture	Unified	AASHO	>3 in. %	4	10	40	200			In./hr.	Capac. in./in.	tion pH	Poten- tial
C-15	Gravelly sandy loam	SM	A2		-0-75	40-45	30-55	25-35	10-20	L− €	2.0 to 6.3	0.10 to 0.14	ر.) to	Low
15+	Bedrock											•		
		,	-											

Flooding None

Depth to water table: Below 5 feet

Corrosivity - uncoated steel: Low

Hydrologic group: B

Depth to bedrock: 8 to 20 inches

Corrosivity - concrete: Moderate to high

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Fair:	limited volume of material; poor on slopes over 18 percent	
Sand	Poor		•
Gravel	Poor		
Topsoll	Foor:	natural low fertility; shallow to bedrock; 25 percent coarse material	

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

	720	
Septic Tank Filter Fields	Severe:	shallow to hedrock
Sewage Lazoons	Severe:	shallow to bedrock; moderately rapid permeability sloping to hill ternain
Shallow Excavations	Severe:	shallow to bedrock, sloring to hilly terrain
Dwellings: With Basements Without Basements	Severe:	shallow to bedrock; sloping to hilly terrain
Sanitary Landfill	Severc:	shallow to bedrock, sloping to hilly terrain
Local Roads and Streets	Severe:	shallow to bedrock, sloping to hilly terrain
Potential Frost Action	l.ov:	

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Shallow to bedrock, no or very lew sultable sites
Embankments, Dikes, and Levees Moderately rapid permeability, shallow to bedrock
Drainage of Cropland and Pasture
Irrigation
Terraces and Diversions
Grassed Waterways

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES ____

Camp Areas	Moderate to severe: shallow to bedrock; sloping to hilly terrain; low natural fertility
Picnie Areas	Moderate to severe shallow to hedrock; sloping to hilly terrain; low natural fertility moderate to rapid permeability; subject to compaction
/laygrounds	Severe; sloping to hilly terrain; subject to compaction; low natural carrying capacity for
Paths and Trail	Slight to maderate: sloping to hilly terrain

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capubility	Soli K	Loss		
2 to 18 percent slope	VIe	.37	2,2		
IR to 35 percent slope	VIIe			•	

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
		•
٨.		

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
VJJ .	V.Poor	Fair	Fair	Fair	Fair	V. Poor	V. Poor	Poor	Fair	Very poor

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity		Woodland Mens	Suitable	Other			
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
A11		Jack pine Trembling	<50 <50	loderate to	Slight to	Slight	Slight		Jack nine Red nine	
		aspen		severe or hilly terrain	severe on hilly terrain				•	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (15./ac.)
•		•

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
	•		ł
	•		

OTHER

Potential productivity is low. Low natural fertility. No plants suitable for gravite.

Watershed - Shallow to bedrock; eroditility class III; morhomus; *infiltration 0.15 to 0.3"/hr. permeabilit 2-6.3"/hr.; moderate runoff; well drained. *Infiltration rates need further consideration.

MN-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

Series STATE MIEDERS

SOIL SURVEY INTERPRETATIONS 1/

MLRA 88, 89, 49, 92

Rev. RRL, 11-/2

This land type consists of relatively impermeable hard impeous and sedimentary bedrock in Northeastern

Minnesota. Typically this type of land consists of bedrock outcrop that is in complex patterns with

other deeper soils. The land is typically broken and impediately brok other deeper soils. The land is typically broken and irregular with nearly level

to steep slopes.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil Horizons (inches)	Classification			Coarse Fract.	Percentage less than 3 inches Passing Sieve No				LL	PI	Permen- bility	Avail. Water	Soil Reac-	Shrink Swell
	USDA Texture	Unified	A ASHO	>3 in.	4	10	40	200			In./hr.	Capac. In./in.	tion pH	Poten- tial
				Hard	bedro	ck, ma	terial	is unc	lassif:	ed		en en-		
		,	1	}						•				
										1				
			•	•										
														•
				i l]				
		`.												

Flooding None

Hydrologic group: D

Depth to water table: Deeper than 10 feet

Depth to bedrock: 0 to 4 inches

Corrosivity - uncosted steel: Low

Corrosivity - concrete: Low

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Road(III	Poor; hard bedrock
Sand	Unsuited
Grave1	Unsuited
Topsoll	Unsuited

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields	Severe, hard bedrock
	bevere, hard bemota
Sewage Lagoons	
	Severe, hard bedrock
Shallow Excavations .	
	Severe, hard bedrock
Dwellings:	
With Basements 2000000000000000000000000000000000000	Severe, hard bedrock
Sanitary Landfill	
	Severe, hard bedrock
Local Roads and Streets	
	Severe, hard bedrock
Potential Frost Action	Io:

MAJOR SOIL FEATURES AFFECTING SELECTED USES

	mijek selb i bili okto in i betime sbibe ibb obb
Pond Reservoir Areas hard	bedrock
Embankments, Dikes, and Levees	hard bedrock
Drainage of Cropland and Pastwe	unsuited
Irrigation	unsuited.
Terraces and Diversions	unsuited
Grassed Waterways	unnuited

TO DEVIEW

PN-SOILS-3 11-71 (F11e Code SOILS-12)

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Cemp Areas	Serere: hard bedrock
Picnic Areas	Severe: hard bedrock; includes nearly level areas that are suited for this use.
Playgrounds	Severe: hard tedrock
Paths and Trails	Slight: 0 to 18% slopes; Severe: 18 to 35% slopes; slippary when wet

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capabi!ity	Soll K	Loss						
VII.	VIII			Not sui	ted for cu	ltivated (rops		
						٠.			
								٠.	
								•	

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland	(Irriguted) Forege Production
	,		

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Weiland Wildlife
. בנא	Very poor	Very poo	poor poor	Very poor	Very poor	Very poor	Very poor	Very poor	Very poor	Very poor

WOODLAND SUITABILITY

. Phases of	Ordl-	Potential F	roductivity		Woodland Mana	gement Haza	rds	Sultable	Species	O!her
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
VTT.	ď	Jack Fine Red Pino Cedar	Ver y low	Severe	Severe	Severe	Severe	4	Jack Pine Juniper- shrub type	•

RANGE

1	Phases of Series	Range Site Name	Cilmax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
-[•		
ı		•	
1			
ı			•
ı			·

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
		÷	

MRTSC Trial Form File Code Soils-12 Rev. 9-10-71

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL SURVEY INTERPRETATIONS 1/

BERIES _ STATE Minnesota BILRA ROP-ELB 8-71 REV.

These are deep, poorly and somewhat poorly drained, nearly level; clayey soils with slow permeability on glacial lake plains. The surface layer is black clay about 2 inches thick. The subsurface layer is dark gray clay loam about 4 inches thick. The subsoil is very firm dark gray and olive gray clay. The underlying material is olive and olive gray clay with mottles. Native vegetation was mixed deciduous and coniferous forest.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Class	ification		Coarse Fract.					i	DI	Permes-	Avail. Water	Soil Kesc-	Shrink Swell
USDA Texture	Unified	AASHO	>3 In.	4	10	40	200			in./hr.	Capac. in./in.	tion pH	Poten- tial
clay	Сн	A-7		100	95-100	85- 95	70-90	50-70	30-50	.0620	.1316	5.6-6.5	Mod High
clay	Сн	A-7 ·		100	100		35-95	50-70	30-50	.0620	.1014	5.6-7.8	High
clay	• СН	A-7		100	100		85 - 95	50-70	30-50	.0620	.0913	7.5-8.0	High
		-								·			
	USDA Texture Clay and clay loam	Clay and CH clay loam clay CH	USDA Unified AASHO Clay and CH A-7 clay loam clay CH A-7	USDA Texture Clay and CH clay Clay Clay Clay Clay Clay CH CLay CH CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY	Classification Fract. T	USDA Unified AASHO 7. Classification Fract. Passing Sieve No.	Clay and CH	Classification	Clayer Characteristics Fract. Passing Sieve No LL P1	USDA Texture Unified AASHO 7. 4 10 40 200 LL PI billity in./hr. Clay and CH A-7 100 95-100 85- 70-90 50-70 30-50 .0620 lay loam clay CH A-7 100 100 95- 35-95 50-70 30-50 .0620	Classification	Clay and CH A-7 100 100 95- 35-95 50-70 30-50 .0620 .1014 5.6-7.8 100 100 95- 100 100 95- 100	

Flooding Slight

Hydrologic group: D

Depth to water table: Seasonsal high water table at 1 to 3 feet.

Depth to bedrock: Greater than 5 feet.

Corrosivity - uncosted steel: Very High

Corrosivity - concrete: Hoderate

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Poor: poor shear strength, poor workability, high shrink-swell, high compressibility.
Sand	Not sultable.
Gravel	Not suitable.
Topsoll	Poor: fine textured, low organic matter.

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields Severe: slow permeability; fine soil texture; seasonal high water table at 1 to 3 feet; poorly and very poorly drained.

Sewage Lagoon» Severe: slow permeability; nearly level slopes; fine soil texture; but seasonal high water table at 1 to 3 feet.

Shallow Excavations Severe: high water table; fine textured.

Severe: Poor shear strength; high shrink-swell; high compressibility; seasonal high water table at 1 to 3 feet. Owellings:

Sanitary Landilli Severe: Poorly and very poorly drained; slow permeability; fine soil texture; poor workability; slippery when wet.

Local Roads and Streets Severe: Poorly and somewhat poorly drained; fine soil texture; high shrink-swell potential.

Potential Frost Action Moderate - Soil texture, poor and somewhat poor drainage

MAJOR COM PRANCIPES A PERCONNIC CENTROPER MADO

	MAJOR SOIL FEATURES AFFECTING SELECTED USES
Pond Reservo	ir Areas Slow permeability; good resistance to piping.
	Dikes, and Levees High compacted permeability; high compressibility; seasonal high water table at 1 to 3 feet; good resistance to piping; poor shear strength; high shrink-swell potential:poor year
Drainage of Ca	repland and Pasture Fine textured material throughout; seasonal high water table at 1 to 3 feet; ability slow permeability; occasionally flooded or ponded.
Irrigation	Usually not considered because of the poor and somewhat poor soil drainage; slow permeability; very slow intake rite,
Terraces and I	
Grassed Water	ways fine textured material throughout; poor and somewhat poorly drained; usually mearly level topography; poor workability.
	·

1/ Use in conjunction with Guide to Soil Survey Interpretation Sheets.

Page 1 of 2

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Comp Areas	Severe: Slow permeability; poorly and somewhat poorly drained; moderately fine and fine textured surface.
Picnic Arras	Severe: Loorly and somewhat poorly drained; woderately fine and fine textured surface.
Playgrounds	Severe: Slow permeability; poorly and somewhat poorly drained; moderately fine and fine textured surface.
Peths and Trails	Severe: Poorly and somewhat poorly drained; moderately fine and tine textured surface.

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Soll	Loss	Oats Bu.	Alfalfa-	Altalfa- grans Faithra	Clover-	Clover- grass Pasture	Blyegrass Facture Akd	
O to 2% slopes	IIIw	-	-	65	4.0	6.0	3.5	5.2	4.8	
•										

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production	
		,	
	,		

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Welland Wildlife
A11	Poor	Fair	Fair	Fair	Fair	Good	Good	Fair	Fair	Good

WOODLAND SUITABILITY

Phases of	Ordi- nation	Potential Pr	nductivity	1	Woodland Man	Sultable	Other			
Series		Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
0 to 27. slopes	2w	Aspen .	76	Slight	Hoderate	Moderate	Severe	1	White spruce,	
		White spruc	e 53						White pine	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
		1

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative V:gor
			ł

CROPLAND

General productivity is moderate to high if the vetness hazard has been corrected and the lime and fertilizer requirements are met. Climate restricts the choice of crops. Snow cover is commonly continuous throughout the winter.

MN-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

STATE Hinnesota

MLRA 68-1
Rov. RdL 11-72

SOIL SURVEY INTERPRETATIONS 1/

This series consists of very poorly drained clayer soils occupying concave slopes on glacial lake plains. Typically these soils have a mucky surface layer about 6 inches thics. The subsoil is mottled, dark gray, noncalcareous clay about 12 inches thick. The substratum is gray or olive gray calcareous clay. Most areas are irregular shaped and range from 5 to 15 acres in size.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil Horizons (inches)	Classification			Coarse Percentage less than 3 Fract. Passing Sieve No.					LL	PI	Permes-	Avnil. Water	Soil Reac-	Shrink Swell
	USDA Texture	Unified	AASHO	>3 in.	4	10	40	200			In./hr.	Capac. in./in.	tion pH	Poten- tral
0-6	Muck		A-8		Not engine	1	le for sieve	analysi			.06-0.6	•35- •48	5.6- 6.5	
6-18	Clay	СН	A-7 ·	О	100	100	95- 100	85-95	50-70	25-50	.0620	.1014	5.6 - . 7.3	High
18-60	Clay	CH.	A-7	. 0	100	100	95 - 100	85-95	50 - 70	25-50	.0620	.0913	7.4- 8.4	High
				- 						_	-	•		•

Flooding Occasionally ponded

. Hydrologic group;

Depth to water table: 0.5 - 2 ft. perched May to November

Depth to bedrock: Greater than 5 feet

Corrosivity - uncoated steel: High

Corrosivity - concrete: Low

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Poor: high shrink-swell, low strength, wet	
Sand	Unsuited	
Gravel	Unsuited	·
Topsoil	Poor: too clavey, wet	

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields
Severe: water moves through the soil too slowly, wet

Sewage Lagoons
Severe: too much organic matter in surface layer, wet

Shallow Excavations
Severe: wet, clayey

Dwellings:
With Hasements Severe: wet, high shrink-swell, low strength

With Masements Severe: wet, high shrink-swell, low strength

Sanitary Landfill

Trench type Severa: wet, clayey

Local Roads and Streets
Severe: We

Severe: wet, clayey

Potential From Action Moderate MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reserv	Favorable, slow permeability	
1	s, Dikes, and Levees Low strength, high compressibility	
Drainage of (Cropland and Pasture Slow permeability, clayey, wet	
Irrigation	Not needed	
Terraces and	Diversions Not needed	
Grassed Wate	Not needed	

MN-SOILS-3	
11-71	
(File Code	SOILS-12)

DECREE OF SOIL IMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Comp Areas	Sirere: wet, poor trafficability
	With the state of
Picnic Areas	Sovere: wet, poor trafficability
Playgrounds	Sovere: wet, poor trafficability
Paths and Trails	Savere: wet, poor trafficability

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL VIELDS-(High level management)

	Phases of Series	Capability	Soil K	1.233		CORI STLAGE	PASTUFE	LEGUME CRASS	LEGUME CPASS	
	LILA	IV₩			Bu/A 55	T/A 14	ALM 4.1	T/A 3.5	5•5 5•5	
		!			•	·				**.
-		•			-					

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
	•	
	• • • •	

WILDLIFE HABITAT SUITABILITY

1			Pote	Potential for						
1 Series)	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Conferous Plants	Wetland Food and Cover	Shallow Water Devel.	Opentand Wildlife	Woodland Wildlife	Welland Wildlife
LIA I	Very Poor	Poor	Poor	Poor	Poor	Gond	Good	Poor	Poor	Good

. WOODLAND SUITABILITY

Phases of Ordi-		Potential F	Productivity		Woodland Mana	Suitable	Other			
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
¥JJ	5W	Black Ash Aspen Black	45 60	Slight	Severe	Moderate	Severe	_	Elack Spruce	`
		Spruce								

RANGE

Phases of Series	Ronge Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
		Line to the control of the control o

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
·		•	
<u> </u>	•		

OTHER

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

MN-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

	SERIES			
	STATE	Minne	esota	
•	MLRA _	88		
	Rev.	RRL	11-72	

SOIL SURVEY INTERPRETATIONS 1/

This series consists of well drained and moderately well drained clayer soils occupying nearly level to hilly slopes in glacial lake plains. Typically these soils have a silt loam surface layer about 6 inches thick. The subsoil is dark brown or dark grayish brown medium to slightly acid clay. The substratum is grayish brown calcareous silty clay. Most areas are irregular shaped but some areas are elongated ridges.

. ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil	Class	Classification Coarse Percentage less than 3 inches Fract. Passing Sieve No		·LL	· pī ·	Permea- bility	Avail. Water	Soil Reac-	Shrink Swell					
Horizons (inches)	USDA Texture	Unified	AASHO	>3 in.	4	10	40	200		• •	In./hr.	Cápac. in./in.	1 1	
0-6	Silt loam	, WT	A-Lı	0	100	100	95-100	95-100	20-35	0-5	.63-2.00	.22- .2u	5.6- 6.5	Low
6-21	Clay	CH	A-7 .	0	100	100	95-100	85-95	50-70		.0620	.1014 	5.6- 6.5	High
21-60	Silty " clay	СН	A-7	0 -	100	100	95-100 - · ·	85-95 85-95	50-70	25-50 	.0620 · -	.0913	7.4- . 8.4	High

Flooding None

Hydrologic group:

Depth to water tuble: Greater than 5 feet

Corrosivity - uncoated steel: High

Hydrologic group:

Corrosivity - concrete: Low

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Poor: - poor shear strength, poor workability, high shrink-swell
Sand	Unsuitable
Grave I	Unsuitable
Topsoil	Poor: friable material is thick, low organic matter

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

eptic Tank Filter Fields Severe: slow permeability ewage Lagoons Slight: 0-2 percent slopes; Moderate: 2 to 6 percent slopes; Severe: more than 6 percent slopes Shallow Excavations Severe; poor workability Severe; high shrink-swell With Basements NO REPORTED CHARGES enitary Landfill (trench type) Severe: poor workability Severe; high shrink-swell, low bearing strength Potential Frost Action Moderate

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	
Slow permeability	
Embankments, Dikes, and Levees	
Low to medium shear strength; fair to poor compaction characteristics	,
Drainage of Cropland and Pasture Usually not needed	
Irrigation	
Slow infiltration: slow permeability	
Terraces and Diversions Poor Workability	
Grassed Waterways Poor workability	

DEGRET 17 SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Atres	Moderate: slow permeability; Severe: greater than 12 percent slopes
Picnic Areas	Slight: O to 6 percent slopes; Moderate: 6 to 12 percent slopes; Severa: greater than 12
Playgrounds	Moderate: slow permeability; Severe: greater than 6 percent slopes
Paths and Trails	Spirat: O to 18 percent slopes; Moderate: 18 to 25 percent alopes

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Sott Loss	Qats	Corn Silage	Legure - Grass	Bluegrass
0-2% slopes 2-6% slopes 6-12% slopes 2-12% slopes 12-25% Slopes	IIs IIo IIIe IIIe VIe	.43 3.2	B/A	T/A 14 12 12 12	Hay Pasture T/A AU1 4 6.6 4 6.6 3.5 5.9 3.5 5.9 5.0	Pasture AUM 5.4 5.4 4.8 4.8 4.1

PASTURELAND AND HAYLAND

Phases of	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
,		
	• .	

WILDLIFE HABITAT SUITABILITY

Phases of Series	Potential for							Potential for			
	Grain and Seed Cropa	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife	
All	Good	bood	Good	Good	Good	Poor	Poor	Good .	Good	Poor	

WOODLAND SUITABILITY

	Ordi-	Potential Productivity		Woodland Management Hazards				Suitable Species		Other
	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
בנא	10	Aspen Red Pine WhitePine White Spruce	79 55 50 58	Slight to Moderate O to 12% slopes; Severe	Moderate to Severe	Slight to Moderate	Moderate to Severe	W. Spruce Red Pine Basswood Aspen	W. Spruce Red Pine Basswood	•

RANGE

Phases of Series	Fange Site Name	Climax Vogetation and Productivity of Air-Dry Herhage (1h./ac.)							

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor	
	•			
			1	
			-[
	•			

OTHER

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SOIL SURVEY INTERPRETATIONS 1/

SERIES

STATE Minnesota

MLRA 68

Rev. Draft WJA 3-72

This sories consists of gently sloping to very steep, well drained soils formed in glacial till. These soils are on convex areas of ground and terminal moraines. Native vegetation was forest. In a representative profile, the surface layer is very dark gray loan about 3 inches thick. The subsurface layer is grayish brown sandy loan about 6 inches thick. The subsoil is dark yellowish brown to light clive brown, firm clay loam. The underlying material is light clive brown loam. The permeability is moderate to moderately slow. The organic matter content is low. The reaction is neutral. The inherent fortility is moderate.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Class	Classification			Course Percentage less than 3 inches Fract. Passing Sieve No					PI	Permes- bility	Avall. Water	Soil Reac-	Shrink Swell
Horizons (inches)	USDA Texture	Unifled	AASHO	>3 in.	4	10	40	200	LL		in./hr.	Capac. in./in.	tion FH	Poten- tial
0-3	loam	ML	A-4		95-100	59-08	85-95	60-75	20-1:0	1-10	.6-2.0	.2022		Moderat
3-9	andyloar	SM	A-L		95-100	90 - 98	50-75	35-50	25-40	1-7	2.0-6.0	.1315	6.5- 7.3	Low
9-33	clay loam	CL	A-6 or A-7		95-100	90-98	85-95	70-85	30-45	15-25	0.2-2.0	.1519	6.1- 6.5	Moderate
33-60	loam	CL	A-6		95-100	90-98	85-95	60-75	20-40	10-20	0.6-2.0	.1719	7.6- 7.8	Moderate
<i>:</i>													7.0	

Flooding None

Hydrologic group: B

Depth to water table: 5-10 feet seasonally high

Depth to bedrock: Over 10 feet

Corrosivity - uncoated steel: Low

Corrosivity - concrete: Low

	SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE
Roadfill	Fair: roderate shrink-swell; moderate frost action; a few stones; poor on slopes over 25%
Sand	Unsuitable
Gravel	Unsuitable

Topsoil Poor: thin surface layer DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Field		
	Moderate: moderate permeability in underlying material; severe on slopes over 12%	
Sewage Lagoons		
	Moderate: moderate permeability in underlying material; severe on slopes over 6%	
Shallow Excavations		
	Moderate: clay loam texture; severe on slopes over 12%	
Dwellings: With Basements - Without Basements	Moderate: moderate shrink-swell; moderate frost action; severe on slopes over 12% Moderate: moderate shrink-swell; moderate frost action; severe on slopes over 12%	
Sanitary Landfill		_
	Slight: on O-12% slopes. Moderate: on 12 to 25% slopes. Severe: on slopes over 25%	3
Local Roads and Streets		
	Moderate: moderate shrink-swell potential; moderate frost action potential	
Potential Frost Action	Moderate	

Pond Reservoir Areas	
	Moderate to moderately slow permeability; deep water table; 2-30% slopes
Embankments, Dikes, and	Levers Medium to low shear strength; redium compressibility; low compacted permeability;
,	low to rediem susceptibility to riping: fair to good compaction characteristics
Drainage of Cropland and	
	Not needed; well drained
Inigation	High available water capacity; 2-30% slopes; nedium water intake rate; a few stones; mod-
	prately clay normability basard of water enegan. Slopes are often uneven and chappy; a few stones; loady texture; moderate to
Terraces and Diversions	Slopes are often uneven and enoppy; a few stones; loany texture; moderate to
	moderately slow permeability
Grassed Waterways	
	Well drained; a few stones; 2-30% slopes; high available water capacity
-	

Camp Areas	Flight: pn 2-45 slopes; Moderate: on 6-126 slopes; Severe: on slopes over 125; stones
Plenic Areas	Stabt: on 2-4% slopes; Moderate: on 6-12% slopes; Seyere: on slopes over 12%; stones
Playgrounds	Moderate: on 2-6% slopes; Severe: on slopes over 6%
Paths and Trails	Slight: on 2-18% slopes; Moderate: on 18-25% slopes; Severe: on slopes over 25%

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phuses of	Capability	Soil	1.234	Com	Cybeans	wheat	Oats Di.	Alf. Gr	AGE	Huegrass AUM
2-6% slopes	Ile	.37	4.3	<u>Pu</u> 55	25 25	P1.	75	4.5	6.7	5.0
5-12% slopes	IIIe			50	20	70	70	4.0	6.0	4.5
12-18% slopes	IVe			45	17	35	65	3.5	5.0	4. 0
18-25% slopes	VIe							3.0	4.5	3.0
25%+ slopes	Viize									2.5

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production									
	,										
		,									
	1										

WILDLIFE HABITAT SUITABILITY

				Potential for							
Phases of	Grain and Seed Crops			Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife	
2-6% slope	Fair	Good	Good	Good	Poor	Very Poor	Very Poor	Good	Good	Very Foor	
6-12% slove	Fair	Good	Good	Good	Poor	Very Poor	very Poor	Good	Good	Very Poor	
12-18% slop		Fair	Good	Good	Poor	Very Poor	very Poor	Fair	Good	Very Poor	
18-25% slop		Fair	Good	Good	Poor	Very Poor	Very Poor	Fair	Good	Very Poor	

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity		Woodland Mena	Sultable	Species	Other		
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
2-1 2% slog			63 (62-63)		Slight	Slight	lioderate	Mite Spri Red Pine Maple Basswood Aspen	3	ſ
12%+ Slop				Moderate	loderate	Slight	Moderate		l	
					RANGE					

Runge Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)									
	•									
	Runge Site Name									

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor	
ı	Spruce Spp., Pine Spp., Red Gedar, White Gedar Bur Gak, Green Ash, Hackberry, Poplar Siterian Grab Apple, Amar Maple Honeysuckle, Lilac	25, 27, 19, 19 25, 30, 30, 60 18, 20 10, 12	Good Good Good	

OTHER

Good productivity. Suitable for all crops common to the area. Corn and soybeans do not nature in the northern range of these soils because of climate. Workability is poor to fair because of the low organic matter content. Water erosion is a hazard on the longer, more sloping areas. Grops respond well to fertilization and paragement. Precipitation ranges from 18 to 24 inches with 3/4 of it falling during the growing season.

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

sho selake

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SOIL SURVEY INTERPRETATIONS 1/

STATE Minnesota MLRA 89-90

Revised Draft GDN-RRL

These are medium to slightly acid deep very poorly drained organic soils. They consist of moderately decomposed dark reddish brown woody materials throughout most of the layers from 12 to 51 inches. Normally these soils occupy bogs ranging from 10 to more than 600 acres in size. White cedar, tamarack, black spruce and in places black ash are the major trees growing on these soils. Some areas are nearly treeless and have chiefly lowland brush. These soils have a high inherent fertility.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil Horizons (inches)	Classification		Course Percentage less than 3 inches Fract. Passing Sieve No					LL	PI	Permen- bility	Avall. Water	Soil Reac-	Shrink Swell	
	USDA Texture	Unifled	AASHO	>3 in. 7•	4	10	40	200			in./hr.	Capac. in./in.	tion pH	Poten- tin1
0-60	Mucky Peat (hemic)	FT	E-A	0		•	le for g seiv	e analj	 rsis		10-20	.4858	5.1-6.	2 , 5 High
<i>;.</i>														
Flooding	None								Hydrolo	gic group	p: D			

Depth to water table: , Near surface during most of growing season

Depth to bedrock: Greater than 5 feet

Corrosivity - uncoated steel: High

Corrosivity - concrete: Moderate

	SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE
Roadfill	Poor: organic soils; low hearing capacity; high water table
Sand	Not suitable
Gravel	Not suitable
Topsoil	Poor when used alone. Fair to good when mixed with mineral soil; high water table.

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields		
4 .	Severe:	high water table; very poorly drained
Sewage Lagoons	Severe:	high water table; more than 30 percent organic matter.
Shallow Excavations		
	Severe:	high water table; very poorly drained; low resistance to sloughing
Dwellings; With Basements	Severe:	high water table; very poorly drained
Sanitary Landfill		
(Trench type)	Severe:	very poorly drained; high water table
Local Roads and Streets	Severe:	high water table; high susceptibility to frost action; high shrink-swell potential port than 30 percent organic matter
Potential Frost Action	High	

Pond Reservoir Aress High water table
Embankments, Dikes, and Levecs High water table; low shear strength
Orelinage of Cropland and Pasture High water table: very poorly drained: organic coil:
regation Pigh water table; wery poorly drained
Not applicable; nearly level bog Not applicable; nearly level bog

Camp Areas	Severe: high water table; poor trafficability
Picnic Areas	
	Severe: high water table; poor trafficability
Playgrounds	Severe: high water table; poor trafficability
Paths and Trails	
i	Severe: high water table; poor trafficability

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS--(High level management)

Phases of Series	Capubility	Soll K	1.05	Bu. Oats	Tons-Cor Silage	n AUA Pauture	Tons Logume-grass	MUA	
All	IVW	_	_	60	12	Bluegras 5.0	4.5	6.5	
The second of th								•	
							•		

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield i	in AUMs for Dryland (Irrigated)	Forage Product	lon
4.					•
		•	•		

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops			Wild Hardwood Herbaceous Trees and Plants Shrubs		Wetland Shailow Food and Water Cover Devel.		Openiand Wildlife	Woodland Wildlife	Wetland Wildlife
					•	·				
VII	Very Poor	Poor	Good	Fair	Fair	Good .	Good	Poor	Poor	Cood

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity	1	Woodland Mana	Sultable	Other			
Series	nation	Important Trees-	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
All	5w	Black Spruce Tamarack White Cedar	30–40	Slight	Severe	Severe	Severe	Black Spruce Tamarack White Cedar	Black Spruce Tamarack White Cedar	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (1b./ac.)							
	<u>.</u>								
		·							

WINDBREAK

Group	Adopted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
			ĺ

CROPLAND

Potential yields are noderate for the commonly cultivated crops. The choice of crops is limited by climate, and a high water table. Crops that can withstand light frost and have a short growing season are best suited. These include carrots, cabbage, cauliflower, celery, potatoes, cultured sod, radishes, onions and the like. Soil blowing and fire are special hazards.

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

U. S. DEPARTMENT OF AGRICULTURE **SOIL CONSERVATION SERVICE**

SERIES Hinnesota STATE _ MLRA 57, 88-1, 88-2

SOIL SURVEY INTERPRETATIONS 1/

Initial Review Draft SCS - 3-73 This series consists of nearly level, poorly drained soils, formed in calcareous till. The native vegetation is mixed coniferous and deciduous forests. In a representative profile the surface layer is black or grayish brown sundy luam or loam about 12 inches thick. The subsoil horizon is grayish brown loam to clay loam about 24 inches thick. The underlying material is grayish brown loam. Permeability is moderate to moderately rapid. Moderate available water capacity. Inherent fertility is moderate. The reaction is neutral.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Ciass	Classification Coarse Percentage less than 3 inches		LL	Pi	Permea- bility	Avall. Water	Soil Reac-	Shrink Swell Poten-					
Horizons (inches)	USDA Texture	Unifled	AASHO	>3 in.	4	.10	40	200			in./hr.	Capac. in./in.	·))	
0-12	Sandy lo fine san loam, lo	dy ML	A-4 A-6		100	100	60-95	35-75	10-40	0-15	.6- 6.0	.13- .22	6.6- 7.3	Low
12-36	clay loa loam, sa clay loa	ndy ML	A-7 A-6		100	100	80-100	35-8 0	10-50	0-25		.15- .19	6.6- 7.3	Mod.
36-60	loam, sandy lo	am ML SM	A-6 A-4		100	100	60-95	30 -7 5	10-40	0-15	-	.11- .19	7.9- 8.4	Mod.

Occasionally ponded Flooding

Hydrologic group:

Depth to water table: 1-5 feet seasonal high

Depth to bedrock: Over 10 feet

Corrosivity - uncoated steel: High

Corrosivity - concrete: Low

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Poor: Poorly drained					
Sand	Unsuitable					
Gravel	Unsuitable					
Topsoil	Poor: Poorly drained, thin surface layer					

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields Severe: Seasonal water table 1 to 3 feet for extended periods, occasional ponding

Sewave Lagoons

Moderate: Seasonal water table 1 to 5 feet for extended periods, occasional ponding, moderate to

Shallow Excavations Severe: Poorly drained, seasonal water table 1 to 3 feet for extended periods, occasional ponding.

With Basements Severe: Poorly drained, seasonal water table 1 to 3 feet for extended periods, occasional ponding. Without Basements Severe: Poorly drained, seasonal water table 1 to 3 feet for extended periods, occasional ponding.

Sanitary Landfill

Severe: Poorly drained, occasional ponding, moderate to moderately rapid permeability.

Local Roads and Streets
Severe: Poorly drained, occasional ponding.

Potential Frost Action High

Pond Reservoir Areas Seasonal water table 1 to 3 feet for extended periods. Permeability moderate to moderatel rapid.
Embankments, Dikes, and Levees Hedium to low shear strength, medium compressibility, low compacted permeability, low to medium susceptibility to mining.
Drainage of Cropland and Pasture Poorly drained, seasonal water table 1 to 3 feet for extended periods, occasional ponding or flooding, moderate to moderately rapid permeability, fair to good compaction characteristics.
inigation Moderate available water capacity, drainage needed, moderate to moderately rapid permeability.
Terraces and Diversions Not applicable. nearly level.
Grassed Waterways Erosive surface, poorly drained, few stones

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	Severe - Poorly drained
Picnic Areas	Severe - Poorly drained
Pisygrounds	Severe - Poorly drained
Paths and Trails	Severe - Poorly drained

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phones of Series	Capability	Soll K	1.0 < 1 T	Corn Silage	0ats	Clover- Grass	Alfalfa - Grass
A11	llw			Tons/A 13	Bu/A 75	Tons/A	Tons/A 4.5

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
A11	•	Reed Canarygrass 4 T/A, 6.0 AUM/A Garrison Creeping Foxtail 3.5 T/A, 5.2 AUM/A Big Bluestem, Switchgrass 3.5 T/A, 3.5 AUM/A Red Glover 3.0 T/A, 4.5 AUM/A

WILDLIFE HABITAT SUITABILITY

	1		Potential for-							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildiffe	Welland Wildlife
All	Fair	Fair	Cood	Good	Poor	Fair	Fair	Good	Good	Fair

WOODLAND SUITABILITY

Phases of	Phases of Ordi-		roductivity		Woodland Mana	Suitable	Other			
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant - Competition	To Favor	To Plant	
A11	2u	Aspen White Pine White Spru		Slight	Moderate	Moderate	Severe			

RANGE

Phuses of Series	Range Site Name		Climax Vegetation and F	roductivity of Air-Dry	Herbage (lb./ac.	.)
			٠.			
		· •				
			•			
						•

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	kelativa Vigor	
1				
	• •		}	

OTHER

Suitable for most crops common to the area, but drainage is needed for maximum production. Water table seasonally 1 to 3 feet for extended periods. Soybeans and corn for prain are not recommended in the northern range of these soils. Pertilization and good management control erosion and increase production. The mean annual precipitation ranges from 19 to 24 inches with three-fourths of it failing during the growing season.

PRELIMINARY DRAFT REPORTS SUBJECT TO REVIEW

Initial Review Draft - WJA-1-72

MN-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SERIES	
STATE _	Hinnesota
MLRA _	88

This series consists of nearly level, poorly drained soils formed in lake laid sands. These soils are in 3 to 15 acre irregularly shaped slightly depressional areas. Native vegetation was forest. In a representative profile, the surface layer is black loamy fine sand about 6 inches thick. The underlying material is light bronwnish gray fine sand. The permeability is rapid. The available water capacity and inherent fertility are low. The organic matter content is medium. The surface reaction is neutral.

SOIL SURVEY INTERPRETATIONS 1/

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Class	Classification		Coarse Fract.					LL	LL PI	Permes- bility	Avail. Water	1	Shrink Swell
Horizons (inches)	USDA Texture	Unified	AASHO	>3 in.	4	10	40	200			in./hr.	Capac. in./in.	tion pH	Poten- tial
0-6	lonmy firsand, firsand, loss	e SM,	A-2	-	95-100	85~ 95	80-90	5-35	NP	ΝP	6.0-	.08-	6.1- 7.3	Low
6-60	fine sand, loamy fir	SM,	A-3, A-2	-	95-100	85- 95	80-90	1-12	NP	NP	1	0.06- 0.10	6.1- 7.8	Low
	sand	٠			, -								·	·
Flooding	Occasio	nally p	onded.	I	L		1	·	Hydrolo	gle grou	ip: D (B)	;		

Flooding Occasionally ponded.

Depth to water table: 0, to 4 feet

Depth to bedrock: >60 inch

Corrosivity - uncoated steel: Low

Corrosivity - concrete: Low

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Poor: High seasonal water table, fair stability and workability. Roadfill

Sand Good: High seasonal water table during parts of the year makes excavation difficult. Gravel Unsuitable.

Topsoil Poor: Loamy sand texture, low to medium organic matter content, low fertility

DECREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields	Severe: Poorly drained, high seasonal water table, sandy texture.
Sewage Lagoons	Severe: Rapid permeability, poor reservoir site material, high seasonal water table.
Shallow Excavations	Severe: Rapid permeability, low to medium resistance to piping, high seasonal water table, fair stability.
Dweilings; With Basements Without Basements	Severe: Poorly drained, high seasonal water table. Severe if not drained, poorly drained, high seasonal water table.
Sanitery Landfill	Severe: Poorly drained, high water table, rapid permeability, sandy texture.
Local Roads and Streets	Severe: Poorly drained.
Potential Frost Action	Moderate.

Pond Reservoir Areas	Rapid permeability; low to medium resistance to piping; low to moderate organic matter/
Embankments, Dikea, and	Levees Hedium to high compacted permeability; low compressibility; low shrink-swell.
Drainage of Cropland and	Pasture High water table; poorly drained; rapid permeability.
Inigation Low availat	ble water capacity, rapid intake race, high water table, rapid permeability, poorly draine
Terraces and Diversions	Not applicable.
Grassed Waterways	Poorly drained, high erodibility, level, poor worksbility.

MN-SULLS-3 11-71 (File Code SULLS-12)

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	
	Severe if not drained; poorly drained, occasionally ponded, loamy sand surface.
Picnic Areas	Severe if not drained; poorly drained, occasionally ponded, loamy sand surface.
Playgrounds	Severe if not drained; poorly drained, occasionally ponded, loamy sand surface.
Paths and Trails	Severe if not drained; poorly drained, occasionally ponded, loamy sand surface.

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Princes of Series	Capability	Soll Lo	T Bu.	AlfGras Hay Tons	s Perm. Ko Past. (A	
0-2% slope	IVw		45	2.5	200	

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production								
	1 1									

WILDLIFE HABITAT SUITABILITY

			Potential for							
Physes of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Welland Wildlife
All	Poor	Fair	Fair	Poor	Poor	Good	Good	Fair	Poor	Good

WOODLAND SUITABILITY

Phases of	Ordi-	Potential F	roductivity_		Woodland Mana	Suitable	Other			
Series of	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
A11	20	Aspen	74 ⁺ 4.6	Slight	Moderate	Moderate	Moderate	Aspen Jack Pine	Red Pine White Pir	
									White Spr	uce

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)							
		. '							
		·							

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor

OTHER

CROPLAND - Below average productivity; suitable for most crops common to the area, but requires drainage. The rooting rone is restricted by the depth of the vater table. It gets up to 1 to 3 feet. Moderate response to fertilization and management. Climate restricts choice of crops. Precipitation averages 22 to 25 inches with 3/4 of it coming during the growing season. Below average production for grasses unless adequately fertilized. May be too ver for some legument.

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

MRTSC Trial Form File Cude Solls-12 Rev. 9-10-71

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL SURVEY INTERPRETATIONS 1/

SERIES	Minnesota
STATE	Milliesota
MLRA .	- 29

This series consists of excessively drained, usudy, nearly level to sloping soils, that formed in glacial outwash. They are rapidly permeable with low available water capacity.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Classification		Coarse Percentage less than 3 inches Fract. Passing Sieve No		LL	LL PI		Avuil. Water	Soil Resc-	Shrink Swell				
Horizons (inches)	USDA Texture	Unified	AASHO	>3 in.	4	10	40	200			bility in./hr.	Capac, in./in.	tion pH	Poten- tial
0-60	fs	SP	A-3	-		95- 100	55- 65	1- 5	-	NР	6.0-20		5.6- 6.5	Low
Flooding	None	1							Hydrolo	gic grou	p: A			
Depth to w	ater table:	: More t	than 6 fe	eet.					Depth to	bedroc	k: More	than 6 f	eet.	•
Corrosivit	y = uncoate	d steel:	Low		•				Corrosiv	ilty - co	ncrete: L	O¥7 .		

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Readfill	Good
Sand	Good
Gravel	Unsuitable - little or no gravel.
Topsoil	Poor - drouthy; subject to blowing.
	DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields Slight for 0 to 6% slopes; moderate for steeper soils, danger of ground water contamination. Sewage Lagoons Severe - rapid permeability. Shallow Excavations Severe - caves easily. Dwellings: With Basements Slight for 0 to 6% slopes; moderate for steeper soils. Without Basements Slight for 0 to 6% slopes; moderate for steeper soils. Sanitary Landfill Severe - rapid permeability.

Local Roads and Streets Slight for 0 to 6% slopes; moderate for steeper soils. Potential Front Action

Pond Reservoir Areas Rapid permeability.
Embankments, Dikes, and Levees High shear strength; low shrink-swell potential.
Drainage of Cropland and Pasture Not needed.
Irrigation Low available water capacity; rapid permeability.
Terraces and Diversions Subject to blowing; rapid permembility.
Grassed Waterways Subject to blowing; rapid permeability.
Coll Course Falrways - Poor trafficability.

Moderate - poor trafficability; subject to blowing.
Moderate - poor trafficability; subject to blowing.
Moderate - poor trafficability; subject to blowing.
Moderate - poor traifficability; difficult to maintain areas.
1

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS--(High level management)

Phases of . Series	Cupability	Soll K	1.055	Corn grain	Corn silage	Oats	
0-6% 6-12%	EelV EelV	.17		(bu.) 45 -	(T.) 9 -	(bu.) 40	
	·						

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
6-12X	Cs1	Alfalfa-brome hay - 2.0 T/A; bluegrass pasture - 80 AUD. Alfalfa-brome hay - 1.5 T/A; bluegrass pasture - 80 AUD.

WILDLIFE HABITAT SUITABILITY

										
	l		Pote		Potential for					
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
0-12%	Poor	Poor	Good	Poor	Poor	V. poor	V. poor	Poor	Poor	V. poor

WOODLAND SUITABILITY

Phases of	Ordi-	Potentlal P	Potential Productivity		Woodland Man	Sultable	Other			
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
0-127 1/ 0-127 <u>2</u> /		red oak red pine white pine paper birch	67	Slight Slight	Slight Slight	Severe Severe	i .	red oak red pine wh. pine	red pine wh. pine	

RANGE

Phases of Series	Range Site Name	Cilmax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
	1	•
·		
		·
		•

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
·			

OTHER

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

MN-501	LS-3		
11-71			
(File	Code	SOILS-	12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SERIES		
STATE	Hinne sota	
MLRA	88, 90	

SOIL SURVEY INTERPRETATIONS 1/

This series consists of deep excessively drained soils formed in glacial outwash under coniferous forest on outwash plains and valley trains. Typically they have black and very dark grayish brown loamy coarse sand I inches thick; dark brown, dark yellowish brown and brown coarse sand subsoils 20 inches thick; and pale brown coarse sand underlying material. Slopes range from 0 to 12 percent. Most areas are forested, a few cropped or pastured.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Classification			Coarse Percentage less than 3 inches Fract. Passing Sieve No				LL	PI	Permea- bility	Avail. Water	Soil Reac-		
Horizons (inches)	USD A Texture	Unitied	AASHO	>3 in. %	4	10	40	200		,	in./nr.	Capac. in./in.	tion pH	Poten- tial
0-4	icos	234	A-2	-	95-100	85-100	60-80	10-30	-	-	6.0-20	0.10- 0.12	4.5-6.0	Low
1,-60	cos, s	SP	A-3	-	95 -10 0	85-100	50-75	0-10	-	-	5.9-20	0.05- 0.07	4.5-6.0	Low
	.			,_	-									
Flooding	None								Hydrolo					

0-8%: slight

Potential Frost Action

Depth to water table: greater than 6 feet

8+%: moderate - slope

Low

Corrosivity - uncoated steel: Low

Depth to bedrock: greater than 60 inches

Corrosivity - concrete: Moderate

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Good
Sund	Good .
Gravel	Unsuited
Topso!!	Poor - too sandy

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields Hazard of pollution 8+%: moderate - slope 0-8%: slight ewage Lagoons Hazard of pollution Severe - seepage hallow Excavations Severe - cuthanks cave wellings: With Basements 0-8%: slight 8+%: moderate - slope Without Basements Sanitary Landfill Hazard of pollution Severe - seepage Local Roads and Streets

Pond Reservoir Areas Seepage	
Embankments, Dikes, and Levees Scepage	
Drainage of Cropland and Pasture Not needed	
Irrigation Droughty, seepaga	•
Terraces and Diversions Erodes easily, too sandy	
Grassed Waterways Droughty	

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	Moderate - too sandy		
Picnic Arras	Moderate - too sandy		
Playgrounds	0-6%: noderate - too sandy	6+%: severe - slope	
Parlis and Trail	Moderate - too sandy		

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	5011 K	Loss	Corn Silage	Oats	Grass-Legums Hay	Zentucky Eluagrass	
				(tons)	(Bu)	(tons)	(AUA)	
0-12%	lis	.20	5	8	FО	2.5	1.2	
	1							
						,		

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production									
				·					٠		
	,										
	'										

WILDLIFE HABITAT SUITABILITY

	I		Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
WI	Poor	Poor	Fair	Poor	Poor	V. Poor	V. Poor	Poor	Poor	V. Poor
•										

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity		Woodland Mana	Suitable	Other			
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
WI	3 s	Red Pine White Pine Jack Pine White Spruce	56 54 60 59						Red Pins White Spruce	

RANGE

Phases of Series	Range Site Name	Climan Vegetation and Productivity of Air-Dry Herbage (lb./ac.)							
		•							
		•							
	• 1								

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
Group 6	Eastern Ped Codar Red Pine Jack Pine Ponderosa Pine	15 20 21 20	

OTHER

Or XX

MN-SO(LS-3 11-71 (File Code SO(LS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

STATE Minnosota

MLRA

SOIL SURVEY INTERPRETATIONS 1/

This series consists of deep excessively drained soils formed in sandy outwash under coniferous and deciduous forest on smooth and pitted plains. Typically they have organic layers 2 inches thick; very dark gray and dark grayish brown loany and subsurface layers 2 to 4 inches thick; dark brown loany sand subsurface layers 10 inches thick; layered brown and yellowish brown coarse sand and dark brown loany coarse sand subsoil 27 inches thick; and pale brown or brown sand or coarse sand underlying material. Slopes are \$\phi\$ to 35 percent. The main use is for forestry.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Classification			Coarse Fract.			s than . Sieve No	inches	LL	PI	Permes-	Avall. Water	Soll Reac-	Shrink Swell
Horizons (inches)	USDA Texture	Unilied	AASHO	>3 In.	4	10	40	200		'.	in./hr.	Cupac. in./in.	tion pH ·	Poten- tlai
0-13	LS	SM.	A-1,A-2	0-2	95-100	90-100	50-75	15-30		NP	6.0-20	.1012	5.1- 6.0	V. Low
13-40	cos	SP,SM	A-1	0-5	80-100	75–100	40-70	0-10		NP	> 20	.0305		V. Low
28-30	cos	SM,SP	A-1	0-5	80-100	75–100	40-70	10-20		NP	6.0-20	.0507	5.6-	V. Low
40-60	s,	SP,SM	A-l	0-5	80–100	75-100	40-70	0-10		NP	>20	.0204	6.5 5.6- 7.8	V. Low

Flooding Hone

Hydrologic group: A

Depth to water table: > 6 feet

Depth to bedrock: > 60 inches

Corrosivity - uncoated steel: Low

Corrosivity - concrete: Med., Med., low, low

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE Roadfill Cood-area reclaim Sand Good Gravel Pron-excisive fines Topsoil Pron-ton sandy

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields Potential hazard of pollution to water supplies, all slope phases.

0-84: slight; 8-154: moderate-slope; 15+3; severe-slope.

Sewage Lagoons

All: severe-seepage. Potential hexard of pollution to water supplies, all slope phases

Shallow Excavations

All: severe-cutbanks cave

Dwellings;

With Basements 0-5%: slight; 8-15%: moderate-slope; 154%: severe-slope. Without Basements 0-5%: slight; 8-15%: moderate-slope; 154%: severe-slope

antiary Landill Potential hazrd of pollution to water supplies, all slope phases.

(Area) All: severe-seepage (Trench) All: severe-too sandy, seepage

Local Roads and Streets

0-64: slight; 8-154: moderate-slope; 1545: savere-slope

Pond Reservoir Areas	Seepage
Embankments, Dikes, and Leveet	Secress, piping, crodes casily
Drainage of Cropland and Pasture	
Irrigation	Drouthy, fast intake
Terraces and Diversions	Too gardy, erodes easily, piping
Grassed Waterways	Drouthy, crodes easily, slope
Excavated P nds Aquifor Fr	d: po water
PRFLIMINARY	PRAFT REPORT, SUBJECT TO REVIEW

ريجرور

MN-SOILS-3 11-71 (File Code SOILS-12)

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	0-155; moderate-too mandy: 1565; mayera-maloga.
Picnic Areas	0-155; moderate-too sandy; 15-5; nevere-slope.
Pleygrounds	0-64; moderatetoo candy, 64%; severa-slare,
Paths and Trails	0-256; moderate-too sandy; 2546; severy-slope.

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Soll K	Loss	CORY .	OATS	GRASS- LEGONG HAY	DROMEGRACIS ALMANEA	CLOYER CLOYER	KENTUCKY BLUDGRASS	
•				(Tons)	(Bu)	(Tons)	(MIJA)	(MÜA)	(vinv)	
0-3% 3-12% 12-39%	145 145 75			8 7.5 —	45 40	2.2	4.0 4.0 3.0	3.1 3.1 2.0	2.0 2.0 1.5	_
•						·		•		

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
	*	

WILDLIFE HABITAT SUITABILITY

			Pote	ntial for				Potential for			
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife	
0-15% 15-35%	Poor V.Poor	Poor V.Poor	Fair Fair	Poor Poor	Poor Poor	V.Poor V.Poor	V.Poor V.Poor	Poor Poor	Poor Poor	V.Poor V.Poor	

WOODLAND SUITABILITY

Phases of	Ordi-	Potential Pr	roductivity		Woodland Mana	zement Haza	rds	Suitable	Species	Other
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
0-12%	3 S	PedPine E.Wn.Pine Jack Pine	56	Slight	Slight	Severe	Slight		Red Pine Wh.Spruce Jack Pine	
12-3%	145	Wh.Spruce Red Pine E.Wh.Pine Jack Pine	65980 557	Moderate	Moderate	Severe	Slight		Red Pine Jack Pine	
		Wh.Spruce	54		RANGE					

Phases of Series	Range Site Name		Climax Vegetation	and Productivi	ctivity of Air - Dry Herbage (lb./ac.)				
		Į.							
		-							
			•		•				
				•			•		

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction - at 20 Years Age	Relative Vigor
	E.RedCedar, N.Wn.Cedar, Wh.Spruce, RedPine, E.Wn.Pine, Russian-Olive, SiberianCrabapple, TatarianSoneysuckle, Siberian Pea Shrub E.RedCedar, Wh.Spruce, RedPine, Siberian Pea Shrub	15,11,18,20,20, 15,12,10, 10 18,22,25,12	
12-3% South facing	E.RedCedar,Wh.Spruce, Red Pine, Siberian Pea Shrub	12,0,15,10	

OTHER

B 0 to 12 percent slopes: windbreak suitability group 6. 12 to 35 percent slopes: windbreak suitability group 7.

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

Page 117

MN-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL SURVEY INTERPRETATIONS 1/ Series

STATE Partieso Sa

MLRA F3-32 Review Draft GDN, FML 3-72

This level type consists of nearly level, wet soils formed in alluvial material. These soils are in lowlands adjacent to rivers and creeks. Native vegetation is chiefly alder thickets and lowland hardwoods. These soils are componly variable in color and texture. These soils are subject to frequent flooding that greatly restricts their use.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil	Class	lfication		Course Fract.			ss than . Sieve No	3 Inches	LL	PI	Permen-	Avall. Water	Soil Resc-	Shilnik Swell
Horizons (inches)	USDA Texture	Unifled	AASHO	>3 in.	4	10	40	200			In./hr.	Capac. in./in.	tion pH	Poten- tial
	Material	is too	variabl	e to ra	Ŀ e									
·		•												
,														

Flooding Frequent

Hydrologic group: D

Depth to water table: Variable depending on stream flow and water level of adjacent streams

Depth to bedrock: More than 5 feet

Corrosivity - uncoated steel: Low to high

Corrosivity - concrete: Low to high

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Poor to Fair: variable soil texture: frequently flooded; high seasonal water table
Sand	Poor: sands occur in bands with finer textured material
Gravel	Not suitable
Topsoll	Poor: high spagenal water table

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Field	s		
·	Severe:	frequent flooding;	hazard of polluting nearby streams
Sewage Lagoons			
	Severe:	frequent flooding;	high seasonal water table
Shallow Excavations			
	Severe:	frequent flooding;	poor stability of side slopes
Dwellings: With Basements			:
#CHOOGSICALCOCK/#XYS#	Severe:	frequent flooding;	high water table
Sanitary Land(III			
(trench type)	Severe:	frequent flooding;	high seasonal water table
Local Roads and Streets			
·	Severe:	frequent flooding;	variable soil material; high frost action
Potential Frost Action	High		

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	Not suitable; frequent flooding; high water table
Embankments, Dikes, and	Levers variable soil material; generally low compacted permeability; low resistance to piping
Drainage of Cropland and	Variable texture; low stability; frequent flooding
irrigation	High water table
Terraces and Diversions	Nearly level
Grassed Waterways	Frequent flooding; difficult to establish seedbed
	SW SDAST BEROOT SUBJECT TO BEVIEW

PRELIMINARY DRAFT REPORT. SUBJECT TO REVIEW

1/ Use in conjunction with Guide to Soil Survey Interpretation Sheets.

Page 118 11-71 (File Code SOILS-12)

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	Sovere: subject to flooding; high seasonal water table
Picnic Areas	Severa: subject to flooding; high seasonal water table
Playgrounds	Severe: subject to flooding; high seasonal water table
Paths and Trails	Severe: subject to flooding; high seasonal water table

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Sell K	Loss		Native Pesture		
WIJ	VIw			 	AU4 2.4		
						·	

PASTURELAND AND HAYLAND

. Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production	
	,		

WILDLIFE HABITAT SUITABILITY

	· · · · · · · · · · · · · · · · · · ·													
			Pote	ntlal for					Potential for					
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Weter Devel	Openland Wildlife	Woodland Wildlife	Weiland Wildtife				
All	Poor	Poor	Fair	Poor	Poor	Good	Fair	Poor	Poor	Fair				

WOODLAND SUITABILITY

Phases of	Ordi-	Potential Productivity			Woodland Mana	gement Haza	rds	Sultable	Other	
Series	nation	Important Trees	Site Index	Erosion Hezerd	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
vij	3w	Black Spruce Black Ash	40-50 40-50	Slight	Severe	Severe	Severe	Elack Spruce Elack Ash Tamarack	Elack Spruce	

RANGE

Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)						
	• •						
	•						
		•					
		·					
	Range Site Nume	Range Site Name Climax Vegetation and Po					

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor	
	•		1	
1	•		l	

OTHER

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW
Subject to change on completion of coordination between MIRA'S

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SERIES . STATE Minnesota 88-90

SOIL SURVEY INTERPRETATIONS 1/

Revised Draft, GDN-RRL 12-72

This series is extremely to very strongly acid, moderately deep very poorly drained organic soils. They consist of highly decompsed black or dark reddish brown herbaceous materials throughout most of the organic layers, and are underlain at depths of 16 to 50 inches by acid loany material. Normally these soils occupy depressional bogs ranging from 10 to 80 acres in size. Black spruce along with a few tamarack, and in places, black ash are the major trees growing on these soils. Some areas are treeless and have chiefly lowland brush.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll			Classification Coarse Fract.			Percentage less than 3 inches Passing Sieve No			LL	PI	Permes- blity	Avail. Water	Soll Reac-	Shrink Swell
Horizons (inches)	USDA Texture	Unified	AASHO	>3 in. %	4	10	40	200			in./hr.	Capac. in./in.	tion pH	Poten- tial
0-36	Muck (Sapric	PT)		0		uitabl eering		analys	 ei		6.0-10.0	.43	4.0- 5.0	High2/
36-60	Loam	CL, ML, or SM	A-4 or A-2	0	75-100	65–100	55-95	25-75	15-24	0–6	.06-0.6	.1118	7.3	Low to Moderate
÷			· ·											

Flooding Occasional flooding along streams

Hydrologic group: D

Depth to water table: Near surface during most of growing season

Depth to bedrock: Greater than 5 feet

Corrosivity - uncoated steel: High

Corrosivity - concrete: High

	SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE
Roadfill	Poor: more than 30 reprent organic matter overburden, 16-50 inches thick; high water table.
Sand	Not suitable
Gravel	Not suitable
- · · ·	

Topsoil Poor when used alone; fair to good when nixed with mineral soil; needs line DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields			
. Sev	ere:	high water	table; very poorly drained
Sewage Lagoons			
Sev	ere:	high water	table; more than 30 percent organic matter
Shallow Excavations			
Sev	ere:	high water	table; very poorly drained; low resistance to sloughing
Dwellings:			
With Basements			
3,000000000000000000000000000000000000			
Sev	ere:	high water	table; very poorly drained; high potential frost action
Sanitary Landfill			
(Trench) Sev	ere:	high water	table; very poorly drained
Local Roads and Streets			high guarantihility to food outland high shall and la materials.
_			high susceptibility to frost action; high shrink-swell potential;
	929:	high water	table; more than 30 percent organic matter
Potential Frost Action	h		

L.	High water table
Embankmenta, Dike	High water table; low shear strength; low compacted permeability
Drainage of Cropler	nd and Pasture
	Fish water table; occasional flooding
Irrigation	High water table; very poorly drained
Terraces and Diver	Not applicable, decressional
Grassed Waterways	Not applicable, depressional

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	Severe: high water table; ppor trafficability	
Picnic Areas	Severe: high water table; poor trafficability	
Pinygrounds	Sovere: hish water table; poor trafficability	
Paths and Trails	Severe: high water table; poor trafficability	

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Soll L	3 3 3 T	Oats	room Silage	Pasture	Iелше-кшазв	ATTM	
Series	i		十	(BU)	(T/A)	ELECTROULE MJA	Tons	Addi	
All	IVW			60	12	5.0	4.5	6.5	•
					ļ .			· · ·	•
	ĺ							:	
									•

PASTURELAND AND HAYLAND

Phases of Series	.Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production

WILDLIFE HABITAT SUITABILITY

	Potential for								Potential for			
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbeceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wellund Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife		
WII	V. Poor	Poor	Poor	Poor	Poor	Good	Good	V.Poor	V.Poor	Good.		
	•					•			-			

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity_	1	Woodland Mana	Suitable	Other			
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
VII	5₩	Black Spruce Tamarack	15-40	Slight	Severe	Severe	Severe	Black Spruce Tamarack	Black Spruce Temarack	

RANGE

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor	
	•			
	·			

CROPLAID OTHER

Potential yields are moderate for the commonly cultivated crops. The choice is limited by climate, low fertility, and a high water table. Crops that can withstand light frost and have a short growing season are best suited. These include carrots, cabbage, cauliflower, celery, potatoes, cultured sod, radishes, onions and the like. Soil blowing and fire are special hizards.

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

58 ores

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SERIES
STATE Minneyola
MLRA 68 and 92
Revised Draft DDS 1-73

SOIL SURVEY INTERPRETATIONS 1/

This series consists of nearly level, poorly to somewhat poorly drained soils formed in silty lake laid sediment. These soils are slightly concave areas in glacial lake bottoms. Native vegetation was forest. In a representative profile, the surface layer is very dark gray, very fine sandy loam about 6 inches thick. The subsurface layer is light brownish gray loamy very fine sand about 9 inches thick. The subsoil is mottled clive gray friable loam about 7 inches thick. The underlying material is light clive gray silt loam. Permeability is moderate. The available water capacity is high to very high and the organic matter content is medium. The inherent fertility is nedium. These soils are stone free.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil Horizons (inches)	Classification			Coarse Fract.	Percentage less than 3 inches Passing Sieve No			LL	PI	Permes- bility	Avail. Water	Soil Reac-	Shrink Swell	
	USDA Texture	Unified	AASHO	>3 in.	4	10	40	200	2.5		in./hr.	Capac. in./in.	tion pH	Poten- tial
0-15	Very fir		A-lı	o	100	100	90- 100	35-80	20-30	1-10	2.0- 6.0	0.20- 0.22	6.1- 7.8	Low
15-22	Loam	ML or CL	A-4 or A-6	0	100	100	90- 100	75-90	20-40	5-15	0.6- 2.0	0.17- 0.19	6.1 7.8	Low to Moderate
22-60	Silt loam	ML	A-∏	0	100	100	%- 100	75-90	20-30	1-10	0.6- 2.0	0.20- 0.22	7.4- 6.4	Low

Flooding Slight

Hydrologic group: (

Depth to water table: 1 to 3 feet

Depth to bedrock: Over 10 feet

Corrosivity - uncoated steel: High

Corrosivity - concrete: Low

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Road(III	Poor: high front action; poorly to somewhat poorly drained; poor stability; shrink-seell
Sand	Not suitable
Gravel	Not suitable
Topsoll	Poor: thin surface: poorly to somewhat poorly drained

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields		
	Severe:	high seasonal water table; moderate permeability
Sewage Lagoons		
	Severe:	high seasonal water table
Shallow Excavations	Severe:	high seasonal water table; poor stability; good workability; poorly to somewhat poorly drained
Owellings: With Busements	Severe:	high seasonal water table; poorly to somewhat poorly drained; severe frost action
Without Basements	Severe:	high seasonal water table; poorly to somewhat poorly drained; severe frost
Sanitary Landfill	Severe:	seasonal water table at depths of 1 to 3 feet; fair trafficability when wet; silty texture; poorly to somewhat poorly drained
Local Roads and Streets	Severe:	high susceptibility to frost action; high seasonal water table; poorly to somewhat poorly drained; ML material
Potential Frost Action	High	

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	
	Perreability is moderate: organic matter content is redign
Embankments, Dikes, an	Perreability is rederate; organic matter content is redien determined by the design of the seasonally high devers Compacted permeability and compressioning are mealing water table seasonally high
	piring resistance is poor; shear strongth and shring-swell is low
Drainage of Cropland and	d Pasture nater table is beauchally high; permeability is moderate; there are no stones
irrigation	High to very high available water capacity; medium water intake rate; moderate perme-
irrigation	ability: peorly to comewhat meanly drained; nearly level
Terraces and Diversions	
	Not applicable; rearly level
Grassed Waterways	Poorly to somewhat poorly drained; roderately erodible; nearly level; good to fair
	workability
PRELIMINA	ARY DRAFT REPORT, SUBJECT TO REVIEW

1 / Use in conjunction with Guide to Soil Survey Interpretation Sheets.

Camp Areas	Severe: if not irained; high seasonal water table; occasionally ponded; fair traffic-
.1	ability: atom free; level.
Picnie Arens	Severe: if not drained; high seasonal water table; occasionally ponded; fair traffic-
1 !	hillers thank Cook laval
Playerounds	Severa: if not drained; high seasonal water table; occasionally ronded; fair traffic-
Paths and Trails	Severe: it not grained; high seasonal water table; occasionally ponded; fair traffic-
	shilty, give from from pro].

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS--(High level management)

Phases of Series	Capability	Soll K	Loss	Corn Silara	Cate	Bluegrass Pastura	Potatoea	Logura-Gras	
				T/A	Bu	AUM	Cwt.	Tons	MUA
0-2% slopes	IIIw	-	-	14	90	5.0	500	4.5	6.5
								•	
	1								•
•	1								

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
	·	

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openiand Wildlife	Woodland Wildlife	Wetland Wildlife
All	Poor	Fair	Fair	Fair	Poor	Good	Good	Fair	Fair	Good

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity	1	Woodland Mana	gement Hazar	rds	Sultable	Species	Other
	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
YII	34	Aspen Red Pine W. Pine W. Spruce	50-60 50-60 50-55 50-60	Slight	Moderate	Moderate		Aspen W. Spruce W. Pine	W. Spruce W. Pine	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
:		
	1	
	1	

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor	
	•			

CPOPLIND OTHER

Moderate natural productivity. Choice of crops is restricted by the poorly drained condition of the soil and by soil temperatures. Workability is good; the rooting zone is deep. This soil must be drained for maximum production. Fertility must also be increased. High to very high available potential to the capacity.

FOR INTERIM UCE

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL SURVEY INTERPRETATIONS 1/

	_		
SERIE	s		
STATE	E Min	cesota	
MLRA	_83_		
P.N.	1974		

This series consists of very poorly drained soil formed in silty sediments under lowland brush and Bwamp conifers in depressions on lacustrine plains. Typically they have black mucky silt loam surface layers about 7 inches thick; olive and pale olive silt loam subsoil layers about 25 inches thick; and gray and olive gray silt loam underlying material. Slopes are less than 2 percent. Most areas are in mative vegetation. Some areas are in pasture or hay.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Clas	sification		Coarse Fract.			age less than 3 inches		LL	PI	Permea- bility	Avail. Water	Soil Reac-	Shrink Swell
Horizons (inches)	USDA Texture	Unified	AASHO	>3 in.	4	10	40	200			in./hr.	Capac. in./in.	tion pH	Poten- tial
. 0-7	-K-SIL	ML	A-4	0	100	100	95-100	60-95	27-40	4-20	0.6-2.0	.25	5.1-6.9	Moderat
7- 60	SIL	u-cr wr	A-4 or A-6		100	100	\$5-100	80−90	10-35	4-20	0.2-0.6	.22	5.6-8.	, Moderat
Flooding	ocaggion	ally flo	oded: of	ter por	ded	1	1	لــــــا	Hydrolo	ic grou	p: D		L	

Flooding ocassionally flooded; often ponded

Depth to water table: 0-2 feet

Depth to bedrock: more than 60 inches

Corrosivity - uncoated stee! High

Corrosivity - concrete: Low

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Poor: high suggestibility to frost action; very poorly drained
Sand	Unsuited
Gravel	Unsuited
Topsol'	Poor: yery poorly drained

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields		
	Severe:	floods, percs slowly, wet
Sewage Lagoons	Severe:	wet, percs slowly, excess humus
Shallow Excavations	Severe:	wet, excess humus
Dwellings; With Basements Without Basements	Severe:	wet, low strength
Senitury Landfill	Trench: Area:	Severe - wet, percs slowly Severe - wet
Local Roads and Streets		Severe: wet, frost action
Potential Frost Action	High	

Pond Reservoir Areas	
Yavorable Yavorable	
Embankments, Dikes, and Levees	•
Low strength, compressible	
Orainage of Cropland and Pasture	
We t	
rilgetion	
Wet, floods	
ferraces and Diversions	
Not needed	
irabsed Haterwaya	
Not needed	
	i
	1
<u> </u>	

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	
	Severe: wet, flooda
Picnic Areas	Severe: wet, floods
Playgrounds	Severe: wet, floods
Paths and Trail	

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	50H	Loss	Oats	Alf-Grass Hay	Alf-Grass			Perm. Fasture Reed Camary Grass
Drained	Цw			Bu/A 70	Tons/A 30	AUM 5	Tons/A 2.5	MUA 4	. 8 . 8
•									
	1								

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production						
•	'							

WILDLIFE HABITAT SUITABILITY

<u> </u>	T		Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Wood!and Wildlife	Wetland Wildlife
All	V. Poor	Poor	V. Poor	V. Poor	V. Poor	Fair	Fair	V. Poor	V. Poor	Fair

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity		Woodland Mana	gement Haza	rds	Suitable	Suitable Species		
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant		
	Цw	Bleck Ash	45	Slight	Severe	Severe	Severe	Black Ash Black Spruce	Black Spruce		

RANGE

Phuses of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)					
		•					
		•					
		;					
		•					

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
			·

OTHER

Drainage required to permit matisfactory growth and production of muitable crop species. Small grains and forage crops are the most commonly grown crops.

Initial Review Draft 💇

MN-SULLS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL SURVEY INTERPRETATIONS 1/

SERIES	
STATE .	Minnesota
MI.RA	88

This series consists of nearly level to sloping, moderately well to well drained soils formed in lake laid silts. These are generally on broad flat areas but are also on gentle sloping or sloping areas along drainage ways. Native vegetation was forest. In a representative profile, the surface layer is dark grayish brown loam about 8 inches thick. The subsoil is dark yellowish brown, friable clay loam about 7 inches thick. The underlying material is yellowish brown silt loam. Permeability is moderate. The available water capacity is high to very high. The inherent fertility is moderate. The organic matter content is low. Stone free.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Permea- bility	1 -	1 -	LL PI	Avail. Water	Soil Reac-	Shrink Swell
in./ar.	, ,	Capac. .in./in.	tion PH	Poten- tial		
0.6- 2.0	1-10	0.20-	6.6- 7.3	Low		
	10-20	0.15- 0.19	6.1- 7.3	Mod.		
	1-10	0.20- 0.22	7.4- 8.4	Low		
	1-10	-				

Flooding Slight

Depth to water table: 3 to 6 feet

Comosivity - uncoated steel: Moderate

Hydrologic group: B

Depth to bedrock: Over 10 feet

Corrosivity - concrete:

Slight

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Fair: Low to moderate shear strength and medium compressibility; moderate frost action.
Sand	Unsuitable.
Gravel	Unsuitable.
Topsoil	Good to fair: Surface texture is a silt loam with a low amount of organic matter.

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields		oderate permeability; seasonal water table at 3 to 6 feet. evere on slopes over 12%.
Sewage Lagoons	Moderate:	Severe on slopes over 6%; permeability is moderate. There are no coarse fragments present and there is low organic matter content.
Shallow Excavations	Moderate:	Poor to fair stability; seasonal water table at 3 to 6 feet; medium resistance to piping.
Dwellings: With Basements Without Basements		Moderate frost action; severe on slopes over 15%. Seasonal water table at 3 to 6 feet. Moderately well to well drained. / Moderate frost action; severe on slopes over 15%.
Sanitary Lundfill	Moderate:	Moderately well to well drained, seasonal water table at 3 to 6 feet.
Local Roads and Streets	Moderate:	Moderate frost action; moderate on slopes over 12%. ML material.
Potential Frost Action	Moderate.	

Pond Reservoir Areas Permeability and resistance to piping are medium; organic matter content is low.
Embarkments, Dikes, and Levees. Compacted permeability and compressibility are medium; depth to the water table is 3 to 6 feet. Piping resistance is poor, poor stability, poor compaction distance is poor, poor stability, peor compaction distance is poor.
Drainage of Cropland and Pasture Not needed.
Inigation Available water capacity is high to very high. Intake rate rapid; moderate permeability and is moderately well to well drained; soils occupy nearly level to rolling areas.
Terraces and Diversions Not applicable because of the shortness of the slopes.
Grassed Waterways Moderately erodible; moderate slope limitation on 2 to 6% slopes; severe on slopes over 6%.

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	Slight - Good natural drainage and depth to water table is deep; permeability is moderate. Surface texture is a loam and no stones present; modeon 6-12% slopes; severe on slopes over 12%
Picnic Areas	Slight - Good na ural drainage and depth to water table is deep. Surface texture is a loam and to stones present; moderate on 6-12", slopes; severe on slopes over 12".
Playgrounds	Slight - Erosion increases with slope; natural drainage is moderately well to well and depth to water table is deep. Surface texture is loaming scones present. Mod. on 2-5", slopes: Severe
Paths and Trail	Slight - Surface texture is a loam and there are no stones present;

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS--(High level management)

Phases of Series	Capability	Soll	Loss	Corn Tons	Oats Eu.	Pasture AUD	Potatoes Bu.	Legume-Grass T/A
A 0-2% slope	IIc	. 37	4.3	14	90	180	500	4.5
BC 2-12% slope	Ille	. 37	4.3	12	90	180	400	4.5
DE 12-25% slope	VIe	. 37	4.3		·	120	•	
					`			

PASTURELAND AND HAYLAND

WILDLIFE HABITAT SUITABILITY

			Pote	ntial for	•		1		Potential for	
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
0-2%	Good	Good	Good	Good	Poor	Poor	Poor	Good	Good	Poor
2-6%	Fair	Good	Good	Good	Poor	Very poot	Poor	Good	Good	Very poc
6-12%	Fair	Good	Good	Good	Poor	Very poor	Very poo	r Good	Good	Very poo
						i i	ŀ			ĺ

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity		Woodland Man	agement Haza	erds	Suitable	Species	Other
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favet	To Plant	
All	lo	Aspen Red Pine White Pine	70-85 55-65 50-60	Slight Mod. on slopes over 12%	Slight Mod. on slopes over 12%	Slight	Severe	Red Pine White spru Aspen White Pine	spruce	

RANGE

hases of Series Rar	nge Site Name	Climax Vegetation and Productivity of Alr-Dry Herbage (lb./ac.)				
	i		•			
1		• •	•			
	1	•				
		•				

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor	

OTHER

CMOPLAND: Above average general productivity. Choice of crops is restricted by cool soil temperatures. Workability is good; the rooting zone is deep; depth to water table is deep; susceptibility to erosion is great on the steeper slopes. Very responsive to proper fertilization and management. Generally has an effective snow cover over winter. High to very high available noisture capacity. Average annual precipitation ranges from 20 to 27 inches with 3/4 of it during the growing season.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SERIES		
STATE .	Mirmesota	
MLRA -	90	

Revised Draft GDN, RRL 2-72

SOIL SURVEY INTERPRETATIONS 1/

This series consists of nearly level to steep, excessively drained soils formed in gravelly sand. These soils are on outwash plains and fans having knob and basin topography. Native vegetation is forest. The curface layer is black gravelly coarse, sandy loam about 1 inch thick. The subsoil is dark brown to dark reddish brown very friable, gravelly loamy coarse sand about 2 inches thick. The underlying material is reddish brown very gravelly coarse sand. Permeability is very rapid. The available water capacity is very low and organic matter content is low. The availability of phosphorous is low, and of potassium is low. Most areas are used for forest. The major limitation to use is the hazard of drought.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Classific	ification		Coarse Percentage less than 3 inches Fract. Passing Sieve No			LL	PI	Permea- bility	Avail. Water	Soil Reac-	Shrink Swell			
Horizons (inches)	USDA Texture	Unified	AASHO	>3 in. %	4	10	40	200	LL	,	in./hr.	Capac. in./in.	tion pH	Poten- tiul
	Gravelly sandy loam	34	A-2	0-10	80-90	65 -7 5	40-55	20-30	NP	NP	2.0-6	.0ó- .10	5.1- 6.5	Low
	Very gravelly coarse sand	ଫ , ଫ ନ	A-1	0-10	35-60	25-40	10-25	0-5	NP ·	NP		0.01 0.01	5.5- 6.5	Low

Flooding Rone

Hydrologic group: A

Depth to water table: Greater than 10 feet

Depth to bedrock: Greater than 10 feet

Corrosivity - uncoated steel: Low

Corrosivity - concrete: Moderate

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Good:	high shear strength; low compressibility; low shrink-swell
Sand	Good:	rixed with gravel and needs screening; deposits are generally thick
Grovel	Good:	stratified sand and gravel; some stones and boulders; water table is deep
Topsoil	Poor:	gravelly sandy loam material about 5 inches; low organic matter; low fertility

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields	Slight: very rapid permeability; moderate on o to 12 percent slopes;
	Severe: on slopes over 12 percent; hazard of pollution to underground water
Sewage Lagoons	
•	Severe: very rapid permeability; coarse textured material
Shallow Excavations	·
	Moderate: gravelly texture; 6-12 percent slopes; Severe: over 12 percent slopes
Dwellings: With Basements	Slight: 0-6 percent slopes; excessively drained; low shrink-swell Moderate: 6-12 percent slopes Severe: over 12 percent slopes
Sanitary Landfill	
(trench type)	Severe: very rapid permeability for easy contamination of ground water
Local Roads and Streets	Slight: 0-6 percent slopes; Moderate on 6-12 percent slopes; Severe: slopes over 12 percent; good stability; good natural drainage, low frost heave potential
Potential Frost Action	Iox

Pond Reservoir Areas
Very rapid permeability
Embankments, Dikes, and Levees High compacted permeability; low compressibility; good shear strength; high re-
cistance to piping: good stability
Drainage of Cropland and Pasture
Very rapid permeability; deep to water table; excessively drained
Irrigation
Very low available water holding capacity; rapid intake rate; excessively drained
Terraces and Diversions Uniavorable material at 5 to 12 inches; excessively drained; high content of coarse framents; difficult on slopes over 12 percent; low fertility
Grassed Waterways Unfavorable naterial at 5 to 12 inches; excessively drained; high content of coarse
fragments; difficult on slopes over 6 percent; low fertility.
Trap.e difficult on slopes over o percent; fow leftlift,.

Cump Areas	Moderate: 20 to 30 percent coarse fragments; 6 to 12 percent slopes; severe slopes over 1	1.2%
Picnic Areas	Moderate: 20 to 30 percent coarse fragments; 6 to 12 percent slopes; severe slopes over 1	12 %
Playgrounds	Severe: gravelly surface texture; slopes over 6 percent	
Paths and Trails	Moderate: 20 to 30 percent coarse fragments in surface layer; slopes of 12 to 25 percent	

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability		Loss T	Oats	Corn Silage	Pasture	Legume - Grass	Eluegrass Pasture
0-2% slopes 2-6% slopes 6-12% slopes 2-12% slopes 12-25% slopes	EVI SVI EVI VS VIIs	.20	3.2	B/A 35 30 30 30	T/A 5 5 5 5 7	AUM 3 3 3 3 2.25	Hay Pasture T/A AUM 2.0 2.0 2.0 2.0 2.0	AUM 2.6 2.6 2.6 2.6 1.8

PASTURELAND AND HAYLAND

Phases of Series Group	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production	
		•	
	,		
	1		

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow • Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
ALL .	Very Poor	Poor	Poor	Very Poor	· Very Poor	Very Poor	Very Poor	Poor	Very Poor	Very Poor

WOODLAND SUITABILITY

Phases of Ordi- Series nation	Ordi	Potential Productivity		Woodland Management Hazards				Suitable	Other	
	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant		
LIA	4s	Red Pine Unite Pine Jack Pine Unite Spruce	55 55 60 5 0	12-25% slopes	O-12% slope Slight 12-25% slope Moderate	Moderate	Slight to Moderate	Red Pine White Pine Jack Pine	Red Pine Jack Pine	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
		·
	·	

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor	
Ì	•	·		
		·		

OTHER

U. S. DEPARTMENT OF AGRICULTURE **SOIL CONSERVATION SERVICE**

STATE Minnesota

SOIL SURVEY INTERPRETATIONS

MLRA 90 Revised Draft RRL 1-73

This Series consists of nearly level, somewhat poorly drained soils formed in reddish brown fine and medium sands. These soils are on outwash plains and glacial lake benches. Native vegetation is forest. The surface layer is black loamy fine sand about 2 inches thick. The subsurface layer is reddish gray fine sand about 4 inches thick. The subsoil is dark reddish brown in the upper part, mottled reddish brown in the lower part. It is sand about 33 inches thick. The underlying material is reddish brown fine sand. Permeability is rapid. The available water capacity is few to very low and organic matter content is low. The availability of phosphorus is low, and of potassium is low. These soils have a high water table during part of the growing season.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

	Major Soil	Classification			Coarse Fract.	1				LL	PI	Permen- bility	Avail. Water	Soil Reac-	Shrink Swell
1	Horizons (inches)	USDA Texture	Unified	AASHO	>3 in. %	4	10	40	200			in./nr.	Capac. in./in.	tion pH	Poten- tial
	O -9	Fine Sand	SM	A-4 A-2	0	130	100	75-95	10-45	ΝP	NP	ა. 3-20	0614	4.5- 6.0	Low
	. 9- 60	Fine Sand	SM or SP	A-2 or A-3	0	100	100	145-95	2-10	ИP	NP	6,3-20	0507	5.1- 6.0	Low
										:			_		
. [,		

Flooding None

Hydrologic group:

Depth to water table: Normally within 2 feet of the surface, from

Depth to bedrock: Greater than 10 feet

spring to midsummer Corrosivity - uncoated steel: Moderate

Corrosivity - concrete: High

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill Fair: somewhat poorly drained; moderate susceptibility to frost action Sand Good: high water table makes removal difficult Grave1 Unsuited Topsoli Poor: sand texture

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields Severe: seasonal high water table Sewage Lagoons seasonal high water table; rapid permeability Shallow Excavations Severa: somewhat poorly drained; scasonal high water table; poor sidewall stability Dwellings: With Basements Severa: seasonal high water table Sanitary Landfill (Trench type) rapid permeability; seasonal high water table Severe: ocal Roads and Streets Moderate: somewhat poorly drained; seasonal high water table Potential Frost Action Moderate

MAJOR SOIL FEATURES AFFECTING SELECTED USES
Pond Reservoir Areas Papid permeability; seasonal high water table
Embankments, Dikes, and Levees Medium to high shear strength; redium to high susceptibility to piping
Drainage of Cropland and Pasture Papid pergoability: high water table
Irrigation poorly drained; usually level Low to very low available water capacity; rapid intake rate; coarse naterial; pomerbut/
Terraces and Diversions Generally not needed; nearly level slows
Gressed Waterways Generally not needed; nearly level slopes

PRELIMINARY DRAFT BEPORT, SUBJECT TO REVIEW

	Ď	EGRE	OF S	OIL	LIMIT	١٢١٥	ON AND	MA	JOR F	EAT	URES AF	FECTING F	RECREATION	ON USES	
3mp Areas		Moder	ate:	seas	onal h	lgh	unter t	abl	e						
Picnic Area	13	Moder	ate:	scas	onal h	l gh	water t	abl	e						
Playground	•	Hoder	ate:	seas	onal h	Lgh	water t	abl	e						
Paths and T	Truils	Moder	ate:	sea:	onal h	Lgh	water t	abl	e						
	C	APABI	LITY,	SOI	L LOSS	FA	CTORS,	AN	D PO1	ENT	TAL YIEL	DS-(High	level manag	(ement)	
Phases Serie	of	T	T			IL Loss		Cor	n [3]	uegr	155	egume-Gras			
34114	•——	1	$\neg \uparrow$			Bu/		/A		AU:		T/A	AUH		
All		11	Iu	•	- 65			10		3.5		3.0	4.5		
	<i></i>	<u> </u>													
Phases	, ,										HAYLANI				
Series		Group					Species,	Yie	ld In A	UM» (for Dryland	(Irrigated) F	orage Produc	tion	
										April 10 Print 10	•		· · · · · · · · · · · · · · · · · · ·		
									BITA'	T SU	ITABILIT	Y	ıı		
Phases of	Con	in and	Grass		Wild		Hardw:		Conife		Wetland	Shallow	0	Potential fo	T
Series		Crops	Legun		Herbaceous Plants		Trees and Shrubs		Plants		Food and Cover	Water Devel.	Openiand Wildlife	Woodland Wildlife	Wetland Wildlife
A11	P	oor	Fa	ir	Good	i	Fair		Good		Good	Good	Fair	Good	Good
		· · · · · · · · · · · · · · · · · · ·					WOOD	LA:	D SUI	TAB	ILITY			· · · · · · · · · · · · · · · · · · ·	
Phases of	Ordi-	Imp	ntlat l	Produ	Site	E	rosion	Wordland Manage Equipment		ement Haza Seeding	rds Flant		Sultable Species		
Series	nation	1	ees		Index H		lazard Li		Limitations		Mortality	Competitio			
A11	2₩	White White North	Pine Pine Sprunern Woods	60 ce			Slight		Moderate		Moderate	Hoderate to Severe	Spru Norther Hardwoo	White Spruce Spruce Northern Black Hardwoods Spruce White Pine Northern	
									RANGE					Nardwo	5003
Phases of S	cites	Range	otte Na	ine	 		Clin	nax	vegetat	10n a	nd Product	ivity of Air-	Dry Herbage	(lb./ac.)	
	L				L			WT:	NDBRE	EAK					
Group					Adap	ed T	rees to	Plan	it				ight Predict O Years Age	ion	Relative Vigor
					-				THER						
							•							,	

U. S. DEPARTMENT OF AGRICULTURE **SOIL CONSERVATION SERVICE**

Series state Minnesota				
STATE Minnesota				
MLRA 90				

SOIL SURVEY INTERPRETATIONS 1/

Initial Review Draft RRL 2-72 This series consists of nearly level, poorly and very poorly drained soils formed in sandy material. These soils are on outwash plains and glacial lake basins. Native vegetation is forest. In a representative profile the surface layer is black mucky sand about 5 inches thick. The underlying material is grayish brown sand. Permeability is rapid. The available water capacity is low and organic matter content is high. The available water capacity is low and organic matter content is high. ability of phosphorous is low, and of potassium is low. These soils have a high water table during much of the growing season. The major limitation to use is the hazard of wetness.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil	Clas	Classification			Percentage less than 3 inches Passing Sieve No				LL	PI	Permea- bility	Avall. Water	Soll Reac-	Shrink Swell
Harizons (inches)	USDA Texture	Unified	AASHO	>3 in.	4	10	40	200			In./hr.	Capac. in./in.	tion pH	Poten- tial
0-5	Kucky sand	PT	A-8	o	100	95-100	45-90	2-10	NP	NP	2.0-20	.0722	5.1- 6.0	High
5-60	Sand	SM or SP	A-2 or A-3	0	100	95 -10 0	45-90	2-10	np	NP	6,3-20	.0507	5.1- 6.0	Low
ž-									i					

Flooding Occasionally ponded

0504 SCR-410COLD DEDG. 1971

Hydrologic group: D

Depth to water table: Normally within 1 foot or less of the surface Depth to bedrock: Greater than 10 feet

. from spring to late summer Compainty - uncosted steel: Moderate

Corrosivity - concrete: Moderate

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadill	Poor: high water table									
Sand	Good: high water table makes removal difficult									
Grave1	Unsuited									
Topsoil	Poor: poorly drained, sand texture									

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Field	is	
	Severe:	seasonably high water table; occasional ponding
Sewage Lagoons		
	Severe:	seasonably high water table; rapid permeability; occasional ponding
Shallow Excavations		
	Severe:	seasonably high water table; occasional ponding organic and sandy soil
Dwellings: With Basements		•
#TOTEST TEST TOTAL	Severe:	seasonably high water table; occasional ponding
Sanitary Landfill	Severe:	rapid permeability; occasional ponding; organic and sand soils; seasonably
(Trench type)		high water table
Loca! Roads and Streets	•	
	Severe:	rapid permeability; occasional ponding; seasonably high water table
Potential Frost Action	Moderate	

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas	Rapid permeability; high water table
Embankments, Dikes, and	
Drainage of Cropland and	
Irrigetion	Low available water capacity; rapid intake rate; seasonable high water table
Terraces and Diversions	Oenerally not needed; nearly level slopes
Gressed Waterways	Generally not needed; nearly level slopes
	·

1 ' Use in conjunction with Guide to Soil Survey Interpretation Sheets.

Page 1 of 3 8,8-29,789

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Comp Areas	Severe: poor and very poor drained; high water table; coarne textured surface
Picnic Areas	Sewere: poor and poorly drained; high water table; coarse textured surface
Playgrounds	Severe: poor and very poorly drained; high water table; coarse textured surface
Peths and Trails	Severe: poor and very poorly drained; high water table; coarse textured surface

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS--(High level management)

Phases of Series	Capability	Sall	Losa	Oats	Corn Silage	Bluegrass Pasture	Leguse	-Grass	
				Bu/A	T/A	MUA	T/A	HUA	
A11	IVv	-	-	55	9	3.0	2.5	3.5	

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production								
	,									

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops			Wild Hardwood Herbaceous Trees and Plants Shrubs		Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
All	Very Poor	Poor	Poor	Poor	Poor	Good	Good	Poor	Poor	Good

WOODLAND SUITABILITY

Phases of	Ordi-	Potential Pro	oductivity	1	Woodland Mana	Suitable	Species	Other		
Series	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
A11	3v	Black Spruce	40-50	Slight	Severe .	Severe	Severe	Black Spruce Black Ash Elm Tamarack		

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herhage (Ib./ac.)							
	i i								
		•							
	·								

WINDBREAK

Group	Adapted Trees to Plant	Tree Holght Prediction at 29 Years Age	Relative Vigor

OTHER

#184 028 110CCLA. 8187 1821

. 1

U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SERIES !
STATE MITTEROLO
MLRA

SOIL SURVEY INTERPRETATIONS 1/

This series consists of deep, somewhat poorly and poorly drained soils formed in reddish brown clayer glacial till under a deciduous and confiscus formet on nearly level till plains and good norman. Typically they have gravial brown, loom surface layers 9 inches thick; reddish brown clay subsoil layers 25 inches thick; reddish brown slity clay underlying material. Slopes manys from 0 to 2 percent.

* ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING *

Soll '		C naulication			Frees. Percentage less than 3 inchés			LL	PI	Permea- PI buity	Water Reac-	Resc-	Shrink Swell	
Horizons (inches)	USDA Textur	Unillad	AASHO	>3 !n. - 7a.	*	10 -	40 12.13	200			la./hr.	in./in.	pH -	Poten- tiul.
0-9	Гонш	ML-CL	A-4	· ~ 0	95-100		30 – 85	65-90	15-25	0-4	0.6-2.0	.2022	4.5-6.	Low
9-36	Clhà	HZ-CA CT	≜ −7	0	95 –10 0	: 20-100	80 <u>-</u> 85	65-90	10-60	20-35	.06-0.2	.1014	5.1-8.1	. Mod.
. 36-60	Silty	322-CH CT	A-7 -	ò			80 – 85	65 - 90	L:0-60	20-35	.06-0.2	.0915	7 . 4-8.1	Mod.
Flooding Depth to w		ional - 1		್ರಿಕಿತ್ಯ	0st	jura:			Hydrolog Depth to	· •.	•	ater the	in five	feat.

Corrosivity - uncoated stepl: Moderate

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

K 24 2; 111	Pair: frost action, shrink-swell
Sand	Travited
Stavel	Ensuitad .
Topioll	Feir: thin layer

DEGREE AND KIND OF SOID LIMITATION FOR SELECTED USES

Septic Tank Filter Fields			
Service three ployer	The second second	5 Breys 5-5	
Scwage Lagoons Slight: perca slowly			
Shallow Excavations Severe: floods, too clarer,			
Dwellings: With Basements Withmanskanding Severe: wet	` <u>.</u>	radición w	
Sankery Landmill (Trench) Severe: wet, too clayer,			
Local Roads and Streets Severe: floods, wat			
Potentia Front Action		-	

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Are	Targrable	<i>.</i>			
Embankments, Dike	e, and Loveea				
Drainage of Crapium	d and Pasture Facos slowly, wet				
irrigation	y ₂ t				
	Not readed				
Granned Waterways	Well teres almly		 		
·					

1/ Use in conjunction with Cuids to Stal Survey Interpretation Sheets.

B.b-27.730

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Camp Areas	
	Sovere: perce slowly, wet
Picnic Areas	
	Severa: vot
Playgrounds	
• • • • • • • • • • • • • • • • • • • •	Severe: wet, floods
Paths and Trails	
	Moderate: floods, wet

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Soll Los	\ \(\frac{2}{5}\frac{1}{5}\frac{1}{5}\)	SilegeT/		Larie-Grass	Pasture (AUM)
All	IIIw		80	14	(AUM) 5.0	4.5	6.5
		.					
							• • • •

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
	1.	· · · · · · · · · · · · · · · · · · ·
	1 1	

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
All	Poor	Fair	Good	Fair	Good	Good	Good	Fair	Good	Good

WOODLAND SUITABILITY

Phases of	Ordi-	Potential I	roductivity		Woodland Mana	Suitable	Other			
Serles	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
A11		Red Pine E.Wh.Pine Wh.Spruce Worthern Hardwoods	60 • 60 60	Slight	Moderate	Moderate	Moderate to Severe	Wh. Spruce E.Wh.Pine Northern Hardwoods	Northern	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)							
		·							
	·								

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
·			
		1	1

OTHER

Page 135

MN-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE NU. CUDNEY INTERDOCETATIONS 1/

STATE Minnesota

MLRA 90

Rev. GDN, REL 2-72

SOIL SURVEY INTERPRETATIONS 1/

This series consists of nearly level to hilly, well and moderately well drained soils formed in reddish brown clayey material. These soils are on moraines and lake plains. Native vegetation is forest. The surface layer is dark gray loam about 2 inches thick. The subsurface layer is grayish brown loam about 6 inches thick. The subsoil is reddish brown clay about 26 inches thick. The underlying material is reddish brown clay. Permeability is slow. The available water capacity is moderate and organic matter content is low. The availability of phosphorous is low, and of potassium is low.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soil Horizons (inches)	Clas	Classification			Coarse Percentage less than 3 inches Fract. Passing Sieve No				LL	PI	Permea-	Avail. Water	Soll Reac-	Shrink Swell
	USDA Texture	Unified	AASHO	>3 in. %	4	10	40	200			In./hr.	Cupac. In./in.	tion pH	Poten- tial
0-8	Loam	ML_CL	A-4	0	95-100	90-100	80-85	65-90	15-25	0-4	0.6-2.0	2022	4.5- 6.0	Low
७-3 4	Clay	CL or	A-7	0	95-100	90-100	80-95	65-90	ьо-60	20-35	0.06 -0. 2	0.1 ₋	5.1- 8.4	Moderate
34-60	Clay	CL or MH-CH	A-7	o	9 5-1 0	90 - 100	80-95	65-90	40-60	20-35	0.06-0.2	0.1- 0.14	7.4- 8.4	Moderate
	<u> </u>	<u> </u>		<u> </u>					Hydrolo		e: G			L

Flooding None

8884 9C9 (INCOLD MEDS. 1871

Depth to water table? Greater than 5 feet

Compainity - uncoated steel: Moderate

Hydrologic group: C

Depth to bedrock: Greater than 10 feet

Corresivity - concrete: Hoderate

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Fair: low to medium shear strength; medium compressibility; fair to good workability
Sand	Not spitable
Gravel	Not suitable
Topsoll	Fair: moderately thick loamy material; low organic matter content

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Field	18
	Severe: slow permeability
Sewage Lagoons	
	Slight: slow permeability; moderate: on slopes 2-6 percent; severe: on slopes over 6%
Shallow Excavations	•
	Moderate: clayey material; severe: over 12 percent slopes
Dwellings; With Basements EMECONESCORES	Moderate: moderate shrink-swell; severe: over 12 percent slopes
Sanitary Landfill	
(Tranch type) Local Roads and Streets	Severe: poor workability
	Severe: moderate to high susceptibility to frost action
Potential Frost Action	Moderate to high

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Aress	Slow permeability
Embankmenta, Dikea, and	d Leves Medium to low shear strength; medium compressibility
Drainage of Cropland and	Pasture Generally not needed
Irrigation	Moderate available water capacity; slow permeability
Terraces and Diversions	Clayey material; slow permeability; poor workability
Grassed Waterways	Clayey raterial; slow permeability

1/ Use in conjunction with Guide to Soil Survey Interpretation Sheets.

Camp Areas	Moderata: glow rerreability: Nevere: on glores over 12 rereent
Picnic Areas	Slight: on nearly level slopes; Moderate: on slopes 6-12 percent; Severe: on slopes 12
Playgrounds	Noderate: slow perpeability; Severa: on slopes over 6 percent
Paths and Trails	

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

- Phases of Series	Capability	Soll	1.n · 5	Onts	Corn Silese	Bluegrass Pastma	Learn-Grass		 ~~~~
0-2% slopes 2-6% slopes 6-12% slopes 2-11% slopes 12-25% slopes	IIc IIe IIIe IIIe VIe	.43	3.2	80 80 70 70–80	10-14 10 114	AUM 5.0 5.0 5.0 5.0 4.0	T 4.55 4.55 4.55 -	6.5 6.5 6.5 6.5	

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production								
	,		•							

WILDLIFE HABITAT SUITABILITY

			Potential for							
Phases of Series	Grein and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
0-127	Good	Cood	Good	Good	Good	Poor	Very Poor	Good	Good	Very Poor
12-25	Poor	Fair	Cood	Good	Good	Very poor	. Aela lo	r Fair	Cood	Very poor

WOODLAND SUITABILITY

Phases of	Ordi-	Potential P	roductivity	1	Woodland Mans	Suitable	Species	Other		
Series	ration	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
0-12%		Aspen	70	Slight	Slight	Slight	Moderate	Red Pine	Red Pine	
	ł	Red Pine	60	1		ł	to	Passwood	Black Spr	ice
	20	White Pine	50	1 1		1	Slight	Red Oak	White Spr	ice
	1	Jack Pine	60	i i	Moderate	ì	Moderate	white Pine	DOOWBESE	
12-25%		Northern		Moderate		Slight	Severe	White Spru	ce Red Ca	٢
		HETCHOOGE						संबद्ध		

Phases of Series Runge Site Name Climax Vegetation and Productivity of Ab-Dry Herbage (lb./ac.)

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
·			
	•		1

OTHER

PRELIMINARY DRAFT REPORT, SUBJECT TO REVIEW

Page 137

MN-SOILS-3 11-71 (File Code SOILS-12)

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

Series -STATE Minnesota 88-90

SOIL SURVEY INTERPRETATIONS 1/

Revised Draft GDN, RRL 2-72

These are extremely to very strongly acid deep organic soils. They consist of moderately decomposed dark brown or dark reddish brown herbaceous material throughout most of the layers from 12 to 51 inches. Normally these soils occupy bogs ranging from 10 to more than 600 acres in size. Hack spruce along with a few tamarack are the major trees growing on these soils. The permeability is moderate to moderately rapid. The available water capacity is very high.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll	Classification		Coarse Fract.			se then Sieve No	3 Inches	LL	PI	Permen- bility	Avail. Water	Soll Reac-	Shrink Swell	
Horizons (inches)	USDA Texture	Unified	AASHO	>3 in. %	4	10	40	200			in./hr.	Capac. in./in.	tion pH	Poten-
0-20	Peat (fibric	PT	A-8	ì			ble for seive a	nalysi			6-20+	0.58- 0.70	3.5- 4.5	High
20-70	Peat (hemic)	PT	A-8	0							0.6-6.0	0.48- 0.58	4.0- 5.0	High
٨														

Flooding None

Hydrologic group:

Depth to water table: Near surface during most of growing season

Depth to bedrock: Greater than 5 feet

Corrosivity - uncoated steel: High

Corrosivity - concrete: High

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Roadfill	Poor: organic soils; low bearing capacity
Sand	Not suitable
Gravel	Not suitable
Topsoil	Poor when used alone. Fair to good when mixed mineral soils; needs lime

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields)	
	Severe:	high water table; very poorly drained
Sewage Lagoons	•	
	Severe:	high water table; more than 30 percent organic matter
Shallow Excavations		
	Severe:	high water table; poor side slope stability
Dwellings: With Basements EXECUTATIONS	Same	very poorly drained; high water table
Senitery Landfill	bevere.	very poorly manieu, mai mader energe
(trench type)	Severe:	very poorly drained; high water table
Local Roads and Streets	Severe:	
Fotential Frost Action	High	

	High water table
Embankments, Dikes, and	Leves high water table; low compacted loaded permeability; poor stability more than 30 percent organic matter
Dreinage of Cropland and	Pasture High water table; subsidence is common after drainage
irrigation }	High water table; very poorly drained
	Not applicable; nearly level
Gressed Waterways	Not applicable; nearly level
	·

Greenwood

DEGREE OF SOIL LIMITATION AND MAJOR FEATURES AFFECTING RECREATION USES

Comp Areas	Severe: high water table; poor trafficability
Picnic Areas	Severe: high water table; poor trafficability
Playgrounds	Severe: high water table; poor trafficability
Paths and Trail	Severe: high water table; poor trafficability

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Phases of Series	Capability	Soll	Loss	Cais	Corm Silage	Jegure - Grass	Muegrass Pasture
מנא	IVW			B/A 60	T/A 12	Hay Pasture T/A ALM 4.5 6.7	AUM 5.3
•							

PASTURELAND AND HAYLAND

Phases of Series	Group		duction					
				•				
			•			•	·	
	1				•	•	•	
						•	•	
	,					•		

WILDLIFE HABITAT SUITABILITY

			Pote	ntial for					Potential for	
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Wetland Wildlife
530S	Very Poor	Very Poor	Poor	Very Poor	Poor	Poor	Good	Very Poor	Very Poor	Fair
530	Very Poor	Poor	Poor	Poor	Poor	<u> </u>	Good	Very Poor	. Very Poor	Good

WOODLAND SUITABILITY

D	Ordi-	Potential P	roductivity	L	Woodland Mana	gement Haza	rds.	Sultable	Species	Other
Phases of Series	netion	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortulity	Plant Competition	To Favor	To Plant	
YJJ	5₩	Mack Spruce Tamarack	15-40	Slight	Severe	Severe	Severe	Hlack Spruce Tamarack	Hiack Spruce Tamarack	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry H	erbage (lb./ac.)
•		•	•
			•

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative '
	•		

CROPLAND

OTHER

Potential yields are moderate for the commonly cultivated crops. The choice of crops is limited by climate, low fertility, and a high water table. Crops that can withstand light frost and have a short growing season are best suited. These include carrots, cabbage, cauliflower, celery, potatoes, cultured sod, radishes, onlong and the like. Wind crosion and fire are special hazards.

MRTSC Trial Form File Code Solis-12 Rev. 9-10-71

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOIL SURVEY INTERPRETATIONS 1/2

SERIFS	-
STATE _	MINNESOTA
MLRA	88, 69
DEV	RRI. 8-18-71

These soils are extremely acid, deep organic soils. They consist of slightly decomposed, reddish brown sphagnum fibers throughout most of the upper 5 feet. Normally they occupy areas within large bogs that have slightly convex surfaces. Happed areas are usually circular or oblong and range from about 100 to more than 600 acres in size. Black spruce along with a few tamarack are the major trees growing on these soils.

ESTIMATED SOIL PROPERTIES SIGNIFICANT TO ENGINEERING

Major Soll Horizons (inches)	Classification		Coarse Fract.		Percentage less than 3 inches Passing Sieve No			LL	PI	Permea-	Avall. Water	Soll Reac-	Shrink Swell	
	Horizons	USDA Texture	Unified	AASHO	>3 in. %	4	10	40	200			in./hr.	Capac. in./in.	tion pH
0-60"	Fibric	Pt	•			uitabl analy		enginee	ring		12-20	0.55- 0.65	3.5-4.5	High

Flooding None

Depth to water table: 0 to 2 feet.

Corrosivity - uncoated steel: Very high.

Hydrologic group: D

Depth to bedrock: 5 to many feet.

Corrosivity - concrete: High

SUITABILITY OF SOIL AS SOURCE OF SELECTED MATERIAL AND FEATURES AFFECTING USE

Rondfill	Poor; organic soils; very low bearing capacity.
Sand	Not suitable.
	Not suitable.
Topsoll	Poor when used alone. Fair to good when mixed with mineral soil; needs lime. High water table.

DEGREE AND KIND OF SOIL LIMITATION FOR SELECTED USES

Septic Tank Filter Fields	Severe: High water table, organic material.
Sewage Lazoons	Severe: High water table; more than 30% organic matter.
Shallow Excavations	Severe: High water table, organic material.
Dwellings: With Easements Without Basements	Severe: High water table; low shear strength; high shrink-swell potential high compressibility; very low bearing values.
Sanitary Landfill	Severe: High water table; poor trafficability.
Local Roads and Streets	Severe: High water table; high susceptibility to frost action; high shrink-swell potential; more than 30% organic matter.
Potential Frost Action	нtgh

MAJOR SOIL FEATURES AFFECTING SELECTED USES

Pond Reservoir Areas Organ	ic soil, high water table.
Embankments, Dikes, and Levees	High water table; poor stability; more than 30% organic matter.
Drainage of Cropland and Pasture	Water table at the surface or within 1-2 feet during the growing season; usually drained by open ditches.
irrigation	
Terraces and Diversions	
Grassed Waterways	
•	,
•	

1/ Use in conjunction with Guide to Soil Survey Interpretation Sheets.

Page 1 of 2

Camp Areas	Severe: High water tuble; poor trafficability.
Picnic Areas	Severe: High water table; poor trafficability.
Playgrounds	Severe: High water table; poor trafficability.
Paths and Trails	Severe: High water table; poor trafficability.

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS--(High level management)

Phases of Series	Capability	Soll K	Loss			
0 to 2% slope	VIIV	-	-	·		

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in A	UMs for Dryland	(Irrigated) Fors	ge Production	
						·
		• •				

WILDLIFE HABITAT SUITABILITY

		Potential for								Potential for		
Pluses of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Weiland Wildlife		
A11	Very Poor	Very Poor	Very Poor	Very Poor	Very Poor	Good	Good	Very Poor	Very Poor	Fair		

WOODLAND SUITABILITY

nases of	Ordi-	Potential Pro	ductivity	1	Woodland Mana	gement Haza	rds	Suitable	Species	es Other	
1	nation	Important Trees	Site Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant		
A11	Sw	Black spruce	20-30	Slight	Severe	Severe	Severe		Black Spru	ce	
		1						İ		,	

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
-		

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
		,	

OTHER

Potential yields are poor for the commonly cultivated crops. The choice of crops is limited by climate, low fertility, and a high water table. Crops that can withstand light frost and have a short growing season are best suited. These include carrots, cabbage, caulithover, celery, potatoes, cultured sod, redishes, onions and the like. These peats are well suited for commercial peat harvesting.

MRTSC Trial Form File Code Soils-12 Rev. 7:19-71

#180 \$50 Lintal# #208 1971

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

SERIES . STATE <u>MINNESOTA</u> MLRA <u>88, 89, 90</u> RZV. 10-71

SOIL SURVEY INTERPRETATIONS 1/

These are extremely acid, deep organic soils. They consist of slightly decomposed reddish brown sphagnum material throughout the upper three to four feet. Below this is moderately decomposed, dark reddish brown herbaceous material. These soils occur in relatively narrow bands around the outer edge of large raised bogs, and in circular or oblong areas in small bogs.

Majot Soli	Classification			Course Fract.			ss then Sleve II	Jinches			Permea-	Avall. Water	Soll Renc-	Shrini Swell
Horizons (Inches)	USDA Texture	Unliled	AASHO	>3 In.	4	10	40	200	LL	1q.	bllity In./hr.	Capac. in./in.	tion pH	Poten- tial
0-38	Fibric	Pt	-			uitab anal		engine	ring -	-	6-20	0.55- 0.65	3.4- 4.5	High
38-60	Hemic	Pt	-							-	2.0-6.3	0.45- 0.55	4.0- 4.5	High
					:									
Flooding	None	L	<u> </u>	I		<u> </u>	<u> </u>	1	Hydrolog	ic grou	p: D	L		
_	vater table:	0 to 2 f	eet.					•	Depth to	bedroc	k: 5 to ma	any feet	: .	
Compaign	y = uncoste	d steel: V	erv his	1.					Corrosiv	lty - co	ncrete: H	igh		
	SUITABIL				OF SE	ELECT	ED MA						USE	
Rondfill P	oor: Orga	inic soil	s; veTy	low bea	ring	apacit	у.							
	ot suital						4							
Gravel N	ot sultab	ole.												
Popsoi! P	oor when	used alo	ne. Fair	to god	d wher	n mixed	with	mineral	l soil;	needs	lime. H	igh wate	r table	•
	Filter Fie	lds Sever		ater ta	ble; o	organic	LIMITA : mater	cial.		ECTE.	D USES			
iewage Lag	coons Seve	lds Sever ere. High Severe:	e: Highwater t	vater ta cable; c	ore the	organic nan 307 ganic r	LIMITA: mater	enic mat	iter.					
Shallow Exc Owellings: With Ba	cavations	lds Sever ere. High Severe: Severe: Compress	vater t High wat	vater ta	pore the	organic nan 307 ganic m	LIMITA: mater corga c	enic mat	iter.			ential;	hígh	
Shallow Exc Owellings: With Ba	cavations sements Basements	lds Sever ere. High Severe: Severe: Compress	water thigh wat High wat High wat bility;	cable; cer tabl	te, org	ganic man 307	LIMITA mater orga arstre arstre alues.	ength; h	iter.			ential;	high	
Shallow Ex- Swellings: With Ba- Without	cavations sements Basements	lds Sever ere. High Severe: Severe: compress Severe: ts Sever	water to water thigh water thigh water thigh water thigh water this water thi	cable; ca	able; core the core that the core the core that the core the core that the	organic man 307 ganic man shearing v br traf	LIMITA mater orga arstre alues.	enic mat	iter.	rink-s	well pote			
Shallow Ex- Shallow Ex- Swellings: With Ba- Without Senitery Le	coons Seve	Ids Sever ere. High Severe: Severe: compress Severe: ts Sever	water to thigh water things the water the water things the water things the water things the water things the water things the water things the water things the water the water things the water the water things the water the water the water the water the water the water the water the water the w	cable; ca	able; core the core that the core the core that the core the core that the	organic man 307 ganic man shearing v br traf	LIMITA mater orga arstre alues.	enic mat	iter.	rink-s	well pote			
Shallow Ex- Shallow Ex- Swellings: With Ba- Without Senitery Le Local Road	sements Easements ndfill s and Stree	Severe: Severe: Compress Severe: ts Sever	water to thigh water thigh wat ibility; thigh water thigh things water thigh things was sometimes. Walley was sometimes with the control of t	cable; ca	the; core the core the core the core the core the core core core core core core core cor	priganic man 307 ganic man 307 ganic man shearing voor traf	LIMITA mater and ar stresalues.	enic mat	iter.	rink-st	well pote			
Shallow Ex- Shallow Ex- Shallow Ex- With Ba Without Society La Local Road Potential F	sements Basements ndfill s and Stree	Severe: Severe: Compress Severe: High Severe: High Orzanic:	water to water thigh water thigh water thigh water thigh water thigh water thigh water things was soil, his	cable; the table cable; the table cable; the table cable able; cover the covert the cover the cover the cover the cover the cover the cover the	ganic row sheatring which srganic	LIMITA mater orga materia materia materia ficabi materia materia AFFE	ength; b	to fro	rink-se	well pote				
Shallow Ex- Shallow Ex- Shallow Ex- With Ba Without Society La Local Road Potential F	sements Easements ndfill s and Stree	Severe: Severe: Compress Severe: High Severe: High Orzanic:	water to water thigh water thigh water thigh water thigh water thigh water thigh water things was soil, his	cable; the table cable; the table cable; the table cable able; cover the covert the cover the cover the cover the cover the cover the cover the	ganic row sheatring which srganic	LIMITA mater orga materia materia materia ficabi materia materia AFFE	ength; b	to fro	rink-se	well pote				
Shallow Exitation Exitatio	sements Basements ndfill s and Stree	Ids Sever ere. High Severe: Severe: compress Severe: ts Sever poten High Organic	water to water thigh wat ibility; High wat this is more than the water to water the water to water the wat	cater table; cable; ble; core the core t	organic man 307 ganic man 307 ganic man shearing was traff high spreadic TURES e. oor st	LIMITA mater orga arteria ar stre values. ficabi suscept matte AFFE	enic material. ength; helity. CTING Sorting	iter.	rink-st	well pote	gh shrin	k-swell	sually	
Shallow Exi- Shallow Exi- Shallow Exi- With Ba- Without Sanitary La Local Read Potential F Pend Reser Embankmen Oralinage of reigation	sements Easements and Stree rost Action	Ids Sever ere. High Severe: Severe: compress Severe: ts Sever poten High Organic: and Levees	water to water thigh wat ibility; High wat this is more than the water to water the water to water the wat	cable; ca	able; core the core t	organic man 307 ganic man 307 ganic man shearing was traff high spreadic TURES e. oor st	LIMITA mater orga arteria ar stre values. ficabi suscept matte AFFE	enic material. ength; helity. CTING Sorting	iter.	rink-st	well pote	gh shrin	k-swell	sually
Shallow Exi- Shallow Exi- Shallow Exi- With Ba- Without Sanitary La Local Read Potential F Pend Reser Embankmen Oralinage of reigation	sements Easements ndfill s and Stree rost Action volr Areas tta, Dikea,	Ids Sever ere. High Severe: Severe: compress Severe: ts Sever poten High Organic: and Levees	water to water thigh wat ibility; High wat this is more than the water to water the water to water the wat	cable; ca	able; core the core t	organic man 307 ganic man 307 ganic man shearing was traff high spreadic TURES e. oor st	LIMITA mater orga arteria ar stre values. ficabi suscept matte AFFE	enic material. ength; helity. CTING Sorting	iter.	rink-st	well pote	gh shrin	k-swell	nsually
Shallow Exitation Exitation Swellings: With Ba Without Society Le Cocal Road Potential F Pend Peser Embankmer Orainage of reigation	sements Easements ndfill s and Stree rost Action volr Areas tta, Dikea,	Ids Sever ere. High Severe: Severe: compress Severe: ts Sever poten High Organic: and Levees	water to water thigh wat ibility; High wat this is more than the water to water the water to water the wat	cable; ca	able; core the core t	organic man 307 ganic man 307 ganic man shearing was traff high spreadic TURES e. oor st	LIMITA mater orga arteria ar stre values. ficabi suscept matte AFFE	enic material. ength; helity. CTING Sorting	iter.	rink-st	well pote	gh shrin	k-swell	isually

Сипр Агеяв	Severe: High water table; poor trafficability.
Picnic Areas	Severe: High water table; poor trafficability.
Playgrounds	Severe: High water table; poor trafficability.
Paths and Trails	Severe: High water table; poor trafficability.

CAPABILITY, SOIL LOSS FACTORS, AND POTENTIAL YIELDS-(High level management)

Capability	Soll K	Loss			
es VIIu	-	-	 	 	

PASTURELAND AND HAYLAND

Phases of Series	Group	Species, Yield in AUMs for Dryland (Irrigated) Forage Production
•		
٠.		

WILDLIFE HABITAT SUITABILITY

	1		Pote	ntial for					Potential for-	-
Phases of Series	Grain and Seed Crops	Grasses, Legumes	Wild Herbaceous Plants	Hardwood Trees and Shrubs	Coniferous Plants	Wetland Food and Cover	Shallow Water Devel.	Openland Wildlife	Woodland Wildlife	Welland Wildlife
A11	Very poor	Very poo	Very poor	Very poor	Very poor	Good .	Good	Very poor	Very poor	Fair

WOODLAND SUITABILITY

		Potential P	roductivity	<u> </u>	Woodland Mana	Sultable Species		Other		
Phases of Series	Ordi- nation	Important Trees	S:te Index	Erosion Hazard	Equipment Limitations	Seeding Mortality	Plant Competition	To Favor	To Plant	
. A11	5W	Black Spru	e 20-40	Slight	Severe	Severe	Severe		Black Spr	uce

RANGE

Phases of Series	Range Site Name	Climax Vegetation and Productivity of Air-Dry Herbage (lb./ac.)
1		
	1	
1	Į	
	ì	
j	l	•

WINDBREAK

Group	Adapted Trees to Plant	Tree Height Prediction at 20 Years Age	Relative Vigor
	•		
	•		

OTHER

Potential yields are poor for the commonly cultivated crops. The choice of crops is limited by climate, low fertility, and a high vater table. Crops that can withstand light frost and have a short growing are best suited. These include carrots, cabbage, cauliflower, cranberries, celery, potatoes, cultured sod, radishes, onions and the like.

FOR INTERIM USE

Page 2 of 2