

## 820269

Section of Fisheries

this document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. <u>http://www.leg.state.mn.us/Irl/Irl.asp</u> Funding for document digitization was provided, in part, by a grant from the Minnesota Historical & Cultural Heritage Program.)

NO. 374

THE EFFECTS OF WATER LEVELS AND OTHER FACTORS ON WALLEYE AND NORTHERN PIKE REPRODUCTION AND ABUNDANCE IN RAINY AND NAMAKAN RESERVOIRS

JULY 25, 1981

SH 691 .W3 082

Division of Fish and Wildlife

## The Effects of Water Levels and Other Factors on Walleye and Northern Pike Reproduction and Abundance in Rainy and Namakan Reservoirs<sup>1/2</sup>

by

Thomas C. Osborn, Dennis B. Ernst, and Dennis H. Schupp

#### ABSTRACT

The walleye population in Minnesota waters of Rainy Lake has increased from depressed levels of abundance observed in the mid-1960's. Growth rates have decreased and the mean age of walleyes caught in test nets has increased. The effect of changes in the regulation of spring water levels, instituted in 1969, was examined to see if the increased abundance of walleye was the result of higher water levels at time of spawning. No significant correlation between spring water levels and walleye abundance 5 years later could be detected for the years after the regulation change. There is some evidence that reduction in exploitation may have been associated with the increased abundance of walleye. The abundance of brood stock and of progeny 5 years later was significantly correlated.

In the lakes of the Namakan Reservoir no positive relationship between' mean spring water levels and subsequent abundance\_of\_walleyeand northern pike could be detected. There was some evidence in these lakes that rising water levels in the first half of May benefited northern pike reproduction.

1/ Completion Report-Study 122, D.J. Project F-26-R Minnesota

LEGISLATIVE REFERENCE LIBRARY STATE OF MINNESOTA

## INTRODUCTION

Rainy Lake and lakes of the Namakan Reservoir (Crane, Kabetogama, Namakan, Sand Point) on the Minnesota-Ontario border undergo wide annual fluctuations in water levels. Each of these reservoirs contains valuable fish populations, especially northern pike and walleye, which support important sport and commercial fisheries.

Previous investigations established that a lakewide decline had occurred in the Rainy Lake walleye population and two factors which may have caused that decline, spring water levels at time of spawning and brood stock abundance, were identified (Johnson, et al. 1966; Johnson, 1967). Bonde et al (1965) and Chevalier (1977), also identified overexploitation as a probable factor contributing to the decline. Management strategies adopted by Minnesota to restore the walleye population included a resumption of fry stocking, a reduction of commercial exploitation by changing licensee's minimum mesh size from 4-to-5¼ inch as rew licenses are issued, the closing of Black Bay to sport fishing until spawning fish had dispersed, the installation of artificial spawning reefs in Black Bay, and advocacy of higher spring water levels.

The regulation of water levels for the reservoirs are specified by the International Joint Commission<sup>2/</sup>. These regulations or "rule curves" specify the maximum and minimum permissible water levels for each day of the year for each reservoir. The regulations have been changed several times over the 71 year history of the reservoir, the two most recent in

<sup>2/</sup> The International Joint Commission (I.J.C.) is a regulatory body composed of both Canadian and U.S. representatives which resolves matters of concern to both nations. A subsidiary board, the Rainy Lake Control Board, implements the policy decisions of the Commission and informs the Commission of matters which concern it.

1957 and 1969.

The Commission attempts to accommodate the often conflicting needs of the various "users" of the reservoirs. The Commission did consider the needs of spawning fish in its deliberations in 1969.

Recently, resort owners on Namakan Reservoir, immediately upstream of Rainy Lake, have advocated higher spring water levels on that reservoir. These interests have expressed concern that low spring water levels are having an adverse effect on walleye and northern pike populations. As higher spring levels on Namakan Reservoir may require lower spring levels on the downstream reservoirs, the need for higher spring water levels must be documented. A previous field investigation (Sharp, 1941) reported on the conditions encountered with low water levels, noting that northern pike spawning area was limited. However, the effect of possible adverse water levels during spawning has not been related to subsequent abundance of walleye or northern pike.

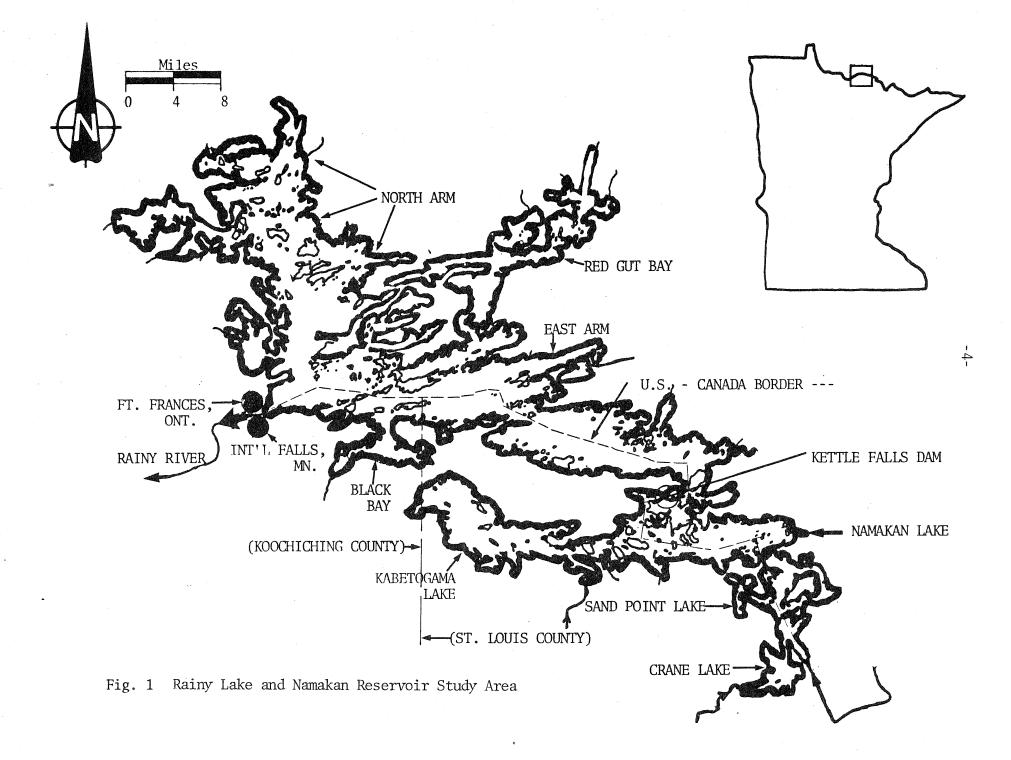
The purpose of this investigation was: 1) to evaluate the effect of the water level management regime established in 1969 by the International Joint Commission on the walleye population of Rainy Lake; and 2) to evaluate the effect of spring water levels on the walleye and northern pike populations of lakes in the Namakan Reservoir.

## Description of Study Area

The reservoirs of the study area are parts of a drainage system which begins in northeastern Minnesota and ends at Hudson Bay. Namakan reservoir is upstream of Rainy Lake (reservoir) and includes the connected lakes of Crane (3,396 acres), Kabetogama (25,750 acres), Namakan (28,260 acres) and

-2-

Sand Point (8,890 acres) for a total of 66,296 acres (Fig. 1). Namakan and Sand Point Lakes lie on the U.S. - Canadian border as does Rainy Lake. A dam at Kettle Falls on Namakan Lake regulates the levels of these lakes. This dam provides a 10.5 foot head, below which lies Rainy Lake. Rainy Lake totals 220,800 acres of which 54,140 are in Minnesota. Rainy Lake water levels are controlled by a dam on the Rainy River between International Falls, Minnesota and Ft. Frances, Ontario. Operation of both dams, providing water levels are within the rule curves, is the responsibility of a private corporation  $\frac{3}{}$ . When water levels are outside of the rule curves, an emergency condition exists and the I.J.C. assumes control of the dams.


Although both of the dams regulate water levels the study areas are only technically reservoirs. Natural rock ledges (dams) did and would support the integrity of the lakes though at slightly lower levels. For a more detailed description of the study area, see Ernst and Osborn (1980), or the <u>Final Report of the International Joint Commission on the Rainy Lake</u> Reference, 1934.

#### METHODS

The initial study design for Rainy Lake was to update the data base of commercial gillnet walleye catch per unit of effort (CUE) assembled in the previous studies (Johnson, et al. 1966; Johnson, 1967; Chevalier, 1977) and relate this measure of abundance to mean water levels at the time of walleye spawning 4, 5 and 6 years earlier as these authors had done. This

- 3-

<sup>3/</sup> Boise Cascade Corporation and it's subsidiary, Minnesota and Ontario Paper Company.



approach was precluded by Ontario's conversion of commercial gillnet mesh size from 4-inch stretch mesh to 4<sup>1</sup>/<sub>4</sub>-inch stretch mesh between 1969 and 1972. Closure of all Ontario waters, except the North Arm, to commercial walleye fishing in the early 1970's due to high mercury levels also disrupted the continuity of the data base.

The study design, therefore, had to be modified to include only Minnesota commercial gillnetting information, though it was recognized that the findings may not be valid for the entire lake. The CUE for commercial gillnets (4-inch stretch measure) fished in Minnesota waters and Minnesota experimental gillnets set in August (250 feet X 6 feet with 50-foot sections of  $1\frac{1}{2}$ , 2, 3, and 4-inch stretch mesh) were used as indices of walleye abundance. Records of commercial fishing effort are available only since 1949 so CUE could not be calculated for earlier years. Experimental gillnet sets varied from 15 in 1963 to 65 in 1959. Since 1970 the same 25 stations have been netted each year.

Fish taken in nets were weighed and all walleye were measured to the nearest 0.1 inches total length and a scale sample was taken. Scales were read by three readers. If agreement could not be reached on ages they were removed from the sample. A direct proportion nomograph was used for backcalculating growth to the last annulus. Mean ages were calculated by summing the products of age times frequency for that age and dividing the total by sample size.

Mean water levels at time of spawning were derived by inspection of U.S. Army Corps of Engineers water level charts for the 15-day period following ice-out. Ice-out dates were those listed in the <u>International Falls Daily</u> Journal, International Falls, Minnesota.

-5-

Field examinations of the lakes of Namakan Reservoir were made in May of 1978 and 1979. The purpose of these reconnais**s**ances was to determine the relative extent of walleye and northern pike spawning habitat and how these areas would be affected by different water levels. The 1978 examination included Kabetogama, Crane and Sand Point lakes and the results of this examination were reported in June of  $1978\frac{4}{}$ . The western part of the American shoreline of Namakan Lake was checked in  $1979\frac{5}{}$ .

#### FINDINGS

#### Rainy Lake Water Levels

ŝ

Mean spring water levels under the 1969 rule tended to be similar to, but less variable than they were under the previous regulation of 1957 (Table 1). Mean water levels at the time of most probable walleye spawning (ice-out date plus 2 weeks) averaged 1106.5 feet for the 12 years under the 1969 rule, compared to 1106.6 feet for the 12 years under the 1957 rule. The 1969 rule has resulted in more consistent year-to-year levels than was the case under the 1957 rule. The range of mean spring levels was 2.4 feet (1105.2 to 1107.6) since 1969 compared to 4.1 feet (1104.4 to 1108.5) under the previous rule.

Johnson, et al (1966) suggested that a mean spring water level in

<sup>4/</sup> Minn. Dept. of Nat. Resources Staff Report, 'Walleye and Northern Pike Spawning Area Examination of Crane, Kabetogama and Sand Point Lakes, Spring 1978''. by T.C. Osborn, D.H. Schupp and D. Ernst. 23+ pages, mimeo June 1978.

<sup>5/</sup> Minn. Dept. of Nat. Resources Int. Prog. Report, 'Walleye and Northern Pike Spawning Area Examination on Portions of Namakan and Rainy Lakes, Spring 1979,'' by T.C. Osborn and D. Ernst, 1979. 24+ pages, mimeo.

| Year   | Ice<br>out<br>date <u>a</u> / | Mean<br>water<br>level | Year | Ice<br>out<br>date <u>a</u> / | Mean<br>water<br>level |
|--------|-------------------------------|------------------------|------|-------------------------------|------------------------|
| 1942   | April 23                      | 1107.2                 | 1961 | May 8                         | 1107.2                 |
| 1943   | May 3                         | 1107.3                 | 1962 | May 7                         | 1107.1                 |
| 1944   | May 4                         | 1107.2                 | 1963 | April 30                      | 1105.6                 |
| 1945   | April 21                      | 1108.3                 | 1964 | May 6                         | 1106.6                 |
| 1946   | April 20                      | 1108.3                 | 1965 | May 7                         | 1106.7                 |
| 1947   | May 12                        | 1107.5                 | 1966 | May 14                        | 1108.5                 |
| 1948   | May 6                         | 1107.8                 | 1967 | April 25                      | 1107.2                 |
| 1949   | April 29                      | 1107.2                 | 1968 | April 29                      | 1107.2                 |
| 1950   | May 22                        | 1111.2                 | 1969 | April 25                      | 1106.1                 |
| 1951   | May 9                         | 1107.7                 | 1970 | May 6                         | 1107.0                 |
| 1952   | May 4                         | 1105.7                 | 1971 | May 11                        | 1106.8                 |
| 1953   | May 4                         | 1105.2                 | 1972 | May 11                        | 1106.4                 |
| 1954   | May 14                        | 1108.1                 | 1973 | April 21                      | 1105.7                 |
| 1955   | April 23                      | 1106.2                 | 1974 | May 9                         | 1107.4                 |
| 1956   | May 12                        | 1107.3                 | 1975 | May 8                         | 1107.0                 |
| 1957   | May 7                         | 1107.3                 | 1976 | April 18                      | 1106.4                 |
| 1958 · | April 22                      | 1104.4                 | 1977 | May 1                         | 1105.2                 |
| 1959   | May 6                         | 1105.3                 | 1978 | May 8                         | 1106.6                 |
| 1960   | May 16                        | 1105.8                 | 1979 | May 12                        | 1107.6                 |
|        |                               |                        | 1980 | May 2                         | 1105.4                 |

| Table 1. | Mean water levels for the period from ice-out to 14 days |  |
|----------|----------------------------------------------------------|--|
|          | later, Rainy Lake, 1942-1979.                            |  |

<u>a</u>/ From International Falls Daily Journal.

-7-

excess of 1106.8 feet is probably necessary to inundate sufficient rubble substrate to insure adequate walleye reproduction. Under the 1957 rule, the mean water levels exceeded 1106.8 feet in 6 of 12 years (50% of the years), but in only 4 of 12 years (33% of the years) since 1969.

## Walleye Abundance in Rainy Lake

A 58% decline in abundance of walleye between 1948 and 1969 was reported by Chevalier (1977) for Rainy Lake as a whole. Since 1964, however, the walleye population in the Minnesota waters of Rainy Lake has been increasing (Fig. 2 and 3). Commercial CUE for 4-inch gillnets set in St. Louis County waters (eastern part of East Arm - see Fig. 1) as calculated from the regression equation (Fig 2, P<0.01) increased from 20.4 pounds per thousand feet per day in 1964 to 64.6 in 1980, a 216% increase. The nine highest CUE recorded in 32 years have occurred since 1971 (Appendix Table 3A).

The CUE for Minnesota test nets, set throughout the Minnesota waters of the East Arm (both commercially fished and noncommercially fished zones) also increased significantly. Catch per unit of effort, calculated from the regression equation (Fig. 3, P<0.01; Appendix Table 1A), changed from 1.0 pounds per lift in 1963 to 6.3 in 1980, a 530% increase.

Test net results suggest that this recovery has occurred in both the commercially fished and non-commercially fished areas, but the walleye population in the commercially fished area has increased at a more rapid rate (Fig. 4; Appendix Table 2A). The slopes of linear regressions of CUE on time for the years 1970-1980, differed significantly from zero indicating a real change in abundance for both the commercially and non-commercially fished areas (P < 0.01 and P < 0.05 respectively). Analysis of covariance

-8-

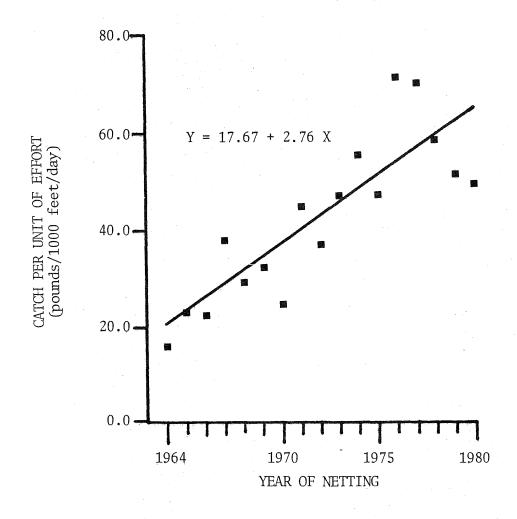
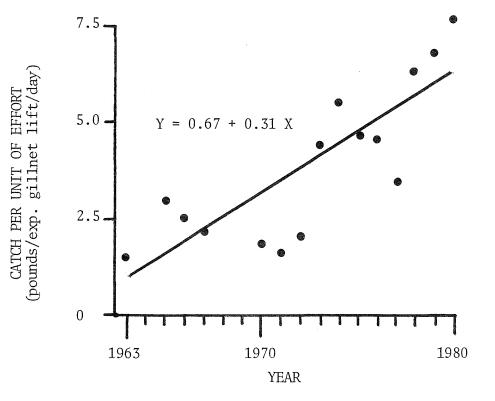
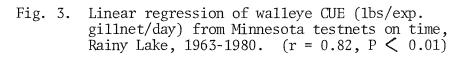





Fig. 2. Linear regression of walleye CUE (lbs/1000 feet/day) on time for commercial 4 inch gillnets on the Minnesota waters of the East Arm of Rainy Lake, 1964-1980. (r = 0.84, P < 0.01)





\$

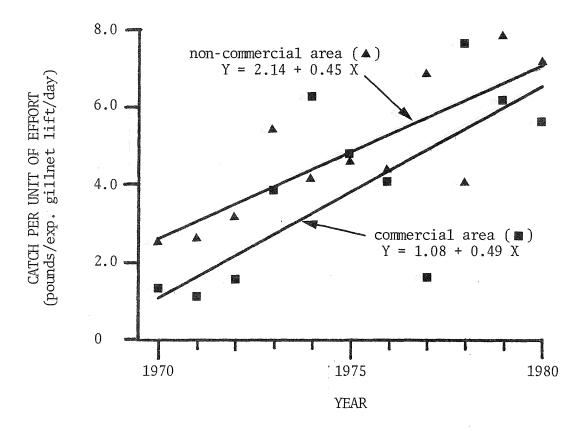
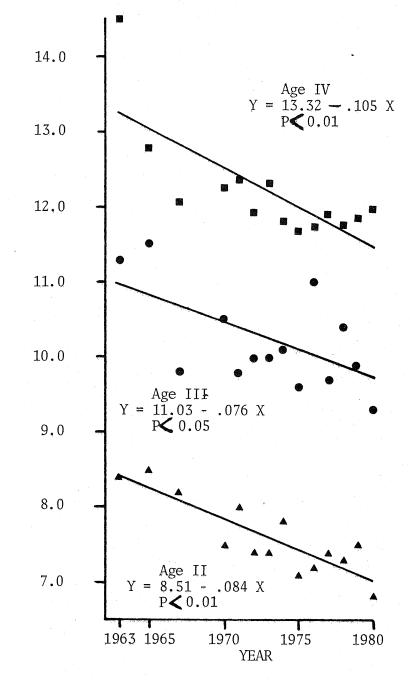



Fig. 4. Linear regressions of CUE (experimental gillnets or Minnesota test nets) on time for Minnesota waters of Rainy Lake from commercially fished area in St. Louis County waters (16 sets/year, r = 0.70,  $P \le 0.05$ ) and non-commercially fished waters of Koochiching County (9 sets/year, r = 0.82,  $P \le 0.01$ ), 1970-1980.

showed that the slopes for the two areas also differed significantly (P < 0.05), indicating that the rate of recovery was faster in the commercially fished area.

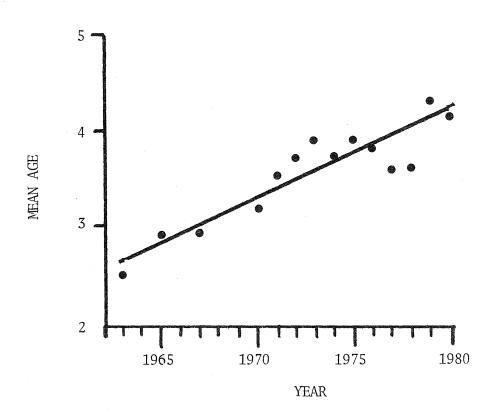
## Rainy Lake Walleye Growth Rates

The growth rate of walleye appeared to be density dependent. The most rapid growth for age II, III, and IV walleyes was observed in the mid-1960's when commercial CUE was lowest (Fig. 5). A significant (P < 0.05) decrease in growth was observed for each of these ages between 1963 and 1980, the period when CUE increased significantly. These findings mark a reversal in the trend toward increasing growth rates observed for the East Arm subpopulation between 1959 and 1965 by Johnson, et al (1966), and by Chevalier (1977) for the North Arm subpopulation<sup>6/</sup> during the same years.


The increased abundance and slower growth of walleye noted since 1963 was accompanied by an increase in the mean age (Fig. 6). The mean age of fish caught in test nets increased from 2.6 in 1963 to 4.2 in 1980. Chevalier (1977) reported a decline in the mean age for the years 1955-67 in the East Arm.

#### Factors Influencing Rainy Lake Walleye Abundance

Inadequate water levels at time of walleye spawning were identified as a possible cause of the decline of walleye in Rainy Lake (Johnson, et al. 1966; Johnson 1967; Chevalier, 1977). Shoal areas on the East Arm with rubble - rock of a type preferred by walleye for lake spawning (Johnson,


-12-

<sup>6/</sup> Bonde, Elsey and Caldwell (1965) identifed three subpopulations in Rainy Lake: North Arm, East Arm, and Red Gut Bay.



MEAN TOTAL LENGTH IN INCHES AT LAST ANNULUS

Fig. 5. Linear regressions of mean total length at annulus formation on time for Age II, III and IV walleye taken in Minnesota test nets, 1963-1980. Growth back-calculated to last annulus only. Sample size ranged from 5 to 81.



\*

Fig. 6. Linear regression of mean age on time of walleye caught in test-nets from Minnesota waters Rainy Lake, 1963-1980. (r = 0.907, P  $\leq$  0.01)

1961) are narrow and require a water level of approximately 1106.8 feet to flood these areas to a depth where walleye can use them (J&hnson, et al. 1966; Johnson, 1967). If water levels prevented the use of preferred substrates and walleye spawned on mud or sand, lower reproductive success would likely result (Johnson, 1961).

Chevalier (1977) found that 50% (r=0.71, P<0.01) of the annual variation in CUE of commercial four-inch mesh gillnets between 1948 and 1969 might be attributed to spring water levels occurring five years prior to that catch. Chevalier's analysis could not be extended to include the years 1970-80 because of the changes in Ontario regulations and the closure of Ontario's commercial fishery in the early 1970's. The relationship between water level and CUE five years later, for the years 1949-69, using only Minnesota data, was also positive (r=0.12, P>0.05) but not significant. The addition of data for the years 1970-80 failed to increase the correlation (r=0.11, P>0.05).

The decline of brood stock abundance to inadequate numbers may have been a factor in the precipitous decline of the walleye population. Reproductive capacity and population resiliency are dependent upon the number of spawners and Johnson (1967) suggested that the Rainy Lake spawning stock had been reduced to such a level that progeny abundance could be affected. Chevalier (1977) regressed gillnet CUE (progeny abundance) on CUE five years earlier (brood stock abundance) and found a significant relationship (P $\leq$ 0.01) for the 1948-1969 period. Brood stock abundance alone explained 44% of the variation in catch. Our analysis (Minnesota CUE 1949-1980) also indicated a significant correlation (r=0.61, P $\lt$ 0.01) between brood stock abundance and progeny produced 5 years later. This analysis indicated that 38% of the variation in progeny catch was attributable to brood stock abundance five years earlier. This finding covers both the period of decline (1949-1963) and recovery (1964-1980).

The combined effect of spring water levels and brood stock abundance was measured by Chevalier (1977) using multiple regression analysis. The correlation coefficients between progeny abundance and both spring water levels and brood stock abundance differed significantly from zero and the addition of either improved the model; that is, the addition of either variable to the regression reduced the amount of unexplained variation in progeny abundance. The multiple regression explained 65% of the variation in progeny abundance. A similar analysis using only Minnesota CUE for the years 1949-80 indicated that brood stock abundance was the only factor that improved the model significantly.

Over exploitation was first mentioned as a cause of the walleye decline by Bonde, et al (1965) who noted that the abundance of fast growing, small fish, coupled with declining fishing success, was an indication of overfishing. Total commercial production of walleye at that time had not declined but CUE was lower and effort had increased. In a later study, Chevalier (1977) documented a significant decrease in catch per unit of effort and noted that the commercial harvest of all species from Rainy Lake exceeded the yield predicted from the MEI (Ryder, 1965) by 45% between 1924 and 1975. Adams and Olver (1977) estimated that a sustainable percid yield may approximate one-third the allowable total yield estimated from the MEI

-16-

in similar waters. Commercial production from Ontario waters had been about at that level before walleye abundance declined. Tagging studies in Rainy Lake in the late 1950's indicated that sport fishing harvests of walleye approximated commercial production (Bonde, et al. 1965). Thus for the lake as a whole total walleye harvest may have been nearly twice the level that could be sustained.

Since 1949, the walleye population of Minnesota waters of Rainy Lake has gone through a period of decline followed by a period of recovery. This indicates that the walleye population was able to sustain itself over time against the average amount of fishing effort directed against it between 1949 and 1980. Fishing effort affects CUE not only in the year in which it occurs but in subsequent years as well. The cumulative percentage departures from the 31-year means (1949-1980) for CUE and fishing effort were plotted against each other (Fig. 7) and show that between 1949 and 1962 the cumulative force of exploitation (fishing effort) on the population was increasing while CUE was decreasing gradually through 1970. The lowest CUE occurred eight years after the maximum force of fishing effort. CUE began to rise as fishing effort declined. The eight-year lag is very near the time it takes female walleye to mature at this latitude (Schupp, 1974).

-17-

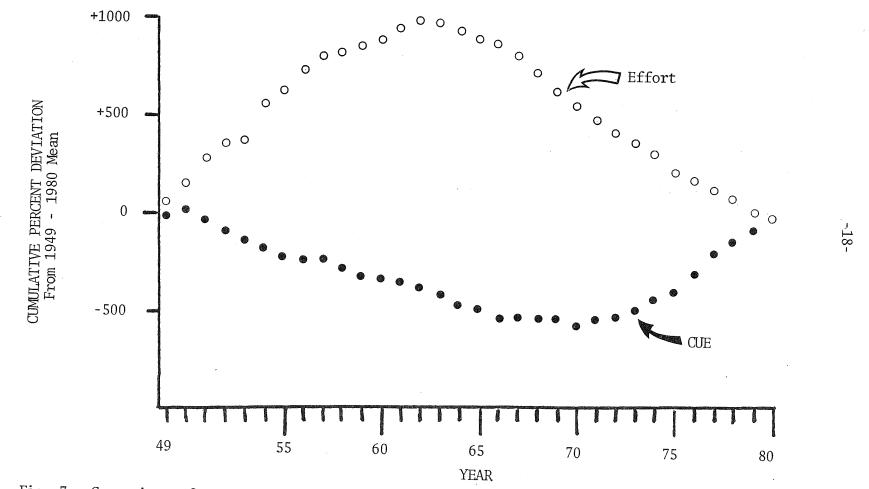



Fig. 7. Comparison of cumulative percentage deviation from 1949-1980 means for commercial fishing effort (footdays) and for catch in pounds per 1000 feet of 4" gillnet for Minnesota waters of Rainy Lake.

#### Spring Water Levels in Namakan Reservoir

Spring water levels for the Namakan Reservoir have tended to be lower and more consistent from year to year under the 1969 rule than the previous rule (1957). Spring water levels at time of spawning for the period 1969-1980 averaged 1114.5 feet, seven-tenths of a foot lower than during the period 1957-1968 (Table 3). Variances of the two sets of spring water levels differed significantly (F=1.73, P< 0.05).

Year to year variations in spring water levels on Namakan Reservoir were significantly greater than those observed for Rainy Lake. For the 38 year period (1942-1979) the standard deviation for spring water levels for Namakan Reservoir was 2.12 feet compared to 1.18 feet for Rainy Lake (F=1.70, P<0.01). The greater variation noted on Namakan Reservoir can be attributed to its smaller capacity (1/3 that of Rainy Lake) and the use of the reservoir as storage for Rainy Lake.

## Walleye and Northern Pike Abundance in Namakan Reservoir

The relative abundance of walleye and northern pike varied considerably from lake to lake (Table 4). In each lake gillnet catches of walleye were higher than those of northern pike. An average of 7.8 walleyes were caught for each northern pike from Kabetogama Lake (70 lifts in 6 nettings). The ratio for Crane Lake was 4.1 walleye per northern pike (41 lifts in 6 nettings) and for Namakan Lake, 3.9 (89 lifts in 6 nettings). The lowest ratio of walleye to northern pike was for Sand Point Lake, where walleye outnumbered northern pike by a ratio of 3.3 to 1 (19 lifts in 3 nettings) (Table 4). Average abundance of walleye for all netting periods was highest

| Year | Mean Level<br>(May 1 -<br>May 15) | Mean Level<br>(Ice Out Date<br>+ 14 Days) | Year | Mean Level<br>(May 1 -<br>May 15) | Mean Level<br>(Ice Out Date<br>+ 14 Days |
|------|-----------------------------------|-------------------------------------------|------|-----------------------------------|------------------------------------------|
| 1915 | 1110.3                            |                                           | 1948 | 1117.0                            |                                          |
| 1916 | 1116.9                            |                                           | 1949 | 1113.3                            |                                          |
| 1917 | 1110.0                            |                                           | 1950 | 1115.0                            |                                          |
| 1918 | 1108.7                            |                                           | 1951 | 1116.4                            |                                          |
| 1919 | 1110.6                            |                                           | 1952 |                                   | 1113.7                                   |
| 1920 | 1111.9                            |                                           | 1953 |                                   | 1111.4                                   |
| 1921 | 1111.6                            |                                           | 1954 |                                   | 1118.0                                   |
| 1922 | 1113.1                            |                                           | 1955 |                                   | 1111.2                                   |
| 1923 | 1109.9                            |                                           | 1956 |                                   | 1113.8                                   |
| 1924 | 1107.5                            |                                           | 1957 |                                   | 1115.1                                   |
| 1925 | 1112.6                            |                                           | 1958 |                                   | 1110.5                                   |
| 1926 | 1109.8                            |                                           | 1959 |                                   | 1112.4                                   |
| 1927 | 1119.4                            |                                           | 1960 |                                   | 1116.8                                   |
| 1928 | 1109.8                            |                                           | 1961 |                                   | 1115.6                                   |
| 1929 | 1115.4                            |                                           | 1962 |                                   | 1113.5                                   |
| 1930 | 1108.3                            |                                           | 1963 |                                   | 1115.2                                   |
| 1931 | 1110.5                            |                                           | 1964 |                                   | 1116.4                                   |
| 1932 | 1114.0                            |                                           | 1965 |                                   | 1115.0                                   |
| 1933 | 1114.2                            |                                           | 1966 |                                   | 1119.0                                   |
| 1934 | 1114.6                            |                                           | 1967 |                                   | 1115.5                                   |
| 1935 | 1112.8                            |                                           | 1968 |                                   | 1117.8                                   |
| 1936 | 1112.0                            |                                           | 1969 |                                   | 1115.3                                   |
| 1937 | 1113.1                            |                                           | 1970 |                                   | 1115.6                                   |
| 1938 | 1118.7                            |                                           | 1971 |                                   | 1116.1                                   |
| 1939 | 1111.9                            |                                           | 1972 |                                   | 1114.7                                   |
| 1940 | 1110.1                            |                                           | 1973 |                                   | 1112.7                                   |
| 1941 | 1113.0                            |                                           | 1974 |                                   | 1115.4                                   |
| 1942 | 1114.4                            |                                           | 1975 |                                   | 1115.6                                   |
| 1943 | 1112.5                            |                                           | 1976 |                                   | 1113.7                                   |
| 1944 | 1114.7                            |                                           | 1977 |                                   | 1110.7                                   |
| 1945 | 1118.5                            |                                           | 1978 |                                   | 1114.5                                   |
| 1946 | 1117.4                            |                                           | 1979 |                                   | 1117.0                                   |
| 1947 | 1116.5                            |                                           | 1980 |                                   | 1112.8                                   |

•

Table 3. Mean Spring Water Levels on Namakan Reservoir 1915-1980

|      |            |              | Walleye       |                | Northern Pike |                |
|------|------------|--------------|---------------|----------------|---------------|----------------|
| Year | Lake       | No.<br>Lifts | CUE<br>Number | CUE<br>Weight  | CUE<br>Number | CUE<br>Weight  |
| 1953 | Crane      | 16           | 6.1           | 5.0            | 1.1           | 2.4            |
| 1967 | ¥ ¥        | 3            | 24.0          | 886, 665 880,  | 4.3           | ۵۳۵, ۵۳۵, ۵۳۵, |
| 1970 | 8.8        | 6            | 12.7          | 9.5            | 1.0           | 2.6            |
| 1973 | \$ F       | 4            | 15.3          | 16.5           | 3.5           | 12.1           |
| 1976 | ¥ ¥        | 6            | 12.8          | 8.6            | 4.0           | 16.3           |
| 1980 | 11         | б            | 9.8           | 6.8            | 5.3           | 14.3           |
|      |            |              |               |                |               |                |
| 1946 | Kabetogama | 32           | 12.3          |                | 1.2           |                |
| 1966 | 17         | 8            | 9.4           | 13.9           | 1.6           | 5.3            |
| 1970 | ş 9        | 12           | 14.1          | 12.4           | 1.5           | 3.2            |
| 1973 | 4 f        | 6            | 20.8          | 28.9           | 5.3           | 13.6           |
| 1977 | ¥ ¥        | б            | 12.2          | 15.5           | 1.7           | 4.1            |
| 1980 | P (        | 6            | 15.0          | 14.5           | 1.0           | 6.6            |
| 1962 | Namakan    | 24           | 7.3           | ° 4 <b>.</b> 5 | 4.0           | 7.1            |
| 1966 | Ŧ Ŧ        | 8            | 5.0           | 6.4            | 1.2           | 016, dog. 666  |
| 1970 | ÷ ?        | 15           | 9.1           | 6.2            | 0.9           | 1.9            |
| 1973 | . 99       | 15           | 4.9           | 4.1            | 1.2           | 3.2            |
| 1975 | ¥ ¥        | 15           | 9.9           | 7.6            | 2.0           | 6.4            |
| 1978 | **         | 12           | 12.3          | 9.5            | 1.9           | 5.6            |
| 1970 | Sand Point | 7            | 4.8           | 2.2            | 1.8           | 4.7            |
| 1973 | 8.8        | 5            | 11.2          | 9.6            | 2.8           | 9.2            |
| 1979 | 9 9        | 7            | 7.1           | 5.5            | 2.1           | 6.0            |

Table 4. Walleye and Northern Pike abundance in the Lakes of Namakan Reservoir as measured by Minnesota Experimental Gillnets, 1936-1980

in Crane Lake (13.5/lift), followed closely by Kabetogama (12.9/lift) and then Namakan (8.1/lift), and Sand Point (7.7/lift) lakes. Northern pike were most abundant in Crane Lake (3.2/lift) followed in order by Sand Point (2.2/lift), Namakan (2.1/lift) and Kabetogama (1.7/lift) lakes.

# Namakan Reservoir Spring Water Levels and Their Effect Upon Subsequent Walleye and Northern Pike Abundance

Field examinations of Namakan Reservoir walleye spawning areas indicated that all lakes likely have sufficient high quality walleye spawning substrate at water levels within those specified by the rule curve and probably at water levels above and below the allowable range  $\frac{3/4}{}$ .

There are few potential northern pike spawning areas and their availability to spawning fish is affected by water levels. Only Kabetogama Lake has ample shallow, vegetated flowages conducive to northern pike spawning. Areas on the other lakes are typically small and restricted to the heads of bays and inlets.

A positive relationship between spring water levels and subsequent abundance of either northern pike or walleye in any of the four reservoir lakes is not indicated by the evidence available. Northern pike abundances as determined by periodic test netting CUE appeared to vary over time independent of spring water levels two to four years 7/ prior to the respective nettings (Table 5). Walleye indices of abundance were not correlated with mean spring water levels two, three and four years prior to netting.

If the distribution of aquatic vegetation necessary for successful

8

<sup>7/</sup> Two, three, and four year old fish comprise the majority of walleye and northern pike caught in experimental gillnets with the modal age generally three.

Table 5. Coefficients of correlation (r) between mean spring water levels and gillnet indices (no./lift) of walleye and northern pike two, three, and four years later for lakes of the Namakan Reservoir

| Sp<br>Years<br>Netted |                                                    |                                                                                                                     | rs. prior to<br>4 Years                                                                                                                                                                 |
|-----------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                     | -0.247                                             | +0.498                                                                                                              | +.278                                                                                                                                                                                   |
| 6                     | -0.915 <u>-</u> /                                  | -0.535                                                                                                              | -0.441                                                                                                                                                                                  |
| 6                     | -0.011                                             | +0.057                                                                                                              | +0.303                                                                                                                                                                                  |
| 6                     | +0.168                                             | +0.487                                                                                                              | +0.117                                                                                                                                                                                  |
| 6                     | -0.563                                             | +0.111                                                                                                              | +0.363                                                                                                                                                                                  |
| 6                     | -0.183                                             | -0.939 <u>a</u> /                                                                                                   | -0.783 <u>b</u> /                                                                                                                                                                       |
| 3                     | -0.070                                             | +0.206                                                                                                              | -0.819                                                                                                                                                                                  |
| 3                     | -0.004                                             | +0.270                                                                                                              | -0.779                                                                                                                                                                                  |
|                       | Years<br>Netted<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | Years       2 Years $6$ $-0.247$ $6$ $-0.915 = 4/$ $6$ $-0.011$ $6$ $+0.168$ $6$ $-0.563$ $6$ $-0.183$ $3$ $-0.070$ | Netted         6 $-0.247 = 4/$ $+0.498 = -0.535$ 6 $-0.915 = 4/$ $-0.535$ 6 $-0.011 = +0.057$ 6 $+0.168 = +0.487$ 6 $-0.563 = +0.111 = 4/$ 6 $-0.183 = -0.939 = 4/$ 3 $-0.070 = +0.206$ |

-23-

northern pike spawning was dependent upon summer and fall water levels, then the amount of water rise in spring would determine whether or not these areas were flooded. Northern pike abundance indices, when compared to the average water level rise during the probable spawning period two, three, and four years earlier, show no consistent relationships (Table 6) although in two of the lakes, Kabetogama and Sand Point, a significant correlation was found for four-year-old fish.

There was no apparent correlation between walleye abundance and feet of rise during the spawning period. During field investigations in 1978-79 it was found that there was good spawning substrate available to walleye at all water levels within normal operational limits. $\frac{4}{5}$ 

Table 6. Coefficients of correlation (r) between water rise in spring and gillnet indices (no./lift) of walleye and northern pike two, three, and four years later for lakes of the Namakan Reservoir

|                 | Years<br>Netted | 2 Years | 3 Years | 4 Years             |
|-----------------|-----------------|---------|---------|---------------------|
| Crane Lake      |                 |         |         |                     |
| Walleye         | 5               | +0.245  | +0.728  | -0.017              |
| Northern Pike   | 5               | +0.706  | -0.622  | -0.097              |
|                 | 5               | .0.700  | 0.044   | 0.057               |
| Kabetogama Lake |                 |         |         |                     |
| Walleye         | 5               | -0.481  | -0.096  | +0.650              |
| Northern Pike   | 5               | -0.507  | +0.190  | $+0.938\frac{a}{2}$ |
| · •             |                 |         |         |                     |
| Namakan Lake    |                 |         |         |                     |
| Walleye         | 6               | -0.457  | -0.073  | -0.007              |
| Northern Pike   | 6               | +0.573  | +0.036  | -0.557              |
|                 |                 |         |         |                     |
| Sand Point Lake |                 |         |         |                     |
| Walleye         | 3               | +0.094  | -0.411  | +0.870 <sub>b</sub> |
| Northern Pike   | 3               | +0.137  | -0.350  | +0.901              |

**b**/ P**<**0.05

## DISCUSSION

Walleye abundance in Minnesota waters of Rainy Lake has increased significantly from the low levels of the mid-1960's. The CUE for commercial gillnets and for testnets has increased steadily since 1963, growth rates have declined, and the mean age of walleye caught has increased. The recovery followed implementation of a Minnesota management policy which sought to: (1) optimize spring water levels for walleye spawning; (2) reduce exploitation through conversion of commercial gillnets from 4-inch stretch mesh to 5¼-inch mesh and the closure of Black Bay to sport fishing during the early part of the season; (3) increase walleye stock through a resumption of walleye fry stocking in 1967; and (4) provide low-water spawning substrate by installing artificial spawning reefs in Black Bay. The increase in abundance cannot be **specifically associated with any single measure**.

Water levels at spawning time were implicated as a possible cause of the lakewide decline in walleye abundance (Johnson, et al. 1967; Chevalier, 1977) through correlation analyses. These analyses could not be performed for the years following the earlier investigations because commercial gillnet CUE from Minnesota waters provide the only continuous data series available that covers both the periods of declining and increasing walleye abundance. During the years walleye abundance was declining, only 20% of the commercial walleye production from Rainy Lake came from Minnesota waters. Correlation analyses using only Minnesota data, through 1969, would not have implicated water levels as a possible cause of the decline.

The recovery of the walleye population cannot be attributed to higher

LEGISLATIVE REFERENCE LIBRARY STATE OF MINNESOTA

8

#### -26-

spring water levels caused by the 1969 rule curve adjustment since it did not establish minimum lake levels sufficient for improving spawning conditions (Chevalier, 1977). Mean levels at time of spawning have been slightly lower since 1969 than they were in the preceding two decades. Johnson, et al. (1967) and Chevalier (1977) pointed out that only the upper levels of the rule curve range (1106.8) were considered satisfactory for properly inundating spawning areas. Thus, the lack of a correlation between abundance and spring water levels is not surprising and does not preclude a beneficial influence of high water levels on walleye spawning. The population may have recovered more rapidly if higher water levels had been attained consistently.

The combination of more efficient commercial gear and increased harvests by sport fishing could have been important factors in the decline. The use of nylon gillnets in Rainy Lake began in the late 1940's (Bonde, et al, 1961). Regier, et al, (1969) suggested that the introduction of more efficient nylon gillnets may have been a major factor in the collapse of the Lake Erie walleye fishery in the late 1950's. Sport fishing has also increased at a high rate after World War II in Minnesota lakes. A five-fold increase in sport fishing effort was observed at Lake Winnibigoshish, Minnesota between 1939 and 1958 and the walleye harvest doubled (Johnson and Johnson, 1971).

The evidence for over-exploitation by the combined commercial and sport fisheries as a cause of the decline in walleye abundance is circumstantial. Chevalier (1977) pointed out that commercial yields had exceeded yields predicted from the MEI for many years. An inverse relationship between fishing effort and CUE is considered a classic sign of overfishing and is

-27-

evident in the commercial fishing statistics for Minnesota waters of Rainy Lake (Fig. 7). The faster rate of recovery of walleye abundance from parts of the lake open to commercial fishing (Fig. 4) could be expected if abundance had been more depressed in areas subjected to both sport and commercial fishing. The decline probably began before the study by Bonde, et al. (1961) since complaints about the small size of walleye being caught led to that study. Increased recruitment of young fish is a common compensatory mechanism in exploited fish populations.

At minimum population levels in the 1960's, commercial fishing became uneconomical and several fishermen retired. Regulation changes in 1964 permitted the issuance of new licenses only for mesh sizes larger than 5¼-inches. These actions coupled with the conversion of Canadian gillnet mesh sizes from 4-to 4¼-inches between 1969 and 1971 and a ban on commercial fishing in Ontario waters of the East Arm from 1972 to 1974 reduced pressures on the East Arm subpopulation, and may have allowed it to recover. The arguments for over-exploitation as a cause of the decline appear to be at least as strong as those for spring water levels.

Spring water levels alone cannot explain the variations which have occurred in walleye and northern pike populations in the Namakan Reservoir. The variations observed in abundance indices could not be correlated with mean spring water levels two, three, and four years earlier. There is some evidence that the amount of rise in water level during the first half of May is beneficial to the reproduction of northern pike. Data for water levels are not conclusive and water levels are not the only factor which could influence these populations.

The inability to identify a relationship between walleye abundance and

ġ

-28-

spring water levels is not surprising given the extent of suitable spawning shoals of various depths in all lakes. The lack of an apparent correlation for northern pike populations with spring water levels was surprising. Considering the apparent scarcity of suitable spawning areas except at very high levels, a better correlation would have been expected.

A partial explanation of this observation was found in the May 1978 examination of Kabetogama Lake. Although walleye had apparently completed spawning, we saw northern pike exhibiting spawning behavior on newly flooded vegetation and found eggs to confirm that spawning had occurred. The relative timing of spawning for the two species is the opposite of that which is usually observed in other Minnesota lakes. Kallemeyn (personal communication) examined 93 female pike after May 16, 1981 and 47% were still carrying ovaries full of eggs. It would be of interest to determine whether the northern pike in this reservoir system tend to consistently spawn later than is observed in other lakes.

Water levels observed in recent years have been quite low although this is probably not due to the 1969 regulations so much as it is to low precipitation especially in 1976-77 and 1978-79. The regulations anticipate both a substantial spring runoff to fill the reservoirs and ample spring precipitation, a situation which is normal. The control structure of Namakan Reservoir cannot be regulated to change water levels quickly, thus precise control of water levels for optimum spawning is probably not possible.

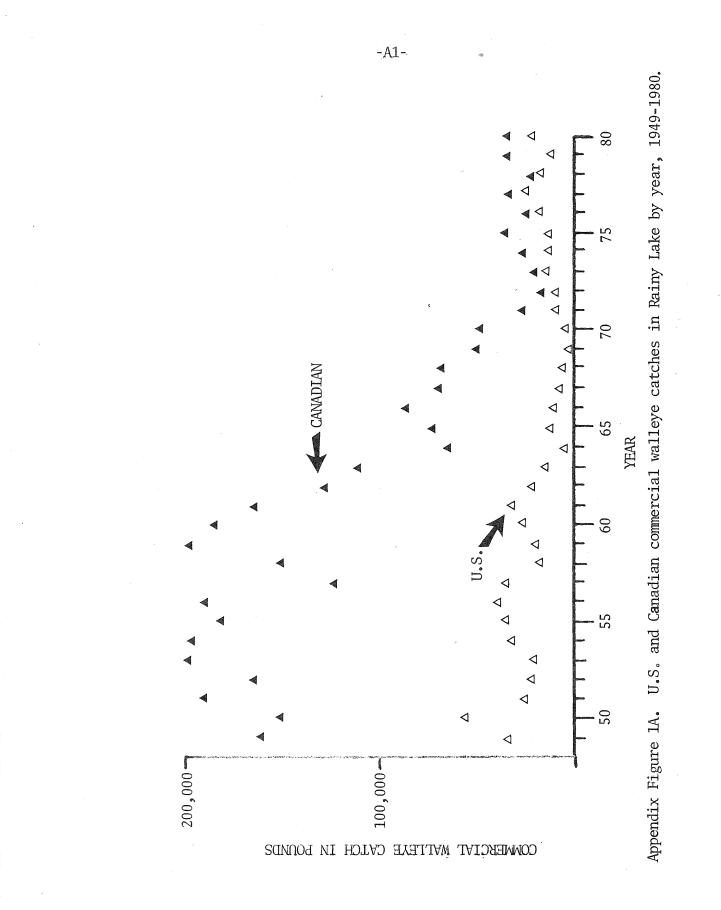
Northern pike populations have remained relatively stable under a variety of spring water levels regimes. Attempting to increase northern pike abundance through higher spring water levels should be carefully considered as a management goal since any gain in northern pike biomass may be at the

-29-

expense of walleye biomass, and these lakes are regarded by fishermen as primarily walleye fisheries.

\$

#### LITERATURE CITED


- Adams, G.F. and C.H. Olver. 1977. Yield properties and structure of boreal percid communities in Ontario. J. Fish. Res. Board Can. 34:1613-1625.
- Bonde, T.J.H., C.A. Elsey, and B. Caldwell. 1961. A preliminary investigation of Rainy Lake. 1959. Minn. Dep. Conserv., Div. Game Fish., Sect. Res. Plann. Invest. Rep. 234:43p.

.1965. A second Rainy Lake report, 1957-1963. Minn. Dep. Conserv., Div. Game Fish, Sect. Res. Plann. Invest. Rep. 284:44p.

- Chevalier, J.R. 1977. Changes in walleye (Stizostedion vitreum vitreum) population in Rainy Lake and factors in abundance, 1924-75. J. Fish. Res. Board Can. 34:1696-1702.
- Ernst, D. and T.C. Osborn. 1980. The summer sportfishery in Voyageurs National Park and surrounding waters for 1977 and 1978. Minn. Dep. Nat. Res., Div. Fish Wild., Sect. Fish Invest. Rep. 370:27+p.
- Johnson, F.H. 1961. Walleye egg survival during incubation on several types of bottom in Lake Winnibigoshish, Minnesota, and connecting waters. Trans. Am. Fish. Soc. 90:312-322.
- \_\_\_\_\_\_.1967. Status of the Rainy Lake walleye fishery, 1966. Minn. Dep. Conserv., Div. Game Fish Sect. Res. Plann. Invest. Rep. 295:16p.
- Johnson, F.H. and M.W. Johnson. 1971. Characteristics of the 1957-58 and 1939 sport fishery of Lake Winnibigoshish and connecting waters with special emphasis on the walleye population and catch. Minn. Dep. Nat. Res., Sect. Fish Invest. Rep. 312;26p.
- Johnson, F.H., R.D. Thomasson, and B. Caldwell. 1966. Status of the Rainy Lake walleye fishery, 1965. Minn. Dep. Conserv., Div. Game Fish, Sect. Res. Plann. Invest. Rep. 292:22p.
- Regier, H.A., V.C. Applegate, R.A. Ryder et al. 1969. The ecology and management of the walleye in western Lake Erie. Great Lakes Fish. Comm. Tech. Rep. 15:101p.
- Ryder, R.A. 1965. A method for estimating the potential fish production of north-temperate lakes. Trans. Am. Fish. Soc. 94-214-218.
- Schupp, D.H. 1974. The Fish Population Structures and Angling Harvest of Lake of the Woods, Lake of the Woods, Minnesota 1968-70. Minn. Dep. Nat. Res., Div. Fish Wildl., Sect. Fish Invest. Rep. 324:16p.
- Sharp, R.W. 1941. Report of the investigation of biological conditions of Lakes Kabetogama, Namakan, and Crane as influenced by fluctuating water levels. Minn. Dep. Conserv., Div. Game Fish., Sect. Fish. Res. Invest. Rep. 30:17+p.

## ACKNOWLEDGEMENTS

The authors would like to thank Connie Daigle for her able assistance on many aspects of data summary and figure preparation, W.J. Scidmore, for his editorial review and comments, and Bruce Caldwell (Ontario Ministry of Natural Resources) for his cooperation. This report was typed by R. Truman, V. Agenter, and S. Gooch.



|                                        | 19          | 59          | 196         | 53          | 196         | 5           | 196         | 56          | 190         | 57          | 19          | 70          | Parago anto for fille di ma |
|----------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------------------|
|                                        |             | Lifts)      |             | lifts)      |             | ifts)       |             | Lifts)      |             | Lifts)      | (25 I       | lifts)      |                             |
|                                        | No.         | Lbs.        |                             |
| Species                                | per<br>lift | Program (12) Standa         |
| Sturgeon                               | _           | -           | -           | -           | 0.02        | 0.01        | -           | -           | -           |             | -           | -           |                             |
| Lake Herring                           | ,7.9        | 4.9         | 8.2         | 4.1         | 2.5         | 1.1         | 4.9         | 2.4         | 5.1         | 2.0         | 1.4         | 1.0         |                             |
| Lake Whitefish                         | 0.2         | 0.2         | -           | -           | 0.2         | 0.2         | -           | -           | -           | -           | -           | -           |                             |
| Northern Pike                          | 2.6         | 4.8         | 5.5         | 9.0         | 3.1         | 5.0         | 2.1         | 3.5         | 3.5         | 6.8         | 2.9         | 4.9         |                             |
| White Sucker                           | 2.9         | 4.8         | 2.7         | 3.6         | 2,1         | 3.2         | 1.7         | 2.3         | 2.2         | 3.9         | 1.4         | 2.4         |                             |
| Sturgeon Sucker                        | 0.2         | 0.8         | · •         | -           | 0.02        | 0.03        | 0.1         | 0.2         | -           | -           | -           |             | í                           |
| N. Redhorse                            |             | -           | -           | -           | -           | -           | <u>+ _</u>  | -           | -           | -           | -           | -           |                             |
| Brown Bullhead                         | -           |             | -           | -           | -           | -           | -           | -           | <b>m</b> ,  | -           | -           | -           |                             |
| Burbot                                 | 0.8         | 1.4         | 0.3         | 0.4         | 0.1         | 0.1         | 0.2         | 0.3         | 0.1         | 0.1         | 0.04        | 0.07        |                             |
| Black Crappie                          | -           | -           |             | -           | -           |             | -           | -           | -           |             | 0.04        | 0.004       |                             |
| Rock Bass                              | 0.3         | 0.1         | 0.7         | 0.1         | 0.9         | 0.3         | 0.5         | 0.1         | 0.7         | 0.2         | 0.3         | 0.1         |                             |
| Smallmouth Bass                        | 0.2         | 0.2         | 0.1         | 0.1         | 0.1         | 0.2         | 0.1         | 0.02        | 0.07        | 0.03        | 0.04        | 0.05        |                             |
| Yellow Perch                           | 9.8         | 3.5         | 8.8         | 2.0         | 4.1         | 0.9         | 4.0         | 0.8         | 2.3         | 0.7         | 3.0         | 1.0         |                             |
| Sauger                                 | 4.1         | 1.2         | 4.9         | 1.4         | 6.2         | 1.9         | 9.7         | 2.6         | 10.1        | 2.7         | 4.4         | 1.2         |                             |
| Walleye                                | 10.3        | 6.5         | 2.8         | 1.5         | 5.1         | 3.0         | 4.2         | 2.5         | 4.2         | 2.2         | 2.6         | 1.8         |                             |
| ************************************** |             |             |             |             |             |             |             |             |             |             | •           |             |                             |

Appendix Table 1A. Minnesota experimental gillnet catches, East Arm, Rainy Lake, August, 1959-1980,

-A2-

| and any second |                                    |                               |                                     |                                    |                                    |                                     |                                    |                                     |                                    |                                     |                                    |                                     |      |
|------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|-------------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|------|
|                                                                                                                  | 197<br>(65 I<br>No.<br>per<br>lift | Zifts)<br>Lbs.<br>per<br>lift | 1972<br>(15 I<br>No.<br>per<br>lift | 2<br>Lifts)<br>Lbs.<br>per<br>lift | 197<br>(44 I<br>No.<br>per<br>1ift | /3<br>Lifts)<br>Lbs.<br>per<br>lift | 197<br>(41 I<br>No.<br>per<br>1ift | /4<br>Lifts)<br>Lbs.<br>per<br>lift | 197<br>(15 I<br>No.<br>per<br>lift | /5<br>Lifts)<br>Lbs.<br>per<br>lift | 197<br>(25 I<br>No.<br>per<br>1ift | 76<br>Lifts)<br>Lbs.<br>per<br>lift |      |
| Sturgeon                                                                                                         | -                                  | -                             | -                                   | -                                  | -                                  | -                                   | -                                  | -                                   |                                    |                                     | -                                  | -                                   |      |
| Lake Herring                                                                                                     | 1.5                                | 0.9                           | 3.8                                 | 1.5                                | 0.4                                | 0.2                                 | 2.9                                | 0.9                                 | 1.6                                | 0.8                                 | 0.5                                | 0.2                                 |      |
| Lake Whitefish                                                                                                   | -                                  | -                             | -                                   |                                    | -                                  | -                                   | 50                                 | -                                   | 63                                 | -                                   | 922                                | -                                   |      |
| Northern Pike                                                                                                    | 2.0                                | 3.7                           | 2.7                                 | 5.0                                | 3.1                                | 7.2                                 | 3.5                                | 7.2                                 | 2.8                                | 5.4                                 | 3.4                                | 5.6                                 |      |
| White Sucker                                                                                                     | 0.9                                | 1.2                           | 1.3                                 | 2.0                                | 2.8                                | 4.2                                 | 2.4                                | 3.8                                 | 1.9                                | 2.2                                 | 3.0                                | 3.8                                 | · ·  |
| Sturgeon Sucker                                                                                                  | -                                  | -                             | -                                   | -                                  | -                                  | -                                   | -                                  | -                                   | -                                  | -                                   | -                                  | -                                   | -A3- |
| N. Redhorse                                                                                                      | -                                  | -                             | -                                   | -                                  | -                                  | -                                   | -                                  | <b>—</b>                            | -                                  | -                                   | -                                  | -                                   | 1    |
| Brown Bullhead                                                                                                   | -                                  | -                             | <b></b> ,<br>9                      | -                                  | -                                  | -                                   | -                                  | -                                   |                                    | -                                   | <b>,</b>                           | -                                   |      |
| Burbot                                                                                                           | 0.04                               | 0.2                           | 0.4                                 | 0.6                                | 0.1                                | 0.2                                 | 0.04                               | 0.08                                | 0.2                                | 0.2                                 | -                                  | -                                   | ja   |
| Black Crappie                                                                                                    | 0.04                               | 0.004                         | -                                   | -                                  | -                                  | -                                   |                                    |                                     | -                                  | -                                   | <b>8</b> .                         | -                                   |      |
| Rock Bass                                                                                                        | -                                  | -                             | 0.3                                 | 0.1                                | 0.4                                | 0.1                                 | 0.2                                | 0.1                                 | 0.4                                | 0.2                                 | 0.6                                | 0.09                                |      |
| Smallmouth Bass                                                                                                  | -                                  |                               | 0.04                                | 0.05                               | 0.04                               | 0.004                               | 0.2                                | 0.2                                 | 0.8                                | 0.8                                 | 0.3                                | 0.2                                 |      |
| Yellow Perch                                                                                                     | 2.7                                | 0.8                           | 4.8                                 | 0.7                                | 7.1                                | 1.3                                 | 6.7                                | 1.1                                 | 7.0                                | 1.0                                 | 7.0                                | 1.1                                 |      |
| Sauger                                                                                                           | 2.6                                | 0.9                           | 5.2                                 | 1.6                                | 4.6                                | 1.3                                 | 5.0                                | 1.2                                 | 6.1                                | 1.7                                 | 4.3                                | 1.4                                 |      |
| Walleye                                                                                                          | 1.8                                | 1.7                           | 2.3                                 | 2.1                                | 4.5                                | 4.4                                 | 6.1                                | 5.5                                 | 4.9                                | 4.7                                 | 4.3                                | 4.2                                 |      |
|                                                                                                                  |                                    |                               |                                     |                                    |                                    |                                     |                                    |                                     |                                    |                                     |                                    |                                     |      |

Appendix Table 1A. Minnesota experimental gillnet catches, East Arm, Rainy Lake, August, 1959-1980 (continued)

|                 | 197<br>(25 I       | 7<br>lifts)         | 197<br>(25 I       | 78<br>Lifts)        | 197<br>(25 I       | 79<br>Lifts)        | 198<br>(25 I       | 30<br>Lifts)        | inalisan dara Konin Balan Konin atau Koningan Ko | generalitet igterstynn g€ster gterssynning | nan di san d | Period and an and a second |
|-----------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------|
| Species         | No.<br>per<br>lift | Lbs.<br>per<br>lift | No.<br>per<br>lift | Lbs.<br>per<br>lift | No.<br>per<br>lift | Lbs.<br>per<br>lift | No.<br>per<br>lift | Lbs.<br>per<br>lift |                                                  |                                            |                                                                                                                | 1 I - ,                    |
| Sturgeon        | -                  |                     | -                  | -                   | -                  | -                   | -                  | -                   |                                                  |                                            |                                                                                                                |                            |
| Lake Herring    | 0.1                | 0.04                | 1.4                | 0.3                 | 0.2                | 0.1                 | 0.2                | 0.2                 |                                                  |                                            |                                                                                                                |                            |
| Lake Whitefish  | 403),              | -                   | -                  | -                   | -                  | -                   | -                  | -                   |                                                  |                                            |                                                                                                                |                            |
| Northern Pike   | 4.3                | 8.4                 | 3.4                | 7.8                 | 3.6                | 8.7                 | 4.8                | 8.5                 |                                                  | T                                          |                                                                                                                |                            |
| White Sucker    | 2.2                | 3.8                 | 2.7                | 3.7                 | 2.8                | 5.0                 | 2.7                | 4.1                 |                                                  |                                            |                                                                                                                |                            |
| Sturgeon Sucker | ***                | 639                 | 0.1                | 0.3                 | tea                | -                   | 884                | -                   |                                                  |                                            |                                                                                                                | -<br>-                     |
| N. Redhorse     | φu                 | 5845                | 659                | -                   | -                  | -                   | 0.04               | 0.01                |                                                  |                                            |                                                                                                                | - A4 -                     |
| Brown Bullhead  | 0.5                | 0.1                 | 0.1                | 0.02                | 0.7                | 0.1                 | 0.6                | 0.2                 |                                                  |                                            |                                                                                                                |                            |
| Burbot          | 0.08               | 0.08                | 0.04               | 0.05                |                    | -                   | 0.04               | 0.004               |                                                  |                                            |                                                                                                                | •                          |
| Black Crappie   | 0.1                | 0.01                | 0.2                | 0.04                | 0.2                | 0.08                | 0.2                | 0.1                 |                                                  |                                            |                                                                                                                |                            |
| Rock Bass       | 0.2                | 0.4                 | 0.5                | 0.3                 | 1.0                | 0.4                 | 1.3                | 0.4                 |                                                  |                                            |                                                                                                                |                            |
| Smallmouth Bass | 0.4                | 0.2                 | 0.4                | 0.2                 | 0.6                | 0.5                 | 0.4                | 0.2                 |                                                  |                                            |                                                                                                                |                            |
| Yellow Perch    | 7.0                | 1.5                 | 10.2               | 1.6                 | 8.0                | 1.2                 | 7.3                | 1.1                 |                                                  |                                            |                                                                                                                |                            |
| Sauger          | 3.2                | 1.1                 | 5.0                | 1.7                 | 5.9                | 1.7                 | 3.6                | 1.1                 |                                                  |                                            |                                                                                                                |                            |
| Walleye         | 3.7                | 3.5                 | 7.1                | 6.4                 | 6.5                | 6.8                 | 6.3                | 6.2                 |                                                  |                                            |                                                                                                                |                            |

Appendix Table 1A. Minnesota experimental gillnet catches, East Arm, Rainy Lake, August, 1959-1980 (continued)

|           |         | West End              |          | •                       | East End |        |  |
|-----------|---------|-----------------------|----------|-------------------------|----------|--------|--|
|           | Non-con | mercial Ne <b>t</b> t | ing Area | Commercial Netting Area |          |        |  |
| Date      | Sets    | No/Set                | Lbs/Set  | Sets                    | No/Set   | Lbs/Se |  |
| 8/4-14/70 | 9       | 3.2                   | 2.5      | 17                      | 2.2      | 1.3    |  |
| 8/9-25/71 | 9       | 2.6                   | 2.7      | 16                      | 1.4      | 1.1    |  |
| 8/7-18/72 | 9       | 3.6                   | 3.2      | 16                      | 1.8      | 1.5    |  |
| 8/6-16/73 | 9       | 4.1                   | 5.5      | 16                      | 4.1      | 3.9    |  |
| 8/5-20/74 | 9       | 4.0                   | 4.2      | 16                      | 7.3      | 6.3    |  |
| 8/4-14/75 | 9       | 5.4                   | 4.7      | 16                      | 4.6      | 4.8    |  |
| 8/2-13/76 | 9       | 4.0                   | 4.3      | 16                      | 4.4      | 4.1    |  |
| 8/8-19/77 | 9       | 5.0                   | 6.9      | 16                      | 2.9      | 1.7    |  |
| 8/7-17/78 | 9       | 3.8                   | 4.0      | 16                      | 8.9      | 7.7    |  |
| 8/6-14/79 | 9       | 6.1                   | 7.8      | 16                      | 6.8      | 6.2    |  |
| 8/4-14/80 | 9       | 8.6                   | 7.2      | 16                      | 5.1      | 5.6    |  |

Appendix Table 2A, Minnesota experimental gillnet catches of walleye in commercially netted areas and areas closed to commercial netting Rainy Lake, 1970 - 1980.

| Year | Tallied <sup>_/</sup><br>Footdays                  | Tallied <sup>a/</sup><br>Catch (lbs) | CUE<br>(1bs/1000 ft) | Reported <sup>b/</sup><br>Catch | Adjusted C<br>Footdays |
|------|----------------------------------------------------|--------------------------------------|----------------------|---------------------------------|------------------------|
| 1949 | 791,700                                            | 22,891                               | 28.9                 | 34,534                          | 1,181,803              |
| 1950 | 930,600                                            | 40,669                               | 43.0                 | 57,698                          | 1,327,942              |
| 1951 | 1,131,500                                          | 21,080                               | 16.0                 | 26,086                          | 1,613,520              |
| 1952 | 996,500                                            | 17,457                               | 17.5                 | 22,783                          | 1,288,427              |
| 1953 | 898,300                                            | 20,519                               | 22.8                 | 22,180                          | 962,750                |
| 1954 | 1,043,000                                          | 18,164                               | 17.4                 | 33,457                          | 1,902,937              |
| 1955 | 857,500                                            | 23,969                               | 28.0                 | 35,693                          | 1,261,572              |
| 1956 | 1,264,300                                          | 33,216                               | 26.3                 | 28,090                          | 1,433,316              |
| 1957 | 939,700                                            | 30,736                               | 32.0                 | 36,703                          | 1,135,111              |
| 1958 | 855,000                                            | 17,897                               | 20.9                 | 18,661                          | 883,640                |
| 1959 | 851,500                                            | 18,776                               | 22.1                 | 20,540                          | 919,803                |
| 1960 | 966,100                                            | 27,245                               | 28.2                 | 27,662                          | 966,100                |
| 1961 | 1,109,300                                          | 33,463                               | 30.1                 | 33,817                          | 1,109,300              |
| 1962 | 997,100                                            | 22,224                               | 22.3                 | 23,470                          | 1,041,585              |
| 1963 | 667,350                                            | 16,770                               | 25.1                 | 16,827                          | 667,350                |
| 1964 | 360,600                                            | 5,782                                | 16.0                 | 5,433                           | 360,600                |
| 1965 | 463,500                                            | 10,873                               | 23.5                 | 7,734                           | 463,500                |
| 1966 | 502,500                                            | 11,484                               | 22.8                 | 11,852                          | 502,500                |
| 1967 | 195,400                                            | 7,383                                | 37.8                 | 7,625                           | 195,400                |
| 1968 | 227,400                                            | 6,783                                | 29.8                 | 7,171                           | 227,400                |
| 1969 | 49,600                                             | 1,592                                | 32.1                 | 1,628                           | 49,600                 |
| 1970 | 156,400                                            | 3,827                                | 24.5                 | 3,913                           | 156,400                |
| 1971 | 212,100                                            | 9,667                                | 45.6                 | 9,670                           | 212,100                |
| 1972 | 267,500                                            | 9,941                                | 37.2                 | 10,104                          | 267,500                |
| 1973 | 324,500                                            | 15,318                               | 47.2                 | 15,641                          | 324,500                |
| 1974 | 266,100                                            | 14,878                               | 55.9                 | 14,923                          | 266,100                |
| 1975 | 312,800                                            | 14,737                               | 47.1                 | 14,930                          | 312,800                |
| 1976 | 266,000                                            | 19,025                               | 71.5                 | 19,178                          | 266,000                |
| 1977 | 4 <sup>1</sup> <sub>4</sub> d / 235,700<br>132,900 | 17,009<br>9,227                      | 72.2<br>69.4         | 26,503                          | 235,700                |

Appendix Table 3A. Catch of walleye in 4-inch mesh commercial gillnets, Minnesota waters of Rainy Lake, 1949-79.

a/ Taken from fishermen's monthly records, complete data only. b/ Total reported, may include 4",  $4\frac{1}{4}$ , 5 and  $5\frac{1}{4}$  inch mesh data. c/ Reported catch x .989 (to compensate for  $5\frac{1}{4}$ " mesh catch)  $\div$  C.P.E. d/  $4\frac{1}{4}$ " mesh gillnet. Switch was voluntary.

ţ,

| Tallied <sup>_A/</sup><br>Year Footdays                                     | Tallied <u>a</u> /<br>Catch (lbs) | CUE<br>(1bs/1000 ft) | Reported <u>b</u> /<br>Catch | Adjusted <u>C</u><br>Footdays |
|-----------------------------------------------------------------------------|-----------------------------------|----------------------|------------------------------|-------------------------------|
| 1978 227,800 $4\frac{1}{4}\frac{d}{110,700}$                                | 13,557<br>6,284                   | 59.5<br>56.8         | 19,914                       | 227,800                       |
| 1979 <u>e/</u><br>4 <sup>1</sup> <sub>4</sub> <u>d</u> / 171,900<br>105,000 | 8,911<br>4,414                    | 51.8<br>42.0         | 13,412<br>22,994             | 17 <b>1,</b> 900<br>308,400   |
| 1980 $4\frac{1}{4}\frac{d}{132,000}$                                        | 15,294<br>7,659                   | 58.0<br>49.6         |                              |                               |

Appendix Table 3A (con't). Catch of walleye in 4-inch mesh commercial gillnets, Minnesota waters of Rainy Lake, 1949-79.

a/ Taken from fishermen's monthly records, complete data only.

b/ Total reported, may include 4",  $4\frac{1}{4}$ , 5 and  $5\frac{1}{4}$  inch mesh data.

c/ Reported catch x .989 (to compenstate for  $5\frac{1}{4}$ " mesh catch ) : C.P.E.

 $\underline{d}$  4<sup>1</sup>/<sub>4</sub>" mesh gillnet. Switch was voluntary

e/ Decrease in effort due to illness of one fisherman.

Appendix Table 4A. Total commercial fish production by species, in pounds, Rainy Lake, 1963-77.

|                                                                  |                              | · · · · · · · · · · · · · · · · · · · |                              |                              |                              |
|------------------------------------------------------------------|------------------------------|---------------------------------------|------------------------------|------------------------------|------------------------------|
| Species /                                                        | 1963                         | 1964                                  | 1965                         | 1966                         | 1967                         |
| Walleye <sup>a/</sup><br>Ontario<br>Minnesota<br>Both            | 113,531<br>16,831<br>130,362 | 65,195<br>5,433<br>70,628             | 73,956<br>13,149<br>87,105   | 87,207<br>11,859<br>99,066   | 70,367<br>7,632<br>77,999    |
| Northern Pike<br>Ontario<br>Minnesota<br>Both                    | 129,259<br>10,336<br>139,595 | 136,669<br>5,923<br>142,592           | 153,895<br>9,610<br>163,505  | 124,891<br>8,588<br>133,479  | 134,947<br>4,365<br>139,312  |
| Tullibee <sup><u>b</u>/<br/>Ontario<br/>Minnesota<br/>Both</sup> | 80,014<br>23,872<br>103,886  | 77,964<br>12,178<br>90,142            | 54,538<br>14,522<br>69,060   | 59,338<br>13,014<br>72,352   | 82,373<br>10,280<br>92,653   |
| Whitefish<br>Ontario<br>Minnesota<br>Both                        | 25,769<br>12,069<br>37,838   | 36,838<br>25,108<br>61,946            | 27,109<br>17,263<br>44,372   | 24,174<br>15,028<br>39,202   | 44,800<br>17,242<br>62,042   |
| Perch<br>Ontario<br>Minnesota<br>Both                            | 1,646<br>215<br>1,861        | 1,767<br>27<br>1,794                  | 889<br>86<br>975             | 1,165<br>79<br>1,244         | 2,365<br>51<br>2,416         |
| Burbot<br>Ontario<br>Minnesota<br>Both                           | 81,950<br>38,908<br>120,858  | 95,188<br>20,412<br>115,600           | 55,504<br>14,202<br>69,706   | 32,995<br>10,357<br>43,352   | 41,974<br>6,972<br>48,946    |
| Sucker <sup>C/</sup><br>Ontario<br>Minnesota<br>Both             | 188,810<br>22,780<br>211,590 | 159,587<br>22,091<br>181,678          | 149,394<br>19,883<br>169,277 | 154,915<br>26,268<br>181,183 | 184,043<br>20,564<br>204,607 |
| Sturgeon <u>d</u> /<br>Ontario<br>Minnesota<br>Both              | 4,453<br><br>4,453           | 3,142<br>3,142                        | 1,275                        | 1,461<br><br>1,461           | 355<br><br>355               |

Year of Catch

a/ Includes sauger
 b/ Includes goldeye
 c/ White Sucker and redhorse Sucker
 d/ Includes Caviar

\$

## Appendix Table 4A, (con't)

| Species   | 1963    | 1964    | 1965    | 1966    | 1967    |
|-----------|---------|---------|---------|---------|---------|
| Crappie   |         |         |         |         |         |
| Ôntario   |         |         |         | 3,039   | 5,183   |
| Minnesota |         |         |         |         |         |
| Both      |         |         |         | 3,039   | 5,183   |
| Total     |         |         |         |         |         |
| Ontario   | 625,432 | 576,350 | 516,560 | 489,185 | 566,417 |
| Minnesota | 125,011 | 91,172  | 88,715  | 85,193  | 67,106  |
| Both      | 750,443 | 667,522 | 605,275 | 574,378 | 633,513 |

Year of Catch

## Appendix Table 4A. (con't)

| Species ,              | 1968              | 1969             | 1970             | 1971    | 1972    |
|------------------------|-------------------|------------------|------------------|---------|---------|
| Walleyea/              |                   |                  |                  |         |         |
| Ontario                | 69,872            | 51,497           | 49,954           | 27,284  | 18,931  |
| Minnesota              | 7,173             | 1,628            | 3,923            | 9,670   | 10,104  |
| Both                   | 77,045            | 53,125           | 53,877           | 36,954  | 29,035  |
| Northern Pike          |                   | •                |                  |         |         |
| Ontario                | 149,649           | 134,599          | 128,063          | 83,380  | 60,394  |
| Minnesota              | 4,435             | 1.960            | 3,131            | 4,040   | 6,273   |
| Both                   | 154,084           | 136,559          | 131,194          | 87,420  | 66,667  |
| m h/                   |                   |                  | ,                | ·       |         |
| Tullibee <sup>D/</sup> | 00 070            | 00 105           | 70 005           |         | 05 400  |
| Ontario                | 99,232            | 80,125           | 38,895           | 35,370  | 23,428  |
| Minnesota              | 8,053             | 3,409            | 5,644            | 2,301   | 4,383   |
| Both                   | 107,285           | 83,534           | 44,539           | 37,671  | 27,811  |
| Whitefish              |                   |                  |                  |         |         |
| Ontario                | 60,627            | 50,244           | 41,290           | 45,744  | 60,765  |
| Minnesota              | 47,188            | 28,276           | 17,546           | 5,742   | 15,548  |
| Both                   | 107,815           | 78,520           | 58,836           | 51,486  | 76,313  |
| D 1                    |                   |                  |                  |         |         |
| Perch                  | 1 (05             | 1 664            | 1 105            | 502     | 1.50    |
| Ontario                | 1,605             | 1,554            | 1,197            | 502     | 132     |
| Minnesota              | 76                | <br>1 EEA        | 40               | 3       | 87      |
| Both                   | 1,681             | 1,554            | 1,237            | 505     | 219     |
| Burbot                 |                   |                  |                  |         |         |
| Ontario                | 54,154            | 73,697           | 79,117           | 54,577  | 64,023  |
| Minnesota              | 6,508             | 3,170            | 4,718            | 3,076   | 6,255   |
| Both                   | 60,662            | 76,867           | 83,835           | 57,653  | 70,278  |
| Sucker <u>c</u> /      |                   |                  |                  |         |         |
|                        | 106 506           | 104 705          | 216 010          | 120 042 | 115 665 |
| Ontario<br>Minnesota   | 186,586           | 194,385          | 216,910          | 128,842 | 115,665 |
| Both                   | 15,048<br>210,634 | 6,904<br>210,289 | 8,560<br>225,470 | 6,454   | 10,530  |
| DOUI                   | 410,034           | 210,209          | 223,470          | 135,296 | 126,195 |
| Sturgeon <u>d</u> /    |                   |                  |                  |         |         |
| Ontario                | 1,629             | 1,286            | 469              | 536     | 234     |
| Minnesota              |                   |                  |                  |         |         |
| Both                   | 1,629             | 1,286            | 469              | 536     | 234     |
|                        |                   |                  |                  |         |         |

Year of Catch

a/ Includes sauger b/ Includes goldeye c/ White sucker and redhorse Sucker d/ Includes caviar

多

| Species   | 1968    | 1969    | 1970    | 1971                                   | 1972    |
|-----------|---------|---------|---------|----------------------------------------|---------|
| Crappie   |         |         |         | ······································ |         |
| Ontario   | 7,652   | 12,308  | 53,186  | 81,972                                 | 28,815  |
| Minnesota |         |         | ·       |                                        |         |
| Both      | 7,652   | 12,308  | 53,186  | 81,972                                 | 28,815  |
| Total     |         |         |         |                                        |         |
| Ontario   | 631,006 | 599,695 | 609,081 | 458,207                                | 372,407 |
| Minnesota | 88,481  | 45,347  | 43,562  | 31,286                                 | 53,180  |
| Both      | 719,487 | 645,042 | 652,643 | 489,493                                | 425,587 |

Year of Catch

## Appendix Table 4A. (con't)

| Species ,                    | 1973    | 1974    | 1975    | 1976    | 1977   |
|------------------------------|---------|---------|---------|---------|--------|
| Walleye <u>a</u> /           | 04 17-  | 00 515  | <i></i> |         |        |
| Ontario                      | 21,433  | 28,641  | 36,417  | 25,075  | 34,53  |
| Minnesota                    | 15,641  | 14,924  | 14,934  | 19,182  | 26,51  |
| Both                         | 37,074  | 43,565  | 51,351  | 44,257  | 61,04  |
| Northern Pike                |         |         |         |         |        |
| Ontario                      | 67,496  | 72,918  | 66,166  | 67,680  | 72,56  |
| Minnesota                    | 8,556   | 6,659   | 6,070   | 5,433   | 10,82  |
| Both                         | 76,052  | 79,577  | 72,236  | 73,113  | 83,38  |
| Tullibee <sup>b</sup> /      |         |         |         |         |        |
| Ontario                      | 33,628  | 16,100  | 17,775  | 22,747  | 29,60  |
| Minnesota                    | 4,900   | 3,178   | 2,794   | 3,721   | 4,15   |
| Both                         | 38,528  | 19,278  | 20,569  | 26,268  | 33,75  |
| Whitefish                    |         |         |         |         |        |
| Ontario                      | 68,416  | 46,915  | 37,350  | 48,829  | 77,42  |
| Minnesota                    | 30,244  | 28,384  | 24,385  | 27,801  | 23,68  |
| Both                         | 98,660  | 75,299  | 61,735  | 76,630  | 101,10 |
| Perch                        |         |         |         |         |        |
| Ontario                      | 14      | 17      | 2       | 35      |        |
| Minnesota                    | 6       | 21      | 2       |         |        |
| Both                         | 20      | 38      | -<br>4  | 35      |        |
| Burbot                       |         |         |         |         |        |
| Ontario                      | 44,811  | 68,167  | 45,680  | 43,585  | 42,51  |
| Minnesota                    | 5,340   | 4,820   | 5,545   | 5,255   | 11,06  |
| Both                         | 50,151  | 72,987  | 51,225  | 48,840  | 53,57  |
| ,                            | 50,151  | 72,507  | 51,225  | +0,0+0  | 55,57  |
| Sucker <u>C</u> /<br>Ontario | 157 007 | 170 606 | 120 066 | 127 104 | 717 01 |
|                              | 157,227 | 178,686 | 129,966 | 123,104 | 213,81 |
| Minnesota                    | 10,682  | 7,172   | 8,066   | 8,949   | 15,15  |
| Both                         | 167,909 | 185,858 | 138,032 | 132,053 | 228,97 |
| Sturgeon <sup>d</sup> /      | ,       |         |         |         |        |
| Ontario                      | 23      |         |         | 61      |        |
| Minnesota                    |         |         |         |         |        |
| Both                         | 23      |         | <b></b> | 61      |        |

Year of Catch

a/ Includes sauger b/ Includes goldeye c/ White sucker and redhorse sucker d/ Includes caviar

ŝ.

Appendix Table 4A.(con't) .

| ······································ |         | · · · · · · · · · · · · · · · · · · · |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------|---------|---------------------------------------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species                                | 1973    | 1974                                  | 1975    | 1976    | 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Crappie                                |         |                                       |         |         | and the second se |
| Ontario                                | 16,397  | 5,204                                 | 1,871   | 949     | 1,670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Minnesota                              |         |                                       |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Both                                   | 16,397  | 5,204                                 | 1,871   | 949     | 1,670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total                                  |         | •                                     |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ontario                                | 409,484 | 416,648                               | 335,768 | 332,142 | 472,261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Minnesota                              | 75,369  | 65,197                                | 61,796  | 70,341  | 91,384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Both                                   | 484,853 | 481,845                               | 397,564 | 402,483 | 563,645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Year of Catch

## Appendix Table 4A.(con't)

| Species ,              | 1978    | 1979    | 1980         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------------------|---------|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Walleye <u>a</u> /     |         |         |              | 999 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 199 |  |
| Ontario                | 24,979  | 35,850  | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Minnesota              | 19,929  | 13,424  | 23,008       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Both                   | 44,908  | 52,274  | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Northern Pike          |         |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ontario                | 91,347  | 84,499  | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Minnesota              | 9,191   | 7,481   | 10,256       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Both                   | 100,538 | 91,980  | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Tullibee <sup>b/</sup> |         |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ontario                | 18,068  | 12,407  | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Minnesota              | 3,737   | 3,228   | 4,776        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Both                   | 21,805  | 15,635  | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Whitefish              |         |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ontario                | 80,546  | 45,442  | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Minnesota              | 45,854  | 44,382  | 40,214       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Both                   |         |         | 40,214<br>na |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| BUUI                   | 126,400 | 89,824  | 11a          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Perch                  |         |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ontario                | 12      | 3       | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Minnesota              | 10      |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Both                   | 22      | 3       | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Burbot                 |         |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ontario                | 27,318  | 13,752  | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Minnesota              | 8,426   | 8,694   | 9,645        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Both                   | 35,744  | 22,446  | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sucker <u>c</u> /      |         |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ontario                | 132,639 | 136,954 | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Minnesota              | 15,869  | 18,928  | 24,493       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Both                   | 148,508 | 155,882 | na 24,495    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DOCH                   | T40,000 | 1JJ 002 | 1164         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sturgeon               |         |         | no           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Ontario                | ·       |         | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Minnesota              |         |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Both                   |         |         | na           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                        |         |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

Year of Catch

a/ Includes sauger b/ Includes goldeye c/ White Sucker and Redhorse Sucker d/ Includes Caviar

¢

,