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1. INTRODUCTION 

1.1. Mining in Minnesota 

Minnesota has an extensive mining industry and potential for mineral expansion and 
diversification. Iron mining began in Minnesota over a century ago and led to the taconite 
mining industry which, in 1996, shipped 45 million long tons of iron ore valued at 2.4 billion 
dollars (Minnesota Department of Revenue, 1997). Nonferrous mining development shows 
promise for the future. The state is presently the subject of extensive mineral exploration, 
with 59 leases covering over 26,000 acres of state land (MN DNR, 1998). 

Considerable mineral potential for base and precious metals is associated with Minnesota's 
Precambrian rocks, specifically its Archean meta volcanics, metasedimentary formations and 
the Duluth Complex. The Archean metavolcanics and metasedimentary formations, or 
greens tone belts, of Minnesota extend north into Canada, where they have yielded substantial 
mineral production. These formations are potential hosts for gold, zinc-copper massive 
sulfides with various by-products, and magmatic sulfide deposits containing copper, nickel 
and platinum group elements. Recent exploration of greenstone belt metasedimentary 
formations has focused on gold, base metals, and silver-cobalt-copper deposits. The Duluth 
Complex contains an. estimated copper-nickel resource of 4.4 billion tons (Minnesota 
Environmental Quality Board, 1979), as well as significant titanium resources. Drill core 
analyses have also revealed the presence of chromium, vanadium, cobalt, and platinum group 
elements. 

If mineral development occurs, tailings and waste rock, as well as the mine itself will be 
wastes remaining after the operation is abandoned. The potential for generation of acidic 
mine waste drainage is the primary water quality concern, and this potential is largely 
determined by the mine waste composition. Mine wastes capable of producing problematic 
drainage must be managed such that the quality of waters of the state is not adversely 
impacted. Mine waste management strategies directed at this objective include prevention, 
control, and treatment of problematic drainage. 

1.2. Objectives and Scope 

Our goal is to identify and evaluate current methods of mine waste mitigation in terms of 
potential use within the state of Minnesota. A literature search of the Reclamation Unit's 
literature database for the keyword "mitigation" yielded approximately 533 titles (MNDNR, 
Saint Paul, MN). An additional 305 titles were found in proceedings of mine waste 
management conferences that took place between 1994 and 1998 and other, miscellaneous 
sources that have not yet been entered into the database. A total of 838 titles were arranged 
in an outline format, grouped according to the mitigation strategy addressed (Appendix 1). 
It is important to note that the list of titles in Appendix 1 is largely comprised of references 
that were on hand in the MN DNR office in Saint Paul, MN. It does not represent an 
exhaustive literature review of mine waste mitigation strategies. 
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Due to the large number of titles found during the initial literature search, each mitigation 
strategy will be addressed separately. This document will review the much of the current 
state-of-technology of preventative dry cover systems for reactive mine wastes. 
Approximately 112 of the 838 titles identified dealt with the topic of dry cover systems. 
Thirty six of these titles were selected for review in this document because they were 
considered current and potentially relevant to mining activity in Minnesota. 

The selected literature will be reviewed in terms of 1) laboratory and modeling studies on 
the performance and effectiveness of specific types of dry cover systems; 2) case studies on 
the development of appropriate cover systems for specific sites; and 3) when available, the 
implementation and results of the cover system at these sites. The review presented here 
does not represent an comprehensive literature review on the subject of dry cover systems 
for the prevention of acid mine drainage, nor does it address the entire range of possible 
preventative technologies (e.g. encapsulation, subaqueous disposal, wetlands etc.) currently 
in use. The cover systems that are addressed utilize natural and synthetic dry cover materials 
either as a single layer cover or as part of a multi-layered design. 

2. BACKGROUND: Mine Waste Dissolution and Acid Mine Drainage 

Sulfide minerals are commonly occurring constituents in mining wastes. When metal sulfide 
minerals are exposed to the oxidizing conditions present in waste rock stockpiles, mine 
walls, and tailings basins, sulfide is oxidized and the associated metals are released (Nelson, 
1978; Garrels and Christ, 1965; Sato, 1960a, 1960b). Acid is produced as a result of the 
oxidation of iron sulfide minerals present in mine waste as indicated by reactions 1 (Nelson, 
1978) and reaction 2 (Stumm and Morgan, 1981). Two moles of acid are produced for each 
mole of sulfur oxidized. 

FeS + (9/4)02 + (3/2)H2O = FeOOH +SO/"+ 2H+ (1) 

(2) 

The rate of oxidation is proportional to the available sulfide surface area (Nelson, 1978; Sato 
and Mooney, 1960; Sato, 1960a, 1960b), and the concentration of dissolved oxygen (Nelson, 
1978; Dobrokhotov and Maiorova, 1962; McKay and Halpern, 1958), with only a slight 
dependence on pH (Nelson, 1978; Majima and Peters, 1966). When the pH of reacting water 
decreases below 4.0, the rate of oxidation can be accelerated by the activity of iron oxidizing 
bacteria (Thiobacillus ferrooxidans) which rapidly oxidize sulfide minerals when adequate 
oxygen is present. 

The oxidation of trace metal sulfide minerals releases trace metals and sulfate but does not 
necessarily produce acid. 

CuS + 202 .... Cu2+ + SO/ (3) 
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Reactions subsequent to the sulfide dissolution affect the net trace metal release to the 
environment. The transport of a given component in the environment is the net result of 
release to solution by dissolution and removal from solution by precipitation, coprecipitation, 
exchange reactions, and adsorption. The degree of trace metal transport is dependent upon 
drainage composition (in particular pH), the chemistry of the released component, and the 
chemical character and surf ace area of solid surfaces present. Concentrations of trace metals 
tend to increase exponentially as solution pH decreases, therefore acidic drainage often 
contain elevated trace metal concentrations. However, circumneutral drainage can contain 
elevated concentrations of trace metals such as nickel (Eger and Lapakko, 1985) and 
molybdenum (Brown, 1989) which, compared to other trace metals are relatively soluble in 
this pH range. 

Chemical release is affected by the amount of water percolating through the mine waste, 
which is dependent on the input volume and subsequent flow routing. Precipitation is an 
ever-present input, but surface water and ground water can also contribute under certain 
conditions. The water input will be incorporated as storage or discharged as 
evapotranspiration, surf ace runoff, subsurface flow ( or interflow) and baseflow (Hewett, 
1980). 

3. DRY COVER SYSTEMS 

3.1. Objectives of a Dry Cover System 

The amount of acidity and associated trace metals released due to oxidative sulfide 
dissolution is a function of the amount of water and oxygen present in reactive mine wastes. 
Furthermore, water is necessary to transport these reaction products from the mine wastes 
to the environment. The rate of sulfide oxidation can be minimized, by limiting exposure 
of mine waste materials to water and oxygen (equations 1, 2, and 3). Dry cover systems are 
designed to achieve one or more of the following objectives: 1) minimize water infiltration 
into underlying mine wastes, 2) inhibit oxygen diffusion into reactive mine wastes, and 3) 
consume oxygen within a cover layer over reactive mine wastes. Each cover system will 

have an effect, to some degree, toward these objectives depending on the physical properties 
(permeability, grain and pore size, etc.) of the cover materials used. 

3 .2. Categories of Dry Cover Systems 

In reality, there are as many dry cover system designs as there are dry cover systems. 
However, dry cover system designs generally fall into one of six categories: soil covers, 
compacted clay covers, anisotropic barriers, capillary barriers, oxygen consuming barriers, 
and synthetic covers. Three main design components can be used to describe a dry cover 
system (Figure 1). Frequently, a distinct, support layer is incorporate into a dry cover system 
design. A barrier layer is then laid out over the support layer. Physical properties of barrier 
layer materials are utilized to inhibit water infiltration and/or oxygen diffusion. Certain 
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materials (e.g. organic matter) may be used to consume oxygen within the barrier layer. 
Usually a protection layer is laid out over the barrier layer. Protection layers increase lateral 
drainage of surface runoff, minimize erosion, protect against damage caused by freeze-thaw 
cycles, and prevent biointrusion of the barrier layer. Frequently, an additional layer of topsoil 
is added as a support for vegetation, which increases evapotranspiration further reducing 
water infiltration into the underlying mine wastes. Each of the six dry cover system designs 
will be described in terms of the support layer, active barrier layer, and any protection layers 
incorporated into the design. 

3.2.1. Conventional Soil Covers 

The simplest and least expensive dry cover system to install is a basic soil cover (Figure 2). 
This cover design does not necessarily involve a support layer. Instead, a barrier layer of soil 
is deposited directly over the mine waste. The thickness of the soil layer depends upon the 
type of mine waste and site-specific requirements. While this design will reduce infiltration 
to the underlying mine waste, it will not eliminate it unless used in an arid climate. 
However, compaction of the soil barrier layer will further reduce infiltration. A protective 
layer of loose topsoil is often used with conventional soil covers. This layer supports 
vegetation as well as protects against erosion. 

3 .2.2. Compacted Clay Covers . 

Compacted clay cover designs are similar to conventional soil covers. The main difference 
is that clay (e.g. bentonite) is mixed into the soil used for the barrier layer (Figure 2). The 
addition of clay to the barrier layer increases the cost and the complexity of this cover design. 
However, the higher clay content and compaction serve to minimize the hydraulic 
conductivity of the barrier layer, and consequently, limit downward movement of water to 
the underlying mine waste. Occasionally, a drainage layer of a relatively coarse grained 
material (e.g. sand) will be installed directly over the barrier layer. The drainage layer helps 
minimize infiltration into the barrier layer by enhancing lateral drainage away from the mine 
waste. Finally, a protection layer of loose soil is used to support v~getation and to prevent 
damage to the b~er layer caused by erosion or freeze-thaw cycles. 

3.2.3. Anisotropic Barriers 

Anisotropic barriers utilize layers of capillary breaks to minimize vertical movement of water 
while maximizing horizontal drainage. Different physical properties and compaction 
techniques are used to maximize lateral drainage away from underlying mine wastes. One 
example of an anisotropic barrier consisted of four layers (Figure 2). A coarse-grained 
support layer of gravel is used to create a capillary break beneath an interface of fine sand. 
The fine sand interface increases lateral drainage of any water that percolated through the 
barrier layer. Native soils are typically used for the barrier layer which is designed to store 
water for subsequent evapotranspiration. The barrier layer is overlain by a soil and gravel 
protection layer which encourages evapotranspiration as well as protecting underlying layers 
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and allowing vegetation growth. 

3.2.4. Capillary Barriers 

Capillary barrier designs contrast hydraulic properties of cover materials to minimize 
downward migration of water by creating a capillary break between layers. The capillary 
break is achieved by placing a fine-grained (i.e. barrier) layer between two coarse-grained 
layers (i.e. support and protection layers; Figure 2). The capillary barrier itself consists of 
the support layer and the barrier layer. Coarse sand or gravel is typically used for the support 
layer. The support layer also has the added benefit of enhancing lateral drainage of any water 
that infiltrates the barrier layer. Fine sand, soil, clay, and inert tailings have been used as 
barrier layers in capillary barrier covers. The lower hydraulic conductivity of these materials 
relative to that of the support layer enhances moisture retention and inhibits oxygen diffusion 
across the capillary break. A protection layer of sand or gravel overlies the capillary barrier 
to encourage lateral drainage. Once again, topsoil is usually used as the surface layer to 
support vegetation and minimize damage to the underlying active layers. 

3.2.5. Oxygen Consuming Barriers 

Oxygen consuming barriers utilize organic material as a barrier to oxygen diffusion into 
underlying mine wastes. If adequate organic material is present, the rate of oxygen 
consumption will exceed the rate of oxygen diffusion through the barrier layer, preventing 
oxygen from reacting with the underlying reactive wastes. The relatively low hydraulic 
conductivity of most organic materials coupled with increased compaction of the barrier 
layer as organic materials oxidize often results in the additional benefit of reduced infiltration 
of water to underlying wastes. Organic barrier layers are often applied as a single layer, 
simplifying the construction of the design (Figure 2). Furthermore, organic materials are 
usually locally available, reducing the cost of this cover design. 

3.2.6. Synthetic Covers 

Impermeable cover systems can also be constructed of synthetic materials such as plastic 
liners. Oftentimes, synthetic cover materials provide a simple alternative to natural soil 
materials. Synthetic cover materials have also been incorporated into other cover system 
designs to maximize their effectiveness. A number of plastic (geosynthetic) liners are 
commercially available, most of which consist of flexible polymeric membranes (e.g. PVC 
or HDPE) that act as a barrier to water infiltration. Another option is a geosynthetic clay 
liners (GCLs), where sodium bentonite clay is encapsulated between two layers of geotextiles 
(Stewart and von Maubeuge, 1997; Miller and Hornaday, 1998). 

Geosy.nthetic membranes can be installed year round and is very simple. Installation merely 
involves unrolling the geosynthetic membrane out over the mine waste. Since they are 
relatively light weight, thin, and do not require compaction, geosynthetic membranes are 
relatively inexpensive to install. Geosynthetic membranes are extremely durable and 
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resistant to leaching, however, they are also thin and susceptible to damage (i.e. tears, leaks 
along seams, photodegradation), particularly during installation. Geosynthetic membranes 
and GCLs perform well under extreme conditions such as freeze-thaw cycles and dessication, 
but because they tend to deteriorate when exposed to sunlight, they are commonly covered 
with one or more protective layers of soil. A common configuration involves a geosynthetic 
membrane overlain by a drainage layer (e.g. sand) and a topsoil protective layer, although 
geosynthetic membranes have been used in combination with numerous natural cover 
materials (Figure 2). 

4. GENERALIZED APPROACH TO DRY COVER SYSTEM DESIGN 

4.1. Variables Affecting the Type of Cover System Implemented 

The primary issue concerns the type of materials to be used in the dry cover system. Cover 
requirements are almost always site-specific, depending on variables such as the physical, 
chemical and mineralogical properties of the wastes, climatic conditions, local regulations, 
and availability of cover materials. Consequently, a cover system implemented at one mine 
site may not meet the objectives intended for similar reactive wastes at another site. The 
choice of cover mat~rials is often based upon numerous variables including costs, 
constructability, and overall effectiveness. In general, the expense associated with each type 
of cover system increases as the cover system becomes more complex (Table 1). If cover 
materials require compaction or other special treatment, construction costs increase. 
However, using locally available cover materials such as glacial till or non-reactive mine 
wastes can substantially decrease costs. • 

4.2. Predictive Modeling of Proposed Cover System Design 

How well a proposed cover system will perform is usually tested using predictive modeling, 
and occasionally, laboratory column studies. Predictive models are frequently used to predict 
the long-term effectiveness of a cover system, since long-term performance of a specific 
cover system cannot be determined prior to installation. Predictive models are typically used 
to meet one of the following objectives: determine ground water flow through a mine waste 
mass as well as over or around it, estimate surface water and precipitation infiltration through 
the cover system, and predict the water quality of drainage from the covered mine wastes. 
The use of models in this way is an inexpensive method to evaluate multiple cover systems 
and their long-term impacts on local surface and ground water quality in a very short amount 
of time. 

4.3. Materials Testing 

Laboratory tests are typically used to determine the hydraulic and geotechnical properties of 
particular cover materials under consideration as well as how layers of multiple cover 
materials may interact to reduce infiltration and oxygen diffusion to the underlying waste. 
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Hydraulic conductivity and porosity are the most frequently determined properties. 
However, D10, specific gravity, plasticity index, and numerous other parameters have been 
determined as well. Occasionally, the same parameters will be determined for the mine 
waste, particularly if the mine waste is tailings rather than waste rock. The most thorough 
studies also determined the physical, chemical, and mineralogical properties of potential 
cover materials and/or the mine waste. 

4.4. Effectiveness of a Cover System Design 

The effectiveness of a cover system is typically measured in terms of oxygen concentrations 
and water content profiles throughout and beneath the cover. Column experiments are 
designed with instrumentation to measure temperature and pressure changes, water content 
and oxygen concentrations at regular intervals in the column. Since sulfide oxidation is an 
exothermic reaction, temperature measurements provide a qualitative indication of the extent 
to which oxidation had occurred in the mine waste. Pressure changes were measured using 
tensiometers connected to pressure transducers, while moisture content was measured by 
Time Domain Reflectometry (TDR) electrodes. Oxygen sensors placed at regular intervals 
down the length of the column measured oxygen concentrations at various depths. These 
were used to construct oxygen profiles and gradients (8C/8z), which in conjunction with the 
effective diffusion coefficient (De), were used to determine the oxygen flux for the cover 
system. 

5. LITERATURE REVIEW 

For the purposes of this document, dry cover system designs will be discussed according to 
the type of materials used in construction (i.e. natural or synthetic). The first five categories 
(see section 3.2) of cover system designs use natural materials. No distinction will be made 
between the first three design types because they are similar and conceptually simple to 
understand. Natural materials are also used for capillary, however, they are more complex 
and will be discussed separately. Similarly, cover systems that utilize organic materials to 
consume oxygen rather than inhibit diffusion will be discussed in a separate section. Finally, 
the use of synthetic cover materials will be discussed. 

5 .1. Natural Cover Materials 

5.1.1. Native Soils 

A number of preventative technologies have been developed to reduce the ingress of water 
and oxygen into reactive mine wastes. The most commonly implemented technologies 
involve covering mine wastes with dry, relatively impermeable, natural materials to prevent 
water and/or oxygen from reacting with sulfide minerals ~eneath the cover system. The 
simplest method is to cover a reactive mine waste with several feet of soil, particularly soils 
with high clay contents (soil cover). This type of cover design is particularly useful as a 

7 



store-and-release mechanism for water, whereby water is trapped within the pore spaces of 
the cover and slowly evaporates over time. In addition to preventing downward migration 
of water to the underlying mine waste, the water filled pore spaces inhibit diffusion of 
oxygen through the cover. These properties can be enhanced by compacting the soil, 
reducing the permeability of the cover ( compacted clay cover). Oftentimes, a compacted soil 
layer will be covered with several inches of topsoil and revegetated. Evaporation and lateral 
drainage is often enhanced by incorporating multiple layers of different grain sizes and 
hydraulic properties (anisotropic barrier). 

One major advantage of a soil cover system is that the soils are locally available which 
reduces transportation and material costs of construction. Also, soils provide nutrients and 
a physical support for vegetation, although biointrusion (e.g. plant roots) may compromise 
the integrity of the cover. Another drawback to soil covers is that they are susceptible to 
erosion and cracking caused by freeze-thaw cycles and dessication, especially when clayey 
materials are used in the cover. Thus, additional measures may be required at sites with 
extreme environmental conditions such as arid climates ·or cold temperatures. 

5.1.1. Case Studies 

Case studies of selection, design, and/or implementation of composite soil cover systems 
have been reported at numerous minesites world-wide (Eger and Lapakko, 1985; O'Kane et 
al., 1995; Aziz and Ferguson, 1997; Lindvall et al., 1997; Wilson et al., 1997; Kowalewski 
et al., 1998; Udoh, 1993). Six test stockpiles containing 820 to 1300 metric tons of sulfidic 
mine waste material were constructed in 1977 at the Dunka Mine near Babbitt, Minnesota 
(Eger and Lapakko, 1985). Three of the stockpiles remained exposed to the atmosphere as 
controls, and the other three were covered with 18-29 cm of soil obtained from a nearby 
borrow pit in 1978. Stockpile 2 was covered with topsoil, while piles 3 and 5 were covered 
with a coarse, sandy soil. However, 30 cm of sandy till was added to the coarse sand on pile 
5 in 1980. Revegetation efforts began immediately in 1978 and continued for approximately 
three growing seasons. For the six year period of record, runoff coefficients for the control 
piles ranged from 0.44 to 0.58, as compared to 0.41 for natural watersheds in the area. There 
was no flow reduction by the vegetated coarse sand cover (pile 3). The vegetated covers of 
topsoil (pile 2) and combined sandy till over coarse sand (pile 5) both produced runoff 
coefficients of 0.30, a value which was 30 to 50% less than the control values. 

Three different soil cover systems were evaluated for their effectiveness at stemming 
infiltration into sulfidic mine wastes at LTV's Dunka Mine near Babbitt, Minnesota (Udoh, 
1993). The cover materials under consideration were glacial tills screened to minus 2.5 
inches and 0.5 inches, and glacial till screened to -2.5 inches mixed with 5% bentonite. 
Laboratory tests indicated that the permeability of these materials ranged from 1.55 x 10-6 

emfs (49 cm/yr) for the glacial till down to4.12 x 10·9 emfs (0.13 cm/yr) for glacial till mixed 
with 5% bentonite, meeting the set standard of 2 x 10·6 emfs (63 cm/yr). These results were 
similar to Hydrologic Evaluation of Landfill Performance (HELP) model simulations that 
predicted permeabilities ranging from 2.1 x 10-6 emfs (66 cm/yr) for-2.5inches of glacial till 
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down to 5.2 x 10-10 emfs (0.02 cm/yr) for glacial till mixed with 5% benton.ite. The model 
simulations also indicated that the major water loss would be to evapotranspiration. 
Infiltration was predicted to be reduced by 34% for glacial till cover, and could be decreased 
by up to 80% if the cover materials were compacted. Actual field test results showed that 
infiltration was reduced by 60%, 88%, and 89% for -2.5 inches of till, -0.5 inches of till and 
-2.5 inches of till mixed with 5% bentonite, respectively. 

At the Kennecott Ridgeway Mine near Ridgeway, South Carolina, predictive models 
(SEEP/Wand Soil Cover) were used to evaluate composite cover options for a 300 acre gold 
tailings impoundment (Kowalewski et al., 1998). Three cover systems (two soil covers and 
one anisotropic barrier) and two construction options were evaluated for limiting percolation 
while maintaining a saturated tailings mass. Based on the modeling results as well as cost 
and construction considerations, a soil cover system comprised of 36 inches of saprolite and 
7 inches of topsoil was chosen as the preferred reclamation option. 

The Saxberget Mine, Sweden was decommissioned in 1988 after a century of mining 
(Lindvall et al., 1997). Closure plans included a soil cover system to be placed over a mill 
tailings area. The cover system had to comply with the Swedish EPA' s program objectives 
of long-term, low maintenance remediation techniques. A composite cover consisting of a 
low permeability barrier layer overlain by a protective layer was determined to meet these 
objectives. Compacted municipal sewage sludge and Cefyll (a concrete~fly ash product) 
were considered for barrier layer materials. However, local glacial till with a high clay 
content was found to have adequate hydraulic properties and the lowest cost. Therefore, 30 
cm compacted glacial till was selected for the barrier layer. One and a half meters of 
unclassified glacial till was used as the protection layer. Reported results after approximately 
two years indicate that the infiltration rates were close to or less than 5 x 10-9 mis 
(approximately 16 cm/yr) and that oxygen concentrations below the cover system have 
dropped below 0.5%. 

At Equity Silver Mines Ltd. near Houston, British Columbia, a soil cover system was 
investigated for long-term performance at reducing the transport of oxygen and minimize 
water infiltration to underlying sulfidic mine wastes (O'Kane et al., 1995; Aziz and 
Ferguson, 1997; Wilson et al, 1997). The investigation program included predictive 
modeling, laboratory characterization of materials, and field monitoring. The cover system 
placed on top of the waste rock dump consisted of approximately 50 cm compacted till 
(barrier layer) overlain by 30 cm uncompacted till (protective layer). For the slopes of the 
waste dump, 50 cm of compacted clay was substituted for compacted till as the barrier layer 
(Aziz and Ferguson, 1997). Although evaporation occurred in the uncompacted protective 
layer, the compacted sealing layer maintained at a degree of saturation of 85% or higher over 
a two year period (O'Kane et al., 1995). After five years, water infiltration to the waste rock 
has been reduced to 4% of the total annual precipitation (Wilson et al., 1997). The 50 cm 
of compacted till sealing layer has maintained a high level of saturation, minimizing oxygen 
flux through the cover. After approximately six years of monitoring, average infiltration 
consistently remains below 5% and oxygen concentrations beneath the cover have decreased 
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to a few percent (Aziz and Ferguson, 1997). Production of acidic drainage is expected to 
cease in approximately 15 years. 

Arid climates pose a challenge when designing a cover system to minimize water and oxygen 
infiltration. Heavy, seasonal rainfalls result in high velocity surface runoff and probable 
erosion of the cover surface. Therefore, lateral drainage layers may actually serve to 
diminish the integrity of the cover. The infrequency of rainfall results in eventual drying of 
the 9over, rendering it useless as an oxygen barrier. The ideal cover system in an arid climate 
balances rainfall with water storage, evaporation, and transpiration. This type of soil cover 
system was installed on a 23 ha waste rock dump at Kidston Gold Mines, North Queensland, 
Austrailia (Williams et al., 1997). The waste rock was sloped at about 3% to assist drainage 
and compacted to about 1 m. Above this surface, a layer of compacted, nearly saturated, clay 
was placed. This layer is then covered with a layer of "rocky soil mulch," piled loosely in 
mounds and vegetated. No results were reported, however, this cover system ha_s been 
proposed at other dry climate mine sites in Austrailia. 

A soil cover system for waste rock material generated by BHP Iron Ore's Mt. Whale back 
operation in western Austrailia was designed to prevent water infiltration to underlying waste 
material (O'Kane et al., 1998). The cover system was designed to minimize infiltration by 
storing as much precipitation as possible within the cover. This moisture can then evaporate 
without significant reaction. Design phases included physical characterization of the waste 
rock and cover materials as well as one dimensional soil-atmosphere modeling (SoilCover). 
It was determined that a key design feature was the use of pit run waste as the cover material. 
Two field test plots with cover layers of 2 m and 4 m were installed in early 1997. 
Monitoring of the test plots was scheduled for at least two annual wet/dry cycles. 

One alternative to soils in dry cover systems is the use of non-reactive mine wastes (Elliott 
et al., 1997a, 1997b; Woyshner and Swarbrick, 1997; Muller et al., 1998). The use of a non­
reactive mine waste as a cover material is an attractive alternative because the waste 
materials are located on-site which reduces transportation costs appreciably. Desulfurized 
tailings, among other options, were tested for their effectiveness as a barrier layer material 
during a one year long, pilot scale study (Elliott et al., 1997 a, 1997b). Earlier phases of this 
study included characterization of the reactive tailings and cover materials and a salt 
migration column bench scale test. Only the pilot-scale field tests will be discussed here. 
PVC pilot cells measuring 2.5 m long, 1.5 m high, and 0.6 m wide were filled with 0.65 cm 
of reactive tailings and covered with a 75 cm layer of desulfurized tailings. The high degree 
of saturation (>90%) of the desulfurized tailings cover was consistent with decreasing 
oxygen levels within the cover. Oxygen concentrations beneath the cover were 
approximately zero. However, generation of sulfate and dissolved iron indicated that oxygen 
still diffuses to the underlying tailings. This was said to be due to the formation of cracks 
at the ,surface which extended to considerable depths in the cover. 

Non-reactive mine wastes were evaluated as barrier layer materials in test plots at the Kidd 
Creek tailings impoundment, Timmins, ON (Woyshner and Swarbrick, 1997). Three cover 

10 



systems were constructed: 1) 60 cm non-reactive beach tailings, 2) 45 cm non-reactive beach 
tailings underlain by 15 cm slag, and 3) 60 cm clay, and monitored for one year. Lysimeters 
installed in the tailings remained dry during the monitoring period indicating that rainfall did 
not infiltrate the covers as saturated flow. The covers were not effective as oxygen barriers, 
however, oxygen flux calculations indicated that sulfide oxidation was reduced from 729 mol 
O/m2/yr for uncovered tailings to 36.1, 73.7, and 13.1 mol O/m2/yr for covers 1, 2, and 3, 
respectively. Further evidence for decreased sulfide oxidation could be found in the 
decreased sulfate production from 40 kg/m2/yr to 2, 4, and 1 kg/m2/yr, respectively. These 
covers are expected to eliminate the high rates of sulfide oxidation that typically occurs 
during the first twenty years of exposure. 

A tailings management plan was proposed for controlling pyrite oxidation at a mining 
property in central Idaho (Muller et al., 1998). Modifying operations with an additional 
pyrite flotation circuit will produce two tailings products. Pyrite concentrates will be 
disposed of underwater in the tailings pond, while the low sulfur inert tailings will be 
deposited in areas susceptible to oxidation, effectively capping the pyrite concentrates. The 
degree of tailings saturation was evaluated using the hydrologic model, HELP. Maximum 
sulfide oxidation rates were calculated based on kinetic control in the upper 0.5 m of the 
tailings and oxygen diffusion control beneath 0.5 m. A 2 m cover of inert tailings was 
predicted to reduce the pyrite oxidation rate from 13,750 g pyrite/m2/yr to 2,500 g 
pyrite/m2/yr (18% ). Ultimately, the pyrite concentrates are expected to be covered by 42 m 
of inert tailings which was predicted to reduce pyrite oxidation rates by 90%. 

5 .1.2. Capillary Barriers 

By combining multiple cover materials with different physical properties in layers over a 
mine waste, the effectiveness of the cover can be maximized. The basic capillary barrier 
cover system consists of a layer of fine grained material sandwiched between two coarser 
materials. The base of the cover consists of a coarse grained material to act as a support for 
the remaining layers. A barrier layer of fine grained material that retains moisture and 
inhibits oxygen diffusion overlies the support layer. Usually, the final layer is of a coarse 
material designed to protect the moisture retaining layer by enhancing surf ace runoff. 
Additional protective layers may be added at the surface of the cover system as a support for 
vegetation and/or to prevent biointrusion. 

5.1.2.1. Principles of Capillary Barriers 

When water infiltrates soil, it immediately fills the largest pore spaces. Water flow tends 
to be dominated by capillary forces, which may pull some water into smaller pores. 
Capillary forces can act in any direction, depending on the concavity of liquid-air interfaces 
within the pore spaces. However, gravity tends to pull water downward until the absorptive 
capacity of the soil or a water table is reached. Water will continue to infiltrate the soil 
column until the downward force is balanced by the upward pull from liquid-air interfaces 
near the soil surface (e.g. evaporation). 
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The texture of soils exerts a strong influence on the efficiency of capillary flow. Capillary 
forces are typically largest in fine grained materials. Thus, clay particles tend to have a 
higher water content than gravel under the same conditions. More specifically, the water 
content (0) of a particular medium is related to the pressure head (o/), In geotechnical terms, 
pressure head is analogous to the height of capillary rise for a given material, becoming more 
negative with elevation above the water table. As the pressure head becomes mo.re negative, 
the water content of the medium generally decreases (figure). The pressure at which 
capillary forces are overcome and the water content of the medium rapidly decreases to a 
residual value (0r) is known as the Air Entry Value (AEV). Finer grained materials tend to 
have higher AEV than coarser materials under identical conditions. In simpler terms, a fine­
grained material will remain saturated at a higher elevation above the water table than a 
coarse-grained material. 

As water infiltrates the surface, dissolved oxygen, which may react with unoxidized 
minerals, is carried through the mine waste. However, the principle mode of atmospheric 
oxygen transport in a mine waste stockpile is by diffusion through gas filled pore spaces. 
The effective diffusion coefficient for oxygen moving through pore spaces depends upon the 
proportion of gas filled pores. As water content of the pore spaces increases, the effeotive 
diffusion coefficient decreases. The magnitude of this decrease can approach several orders 
of magnitude as saturated conditions are approached. 

5.1.2.2. Laboratory Tests of Capillary Barrier Systems 

The use of capillary barriers in cover systems has been investigated for approximately a 
decade. Many of the earlier studies involved a series of laboratory tests, and occasionally, 
predictive modeling efforts to evaluate the performance of specific materials as capillary 
barriers. Laboratory test and modeling methods were similar to those used to evaluate the 
simpler cover systems described in section 4. However, column experiments were typically 
used to evaluate the performance of capillary banier materials. The type of materials 
selected for use in a capillary banier cover system varied between laboratory experiments. 
While medium to coarse grained sand was typically used for the coarse grained layers in 
these experiments, several different materials have been investigated for use as the fine 
grained, or moisture retaining, layer. Fine sand (Nicholson et al., 1991 ), till (Y anful, 1991 ), 
clay (Y anful, 1993; Y anful et al., 1994) and desulfurized or low sulfur tailings (Aachib et al., 
1994; Bussiere et al., 1997; Benzaazoua et al., 1998) have been tested for their effectiveness 
as a capillary barrier. 

Earlier laboratory experiments generally tested the moisture retention characteristics of a fine 
grained material overlying a coarser material (Nicholson et al., 1991; Yanful, 1991, 1993). 
Columns were packed with a layer of medium to coarse sand overlain by a layer of fine sand 
(Nicholson et al., 1991) or glacial till (Yanful, 1991, 1993). Selected materials were chosen 
and matched such that the material properties would enhance capillarity in the fine grained 
material. Nicholson et al. ( 1991) used 20 cm of a fine sand with an AEV of 37 cm overlying 
80 cm of a coarser sand with an AEV of 8 cm. Tensiometers with pressure transducers and 
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TDR electrodes were placed at 10 cm intervals within the columns. The columns were 
initially saturated and then drained. The coarse sand layer drained to the residual water 
content in approximately five hours. After fourteen days, the fine sand layer had retained 
75% of the initial, saturated water content. 

In two separate column experiments, Yanful (1991) tested a 20 cm layer of glacial till as 
moisture retaining layer. In each experiment, the till was underlain by 80 cm of a medium 
sand with an AEV of 10 cm. The glacial tills were characterized as a sandy silt with 8% in 
the clay fraction (Heath Steel till) and a silty sand with 10.5% in the clay fraction 
(Yukon/Faro mine site till). Tensiometers with pressure transducers and TDR electrodes 
were placed at 10 cm intervals within the columns. The columns were initially saturated and 
then drained. In both experiments, the coarse layer drained to the residual water content 
relatively quickly (approximately seven days). Both glacial till layers were reported to have 
maintained saturated conditions during the course of the fourteen day experiment. 

. 
Laboratory column experiments on the Heath Steel till were continued in order to determine 
oxygen diffusion coefficient with respect to water saturation (Yanful, 1993; Yanful et al., 
1994 ). Laboratory column experiments were designed to compare moisture content; and 
oxygen concentration profiles in covered and uncovered sulfidic tailings. Square columns 
were constructed of Plexiglas measuring 105 cm in length and 28 cm per side. Two test 
columns were packed with 45 cm of unoxidized tailings beneath layers of 15 cm coarse sand, 
30 cm compacted clay, and 15 cm fine sand. Two additional control columns contained 90 
cm of unoxidized tailings with no cover materials. Each column was equipped with oxygen 
ports at 10 cm intervals, temperature probes at 15 cm intervals, and at least one TDR probe 
within each layer. Precipitation was simulated by periodic water additions, and the effluent 
from the control columns were analyzed for metals, major cations and sulfate. The clay layer 
prevented infiltration into the test columns, therefore, no effluent was available for analysis. 
Consequently, the tailings beneath the cover were flushed with water on four occasions over 
760 days. Over the course of 200 days, the clay layer remained at or near saturation (~95 %). 
The water content in the tailings remained at 30 to 35% until the column was flushed with 
water, after which the tailings were saturated. Chemical analyses indicated that the capillary 
barrier cover system reduced acid production in the tailings by 95.4% 

The effective oxygen diffusion coefficient of the clay layer was on the order of 3.9 x 10-9
• 

m2/s. After 65 days, oxygen concentration profiles revealed that oxygen concentrations 
decreased from ambient levels (21 % ) at the fine sand-clay interface to less than 1 % in at the 
clay-coarse sand interface. These low oxygen concentrations were maintained through the 
tailings to the base of the column, demonstrating the effectiveness of this capillary barrier 
cover system to inhibit oxygen diffusion into sulfidic tailings. 

Based on the laboratory and modeling results, a capillary barrier system consisting of a 60 
cm thick compacted fine-grained layer sandwiched between two 30 cm thick sand layers was 
tested in the field at the Waite Amulet site. Early results showed that the oxygen 
concentration at the base of the capillary barrier was approximately 4%. Simulations using 
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POLLUTE indicated that the effective diffusion coefficient of the capillary barrier was about 
9.9 x 10-9 mis (31 cm/yr), an order of magnitude lower than for uncovered tailings. Oxygen 
flux into the tailings was reduced by 99% by the capillary barrier. 

Desulfurized or low sulfur content tailings have also been investigated as potential moisture 
retaining layers for capillary barrier cover systems (Aachib et al., 1994; Bussiere et al., 1997; 
Benzaazoua et al., 1998). Desulfurized tailings are often available on site, or at least nearby, 
making their use both economical and practical. Aachib et al. ( 1994) used laboratory column 
experiments to evaluate the performance of a capillary barrier cover system using non­
reactive tailings. Test columns were constructed of Plexiglas 1.7 min length, while two 
smaller columns were used as controls. Each column test was done in duplicate, where one 
column contained instrumentation and the duplicate remained intact. The cover layers 
consisted of a 20% iron sulfide tailings layer at the base followed by 30 cm sand, 50 cm non­
reactive tailings and 20. cm sand. Three different desulfurized tailings and one low sulfur 
tailings material were tested for their effectiveness as moisture retaining layers. Precipitation 
was simulated by percolating water from the top of the column and collecting'it at the base. 
The tailings properties included low hydraulic conductivity and high water retention 
characteristics resulting in reduced diffusion of oxygen through the moisture retaining layer. 
Preliminary calculations showed that a degree of 90% saturation in a porous material 
produces a layer with an effective diffusion coefficient that approximates the effective 
diffusion coefficient in water. 

Bussiere et al. (1997) and Benzaazoua et al. (1998) conducted laboratory column 
experiments to determine the effectiveness of a capillary barrier cover system using 
desulfurized tailings. Plexiglas columns measuring 0.106 m inner diameter were mounted 
2 m above the floor, where an artificial water table was fixed. The columns were flushed 
with water every three to four weeks, and the effluent was analyzed for pH, Eh, sulfate, 
calcium and soluble metals. Oxygen consumption was also measured on a weekly basis 
(Benzaazoua et al., 1998) or biweekly (Bussiere et al., 1997). Methods for the oxygen 
consumption tests were described previously (Elberling et al., 1994). Columns were 
designed such that 0.3 m of tailings containing 27.5% S (primarily pyrite) were overlain by 
0.4 m sand, 0.6 m desulfurized tailings, and 0.3 m sand. The amount of residual sulfur in the 
tailings varied for three of the experiments (0.14% S, 0.41 % S, and 1.00% S). The fourth 
column contained only sulfidic tailings. The effluent from the capillary barrier cover 
columns maintained a near neutral pH and relatively low metal and sulfate concentrations 
during the year long test. Sulfide oxidation rates in the capillary barrier cover column tests 
were reduced by a factor of approximately seven to twenty two, depending on the degree of 
desulfurization in the cover material. The cover with the lowest sulfide content was the most 
efficient at inhibiting sulfide oxidation. 

Numerous studies have demonstrated the behavior of capillary barriers over mine wastes. 
However, these studies either dealt with saturation in horizontal layers or water diversion 
capabilities of a capillary cover system. Aubertin et al. (1997a) addressed the issue of the 
effectiveness of a capillary barrier in an inclined cover system. A two dimensional numerical 
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investigation (SEEP/W) showed that it was more difficult to maintain high saturation levels 
near the top of an inclined cover system. If the elevation difference between the upper and 
lower part of a continuous system approaches the AEV, then the top portion may become 
unsaturated. The larger the elevation difference, the more difficult it will be to keep this 
layer close to saturation. Modeling results indicated that even a relatively low slope (2 - 4%) 
may not maintain adequate saturation. 

5.1.2.3. Field-Scale Experiments 

Field scale experiments have also been used to evaluate the effectiveness of capillary barrier 
cover systems over sulfidic mine wastes, particularly in Canada (Yanful and St-Arnaud, 
1991; Aubertin et al., 1997b; Gardiner et al., 1997). Field experiments often utilize cells 
shaped like an inverted truncated pyramid. A combination of support layers, liners and water 
collection systems are placed in the base of the cell. Water collection systems are designed 
such that water flows easily from the base of the cell without allowing air to enter. Reactive . 
tailings or waste rock can be placed within the cell and overlain with the cover system to be 
tested. 

Four 20 m x 20 m test plots were designed to determine the effectiveness of a capillary 
barrier cover system for the Waite Amulet tailings site, near Rouyan-Noranda, Quebec 
(Yanful and St-Arnaud, 1991). Two of the test plots were covered with a 60 cm compacted 
varved clay layer sandwiched between upper and lower sand layers (30 cm). The test plots 
were designed with 3: 1 end slopes that were lined with 40 mil HOPE. A third test plot was 
covered with a 80 mil HOPE geomembrane sandwiched to upper and lower layers of sand. 
The final test plot was the uncovered control. Results for the first two months of monitoring 
one of the clay-capillary barrier cover tests was presented. Oxygen concentrations in the clay 
capillary barrier had decreased to 10% and had an associated volumetric water content of 
40%. Water quality of the drainage indicated that some acidity had been released from the 
tailings. Lysimeters beneath the tailings remained dry, except for the uncovered control plot, 
indicating that infiltration had been eliminated. 

Six experimental cells were constructed on ITEC Mineral Inc.'s Norebec-Manitou site near 
Val d'Or, Quebec (Aubertin et al., 1997b). Approximately 1.5 m of reactive tailings were 
covered with a base layer of 0.4 m coarse sand, a capillary barrier of 0.3 - 0.9 m clean 
tailings or silt, and a final layer of 0.3 m sand. Five capillary barriers were tested: 1) 0.6 m 
clean tailings, 2) 0.6 m silt, 3) 0.3 m tailings, 4) 0.15 m clean tailings overlain by 0.15 m 
tailings mixed with bentonite, and 5) 0.9 m tailings. The sixth cell had no cover layers as a 
control. Each cell was instrumented to monitor volumetric water content, matric suction, and 
subsurface temperature in each of the cover layers as well as climatic conditions and leachate 
quality. Preliminary results from the first year of monitoring show that the capillary barrier 
has maintained approximately 85% saturation and was considered to be an effective barrier 
to oxygen diffusion. The pH of drainage collected from the test cells has remained at about 
6, while the pH of drainage from the control cell has dropped to about 3. 
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The Sullivan Mine, BC is planning for closure in 2001. Reclamation of the tailings pond 
will include a capillary barrier cover system constructed of local materials and is intended 
to limit infiltration and support vegetation (Gardiner et al., 1997). Predictive modeling using 
Soil Cover and field test plot were used to evaluate the performance of several cover material 
options such as float rock, both compacted and non-compacted glacial till and 
phosphogypsum. The field investigation was initiated in 1993 to compare various capillary 
barrier designs using float rock and glacial till. The till capillary layers did not maintain 
saturation continually, resulting in high oxygen concentrations beneath the cover. However, 
the compacted till capillary layer was able to reduce precipitation infiltration to 2 - 6%. The 
non-compacted till capillary layer did not perform as well, with precipitation entry in the 
range of 8 - 28%. 

5.1.2.4. Case Studies 

In some instances, capillary barrier cover systems have been installed over existing waste 
rock piles and tailings basins (Yanful et al., 1993a, 1993b; Bell et al., 1994; Ricard et al., 
1997; Woyshner et al., 1997). Adoption of a capillary barrier cover system usually involves 
physical characterization of the mine waste as well as potential cover materials ,and 
occasionally predictive modeling of the proposed system. Design and construction of a 
capillary barrier cover.system for a waste rock pile at Heath Steele mine site near Newcastle, 
New Brunswick was completed as part of the Heath Steele Waste Rock Project under 
Canada's Mine Environment Neutral Drainage Program (MEND) in 1989 (Yanful et al., 
1993a, 1993b; Bell et al., 1994). A three layer system with 60 cm of till sandwiched between 
30 cm layers of sand was proposed based on moisture drainage characteristics of the till 
measured in the laboratory (Yanful et al., 1993a). Hydrologic modeling of this system 
indicated that the till layer would remain fully saturated for a 60 day period without 
precipitation. Oxygen flux through this cover system was predicted to be minimal, with 
oxygen concentrations reaching zero at a depth of 70 cm below the surface. 

The cover system actually constructed over the waste rock pile at Heath Steele also included 
a final drainage layer of 10 cm gravel to prevent erosion of the cover (Yanful et al., 1993b; 
Bell et al., 1994). The waste pile was relocated onto an impermeable membrane that would 
permit collection of drainage, and contoured to a maximum slope of 3: 1. Surface runoff was 
collected in a perimeter ditch. A local glacial till was used as the capillary barrier. The till 
layer was installed in three lifts, each compacted to a final thickness of 20 cm. Appropriate 
instruments were installed to monitor oxygen concentrations in the pile and cover, 
temperature in the pile, hydraulic properties in the cover, and the quality of drainage from 
the pile. Oxygen concentrations in the pile had decreased to less than 3 % and temperatures 
appeared to by decreasing two years after cover installation. The volumetric moisture 
content in the capillary layer was approximately 30%, corresponding to 2-2.5% of 
precipitation infiltrating the cover. Drainage quality from the pile had not changed 
significantly, implying that ~wo years had not been long enough to flush residual acidity out 
of the tailings. Because of the low hydraulic conductivity of the cover, a transition period 
of several years was anticipated. 
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Technical aspects of cover material selection and construction of a capillary barrier cover 
system for the Les Terrains Auriferes tailings area near Val d'Or, Quebec were discussed by 
Ricard et al. ( 1997). Based on physical and chemical characterization of the tailings as well 
as geochemical AMD modeling results, a capillary barrier design was adopted. The cover 
was composed of 0.5 m sand at the base, a barrier layer of 0.8 m layer of non-reactive 
tailings, and a drainage layer of 0.3 m sand and gravel. Site water budget ·and various 
drainage and seepage components were evaluated with hydrologic models (HELP and 
SEEP/W). These results predicted that the AEV of the non-reactive tailings was 2.0 to 2.5 
m, and that they must be saturated at 85% in order to minimize oxygen diffusion through the 
cover. The capillary barrier system was installed in two phases. Phase one focused on the 
installation of the base layer over the tailings and on the completion of field-scale tests. 
Construction of the cover system was completed during phase two. After six months of 
monitoring, saturation levels averaged about 86% and 84% for the top and slopes of the 
stack, respectively. Furthermore, oxygen flux through the surface of the cover have been 
reduced by an average factor of 75, with a maximum factor of 1000. 

The Millenbach tailings site nearRouyn-Noranda, Quebec, was decommissioned in 1990 and 
1991. Pyritic waste rock and tailings were relocated and covered with a capillary barrier 
cover system. The cover system was designed to limit oxygen diffusion into the waste using 
four cover layers: a base layer of 30 cm coarse sand, a capillary barrier of 50 cm compacted 
clay, a drainage layer of 30 cm fine sand, and vegetation support layer of 10 - 15 cm top soil 
(Woyshner et al., 1997). Water quality of drainage from the site reflected high 
concentrations of sulfide oxidation products (e.g. acidity, iron, and sulfate) for two years after 
the waste had been covered. By extrapolating piezometer monitoring data, the length of time 
required for the water quality of drainage to stabilize was 20 to 30 years. After this "flushing 
period," oxidation should be curtailed and drainage quality should reflect natural levels. 

5.1.3. Organic Matter 

Another type of dry cover system utilizes organic matter as an oxygen consuming layer 
within the cover system by the reaction: 

(4) 

where CH20 represents an organic material. As long as adequate quantities of organics are 
present, the rate of oxygen consumption will be greater than the rate of oxygen diffusion 
through the pore spaces of the cover material. Consequently, oxygen will be consumed 
within the cover rather than reacting with the underlying mine wastes. The oxygen 
consuming organic layer ultimately results in an anoxic environment beneath the cover. 
Anoxic environments promote the activity of sulfate-reducing bacteria, which may actually 
reverse acid production and remove trace metals (Kleinmann et al., 1991). 

(5) 
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(6) 

The relative abundances of trace gases, such as methane, within interstitial pore spaces 
provide further evidence that reducing conditions have been achieved. Methane is produced 
through the biogenic fermentation of organic matter, particularly acetate, in a process known 
as methanogenesis (Manahan, 1991). 

(7) 

Organic cover layers may also reduce water infiltration, because most organic materials have 
naturally low hydraulic conductivities. The hydraulic conductivity of an organic layer may 
be further reduced due to the compaction that occurs as the organic material decomposes. 

A one year, pilot-scale study of three different organic cover materials (peat, lime stabilized 
sewage sludge, and municipal solid waste) were evaluated for their effectiveness at reducing 
acid generation (Elliott et al., 1997a, 1997b). PVC pilot cells measuring 2.5 m long, 1.5 m 
high, and 0.6 m wide were filled with 0.65 cm of reactive tailings and covered with a 75 cm 
organic cover layer. Of the three organic materials tested, lime stabilized sewage sludge'was 
the most effective at increasing pH and reducing sulfate, iron and nickel concentrations in 
the drainage. The high degree of saturation maintained in the lime stabilized sewage sludge 
cover (>90%) appeared to limit oxygen diffusion, resulting in oxygen concentrations near 
zero in the tailings beneath the cover. Peat and municipal solid waste were not effective at 
preventing sulfide oxidation in the underlying tailings. Quantification of chemical and 
mineralogical changes in the tailings and cover as well as hydraulic conductivity tests were 
in the progress, but not yet reported. 

At Quebec's East Sullivan Mine tailings impoundment, forestry wastes have been laid down 
over reactive mine wastes continually since 1984 (Tasse et al., 1997). Acidity and trace 
metal concentrations in drainage from the tailings pile has been monitoring since 1992. In 
general, the drainage pH from the covered test plots has increased above 6.0, implying that 
sulfide oxidation has been reversed. Furthermore, analysis of the interstitial gases in the 
organic cover indicate that oxygen concentrations decreased to 3-5% at a depth of 60 cm, 
while secondary gases (CO2 and CH4) increased. These results are consistent with oxidation 
of organic matter (reaction 4) and methanogenesis (reaction 7) within the cover layer. 

5.2. Synthetic Cover Materials 

Impermeable cover systems can also be constructed of synthetic materials such as plastic 
liners. A number of plastic (geosynthetic) liners are commercially available, most of which 
consist of flexible polymeric membranes (e.g. PVC or HDPE) that act as a barrier to water 
infiltration. Another option is a geosynthetic clay liners (GCLs), where sodium bentonite 
clay is encapsulated between two layers of geotextiles (Stewart and von Maubeuge, 1997; 
Miller and Hornaday, 1998). 
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A 20 mil PVC membrane was used to cover a waste rock stockpile at the Dunka Mine, MN 
(Udoh, 1993). The membrane was sandwiched between one foot of compacted sand beneath 
and six inches of sand above. The entire surface was then revegetated with native grasses 
and minor amounts of legumes. The PVC membrane cover reduced the amount of 
contaminated bottom flow by 97% within two years of installation. 

Several closure options for the tailings management area at the Crandon Project, WI, were 
evaluated using a one dimensional dilution model and a water balance model (Sevick et al., 
1998). The preliminary assessment of options concluded that a lined facility with leachate 
collection and a dry cap with a composite hydraulic barrier would be required. The hydraulic 
barrier consisted of one foot of fine soil, GCL, and 60 mil HDPE, covered with a drainage 
layer and vegetation. Based on the modeling analysis, the cover would limit water 
infiltration to such an extent that sulfide oxidation within the tailings will be minimized. 

6. FUTURE WORK 

This document reviewed selected literature on the development, implementation, 
performance, and effectiveness of specific types of dry cover systems forreactive mine waste 
materials. However, two important subjects related to dry cover systems were not fully 
addressed. First, although case studies were cited, these studies were relatively short in 
duration (i.e. no more than a few years). In general, predictive modeling suggests that these 
designs should remain effective for decades, however, the long-term performance of these 
cover designs must be proven in the field. Therefore, one area in which future efforts should 
be focused is in collecting updated information on the long-term performance of the cover 
systems implemented at specific sites. 

A second area that was not adequately addressed in this document was the application of 
hydrologic and predictive models to dry cover systems. Four models (HELP, SEEP/W, 
Soil Cover, and POLLUTE) were referred to in the literature review. While these four appear 
to be the most commonly used models in the field of mine waste ~anagement at this time, 
there may be other models available or in development that could be applied to dry cover 
systems. Furthermore, the advantages and limitations of each of these models were not 
determined here. A full understanding of the capabilities of these models is necessary in 
order to apply them appropriately to dry cover systems or any other reactive mine waste 
disposal setting. 

Finally, it is important to remember that this document is the first on the topic of mitigative 
strategies for reactive mine waste materials. Future work in this area should also include 
reviews on a wider range of possible preventative technologies (e.g. encapsulation, 
subaqueous disposal, wetlands etc.) currently in use. 
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DRY COVER SYSTEMS 
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Figure 1. Schematic of a generalized dry cover system design for acid producing 
mine waste material. 
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DRY COVER SYSTEM DESIGNS 
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Figure 2. Dry cover designs generally fall into one of six categories, each of 
which is designed to minimize water infiltration and/or oxygen diffusion into 
the mine waste. 
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Table 1. Summary of cover construction costs by type of cover. The estimated price 
range generally increases as the complexity of the cover system increases. 

Type of Cover System Estimated Price Range 
(US$/hectare1

) 

Single layer of clay or clayey till $9 - 62 k2 

GCL $17 k 

Single layer of soil $ 15 - 25 k2 

PVC $36 - 60 k3 

Capillary barrier (non-reactive $59-70 k 
mine wastes) 

Capillary barrier (general) $50 - 300 k 

1No attempt was made to adjust for inflation or fluctuating exchange rates. 
2The higher end of this range includes compaction costs. 
3Range varies depending on the required thickness. 

Table 2. Physical properties of cover materials 

Cover Material Hydraulic Permeability (cm2
) Porosity(%) 

conductivity (emfs) 

Geosynthetic Liner 10-12 - 10-9 nd nd 

Clay 10-11 - 10-7 10-15 - 10-12 40-70 

Glacial Till 10-11 - 10-4 10-15 - 10-9 nd 

Tailings 10-6 - 10-4 nd 41-46 

Organic Matter nd nd nd 

Fine Sand 10-5 - 10-1 10-11 - 10-6 25-50 

Coarse Sand 10-4 - 1 10-9 - 10-5 25-50 

nd = µo data available at the time this document was produced. 
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