



TB 525 • T9 M42c

### 1984 ANNUAL WASTEWATER TREATMENT PLANT REPORT

### prepared by the

Quality Control & Operations Department Metropolitan Waste Control Commission 350 Metro Square Building Saint Paul, Minnesota 55101

Report No. QC 84-94

# TABLE OF CONTENTS

n

|                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |       |     |                   |     |     |                       |                   |         |           |                   |                   | raye                                                                                    |
|----------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|-----|-------------------|-----|-----|-----------------------|-------------------|---------|-----------|-------------------|-------------------|-----------------------------------------------------------------------------------------|
| Tabl<br>Abbr<br>Defi                   | es and Figures<br>eviations and Symbols<br>nition of Parameters. | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                       | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • | •••   | •   | •••               | • • | • • | •<br>•                | •                 | •       | •<br>•    | •                 | •                 | v<br>vii<br>ix                                                                          |
| 1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0 | Summary                                                          | Qual<br>Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ity<br>t Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | epor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ts                      | • •<br>• •<br>• •<br>• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • | • • • | • • | • •<br>• •<br>• • | • • |     | • • • • • •           | • • • •           | • • • • | • • • • • | • • • •           | •                 | 1<br>9<br>15<br>29<br>35<br>43                                                          |
|                                        | Anoka                                                            | <ul> <li>.</li> <li>.&lt;</li></ul> | <ul> <li>.</li> <li>.&lt;</li></ul> | <ul> <li>.</li> <li>.&lt;</li></ul> | • • • • • • • • • • • • | <ul> <li>.</li> <li>.&lt;</li></ul> |   |       |     |                   |     |     | • • • • • • • • • • • | • • • • • • • • • | •       |           | • • • • • • • • • | • • • • • • • • • | 45<br>55<br>63<br>71<br>79<br>87<br>97<br>107<br>117<br>125<br>141<br>149<br>159<br>169 |
| Арре                                   | ndix                                                             | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • | •••   | •   | •••               | • • |     | •                     | •                 | •       | •         | •                 | •                 | 179                                                                                     |

# LIST OF TABLES AND FIGURES

| Number     |                                                                   | <u>Page</u> |
|------------|-------------------------------------------------------------------|-------------|
| 1-1        | 1984 Annual Summary of Treatment Plant Effluent Quality           | 2           |
| 1-2        | Trends in NPDES Permit Compliance                                 | 3           |
| 1-3        | NPDES Permit Compliance at Existing Plants                        | 4           |
| 1-4        | Summary of 1984 Incinerator Emission Quality                      | - 7         |
| 1-5        | 1984 Summary of Sludge Generated.                                 | 8           |
| 2-1        | Treatment Plants in Operation During the Period 1970-1984         | 12&13       |
| 3-1        | Definition of Secondary Treatment Effluent (Minnesota Rules       |             |
| <b>J</b> . | Chapter 7050)                                                     | 16          |
| 3-2        | Water Quality Rased Effluent Standards (Minnesota Rules Chapter   |             |
| 5-2        | 7065)                                                             | 16          |
| 2 2        | NDDES Effluent Limitations _ 1984                                 | 18          |
| 2_1        | Summany of Plant Denformance 1084                                 | 20          |
| 3-4        | Summary of NDDES Deprit Non-Compliance in 1984                    | 22          |
| 3-0<br>0 6 | NUMBER normit Violation Distribution 1981                         | 23          |
| 3-0        | Summany of Theatment Blant Denformance Parameters                 | 28          |
| 3-7        | Summary of frequment franc ferrormance farameters                 | 20          |
| 4-1        | 20) and for Solid Waste Incinerators (APC-7)                      | 30          |
| 10         | 28) did for Solid Waste Inchierators (AFC-7).                     | 31          |
| 4-2        | Summary of Air Emission Scandarus for commission incluerators     | 51          |
| 4-3        | Summary of 1964 Opacity Measurements, Seneta and Metropolitan     | 23          |
|            | Pidnics                                                           | <b>J</b> J  |
| 4-4        | Summary of 1984 Particulate lesting, Metropolitan and Seneta      | 2/          |
| <b>.</b>   | Plants                                                            | 26          |
| 5-1        | Summary of Sludge Processing and Disposal Methods, 1984           | 20          |
| 5-2        | Summary of Sludge Production and Disposal Methods, 1964           | 20          |
| 5-3        | Summary of 1984 Sludge Hauling.                                   | 39          |
| 5-4        | 1984 Studge Quality Summary                                       | 40          |
| 5-5        | Summary of Quantities of Metropolitan Plant Dewatered Sludge      | 41          |
|            | Disposed of by Landspreading Program.                             | 41          |
| A-I        | 1984 Annual Average Treatment Plant Influent Data                 | 100         |
| A-2        | Annual Average Flow Data For the Period 19/1-1984                 | 181         |
| A-3        | Annual Average BOD Effluent Concentrations for the Period         | 102         |
|            |                                                                   | 102         |
| A-4        | Annual Average 155 Effluent Concentrations for the Period         | 102         |
|            |                                                                   | 183         |
| A-5        | Annual Average BOD Effluent Percent Removal Efficiency for the    | 104         |
|            | Period 1971-1984.                                                 | 184         |
| A-6        | Annual Average TSS Effluent Percent Removal Efficiency for the    | 105         |
|            | Period 1971-1984                                                  | 185         |
| A-7        | Influent BOD Data, 1971-1984                                      | 180         |
| A-8        | Influent TSS Data, 1971-1984                                      | 187         |
| A-9        | Statistical Analyses of Biochemical Oxygen Demand Data For Plants | 1.00        |
|            | in Operation During 1984                                          | 188         |
| A-10       | Statistical Analyses of Total Suspended Solids Effluent Data For  | 1.64        |
|            | Plants in Operation During 1984                                   | 189         |
|            |                                                                   |             |

### LIST OF TABLES AND FIGURES CONT.

#### Table Number Page 1984 Metropolitan Plant Sludge Quantities . . . 190 A-11 A-12 191 A-13 192 A-14 193 . • A-15 194 . . . . . . Figure Number

| 1   | Trends in Plant Performance, 1971-1984             | 5  |
|-----|----------------------------------------------------|----|
| 2-1 | Number of Treatment Plants in Operation, 1970-1984 | 11 |
| 4-1 | Sources                                            | 32 |

# ABBREVIATIONS AND SYMBOLS

| As              | Arsenic                                         |
|-----------------|-------------------------------------------------|
| Avg.            | Average                                         |
| BOD             | Biochemical oxygen demand (generally means      |
|                 | BOD5, or five day biochemical oxygen demand)    |
| CBOD            | Carbonaceous biochemical oxygen demand          |
| Cd              | Cadmium                                         |
| cfs             | Cubic feet per second                           |
| cfm             | Cubic feet per minute                           |
| Cn              | Cyanide                                         |
| COD             | Chemical oxygen demand                          |
| Cr              | Chromium                                        |
| Cu              | Copper                                          |
| cu. ft.         | Cubic feet                                      |
| DO              | Dissolved oxygen                                |
| dss             | Dry sludge sõlids                               |
| 4 dtpd          | dry ton/day                                     |
| dtph            | dry ton/hour                                    |
| EFF             | Effluent                                        |
| °F              | Degrees Fahreneit                               |
| F:M             | Food to microorganism ratio                     |
| FeCla           | Ferric chloride                                 |
| fps             | Feet per second                                 |
| a               | Grams                                           |
| bap             | Gallons per day                                 |
| apm             | Gallons per minute                              |
| gr/dscf         | Grains/dry standard cubic foot                  |
| На              | Mercury                                         |
| hor.            | Horizontal                                      |
| hr.             | Hour                                            |
| ID              | Identification                                  |
| INF             | Influent                                        |
| KJN             | Kieldahl nitrogen                               |
| 1b.             | Pound                                           |
| lin.ft.         | Lineal feet                                     |
| ma/ka           | Milligram per kilogram                          |
| mg/L            | Milligrams per liter                            |
| MĞD or mgd      | Million gallons per day                         |
| MLSS            | Mixed liquor suspended solids                   |
| MMBtu           | Million british thermal units                   |
| NH3 (NH3-N)     | Ammonia (nitrogen)                              |
| Ni              | Nickel                                          |
| No.             | Number                                          |
| NO <sub>2</sub> | Nitrite (nitrogen)                              |
| NO3             | Nitrate (nitrogen)                              |
| NPĎES           | National Pollutant Discharge Elimination System |
| NTU             | Nephelometric turbidity units                   |

# ABBREVIATIONS AND SYMBOLS CONT.

| ocu     | Odor concentration unit         |
|---------|---------------------------------|
| P '     | Phosphorus                      |
| РЬ      | Lead                            |
| PCB     | Polychlorinated biphenyl        |
| pH      | Indicates acidity/alkalinity    |
| SCFM    | Standard cubic feet per minute  |
| Sn      | Tin                             |
| sq. ft. | Square feet                     |
| Std.    | Standard                        |
| TBOD    | Total biochemical oxygen demand |
| tds     | Tons dry solids                 |
| tpd     | Tons per day                    |
| TS      | Total solids                    |
| TSS     | Total suspended solids          |
| Turb.   | Turbidity                       |
| uq/1    | Micrograms per liter            |
| vš      | Volatile solids                 |
| Zn      | Zinc                            |
| >       | Greater than                    |
| <       | Less than                       |

#### DEFINITION OF PARAMETERS

Biochemical Oxygen Demand (BOD) is a measure of the dissolved oxygen required by organisms for the aerobic decomposition of organic matter present in wastewater. A low BOD in the plant discharge is desirable because this would cause the least amount of oxygen depletion in the receiving body of water. This test normally takes five days before results are available.

Chemical Oxygen Demand (COD) is a measure of the oxygen equivalent required to chemically oxidize the organic matter present in wastewater. A low COD is desirable in plant effluent discharges. This test takes approximately three hours to complete and the results can be used to estimate BOD values. It is, therefore, extremely useful as a process control tool.

Total Suspended Solids (TSS) is a measure of the amount of particulate matter found suspended in a given amount of wastewater. Suspended solids adversely affect receiving waters by exerting an oxygen demand during decomposition or filtering out available sunlight needed by aquatic organisms for photosynthesis.

pH is a measure of the hydrogen ion concentration in a given sample of water. It is used as an indication of acidity or alkalinity. A pH of 7 is neutral - neither acid or alkaline. pH values below 6 or above 9 are usually harmful to aquatic life.

Dissolved Oxygen (DO) is a measure of the concentration of oxygen dissolved in a given sample of water. A sufficient DO level in plant effluent discharges is important because dissolved oxygen is required for the life processes of aquatic organisms.

Fecal Coliform organisms are a group of bacteria present in wastewater and are used as indicators of the possible presence of pathogenic or disease producing bacteria. Monitoring of fecal coliform organisms is also done to determine the efficiency of effluent disinfection processes.

Ammonia (NH<sub>3</sub>), Nitrate (NO<sub>3</sub>), and Nitrite (NO<sub>2</sub>) are nitrogenous compounds found in wastewater. Excessive discharges of these compounds can adversely affect the receiving body of water. Degradation of NH<sub>3</sub> to NO<sub>3</sub> is an oxygen demanding reaction. Monitoring of nitrogenous compounds is also useful for controlling secondary treatment processes.

Phosphorus (P) is monitored because it also can have adverse effects on the receiving body of water. When discharged in sufficient quantities it aids in stimulating excessive and undesirable algal growth.

Heavy Metals covered in this report include the following: copper (Cu), chromium (Cr), zinc (Zn), lead (Pb), cadmium (Cd), mercury (Hg), nickel (Ni), arsenic (As), and tin (Sn). Close monitoring of heavy metals is necessary due to their possible toxicity to aquatic organisms present in the receiving waters.

#### 1.0 SUMMARY

During 1984, the Commission operated fourteen wastewater treatment plants. The performance of these facilities is related to: (1) the effluent quality of each plant and the record of compliance with NPDES permit conditions; (2) the quality of air emissions from sludge incineration at two regional plants; and (3) management of sludge generated at each plant as a result of wastewater treatment. The purpose of this report is to summarize the performance of Commission treatment plants during 1984 by presenting and analyzing data generated to monitor these major areas.

1.1 Effluent Quality

Table 1-1 is a summary of average annual effluent quality at each plant. Annual average effluent CBOD was below permitted discharge limitations at all plants. Annual average effluent TSS was below permitted discharge limitations at all plants except the Hastings Plant. At Bayport, Rosemount, and Stillwater, annual average effluent phosphorus was below the limit of 1 mg/L. At Empire, annual average effluent ammonia was below the limit of 1 mg/L.

One of the most important indicators of performance of individual treatment plants, and performance of the Commission in the operation of all plants, is compliance with NPDES permit limitations. Table 1-2 summarizes the trend in NPDES permit compliance for the period of NPDES administration, 1974-1984. During this period, the number of plants operated by the Commission was reduced from 21 in 1974 to its present number of 14. The total number of violations has ranged from a high of 163 in 1974 to a low of 20 in 1983. NPDES Permit violations totalled 33 in 1984. Overall percent compliance with NPDES permit limitations improved from 86.4% in 1974 to 99% in 1983. Percent compliance with NPDES Permit limitations was 98.4% in 1984.

Individual NPDES compliance records of the fourteen plants currently in operation are given for the period 1978-1984 in Table 1-3. In general, performance at each plant improved significantly through the period 1978-1980, and remained relatively constant from 1980-1983. The number of permit violations increased from 20 in 1983 to 33 in 1984.

Trends in plant performance can also be evaluated by examining the two major effluent parameters, BOD and TSS, in the form of a single performance indicator (BOD + TSS). Figure 1-1 shows these trends for the Metropolitan Plant alone, and for all other plants combined. Performance at the Metropolitan Plant has been somewhat erratic in the past, with particularly poor performance in 1976 and 1979. NPDES permit limitation levels were eased in 1977 and in 1978 in recognition of reduced plant performance capabilities. During the period of 1980-1984, NPDES permit limitations for the Metropolitan Plant approached and equaled secondary treatment levels (BOD = 25 mg/L and TSS = 30 mg/L or BOD + TSS = 55 mg/l) while performance was consistently better than secondary treatment.

#### 1984 ANNUAL SUMMARY OF TREATMENT PLANT EFFLUENT QUALITY

|                                            | Wastewat<br>Flow<br>mgd | èr                  | 19<br>Per<br><u>Re</u> m | 984<br>Scent<br>Noval |                | 80D<br>mg/1  | 1004                         | T9<br>mg/             | S<br>1              | Fecal<br>Geome<br>Mea<br><u>MPN/10</u> | Coli.<br>etric<br>n<br>0 ml | Nut<br><u>Phosph</u>  | rienta<br>orua      | , mg/1<br>Ammo | nia                  | Turbi                 | dity<br>U           | Disso<br>Oxyg<br>mg/ | lved<br>jen<br>'l   |
|--------------------------------------------|-------------------------|---------------------|--------------------------|-----------------------|----------------|--------------|------------------------------|-----------------------|---------------------|----------------------------------------|-----------------------------|-----------------------|---------------------|----------------|----------------------|-----------------------|---------------------|----------------------|---------------------|
| Treatment<br>Plant                         | Design(1)               | 1984<br><u>Avg.</u> | BOD                      | <u> 155</u>           | NPDES<br>Limit | CBOD<br>Avg. | 1984<br>TBOD<br><u>Avg</u> . | NPDES<br><u>Limit</u> | 1984<br><u>Avg.</u> | NPDES<br><u>Limit</u>                  | 1984<br><u>Avg.</u>         | NPDES<br><u>Limit</u> | 1984<br><u>Avg.</u> | NPDES<br>Limit | 1984<br><u>Avg</u> . | NPDES<br><u>Limit</u> | 1984<br><u>Avg.</u> | NPDES<br>Limit       | 1984<br><u>Avg.</u> |
| Anoka                                      | 2.46                    | 2.49                | 93                       | 93                    | 25             | 13           | 1 <b>9</b>                   | 30                    | 11                  | 200                                    | 78                          |                       | 3.8                 |                | 11.8                 | 25                    | 7                   |                      | 1.9                 |
| Bayport                                    | 0.65                    | 0.50                | 97                       | 96                    | 25             | 6            | 10                           | 30                    | 8                   | 200                                    | 8                           | 1.0                   | 0.4                 |                | 3.5                  | 25                    | 3                   |                      | 4.8                 |
| Blue Lake                                  | 20.00                   | 19.5                | 95                       | 97                    | 25             | 9            | 26                           | 30                    | 7                   | 200                                    | 24                          |                       | 3.1                 | ÷              | 9.0                  | 25                    | 8                   |                      | 9.5                 |
| Chaska                                     | 1.40                    | 1.09                | 92                       | 93                    | 25             | 9            | 15                           | 30                    | 11                  | 200                                    | 18                          |                       | 0.9                 |                | 7.7                  | 25                    | 5                   |                      | 9.2                 |
| Cottage Grove                              | 1.80                    | 1.30                | <del>9</del> 5           | 94                    | 25             | 9            | 22                           | 30                    | 9                   | 200                                    | 101                         |                       | 4.7                 |                | 18.6                 | 25                    | 5                   |                      | 5.5                 |
| Empire                                     | 6.00                    | 5.19                | 99                       | 99                    | 10             | 2            | 3                            | 10                    | 2                   | 200                                    | 4                           |                       | 4.3                 | 1.0            | 0.3                  | <b>25</b> ·           | 1                   | >4.0                 | 8.0                 |
| Hastings                                   | 1.83                    | 1.64                | 89                       | 83                    | 25             | 22           | 43                           | 30                    | 32                  | 200                                    | 33                          |                       | 6.7                 |                | 16.8                 | 25                    | 12                  |                      | 5.8                 |
| Maple Plain                                | 0.22                    | 0.40                | 91                       | 93                    | 25             | 10           | 13                           | 30                    | 10                  | 200                                    | 7                           |                       | 1.9                 |                | 5,9                  |                       | 9                   | ****                 | 7.1                 |
| Medina Surface<br>Discharge <sup>(3)</sup> | 0.10                    | 0.28                | <del>9</del> 2           | 85                    | 25             | 8            |                              | 30                    | 20                  | 200                                    | 9                           |                       | 1.1                 |                | 2.2                  | 25                    | 6                   |                      | 7.9                 |
| Medina Interme-<br>diate Discharge(4)      |                         |                     | 89                       | 86                    | <del></del>    | 10           | 15                           |                       | 16                  |                                        |                             |                       | 1.8                 |                | 6.0                  |                       | 10                  |                      | 2.6                 |
| Metropolitan                               | 250                     | 222                 | 94                       | <del>9</del> 5        | 24             | 10           | 20                           | 30                    | 11                  | 200                                    | 43                          |                       | 2.0                 |                | 9.9                  |                       | 6                   | 7(2)                 | 4.4                 |
| Rosemount                                  | 0.60                    | 0.37                | 96                       | 98                    | 25             | 18           | 20                           | 30                    | 3                   | 200                                    | 5                           | 1.0                   | 0.2                 |                | 25.7                 | 25                    | 6                   |                      | 6.6                 |
| Savage                                     | 0.86                    | 0.62                | 93                       | 98                    | 25             | 7            | 8                            | 30                    | 3                   | <b>20</b> 0                            | 53                          |                       | 7.3                 |                | 1.2                  | 25                    | 4                   |                      | 8.9                 |
| Seneca                                     | 24.00                   | 17.6                | 92                       | 90                    | 25             | 17           | 23                           | 30                    | 21                  | <b>2</b> 00                            | 18                          |                       | 4.2                 |                | 16.6                 | 25                    | 9                   |                      | 9.0                 |
| Stillwater                                 | 3.02                    | 2.95                | 93                       | 93                    | 25             | 8            | 14                           | 30                    | 9                   | 200                                    | 7                           | 1.0                   | 0.4                 |                | 8.0                  | 25                    | 4                   |                      | 4.8                 |

(1)Represents NPDES permitted flow. See text of report for discussion of design flow capacity.
 (2)Dissolved Oxygen limitation of 7 mg/l for river flows less than 7,000 cfs and river D.O. values less than 6.0 mg/l upstream or less than 3.5 mg/l downstream for two consecutive sample days, during the period June - September.
 (3)Flow presented is total to plant. Effluent quality presented represents surface discharge (0.17 mgd).
 (4)Effluent quality presented represents remainder of flow discharged to ground water via seepage ponds.

# TRENDS IN NPDES PERMIT COMPLIANCE

| Year | Number of Plants<br>In Operation<br>(at Year-End) | Number of<br>Violations | Percent<br>Compliance |
|------|---------------------------------------------------|-------------------------|-----------------------|
| 1974 | 21                                                | 163                     | 86.4                  |
| 1975 | 20                                                | 81                      | 94.5                  |
| 1976 | 20                                                | 109                     | 92.7                  |
| 1977 | 20                                                | 101                     | 93.6                  |
| 1978 | 18                                                | 94                      | 94.5                  |
| 1979 | 16                                                | 109                     | 93.8                  |
| 1980 | 14                                                | 36                      | 98.0                  |
| 1981 | 14                                                | 35                      | 98.0                  |
| 1982 | 14                                                | 30                      | 98.3                  |
| 1983 | 14                                                | 20                      | 99.0                  |
| 1984 | 14                                                | 33                      | 98.4                  |

# NPDES PERMIT COMPLIANCE AT EXISTING PLANTS

|               |                 |            | AN        | INUAL NU | JMBER OF | VIOLA    | FIONS () | /) AND     | PERCENT  | COMPLIA    | NCE (C)  | )        |          |          |
|---------------|-----------------|------------|-----------|----------|----------|----------|----------|------------|----------|------------|----------|----------|----------|----------|
|               | $\frac{19}{19}$ | 78         | <u>19</u> | 79       | 19       | 980      | 19       | <u>181</u> | 19       | 82         | 19       | 83       | 19       | 984      |
| PLANI         | <u>v</u>        | <u> </u>   | <u>v</u>  | <u> </u> | <u>v</u> | <u>C</u> | <u>v</u> | <u>C</u>   | <u>v</u> | <u>C</u>   | <u>v</u> | <u>C</u> | <u>v</u> | <u>C</u> |
| ANOKA         | 27              | <b>9</b> 0 | 3         | 97       | 3        | 99       | 8        | 97         | 2        | 99         | 2        | 99       | 4        | 98       |
| BAYPORT       | 0               | 100        | 0         | 100      | · 0      | 100      | 0        | 100        | 0        | 100        | 0        | 100      | 0        | 100      |
| BLUE LAKE     | 1               | 99         | 0         | 100      | 0        | 100      | 0        | 100        | 0        | 100        | 1        | 99       | 0        | 100      |
| CHASKA        | 15              | 69         | 25        | 58       | 4        | 96       | 3        | 98         | 1        | 99         | 1        | 99       | 5        | 96       |
| COTTAGE GROVE | 3               | 94         | 4         | 95       | 1        | 99       | 4        | 96         | 1        | 99         | 1        | 99       | 0        | 100      |
| EMPIRE        |                 |            | 1         | 90       | 1        | 99       | 0        | 100        | 3        | <b>9</b> 8 | 0        | 100      | ١        | . 99     |
| HASTINGS      | 2               | 98         | 2         | 99       | 5        | 97       | 8        | 94         | 18       | 87         | 7        | 95       | 16       | 88       |
| MAPLE PLAIN   | 2               | 97         |           | 95       | 3        | 95       | 1        | 99         | 2        | 96         | . 0      | 100      | 0        | 100      |
| MEDINA        | 0               | 100        | 1         | 92       | 0        | 100      | 2        | 83         | 0        | 100        | 4        | 92       | 4        | 94       |
| METROPOLITAN  | 6               | 88         | 15        | 69       | 2        | 96       | 5        | 89         | 0        | 100        | 0        | 100      | 0        | 100      |
| ROSEMOUNT     | 1               | 99         | 1         | 99       | 1        | 99       | 0        | 100        | נ        | 99         | 3        | 98       | 2        | 99       |
| SAVAGE        | 2               | 96         | 6         | 92       | 0        | 100      | 0        | 100        | 1        | 99         | 0        | 100      | 1        | 99       |
| SENECA        | 5               | 97         | 8         | 94       | 0        | 100      | 2        | 99         | I        | 99         | 1        | 99       | 0        | 100      |
| STILLWATER    | 0               | 100        | 0         | 100      | 2        | 99       | 2        | 99         | 0        | 100        | 0        | 100      | 0        | 100      |
| TOTAL AVERAGE | 64              | 94         | 74        | 95       | 22       | 99       | 35       | 98         | 30       | 98         | 20       | 99       | 33       | 98       |



Figure 1 Trends in plant performance 1971 - 1984

Other plants show a trend of improved performance throughout 1971-1981, with marked improvement in 1971-1975, and 1979-1981. NPDES permit limitations became more stringent between 1975-1980. In 1984, NPDES permit limits were at the secondary treatment level (BOD = 25 mg/L and TSS = 30 mg/L) or better at all plants while performance was better than secondary treatment.

#### 1.2 Air Emissions

There are four major sources of air emissions at the Metropolitan and Seneca Plants: Metropolitan F & I No. 1 sludge incinerators, Metropolitan F & I No. 2 sludge incinerators, Metropolitan scum incinerator, and Seneca sludge incinerators. Each source is limited in discharge of particulates, opacity and odors. Sludge incinerators also have a limit on mercury emission.

Table 1-4 is a summary of sludge and scum incinerator emissions quality measured during 1984. The Metropolitan and Seneca Solids Processing Buildings demonstrated compliance with particulate, opacity, and mercury emission standards. The Metropolitan Scum Incinerator exceeded particulate emission standards due to gas scrubber problems occurring when the incinerator was operated at or near rated capacity.

#### 1.3 Sludge Management

Each of the fourteen plants operated by the Commission produces sludge as a result of wastewater treatment, and with the exception of Medina, each plant provides some form of sludge processing. Ultimate disposal of sludge generated at Commission plants involves either landspreading or incineration. The Metropolitan Plant and the Seneca Plant represent major points of final sludge disposal. At the Metropolitan Plant, sludge is either landspread or incinerated; at Seneca, sludge is incinerated. The Empire Plant has on-site sludge landspreading facilities; all other plants transport sludge to the Metropolitan or Seneca Plant, or directly to landspreading sites. Table 1-5 is a summary of sludge generated at Commission plants.

#### Opacity Particulate Mercury Percent of Annual Percent of Percent of Emission Annual No. of Tests No. of Tests Opacity Avg. No. of Tests Emission Annual std. Avg. Mtg. Stds. Mtg. Stds. Std., % Opacity, % Tests Mtg. Stds. std. Testa Ava. q/24 hr. g/24 hr. Tests Source 1.3(1) 1.0(1) 7 105 100 20 100 5 100 Metro, Solids Processing 2 3200 630 Bulding , 0.2(2) 0.47(2) 0 1 0 20 -------Metro Scum Incinerator \_\_\_ \_\_\_\_ \_\_\_ 0.2(2)(3) 0.002(2)45 87 2 100 20 14 2 100 60 3200 Seneca Solids Processing Building

#### SUMMARY OF 1984 INCINERATOR EMISSION QUALITY

🗸 (1)Metro Solids Processing Bulding particulate standard and testing results expressed in 1bs particulate/ton dry solids.

(2) Grains/dry standard cubic foot corrected to 12% CO2.

(3)Emission standard of 0.2 gr/dscf @ 12% CO<sub>2</sub> applies to incinerator operation on vacuum filter cake at derated capacity of 2000 lbs./hr. Emission standard of 0.1 gr/dscf @ 12% CO<sub>2</sub> applies to incinerator operation on belt press cake at full capacity of 3,100 lbs/hr.

|                    | ANNUAL WASTEWA       | TER FLOW           | ANNU          | AL SLUDGE PROD |          |                           |
|--------------------|----------------------|--------------------|---------------|----------------|----------|---------------------------|
| TREATMENT<br>PLANT | Daily Average<br>MGD | Annual Total<br>MG | MG            | % SOLIDS       | DRY TONS | SLUDGE DISPOSAL<br>METHOD |
| ANOKA              | 2.49                 | 911                | 4.14          | 2.07           | 360      | (1)                       |
| BAYPORT            | 0.50                 | 183                | 1.30          | 2.20           | 120      | (1)                       |
| BLUE LAKE*         | 19.5                 | 7,137              | 40.70         | 4.58           | 7,775    | (1) (2)                   |
| CHASKA             | 1.09                 | 399                | 3.15          | 2.10           | 275      | (3) (4)                   |
| COTTAGE GROVE      | 1.30                 | 476                | 3.27          | 1.81           | 245      | (1) $(4)$                 |
| EMPIRE             | 5.19                 | 1,900              |               |                | 789      | (4)                       |
| HASTINGS           | 1.64                 | 600                | 2.09          | 3.02           | 260      | (1) (4)                   |
| MAPLE PLAIN        | 0.40                 | 146                | 0.04          | 4.30           | 8        | (1)                       |
| MEDINA             | 0.28                 | 102                |               |                |          |                           |
| METROPOLITAN*      | 222                  | 81,252             |               |                | 68,241   | (4) (5)                   |
| ROSEMOUNT          | 0.37                 | 135                | 1.88          | 9.61           | 750      | (1)                       |
| SAVAGE             | 0.62                 | 227                | 0 <b>.6</b> 7 | 3.34           | 95       | (1) (2) (4)               |
| SENECA*            | 17.6                 | 6,442              |               | 23.8           | 11,266   | (5)                       |
| STILLWATER         | 2.95                 | 1,080              | 5.35          | 2.79           | 620      | (1) (4)                   |

#### 1984 SUMMARY OF SLUDGE GENERATED

#### SLUDGE DISPOSAL METHODS:

- (1) Transported to Metropolitan Plant for further processing.
- (2) Transported to Seneca Plant for futher processing.
- (3) Transported to Blue Lake Plant for further processing.
- (4) Landspreading.
- (5) Incineration.

#### NOTES:

\*Annual Sludge Production includes sludge transported from other plants for further processing. Chemicals added for sludge conditioning are included for only the Seneca Plant.

#### 2.0 INTRODUCTION

The Metropolitan Waste Control Commission was established as the areawide operational water pollution control agency by the Minnesota State Legislature, through the Metropolitan Sewer Act in 1969. This Act gives the Commission formal charge to prevent, abate, and control water pollution in lakes, rivers, and streams of the seven county Metropolitan area. The accomplishment of these responsibilities required that the Commission acquire, construct, operate, and maintain all interceptors and treatment works necessary for the collection, treatment, and disposal of wastewater in the area.

The Commission originally acquired 33 existing wastewater treatment plants in 1970. Through a ten year regionalization program, the Commission eliminated 22 old and outdated plants which could not comply with recent and more stringent effluent limitations. Three new and modern plants were designed and constructed to economically meet required effluent limitations, and provide for expansion to accomodate future growth in the area. Completion of this regionalization program left the Commission with the existing 14 treatment plants. The number of plants in operation at the end of each year is shown graphically in Figure 2-1. A history of each plant is summarized in Table 2-1.

The 14 plants currently operated by the Commission include the Metropolitan Plant. This is the largest plant in the system and serves the greater Minneapolis-St. Paul area. Three other regional plants, Blue Lake, Empire, and Seneca, each serve several suburban communities. The remaining ten smaller plants generally serve communities in each of their immediate areas.

Throughout each year, the performance of each plant is monitored, recorded, and reported to regulatory agencies, Commission administrators, and Commission program managers, in order to insure consistently good performance and indicate areas where additional effort is necessary to improve performance. At the end of each year, the performance of each treatment plant is summarized. This report is a summary of treatment plant performance during 1984.

The purposes of this report are as follows:

- To provide a summary of 1984 treatment plant performance data for future reference;
- (2) To compare plant effluent quality to NPDES permit effluent limitations;
- (3) To compare effluent quality to plant program performance goals;
- (4) To compare major air emissions to emission standards;
- (5) To summarize quantity and quality of sludge production, and methods of sludge treatment and disposal at each plant;



|                      | 1970                | 1971                | 1972           | 1973                | 1974           | 1975            | 1976           |
|----------------------|---------------------|---------------------|----------------|---------------------|----------------|-----------------|----------------|
| ANOKA                | ****                | ****                | xxxxxxxxxxx    | ****                | ****           | ****            | ****           |
| APPLE VALLEY         | ****                | ****                | ****           | ****                | ****           | XXXXXXXXXXXXX   | ****           |
| BAYPORT              | ****                | ****                | ****           | ****                | ****           | *****           | *****          |
| BLUE LAKE            | (Plant Start-       | up 8/71)XXXXX       | ****           | <b>XXXXXXXXXXXX</b> | ****           | ****            | ****           |
| BURNSVILLE           | ****                | ****                | XXXXXXXXXX (F1 | ow diverted to      | Blue Lake 9/2  | 2/72)           |                |
| CHASKA               | ****                | ****                | ****           | ****                | *****          | ****            | ****           |
| CHANHASSEN           | *****               | ****                | X (Flow diver  | ted to Blue La      | ke Plant 1/10/ | 72)             |                |
| COTTAGE GROVE        | ****                | ****                | ****           | ****                | ****           | ****            | ****           |
| EAGAN TOWNSHIP I     | ****                | xxxxxxxxxxxx        | XXXXXXX (Flow  | diverted to S       | eneca Plant, 7 | /21/72)         |                |
| EAGAN TOWNSHIP II    | ****                | xxxxxxxxxxx         | XXXXXXX (Flow  | diverted to S       | eneca Plant, 7 | /21/72)         |                |
| EMPIRE               |                     |                     |                |                     |                |                 |                |
| EXCELSIOR            | xxxxxxxxxxx         | ****                | XX (Flow dive  | erted to Blue L     | ake Plant 2/28 | /72)            | •<br>• •       |
| FARMINGTON           | ****                | xxxxxxxxxxx         | ****           | ****                | ****           | ****            | ****           |
| FOREST LAKE TOWNSHIP | ****                | ****                | XXXXXXXXX (F1  | low diverted to     | Metropolitan   | Plant 9/28/72)  |                |
| FOREST LAKE VILLAGE  | ****                | ****                | XXXXXXXXX (F1  | low diverted to     | Metropolitan   | Plant 9/28/72)  |                |
| HASTINGS             | ****                | ****                | ****           | xxxxxxxxxxxx        | xxxxxxxxxxx    | ****            | xxxxxxxxxxx    |
| INVER GROVE HEIGHTS  | ****                | xxxxxxxxxxx         | xxxxxxxxx (    | (Flow diverted      | to Metropolita | n Plant 11/8/7  | 2)             |
| LAKEVILLE            | ****                | ****                | xxxxxxxxxxx    | ****                | ****           | ****            | XXXXXXXXXXXX   |
| LONG LAKE            | <b>XXXXXXXXXXXX</b> | XXXXXXXXXXXXX       | ****           | XXXXXXXXXXXXX       | ****           | xxxxxxxxxxx     | ****           |
| MAPLE PLAIN          | xxxxxxxxxxx         | xxxxxxxxxxx         | ****           | ****                | ****           | ****            | xxxxxxxxxxx    |
| MEDINA               | xxxxxxxxxxx         | ****                | ****           | ****                | ****           | xxxxxxxxxxx     | ****           |
| ME TROPOL I TAN      | xxxxxxxxxxx         | ****                | ****           | ****                | ****           | xxxxxxxxxxx     | ****           |
| MOUND                | ****                | ****                | ****           | ****                | XXXXX (Flow d  | liverted to 81u | e Lake Plant   |
| NEWPORT              | ****                | <b>XXXXXXXXXXXX</b> | ****           | ****                | ****           | XXXXXXX (Flow   | diverted to    |
| OAK PARK HEIGHTS     | ****                | ****                | ****           | XXXXXXXX (Flow      | diverted to S  | itillwater Plan | t 7/11/73)     |
| ORONO                | xxxxxxxxxxxx        | ****                | ****           | ****                | ****           | xxxxxxxxxxx     | xxxxxxxxxxxx   |
| PRIOR LAKE           | xxxxxxxxxxxx        | ****                | xxxxxxxxxxx    | ****                | ****           | xxxxxxxxxxxx    | ****           |
| ROSEMDUNT I          | ****                | ****                | ****           | XXXXXXXXXXXX (      | Flow diverted  | to Rosemount 1  | I 11/20/73)    |
| ROSEMDUNT II         |                     |                     | (Plant Start-  | -up 11/73) XX       | ****           | ****            | xxxxxxxxxxxx   |
| ST. PAUL PARK        | ****                | ****                | ****           | ****                | *****          | XXXXXXX (Flow   | diverted to    |
| SAVAGE               | ****                | ****                | ****           | <b>XXXXXXXXXXXX</b> | ****           | ****            | ****           |
| SENECA               | (                   | Plant Start-up      | 7/72) XXXXXX   | ****                | ****           | ****            | ****           |
| SHAKOPEE             | ****                | XXXXXXX (Flow       | diverted to a  | Blue Lake Plant     | 7/71)          |                 |                |
| SOUTH ST. PAUL       | <b>XXXXXXXXXXXX</b> | ****                | ****           | xxxxxxxxxxxx        | XXXXXXX (Flow  | diverted to Me  | etropolitan    |
| STILLWATER           | ****                | ****                | ****           | ****                | ****           | ****            | ****           |
| VICTORIA             | ***                 | ****                | ****           | XXXXXXXXXXX (       | Flow diverted  | to Blue Lake F  | Plant 11/7/73) |
| WACONIA              |                     |                     |                |                     | (Plant acqui   | ired 11/75) XX  | ****           |
| WAYZATA              | xxxxxxxxxxx         | XXXXXXXXXX (F       | low diverted   | to Blue Lake Pl     | lant 10/71)    |                 |                |

. .

TREATMENT PLANTS IN OPERATION DURING THE

PERIOD IN 1970-1984 1984 1981 1982 1983 1980 1977 1978 1979 5/74)Metropolitan Plant 6/11/75) XXXXXXXXXXX XXXXX (Flow diverted to Blue Lake Plant 5/78) Metropolitan Plant 6/18/75) Plant 6/24/74)

XXXXXXXXXXXX X (Flow diverted to Blue Lake Plant 1/78)

(6) To summarize activities related to plant performance at each plant; and

2.9

(7) To compare 1984 plant performance data to historical performance data.

This report is divided into seven major sections. Sections 1 and 2 are a summary and introduction, respectively. Section 3 discusses plant effluent quality relative to NPDES effluent limitations and performance goals. Section 4 discusses air emissions from sources at the Metropolitan and Seneca Plants. Section 5 summarizes plant sludge production and sludge quality. Section 6 consists of individual treatment plant reports giving details of plant treatment processes, plant efficiencies, plant loadings, and 1984 activities at each plant. Section 7 is an appendix which presents additional data and data analyses in several forms.

#### 3.0 EFFLUENT QUALITY

#### 3.1 Water Pollution Control Regulations

Current federal regulations on water pollution control are based primarily on the Water Pollution Control Act Ammendments of 1972 (Public Law 92-500), which was passed by Congress in October, 1972. The purpose of the Act was to enhance the quality and value of water resources and to establish a national policy for the prevention, control, and abatement of water pollution. The national goal established by this Act is to make all surface waters, i.e. lakes and rivers, fishable and swimmable.

The federal law has taken an approach to water pollution control regulation that follows two complementary strategies. First, all publicly owned treatment works have been required to comply with technology-based limits on effluent quality, or what is commonly known as secondary treatment. Second, all states are required to establish use classifications for its surface waters, to adopt water quality standards necessary to assure attainment of the designated use, and to require more stringent treatment than secondary treatment when necessary to insure compliance with water quality standards.

As a result, secondary treatment is required as a minimum for all Commission wastewater treatment plants. Certain treatment plants (basically the larger, regional plants) are currently, will be, or may be subject to more stringent effluent limits as water quality standards are revised in the future.

Congress has amended the 1972 Act twice, by the Clean Water Act of 1977, and the Municipal Wastewater Treatment Construction Grant Amendments of 1981. These amendments have recognized the magnitude of the federal water pollution control program and have set a compliance date of July 1, 1988, for publicly owned treatment works to meet secondary treatment limits and, where applicable, water quality related effluent limits. The federal agency which administers the law and regulates dischargers is the U.S. Environmental Protection Agency (EPA).

The corresponding state regulatory agency, the Minnesota Pollution Control Agency (MPCA), has established rules regarding water use classifications and water quality standards, as required by federal law. These rules include the definition of secondary treatment, as presented in Table 3-1.

#### TABLE 3-1

### DEFINITION OF SECONDARY TREATMENT EFFLUENT (MINNESOTA RULES CHAPTER 7050)

| Substance or Characteristic                      | Limiting Concentration or Rang |            |  |  |  |  |
|--------------------------------------------------|--------------------------------|------------|--|--|--|--|
|                                                  | <u>30 Day Mean</u>             | 7 Day Mean |  |  |  |  |
| 5-Day Carbonaceous Biochemical Oxygen            |                                |            |  |  |  |  |
| Demand (1)                                       | 25                             | 40         |  |  |  |  |
| Fecal Coliform Group Organisms, Number/100 ml(2) | 200                            |            |  |  |  |  |
| Total Suspended Solids, mg/L(1)                  | 30                             | 45         |  |  |  |  |
| Phosphorus, mg/L(3)                              | 1                              |            |  |  |  |  |
| Furbidity, NTU(1)                                | 25                             |            |  |  |  |  |
| pH Range <sup>(4)</sup>                          | 6.0-9.0                        |            |  |  |  |  |
| Unspecified Toxic or Corrosive Substances(5)     |                                |            |  |  |  |  |
|                                                  |                                |            |  |  |  |  |

(1) Arithmetic Mean

Geometric Mean; No more than 10% of samples shall exceed 400 organisms/100 mL: Disinfection required from March 1 through October 31.

- (3) In effect where discharge is directly to lake or reservoir.
- (4) Not subject to averaging.

(5) None at levels acutely toxic to humans or other animals or plant life.

#### TABLE 3-2

#### WATER QUALITY BASED EFFLUENT STANDARDS (MINNESOTA RULES CHAPTER 7065)

| Substance or Characteristic                  | Limiting Concentration |
|----------------------------------------------|------------------------|
| 5-Day Biochemical Oxygen Demand, $mg/L(1)$   | 10                     |
| Total Suspended Solids, mg/L(1)              | 10                     |
| Turbidity, NTU(1)                            | 25                     |
| pH Range <sup>(4)</sup>                      | 6.0-9.0                |
| Ammonia as Nitrogen, mg/L(1)                 | 1                      |
| Dissolved Oxygen, mg/L(1)                    | 4                      |
| Unspecified Toxic or Corrosive Substances(4) |                        |

- (1) Arithmetic Mean
- (2) Geometric Mean; No more than 10% of samples shall exceed 400 organisms/100 mL; Disinfection required from March 1 through 0ctober 31.
- (3) Not subject to averaging.
- (4) None at levels acutely toxic to humans or other animals or plant life.

During 1974, the National Pollutant Discharge Elimination System (NPDES) was established as the major regulatory tool to be used in implementing the requirements of Public Law 92-500. Under this system, each individual wastewater discharged to state or federal waters is required to have an NPDES permit. The NPDES permit places limitations on the quantity and quality of the wastewater discharge. After establishment of initial policies and procedures, the EPA transferred the responsibility for issuing permits to individual state governments.

#### 3.2 Effluent Limitations

In 1974, all Commission Plants were issued discharge permits by the MPCA. The permits stipulated interim effluent quality standards to be achieved for compliance with permit conditions. Effluent quality standards were determined using water quality standards of the receiving waters and the practicability of a facility to attain certain levels of treatment under existing operating conditions. The interim effluent quality standards established for each plant were the same as, more stringent than, or less stringent than those of secondary treatment. These standards have been revised in the past and will be revised in the future as receiving water quality standards change, and as facilities are upgraded or constructed capable of achieving higher levels of treatment.

The Metropolitan Plant for example, will be required to meet effluent limits more stringent than secondary treatment beginning in 1985, consistent with completion of the secondary treatment expansion at the plant. The current NPDES permit for the Metropolitan Plant expires in 1987, reflecting the five-year duration of most NPDES permits. The next NPDES permit is expected to contain final water quality related effluent limits for the Metropolitan Plant.

Several plants' NPDES permits have expired and need to be reissued by MPCA in the near future. As such, the conditions of these expired permits have been assumed to remain in effect until new NPDES permits are issued by MPCA. Table 3-3 summarizes the NPDES permit effluent limitations for the Commission's 14 treatment plants.

#### 3.3 Plant Performance

During 1984, the Commission's network of treatment plants had available capacity to treat 114 billion gallons of wastewater (312 mgd). The actual volume of wastewater treated during 1984 was approximately 100 billion gallons (276 mgd). Wastewater treated during 1984 represented 88 percent of the Commission's total treatment capacity on an average basis. Volume during 1984 slightly exceeded the volume treated during 1983.

Of the 100 billion gallons of wastewater received during 1984, 80 percent was treated at the Commission's largest facility, the Metropolitan Wastewater Treatment Plant. Approximately 15 percent of the total flow was treated by the other three regional treatment plants, Blue Lake, Empire, and Seneca.

During 1984, the Commission's laboratories continued to measure and report both carbonaceous BOD (CBOD) and total BOD (TBOD). Measurement of the CBOD eliminates misleading test results which are sometimes affected by nitrification occurring in the TBOD test. Nitrification is an oxygen consuming process and,

#### TABLE 3-3

#### NPDES EFFLUENT LIMITATIONS - 1984

|                  |              | 5-Day<br>mg/ | / BOD<br>/1 | tss,        | mg/1   | number/<br>Geometr | /100 ml<br>ric Mean(f) | idity<br>NTU | Phos-<br>phorus<br>mg/l | Ammonia<br>Mo/l | Dissolved<br>Oxygen<br>ma/l |
|------------------|--------------|--------------|-------------|-------------|--------|--------------------|------------------------|--------------|-------------------------|-----------------|-----------------------------|
| TREATMENT        | Standards    | 7-Day        | 30-Day      | 7-Day       | 30-Day | 7-Day              | 30-Day                 | 30-Day       | 30-Day                  | 30-Day          | 30-Day                      |
| <u>PLANT (a)</u> | Applicable   | Avg.         | <u>Avg.</u> | <u>Avq.</u> | Avg.   | Mean               | Mean                   | Mean         | Mean                    | Mean            | <u>Mean</u>                 |
| ANOKA (b)        | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           |                         |                 | <b></b> _                   |
| BAYPORT          | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           | 1.0                     |                 |                             |
| BLUE LAKE        | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           |                         |                 |                             |
| CHASKA           | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           |                         |                 |                             |
| COTTAGE GROVE    | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           |                         |                 |                             |
| EMPIRE           | At All Times |              | 10          |             | 10     | 400                | 200                    | 25           |                         | 1.0             | >4.0                        |
| HASTINGS         | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           |                         |                 |                             |
| MAPLE PLAIN      | At All Times |              | 25          |             | 30     |                    | 200                    | 25           |                         |                 |                             |
| MEDINA(c)        | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           |                         |                 |                             |
| METROPOLITAN(d)  | At All Times | 44           | 24          | 45          | 30     | 400                | 200                    |              |                         |                 | 7.0(e)                      |
| ROSEMOUNT        | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           | 1.0                     |                 |                             |
| SAVAGE           | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           |                         |                 | <u></u>                     |
| SENECA           | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           |                         |                 | <b></b>                     |
| STILLWATER       | At All Times | 45           | 25          | 45          | 30     | 400                | 200                    | 25           | 1.0                     |                 |                             |

(a) General Requirements for Essentially All Plants:

- 1) The pH shall not be less than 6.5 nor greater than 8.5. These upper and lower limitations are not subject to averaging and shall be met at all times.
- 2) There shall be no discharging of floating solids or visible foam in other than trace amounts.
- 3) The discharge shall not contain oil or other substances in amounts sufficient to create a visible color or film.
- (b) Additional 30-day mean permit standards for Anoka: chromium 0.4 mg/l; copper 0.3 mg/l; lead 0.5 mg/l; zinc 0.5 mg/l; cyanide 0.5 mg/l.

(c) Applies only when Medina Plant discharges from absorption ponds - Must be authorized by MPCA.

- (d) Additional 30-day median permit standards for the Metropolitan Plant: copper 0.14 mg/l; cadmium 0.03 mg/l; mercury 4.0 ug/l; cyanide 0.193 mg/l.
- (e) Dissolved oxygen limitation of 7 mg/L for river flows less than 7,000 cfs and river D.O. values less than 6.0 mg/l upstream or less than 5.5 mg/L downstream for two consecutive sample-days, during the period June through September.
- (f) Disinfection required from March 1 through October 31 except for the Anoka Plant where disinfection is required year round.

therefore, tends to increase the BOD value. Comments made regarding 1984 treatment plant performance, for the most part, draw upon CBOD data and should be viewed with consideration for the fact that there are differences between the test procedures. TBOD and CBOD effluent data are tabulated for each plant in Section 6 of this report. The EPA and MPCA have revised their regulations during 1984 to allow use of CBOD in place of TBOD as the measurement of wastewater organic strength.

Figure 1-1, located in the first section of the report, illustrates the trend in NPDES compliance for the years 1971 through 1984, for both the Metropolitan Plant and other plants. It can be seen from Figure 1-1, that excellent plant performance continued during 1984. The annual average effluent concentration (CBOD and TSS) has been below permissible NPDES discharge limits for the Metropolitan Plant during the past five years, while the annual average effluent concentration (CBOD and TSS) for all other plants has been consistently below permissible NPDES discharge limits since 1975.

During 1984, the Metropolitan Plant average effluent CBOD and TSS concentrations were 10 mg/L and 11 mg/L, respectively as compared to 1983 average effluent CBOD and TSS values of 10 mg/L and 9 mg/L, respectively. Removal efficiencies for CBOD and TSS were 94 percent and 95 percent, respectively. This is approximately the same removal efficiency as that achieved during 1983. The Metropolitan Plant effluent quality, as expressed in CBOD and TSS, has reached a level that is difficult to surpass with a conventional secondary treatment facility.

Effluent quality for plants other than the Metropolitan Plant was excellent during 1984. Annual average effluent CBOD and TSS concentrations during 1984 were 11 mg/L and 11 mg/L respectively, as compared to 1983 annual average CBOD and TSS values of 10 mg/L and 10 mg/L, respectively. The annual average CBOD removal efficiency for all plants decreased from 94 percent in 1983 to 93 percent in 1984, and the TSS removal efficiency decreased from 95 percent in 1983. to 94 percent in 1984.

Annual performance and monthly variations in performance, at each treatment plant, are summarized in Table 3-4. Plant flow and major effluent quality parameters are included in the summary.

Nominal design flow for each plant is included in each NPDES permit, and is listed in Table 3-4. When relating current plant operation to plant capacity, it is normal practice to compare average annual flow to nominal design flow. However, this practice is often deceiving. To obtain an accurate indicator of plant capacity, nominal design flow must be adjusted to reflect unique flow variation factors, organic loading, organic load variation, and individual process capacities. These flow and loading variations can vary from year to year, depending on changes in infiltration/inflow and activities of local industries.

It is not within the scope of this report to analyze and define, in detail, realistic current plant capacities. Treatment plant capacities will be evaluated on an ongoing basis and periodically summarized in separate reports. However, the following summary of realistic capacity versus nominal design capacity of several plants is necessary in order to understand subsequent discussions of plant performance in 1984.

### TABLE 3-4

# SUMMARY OF PLANT PERFORMANCE 1984

|                                        |          |                   | 1         |      | I      |                 |      |      |           |                   |         |        |          | ,    | 1               |
|----------------------------------------|----------|-------------------|-----------|------|--------|-----------------|------|------|-----------|-------------------|---------|--------|----------|------|-----------------|
| Treatment Plant                        | Permit   | <u>Limitation</u> | Jan.      | Feb. | Mar.   | Apr.            | May  | June | July      | Aug.              | Sep.    | Oct.   | Nov.     | Dec. | Avg.            |
|                                        | Flow     | 2.46              | 2.34      | 2.47 | 2.74   | 2.49            | 2.53 | 2.72 | 2.58      | 2.62              | 2.30    | 2.39   | 2.34     | 2.39 | 2.49            |
|                                        | CBOD     | 25                | 15        | 11   | 15     | 12              | 14   | 9    | 12        | 13                | 18      | 13     | 12       | 16   | 13              |
| Anoka                                  | TSS      | 30                | 15        | 9    | 13     | 8               | 10   | 10   | 10        | <u> </u>          | 12      | 10     | 9        | 13   | <u> </u>        |
|                                        | Flow     | 0.65              | 0.46      | 0.48 | 0.46   | 0.54            | 0.53 | 0.76 | 0.51      | 0.49              | 0.46    | 0.45   | 0.43     | 0.39 | 0.50            |
| <b>B B</b>                             | CBOD     | 25                |           | 6    | 5      | 6               | 6    | 6    | 4         | 5                 | 6       | 6      | 7.       | 6    | 6               |
| Bayport                                | 155      |                   | 10        | 9    | 6      | 9               | 8    | 9    | 5         | 8                 | 7       | 8      | 9        | 9    | 8               |
|                                        | + Low    | 20.0              | 16.2      | 19.5 | 19.0   | 20.9            | 22.5 | 23.9 | 19.8      | 19.3              | 17.6    | 19.0   | 17.4     | 18.4 | 19.5            |
| Due Lake                               |          | 25                | ļų        | 12   | 1 1    | 12              | 2    | ម    |           | 6                 | 6       | 8      | 8        | 12   | 2               |
| Dide Lake                              | 155      |                   | 0.04      | 8    |        | $\frac{10}{10}$ | 6    | >    | 6         |                   |         | 6      | 4        | 6    | <u> </u>        |
|                                        | 1 LTOM   | 1.40              | 0.84      | 1.02 | [ U.99 | 1.78            | 1.20 | 1.32 | 1.16      | 1.15              | 0.92    | 1.04   | 0.92     | 0.92 | 1.09            |
| Charles                                |          | 25                |           |      | 8      | 8               | 8    | e e  |           | ļ Š               | 4       |        |          |      |                 |
| LIIASKA                                | <u> </u> | 1 00              | 1 20      | 1 77 | 0      | 1 26            |      |      | , 71      | 1 00              | 1 70    | 28     | 1 07     | 12   | <u> </u>        |
|                                        | CBUD     | 25                | 1.20      | 1.3/ | 1.22   | 1.20            | 1.29 | 1.7  | 1.74      | 1.29              | 1.52    | 1.5/   | 1.2/     | 1.28 | 1.20            |
| Cottage Grove                          |          | 30                | 14        |      | 12     | 6               |      |      |           |                   |         |        | 11       |      |                 |
| COCCAGE GLOVE                          | Flow     | 6.00              | 4 39      | 1 49 | 6 92   | 5 76            | 2 32 | 5 89 | 5 16      | - <del>5 51</del> | 1 1 73- | 1 1 00 | <u> </u> | A 05 | <u> </u>        |
|                                        | GOA      | 0100              | 2         | 2    | 4.72   | 3               | 2.70 | 1 1  | 2.07      | 1.1               | 4.75    | 4.70   | 4.77     | 4.22 | 1               |
| Empire                                 | TSS      | 10 -              | i î       | l î  | 1 . 2  | 3               | 2    | 2    | 2         | 1 5               |         | 2      | 2        | 2    | 5               |
|                                        | Flow     | 1.83              | 1.64      | 1.58 | 1.63   | 1.64            | 1.72 | 1.66 | 1.59      | 1.63              | 1 68    | 1 67   | 1 59     | 1 63 | 1 24            |
|                                        | CBOD     | 25                | 23        | 66   | 14     | 16              | 16   | 13   | 14        | 15                | 15      | 29     | 21       | 25   | 22              |
| Hastings                               | TSS      | 30                | 38        | 105  | 32     | 26              | 21   | 16   | 20        | 21                | 23      | 35     | 24       | 26   | 32              |
| ······································ | Flow     | 0.22              | 0.25      | 0.44 | 0.51   | 0.45            | 0.45 | 0.60 | 0.35      | 0.33              | 0.28    | 0.48   | 0.33     | 0.33 | <u>- n.án</u> - |
|                                        | CBOD     | 25                | 1 8       | 10   | 22     | 19              | 12   | 12   | 7         | 4                 | 6       | 4      | 6        | 9    | 1 10            |
| Maple Plain                            | TSS      | 30                | 13        | 13   | 15     | 12              | 12   | 22   | 9         | 8                 | 4       | 4      | 6        | 8    | 1 10            |
|                                        | Flow     | 0.10              | 0.14      | 0.34 | 0.32   | 0.44            | 0.37 | 0.37 | 0.27      | 0.18              | 0.20    | 0.29   | 0.24     | 0.18 | 0.28            |
|                                        | CBOD     | 25*               | 26        | 11   | 14     | 9               | 10   | 10   | 6         | 5                 | 7       | 5      | 6        | 17   | 10              |
| Medina                                 | TSS      | 30*               | 28        | 22   | 12     | 12              | 18   | 18   | 8         | 7                 | 7       | 12     | 36       | 29   | 16              |
|                                        | Flow     | 250               | 186       | 231  | 221    | 230             | 239  | 285  | 223       | 226               | 215     | 231    | 191      | 190  | 222             |
|                                        | C80D     | 24                | 12        | 9    | 10     | 9               | 10   | 16   | 9         | 8                 | 9       | 11     | 10       | 11   | 10              |
| Metropolitan                           | TSS      | 30                | 9         | 8    | 8      | 9               | 7    | 14   | 13        | 11                | 16      | 14     | 9        | 10   | 11              |
|                                        | Flow     | 0.60              | 0.37      | 0.40 | 0.39   | 0,37            | 0.37 | 0.34 | 0.34      | 0.36              | 0.39    | 0.38   | 0.37     | 0.35 | 0.37            |
|                                        | CBOD     | 25                | 14        | 11   | 14     | 20              | 21   | 14   | 21        | 19                | 29      | 20     | 17       | 15   | 18              |
| Rosemount                              | TSS      |                   | 4         | 2    | 11     | 2               | 2    | 3    | 5         | 2                 | 2       | 2      | 4        | 3    | 3               |
|                                        | Flow     | 0.86              | 0.48      | 0.61 | 0.60   | 0.64            | 0.71 | 0.89 | 0.64      | 0.61              | 0.53    | 0.59   | 0.60     | 0.59 | 0.62            |
|                                        | CBOD     | 25                | 6         | 7    | 5      | 5               | 8    | 8    | 6         | 7                 | 8       | 5      | 7        | 10   | 7               |
| Savage                                 | 155      | 30                | 2         | 1    | 4      | 1               | 3    | 5    | 9         | 5                 | 2       | 4      | 3        | 2    | 3               |
|                                        | Flow     | 24.0              | 15.4      | 17.0 | 18.1   | 18.3            | 17.7 | 19.3 | 18.6      | 18.1              | 17.4    | 17.9   | 16.6     | 16.9 | 17.6            |
| ~                                      | CBOD     | 25                | 24        | 16   | 11     | 13              | 14   | 19   | 16        | 18                | 13      | 16     | 18       | 24   | 17              |
| Seneca                                 |          |                   | 28        | 24   | 15     | 14              | 14   | 21   | <u>20</u> | 23                | 23      | 22     | 22       |      | 21              |
|                                        | F TOM    | 3.02              | 2.67      | 2.84 | 2.77   | 3.38            | 3.38 | 3.41 | 3.00      | 2.85              | 2.75    | 2.92   | 2.78     | 2.68 | 2.95            |
| Ch411                                  | CBUD     | 25                | 13        | 12   | 8      | 9               | 8    | 1 .7 | 6         | 6                 | 8       | 5      | 8        | 10   | 8               |
| StillWater                             | 155      |                   | <u>12</u> | 12   | 9.     | 9               | . 8  | 11   | 7         | 6                 | 8       | 8      | 8        | 13   | 9               |

\*Only at time of discharge.

Anoka: Current plant capacity has been determined to be slightly less than design (2.46 mgd), due to existing activated sludge aeration and raw sewage pumping limitations.

Bayport: Plant capacity is somewhat less than design capacity (0.65 mgd), due to chemical feed which was added for phosphorus removal subsequent to the original plant construction. This addition has reduced activated sludge aeration and sludge processing capabilities.

Chaska: Plant capacity is somewhat less than design capacity (1.4 mgd) due to high inflow/infiltration, and high and variable organic loadings, which stress the activated sludge oxygenation capacity.

Hastings: Current plant capacity has been determined to be approximately 1.44 mgd (instead of 1.83 mgd), due to final clarification and sludge processing limitations.

Rosemount: Plant capacity is somewhat less than design capacity (0.60 mgd), due to increasing maintenance requirements. As the plant ages, one process train cannot handle peak flow at the rated design capacity.

Stillwater: Plant capacity is somewhat less than design capacity (3.02 mgd), due to the addition of a phosphorus removal system. This addition has reduced activated sludge aeration and sludge processing capabilities.

Annual average flow data included in Table 3-4 indicates that Maple Plain and Medina are currently operating beyond their design capacity, and the Blue Lake, Empire, and Savage Plants are also nearing design capacity. Based on realistic plant capacities discussed above, Anoka, Bayport, Chaska, Hastings, Rosemount, and Stillwater are also currently operating at or near plant capacity.

Table 3-5 is a complete summary of NPDES permit violations which occurred in 1984. Violations of weekly and monthly mass limitations on CBOD and TSS, not shown in Table 3-3, are included in Table 3-5. Also shown are pH, ammonia, cyanide, metals, and fecal coliform violations. A total of 33 violations occurred in 1984, ranging from sixteen at Hastings to none at Bayport, Blue Lake, Cottage Grove, Seneca, Maple Plain, Metropolitan, and Stillwater. A maximum of nine violations occurred in February, while no violations occurred in April or August.

The distribution of violations among effluent parameters and major problem areas are presented in Table 3-6. As shown in Table 3-6, most of the violations occurred in the first and fourth quarters of the year, which generally reflects the seasonally oriented capacity problems at the Hastings and Medina treatment plants.

Plant capacity problems account for the sixteen permit violations at Hastings, the four permit violations at Medina, and one of the TSS violations at Chaska. Three TSS violations at Chaska are attributable to an unidentified material in the influent wastewater that upset the activated sludge process.

#### TABLE 3-5

|                     |        |     | T      |   | <b>.</b> | <b>F</b> | r             |      |     |              |      |        | <u> </u> |       |
|---------------------|--------|-----|--------|---|----------|----------|---------------|------|-----|--------------|------|--------|----------|-------|
| TREATMENT PLANT     | 144    | FFA | MAR    |   | MAY      | JUNE     | 718 V         | ALIC | CCD | 007          |      | 050    | TOTAL    | BY:   |
| THER THEAT I COUT   | Unit.  |     |        |   |          | <u> </u> | <u>JUL 1</u>  | AUG. |     |              | NUV. |        | NUMBER   | MUNIN |
| ANOKA               | WFC    |     |        |   | WFC      | WFC      |               |      | ·   |              | WFC  |        | 4        | 4     |
| BAYPORT             |        |     |        |   |          |          |               |      |     |              |      |        | 0        | 0     |
| BLUE LAKE           |        |     |        |   |          |          |               |      |     |              |      |        | 0        | 0     |
| CHASKA              |        |     |        |   | ·        |          | MS, WS,<br>WS |      | :   | WS, WS       |      |        | 5        | 2     |
| COTTAGE GROVE       |        |     |        |   |          |          |               |      |     |              |      |        | 0        | 0     |
| EMP IRE             |        |     |        |   |          |          | -             |      |     | MAm          |      |        | 1        | 1     |
| HASTINGS            | MS, WS | (1) | MS, WS |   |          |          |               |      |     | MB, MS<br>WS |      |        | 16       | 4     |
| MAPLE PLAIN         |        |     |        |   |          |          |               |      |     |              |      |        | 0        | 0     |
| MEDINA              |        |     | WFC    |   |          |          |               |      |     |              | WS   | MS, WS | 4        | 3     |
| ME TROPOL I TAN     |        |     |        |   |          |          |               |      |     |              |      |        | 0        | 0     |
| ROSEMOUNT           |        |     |        |   |          |          |               |      | MB  |              |      | рН     | 2        | 2     |
| SAVAGE              |        |     |        |   |          | WFC      |               |      |     |              |      |        | 1        | 1     |
| SENECA              |        |     |        |   |          |          |               |      |     |              |      |        | 0        | 0     |
| STILLWATER          |        |     |        |   |          |          |               |      |     |              |      |        | 0        | 0     |
|                     |        |     |        |   |          |          |               |      |     |              |      |        |          |       |
| VIOLATION<br>TOTALS | 3      | 9   | 3      | 0 | 1        | 2        | 3             | 0    | 1   | 6            | 2    | 3      | 33       | 17    |

#### SUMMARY OF NPDES PERMIT NON-COMPLIANCE IN 1984

Symbols: MB,WB= Monthly and Weekly CBOD Conc; MS,WS= Monthly and Weekly TSS Conc; MB,WB,MS,WS= Mass Limits; MFC,WFC= Monthly and Weekly Fecal Coliform; pH; MP= Monthly Phosphorus Conc; T= Turbidity; MAm= Monthly NH3-N.

(1) MB, WB, MB, WB, MS, WS, MS, WS, T

.

### TABLE 3-6

### NPDES PERMIT VIOLATION DISTRIBUTION 1984

|                       |                | NUMBER OF      | VIOLATIONS     |                |       |
|-----------------------|----------------|----------------|----------------|----------------|-------|
| EFFLUENT<br>PARAMETER | 1ST<br>QUARTER | 2ND<br>QUARTER | 3RD<br>QUARTER | 4TH<br>QUARTER | TOTAL |
| CBOD                  | 4              | 0              | 1              | 1              | 6     |
| TSS                   | 8              | 0              | 3              | 7              | 18    |
| FECAL COLIFORM        | 2              | 3              | 0              | ]              | 6     |
| рH                    | 0              | 0              | 0              | Ī              | 1     |
| AMMONIA               | 0              | 0              | 0              | 1              | ١     |
| CYANIDE               | 0              | 0              | 0              | 0              | 0     |
| HEAVY METALS          | 0              | 0              | 0              | 0              | 0     |
| TURBIDITY             | ]]             | 0              | 0              | 0              | 1     |
| TOTAL                 | 15             | 3              | 4              | 11             | 33    |

# Distribution of Violations Among Effluent Parameters

# Distribution of Violations Among Problem Areas

|                   |                | NUMBER OF VIOLATIONS |                |                |       |  |  |  |  |  |  |  |  |
|-------------------|----------------|----------------------|----------------|----------------|-------|--|--|--|--|--|--|--|--|
| PROBLEM AREA      | 1ST<br>QUARTER | 2ND<br>QUARTER       | 3RD<br>QUARTER | 4TH<br>QUARTER | TOTAL |  |  |  |  |  |  |  |  |
| PROCESS CONTROL   | 1              | 3                    | 1              | 2              | 7     |  |  |  |  |  |  |  |  |
| MAINTENANCE       | 0              | 0                    | 0              | 2              | 2     |  |  |  |  |  |  |  |  |
| INDUSTRIAL WASTES | 0              | 0                    | 3              | 0              | 3     |  |  |  |  |  |  |  |  |
| PLANT CAPACITY    | ]4             | 0                    | 0              | 7              | 21    |  |  |  |  |  |  |  |  |
| TOTAL             | 15             | 3                    | 4              | 11             | 33    |  |  |  |  |  |  |  |  |

These violations are presented as an industrial waste problem area. Maintenance problems account for the remaining TSS violation at Chaska and the pH violation at Rosemount. Seven permit violations have been attributed to process control problems. These include four weekly fecal coliform violations at Anoka, one BOD violation at Empire, one BOD violation at Rosemount, and one weekly fecal coliform violation at Savage.

The increase in permit violations from 1983 to 1984 can be attributed to an increased number of violations related to plant capcity problems (increased from 9 in 1983 to 21 in 1984), primarily at the Hastings Plant. The Hastings Plant is currently being expanded, so that plant capacity limitations should be eliminated after Phase I of the construction has been placed into operation. The Medina Plant is scheduled for phaseout in early 1985, which will eliminate the other major plant capacity problem. The Chaksa Plant is scheduled for plant expansion by 1988.

The effluent limitation violations caused by process control, maintenance, and industrial waste problems have remained fairly stable since 1982, and account for an average of one violation per month, or one violation per treatment plant per year as an average for Commission treatment facilities.

The following is a plant-by-plant summary of non-compliance problems during 1984.

Anoka:

The Anoka Plant experienced four weekly fecal coliform violations. One violation resulted when partial nitrification occurred in the activated sludge process, producing nitrite nitrogen, which exerts a high chlorine demand. One violation occurred because the automatic sampler intake line, which is located in the chlorine contact tank, had a break that led to unrepresentative sampling. Two violations occurred because consistent attempts were made to minimize effluent chlorine residual, such that variations in effluent quality may have caused a higher chlorine demand that cannot be met at the normal chlorine residual concentration.

Chaska:

The Chaska Plant experienced five suspended solids violations. Three suspended solids violations in July are attributable to an unidentified material in the influent wastewater that upset the biological treatment process, resulting in poor sludge settleability. The two suspended solids violations in October were caused by a combination of high infiltration/inflow, process control problems, and an equipment failure. A rainfall event caused high inflow to the plant, while the solids concentration in the activated sludge system was higher than normal and while a return sludge pump control system failed. Consequently, solids were washed out of the final clarifier.

Empire: The Empire Plant experienced a monthly ammonia nitrogen violation in October. Increased ammonia loading from centrate, recycled to the plant during sludge dewatering operation, temporarily overloaded the nitrification activated sludge process. Process control procedures have been revised to minimize the chance of reoccurrence of this problem. Hastings: The Hastings Plant experienced five BOD, ten suspended solids, and one turbidity violation. The violations are caused by the need to operate the plant at flows and loadings that exceed it's capacity. A plant expansion is under construction to correct this problem.

- Medina: The Medina Plant experienced one weekly fecal coliform and three suspended solids violations. The fecal coliform violation occurred in March, when high infiltration/inflow necessitated a surface water discharge, while ice cover on the seepage ponds inhibited fecal coliform destruction. The suspended solids violations appeared to be caused by unrepresentative sampling during surface water discharge, since effluent BOD was very low.
- Rosemount: The Rosemount Plant experienced one monthly BOD and one daily pH violation. The BOD violation was caused by a combination of delays in lime and activated carbon deliveries, that resulted in reduced treatment efficiency. The pH violation was caused by a plugged sample line, that resulted in inadequate acid feed following the solids-contact clarification process.
- Savage: The Savage Plant experienced one weekly fecal coliform violation. The failure occurred when chlorine feed was not increased sufficiently to handle the increased chlorine demand of a recycle stream from a digester cleaning operation.

The following comments on 1984 treatment plant performance are also significant:

- 1. All Commission treatment facilities consistently met federal and state secondary treatment limits of 25 mg/L BOD and 30 mg/L TSS, except that compliance at the Hastings Plant is marginal.
- Metropolitan Plant performance has improved during the past five years, such that its effluent quality has equalled or exceeded that of most other Commission treatment plants during 1982-1984. During summer, 1984, the west secondary facilities were operated to achieve nitrification. The plant met the seasonal BOD and ammonia limits which take effect in 1985.
- 3. Commission treatment facilities are performing as well as can be expected, given current influent flows and loadings, and the type and capacity of available treatment facilities. Except for the Hastings Plant, overall plant performance has stabilized at an excellent level during 1982-1984. Performance during 1985 is expected to be similar to that during 1982-1984. However, performance at some plants may deteriorate as plant capacity is approached or exceeded, or as equipment reaches the end of its useful life and becomes subject to more frequent downtime.

4. Treatment plants which currently are operating beyond plant capacity are Hastings, Maple Plain, and Medina. Hastings is currently being expanded with completion scheduled for late 1985 or early 1986. Maple Plain is scheduled for phaseout by interceptor construction to the Blue Lake Plant interceptor system in late 1986. Medina is scheduled for phaseout in early 1985 by construction of an interceptor to the Metropolitan Plant interceptor system.

3.4 Program Goals

Initially developed in 1976, the Commission continues to utilize a criteria which rapidly assesses plant performance. The assessment is made in terms of four parameters: Compliance (C) Frequency (F), Severity, (S), and Noncompliance Index (NCI).

Compliance (C) is the percentage compliance with NPDES effluent limitations as listed in each plant's NPDES permit. The nearer the compliance number is to 100 percent, the better the plant performance.

Frequency (F) is the frequency of compliance with NPDES effluent limitations. It is calculated by dividing the total number of CBOD and TSS analyses complying with effluent standards by the total number of CBOD and TSS analyses performed and expressing the result as a percentage. The nearer the frequency number is to 100 percent, the better the plant performance as related to effluent quality standards.

Severity (S) is the deviation from the standard for those CBOD and TSS analyses which exceed NPDES effluent limitations. It is determined by locating the median value of those values exceeding the standards and expressing the deviation as a percentage of the NPDES limit. The larger the severity number, the greater the magnitude of violation of effluent standards.

In judging the performance of plants, both frequency and severity must be considered; therefore, noncompliance index was developed to allow a rapid, single-number assessment of plant performance. The noncompliance index is determined by multiplying the percent severity by the noncompliance (100-frequency) and by dividing by 100. A low noncompliance index indicates better overall compliance with effluent guality standards.

Performance objectives in terms of compliance, frequency, and severity were defined for each individual treatment plant at the beginning of 1984. A summary of 1984 goals and actual performance at each plant is provided in Table 3-7. Twelve plants met their compliance goals, 12 plants met their frequency goals and 10 plants met their severity goals. Individual goal attainment is summarized as follows:

### All Goals

Bayport\*\*

Blue Lake Cottage Grove

Anoka

Empire Maple Plain Metropolitan

Savage

Two Goals

Medina (C, F)\* Rosemount (C, F)\* Seneca (C, S)\* Stillwater (C, F)\* One Goal

Chaska (F)\* Hastings (S)\*

\* Letter in parenthesis indicates goals met. \*\*This plant had a perfect record of 100% compliance, 100% frequency, and no severity.

### TABLE 3-7

#### SUMMARY OF TREATMENT PLANT PERFORMANCE PARAMETERS

### Compliance, Frequency, Severity, and Noncompliance Index Values for 1981-1984

|    |               |        |        | 1      |                 | Savarity |        |                |               |             | Noncompliance Index |              |             |        |             |        |                     |             |        |             |        |
|----|---------------|--------|--------|--------|-----------------|----------|--------|----------------|---------------|-------------|---------------------|--------------|-------------|--------|-------------|--------|---------------------|-------------|--------|-------------|--------|
|    | Treatment     | Actual | Actual | Actual | Goal            | Actual   | Actual | Actual         | Actual        | Goal        | Actual              | Actual       | Actual      | Actual | Goal        | Actual | Actual              | Actual      | Actual | Goal        | Actual |
|    | Plant         | _1981  | _1982  | 1982   | 1984            | 1984     | _1981  | 1982           | 1983          | <u>1984</u> | _1984_              | <u>_1981</u> | <u>1982</u> | 1983   | <u>1984</u> | _1984_ | <u>    1981    </u> | 1982        | 1983   | <u>1984</u> | 1984   |
|    | Anoka         | 97     | 99     | 99     | 97              | 98       | 94     | 98             | 99            | 93          | 97                  | 16           | 4           | 8      | 33          | 12     | 1.0                 | 0.1         | 0.1    | 2.3         | 0.3    |
|    | Bayport       | 100    | 100    | 100    | 98              | 100      | 100    | 100            | 100           | 93          | 100                 | O            | . 0         | 0      | 33          | 0      | 0.0                 | 0.0         | 0.0    | 2.3         | 0.0    |
|    | Blue Lake     | 100    | 100    | 99     | 99              | 100      | 97     | 100            | 99            | 95          | 99                  | 40           | 0           | 4      | 33          | 15     | 1.2                 | 0.0         | 0.1    | 1.6         | 0.1    |
|    | Chaska        | 98     | 99     | 99     | 98              | 96       | 89     | - 96           | 95            | 93          | 97                  | 32           | 24          | 60     | 33          | 62     | 3,5                 | 0.9         | 2.7    | 2.3         | 2.0    |
| •  | Cottage Grove | 96     | 99     | 99     | 97              | 100      | 97     | <b>99</b>      | 100           | 93          | 99+                 | 32           | 36          | 0      | 35          | 20     | 1.0                 | 0.4         | 0.0    | 2.4         | 0.1    |
|    | Empire        | 100    | 98     | 100    | 97              | 99       | 99     | 99             | 99            | 95          | 99                  | 30           | 80          | 40     | 25          | 20     | 0.3                 | 0.3         | 0.2    | 1.2         | 0,1    |
| 28 | Hestings      | 94     | 87     | 95     | <b>9</b> 5      | 88       | 80     | 64             | 81            | 80          | 73                  | 24           | 37          | 23     | 33          | 33     | 4.8                 | 13.1        | 4.4    | 6.6         | 8.9    |
|    | Maple Plain   | 99     | 96     | 100    | 95 <sub>.</sub> | 100      | 94     | 93             | <del>99</del> | 85          | <b>9</b> 5          | 37           | 12          | 16     | 45          | 8      | 2.2                 | 0 <b>.8</b> | 0.2    | 6.8         | 0.4    |
|    | Medina        | 83     | 100    | 92     | 92              | 94       | 74     | 90             | 96            | 70          | 92                  | 60           | 32          | 42     | 50          | 73     | 15.6                | 3.3         | 11.7   | 15.0        | 5.6    |
|    | Metropolitan  | 89     | 100    | 100    | 97              | 100      | 81     | 93             | 97            | <b>9</b> 0  | 97                  | 40           | 36          | 13     | 40          | 20     | 7.6                 | 2.5         | 0.4    | 4.0         | 0.6    |
|    | Rosemount     | 100    | 99     | 98     | 98              | 99       | 97     | 97             | 96            | 95          | 95                  | 48           | 36          | 28     | 25          | 28     | 1.4                 | 1.0         | 1.2    | 1.2         | 1.5    |
|    | Savage        | 100    | 99     | 100    | 98              | 99       | 98     | 97             | 100           | 93          | 100                 | 36           | 43          | 0      | 33          | 0      | 0.7                 | 1.1         | 0.0    | 2.3         | 0.0    |
|    | Seneca        | 99     | 90     | 99     | 97              | 100      | 91     | 94             | 92            | 93          | 87                  | 27           | 16          | 17     | 33          | 23     | 2.4                 | 0.9         | 1.3    | 2.3         | 3.0    |
|    | Stillwater    | 99     | 100    | 100    | 98              | 100      | 90     | <del>9</del> 9 | 98            | 95          | 99                  | 32           | 37          | 24     | 33          | 47     | 3.2                 | 0.2         | 0.4    | 1.6         | 0.3    |
|    | Average       | 98     | 98     | 99     | 97              | 98       | 92     | 94             | 96            | 90          | 95                  | 32           | 28          | 19     | 35          | 25     | 2.8                 | 1.6         | 0.7    | 3.4         | 1.3    |

#### 4.0 INCINERATOR EMISSION QUALITY

Sludge generated at Commission Treatment Plants is handled either by land application or incineration and ash disposal. Most of the sludge generated by Commission treatment plants receives final processing and disposal at the Metropolitan or Seneca Plant. These two plants use incineration and ash landfilling for sludge management.

The incineration process produces exhaust gas, which discharges to the atmosphere through stacks and, as such, is subject to air quality emissions limitations. The purpose of these limitations is to prevent deterioration of existing ambient air quality. Incinerator emission limitations or standards are contained in MPCA's Air Quality Rules and Regulations.

4.1 Emission Standards

APC-9 of MPCA's Air Quality Rules and Regulations deals with the control of odors by limiting odor emission rates from defined odor sources and by establishing odor standards for ambient air based upon local zoning.

Odor standards are expressed as odor concentration units. The odor concentration unit is defined as the number of standard cubic feet of odor free air needed to dilute each cubic foot of contaminated air to a point where at least 50 percent of the individuals comprising the odor test panel do not detect an odor in the diluted mixture.

The odor emission rate is the product of the number of standard cubic feet per minute of air or other gases emitted from a suspected odor pollution source, and the number of odor concentration units determined for that source.

The following odor limitations are contained in APC-9:

- 1. Sources emitting odors from well defined stacks, 50 feet or more above grade elevation, with adequate dispersion characteristics, as determined by the MPCA, shall not emit odors greater than 150 odor concentration units.
- Sources emitting odors less than 50 feet above grade elevation or otherwise failing to create good dispersion conditions, as determined by the MPCA, shall not emit more than 25 odor concentration units.
- No odor source shall have an odor emission rate in excess of 1,000,000 odor concentration units per minute.
Additional incinerator emission standards are contained in APC-7 and APC-28 of MPCA's Air Quality Rules and Regulations. APC-28 specifies limits for opacity and particulate matter for new and existing sewage sludge incinerators while APC-7 specifies opacity and particulate matter limits for various types of solid waste incinerators. At the Metropolitan Plant, Incinerator Nos. 1-4 (F & I No. 1) and the Scum Incinerator are classified as existing incinerators while Incinerator Nos. 5-10 are classified as new incinerators. Particulate and opacity standards are summarized in Table 4-1.

### TABLE 4-1

### EMISSION STANDARDS FOR NEW AND EXISTING SLUDGE INCINERATORS (APC-28) AND FOR SOLID WASTE INCINERATORS (APC-7)

| Incinerator Burning |                       | Particul | ate Emission Standard | Percent | Opacity |
|---------------------|-----------------------|----------|-----------------------|---------|---------|
| Capacity (lbs/hour) | <u>Classification</u> | lbs/ton  | grain/dscf at 12% CO2 | Average | Maximum |
| <200                | Existing              |          | 0.3                   | 20      | 40      |
| 200-2000            | Existing              |          | 0.2                   | 20      | 40      |
| >2000               | Existing              |          | 0.1                   | 20      | 40      |
| ALL                 | New                   | 1.3      |                       | 20      |         |

<sup>1</sup> A maximum of 40 percent is permissible for four minutes in any 60 minute period.

An additional discharge standard applying to sewage sludge incinerators is found in APC-31 of MPCA's Air Quality Rules and Regulations. This regulation limits the quantity of mercury that is discharged from the incinerator into the atmosphere during a twenty-four hour period to 3200 grams.

Table 4-2 summarizes air emission standards applicable to the Commission's incineration facilities.

### TABLE 4-2

|                                                   |                                          | Metropolitan Plant                                     | (1)            | Seneca Plant            |
|---------------------------------------------------|------------------------------------------|--------------------------------------------------------|----------------|-------------------------|
| Air<br>Emission Standard                          | F & I No. 1<br>Sludge Incin.<br>Nos. 1-4 | Solids Processing<br>Building Sludge<br>Inc. Nos. 5-10 | Scum<br>Incin. | Sludge<br>Inc. Nos. 1-2 |
| Particulate Matter                                |                                          |                                                        |                |                         |
| grain/dscf @ 12% CO <sub>2</sub>                  | 0.1                                      |                                                        | 0.2            | 0.2/0.12                |
| lb./ton sludge solids                             |                                          | 1.3                                                    |                |                         |
| Opacity, percent                                  | 203                                      | 20                                                     | 203            | 203                     |
| Odors, Odor Concentration                         |                                          |                                                        |                | н.<br>-                 |
| Units (O.C.U.)                                    | 25                                       | 150                                                    | 25             | 150                     |
| Odor Emission rate, odor concentration units/min. | •                                        |                                                        |                |                         |
| (O.C.U./min.)                                     | 1,000,000                                | 1,000,000                                              | 1,000,000      | 1,000,000               |
| Mercury Emissions                                 |                                          | · ·                                                    |                |                         |
| grams/24 hr. period                               | 3,200                                    | 3,200                                                  |                | 3,200                   |

### SUMMARY OF AIR EMISSION STANDARDS FOR COMMISSION INCINERATORS

Figure 4-1 illustrates the stack identification number for each corresponding incinerator.

<sup>2</sup> Emission standard of 0.2 grains/dscf @ 12% CO<sub>2</sub> applies to incinerator operation on vacuum filter cake at derated capacity of 2,000 lb/hr. Emission standard of 0.1 grain/dscf @ 12% CO<sub>2</sub> applies to incinerator operation on belt press cake at full capacity of 3,100 lb/hr.

<sup>3</sup> A maximum of 40 percent opacity is permissible for four minutes in any 60 minute period.

4.2 Summary of 1984 Air Emissions Monitoring

During 1984, stack gases from incinerators at the Metropolitan and Seneca Plants were sampled and analyzed for particulate matter, opacity, and mercury. During this time, the new sludge incineration facilities (incinerators Nos. 5-10) at the Metropolitan Plant were in the operation optimization stage while existing incineration facilities (incinerator Nos. 1-4) were shutdown.

Opacity testing conducted at the Metropolitan and Seneca Plants during 1984, is summarized in Table 4-3. All opacity tests conducted at the Metropolitan Plant met opacity standards. At the Seneca Plant 87% of the tests conducted met opacity standards.

FIGURE 4-1



### TABLE 4-3

### SUMMARY OF 1984 OPACITY MEASUREMENTS SENECA AND METROPOLITAN PLANTS

|                                 |                                           |   |   | _ |   | Inci | nerat | or No | •  |    | Seneca<br>Plant |
|---------------------------------|-------------------------------------------|---|---|---|---|------|-------|-------|----|----|-----------------|
|                                 | 1                                         | 2 | 3 | 4 | 5 | 6    | 7     | 8     | 9  | 10 | Common<br>Stack |
| Total Test Measurements         | *                                         | * | * | * | 0 | 0    | 28    | 32    | 21 | 24 | 45              |
| Number of Tests Meeting Stds.   | *                                         | * | * | * |   |      | 28    | 32    | 21 | 24 | 39              |
| Number of Tests Exceeding Stds. | * * * *    0  0  0  0                     |   |   |   |   |      |       | 6     |    |    |                 |
| Percent of Tests Meeting Stds.  | *   *   *   *       100   100   100   100 |   |   |   |   |      |       |       | 87 |    |                 |
| Average Opacity, %              | *                                         | * | * | * |   |      | 6     | 7     | 8  | 6  | 14              |

\*Incinerator taken out of operation, October 1982.

Table 4-4 summarizes results of particulate emission testing conducted at the Metropolitan and Seneca Plants during 1984. The particulate emission from the Scum Incinerator at the Metropolitan Plant was 0.37 grain/dscf. Annual average particulate emission from the Solids Processing Building (Inc. Nos. 5-10) was 1.0 lbs/dry ton sludge solids. Annual average particulate emission at the Seneca Plant was 0.02 grain/dscf.

As was mentioned previously, the incineration process at the Metropolitan Plant was in a refinement or operational optimization stage through 1984. A portion of this optimization program dealt with achieving compliance with odor limits and, as such, many odor tests were conducted to document success or failure of the various experimental modes of incinerator operation. Since these tests do not accurately reflect routine incinerator operation, odor test results are not included in this report.

Mercury emission testing conducted during 1984 show that both the Metropolitan and Seneca Plants were well below the emission standard of 3200 grams for a twenty-four hour period. Annual average mercury emissions were 60 and 630 grams/24 hrs., respectively for the Seneca and Metropolitan Plants.

## TABLE 4-4

### SUMMARY OF 1984 PARTICULATE EMISSION TESTING METROPOLITAN AND SENECA PLANTS

# A. Metropolitan Plant, Scum Incineration

| Date  | Stack ID       | Burning Rate %<br>of Design Capacity | Stack Gas Flow<br>Rate, SCFM | Particulate(1)<br>grain/dscf at 12% CO2 |
|-------|----------------|--------------------------------------|------------------------------|-----------------------------------------|
| 12/20 | Scrubber Stack |                                      | 3,907                        | 0.373                                   |

# B. Metropolitan Plant, Solids Processing Building

| Date  | Stack ID | Burning Rate %<br>of Design Capacity | Stack Gas Flow<br>Rate, SCFM | Particulate(2)<br><u>lbs/dry ton solids</u> |
|-------|----------|--------------------------------------|------------------------------|---------------------------------------------|
| 3/1   | 10       | 75                                   | 13,875                       | 0.49                                        |
| 7/25  | 7        | 71                                   | 21,651                       | 1.31                                        |
| 8/6   | 10       | 50                                   | 15,923                       | 1.13                                        |
| 10/23 | 9        | 78                                   | 19,678                       | 0.91                                        |
| 11/1  | . 8      | 74                                   | 21,743                       | 1.18                                        |
|       | Average  | 70                                   | 18,574                       | 1.00                                        |

# C. Seneca Plant, Solids Processing Building

| Date        | <u>Stack ID</u>  | Burning Rate %<br>of Design Capacity | Stack Gas Flow<br>Rate, SCFM | Particulate(3)<br>grain/dscf at 12% CO2 |
|-------------|------------------|--------------------------------------|------------------------------|-----------------------------------------|
| 4/1<br>4/17 | Common<br>Common | 61<br>56                             | 10,116<br>10,864             | 0.0131<br>0.0221                        |
|             | Average          | 58                                   | 10,490                       | 0.0176                                  |

(1)MPCA Standard for Scum Incinerator = 0.2 g/dscf
(2)MPCA Standard for Metro Plant New Incinerators = 1.3 lbs particulate/ton dry solids

(3)MPCA Standard for Seneca Plant Incinerators = 0.2 g/dscf

### 5.0 SLUDGE MANAGEMENT

Each of the Commission's treatment plants produce sludge as a result of wastewater treatment. At Medina, sludge settles and decomposes in treatment ponds, and removal of this sludge has not been required. At all other plants, sludge treatment may include thickening, stabilization, conditioning, and dewatering. Final disposal of sludge is accomplished either by landspreading or incineration and ash landfilling.

5.1 Sludge Processing

Table 5-1 is a summary of sludge processing and disposal methods utilized at Commission Plants. As shown in Table 5-1, most plants provide sludge thickening in either primary tanks or independent thickener units. At the Metropolitan and Seneca Plants, gravity thickening is provided for primary sludge, while air flotation thickening is provided for secondary (waste activated) sludge. At the Empire and Cottage Grove Plants, gravity thickening is provided for combined primary and secondary sludge.

Most of the smaller outlying plants provide sludge digestion to reduce and stabilize sludge solids. One exception is the Rosemount Plant, where sludge produced by physical-chemical treatment of wastewater is concentrated and transported to the Metropolitan Plant for disposal.

Roll and filter presses are used for dewatering sludge at the Metropolitan Plant, replacing the aging vacuum filters in F & I No. 1. The presses rely on polymer conditioning, rather than lime and ferric chloride, as was used for the vacuum filters. It is also possible to dewater a blend of primary and thermally conditioned sludge with the new roll presses. The presses produce a drier sludge cake than vacuum filters, which reduces and nearly eliminates auxiliary fuel use in the sludge incineration process. This sludge processing approach is part of the overall concept of energy recovery and energy conservation at the Metropolitan Plant.

During 1984, the Metropolitan Plant new sludge incineration facilities were in the operational refinement or optimization stage. As a result of this, some of the dewatered sludge generated during the year was landspread. Lime was added to this sludge for stabilization prior to landspreading.

In mid-1983, a new belt filter press for sludge dewatering at the Seneca Plant was installed. Like the roll presses at the Metropolitan Plant, the belt press uses polymer conditioned sludge. The belt press produces a drier sludge cake than the vacuum filters, reducing the fuel requirements for the sludge incineration process. The vacuum filters continue to be used at the Seneca Plant, in combination with the belt press.

#### SUMMARY OF SLUDGE PROCESSING AND DISPOSAL METHODS 1984

| TREATMENT     | THICKENING                                     | TABIL IZATION           | CONDITION ING                     | DEWATER ING                                    | SLUDGE<br>DISPOSAL<br><u>METHOD</u> |
|---------------|------------------------------------------------|-------------------------|-----------------------------------|------------------------------------------------|-------------------------------------|
| Anoka         | In Primaries                                   | Anaerobic<br>Digestion  | None                              | None                                           | (1)                                 |
| Bayport       | None                                           | Aerobic<br>Digestion    | None                              | None                                           | (1)                                 |
| Blue Lake     | In Primaries                                   | None                    | None                              | None                                           | (1) (2)                             |
| Chaska        | None                                           | Aerobic<br>Digestion    | None                              | None                                           | (3) (4)                             |
| Cottage Grove | Gravity                                        | Anaerobic<br>Digestion  | None                              | None                                           | (1) (4)                             |
| Empire        | Gravity                                        | Anaerobic<br>Digestion  | Polymer                           | Centrifuging                                   | (4)                                 |
| Hastings      | In Primaries                                   | Anaerobic<br>Digestion  | None                              | None                                           | (1) (4)                             |
| Maple Plain   | In Primaries                                   | Anaerobic<br>Digestion  | None                              | None                                           | (1)                                 |
| Medina        | None                                           | None                    | None                              | None                                           |                                     |
| Metropolitan* | Gravity (Primary)<br>Air Flotation (Secondary) | Lime<br>Lime<br>Thermal | Polymer<br>Lime/FeCl3<br>Thermal  | Roll Press<br>Vacuum Filters<br>Filter Presses | (4) (5)<br>(4) (5)<br>(4) (5)       |
| Rosemount     | In Holding Tank                                | None                    | None                              | None                                           | (1)                                 |
| Savage        | In Holding Tank                                | Anaerobic<br>Digestion  | None                              | None                                           | (1)(2)(4)                           |
| Seneca        | Air Flotation (Secondary)                      | None                    | Lime/FeCl <sub>3</sub><br>Polymer | Vacuum Filters<br>Belt Press                   | (5)<br>(5)                          |
| Stillwater    | In Primaries                                   | Anaerobic<br>Digestion  | None                              | None                                           | (1) (4)                             |

### SLUDGE DISPOSAL METHODS:

(1) Transported to Metropolitan Plant for further processing

(2) Transported to Seneca Plant for further processing
 (3) Transported to Blue Lake Plant for further processing

(4) Landspreading

(5) Incineration

\*Various combinations of stabilization, conditioning, dewatering, incineration, and landspreading are used. The listing shows the conditioning method associated with each dewatering method. Thermal conditioning also accomplishes stabilization, as does lime addition for conditioning prior to vacuum filtration. If polymer conditioned, roll press cake is to be landspread, lime is added to the cake for stabilization.

### 5.2 Sludge Disposal

During 1984, 90,804 dry tons of sludge were processed at Commission plants. A summary of sludge quantities produced at each of the Commission plants is shown in Table 5-2.

Sludge disposal methods presently utilized by the Commission include: (1) transporting of sludge to the Blue Lake, Seneca, or Metropolitan Plants for further processing; (2) landspreading; and (3) incineration with ash land-filling.

Digested sludge from the Chaska Plant is transported to the Blue Lake Plant. Sludge from the Blue Lake Plant is transported by tanker truck to either the Seneca or Metropolitan Plant. Digested sludges from the Anoka, Bayport, Cottage Grove, Hastings, Maple Plain, and Stillwater Plants and undigested sludge from the Rosemount Plant are transported through the interceptors to the Metropolitan Plant for further processing. Digested sludge from the Hastings, Chaska, Cottage Grove, Stillwater, and Savage Plants is also landspread. Table 5-3 lists the annual volume of sludge transported from each of the outlying plants, the interim disposal location, and the final disposal location.

At the Empire, Metropolitan, and Seneca Plants, sludge conditioning and dewatering are provided. At the Empire Plant, dewatered sludge is landspread; at the Metropolitan Plant, dewatered sludge is either incinerated or landspread; at the Seneca Plant, dewatered sludge is incinerated.

### 5.3 Sludge Quality

During 1984, digested sludge from the outlying plants and dewatered sludge or sludge cake from the Metropolitan and Seneca Plants were analyzed routinely for solids, nutrients, and metals. Results of analyses are summarized in Table 5-4. Total solids are shown as percent; volatile solids are shown as percent of total solids; nutrients (KJN, NH3-N, P) are shown as percent (dry weight basis); and metals and PCB are shown as mg/kg (dry weight basis). A more extensive summary of the quantity and quality of sludges from the various plants is listed in the Appendix of this report.

### 5.4 Landspreading

As shown in Tables 5-2 and 5-3, a portion of sludge generated at Commission treatment plants is landspread as a fertilizer supplement and soil conditioner. Prior to 1978, landspreading was limited to utilizing sludges generated at the smaller treatment plants for application to adjacent farm land. All other sludges were ultimately dewatered and disposed of by incineration.

In 1978, a sludge application program was initiated at the Metropolitan Plant. Because solids processing facilities at the plant were limiting the removal of solids from the sewage, the plant could not consistently meet NPDES discharge limitations. The land application program was developed as a means of disposing sludge solids generated in excess of the existing capacity of sludge handling facilities. This land application program was continued throughout

| Treatment<br>Plant                                   | <u>Annual Slu</u><br><u>MG</u> | dge Production<br>Dry Tons | Sludge<br>Disposal Method |
|------------------------------------------------------|--------------------------------|----------------------------|---------------------------|
| Anoka                                                | 4.144                          | 360                        | (1)                       |
| Bayport                                              | 1.296                          | 120                        | (1)                       |
| Blue Lake                                            | 40.702                         | 7,775                      | (1) (2)                   |
| Chaska                                               | 3.151                          | 275                        | (3) (4)                   |
| Cottage Grove                                        | 3.272                          | 245                        | (1) (4)                   |
| Empire                                               |                                | 789                        | (4)                       |
| Hastings                                             | 2.088                          | 260                        | (1) (4)                   |
| Maple Plain                                          | 0.044                          | 8                          | (1)                       |
| Medina                                               | 4900cm                         |                            | ******                    |
| Metropolitan<br>b) Filter Presses<br>c) Roll Presses |                                | 8,771<br>59,470            | (4) (5)<br>(4) (5)        |
| Rosemount                                            | 1.881                          | 750                        | (1)                       |
| Savage                                               | 0.674                          | 95                         | (1) (2) (4)               |
| Seneca                                               |                                | 11,266                     | (5)                       |
| Stillwater                                           | 5.351                          | 620                        | (1) (4)                   |

### SUMMARY OF SLUDGE PRODUCTION AND DISPOSAL METHODS 1984

(1) Transported to Metropolitan Plant for further processing.

(2) Transported to Seneca Plant for further processing.(3) Transported to Blue Lake Plant for further processing.

(4) Landspreading

(5) Incineration

NOTE: Annual sludge production includes sludge transported from other plants for further processing. Chemicals added for sludge conditioning are included for only the Seneca Plant.

i Sector

## SUMMARY OF 1984 SLUDGE HAULING

| Treatment Plant | Interim Disposal                | Final Disposal                                      | Amount Hauled    |
|-----------------|---------------------------------|-----------------------------------------------------|------------------|
|                 | Location                        | Location                                            | During 1983 (MG) |
| Anoka           | Coon Rapids Interceptor         | Metropolitan Plant                                  | 4.144            |
| Bayport         | Oakdale Interceptor             | Metropolitan Plant                                  | 0.888            |
|                 | South St. Paul Interceptor      | Metropolitan Plant                                  | 0.408            |
| Blue Lake       | Seneca Plant                    | Seneca Plant                                        | 23.824           |
|                 | 3rd and Commercial Interceptor  | Metropolitan Plant                                  | 16.878           |
| Chaska          | Blue Lake Plant<br>Farm Land    | Seneca Plant or<br>Metropolitan Plant<br>Landspread | 2.637<br>0.514   |
| Cottage Grove   | U of M Experimental Ag. Station | Landspread                                          | 0.150            |
|                 | So. St. Paul Interceptor        | Metropolitan Plant                                  | 3.122            |
| Empire          | U of M Experimental Ag. Station | Landspread                                          | 1.419            |
| Hastings        | U of M Experimental Ag. Station | Landspread                                          | 0.922            |
|                 | Farm Land                       | Landspread                                          | 0.208            |
|                 | South St. Paul Interceptor      | Metropolitan Plant                                  | 0.959            |
| Maple Plain     | Plymouth Interceptor            | Blue Lake/Metropolitan                              | 0.044            |
| Rosemount       | 3rd and Commerical Interceptor  | Metropolitan Plant                                  | 1.881            |
| Savage          | Farm Land                       | Landspread                                          | 0.070            |
|                 | Sludge Drying Beds              | Landspread                                          | 0.024            |
|                 | Seneca Plant                    | Seneca Plant                                        | 0.281            |
|                 | 3rd and Commercial Interceptor  | Metropolitan Plant                                  | 0.299            |
| Stillwater      | Dakdale Interceptor             | Metropolitan Plant                                  | 3.689            |
|                 | Farm Land                       | Landspreading                                       | 1.097            |
|                 | South St. Paul Interceptor      | Metropolitan Plant                                  | 0.565            |

| 1984 | SLUDGE | QUALITY | SUMMARY |
|------|--------|---------|---------|
|------|--------|---------|---------|

| [                 |             | Total  | Volatile     | 1                                            |      | t           | 1       | 1        | t        |             | 1         | t        | t       | t              | f    | <b></b>   | 1        |
|-------------------|-------------|--------|--------------|----------------------------------------------|------|-------------|---------|----------|----------|-------------|-----------|----------|---------|----------------|------|-----------|----------|
| Treatment Plant   |             | Solide | Solide       |                                              | NE   | Ph          | 70      | 6        | <u> </u> | Li m        | 1         | A        | 1 10 10 |                |      | l         | 000      |
|                   |             | ~      | 001103       |                                              |      |             |         |          |          | ng<br>ng/ka | _11       |          |         | L              |      | [ NUZ-N ] | PUB      |
| Type of biddge    |             | ~~~~   | ~ ~          | <u>'''''''''''''''''''''''''''''''''''''</u> |      | my/ ky      | піц/ку  | _ шу∕ ку | ліц/кц   | mg/ kg      | <u>pn</u> | ļ?       | ñ.      | <u>ð</u>       | 70   | <u> </u>  | mg/kg    |
| Apoka             | Avo.        | 2 02   | 6h h         | 1 7/0                                        | 204  | <b>C</b> 01 | 1 0/0   |          | 3 340    | 0.00        | [         |          |         |                |      | !         |          |
| AHUKA             | Reg.        | 1 50   | 04.4<br>50 1 | 1,707                                        | 404  | 201         | 1,007   | 7.0      | 1,142    | 9.00        |           | 3.93     | 10.01   | 0.39           | 2.85 | 0.01      | 0.2      |
| Annanakia diana   | Range       | 1.50-  | 20.1-        | 1,498-                                       | 208- | 406-        | 1,382-  | /.4-     | -222     | U.4-        | 7.5-8.1   | 2.8-     | 5.9-    | 0.3-           | 2.6- | 0.01-     |          |
| Anaerooic oides   | <u>ceo</u>  | 2.69   | /2.2         | 1,944                                        | 454  | 832         | 2,663   | 12.2     | 1,710    | 29.0        |           | <u> </u> | 12.2    | 0.6            | 3.1  | 0.02      |          |
| Bayport           | Avg.        | 2.20   | 61.2         | 305                                          | 21   | 232         | 760     | 6.3      | 48       | 6.66        | 6.9       | 0.06     | 4.38    | 0.27           | 3.06 | 0.02      | 1.1      |
|                   | Kange       | 1.68-  | 54.8-        | 232-                                         | 18   | 136-        | 634-    | 3.9-     | 35-      | 0.9-        | 6.7-7.1   | 0.03-    | 2.6-    | 0.2-           | 2.5- | 0.01-     |          |
| Aerobic digeste   | d           | 2.84   | 67.7         | 367                                          | 28   | 569         | 904     | 9.3      | 57       | 19.9        |           | 0.12     | 6.1     | 0.3            | 3.5  | 0.03      | 1        |
| Chaska            | Avg.        | 1.61   | 63.5         | 522                                          | 34   | 106         | 742     | 6.1      | 270      | 7.70        | 7.0       | 0.09     | 5.67    | 0.97           | 2.80 | 0.04      | 0.7      |
|                   | Rarige      | 1.05~  | 49.6-        | 382-                                         | 25-  | 70-         | 598~    | 5.0-     | 212-     | 4.4-        | 6.7-7.4   | 0.03-    | 3.1-    | 0.9-           | 2.0- | 0.01-     |          |
| Aerobic digeste   | d           | 2.39   | 70.4         | 644                                          | 46   | 137         | 1,015   | 6.9      | 391      | 17.2        |           | 0.20     | 9.6     | 1.1            | 3.6  | 0.2       | 1        |
| Cottage Grove     | Avg.        | 1.81   | 68.1         | 471                                          | 71   | 153         | 1.011   | 7.4      | 33       | 4.33        | 7.8       | 3.50     | 8.87    | 0.44           | 2.54 |           | 11       |
|                   | Range       | 1.00-  | 60.5~        | 357-                                         | 62-  | 112-        | 823-    | 6.0-     | 21-      | 1.2-        | 7.5-8.2   | 0.4-     | 7.1-    | 0.3-           | 2 0  |           |          |
| Anaerobic digest  | ted         | 3.98   | 85.8         | 535                                          | 81   | 182         | 1.098   | 10.6     | 38       | 10.7        |           | 5.7      | 11.3    | 0 6            | 2 9  | 0.01-     |          |
| Empire            |             |        |              |                                              |      |             |         |          |          |             |           | <u> </u> |         |                |      | 0.02      | <b> </b> |
| Centrifuge Cake   | e Ava.      | 12.9   | 59.3         | 749                                          | - 34 | 155         | 1.028   | 8.0      | 147      | 3.2         | 79        | 1 47     | 50      | 0.20           | 24   |           | ί Ι      |
| Digester Sludg    | a Avo.      | 2.1    | 61.2         | 717                                          | 30   | 133         | 1,066   | 7.5      | 161      | <u> </u>    | i é ó     | 5 57     | 11 2    | 0.20           | 2.0  |           |          |
| Hastions          | Avn.        | 3.02   | 62.5         | 1 100                                        | 28   | 179         | 739     | 5 0      | 1 117    | 3 61        | 75        | 2 30     | 11.2    | 0.70           | 2.2  | 0.02      | <u> </u> |
| 1                 | Ranne       | 1.25-  | 59.5.        | 728_                                         | 23   | 135         | 534     | 20       | 1 740    | 1 2         | 1 - 2 - 0 |          | 0.0/    | 0.77           | 2:24 | 0.01      | 1.1      |
| Anaerohic digest  | Fed         | 4 37   | 68.5         | 1 200                                        | 34   | 261         | 1 1 2 4 | 6.6      | 1,747-   | 7 0         | 1.2-1.7   | 1.0-     | 2.1-    | 0,2-1          | 1.7  |           |          |
| Metropoliten      |             |        | 00.7         | 1,000                                        |      |             |         | 0.0      | 0,127    | /.0         |           | 2.1      | 1.9     | 0.5            | 2.2  | i         | h        |
| Roll Press Cak    | Ava         | 32.8   | 70 /         | 1 223                                        | 212  | 701         | 2 022   | 17       | 010      |             |           |          | • • •   | <b>•</b> • • • |      | 1 1       |          |
| Filter Press Cak  | ske Ave     | 30 7   | 70.4<br>66 1 | 1,220                                        | 212  | 701         | 2,022   | 0/       | 717      | 1.7         |           | 0.09     | 2.6     | 0.11           | 1.2  |           | 0.9      |
| Lood Out Coke     | ake Avy.    | 20 4   | 60.1         | 1,720                                        | 221  | 200         | 2,004   | 107      | 1,664    | 2.0         |           | 0.12     | 3.Z     | 0.12           | 2.8  |           | 2.2      |
| Soupco            | <u>1vy.</u> | 7 74   |              | 7/5                                          | 174  | 205         | 1,000   | 48       | 1,004    | 1.2         |           | 0.09     | 2.4     | U.11           | 1.0  |           | 0.6      |
| Javage            | Avg.        | 2,24   | 44.4         | 908                                          | 20   | 192         | 2,978   | 45.5     | 91       | 50.47       | _ /.5     | 1.81     | 4.54    | 0.41           | 2.35 | 0.01      | 1.9      |
| Anonahia 'dinan   | Range       | 2.1/-  | 42.7-        | 070-                                         | 4/-  | /32-        | 2,817-  | 44-      | 90-      |             | 1.3-1.6   | 1.80-    | 4.5-    |                | 2.2- |           |          |
| Willerobic oldes  | rea         | 5.44   | 45.7         | <u>918</u>                                   | - 52 | 822         |         | 46       | 91       |             |           | 1.83     | 4.6     |                | 2.4  |           |          |
|                   |             |        | 10.7         |                                              |      |             |         |          |          |             |           |          |         |                |      | [ ]       |          |
| I VACUUM FILLER U | Jake Avg.   | 22.7   | 42.7         | 1,12/                                        | 509  | 241         | 456     | 11.6     | 466      | 1.4         |           | 0.07     | 3.1     | 0.09           | 1.1  |           | 1.75     |
| Belt Filter PC    | AVQ.        | 24.0   | 71.6         | 1,445                                        | 92   | 297         | 679     | 13.0     | 286      | 2.2         |           | 0.95     | 4.6     | 0.17           | 1.5  |           | 1.44     |
| Stillwater        | Avg.        | 2.79   | 51.0         | 598                                          | 29   | 167         | 1,123   | 6.4      | 94       | 5.48        | 7.5       | 2.15     | 4.90    | 0.24           | 3.16 | 0.01      | 0.8      |
| <b>.</b>          | Range       | 0,91-  | 46.2-        | 473-                                         | 19-  | 118-        | 911-    | 4.1-     | 71-      | 1.9-        | 7.1-7.7   | 1.4-     | 4.0-    | 0.2-           | 2.2- | 0.01-     |          |
| Anaerobic diges   | ted         | 4.23   | 69.9         | 763                                          | 38   | 289         | 1,455   | 9.4      | 117      | 13.2        |           | 3.0      | 6.2     | 0.3            | 3.8  | 0.02      |          |

 $(1)_{Metals, nutrient, and PCB analysis listed as dry weight.}$ 

1984. However, as the new incinerators were gradually put into service, the portion of the dewatered sludge disposed of on land decreased accordingly. By the end of 1984, land application of dewatered sludge was used only as a backup method to sludge incineration.

At the Metropolitan Plant, sludges are conditioned and dewatered to produce sludge cake. Two types of sludge cake are produced: filter cake and press cake. The filter cake is produced by treating sludge with chemicals and removing water with a vacuum filter. Dewatered press cake is produced by either thermally or chemically conditioning the sludge followed by dewatering. Both chemical addition of lime and heat treatment conditioning have been shown to reduce pathogenic organisms to an acceptable level.

Since the initiation of landspreading as a disposal method at the Metropolitan Plant, portions of the dewatered sludge that is suitable for soil incorporation has been landspread. Table 5-5 presents a summary of sludge quantities disposed of by the landspreading program since 1978.

### TABLE 5-5

### SUMMARY OF QUANTITIES OF METROPOLITAN PLANT DEWATERED SLUDGE DISPOSED OF BY LANDSPREADING PROGRAM

| Year | Agricultural Land<br>(wet tons) | Other<br>(wet tons) | Total wet tons disposed<br>by landspreading |
|------|---------------------------------|---------------------|---------------------------------------------|
| 1978 | 13,700                          |                     | 13,700                                      |
| 1979 | 18,700                          | 15,500              | 34,200                                      |
| 1980 | 75,600                          | 29,600              | 105,200                                     |
| 1981 | 189,600                         | 9,900               | 199,500                                     |
| 1982 | 184,600                         | 11,145              | 195,745                                     |
| 1083 | 134,350                         | 14.880              | 149,230                                     |
| 1984 | 35,680                          | 490                 | 36,170                                      |

All land application of sludge is done under permits from MPCA. Each permit is granted for an individual parcel of land and specifies the maximum sludge application rate per acre. These application rates are based upon maximum allowable application rates of the various chemical constituents of the sludge (NH3, Cd, etc.). All sludge is analyzed before applications to insure meeting conditions of each permit.

During 1984, approximately 36,000 wet tons of dewatered sludge were applied to permitted sites in seven area counties. The dewatered sludge was applied to land used for crop production. During the last half of 1984, the Metropolitan Plant incinerated all dewatered sludge produced. As such, it is anticipated that the dewatered sludge available for land application will be a minimum quantity to maintain land application as a viable backup method for incineration. In addition to landspreading of dewatered sludge from the Metropolitan Plant, approximately three million gallons of liquid sludge generated at the Chaska, Cottage Grove, Hastings, Savage, and Stillwater Plants were applied to farm lands during 1984. Approximately 790 dry tons of digested dewatered sludge from the Empire Plant were applied to adjacent farm land owned by the Commission. Because of the demand for sludge application to agricultural land and the close proximity of the land to the above treatment plants, it is anticipated that the use of liquid sludge generated at the smaller treatment facilities will gradually increase.

### 6.0 INDIVIDUAL TREATMENT PLANT REPORTS

This section contains the individual treatment plant reports for 1984. For each plant report there is an introduction briefly describing the background of the plant, its design basis, 1984 performance and activities, and a statement regarding the future of the plant. The introduction is followed by a listing of 1982 through 1984 unit process loadings and a liquids and solids flow diagram of the treatment process. In addition, a graphical presentation of flows for individual months of 1984 and annual average flows for 1971-1984 is included. Monthly flow data are shown as a vertical bar corresponding to the range of flow for that month with the top cross bar representing the maximum flow and the bottom cross bar the minimum flow. A solid line connects the vertical bars and is drawn to the average wastewater flow for that month. Flow data are followed by 1984 monthly influent and effluent summaries. These tables contain monthly and annual average data on virtually all of the parameters for which the influent and effluent of that plant are analyzed.

Graphs of BOD and TSS for 1984 show a vertical bar which encompasses the maximum and minimum parameter range for that month. The solid line connects the monthly averages. Fecal coliform data are also presented graphically with the 1971-1984 annual averages (arithmetic average of monthly geometric means) shown on one graph and the 1984 monthly geometric means shown on another graph. Finally, plots of effluent BOD and TSS are shown illustrating the percent of the time the effluent concentrations were less than or equal to a given value. On these graphs, data from 1974-1983 are compared to data obtained during 1984.

### ANOKA WASTEWATER TREATMENT PLANT

### Plant History and Description

The Anoka Plant was designed by Toltz, King, Duvall, Anderson and Associates and built in two stages. The original plant was constructed in 1954-55, with a design capacity of 1.4 mgd. The plant was expanded in 1969 to its present design capacity of 2.46 mgd. The Anoka Plant serves the communities of Anoka, Champlin, and Ramsey in Service Area No. 3.

Liquid treatment consists of screening, grit removal, influent pumping, primary sedimentation, primary effluent pumping, conventional activated sludge aeration, final clarification, chlorination, and discharge to the Mississippi River.

Solids processing consists of combined thickening in primary tanks, anaerobic digestion, and sludge hauling for disposal in the Metropolitan Plant Interceptor System.

The plant is presently operating at about 100 percent of its rated capacity and provides good BOD and TSS removal. Significant flow increases are anticipated in the next two years which may exceed the capacity of certain process units. These additional flow sources are from the construction of the Anoka Interceptor and a Champlin Station expansion. The plant is subject to secondary treatment limits and additional limits on heavy metals and cyanide.

### Performance

Plant flow averaged 2.49 mgd in 1984, up slightly from 2.33 mgd in 1983. Average plant effluent quality was 13 mg/L BOD and 11 mg/L TSS. Plant performance was good throughout the year, although four NPDES Permit violations occurred due to weekly fecal coliform failures. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

### Effluent Concentration, mg/L

|       |      | 50% of | Time |      |      | 75% of | Time |      | 90% of Time |      |      |      |  |
|-------|------|--------|------|------|------|--------|------|------|-------------|------|------|------|--|
|       | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1981        | 1982 | 1983 | 1984 |  |
| * BOD | 15   | 10     | 10   | 12   | 20   | 14     | 14   | 16   | 26          | 19   | 17   | 21   |  |
| TSS   | 12   | 7      | 9    | 10   | 18   | 10     | 12   | 13   | 24          | 15   | 16   | 16   |  |

\*1982 through 1984 values represent CBOD.

#### Future

The plant will continue to serve Service Area No. 3 until the late 1980's, when it is scheduled for phase-out, with flow transported to the Metropolitan Plant. Plant phase-out is contingent upon completion of the Champlin-Anoka-Brooklyn Park (CAB) and Minneapolis East Interceptor. In the interim period prior to phase-out limited capital improvements will be necessary to insure adeguate capacity.

# ANOKA PLANT PROCESS UNIT LOADINGS

| Devenueton                                                                                                             |                                          | Annual                                   | Maximum<br>Month                         |                                          |                                          |                                           |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|
| rarameter                                                                                                              | 1982                                     | <u>1983</u>                              | <u>1984</u>                              | 1982                                     | <u>1983</u>                              | 1984                                      |
| Wastewater Flow, mgd<br>BOD Loading, lb/day<br>TSS Loading, lb/day<br>COD Loading, lb/day<br>Sludge Production, lb/day | 2.14<br>3,980<br>2,770<br>6,350<br>1,500 | 2.33<br>4,000<br>3,400<br>7,800<br>1,800 | 2.49<br>4,010<br>3,300<br>8,350<br>1,970 | 2.34<br>4,500<br>3,160<br>7,120<br>1,970 | 2.48<br>4,200<br>4,100<br>8,700<br>3,000 | 2.74<br>4,900<br>4,380<br>10,170<br>3,130 |
| Grit Removal                                                                                                           |                                          |                                          |                                          |                                          |                                          |                                           |
| Overflow Rate, gpd/sq. ft.                                                                                             | 41,150                                   | 45,000                                   | 47,900                                   | 45,000                                   | 48,000                                   | 52,700                                    |
| Primary Sedimentation                                                                                                  |                                          |                                          |                                          |                                          |                                          |                                           |
| Detention Time, hr.<br>Weir Overflow Rate, gpd/lin. ft.<br>Surface Overflow Rate, gpd/sq. ft.                          | 2.0<br>7,980<br>715                      | 1.9<br>8,700<br>780                      | 1.8<br>9,300<br>830                      | 1.9<br>8,730<br>780                      | 1.8<br>9,300<br>830                      | 1.6<br>10,200<br>910                      |
| Aeration Tanks                                                                                                         |                                          |                                          |                                          |                                          |                                          |                                           |
| Detention Time, hr.<br>BOD Loading, 1b/day/1000 cu. ft.                                                                | 7.9<br>43                                | 7.2<br>43                                | 6.7<br>.43                               | 7.2<br>48                                | 6.8<br>46                                | 6.1<br>52                                 |
| Final Sedimentation                                                                                                    |                                          |                                          |                                          |                                          |                                          |                                           |
| Detention Time, hr.<br>Weir Overflow Rate, gpd/lin. ft.<br>Surface Overflow Rate, gpd/sq. ft.                          | 3.6<br>6,560<br>500                      | 3.3<br>7,100<br>550                      | 3.1<br>3,640<br>590                      | 3.3<br>7,180<br>550                      | 3.1<br>7,600<br>580                      | 2.8<br>8,400<br>650                       |
| Chlorination                                                                                                           |                                          |                                          |                                          |                                          |                                          |                                           |
| Contact Time, minutes<br>Chlorine Use, lb/day                                                                          | 37<br>123                                | <b>34</b><br>110                         | 32<br>113                                | 34<br>146                                | 12<br>130                                | 29<br>131                                 |
| Anaerobic Digestion<br>(Primary Digester Only)                                                                         |                                          |                                          | .*                                       |                                          |                                          |                                           |
| Volatile Solids Loading, lb/cu. ft./day<br>Detention Time, days<br>Volatile Solids Reduction, %                        | 0.08<br>20                               | 0.06<br>22<br>55.0                       | 0.06<br>22<br>50                         | 0.10                                     | <br>                                     | 0.10<br>16                                |
| Sludge Transport                                                                                                       |                                          |                                          |                                          |                                          |                                          |                                           |
| Volume, gpd                                                                                                            | 10,930                                   | 9,100                                    | 11,300                                   | 14,040                                   | 12,000                                   | 15,900                                    |

# ANOKA WASTEWATER TREATMENT PLANT

# FLOW DIAGRAM



- 4. 5. 6.







| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | 1800<br>mg/1 | TSS<br>mg/l | pH Range | KJN<br>mg/1 | Total-P<br>mg/l | NH3<br>mg/1 | COD<br>mg/1 |
|--------------|-------------------------|-------------------|--------------|-------------|----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 2.34                    | 15                | 172          | 147         | 7.2-8.7  | 39.2        | 8.7             | 19.6        | 364         |
| FEBRUARY     | 2.47                    | 16                | 165          | 140         | 7.2-8.4  | 36.3        | 7.9             | 16.3        | 338         |
| MARCH        | 2.74                    | 15                | 166          | 159         | 7.1-8.8  | 33.9        | 6.8             | 17.9        | 413         |
| APRIL        | 2.49                    | 17                | 151          | 115         | 7.3-8.2  | 37.4        | 7.3             | 20.4        |             |
| MAY          | 2.53                    | 18                | 177          | 132         | 6.9-8.5  | 34.3        | 6.0             | 15.2        | 393         |
| JUNE         | 2.72                    | 21                | 151          | 116         | 6.5-8.2  | 27.0        | 5.4             | 12.1        | 323         |
| JULY         | 2.58                    | 23                | 170          | 159         | 6.6-8.2  | 28.3        | 6.2             | 10,7        | 367         |
| AUGUST       | 2.62                    | 23                | 172          | 147         | 7.1-8.1  | 28.0        | 5.3             | 11.9        | 342         |
| SEPTEMBER    | 2.30                    | 23                | 224          | 173         | 6.9-8.3  | 33.5        | 8.9             | 11.3        | 422         |
| OCTOBER      | 2.39                    | 23                | 219          | 167         | 6.7-8.1  | 37.8        | 7.5             | 17.9        | 415         |
| NOVEMBER     | 2.34                    | 22                | 238          | 151         | 6.7-8.2  | 34.1        | 6.8             | 14.8        | 464         |
| DECEMBER     | 2.39                    | 17                | 209          | 212         | 6.8-8.5  | 38.5        | 9.4             | 20.6        | 388         |
| 1984 AVERAGE | 2.49                    | 19                | 184          | 150         | 6.5-8.8  | 34.1        | 7.2             | 15.7        | 381         |
| 1983 AVERAGE | 2.33                    | 17                | 193          | 165         | 6.0-9.2  | 37.4        | 7.2             | 19.5        | 379         |

## MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Anoka

• •

### MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: \_\_\_\_\_Anoka

| Month          | T80D<br>mg/1 | CBOD<br>mg/1 | COD<br>mg/1 | TSS<br>mg/l | fECAL COLI<br>Geo Mean<br>no/100 ml | TURB<br>NTU | KJN<br>mg/1 | NH3<br>mg/1 | NO2<br>mg/1 | N03<br>mg/1 | Total<br>P<br>mg/l | C12*<br>Used<br>1bs | C12<br>Res<br>mg/1 | D0<br>mg/1 | pH<br>Range | Remo<br>BOD | val<br>TSS |
|----------------|--------------|--------------|-------------|-------------|-------------------------------------|-------------|-------------|-------------|-------------|-------------|--------------------|---------------------|--------------------|------------|-------------|-------------|------------|
| NPDES<br>LIMIT | 25           | 25           |             | 30          | 200                                 | 25          |             |             |             |             |                    |                     |                    |            | 6.5-8.5     |             |            |
| JANUARY        | 22           | 15           | 90          | 15          | 59                                  | .8          | 24.8        | 16.4        | 0.26        | 0.25        | 5.1                | 122                 | 4.9                | 1.8        | 7.1-7.5     | 91          | 89         |
| FEBRUARY       | 16           | 11           | 82          | 9           | 47                                  | 5           | 20.4        | 14.0        | 0.18        | 0.33        | 4.1                | 98                  | <b>4.5</b>         | 1.9        | 7.1-7.4     | 93          | 94         |
| MARCH          | 20           | 15           | 103         | 13          | 33                                  | 8           | 22.0        | 15.0        | 0.13        | 0.45        | 3.7                | 105                 | 4.2                | 2.0        | 7.1-7.4     | 91          | 92         |
| APRIL          | 15           | 12           | 77          | 8           | 71                                  | 6           | 18.5        | 13.1        | 0.17        | 0.62        | 4.7                | 104                 | 4.1                | 1.8        | 7.1-7.4     | 92          | 93         |
| MAY            | 21           | 14           | 78          | 10          | 122                                 | 7           | 18.3        | 9.4         | 1.40        | 0.80        | 3.2                | 128                 | 4.5                | 2.1        | 7.2-7.4     | 92          | 93         |
| JUNE           | 12           | 9            | 74          | 10          | 127                                 | 5           | 16.9        | 11.9        | 0.07        | 0.15        | 2.9                | 131                 | 5.8                | 1.6        | 7.2-7.5     | 94          | 91         |
| JULY           | 18           | 12           | 80          | 10          | 59                                  | 7           | 19.3        | 9.6         | 0.36        | 0.25        | 3.8                | 116                 | 5.4                | 1.6        | 7.1-7.4     | 93          | 94         |
| AUGUST         | 18           | 13           | 84          | 11          | 49                                  | 7           | 19.6        | 9.3         | 0.21        | 0.23        | 3.4                | 108                 | 6.0                | 1.7        | 7.3-7.5     | 93          | 93         |
| SEP TEMBER     | 25           | 18           | 84          | 12          | 36                                  | 8           | 21.9        | 11.4        | 0.11        | 0.19        | 4.6                | 116                 | 5.4                | 2.0        | 7.2-7.4     | 92          | 93         |
| OCTOBER        | 18           | 13           | 72          | 10          | 76                                  | 6           | 23.2        | 12.3        | 0.04        | 0.19        | 3.9                | 111                 | 5.1                | 1.8        | 7.1-7.3     | 94          | 94         |
| NOVEMBER       | 15           | 12           | 70          | 9           | 199                                 | 5           | 18.4        | 9.0         | 0.02        | 0.24        | 3.1                | דוו 7               | 61                 | 1 9        | 7174        | 1 05        | 04         |
| DECEMBER       | 21           | 16           | 72          | 13          | 58                                  | 10          | 14.3        | 10.2        | 0.03        | 0.21        | 27                 | 105                 | 5 7                | 21         | 7 1 7 7     |             | 74         |
| 1984 AVG.      | 19           | 13           | 80          | 11          | 78                                  | 7           | 19.9        | 11 8        | 0.27        | 0.33        | 7.0                | 116                 | 5.1                | 211        | 7.1-7.5     | 92          | 94         |
| 1983 AVG.      | 15           | 11           | 80          | 10          | 67                                  | 6           | 21.9        | 15.6        | 0.58        | 0.24        | 4.2                | 114                 | 4.7                | 1.9        | 7.0-7.5     | 95          | 93         |

\*For disinfection only.

•









| MONTH          | Cu<br>mg/l | Cr<br>mg/l | Zn<br>mg/l | Pb<br>mg/l | Cd<br>mg/l | Hg<br>ug/l | CN<br>mg/1 | As<br>ug/l | PCB<br>ug/1 | Ni<br>mg/l | Phenol<br>ug/1 | Fe<br>mg/l |
|----------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|----------------|------------|
| NPDES<br>Limit | 0,30       | 0.40       | 0.50       | 0.50       |            |            | 0.500      |            |             |            |                |            |
| January        | 0.04       | <0.05      | 0.16       | <0.05      |            |            | 0.043      |            |             |            |                |            |
| February       | 0.05       | <0.05      | 0.13       | <0.05      |            |            | 0.047      |            |             |            |                |            |
| March          | 0.05       | <0.05      | 0.16       | <0.05      |            |            | 0.032      |            |             |            |                |            |
| April          | 0.04       | <0.08      | 0.19       | <0.05      |            |            | 0.043      |            |             |            |                |            |
| May            | 0.06       | <0.05      | 0.20       | <0.05      |            |            | <0.030     |            |             |            |                |            |
| June           | 0.08       | <0.05      | 0.06       | <0.05      |            |            | <0.047     |            |             |            |                |            |
| July           | 0.07       | <0.05      | 0.14       | <0.05      |            |            | <0.026     |            | <u> </u>    |            | <u> </u>       |            |
| August         | 0.03       | <0.05      | 0.08       | <0.05      |            |            | <0.030     |            |             |            |                |            |
| September      | 0.03       | <0.05      | 0,12       | <0.05      |            |            | <0.050     |            |             |            |                |            |
| October        | 0.03       | <0.05      | 0.09       | <0.05      |            |            | 0.036      | ,          |             |            |                |            |
| November       | 0.04       | <0.05      | 0.19       | <0.05      |            |            | 0,042      | · ·        |             |            |                |            |
| December       | 0.16       | <0.05      | 0.28       | <0.05      |            |            | <0.032     |            |             |            |                |            |
| 1984 Avg.      | 0.06       | (0.05      | 0.15       | <0.05      |            |            | <0.038     |            |             |            |                |            |
| 1983 Avg.      | 0.03       | <0.05      | 0.09       | <0.05      |            |            | <0.219     |            |             |            |                |            |

### 1984 EFFLUENT DATA TREATMENT PLANT <u>Anoka</u>

### BAYPORT WASTEWATER TREATMENT PLANT

# Plant History and Description

The original Bayport Wastewater Treatment Plant was built in 1939, consisting of a primary clarifier, two mechanical aeration tanks, final clarifier, chlorine contact tank, heated anaerobic digester, drying beds, and a control and pumping building. In 1956, the digester was converted to external heating, and a sludge recirculating pump added. In 1958, the plant was expanded by addition of a chlorine contact tank, an aeration tank, a final settling tank, an anaerobic digester, a barminutor, and a drying bed.

In 1964, extensive plant remodeling and additions, designed by Banister, Short, Elliot, Hendrickson, and Associates were completed. In 1973, chemical feed for phosphorus removal was provided and in 1982, mechanical screening was replaced by a stationary hydrasieve fine screening mechanism.

Liquid treatment consists of screening, influent pumping, contact stabilization, activated sludge aeration, alum addition for phosphorus removal, final clarification, chlorination, and discharge to Lake St. Croix (the St. Croix River).

Solids processing consists of aerobic digestion and sludge hauling to the Metropolitan Plant Interceptor System.

The Bayport Plant is presently operating at about 80 percent of its design capacity, and is subject to secondary treatment limits and a phosphorus limit of 1 mg/L.

### Performance

Plant flow averaged 0.50 mgd in 1984, slightly lower than 0.54 mgd in 1983. Average plant effluent quality was 6 mg/L BOD, 8 mg/L TSS, and 0.4 mg/l P. Plant performance was excellent throughout the year, with no NPDES Permit violations. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

Effluent Concentration, mg/1

|       |      | 50% of | Time |      |      | 75% of | Time | 90% of Time |      |      |      |      |  |
|-------|------|--------|------|------|------|--------|------|-------------|------|------|------|------|--|
|       | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984        | 1981 | 1982 | 1983 | 1984 |  |
| * 80D | 7    | 7      | 6    | 5    | 8    | 9      | 7    | 7           | 10   | 13   | 8    | 8    |  |
| TSS   | 7    | 7      | 6    | 7    | 9    | 9      | 7    | 9           | 10   | 12   | 9    | 10   |  |

\*1982 through 1984 values represent CBOD.

### Future

The long-term plan for this plant is to phase it out of service and divert flows to the Stillwater Plant. This is projected to occur in the late 1980's or early 1990's, when the plant is expected to reach its capacity, and also will be nearing the end of its useful life.

# BAYPORT PLANT PROCESS LOADINGS

| Parameter                                                              |                      | Annual<br><u>Average</u><br>1992 - 1994 |                      |                    | Maximum<br><u>Month</u> |                      |  |  |
|------------------------------------------------------------------------|----------------------|-----------------------------------------|----------------------|--------------------|-------------------------|----------------------|--|--|
|                                                                        | <u>1982</u>          | 1983                                    | <u>1984</u>          | 1982               | 1983                    | <u>1984</u>          |  |  |
| Wastewater Flow, mgd<br>BOD Loading, 1b/day<br>TSS Loading, 1b/day     | 0.52<br>698<br>664   | 0.54<br>720<br>800                      | 0.50<br>717<br>877   | 0.65<br>968<br>999 | 0.66<br>1,060<br>1,380  | 0.76<br>914<br>1.378 |  |  |
| COD Loading, 1b/day                                                    | 1,227                | 1,330                                   | 1,432                | 1,453              | 2,020                   | 1,799                |  |  |
| Aeration Basin                                                         |                      |                                         |                      |                    |                         |                      |  |  |
| BOD Loading, 1b/day/1000 cu.ft.<br>Alum Feed Rate, gal/day             | 21<br>100            | 22<br>140                               | 22<br>110            | 29<br>133          | 32<br>165               | 28<br>145            |  |  |
| Final Sedimentation                                                    |                      |                                         |                      |                    |                         |                      |  |  |
| Weir Overflow Rate, gpd/lin. ft.<br>Surface Overflow Rate, gpd/sq. ft. | <b>4,26</b> 0<br>430 | <b>4,43</b> 0<br>450                    | <b>4,</b> 100<br>420 | 5,330<br>540       | 5,410<br>550            | 6,230<br>630         |  |  |
| Chlorination                                                           |                      |                                         |                      |                    |                         |                      |  |  |
| Contact Time, minutes<br>Chlorine Use, lb/day                          | 60<br>29             | 57<br>34                                | 62<br>27             | 48<br>34           | 47<br>35                | 41<br>30             |  |  |
| Aerobic Digestion                                                      |                      |                                         |                      |                    |                         |                      |  |  |
| Solid Retention Time, day                                              | 31                   | 31                                      | 35                   | 26                 | 26                      | 30                   |  |  |
| Sludge Transport                                                       |                      |                                         |                      |                    |                         |                      |  |  |
| Volume, gpd<br>Mass, lb/day                                            | 3,400<br>610         | 4,000<br>660                            | 3,540<br>650         | 4,040<br>749       | <b>4,</b> 700<br>820    | 4,170<br>790         |  |  |

# **BAYPORT WASTEWATER TREATMENT PLANT** FLOW DIAGRAM



# Unit Description

### Liquid Phase

- 1.
- 2.
- 3.
- Screening Activated Sludge Sludge Reaeration Chemical Addition 4.
- 5. Final Sedimentation
- 6. Chlorination

# Solids Phase

- Aerobic Digestion
   Sand Drying Beds
   Land Spread





| Liquid Flow            |
|------------------------|
| Solids Transfer        |
| Existing Process Units |
| []Future Process Units |

HONTHLY FLOW

OCT NOV

air. SEP DEC

Legend



| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | T80D<br>mg/1 | TSS<br>mq/1 | pH Range | KJN<br>mg/1 | Total-P<br>mg/l | NH3<br>mg/l | COD<br>mg/1 |
|--------------|-------------------------|-------------------|--------------|-------------|----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 0.46                    | 18                | 231          | 211         | 6.4-9.0  | 33.0        | 5.5             | 18.2        | 367         |
| FEBRUARY     | 0.48                    | 18                | 165          | 147         | 6.6-8.6  | 28.4        | 5.5             | 14.6        | 303         |
| MARCH        | 0.46                    | 16                | 229          | 249         | 6.6-9.0  | 33.8        | 7.0             | 18.7        | 449         |
| APRIL        | 0.54                    | 16                | 167          | 189         | 7.0-9.2  | 26.4        | 6.2             | 14.4        | 383         |
| MAY          | 0.53                    | 16                | 154          | 154         | 6.9-9.4  | 28.2        | 5.5             | 14.4        | 337         |
| JUNE         | 0.76                    | 18                | 125          | 148         | 5.8-9.0  | 20.0        | 4.6             | 9.1         | 259         |
| JULY         | 0.51                    | 21                | 142          | 232         | 6.6-8.0  | 27.4        | 6.5             | 10.6        | 318         |
| AUGUST       | 0.49                    | 22                | 158          | 319         | 6.0-7.8  | 32.9        | 7.6             | 13.5        | 328         |
| SEP TEMBER   | 0.46                    | 21                | 179          | 214         | 6.0-7.8  | 30.8        | 7.0             | 13.5        | 340         |
| OCTOBER      | 0.45                    | 20                | 182          | 204         | 6.2-8.4  | 32.0        | 7.2             | 15.8        | 348         |
| NOVEMBER     | 0.43                    | 18                | 194          | 183         | 6.2-8.8  | 30.9        | 6.0             | 15.4        | 358         |
| DECEMBER     | 0,39                    | 16                | 164          | 274         | 6.2-8.6  | 31.1        | 5.7             | 17.3        | 310         |
| 1984 AVERAGE | 0.50                    | 18                | 174          | 210         | 5.8-9.4  | 29.6        | 6.2             | 14.6        | 339         |
| 1983 AVERAGE | 0.54                    | 20                | 158          | 178         | 5.2-9.7  | 29.4        | 5.7             | 16.4        | 293         |

## MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Bayport

.

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Bayport</u>

|            | 7000         | 0000           | 000    | TCC         | FECAL COLI            | TUDO | 1/ 38.1     |             |             |             | Total      | C12*        | C12         |            |             | 2    | <u>۲</u>     |
|------------|--------------|----------------|--------|-------------|-----------------------|------|-------------|-------------|-------------|-------------|------------|-------------|-------------|------------|-------------|------|--------------|
| Month      | 1800<br>Ma/1 | - CBOD<br>ma/1 | 1 ma/1 | 155<br>ma/1 | Geo Mean<br>no/100 ml | NTU  | KJN<br>ma/l | NH3<br>Ma/J | NU2<br>ຫດ/1 | NU3<br>ma/1 | Р<br>100/1 | Used<br>1bs | Res<br>mo/l | 00<br>mm/1 | pH<br>Range | Remo | val<br>I YSS |
|            | 25           | 25             |        | τ <u>η</u>  | 200                   | 25   |             |             |             |             | 1 0        | 100         |             |            | <u> </u>    |      | 100          |
|            |              |                |        |             | 200                   |      |             |             |             |             | 1.0        |             |             |            | 0.2-0.2     |      |              |
| JANUARY    | 13           | 7              | 31     | 10          |                       | 3    | 6.2         | 4.0         | 0.38        | 6.54        | 0.4        |             |             | 4.4        | 6.9-7.1     | 97   | 95           |
| FEBRUARY   | 14           | 6              | 36     | 9           |                       | 3    | 5.8         | 2.6         | 0.39        | 11.49       | 0.4        | 18          | 2.1         | 3.2        | 6.7-7.4     | 96   | 94           |
| MARCH      | 6            | 5              | 32     | 6           | 4                     | 3    | 5.4         | 4.3         | 0.09        | 9.51        | 0.4        | 28          | 4.3         | 4.3        | 6.6-7.0     | 98   | 98           |
| APRIL      | 7            | 6              | 38     | 9           | 5                     | 4    | 6.4         | 4.0         | 0.21        | 8.16        | 0.4        | _ 28        | 3.2         | 3.4        | 6.7-7.0     | 97   | 95           |
| MAY        | 7            | 6              | 34     | 8           | 2                     | 4    | 6.6         | 3.1         | 0.24        | 12.45       | 0.3        | 25          | 4.0         | 3.9        | 6.8-7.2     | 96   | 95           |
| JUNE       | 9            | 6              | .35    | 9           | 35                    | 4    | 4.9         | 2,9         | 0.64        | 7.20        | 0.3        | 23          | 2.1         | 3.6        | 6.7-7.4     | 95   | 94           |
| JULY       | 8            | 4              | 29     | 5           | 4                     | 3    | 4.3         | 1.5         | 1.08        | 10.70       | 0.2        | 30          | 2.3         | 3.9        | 6.8-7.4     | 97   | 98           |
| AUGUST     | 9            | 5              | 33     | 8           | 4                     | 3    | 5.3         | 3.0         | 1.11        | 11.76       | 0.4        | 28          | 2.3         | 3.4        | 6.6-7.8     | 97   | 98           |
| SEP TEMBER | 8            | 6              | 28     | 7           | 6                     | 4    | 5.0         | 3.0         | 0.90        | 12.35       | 0.5        | 25          | 3.1         | 3.3        | 6.6-7.6     | 97   | 97           |
| OCTOBER    | 8            | 6              | 31     | 8           | 4                     | 4    | 5.8         | 4.9         | 0.79        | 10.52       | 0.6        | 25          | 2.7         | 3.4        | 6.6-7.0     | 97   | 96           |
| NOVEMBER   | _14          | 7              | 35     | 9           |                       | 3    | 7.3         | 4.6         | 0.51        | 11.99       | 0.4        |             |             | 4.1        | 6.7-7.0     | 96   | 95           |
| DECEMBER   | 14           | 6              | 38     | 9           |                       | 4    | 7.4         | 4.1         | 0.50        | 10.50       | 0.5        |             |             | 4.0        | 6.7-7.0     | 96   | 97           |
| 1984 AVG.  | 10           | 6              | 33     | 8           | 8                     | 3    | 5.8         | 3.5         | 0.58        | 10.25       | 0.4        | 26          | 3.0         | 3.8        | 6.6-7.8     | 97   | 96           |
| 1983 AVG.  | 9            | 6              | 29     | 6           | 10                    | 2    | 5.4         | 3.0         | 0.41        | 10.71       | 0.4        | 34          | 2.5         | 3.8        | 6.8-7.4     | 96   | 96           |

\*For disinfection only.

-









### BLUE LAKE WASTEWATER TREATMENT PLANT

### Plant History and Description

The Blue Lake Wastewater Treatment Plant was designed by Rieke-Carroll-Muller and Associates to be built in several stages and treat wastewater contributed by Sewer Service Area No. 4. Stage I, placed in operation in July, 1971, consisted of an aerated pond and chlorination facilities to provide temporary wastewater treatment. Stage II, consisting of the liquid treatment portion of a secondary treatment activated sludge plant, utilizing the existing aerated pond as an effluent polishing pond was constructed in 1973. Stage III, consisting of sludge processing facilities has not yet been constructed.

Liquid treatment consists of screening, primary sedimentation, complete mix activated sludge aeration with integral final clarification, an effluent polishing pond, chlorination, and discharge to the Minnesota River.

Solids processing consists of sludge thickening in primary clarifiers and sludge hauling to either the Seneca or Metropolitan Plant.

The Blue Lake Plant is operating at approximately 95 percent of its rated capacity and is subject to secondary treatment limits.

### Performance

Plant flow averaged 19.5 mgd in 1984, considerably higher than 18.1 mgd in 1983. Average plant effluent quality was 9 mg/L BOD and 7 mg/L TSS. Plant performance was good throughout the year with no NPDES permit violations. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

#### Effluent Concentration, mg/1

|       |      | 50% of | Time |      |      | 75% of | Time |      | 90% of Time |      |      |      |  |  |
|-------|------|--------|------|------|------|--------|------|------|-------------|------|------|------|--|--|
|       | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1981        | 1982 | 1983 | 1984 |  |  |
| * BOD | 9    | 10     | 8    | 9    | 13   | 13     | 11   | 11   | 19          | 16   | 13   | 14   |  |  |
| TSS   | 6    | 6      | 7    | 5    | 7    | 8      | 9    | 7    | 19          | 10   | 11   | 10   |  |  |

\*1982 through 1984 values represent CBOD.

#### Future

The Blue Lake Plant is one of the Commission's permanent regional treatment plants. Space is available for future expansions to serve Sewer Service Area No. 4. The first phase of Stage III, gravity thickeners and sludge loadout facilities, has been designed and is awaiting construction funding. The remainder of Stage III is planned to include anaerobic digestion, dewatering and land application. The timing of implementing these facilities is uncertain. A liquid treatment plant expansion is planned for the late 1980's.

# BLUE LAKE PLANT PROCESS UNIT LOADINGS

| Daramatar                                                                      |                               | Annual<br>Avoraci              | Maximum<br>Month               |                                |                                |                                |  |
|--------------------------------------------------------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--|
|                                                                                | 1982                          | <u>1983</u>                    | <u>1984</u>                    | 1982                           | 1983                           | <u>1984</u>                    |  |
| Wastewater Flow, mgd<br>BOD Loading, lb/day<br>TSS Loading, lb/day             | 16.1<br>30,600<br>30,800      | 18.1<br>29,300<br>33,800       | 19.5<br>28,800<br>33,200       | 18.2<br>36,100<br>44,500       | 24.2<br>35,000<br>48,400       | 23.9<br>31,600<br>37,000       |  |
| Primary Sedimentation <sup>1</sup>                                             |                               |                                |                                |                                |                                |                                |  |
| Surface Overflow Rate, gpd/sq. ft.<br>Weir Overflow Rate, gpd/lin. ft.         | 800<br>16,100                 | 905<br>18,100                  | 975<br>19,500                  | 910<br>18,200                  | 1,210<br>24,200                | 1,190<br>23,900                |  |
| Aeration Tanks                                                                 |                               |                                |                                |                                |                                |                                |  |
| BOD Loading, Ib/day/1000 cu. ft.<br>Detention Time, hr.                        | 82<br>3.3                     | 56<br>3.3                      | 57<br>3.7                      | 91<br>2.9                      | 75<br>2.9                      | 62<br>2.8                      |  |
| Final Sedimentation                                                            |                               |                                |                                |                                |                                |                                |  |
| Surface Overflow Rate, sq. ft.<br>Weir Overflow Rate, gpd/lin. ft.             | 620<br>12,000                 | 530<br>10,900                  | 570<br>11,700                  | 710<br>14,000                  | 710<br>14,500                  | 700<br>14,300                  |  |
| Aerated Pond                                                                   |                               |                                |                                |                                |                                |                                |  |
| BOD Loading, 1b/day<br>Detention Time, days                                    | 3,800<br>3.2                  | 2,300<br>2.8                   | 2,200<br>2.5                   | 5,600<br>2.9                   | 3,600<br>2.1                   | 2,500<br>2.1                   |  |
| Total Air Flow, cfm                                                            | 12,400                        | 13,100                         | 13,000                         | 14,700                         | 14,400                         | 14,400                         |  |
| Chlorine Use, lb/day                                                           | 210                           | 250                            | 190                            | 260                            | 274                            | 225                            |  |
| Thickened Sludge                                                               | · -                           |                                |                                |                                |                                |                                |  |
| Production, 1b/day<br>Volume, gpd<br>Concentration, %TSS<br>Volatile Solids, % | 42,000<br>99,000<br>4.9<br>72 | 47,500<br>116,000<br>4.9<br>71 | 42,600<br>111,000<br>4.6<br>71 | 48,000<br>114,000<br>5.6<br>71 | 53,600<br>125,600<br>5.7<br>74 | 47,000<br>130,000<br>5.6<br>76 |  |

<sup>1</sup>Two clarifiers are used for combined settling and gravity sludge thickening. These clarifiers normally receive less flow than the other two clarifiers, but flow to each pair of clarifiers is not measured. Overflow rates shown are based on equal flow to all clarifiers.

# BLUE LAKE WASTEWATER TREATMENT PLANT

# FLOW DIAGRAM







| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | TBOD<br>mg/l | TSS<br>mg/1 | pH Range | KJN<br>mg/1 | Total-P<br>mg/l | NH3<br>mg/1 | COD<br>mg/1 |
|--------------|-------------------------|-------------------|--------------|-------------|----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 16.2                    | 12                | 180          | 205         | 6.9-7.5  | 34.2        | 6.7             | 14.4        | 439         |
| FEBRUARY     | 19.5                    | 11                | 194          | 203         | 6.9-7.3  | 27.9        | 6.3             | 9.9         | 475         |
| MARCH        | 19.0                    | 11                | 197          | 194         | 6.7-7.2  | 28.5        | 6.1             | 13.4        | 483         |
| APRIL        | 20.9                    | 11                | 177          | 204         | 6.9-7.4  | 26.5        | 6.2             | 12.4        | 456         |
| MAY          | 22.5                    | 12                | 169          | 182         | 6.9-9.4  | 23.1        | 5.1             | 7.5         | 396         |
| JUNE         | 23.9                    | 14                | 151          | 217         | 6.8-7.4  | 21.5        | 4.9             | 7.6         | 395         |
| JULY         | 19.8                    | 16                | 164          | 224         | 6.9-7.4  | 27.6        | 6.2             | 8.1         | 428         |
| AUGUST       | 19.3                    | 17                | 180          | 224         | 6.7-7.3  | 28.5        | 6.7             | 10.6        | 440         |
| SEPTEMBER    | 17.6                    | 17                | 195          | 227         | 6.9-7.5  | 28.5        | 6.2             | 8.4         | 447         |
| OCTOBER      | 19.0                    | 16                | 162          | 192         | 6.4-9.0  | 28.2        | 6.3             | 10,5        | 408         |
| NOVEMBER     | 17.4                    | 14                | 185          | 203         | 4.3-9.2  | 30.4        | 6.1             | 12.4        | 417         |
| DECEMBER     | 18.4                    | 13                | 176          | 181         | 6.4-9.2  | 28.6        | 5.8             | 14.4        | 419         |
| 1984 AVERAGE | 19.5                    | 14                | 177          | 204         | 4.3-9.4  | 27.8        | 6.1             | 10,7        | 434         |
| 1983 AVERAGE | 18.1                    | 14                | 194          | 224         | 6.5-7.8  | 28.9        | 6,2             | 12.4        | 461         |

### MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Blue Lake

### MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Blue Lake</u>

|      |                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TROD | C000                                                                                                                                                                                  | 000                                                                                                                                                                                                                                                                                                                                                                     | TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FECAL COLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THIDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N0.1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NO .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C12*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C12                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ¥ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | mn/1                                                                                                                                                                                  | ma/1                                                                                                                                                                                                                                                                                                                                                                    | 135<br>mo/l                                                                                                                                                                                                                                                                                                                                                                                                                                             | l Georgan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KJN<br>ma/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NP13<br>00/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ma71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NU3<br>  mo/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P<br>mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | res<br>ma/1                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kema<br>I PANN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | <u></u>                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110/ 100 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 <b>4</b> / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arg/ ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | my/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                | 111 <u>0</u> /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nanyo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25   | 25                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.5-8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15   | 11                                                                                                                                                                                    | 74                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1-7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22   | 12                                                                                                                                                                                    | 83                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1-7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 34   | 11                                                                                                                                                                                    | 83                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                                                                                                                                                                                                                            | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1-7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 31   | 12                                                                                                                                                                                    | 81                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4                                                                                                                                                                                                                            | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0-7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26   | 9                                                                                                                                                                                     | 71                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                            | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0-7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28   | 8                                                                                                                                                                                     | 67                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4                                                                                                                                                                                                                            | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.5-7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23   | 7                                                                                                                                                                                     | 95                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                            | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0-7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32   | 6                                                                                                                                                                                     | 87                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                                                                                                                                                                                                                            | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0-7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36   | 8                                                                                                                                                                                     | 61                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7                                                                                                                                                                                                                            | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0-7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23   | 8                                                                                                                                                                                     | 74                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                                                                                                                                                                                                                            | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.9-7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>9</del> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 23   | B                                                                                                                                                                                     | 62                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                | A.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0-7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18   | 12                                                                                                                                                                                    | 74                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0-7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26   | 9                                                                                                                                                                                     | 76                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                            | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.5-7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 25   | 9                                                                                                                                                                                     | 61                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                                                                                                                                                                                                                            | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0-8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | TBOD<br>mg/1           25           15           22           34           31           26           28           23           32           36           23           18           26 | TBOD<br>mq/1       CBOD<br>mg/1         25       25         15       11         22       12         34       11         31       12         26       9         28       8         23       7         32       6         36       8         23       8         23       8         23       8         23       8         23       8         23       9         25       9 | TBOD<br>mq/1       CBOD<br>mg/1       COD<br>mg/1         25       25          15       11       74         22       12       83         34       11       83         31       12       81         26       9       71         28       8       67         23       7       95         32       6       87         36       8       61         23       8       62         18       12       74         26       9       76         25       9       61 | TBOD<br>mq/1       CBOD<br>mg/1       COD<br>mg/1       TSS<br>mq/1         25       25        30         15       11       74       7         22       12       83       8         34       11       83       9         31       12       81       10         26       9       71       6         28       8       67       5         23       7       95       6         32       6       87       9         36       8       61       5         23       8       74       6         23       8       62       4         18       12       74       6         26       9       76       7         25       9       61       7 | TBOD       CBOD       COD       TSS       FECAL COL I         mg/1       mg/1       mg/1       mg/1       mg/1       Geo Mean         25       25        30       200         15       11       74       7          22       12       83       8          34       11       83       9       5         31       12       81       10       33         26       9       71       6       6         28       8       67       5       37         23       7       95       6       38         32       6       87       9       16         36       8       61       5       32         23       8       74       6       25         23       8       62       4          18       12       74       6          26       9       76       7       24         25       9       61       7       8 | TBOD         CBOD         COD         TSS         FECAL COLI         TURB           mg/1         mg/1         mg/1         mg/1         mg/1         Geo Mean         TURB           25         25          30         200         25           15         11         74         7          8           22         12         83         8          7           34         11         83         9         5         10           31         12         81         10         33         11           26         9         71         6         6         7           28         8         67         5         37         6           23         7         95         6         38         8           32         6         87         9         16         9           36         8         61         5         32         6           23         8         74         6         25         7           23         8         62         4          5           18         12         74 </td <td>TBOD         CBOD         COD         TSS         FECAL COL I<br/>Geo Mean<br/>no/100 ml         TURB         KJN<br/>mg/1           25         25          30         200         25            15         11         74         7          8         19.9           22         12         83         8          7         14.5           34         11         83         9         5         10         14.1           31         12         81         10         33         11         12.8           26         9         71         6         6         7         11.8           28         8         67         5         37         6         8.9           23         7         95         6         38         8         13.5           32         6         87         9         16         9         13.5           36         8         61         5         32         6         13.5           23         8         74         6         25         7         14.2           23         8         62         4</td> <td>TBOD         CBOD         COD         TSS         FECAL COL1         TURB         KJN         NH3           25         25          30         200         25             15         11         74         7          8         19.9         13.7           22         12         83         8          7         14.5         9.2           34         11         83         9         5         10         14.1         10.2           31         12         81         10         33         11         12.8         7.8           26         9         71         6         6         7         11.8         6.5           28         8         67         5         37         6         8.9         5.8           23         7         95         6         38         8         13.5         7.3           32         6         87         9         16         9         13.5         8.2           33         12         74         6         25         7         14.2         9.5           23</td> <td>TBOD         CBOD         COD         TSS         FECAL COL I<br/>Geo Mean<br/>no/100 ml         TURB         KJN         NH3         N02<br/>mg/1           25         25          30         200         25             15         11         74         7          8         19.9         13.7         0.28           22         12         83         8          7         14.5         9.2         0.14           34         11         83         9         5         10         14.1         10.2         0.34           31         12         81         10         33         11         12.8         7.8         0.44           26         9         71         6         6         7         11.8         6.5         0.88           28         8         67         5         37         6         8.9         5.8         1.49           23         7         95         6         38         8         13.5         7.5         2.00           23         8         61         5         32         6         13.5         7.5         2.00     <td>TBOD         CBOD         COD         TSS         FECAL CDL 1<br/>Geo Mean<br/>no/100 m1         TURB         KJN         NH3         N02         N03<br/>mg/1           25         25          30         200         25               15         11         74         7          8         19.9         13.7         0.28         1.94           22         12         83         8          7         14.5         9.2         0.14         1.58           34         11         83         9         5         10         14.1         10.2         0.34         2.21           31         12         81         10         33         11         12.8         7.8         0.44         2.21           26         9         71         6         6         7         11.8         6.5         0.88         1.41           28         8         67         5         37         6         8.9         5.8         1.49         1.88           23         7         95         6         38         8         13.5         7.5         2.00         2</td><td>TBOD         CBOD         COD         TSS         FECAL         COLI         TURB         KJN         NH3         NO2         NO3         P           mq/1         mg/1         mg/1</td><td>TBOD         CBOD         CDD         TSS         FECAL COL 1<br/>Geo Mean         TURB<br/>NU         KJN         NH3         NO2         NO3         P         Used           25         25          30         200         25                                                                                    </td><td>TBOD         CBOD         COD         TSS         FECAL COL I<br/>Geo Mean<br/>no/100 ml         TURB<br/>NU         MJ         NH3         NO2         NO3         P         Used<br/>Mg/1         Res<br/>mg/1         Ibs         mg/1           25         25          30         200         25                                                                             <td>TBOD         COD         TSS         FECAL COL1         TURB         KJN         NH3         NO2         NO3         P         Used         Res         DO           25         25          30         200         25                                                   103         mg/1         10         <t< td=""><td>TBOD         CBOD         COD         TSS         FECAL COL1<br/>Geo Mean         TURB         KJN         NH3         NO2         NO3         P         P         Used         Res         D0         pH           25         25          30         200         25               6.5=8.5           15         11         74         7          8         19.9         13.7         0.28         1.94         3.8           6.5=8.5           15         11         74         7          8         19.9         13.7         0.28         1.94         3.8           6.5=8.5           14         10         3         11         12.5         7.1-7.6         3.0           11.8         7.1-7.7           34         11         83         9         5         10         14.1         10.2         0.34         2.21         3.0         168         0.6         12.5         7.1-7.5           31         12         81         10         33         11         12.8</td><td>TBOD         CBOD         CDD         TSS         FECAL COL1<br/>Geo Mean         TURB         KJN         NH3         NO2         NO3         Potel         C12*         <thc1*< th="">         C12*</thc1*<></td></t<></td></td></td> | TBOD         CBOD         COD         TSS         FECAL COL I<br>Geo Mean<br>no/100 ml         TURB         KJN<br>mg/1           25         25          30         200         25            15         11         74         7          8         19.9           22         12         83         8          7         14.5           34         11         83         9         5         10         14.1           31         12         81         10         33         11         12.8           26         9         71         6         6         7         11.8           28         8         67         5         37         6         8.9           23         7         95         6         38         8         13.5           32         6         87         9         16         9         13.5           36         8         61         5         32         6         13.5           23         8         74         6         25         7         14.2           23         8         62         4 | TBOD         CBOD         COD         TSS         FECAL COL1         TURB         KJN         NH3           25         25          30         200         25             15         11         74         7          8         19.9         13.7           22         12         83         8          7         14.5         9.2           34         11         83         9         5         10         14.1         10.2           31         12         81         10         33         11         12.8         7.8           26         9         71         6         6         7         11.8         6.5           28         8         67         5         37         6         8.9         5.8           23         7         95         6         38         8         13.5         7.3           32         6         87         9         16         9         13.5         8.2           33         12         74         6         25         7         14.2         9.5           23 | TBOD         CBOD         COD         TSS         FECAL COL I<br>Geo Mean<br>no/100 ml         TURB         KJN         NH3         N02<br>mg/1           25         25          30         200         25             15         11         74         7          8         19.9         13.7         0.28           22         12         83         8          7         14.5         9.2         0.14           34         11         83         9         5         10         14.1         10.2         0.34           31         12         81         10         33         11         12.8         7.8         0.44           26         9         71         6         6         7         11.8         6.5         0.88           28         8         67         5         37         6         8.9         5.8         1.49           23         7         95         6         38         8         13.5         7.5         2.00           23         8         61         5         32         6         13.5         7.5         2.00 <td>TBOD         CBOD         COD         TSS         FECAL CDL 1<br/>Geo Mean<br/>no/100 m1         TURB         KJN         NH3         N02         N03<br/>mg/1           25         25          30         200         25               15         11         74         7          8         19.9         13.7         0.28         1.94           22         12         83         8          7         14.5         9.2         0.14         1.58           34         11         83         9         5         10         14.1         10.2         0.34         2.21           31         12         81         10         33         11         12.8         7.8         0.44         2.21           26         9         71         6         6         7         11.8         6.5         0.88         1.41           28         8         67         5         37         6         8.9         5.8         1.49         1.88           23         7         95         6         38         8         13.5         7.5         2.00         2</td> <td>TBOD         CBOD         COD         TSS         FECAL         COLI         TURB         KJN         NH3         NO2         NO3         P           mq/1         mg/1         mg/1</td> <td>TBOD         CBOD         CDD         TSS         FECAL COL 1<br/>Geo Mean         TURB<br/>NU         KJN         NH3         NO2         NO3         P         Used           25         25          30         200         25                                                                                    </td> <td>TBOD         CBOD         COD         TSS         FECAL COL I<br/>Geo Mean<br/>no/100 ml         TURB<br/>NU         MJ         NH3         NO2         NO3         P         Used<br/>Mg/1         Res<br/>mg/1         Ibs         mg/1           25         25          30         200         25                                                                             <td>TBOD         COD         TSS         FECAL COL1         TURB         KJN         NH3         NO2         NO3         P         Used         Res         DO           25         25          30         200         25                                                   103         mg/1         10         <t< td=""><td>TBOD         CBOD         COD         TSS         FECAL COL1<br/>Geo Mean         TURB         KJN         NH3         NO2         NO3         P         P         Used         Res         D0         pH           25         25          30         200         25               6.5=8.5           15         11         74         7          8         19.9         13.7         0.28         1.94         3.8           6.5=8.5           15         11         74         7          8         19.9         13.7         0.28         1.94         3.8           6.5=8.5           14         10         3         11         12.5         7.1-7.6         3.0           11.8         7.1-7.7           34         11         83         9         5         10         14.1         10.2         0.34         2.21         3.0         168         0.6         12.5         7.1-7.5           31         12         81         10         33         11         12.8</td><td>TBOD         CBOD         CDD         TSS         FECAL COL1<br/>Geo Mean         TURB         KJN         NH3         NO2         NO3         Potel         C12*         <thc1*< th="">         C12*</thc1*<></td></t<></td></td> | TBOD         CBOD         COD         TSS         FECAL CDL 1<br>Geo Mean<br>no/100 m1         TURB         KJN         NH3         N02         N03<br>mg/1           25         25          30         200         25               15         11         74         7          8         19.9         13.7         0.28         1.94           22         12         83         8          7         14.5         9.2         0.14         1.58           34         11         83         9         5         10         14.1         10.2         0.34         2.21           31         12         81         10         33         11         12.8         7.8         0.44         2.21           26         9         71         6         6         7         11.8         6.5         0.88         1.41           28         8         67         5         37         6         8.9         5.8         1.49         1.88           23         7         95         6         38         8         13.5         7.5         2.00         2 | TBOD         CBOD         COD         TSS         FECAL         COLI         TURB         KJN         NH3         NO2         NO3         P           mq/1         mg/1         mg/1 | TBOD         CBOD         CDD         TSS         FECAL COL 1<br>Geo Mean         TURB<br>NU         KJN         NH3         NO2         NO3         P         Used           25         25          30         200         25 | TBOD         CBOD         COD         TSS         FECAL COL I<br>Geo Mean<br>no/100 ml         TURB<br>NU         MJ         NH3         NO2         NO3         P         Used<br>Mg/1         Res<br>mg/1         Ibs         mg/1           25         25          30         200         25 <td>TBOD         COD         TSS         FECAL COL1         TURB         KJN         NH3         NO2         NO3         P         Used         Res         DO           25         25          30         200         25                                                   103         mg/1         10         <t< td=""><td>TBOD         CBOD         COD         TSS         FECAL COL1<br/>Geo Mean         TURB         KJN         NH3         NO2         NO3         P         P         Used         Res         D0         pH           25         25          30         200         25               6.5=8.5           15         11         74         7          8         19.9         13.7         0.28         1.94         3.8           6.5=8.5           15         11         74         7          8         19.9         13.7         0.28         1.94         3.8           6.5=8.5           14         10         3         11         12.5         7.1-7.6         3.0           11.8         7.1-7.7           34         11         83         9         5         10         14.1         10.2         0.34         2.21         3.0         168         0.6         12.5         7.1-7.5           31         12         81         10         33         11         12.8</td><td>TBOD         CBOD         CDD         TSS         FECAL COL1<br/>Geo Mean         TURB         KJN         NH3         NO2         NO3         Potel         C12*         <thc1*< th="">         C12*</thc1*<></td></t<></td> | TBOD         COD         TSS         FECAL COL1         TURB         KJN         NH3         NO2         NO3         P         Used         Res         DO           25         25          30         200         25                                                   103         mg/1         10 <t< td=""><td>TBOD         CBOD         COD         TSS         FECAL COL1<br/>Geo Mean         TURB         KJN         NH3         NO2         NO3         P         P         Used         Res         D0         pH           25         25          30         200         25               6.5=8.5           15         11         74         7          8         19.9         13.7         0.28         1.94         3.8           6.5=8.5           15         11         74         7          8         19.9         13.7         0.28         1.94         3.8           6.5=8.5           14         10         3         11         12.5         7.1-7.6         3.0           11.8         7.1-7.7           34         11         83         9         5         10         14.1         10.2         0.34         2.21         3.0         168         0.6         12.5         7.1-7.5           31         12         81         10         33         11         12.8</td><td>TBOD         CBOD         CDD         TSS         FECAL COL1<br/>Geo Mean         TURB         KJN         NH3         NO2         NO3         Potel         C12*         <thc1*< th="">         C12*</thc1*<></td></t<> | TBOD         CBOD         COD         TSS         FECAL COL1<br>Geo Mean         TURB         KJN         NH3         NO2         NO3         P         P         Used         Res         D0         pH           25         25          30         200         25               6.5=8.5           15         11         74         7          8         19.9         13.7         0.28         1.94         3.8           6.5=8.5           15         11         74         7          8         19.9         13.7         0.28         1.94         3.8           6.5=8.5           14         10         3         11         12.5         7.1-7.6         3.0           11.8         7.1-7.7           34         11         83         9         5         10         14.1         10.2         0.34         2.21         3.0         168         0.6         12.5         7.1-7.5           31         12         81         10         33         11         12.8 | TBOD         CBOD         CDD         TSS         FECAL COL1<br>Geo Mean         TURB         KJN         NH3         NO2         NO3         Potel         C12*         C12* <thc1*< th="">         C12*</thc1*<> |

\* For disinfection only.








### CHASKA WASTEWATER TREATMENT PLANT

#### Plant History and Description

The original Chaska Plant was designed by Lindsey Engineering Co. and constructed in 1963, with a design capacity of 0.75 mgd. The plant was converted to a pure oxygen activated sludge process in 1973, and final effluent filters were added in 1974. A plant expansion designed by McCombs-Knutson was constructed in 1980, increasing plant design capacity to 1.4 mgd. Actual operating capacity is somewhat less, due to high and widely variable organic loadings.

Liquid treatment consists of screening, grit removal, influent pumping, pure oxygen activated sludge aeration, final clarification, final effluent pumping, chlorination, and discharge to the Minnesota River.

Solids processing consists of aerobic digestion, and hauling to the Blue Lake Plant for further treatment and disposal.

The Chaska Plant is presently operating at about 80 percent of its rated hydraulic capacity and is subject to secondary treatment limits.

#### Performance

Plant flow averaged 1.09 mgd in 1984, slightly higher than 1.02 mgd in 1983. Average plant effluent quality was 9 mg/L BOD and 11 mg/L TSS. Plant performance was fair, as there were five NPDES Permit violations related to suspended solids. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

#### Effluent Concentration, mg/1

|        |      | 50% of | Time |      |      | 75% of | Time |      | 90% of Time |      |      |      |  |
|--------|------|--------|------|------|------|--------|------|------|-------------|------|------|------|--|
|        | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1981        | 1982 | 1983 | 1984 |  |
| * 80 D | 14   | 12     | 9    | 6    | 24   | 16     | 13   | 10   | 34          | 22   | 17   | 14   |  |
| TSS    | 13   | 10     | 8    | 5    | 16   | 14     | 14   | 9    | 22          | 19   | 22   | 18   |  |

\*1982 through 1984 values represent CBOD.

#### Future

This plant is one of the Commission's permanent treatment plants. A plant expansion is scheduled for the mid-1980's.

## CHASKA PLANT PROCESS UNIT LOADINGS

| Devenuetary                                                                                                            |                                        | Annual                                 | _                                        | 1                                        | 1aximum                                  |                                          |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Parameter                                                                                                              | <u>1982</u>                            | <u>1983</u>                            | <u>1984</u>                              | <u> 1982</u> -                           | <u>1983</u>                              | 1984                                     |
| Wastewater Flow, mgd<br>BOD Loading, 1b/day<br>TSS Loading, 1b/day<br>COD Loading, 1b/day<br>Sludge Production, 1b/day | 0.80<br>1,260<br>1,120<br>2,380<br>960 | 1.02<br>1,200<br>1,100<br>2,500<br>800 | 1.09<br>1,010<br>1,440<br>2,330<br>1,500 | 1.06<br>1,490<br>1,520<br>2,940<br>1,510 | 1.78<br>1,500<br>1,300<br>2,900<br>1,110 | 1.38<br>1,190<br>5,150<br>3,450<br>2,100 |
| Grit Removal                                                                                                           |                                        |                                        |                                          |                                          |                                          |                                          |
| Overflow Rate, gpd/sq. ft.                                                                                             | 17,780                                 | 23,000                                 | 24,000                                   | 23,560                                   | 30,000                                   | 30,700                                   |
| Aeration Tanks                                                                                                         |                                        |                                        |                                          |                                          |                                          |                                          |
| Detention Time, hr.<br>BOD Loading, 1b/day/1000 cu. ft.<br>Oxygen Utilization, 1b/day as O <sub>2</sub>                | 3.0<br>93<br>1,870                     | 2.4<br>90                              | 2.2<br>70<br>1,900                       | 2.3<br>110                               | 1.4<br>110                               | 1.8<br>90                                |
| Final Sedimentation                                                                                                    |                                        |                                        |                                          |                                          |                                          |                                          |
| Detention Time, hr.<br>Weir Overflow Rate, gpd/lin. ft.<br>Surface Overflow Rate, gpd/sq. ft.                          | 7.0<br>4,260<br>280                    | 5.5<br>5,400<br>360                    | 5.1<br>5,800<br>390                      | 5.3<br>5,640<br>380                      | 3.1<br>9,500<br>640                      | 4.0<br>7,300<br>490                      |
| <u>Chlorination</u>                                                                                                    |                                        |                                        |                                          |                                          |                                          |                                          |
| Contact Time, minutes<br>Chlorine Use, lb/day                                                                          | 147<br>29                              | 110<br>70                              | 108<br>48                                | 111<br>33                                | 60<br>130                                | 85<br>84                                 |
| Aerobic Digestion                                                                                                      |                                        |                                        |                                          |                                          |                                          |                                          |
| Volatile Solids Loading, lb/cu. ft./day<br>Detention Time, days                                                        | 0.025<br>53                            | 0.01<br>60                             | 0.025<br>43                              | 36                                       |                                          |                                          |
| Sludge Transport                                                                                                       |                                        |                                        |                                          |                                          |                                          |                                          |
| Volume, gpd                                                                                                            | 7,220                                  | 6,000                                  | 8,600                                    | 10 <b>,6</b> 50                          | 8 <b>,6</b> 00                           | 10,700                                   |

# CHASKA WASTEWATER TREATMENT PLANT

## FLOW DIAGRAM



73



| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | TBOD<br>mg/l | TSS<br>mg/l | pH Range | KJN<br>mg/l | Total-P<br>mg/l | NH3<br>mg/l | COD<br>mg/1 |
|--------------|-------------------------|-------------------|--------------|-------------|----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 0.84                    | 11                | 150          | 147         | 6.6-9.9  | 32.4        | 5.7             | 16.7        | 319         |
| FEBRUARY     | 1.03                    | 10                | 127          | 119         | 4.0-9.8  | 22.5        | 3.7             | 11.4        | 272         |
| MARCH        | 0.99                    | 10                | 121          | 128         | 6.0-8.8  | 67.5        | 5.6             | 35.8        | 271         |
| APRIL        | 1.38                    | 10                | 74           | 78          | 6.8-9.2  | 16.0        | 3.0             | 9.1         | 168         |
| MAY          | 1.38                    | 12                | 94           | 89          | 4.0-8.4  | 28.5        | 3.6             | 18.4        | 197         |
| JUNE         | 1.32                    | 14                | 82           | 115         | 6.1-10.0 | 51.0        | 3.8             | 25.1        | 202         |
| JULY         | 1.16                    | 16                | 120          | 387         | 6.6-9.9  | 16.8        | 3.3             | 6.4         | 283         |
| AUGUST       | 1.15                    | 19                | 113          | 157         | 6.8-9.2  | 21.0        | 3.9             | 8.0         | 362         |
| SEPTEMBER    | 0.92                    | 18                | 134          | 162         | 5.2-9.4  | 34.3        | 5.1             | 17.0        | 282         |
| OC TOBER     | 1.04                    | 17                | 113          | 142         | 6.0-8.6  | 23.4        | 4.1             | 11.6        | 248         |
| NOVEMBER     | 0.92                    | 15                | 145          | 139         | 3.0-9.2  | 27.1        | 4.4             | 12.8        | 320         |
| DECEMBER     | 0.92                    | 13                | 113          | 117         | 6.8-9.2  | 35.9        | 4.7             | 21.0        | 241         |
| 1984 AVERAGE | 1.09                    | 14                | 115          | 148         | 3.0-10.0 | 31.2        | 4.2             | 16.1        | 263         |
| 1983 AVERAGE | 1.02                    | 14                | 141          | 127         | 4.2-12.0 | 35.1        | 5.9             | 19,5        | 291         |

### MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Chaska

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: Chaska

| TBOD<br>ma/1 | C80D<br>mg/1                                                                       | COD<br>mg/1                                                                                                               | TSS<br>mg/1                                                                                                                                                                         | FECAL COLI<br>Geo Mean<br>no/100 ml                                                                                                                                                                                                                                                                                                                       | TURB<br>NTU                                                                                                                                                                                                                                                                                                                                                                                                                                            | KJN<br>mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NH3<br>mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO2<br>mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N03<br>mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total<br>P<br>mg/l                                                                                                                                               | Cl2*<br>Used<br>1bs                                                                                    | C12<br>Res<br>mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DO<br>ma/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pH<br>Range                                                                                                                                                                                                                                                               | Remo<br>BOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %<br>pval<br>  TSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25           | 25                                                                                 | -                                                                                                                         | 30                                                                                                                                                                                  | 200                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                  |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.5-8.5                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 27           | 8                                                                                  | 57                                                                                                                        | 10                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.7                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.0-7.9                                                                                                                                                                                                                                                                   | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15           | 7                                                                                  | 60                                                                                                                        | 4                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.0-7.8                                                                                                                                                                                                                                                                   | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24           | 8                                                                                  | 70                                                                                                                        | 6                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.7                                                                                                                                                              | 25                                                                                                     | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2-7.7                                                                                                                                                                                                                                                                   | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9            | θ                                                                                  | 46                                                                                                                        | 7                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4                                                                                                                                                              | 84                                                                                                     | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2-7.9                                                                                                                                                                                                                                                                   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9            | 8                                                                                  | 47                                                                                                                        | 5                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5                                                                                                                                                              | 34                                                                                                     | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.6-7.8                                                                                                                                                                                                                                                                   | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8            | 6                                                                                  | 47                                                                                                                        | 5                                                                                                                                                                                   | 22                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8                                                                                                                                                              | 53                                                                                                     | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1-7.7                                                                                                                                                                                                                                                                   | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22           | 20                                                                                 | 92                                                                                                                        | 31                                                                                                                                                                                  | 31                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0                                                                                                                                                              | 56                                                                                                     | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.2-7.7                                                                                                                                                                                                                                                                   | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8            | 6                                                                                  | 61                                                                                                                        | 6                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3                                                                                                                                                              | 51                                                                                                     | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.0-7.7                                                                                                                                                                                                                                                                   | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11           | 7                                                                                  | 49                                                                                                                        | 7                                                                                                                                                                                   | 21                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                                                                                                                                                              | 36                                                                                                     | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.2-7.7                                                                                                                                                                                                                                                                   | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15           | 11                                                                                 | 68                                                                                                                        | 28                                                                                                                                                                                  | 31                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.3                                                                                                                                                              | 45                                                                                                     | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.5-7.8                                                                                                                                                                                                                                                                   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14           | 7                                                                                  | 66                                                                                                                        | 8                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n. 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 1 7 7                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 19           | 10                                                                                 | 61                                                                                                                        | 12                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1-7.7                                                                                                                                                                                                                                                                   | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15           |                                                                                    | 60                                                                                                                        | 11                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /.2-/.8                                                                                                                                                                                                                                                                   | .91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17           | 11                                                                                 | 68                                                                                                                        | 11                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.8                                                                                                                                                              | 48<br>70                                                                                               | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.6-7.9                                                                                                                                                                                                                                                                   | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | TBOD   mg/1   25   27   15   24   9   9   8   22   8   11   15   14   19   15   17 | TBOD CBOD   mg/1 mg/1   25 25   27 8   15 7   24 8   9 8   9 8   22 20   8 6   11 7   15 11   14 7   19 10   15 9   17 11 | TBOD CBOD COD   mg/1 mg/1 mg/1   25 25    27 8 57   15 7 60   24 8 70   9 8 47   9 8 47   8 6 47   22 20 92   8 6 61   11 7 49   15 11 68   14 7 66   19 10 61   15 9 60   17 11 68 | TBOD   CBOD   COD   TSS     mg/1   mg/1   mg/1   mg/1   mg/1     25   25    30     27   8   57   10     15   7   60   4     24   8   70   6     9   8   47   5     8   6   47   5     22   20   92   31     8   6   61   6     11   7   49   7     15   11   68   28     14   7   66   8     19   10   61   12     15   9   60   11     17   11   68   11 | TBOD   CBOD   COD   TSS   FECAL COL1     mg/1   mg/1   mg/1   mg/1   Geo Mean     25   25    30   200     27   8   57   10      15   7   60   4      24   8   70   6   5     9   8   46   7   6     9   8   47   5   11     8   6   47   5   22     22   20   92   31   31     8   6   61   6   15     11   7   49   7   21     15   11   68   28   31     14   7   66   8      19   10   61   12      15   9   60   11   18     17   11   68   11   8 | TBOD   C80D   C00   TSS   FECAL C0L1<br>Geo Mean<br>no/100 ml   TURB<br>NTU     25   25    30   200   25     27   8   57   10    4     15   7   60   4    2     24   8   70   6   5   4     9   8   46   7   6   4     9   8   47   5   11   3     8   6   47   5   22   3     22   20   92   31   31   10     8   6   61   6   15   4     11   7   49   7   21   5     15   11   68   28   31   10     14   7   66   8    4     19   10   61   12    5     15   9   60   11 | TBOD   C80D   C00   TSS   FECAL C0L1   TURB   KJN     25   25    30   200   25      27   8   57   10    4   15.9     15   7   60   4    2   9.4     24   8   70   6   5   4   13.3     9   8   46   7   6   4   10.3     9   8   47   5   11   3   10.5     8   6   47   5   22   3   9.1     22   20   92   31   31   10   11.6     8   6   61   6   15   4   10.6     11   7   49   7   21   5   13.9     15   11   68   28   31   10   15.1     14   7   66   8    4< | TBOD   CBOD   COD   TSS   FECAL COL1<br>Geo Mean<br>no/100 ml   TURB<br>NTU   KJN<br>mg/1   NH3<br>mg/1     25   25    30   200   25       27   8   57   10    4   15.9   10.6     15   7   60   4    2   9.4   4.5     24   8   70   6   5   4   13.3   11.0     9   8   46   7   6   4   10.3   7.3     9   8   47   5   11   3   10.5   5.9     8   6   47   5   22   3   9.1   5.1     22   20   92   31   31   10   11.6   5.9     8   6   61   6   15   4   10.6   5.9     11   7   49   7   21   5   13.9   7.6 | TBOD   CBOD   COD   TSS   FECAL COLI   TURB   KJN   NH3   MO2     25   25    30   200   25        27   8   57   10    4   15.9   10.6   0.55     15   7   60   4    2   9.4   4.5   0.45     24   8   70   6   5   4   13.3   11.0   1.15     9   8   47   5   111   3   10.5   5.9   0.11     8   6   47   5   22   3   9.1   5.1   0.18     22   20   92   31   31   10   11.6   5.9   0.24     11   7   49   7   21   5   13.9   7.6   0.69     15   11   68   28   31   10   15.1   8.7   0.40 | T800   C800   C00   TSS   FECAL C0L1<br>Geo Mean<br>no/100 m1   TURB<br>NTU   KJN<br>mg/1   NH3<br>mg/1   N02<br>mg/1   N03<br>mg/1     25   25    30   200   25 | TBOD   CBOD   COD   TSS   FECAL   COLI   TURB   KJN   NH3   NO2   NO3   P     25   25    30   200   25 | TBOD   CBOD   COD   TSS   FECAL COL1   TURB   KJN   NH3   NO2   NO3   P   Used     25   25    30   200   25 </td <td>TBOD   CBOD   COD   TSS   FECAL COL I<br/>Geo Mean<br/>mq/1   TURB<br/>MU   KJN<br/>mq/1   NH3<br/>mq/1   NO2<br/>mq/1   NO3<br/>mq/1   P   Used<br/>mg/1   C12*<br/>mg/1   C12*<br/>mg/1</td> <td>TB0D   CB0D   COD   TSS   FECAL   COLI   TURB   KJN   NH3   ND2   ND3   P   Used   Res   D0     25   25    30   200   25                                                                9.1   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0</td> <td>TBOD   CBOD   CDD   TSS   FECAL COL1<br/>Geo Mean   TURB<br/>mg/1   KJN<br/>mg/1   NH3<br/>mg/1   NO2<br/>mg/1   NO3<br/>mg/1   Total<br/>Mg/1   C12+<br/>be Mean   C12+<br/>mg/1   C12+<br/>be Mean   C12+<br/>mg/1   C12+<br/>be Mean   C12+<br/>mg/1   C12+<br/>be Mean   C12+<br/>mg/1   C12+<br/>be mg/1   C12+<br/>be Mean   C12+<br/>mg/1   C12+<br/>be May1   C12+<br/>be Ma</td> <td>TBOD   CBOD   CDD   TSS   FECAL COL1<br/>Geo Mean   TURB   KJN   NH3   NO2   NO3   Total   C12*   C13*   C10*   C1*   C1*&lt;</td> | TBOD   CBOD   COD   TSS   FECAL COL I<br>Geo Mean<br>mq/1   TURB<br>MU   KJN<br>mq/1   NH3<br>mq/1   NO2<br>mq/1   NO3<br>mq/1   P   Used<br>mg/1   C12*<br>mg/1   C12*<br>mg/1 | TB0D   CB0D   COD   TSS   FECAL   COLI   TURB   KJN   NH3   ND2   ND3   P   Used   Res   D0     25   25    30   200   25                                                                9.1   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0 | TBOD   CBOD   CDD   TSS   FECAL COL1<br>Geo Mean   TURB<br>mg/1   KJN<br>mg/1   NH3<br>mg/1   NO2<br>mg/1   NO3<br>mg/1   Total<br>Mg/1   C12+<br>be Mean   C12+<br>mg/1   C12+<br>be Mean   C12+<br>mg/1   C12+<br>be Mean   C12+<br>mg/1   C12+<br>be Mean   C12+<br>mg/1   C12+<br>be mg/1   C12+<br>be Mean   C12+<br>mg/1   C12+<br>be May1   C12+<br>be Ma | TBOD   CBOD   CDD   TSS   FECAL COL1<br>Geo Mean   TURB   KJN   NH3   NO2   NO3   Total   C12*   C13*   C10*   C1*   C1*< |

\*For disinfection only.









## COTTAGE GROVE WASTEWATER TREATMENT PLANT

#### Plant History and Description

The Cottage Grove Plant, designed by Bonestroo, Rosene, Anderlik, and Associates, was originally constructed in 1962 and expanded in 1963 and 1968. In 1975, effluent polishing filters were added to the plant. In 1976, primary anaerobic digester volume was increased and a new cover was installed. In 1979, the plant was expanded to its current design capacity of 1.8 mgd.

Liquid treatment consists of screening, primary sedimentation, activated sludge aeration, final clarification, chlorination, and discharge to the Mississippi River.

Solids processing consists of combined sludge gravity thickening, anaerobic digestion with ultimate disposal by landspreading or to the Metropolitan Plant Interceptor System.

The plant is presently operating at about 70 percent of its design capacity and is subject to secondary treatment limits.

#### Performance

The plant flow averaged 1.30 mgd in 1984, the same flow as in 1983. Average plant effluent quality was 9 mg/L BOD and 9 mg/L TSS. Plant performance was good throughout the year with no NPDES Permit violations. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

#### Effluent Concentration, mg/1

|       |      | 50% of | Time |      |      | 75% of | Time |      | 90% of Time |      |      |      |  |  |
|-------|------|--------|------|------|------|--------|------|------|-------------|------|------|------|--|--|
|       | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1981        | 1982 | 1983 | 1984 |  |  |
| * BOD | 9    | 8      | 8    | 8    | 15   | 13     | 11   | 11   | 20          | 18   | 14   | 14   |  |  |
| TSS   | 5    | 6      | 10   | 7    | 8    | 10     | 14   | 11   | 14          | 14   | 18   | 14   |  |  |

\*1982 through 1984 values represent CBOD.

#### Future

The Cottage Grove facility is considered a permanent plant. The plant is expected to be expanded in the late 1980's or early 1990's.

## COTTAGE GROVE PLANT PROCESS UNIT LOADINGS

| De comptensi                                                                                                                                                                                                           |                                            | Annual<br>Average                          |                                            | Maximum<br>Month                           |                                            |                                            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--|
| Parameter                                                                                                                                                                                                              | 1982                                       | Average<br>1983                            | 1984                                       | 1982 -                                     | <u>1983</u>                                | 1984                                       |  |
| Wastewater Flow, mgd<br>BOD Loading, lb/day<br>TSS Loading, lb/day<br>COD Loading, lb/day                                                                                                                              | 1.26<br>2,186<br>1,829<br>4,174            | 1.30<br>1,900<br>1,680<br>3,960            | 1.30<br>1,900<br>1,670<br>4,110            | 1.32<br>2,528<br>2,245                     | 1.37<br>2,380<br>2,520<br>4,700            | 1.37<br>2,190<br>1,980<br>4,900            |  |
| Primary Sedimentation                                                                                                                                                                                                  |                                            |                                            |                                            |                                            |                                            |                                            |  |
| Detention Time, hrNorth<br>Detention Time, hrSouth<br>Weir Overflow Rate, gpd/lin. ftNorth<br>Weir Overflow Rate, gpd/lin. ftSouth<br>Surface Overflow Rate, gpd/sq. ftNorth<br>Surface Overflow Rate, gpd/sq. ftSouth | 2.5<br>3.8<br>6,680<br>4,320<br>530<br>530 | 2.5<br>3.7<br>6,900<br>4,460<br>550<br>550 | 2.5<br>3.7<br>6,900<br>4,460<br>550<br>550 | 2.4<br>3.6<br>7,000<br>4,520<br>550<br>550 | 2.4<br>3.5<br>7,260<br>4,700<br>575<br>575 | 2.4<br>3.5<br>7,260<br>4,700<br>575<br>575 |  |
| Aeration Basin                                                                                                                                                                                                         |                                            |                                            |                                            |                                            |                                            |                                            |  |
| BOD Loading, 1b/day/1000 cu. ft. <sup>1</sup>                                                                                                                                                                          | 43                                         | 37                                         | 30                                         | 50                                         | 47                                         | 34                                         |  |
| Final Sedimentation                                                                                                                                                                                                    |                                            |                                            |                                            |                                            |                                            |                                            |  |
| Detention Time, hr.<br>Weir Overflow Rate, gpd/lin. ft.<br>Surface Overflow Rate, gpd/sq. ft.                                                                                                                          | 2.7<br>4,470<br>396                        | 5.3<br>4,600<br>410                        | 5.3<br>4,600<br>410                        | 2.6<br>4,680<br>415                        | 5.0<br>4,860<br>430                        | 5.0<br>4,860<br>430                        |  |
| Polishing Filtration                                                                                                                                                                                                   |                                            |                                            |                                            |                                            | Υ.                                         |                                            |  |
| Average Filtration Rate, gpm/sq. ft.                                                                                                                                                                                   | 2.9                                        |                                            |                                            | 3.1                                        |                                            |                                            |  |
| <u>Chlorination</u>                                                                                                                                                                                                    | . •                                        |                                            |                                            |                                            |                                            |                                            |  |
| Chlorine Use, 1b/day                                                                                                                                                                                                   | 86                                         | 69                                         | 86                                         | 108                                        | 80                                         | 77                                         |  |
| Gravity Thickener                                                                                                                                                                                                      |                                            |                                            |                                            |                                            |                                            |                                            |  |
| Surface Loading Rate, gpd/sq. ft.<br>Mass Loading Rate, 1b/sq. ft./day                                                                                                                                                 | 730<br>6                                   | 725<br>3                                   | 725<br>3                                   |                                            |                                            |                                            |  |
| Anaerobic Digestion                                                                                                                                                                                                    |                                            |                                            |                                            |                                            |                                            |                                            |  |
| Solid Retention Time, day                                                                                                                                                                                              | 48                                         | 62                                         | 62                                         | 39                                         | 41                                         | 41                                         |  |
| Sludge Transport                                                                                                                                                                                                       |                                            |                                            |                                            |                                            |                                            | -                                          |  |
| Volume, gpd<br>Mass, lb/day                                                                                                                                                                                            | 9,528<br>1,295                             | 6,260<br>960                               | 8,960<br>1,300                             | 13,000<br>1,890                            | 9,500<br>1,000                             | 15,110<br>1,600                            |  |

Assumes 20% BOD removal in primary basins.

## COTTAGE GROVE WASTEWATER TREATMENT PLANT

## FLOW DIAGRAM



| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | TBOD<br>mg/1 | TSS<br>mg/1 | pH Range | KJN<br>mg/1 | Total-P<br>mg/l | NH3<br>mg/1 | COD<br>mg/1 |
|--------------|-------------------------|-------------------|--------------|-------------|----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 1.28                    | 11                | 185          | 151         | 7.5-8.4  | 45.9        | 7.5             | 26.1        | 385         |
| FEBRUARY     | 1.37                    | 11                | 155          | 128         | 7.3-8.5  | 38.1        | 5.4             | 19.8        | 311         |
| MARCH        | 1.22                    | 10                | 175          | <u>154</u>  | 7.3-8.2  | 43.5        | 7.1             | 26.6        | 379         |
| APRIL        | 1.26                    | 12                | 177          | 143         | 7.5-8.5  | 41.1        | 7.1             | 24.5        | 372         |
| MAY          | 1.29                    | 14                | 188          | 158         | 7.2-8.4  | 40.5        | 6.5             | 22.2        | 402         |
| JUNE         | 1.31                    | 17                | 176          | 168         | 7.4-8.1  | 36.5        | 7.0             | 20.9        | 400         |
| JULY         | 1.31                    | 19                | 162          | 147         | 7.3-8.0  | 37.4        | 6.5             | 19.4        | 377         |
| AUGUST       | 1.29                    | 21                | 177          | 168         | 7.2-8.0  | 43.1        | 7.0             | 26.4        | 381         |
| SEPTEMBER    | 1.32                    | 20                | 185          | 177         | _7.2-8.0 | 38.1        | 6.8             | 21.0        | 407         |
| OCTOBER      | 1.37                    | 18                | 181          | 167         | 7.4-8.2  | 40.0        | 6.9             | 20.9        | 400         |
| NOVEMBER     | 1.27                    | 15                | 208          | 170         | 7.6-8.3  | 43.0        | 7.0             | 23.3        | 467         |
| DECEMBER     | 1.28                    | 13                | 194          | 167         | 7.2-0.4  | 40.1        | 6.5             | 23.5        | 391         |
| 1984 AVERAGE | 1.30                    | 15                | 180          | 158         | 7.2-8.5  | 40.6        | 6.8             | 22.8        | 389         |
| 1983 AVERAGE | 1.30                    | 15                | 181          | 160         | 7.0-8.5  | 41.9        | 7.7             | 25.9        | 378         |

### MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Cottage Grove

### MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Cottage Grove</u>

| pro-       |              | <u> </u>     |             |             |                                     | 4           | •           |              |                         | An ere a service |                    | •                   |                    |            |             | A              |            |
|------------|--------------|--------------|-------------|-------------|-------------------------------------|-------------|-------------|--------------|-------------------------|------------------|--------------------|---------------------|--------------------|------------|-------------|----------------|------------|
| Month      | TBOD<br>mg/1 | C80D<br>mg/1 | COD<br>mg/l | TSS<br>mg/1 | FECAL COLI<br>Geo Mean<br>no/100 ml | TURB<br>NTU | KJN<br>mg/1 | NH3<br>mag/1 | NO <sub>2</sub><br>mg/1 | ND3<br>mg/1      | Total<br>P<br>mg/1 | C12*<br>Used<br>1bs | Cl2<br>Res<br>mg/l | D0<br>mg/] | pH<br>Range | Remo<br>BOD    | val<br>TS: |
| NPDES      | 25           | 25           |             | 30          | 200                                 | 25          |             |              |                         |                  |                    | 1                   |                    |            | 6.5-8.5     |                |            |
| JANUARY    | 33           | 14           | 70          | 16          |                                     | 6           | 29.7        | 20.3         | 0.72                    | 3.70             | 5.2                |                     |                    | 5.2        | 7.1-7.6     | 93             | 90         |
| FEBRUARY   | 24           | 11           | 76          | 9           |                                     | 5           | 24.5        | 19.2         | 0.93                    | 2.71             | 4.3                | 22                  | 1.9                | 5.7        | 7.0-7.7     | 93             | 93         |
| MARCH      | 23           | 12           | 98          | 12          | 65                                  | 6           | 29.9        | 21.3         | 0.84                    | 2.66             | 4.7                | 80                  | 3.7                | 6.2        | 7.1-7.5     | 93             | 92         |
| APRIL      | 18           | 8            | 59          | 6           | 33                                  | 4           | 30.6        | 26.1         | 0.62                    | 2.45             | 4.9                | 86                  | 3.4                | 5.7        | 7.1-7.5     | 96             | 96         |
| MAY        | 22           | 10           | 64          | 10          | 67                                  | 6           | 28.6        | 21.2         | 0.57                    | 2.16             | 4.3                | 97                  | 5.5                | 5.3        | 7.0-7.6     | 95             | 94         |
| JUNE       | 22           | 8            | 68          | 7           | 100                                 | 5           | 19.5        | 16.2         | 4.10                    | 2.17             | 4.7                | 97                  | 4.5                | 5.5        | 7.1-7.4     | <del>9</del> 5 | 96         |
| JULY       | 21           | 7            | . 76        | 5           | 85                                  | 4           | 21.6        | 14.0         | 1.53                    | 2.99             | 4.8                | 77                  | 3.7                | 4.8        | 7.0-7.4     | 96             | 96         |
| AUGUST     | 17           | 6            | 77          | 6           | 105                                 | 5           | 22.1        | 14.0         | 1.28                    | 1.89             | 5.2                | 88                  | 4.3                | 4.7        | 7.1-7.4     | 96             | 95         |
| SEP TEMBER | 18           | 6            | : 48        | 6           | 168                                 | 4           | 18.3        | 11.5         | 1.16                    | 3.50             | 4.8                | 84                  | 4.1                | 4.9        | 7.0-7.5     | 97             | 96         |
| OCTOBER    | 24           | 6            | 61          | 7           | 187                                 | 5           | 26.0        | 17.0         | 0.73                    | 1.44             | 4.5                | 78                  | 5.9                | 5.5        | 7.1-7.6     | 97             | 96         |
| NOVEMBER   | 26           | 11           | 70          | 9           |                                     | 3           | 27.3        | 20.2         | 0.97                    | 2.55             | 4.5                |                     |                    | 5.8        | 7.3-7.6     | 95             | 95         |
| DECEMBER   | 20           | 12           | 67          | 9           |                                     | 4           | 27.6        | 22.4         | 0.32                    | 2.50             | 4.4                |                     |                    | 6.3        | 7.0-7.9     | 94             | 95         |
| 1984 AVG.  | 22           | 9            | 69          | 9           | 101                                 | 5           | 25.5        | 18.6         | 1.13                    | 2.56             | 4.7                | 85                  | 4.4                | 5.5        | 7.0-7.9     | 95             | 9/         |
| 1983 AVG.  | 19           | 9            | 62          | 11          | 53                                  | 5           | 16.7        | 13.5         | 1.21                    | 9.15             | 5.0                | 68                  | 3.5                | 5.1        | 6.8-7.7     | 95             | 97         |

\*For disinfection only.

}

.







`**85** 





## EMPIRE WASTEWATER TREATMENT PLANT

#### Plant History and Description

The Empire Plant was designed by Short, Elliot, Hendrickson and Associates and was constructed in 1977-1979. The Empire Plant began operation in the fall of 1979. The plant replaced three treatment plants (Lakeville, Farmington, and Apple Valley) which were overloaded and required upgrading to meet water quality based effluent standards. The Empire Plant serves Apple Valley, Empire Township, Farmington, and Lakeville in Service Area No. 6 and has a design capacity of 6.0 mgd.

Liquid treatment consists of screening, influent pumping, grit removal, primary sedimentation, high rate activated sludge aeration, intermediate sedimentation, nitrification activated sludge aeration, final clarification, effluent filtration, chlorination, and discharge to the Vermillion River.

Solids processing consists of combined sludge gravity thickening, anaerobic digestion, centrifuge dewatering, sludge storage and sludge landspreading. The plant is operating at about 85 percent of design capacity and is subject to effluent limits of 10 mg/L BOD and TSS, and 1 mg/L ammonia.

#### Performance

Plant flow averaged 5.19 mgd in 1984, somewhat higher than 4.81 mgd in 1983. Average plant effluent quality was 2 mg/L BOD, 2 mg/L TSS and 0.3 mg/L ammonia. Plant performance was excellent throughout the year with one NPDES permit violation of the ammonia limit. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

Effluent Concentration, mg/1

|       |      | 50% of | Time |      |      | 75% of | Time |      | 90% of Time |      |      |      |  |  |
|-------|------|--------|------|------|------|--------|------|------|-------------|------|------|------|--|--|
|       | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1981        | 1982 | 1983 | 1984 |  |  |
| * 80D | 3    | 2      | 2    | 1    | 4    | 3      | 3    | 2    | 4           | 4    | 4    | 3    |  |  |
| TSS   | 1    | 1      | 1    | 1    | 1    | 1      | 1    | 2    | 2           | 2    | 2    | 3    |  |  |

\*1982 through 1984 values represent CBOD.

#### Future

The Empire Plant is one of the Commission's permanent regional plants. Provisions have been made for doubling the plant's capacity when the area's growth requires plant expansion. A plant expansion is planned for the late 1980's.

# EMPIRE PLANT PROCESS UNIT LOADINGS

|                                                   |       | Annual      |          | ł     | Maximum |        |
|---------------------------------------------------|-------|-------------|----------|-------|---------|--------|
| Parameter                                         | 1000  | Average     | <u>e</u> |       | Month   |        |
|                                                   | 1982  | 1983        | 1984     | 1982  | 1983    | 1984   |
| Wastewater Flow, mgd                              | 4.05  | 4.81        | 5.19     | 4.89  | 6.57    | 6.36   |
| BOD Loading, 1b/day <sup>1</sup>                  | 6,900 | 8,500       | 11,200   | 7,600 | 13,300  | 20,900 |
| TSS Loading, 1b/day1                              | 7,200 | 9,900       | 11,100   | 9,500 | 13,200  | 16,000 |
| Ammonia Loading, 1b/day <sup>1</sup>              | 740   | <b>6</b> 50 | 810      | 1,000 | 800     | 1,100  |
| COD Loading, 1b/day                               |       | 17,900      |          |       | 23,800  |        |
| Kj-N Loading (b/day)                              |       |             | 1,870    |       |         | 2,700  |
| Aerated Grit Chamber (All in Use)                 |       |             |          |       |         |        |
| Flow Through Velocity, fps                        | 0,05  | 0.03        | 0.046    | 0.06  | 0.04    | 0.054  |
| Detention Time, minutes                           | 12    | 20          | 14       | 10    | 15      | 12     |
| Primary Clarifiers                                |       |             |          |       |         |        |
| Surface Overflow Pate and/ca ft                   | 400   | 100         | 60E      | 400   | 650     | 000    |
| Weir Overflow Rate, gpu/sq. it.                   | 8 000 | 9 600       | 13 700   | 9 800 | 13 100  | 16 000 |
| Detention Time, hr.                               | 5.3   | 4.5         |          | 4.4   | 3.3     |        |
| Removal Efficiency, %BOD                          | 31    |             |          | 32    |         |        |
| Removal Efficiency, %TSS                          | 58    | <b></b>     |          | 70    |         |        |
| High Rate Aeration                                |       |             |          |       |         |        |
| Mixed Liquor Suspended Solids, ma/                | 1,600 | 1.900       |          | 1,900 | 2,000   |        |
| F:M Ratio. 1b. BOD/dav/1b. MLSS                   | 0.72  | 0.21        |          | 0.87  | 0.40    |        |
| BOD Loading, 1b./day/1000 cu. ft. <sup>2</sup>    | 66    | 25          | 62       | 79    | 39      | 76     |
| Detention Time, hr.                               | 3.0   | 3.8         |          | 2.5   | 2.7     |        |
| High Rate Clarifiers                              |       |             |          |       |         |        |
| Surface Overflow Rate and/sa ft                   | 400   | 480         | 685      | 400   | 650     | 800    |
| Weir Overflow Rate, gpd/lin, ft.                  | 8,000 | 9,600       | 13,700   | 9,800 | 13,100  | 16.000 |
| Detention Time, hr.                               | 5.3   | 4.5         |          | 4.4   | 3.3     |        |
| Mass Loading Rate, 1b/day/sq. ft.                 |       |             | 15       |       |         | 16     |
| Nitrification Aeration                            |       |             |          |       |         |        |
| BOD Loading $\frac{1}{4} \frac{1}{4} \frac{1}{2}$ |       |             | 16       |       |         | 20     |
| Mixed Liquor Suspended Solids. mg/L               | 2,400 | 2,700       |          | 2.100 | 3,200   |        |
| Ammonia: Mass Ratio, 1b. NH3/day/1b.              | -,    | _,          |          |       | -,      |        |
| MLSS                                              | 0.024 | 0.021       |          | 0.04  | 0.038   |        |
| Ammonia Loading, 1b. NH3/day/1000                 | _     |             | _        | - '   |         |        |
| Cu. ft.                                           | 3.8   | 3.6         | 3.1      | 5.8   | 3.9     | 4.4    |
| Detention lime, hr.                               | 6.8   | 6.3         |          | 4.9   | 4.6     |        |

# EMPIRE PLANT PROCESS UNIT LOADINGS (cont.)

|                                                                                                                                |                             | Annua]                        |                     |                     | Maximum              | I                   |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|---------------------|---------------------|----------------------|---------------------|
| Parameter                                                                                                                      | 1982                        | <u>Average</u><br><u>1983</u> | <u>1984</u>         | 1982                | <u>Month</u><br>1983 | 1984                |
| Nitrification Final Clarifiers                                                                                                 |                             |                               |                     |                     |                      |                     |
| Surface Overflow Rate, gpd/sq.ft.<br>Weir Overflow Rate, gpd/lin.ft.<br>Detention Time, hr.<br>Mass Loading Rate lb/day/sq.ft. | 320<br>7,200<br><b>6.</b> 5 | 380<br>8,500<br>5.7           | 485<br>10,900<br>18 | 390<br>8,700<br>5.4 | 520<br>11,600<br>4.2 | 580<br>13,000<br>25 |
| Dual Media Filters                                                                                                             |                             |                               |                     |                     |                      |                     |
| Filtration Rate, gpd/sq. ft.                                                                                                   | .1.9                        | 2.2                           | 2.8                 | 2.3                 | 2.9                  | 3.3                 |
| <u>Chlorination</u>                                                                                                            |                             |                               |                     |                     |                      |                     |
| Chlorine Dose, mg/L<br>Chlorine Use, lb./day<br>Contact Time, minutes                                                          | 3.6<br>130<br>38            | 2.9<br>125<br>32              | 105                 | 3.9<br>140<br>32    | 3.3<br>145<br>23     | 150                 |
| Cascade Aeration                                                                                                               |                             |                               |                     |                     |                      |                     |
| Effluent Dissolved Oxygen, mg/L                                                                                                | 8.9                         | 10.0                          | 8.0                 | 9.8                 | 1.6                  | 10.9                |
| Gravity Thickener                                                                                                              |                             | · .                           | •                   |                     |                      |                     |
| Solids Loading, lb/sq. ft./day<br>Surface Overflow Rate, gpd/sq. ft.<br>Sludge Concentration, % TS                             | 4<br>600<br>3.8             |                               |                     | 5<br>600<br>4.9     |                      |                     |
| Anaerobic Digesters (Primary)                                                                                                  |                             | :                             |                     |                     |                      |                     |
| Voltile Solids Loading, lb/cu. ft./day<br>Detention Time, days                                                                 | 0.04<br>40                  |                               |                     | 0.05<br>30          |                      |                     |
| Dewatered Sludge                                                                                                               |                             |                               |                     |                     |                      |                     |
| Mass, lb/day<br>Cake Solids, % TS                                                                                              | <b>3,00</b> 0<br>13         |                               |                     | 5,600<br>14         |                      |                     |

<sup>1</sup>Includes loading from plant return flow. <sup>2</sup>No intermediate effluent BOD data. Assumes BOD/COD ratio = 0.4.

## EMPIRE WASTEWATER TREATMENT PLANT





|              |            |             |         | · · · · · · |                   |              | · ·     |             |             |
|--------------|------------|-------------|---------|-------------|-------------------|--------------|---------|-------------|-------------|
|              | Wastewater | Temperature | TBOD    | TSS         |                   | KJN          | Total-P | NH3         | COD         |
| Month        | Flow, MGU  |             | <u></u> | <u>mg/1</u> | ph_kange          | <u>mg/i </u> | mg/1    | <u>mq/1</u> | <u>mg/1</u> |
| JANUARY      | 4.38       | 12          | 454     | 346         | 6.3-9.8           | 59.0         | 14.0    | 23.5        | 657         |
| FEBRUARY     | 4.69       | 11          | 216     | 168         | 6.0-8.8           | 36.7         | 11.3    | 16.2        | 440         |
| MARCH        | 4.92       | 11          | 181     | 145         | 6.4-8.3           | 26.2         | 10.0    | 12.3        | 367         |
| APRIL        | 5.76       | 12          | 171     | 157         | 6.1-8.4           | 24.9         | 8.4     | 10.0        | 331         |
| MAY          | 6.36_      | 13          | _177    | 156         | 6.3-7.9           | 22.9         | 8.0     | 8.7         | 306         |
| JUNE         | 5.89       | 15          | 125     | 158         | 6.2-7.2           | 30.9         | 9.2     | 15.6        | 309         |
| JULY         | 5.09       | 17          | 137     | 177         | 7.0 <u>-7</u> .5  | 28.2         | 7.5     | 10.9        | 316         |
| AUGUST       | 5.51       | 18          | 149     | 175         | 6.7-8.7           | 29.4         | 7.8     | 13.0        | 336         |
| SEPTEMBER    | 4.73       | 18          | _176    | 186         | 6.6-8,4           | 33.8         | 8.2     | 14.1        | 336         |
| OCTOBER      | 4.98       | 18          | 193     | 204         | 6.4-8.3           | 36.5         | 9,3     | 15.3        | 380         |
| NOVEMBER     | 4.99       | 16          | 209     | 204         | 6.2-10.5          | 35.7         | 9.9     | 18.0        | 401         |
|              | 4.95       | 14          | 208     | 170         | 5.9-9.0           | 30.7         | 6.0     | 14.4        | 359         |
| 1984 AVERAGE | 5,19       | 15          | 193     | 189         | 5.9 <u>-1</u> 0.5 | 32.9         | 9.1     | 14.3        | 387         |
| 1983 AVERAGE | 4.81       | 14          | 217     | 250         | 6.0-9.0           | 35.3         | 11.1    | 17.0        | 457         |

### MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: \_\_\_\_\_\_

.

## MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: \_\_\_\_\_\_\_

| Month     | TBOD<br>mg/1 | CBOD<br>mg/1 | COD<br>mg/1 | TSS<br>mg/1 | FECAL COLI<br>Geo Mean<br>no/100 ml | TURB<br>NTU | KJN<br>mg/1 | NH3<br>mg/1 | N02<br>mg/1 | ND3<br>mg/l | Total<br>P<br>mg/l | C12<br>Used<br>1bs | C12<br>Res<br>mg/1 | D0<br>mg/1 | pH<br>Range | Remo<br>BOD | val<br>TSS    |
|-----------|--------------|--------------|-------------|-------------|-------------------------------------|-------------|-------------|-------------|-------------|-------------|--------------------|--------------------|--------------------|------------|-------------|-------------|---------------|
| NPOES     | 10           | 10           |             | 10          | 200                                 | 25          |             | 1.0         |             |             |                    |                    |                    | >4.0       | 6.5-8.5     |             |               |
| JANUARY   | 2            | 2            | 35          | 1           |                                     | 1           | 1.9         | 0.4         | 0.08        | 19.05       | 7.2                |                    |                    | 8.3        | 6.7-7.4     | 99          | 99            |
| FEBRUARY  | 3            | 2            | 34          | 1           |                                     | 1           | 1.7_        | 0.1         | 0.07        | 16.40       | 7.0                | 100                | 0.8                | 7.9        | 6.8-7.4     | 99          | 99            |
| MARCH     | 2            | 2            | 30          | 2           | _2                                  | 1           | 1.5         | 0.2         | 0.02        | 9.45        | 6.3                | 86                 | 1.0                | 7.6        | 6.5-8.3     | 99          | <del>99</del> |
| APRIL     | 4            | 3            | 36          | 3           | 2                                   | 2           | 1.8         | 0.1         | 0.02        | 6.33        | 5.3                | 84                 | 0,7                | 6.5        | 6.7-7.4     | 98          | 98            |
| MAY       | 3            | 2            | 32          | 2           | 4                                   | _1          | 1.9         | 0.1         | 0.17        | 7.66        | 4.5                | 112                | 0.7                | 6.1        | 6.6-7.4     | 99          | <u>99</u>     |
| JUNE      | 2            | 1            | 33          | 2           | 7                                   | 2           | 1.4         | 0.2         | 0.54        | 17.97       | 4.1                | 139                | 1.4                | 8.6        | 6.6-7.4     | 99          | 99            |
| JULY      | 2            | 2            | 30          | 2           | · <u> </u>                          | 2           | 2.0         | 0.2         | 0.03        | 15.77       | 2.5                | 146                | 0.9                | 7.6        | 6.7-7.3     | 99          | 99            |
| AUGUST    | 3            | 2            | 29          | 2           | 5                                   | 2           | 2.3         | 0.3         | 0.06        | 14.33       | 2.8                | 150                | 0.8                | 7.5        | 6.5-7.2     | 99          | 99            |
| SEPTEMBER | 3            | 3            | 17          | 2           | · 2                                 | 1           | 1.7         | 0.6         | 0.02        | 15.36       | 2.7                | 135                | 0.9                | 8.2        | 7.0-7.2     | 98          | 99            |
| OCTOBER   | 2            | 2            | 24          | 2           | 2                                   | 1           | 3.2         | 1.6         | 0.03        | 15.50       | 3.8                | 107                | 0.9                | 7.4        | 6.9-7.5     | 99          | 99            |
| NOVEMBER  | 3            | 2            | 38          | 2           |                                     | 1           | 1.9         | 0.1         | 0.01        | 17.23       | 2.9                | 105                | 0.8                | 9.3        | 7.0-7.4     | 99          | 99            |
| DECEMBER  | 3            | 2            | 40          | 2           |                                     | 1           | 1.4         | 0.1         | 0.01        | 12.19       | 2.3                |                    |                    | 10.9       | 6.9-7.4     | 99          | 99            |
| 1984 AVG. | 3            | 2            | 32          | 2           | 4                                   | 1           | 1.9         | 0.3         | 0.09        | 13.83       | 4.3                | 120                | 0.9                | 8.0        | 6.5-8.3     | 99          | 99            |
| 1983 AVG. | 3            | 3            | 28          | 1           | 3                                   | 1           | 1.6         | 0.4         | 0.16        | 16.41       | 4.6                | 123                | 1.4                | 10.0       | 6.5-8.4     | 99          | 99            |











### HASTINGS WASTEWATER TREATMENT PLANT

#### Plant History and Description

The Hastings Plant was designed by Toltz, King, Duvall, Anderson, and Associates and built in 1955 as a "primary treatment" plant. Principal items included a primary control building, primary settling and chlorination tanks, anaerobic digester, and sludge drying beds. In 1967, the plant was modified to include secondary treatment facilities. Major additions included one fourpass aeration tank, two final settling tanks, a chlorine contact tank and a secondary sludge digester. After 1967 modifications, the plant's design capacity was 1.83 mgd. Actual operating capacity is somewhat less, estimated to be about 1.44 mgd.

Liquid treatment consists of screening, grit removal, primary sedimentation, primary effluent pumping, activated sludge aeration, final clarification, chlorination, and discharge to the Mississippi River.

Solids processing consists of combined thickening in primary tanks, anaerobic digestion with ultimate disposal by landspreading or through the Metropolitan Plant Interceptor System. The Hastings Plant is operating beyond its effective capacity and is subject to secondary treatment limits.

#### Performance

Plant flow averaged 1.64 mgd in 1984, similar to 1.65 mgd in 1983. Average plant effluent quality was 22 mg/L BOD and 32 mg/L TSS. Plant performance was marginal due to operation near plant capacity. A total of 16 NPDES violations occurred throughout the year. Statistical analysis of data show the following trend in effluent quality from 1981 through 1984.

#### Effluent Concentration, mg/1

|       |      | 50% of | Time |      |      | 75% of | Time |      | 90% of Time |      |      |      |  |  |
|-------|------|--------|------|------|------|--------|------|------|-------------|------|------|------|--|--|
|       | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1981        | 1982 | 1983 | 1984 |  |  |
| * BOD | 18   | 17     | 14   | 16   | 24   | 27     | 20   | 23   | 33          | 37   | 26   | 35   |  |  |
| TSS   | 19   | 28     | 22   | 24   | 28   | 38     | 32   | 32   | 36          | 48   | 41   | 59   |  |  |

\*1982 through 1984 values represent CBOD.

#### Future

The Hastings Plant is being expanded to a capacity of 2.34 mgd. Construction grants for a plant expansion were received and construction began in late 1983. The first phase of the plant expansion is scheduled for completion in June 1985, with overall completion by December, 1985.

## HASTINGS PLANT PROCESS UNIT LOADINGS

| Parameter                                                                                    | 1002                            | Annual<br>Average               | 2                               | Maximum<br>Month                |                                 |                                 |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|
|                                                                                              | 1902                            | 1903                            | 1904                            | 1902                            | 1903                            | 1904                            |  |  |
| Wastewater Flow, mgd<br>BOD Loading, lb/day<br>TSS Loading, lb/day<br>COD Loading, lb/day    | 1.50<br>3,140<br>2,930<br>6,770 | 1.65<br>3,260<br>2,620<br>7,430 | 1.64<br>2,770<br>2,780<br>6,670 | 1.63<br>3,550<br>3,820<br>8,120 | 1.75<br>4,150<br>3,670<br>8,750 | 1.72<br>3,900<br>4,200<br>9,500 |  |  |
| Primary Sedimentation                                                                        |                                 |                                 |                                 |                                 |                                 |                                 |  |  |
| Surface Overflow Rate, gpd/sq. ft.                                                           | 1,330                           | 2,500                           | 2,500                           | 1,390                           | 2,600                           | 2,600                           |  |  |
| Aeration Tanks                                                                               |                                 |                                 |                                 |                                 |                                 |                                 |  |  |
| BOD Loading, 1b/day/1000 cu. ft.                                                             | 45                              | 47                              | 40                              | 51                              | 60                              | 56                              |  |  |
| Final Sedimentation                                                                          |                                 |                                 |                                 |                                 |                                 |                                 |  |  |
| Weir Overflow Rate, gpd/lin.ft.<br>Surface Overflow Rate, gpd/sq.ft.                         | 9,100<br>625                    | 10,100<br>690                   | 10,000<br>680                   | 9,900<br>680                    | 10,700<br>7 <b>30</b>           | 10,500<br>720                   |  |  |
| Chlorination                                                                                 |                                 |                                 |                                 |                                 |                                 |                                 |  |  |
| Contact Time - Primary, minutes<br>Contact Time - Secondary, minutes<br>Chlorine Use, 1b/day | . 37<br>10<br>126               |                                 | <br>93                          | 34<br>10<br>185                 | 130                             | 165                             |  |  |
| Sludge Transport                                                                             |                                 |                                 |                                 |                                 |                                 |                                 |  |  |
| Volume, gpd<br>Mass, lb/day                                                                  | 7,560<br>2,000                  | 8,100<br>1,900                  | 5,700<br>1,400                  | 9,810<br>2,550                  | 11,800<br>2,100                 | 12,600<br>2,400                 |  |  |

# HASTINGS WASTEWATER TREATMENT PLANT





| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | TBOD<br>mg/1 | TSS<br>mg/1 | pH Range | KJN<br>mg/l | Total-P<br>mg/l | NH3<br>mg/l | COD<br>mg/1 |
|--------------|-------------------------|-------------------|--------------|-------------|----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 1.64                    | 15                | 282          | 303         | 6.1-9.2  | 55.0        | 14.6            | 24.8        | 684         |
| FEBRUARY     | 1.58                    | 13                | 219          | 214         | 6.4-11.0 | 44.5        | 12.4            | 18.1        | 487         |
| MARCH        | 1.63                    | 12                | 207          | 211         | 5.4-9.4  | 51.9        | 10.3            | 29.4        | 554         |
| APRIL        | 1.64                    | 13                | 211          | 189         | 6.2-9.0  | 41.8        | 10.1            | 24.4        | 492         |
| МАУ          | 1.72                    | 14                | 197          | 204         | 6.8-10.2 | 41.8        | 8.4             | 20.7        | 466         |
| JUNE         | 1.66                    | 18                | 158          | 222         | 6.2-9.8  | 39.6        | 9.3             | 20.5        | 420         |
| JULY         | 1.59                    | 20                | 111          | 103         | 6.0-10.9 | 36.2        | 9.2             | 19.5        | 304         |
| AUGUST       | 1.63                    | 22                | 148          | 153         | 4.4-10.4 | 34.4        | 8.1             | 16.5        | 357         |
| SEPTEMBER    | 1.68                    | 20                | 191          | 156         | 5.0-10.6 | 40.5        | 10.0            | 19.6        | 436         |
| OC TOBER     | 1.67                    | 19                | 194          | 158         | 5.0-11.2 | 57.8        | 12.5            | 23.2        | 461         |
| NOVEMBER     | 1.59                    | 17                | 216          | 239         | 5.0-10.6 | 45.9        | 10.0            | 25.9        | 531         |
| DECEMBER     | 1.63                    | 16                | 229          | 213         | 6.5-11.2 | 57.4        | 11.9            | 35.5        | 513         |
| 1984 AVERAGE | 1.64                    | 17                | 196          | 196         | 4.4-11.2 | 45.7        | 10.6            | 23.1        | 472         |
| 1983 AVERAGE | 1.65                    | 17                | 230          | 187         | 4.5-12.0 | 45.9        | 12.2            | 25.0        | 523         |

## MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: <u>Hastings</u>

• •

### MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Hastings</u>

|            |      |          |            |      | FECAL COLI |      |      |      |                 |       | Total | C12+ | C12  |     |         |      | 2    |
|------------|------|----------|------------|------|------------|------|------|------|-----------------|-------|-------|------|------|-----|---------|------|------|
|            | TBOD | CBOD     | COD        | TSS  | Geo Mean   | TURB | KJN  | NH3  | NO <sub>2</sub> | N03   | P     | Used | Res  | DO  | рН      | Remo | ival |
| Month      |      |          |            |      | no/100 ml  | NTU  | mg/1 | mq/1 | mg/1            | mq/1  | mg/1  | lbs  | mq/1 |     | Range   | 800  | TS   |
| NPDES      |      | <b>.</b> |            |      |            |      |      |      |                 |       |       |      | '    |     |         |      |      |
|            | 25   | 25       |            | 30   | 200        | 25   |      |      |                 |       |       |      |      |     | 6.5-8.5 |      |      |
| JANUARY    | 46   | 23       | 134        | 38   |            | 11   | 33.8 | 21.8 | 0.57            | 1.99  | 9.7   |      |      | 6.3 | 6.8-7.2 | 92   | 87   |
| FEBRUARY   | 87   | 66       | 258        | 105  |            | 28   | 37.6 | 21.5 | 0.28            | 0.37  | 9.8   | 27   | 0.0  | 6.1 | 6.6-7.4 | 70   | 51   |
| MARCH      | 35   | 14       | 132        | 32   | 5          | 13   | 33.6 | 25.0 | 1.12            | 1.82  | 2.0   | 77   | 5.5  | 6.1 | 7.1-7.5 | 93   | 85   |
| APRIL      | 24   | 16       | 90         | 26   | 22         | 12   | 25.8 | 19.0 | 0.90            | 0.94  | 4.3   | 71   | 5.6  | 6.1 | 7.0-7.5 | 92   | 86   |
|            |      |          |            |      |            |      |      |      |                 |       |       |      |      |     |         |      |      |
| MAY        | 43   | 16       | 95         | 21   |            | 10   | 23.5 | 13.8 | 2.68            | 4.17  | 5.7   | 65   | 4.4  | 6.1 | 7.1-7.6 | 92   | 90   |
| JUNE       | 45   | 13       | <b>9</b> 7 | 16   | 49         | 8    | 22.0 | 14.6 | 4.30            | 3.27  | 6.0   | 65   | 5.0  | 5.9 | 7.0-7.7 | 92   | 93   |
| JULY       | 38   | 14       | 93         | 20   | 49         | 9    | 12.9 | 6.3  | 4.30            | 11.00 | 7.1   | 65   | 3.7  | 5.9 | 7.0-7.5 | 87   | 81   |
| AUGUST     | 33   | 15       | 111        | 21   | 66         | 10   | 13.5 | 6.8  | 3.35            | 12.02 | 6.9   | 123  | 4.0  | 5.3 | 7.0-7.4 | 90   | 86   |
| SEP TEMBER | 40   | 15       | 89         | 23   | 14         | 9    | 9.9  | 4.5  | 2.85            | 12.13 | 6.1   | 165  | 5.9  | 5.0 | 7.2-7.5 | 92   | 86   |
| DCTOBER    | 35   | 29       | 153        | 35   | 21         | 17   | 32.7 | 21.8 | 0.33            | 0.50  | 7.8   | 115  | 9.6  | 4.8 | 7.2-7.7 | 85   | 78   |
| NOVEMBER   | 43   | 21       | 112        | 24   |            | 8    | 32.6 | 22.5 | 1.42            | 1.93  | 6.9   |      |      |     | 7 9 7 5 | 01   |      |
|            |      |          |            |      | <b>**</b>  |      |      |      |                 | 1.77  | 0     |      |      | 0.1 | 7.2-7.5 | . 91 | 90   |
| DECEMBER   | 47   | 25       | 112        | 26   |            | 11   | 32.3 | 24.8 | 0.35            | 2.21  | 6.9   |      |      | 6.3 | 7.1-7.4 | 89   | 88   |
| 1984 AVG.  | 43   | 22       | 123        | _ 32 | 33         | 12   | 25.8 | 16.8 | 1.88            | 4.37  | 6.7   | 92   | 5.4  | 5.8 | 6.6-7.7 | 89   | 83   |
| 1983 AVG.  | 27   | 16       | 120        | 23   | 44         | 10   | 24.0 | 16.0 | 1.23            | 2.32  | 6.9   | 115  | 6.4  | 6.0 | 6.4-7.8 | 93   | 87   |

\*For disinfection only.

• .

~










| MONTH     | Cu<br>mg/l | Cr<br>mg/l   | Zn<br>mg/l | РЬ<br>mg/1 | Cd<br>mg/1 | Hg<br>ug/1     | CN<br>mg/l | As<br>ug/l | PCB<br>ug/1 | Ni<br>mg/1 | Phenol<br>ug/1 | Fe<br>mg/l |
|-----------|------------|--------------|------------|------------|------------|----------------|------------|------------|-------------|------------|----------------|------------|
| January   | 0.01       | 0.13         | 0.09       |            |            | < <b>0.2</b> 0 | <0.020     |            |             |            | 17.7           |            |
| February  | 0.06       | 0.26         | 0,14       |            |            | <0.20          | <0.020     |            |             |            | 12.5           |            |
| March     | 0.03       | <0.07        | 0.09       | 0.06       | <0.008     | <0.20          | <0.020     |            |             | <0.04      | 12.4           | 1.01       |
| April     | 0.07       | <0.06        | 0.10       |            |            | <0.20          | <0.020     |            |             |            | 11.1           |            |
| May       | 0.08       | 0.09         | 0.10       |            |            | <0.20          | <0.020     |            |             |            | <u> 11.1</u>   | · · · ·    |
| June      | 0.03       | <0.08        | 0.11       | <0.05      | <0.008     | <0.30          | <0.020     |            |             | <0.04      | 9.0            | 0.92       |
| July      | 0.02       | <0.05        | 0.10       |            |            | <0.30          | <0.020     |            |             |            | <7.3           |            |
| August    | 0.05       | 0.11         | 0.10       |            |            | <0.20          | <0.020     |            |             |            | 7.4            |            |
| September | 0.03       | <0.11        | 0.06       | <0.05      | <0.008     | <0.20          | <0.020     |            |             | <0.04      | 5.7            | 0.35       |
| October   | 0.04       | 0.24         | 0.15       |            |            | <0.20          | <0.020     |            |             |            | 10.6           |            |
| November  | 0.02       | 0,16         | 0.08       |            |            | <0.20          | <0.020     |            |             |            | 5.9            |            |
| December  | 0.02       | <0.13        | 0.08       | <0.05      | <0.008     | <0.20          | <0.020     |            |             | <0.04      | 10.3           | 0.75       |
| 1984 Avg. | 0.04       | <u>(0.12</u> | 0.10       | <0.05      | <0.008     | <0.22          | <0.020     |            |             | <0.04      | 10.1           | 0.76       |
| 1983 Avr. | <0.05      | <0.20        | 0.11       | <0.05      | <0.008     | <0.23          | <0.062     |            | 1           | <0.04      | 9.9            | 0.32       |

#### 1984 EFFLUENT DATA TREATMENT PLANT <u>Hastings</u>

.

#### MAPLE PLAIN WASTEWATER TREATMENT PLANT

#### Plant History and Description

The original Maple Plain Plant was designed by Toltz, King, Duvall, Anderson and Associates and constructed in 1952. A plant expansion was designed by W.T. Mills, and constructed in 1965. Current plant design capacity is 0.22 mgd.

Liquid treatment consists of grit removal, screening, influent pumping, primary sedimentation, roughing trickling filter, complete mix activated sludge aeration, final clarification, chlorination, effluent polishing pond, and discharge through a swamp to Lake Minnetonka.

Solids processing consists of combined thickening in primary tanks, anaerobic digestion, and sludge hauling to other plants for processing or to landspreading sites.

The plant is presently operated well beyond its rated hydraulic capacity and is subject to secondary treatment limits.

#### Performance

Plant flow averaged 0.40 mgd in 1984, slightly higher than 0.35 mgd in 1983. Average plant effluent quality was 10 mg/L BOD and 10 mg/L TSS. Although the flow was in excess of plant capacity, plant performance was excellent throughout the year with no violations of its NPDES Permit. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

#### Effluent Concentration, mg/1

|       |      | 50% of | Time |      |      | 75% of | Time |      | 90% of Time   |      |      |      |  |  |
|-------|------|--------|------|------|------|--------|------|------|---------------|------|------|------|--|--|
|       | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1 <b>9</b> 81 | 1982 | 1983 | 1984 |  |  |
| * BOD | 10   | 11     | 8    | 6    | 15   | 18     | 12   | 12   | 21            | 26   | 17   | 22   |  |  |
| TSS   | 6    | 6      | 6    | 8    | 8    | 10     | 12   | 15   | 16            | 16   | 16   | 19   |  |  |

\*1982 through 1984 values represent CBOD.

#### Future

The long-term plan is to phase out the Maple Plain Plant by constructing an interceptor to Long Lake. The existing plant flow will then be conveyed to the Blue Lake Plant for treatment. Completion of interceptor construction is scheduled for late 1986.

### MAPLE PLAIN PLANT PROCESS UNIT LOADINGS

|                                        |             | Ani          | nual                 | 1              | Maximum       |        |
|----------------------------------------|-------------|--------------|----------------------|----------------|---------------|--------|
| Parameter                              | 1982        | 198 <u>3</u> | <u>erage</u><br>1984 | 1982           | Month<br>1983 | 1984   |
|                                        |             |              | <u></u>              |                |               |        |
| Wastewater Flow, MGD                   | 0.35        | 0.35         | 0.40                 | 0.59           | 0.75          | 0.60   |
| BUU Loading, ID/day                    | 425         | /,360        | 350                  | 490            | 460           | 500    |
| COD Loading, 1b/day                    | 260<br>860  | 800          | 870                  | 1,080          | 1 100         | 1,300  |
| Sludge Production, 1b/day              | 80          | 60           | 45                   |                |               |        |
| <u>Grit Removal</u>                    |             |              |                      |                |               |        |
| Overflow Rate, gpd/sq. ft.             | 21,880      | 22,000       | 25,000               | <b>36,</b> 880 | 47,000        | 37,500 |
| Primary Sedimentation                  |             |              |                      |                |               |        |
| Detention Time. br.                    | 0.7         | 0.75         | 0.7                  | 0.4            | 0.35          | 0.4    |
| Weir Overflow Rate, gpd/lin. ft.       | 9,270       | 9,700        | 11,100               | 16,390         | 21,000        | 16,700 |
| Surface Overflow, gpd/sq. ft.          | 1,440       | 1,400        | 1,600                | 2,430          | 3,100         | 2,500  |
| Trickling Filters                      |             |              |                      |                |               |        |
| Hydraulic Loading, gpd/sq. ft.         | 220         | 220          | 250                  | 370            | 470           | 380    |
| BOD Loading, 1b/day/1000 cu. ft.       | 41          | 35           | 34                   | 47             | 45            | 48     |
| Aeration Tanks                         |             | ·            |                      |                |               |        |
| Detention Time, hr.                    | 7.1         | 7.1          | 6.2                  | 4.2            | 3.3           | 4.2    |
| BOD Loading, 1b/day/1000 cu. ft.       | <u>+</u> 15 | 13           | 13                   | <u>+</u> 18    | 17            | .18    |
| (Assume 50% tricking fifter reduction) | ,           |              |                      |                |               |        |
| Final Sedimentation                    |             |              |                      |                |               |        |
| Detention Time, hr.                    | 2.0         | 2.0          | 1.8                  | 1.2            | 1.0           | 1.2    |
| Weir Overflow Rate, gpd/lin. ft.       | 8,970       | 9,000        | 10,300               | 15,130         | 19,000        | 15,400 |
| Surface Overflow Rate, gpd/sq. ft.     | 1,030       | 1,000        | 1,200                | 1,730          | 2,200         | 1,800  |
| Chlorination                           |             |              |                      |                |               |        |
| Contact Time, minutes                  | 15          | 15           | 13                   | 9              | 7             | 9      |
| Chlorine Use, lb/day                   | 36          | 31           | 24                   | 50             | 43            | 30     |
| Polishing Pond                         |             |              |                      | -              |               |        |
| Detention Time, days                   | 2.9         | 2.9          | 2.5                  | 1.7            | 1.3           | 1.4    |
| BOD, lb/acre/day                       | 59          | 40           | 50                   | 150            | 210           | 130    |

## MAPLE PLAIN PLANT PROCESS UNIT LOADINGS (cont.)

| Parameter                                              |            | Annual<br>Average |             | Max<br>Mor | imum<br>nth |             |
|--------------------------------------------------------|------------|-------------------|-------------|------------|-------------|-------------|
|                                                        | 1982       | <u>1983</u>       | <u>1984</u> | 1982       | 1983        | <u>1984</u> |
| Anaerobic Digestion (Prim. Dig. Only)                  |            |                   |             |            |             |             |
| Solids Loading, lb/cu. ft./day<br>Detention Time, days | 0.08<br>29 | 0.08<br>30        | 0.08<br>30  |            |             |             |
| Sludge Transport                                       |            |                   |             |            |             |             |
| Volume, gpd                                            | 160        | 180               | 120         |            |             |             |

### MAPLE PLAIN WASTEWATER TREATMENT PLANT

### **FLOW DIAGRAM**





١



| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | TBOD<br>mg/1 | TSS<br>mg/1 | pH Range | KJN<br>mg/1 | Total-P<br>mg/l | NH3<br>mg/1 | COD<br>mg/l |
|--------------|-------------------------|-------------------|--------------|-------------|----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 0.25                    | 14                | 127          | 131         | 7.3-7.7  | 34.4        | 4.7             | 18.0        | 286         |
| FEBRUARY     | 0.44                    | 14                | 81           | 270         | 7.5-7.8  | 20.0        | 3.4             | 7.8         | 185         |
| MARCH        | 0.51                    | 12                | 134          | 136         | 7.4-7.7  | 26.8        | 5.6             | 10.3        | 271         |
| APRIL        | 0.45                    | 12                | 109          | 129         | 7.5-7.8  | 23.3        | 3.0             | 7.3         | 220         |
| MAY          | 0.45                    | 13                | 77           | 94          | 7.2-7.8  | 20.7        | 2.7             | 5.3         | <u>1</u> 84 |
| JUNE         | 0.60                    | 13                | 108          | 171         | 7.2-7.5  | 21.9        | 4.0             | 6.9         | Z92         |
|              | 0, 35                   | 14                | 129          | 158         | 7.3-7.6  | 28.2        | 5.2             | 10.4        | 310         |
| AUCHST       | 0.33                    | 17                | 134          | 264         | 7.3-7.6  | 24.4        | 3.8             | 10.3        | 479         |
|              | 0.28                    | 16                | 155          | 201         | 7.5-7.6  | 32.5        | 4.9             | 15.5        | 334         |
|              | 0.20                    |                   | 112          | 172         | 7.4-7.7  | 28.9        | 4.1             | 13.4        | 260         |
|              | 0.33                    | 16                | 135          | 435         | 7.4-7.6  | 23.4        | 4.5             | 10.5        | 282         |
| NUVEMBER     | 0.33                    | 13                | 113          | 182         | 7.4-7.6  | 26.1        | 4.3             | 13.0        | 286         |
|              | 0.55                    | 17                | 114          | 195         | 7 2-7 8  | 25 8        | 4.2             | 10.6        | 279         |
| 1984 AVERAGE | 0.35                    | 13                | 125          | 171         | 7.2-7.9  | 29.1        | 5.1             | 13.4        | 275         |

#### MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Maple Plain

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Maple Plain</u>

| Month     | TBOD |    |    | TSS<br>ma/1 | FECAL COLI<br>Geo Mean<br>ng/100 ml | TURB<br>NTU | KJN<br>mg/l | NH3<br>ma/l | NO2<br>ma/1 | NO3<br>mg/1 | Total<br>P<br>mg/l | C12*<br>Used<br>1bs | C12<br>Res<br>mg/1 | 00<br>mg/1 | pH<br>Range | Remo<br>BOD | val<br>TSS |
|-----------|------|----|----|-------------|-------------------------------------|-------------|-------------|-------------|-------------|-------------|--------------------|---------------------|--------------------|------------|-------------|-------------|------------|
|           | 25   | 25 |    | 30          | 200                                 | 25          |             |             |             |             |                    |                     |                    |            | 6.5-8.5     | +           |            |
| JANUARY   | 14   | 8  | 42 | 13          |                                     | 11          | 10.9        | 7.6         | 0.04        | 0.34        | 1.9                |                     |                    | 7.3        | 7.6-7.6     | .94         | 90         |
| FEBRUARY  | 12   | 10 | 52 | 13          |                                     | 10          | 6.1         | 3.0         | 0.22        | 0.82        | 1.1                | 20                  | 0.0                | 6.8        | 7.2-7.8     | 88          | 95         |
| MARCH     | 26   | 22 | 77 | 15          | 4                                   | 17          | 12.0        | 7.8         | 0.09        | 0.94        | 2,2                | 22                  | 0.0                | 5.1        | 7.5-7.7     | 83          | 89         |
| APRIL     | 22   | 19 | 64 | 12          | 4                                   | 12          | 11.6        | 6.1         | 0.05        | 0.61        | 1.8                | 22                  | 0.0                | 4.8        | 7.4-7.5     | 83          | 90         |
| MAY       | 13   | 12 | 52 | 12          | 4                                   | 11          | 9.1         | 4.3         | 0.12        | 0.98        | 1.4                | 30                  | 0.1                | 5.1        | 7.2-7.5     | 85          | 89         |
| JUNE      | 17   | 12 | 49 | 22          | 19                                  | 11          | 6.0         | 2.8         | 0.08        | 0.76        | 1.1                | 29                  | 0.0                | 3.1        | 7.3-7.6     | 89          | 87         |
| JULY      | 8    | 7  | 41 | 9           | 5                                   | 7           | 16.2        | 9.6         | 0.02        | 0.32        | 2.0                | 23                  | 0.0                | 4.6        | 7.5-7.6     | 95          | 94         |
| AUGUST    | 4    | 4  | 43 | -8          | 12                                  | 5           | 11.1        | 8.0         | 0.09        | 0.35        | 1.7                | 20                  | 0.0                | 7.3        | 7.1-7.8     | 97          | 97         |
| SEPTEMBER | 13   | 6  | 23 | 4           | 5                                   | 4           | 11.3        | 5.9         | 0.25        | 3.36        | 2.7                | 20                  | 0.0                | 7.4        | 7.4-7.8     | 96          | 98         |
| OCTOBER   | 5    | 4  | 37 | 4           | 4                                   | 8           | 5.3         | 3.2         | 0.19        | 5.76        | 1.9                | 26                  | 0.0                | 7.8        | 7.5-7.9     | 96          | 98         |
| NOVEMBER  | 7    | 6  | 48 | 6           |                                     |             | 8.4         | 4.8         | 0.15        | 4.59        | 2.5                |                     | <br>               | 7.8        | 7.4-7.7     | 96          | 99         |
| DECEMBER  | 13   | 9  | 48 | 8           |                                     | 3           | 15.0        | 9.0         | 0.22        | 3.11        | 2.9                |                     |                    | 8.0        | 7.1-7.7     | 92          | 96         |
| 1984 AVG. | 13   | 10 | 47 | 10          | 7                                   | 9           | 10.2        | 5.9         | 0.13        | 1.84        | 1.9                | 24                  | 0.0                | 7.1        | 7.1-7.9     | 91          | 93         |
| 1983 AVG. | 12   | 9  | 52 | 9           | 10                                  | 6           | 12.7        | 9.1         | 0.21        | 2.02        | 2.5                | 31                  | 0.4                | 6.4        | 7.3-7.8     | 92          | 93         |

\*For disinfection only.





ł





#### MEDINA WASTEWATER TREATMENT PLANT

#### Plant History and Description

The Medina Plant was designed by W.T. Mills, and constructed in 1969. The plant serves the Hamel area and the City of Medina and has a design capacity of 0.10 mgd. The plant consists of a two-staged aerated lagoon system followed by two seepage ponds. The seepage pond contents are emptied by evaporation, percolation, and controlled discharge to nearby Elm Creek, when necessary.

#### Performance

Plant flow averaged 0.28 mgd in 1984, significantly higher than 0.18 mgd in 1983. Average aeration pond effluent quality was 11 mg/L BOD and 16 mg/L TSS, representing removal rates of 89 percent for BOD and 86 percent for TSS. The plant is presently operating at about 270 percent of its rated design capacity. The Commission applied for, and received on November 1, 1982, a revised NPDES Permit which allows for controlled discharge directly to Elm Creek. The Medina Plant had two weekly TSS, one monthly TSS, and one weekly fecal coliform violation. All four violations related to surface water discharge which was necessitated by the plant operating beyond its seepage capacity. The last surface discharge to Elm Creek was completed in December, 1984.

#### Future

The Medina Plant is scheduled to be phased out of operation in early 1985, by construction of an interceptor sewer through the City of Plymouth and into the Metropolitan Plant collection system.

### MEDINA PLANT PROCESS UNIT LOADINGS

| Drusmatan                                                                                 |                            | Ann<br>Ave                 | ual<br>rage               | М                          | aximum<br>Month              |                             |
|-------------------------------------------------------------------------------------------|----------------------------|----------------------------|---------------------------|----------------------------|------------------------------|-----------------------------|
| Paralleter                                                                                | 1982                       | 1983                       | 1984                      | 1982                       | 1983                         | 1984                        |
| Wastewater Flow, MGD<br>BOD Loading, lb/day<br>TSS Loading, lb/day<br>COD Loading, lb/day | 0.132<br>135<br>140<br>255 | 0.180<br>200<br>310<br>420 | 0.27<br>240<br>300<br>550 | 0.224<br>360<br>490<br>300 | 0.250<br>390<br>1,100<br>760 | 0.44<br>360<br>890<br>1,210 |
| Primary Aeration Pond                                                                     |                            |                            |                           |                            |                              |                             |
| Detention Time, days<br>BOD, lb/day/1000 cu. ft.                                          | 12.5<br>0.6                | 9<br>0.9                   | 1.1                       | 7.4<br>1.6                 | 7<br>1.8                     | 4<br>1.6                    |
| Final Aeration Pond                                                                       | · ·                        |                            |                           |                            |                              |                             |
| Detention Time, days                                                                      | 12.5                       | 9                          | 6                         | 7.4                        | 7                            | 4                           |
| Seepage Ponds                                                                             |                            |                            |                           |                            |                              |                             |
| Detention Time, days<br>BOD Loading, Ib/acre/day                                          | 72 <sup>1</sup><br>1.8     | 86 <sup>2</sup><br>8 1.7   | 50 <sup>3</sup><br>3      | 42<br>3.7                  | 53 <sup>2</sup><br>3.4       | 263<br>4                    |

<sup>1</sup>Calculated assuming zero percolation and evaporation. <sup>2</sup>Calculated assuming an annual average percolation rate of 70,000 gpd. <sup>3</sup>Calculated assuming an annual average percolation rate of 80,000 gpd.

## MEDINA WASTEWATER TREATMENT PLANT

## FLOW DIAGRAM



in,

#### **NO SURFACE DISCHARGE EVAPORATION AND PERCOLATION**

#### Unit Description

#### Liquid Phase

- 1.
- 2. 3.
- Screening Primary Aerated Pond Final Aerated Pond
- 4. Absorption Pond

#### Legend

| Liquid Flow      |          |
|------------------|----------|
| Solids Transfe   | r        |
| Existing Proce   | ss Units |
| [ Future Process | Units    |



| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | T800<br>mg/1 | TSS<br>mg/1 | pH Range - | KJN<br>mg/1 | Total-P<br>mg/1 | NH3<br>mg/l | COD<br>mg/1 |
|--------------|-------------------------|-------------------|--------------|-------------|------------|-------------|-----------------|-------------|-------------|
| JANUARY      | 0,138                   | 14                | 121          | 130         | 7.6-7.7    | 31.1        | 4.2             | 13.6        | 281         |
| FEBRUARY     | 0.336                   | 14                | 69           | 103         | 7.5-7.7    | 19.3        | 2.9             | 6.3         | 186         |
| MARCH        | 0.316                   | 12                | 135          | 114         | 7.6-7.7    | 23.8        | 4.7             | 10.0        | 223         |
| APRIL        | 0.441                   | 12                | 124          | 242         | 7.5-7.5    | 25.6        | 3.4             | 6.5         | 330         |
| ΜΔΥ          | 0,368                   | 13                | 77           | 80          | 7.5-7.7    | 21.5        | 2.6             | 5.1         | 166         |
| TINE         | 0.374                   | 14                | 65           | 97          | 7.5-7.6    | 18.7        | 2.6             | 5.3         | 165         |
|              | 0,269                   | 14                | 101          | 105         | 7.4-7.5    | 29.1        | 4.1             | 9.9         | 247         |
| AUCUST       | 0,183                   | 16                | 103          | 118         | 7.5-7.6    | 31.9        | 4.1             | 16.0        | 291         |
|              | 0.199                   | 16                | 145          | 150         | 7.5-7.6    | 31.9        | 4.1             | 14.4        | 288         |
|              | 0.170                   | 15                | 107          | 167         | 7.5-7.6    | 28.5        | 4.5             | 11.3        | 228         |
| NONCHOER     | 0.2/0                   | 14                | 122          | 153         | 7.3-7.5    | 26.5        | 4.2             | 11.1        | 250         |
|              | 0.244                   | 13                | 9/           | 124         | 7 5-7 5    | 28.0        | Δ.Δ             | 12.4        | 265         |
|              | U.102                   | 17                | 107          | 171         | 7377       | 20.0        | 3.8             | 10.0        | 241         |
| 1984 AVERAGE | 0.181                   | 14                | 105          | 208         | 7.3-7.7    | 28.7        | 4.9             | 12.8        | 289         |

#### MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: <u>Medina</u>

MONTHLY SUMMARY OF INTERMEDIATE EFFLUENT QUALITY TREATMENT PLANT: \_\_\_\_\_\_\_

|           | TROD         | 0090 | COD  | TCC  | FECAL COLI | TURB | K.IN | NHz  | NO2  | NOz        | Total<br>P | CI2<br>Used | C12<br>Res | DO   | Ha            | Remo       | val      |
|-----------|--------------|------|------|------|------------|------|------|------|------|------------|------------|-------------|------------|------|---------------|------------|----------|
| Month     | 1000<br>ma/l | mo/1 | ma/1 | ma/1 | no/100 ml  | NTU  | mq/1 | mg/1 | mg/1 | mg/1       | mg/1       | lbs         | mg/1       | mg/l | Range         | BOD        | TSS      |
| JANUARY   | 32           | 26   | 77   | 28   | -          | 17   | 17.1 | 8.9  | 0.04 | 0.36       | 2.3        |             |            | 2.6  | 7.4-7.5       | 79         | 78       |
| FEBRUARY  | 13           | 11   | 57   | 22   |            | 12   | 7.4  | 4.0  | 0.06 | 0.93       | 1.3        |             |            | 2.7  | 7.5-7.6       | 85         | 79       |
| MARCH     | - 14         | 14   | 76   | 12   |            | 16   | 9.1  | 5.6  | 0.12 | 0.12       | 1.3        |             |            | 2.4  | 7.4-7.6       | 90         | 89       |
| APRIL     | 9            | 9    | 43   | 12   |            | 8    | 7.0  | 2.0  | 0.10 | 0.22       | 0.7        |             |            | 2.8  | 7.4-7.6       | 93         | 95       |
| MAY       | 16           | 10   | 67   | 18   |            | 9    | 8.4  | 3.0  | 0.12 | 0.18       | 1.4        |             |            | 3.2  | 7.5-7.8       | 87         | 78       |
| JUNE      | 14           | 10   | 50   | 18   |            | 10   | 5.9  | 3.3  | 0.05 | 0.62       | 0.9        |             |            | 2.5  | 7.5-7.5       | 85         | 81       |
| ЭШЦҮ      | 8            | 6    | 48   | 8    |            | 8    | 15.5 | 10.7 | 0.02 | 0.28       | 1.9        |             |            | 2.2  | 7.4-7.5       | 94         | 93       |
| AUGUST    | 6            | 5    | 43   | 7    |            | 7    | 14.6 | 11.0 | 0.11 | 0.35       | 2.2        |             |            |      |               | <b>9</b> 5 | 94       |
| SEPTEMBER | 20           | 7    | 34   | 7    |            | 5    | 13.8 | 9.4  | 0.31 | 4.72       | 3.1        |             |            | 2.4  | 7.5-7.6       | 96         | 96       |
| OCTOBER   | 7            | 5    | 42   | 12   |            | 8    | 5.1  | 3.1  | 0.16 | 7.17       | 2.0        |             |            | 2.5  | 7.4-7.6       | 96         | 93       |
| NOVEMBER  | 27           | 8    | 59   | 36   |            |      | 11.3 | 6.0  | 0.09 | 2.30       | 2.5        |             |            | 2.3  | 7.5-7.6       | 93         | 77       |
| DECEMBER  | 33           | 17   | 42   | 29   |            | 4    | 7.8  | 4.8  | 0.68 | <br>  2.80 | 2.2        |             | <br>       | 2.5  | <br>  7.4-7.5 | 82         | <br>  77 |
| 1984 AVG. | 15           | 10   | 53   | 16   |            | 10   | 10.2 | 6.0  | 0.13 | 1.70       | 1.8        |             | [          | 2.6  | 7.4-7.8       | 89         | 86       |
| 1983 AVG. | 14           | 10   | 59   | 14   |            | 7    | 14.0 | 9.6  | 0.13 | 1.30       | 2.7        |             |            | 3.0  | 7.3-7.7       | 91         | 89       |

#### MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Medina Surface Discharge</u>

| Month     | TBOD<br>mg/1 | C800<br>mg/1 | COD<br>mg/1 | TSS<br>mg/1 | FECAL COLI<br>Geo Mean<br>no/100 m1 | TURB<br>NTU | KJN<br>mg/1 | NH3<br>mg/1 | NO2<br>mg71 | NO <sub>3</sub><br>mg/1 | Total<br>P<br>mg/l | Cl2<br>Used<br>1bs | Cl2<br>Res<br>mg/l | 00<br>mg/1 | pH<br>Range | Remo<br>BOD | val<br>TSS |
|-----------|--------------|--------------|-------------|-------------|-------------------------------------|-------------|-------------|-------------|-------------|-------------------------|--------------------|--------------------|--------------------|------------|-------------|-------------|------------|
| NPDES     | 25           |              |             | 30          | _200                                | 25          |             |             |             |                         |                    |                    |                    |            | 6.5-8.5     |             |            |
| JANUARY   |              |              |             |             |                                     |             |             |             |             |                         |                    |                    |                    | ·          |             |             |            |
| FEBRUARY  |              |              |             |             |                                     |             |             |             |             |                         |                    |                    |                    |            |             |             |            |
| MARCH     | 14           |              |             | 15          | 126                                 | 6.3         |             | 5.0         |             |                         | 1.4                |                    |                    | 4.7        | 7.0-7.8     |             |            |
| APRIL     |              |              |             |             |                                     |             |             |             |             |                         |                    |                    |                    |            |             |             |            |
| MAY       | 9            |              |             | 19          | 6                                   | 6.5         |             | 0.70        |             |                         | 0.77               |                    |                    | 7.4        | 7.5-7.8     |             |            |
| JUNE      |              |              |             |             |                                     |             |             |             |             |                         |                    |                    |                    |            |             |             |            |
| JULY      | 7            |              |             | 9           | 14                                  | 4.9         |             | 6.1         |             |                         | 1.4                |                    |                    | 7.3        | 7.2-7.5     |             |            |
| AUGUST    |              |              |             |             |                                     |             |             |             |             |                         |                    |                    |                    |            |             |             |            |
| SEPTEMBER |              |              |             |             |                                     |             |             |             |             |                         |                    |                    |                    |            |             |             |            |
| OCTOBER   | 5            |              |             | 10          | 4                                   | 3.4         |             | 0.24        |             |                         | 1.4                |                    |                    | 10.2       | 7.8-8.0     |             |            |
| NOVEMBER  | 9            |              |             | 28          | 15                                  | 7.7         |             | 0.74        |             |                         | 1.1                |                    |                    | 9.7        | 7.8-8.0     |             |            |
| DECEMBER  | 4            |              |             | 39          | 4                                   | 8.2         |             | 0.56        |             |                         | 0.56               |                    |                    | 8.2        | 7.8         |             |            |
| 1984 AVG. | 8            |              |             | 20          | 28                                  | 6.2         |             | 2.22        |             |                         | 1.10               |                    |                    | 7.9        | 7.0-8.0     |             |            |
| 1983 AVG. | 11           |              |             | 30          | 15                                  | 6.7         |             | 2.87        |             |                         | 1.5                |                    |                    | 8.6        | 7.4-8.3     |             |            |





#### METROPOLITAN WASTEWATER TREATMENT PLANT

#### Plant History and Description

The existing Metropolitan Plant has been constructed in several stages. The original 1938 primary treatment was designed on the basis of an average annual wastewater flow of 134 mgd. It included pretreatment by screening and grit removal, primary treatment by sedimentation, intermediate treatment by chemical precipitation, effluent filtration and chlorination. The sludge disposal system included chemical conditioning (lime and ferric chloride), vacuum filtration, incineration, and land disposal of ash.

In the early 1960's, construction was initiated on the second stage of the plant. In 1966, the secondary treatment portion of the plant was placed into operation. This expansion was based on an annual average flow of 218 mgd and was designed to operate as a high rate activated sludge process. It consisted of four aeration tanks, three aeration compressors, twelve final sedimentation tanks, additional chlorination facilities, and a new chlorine contact effluent channel. The original sludge disposal system was expanded by construction of new gravity sludge thickeners, sludge holding tanks, and additional chemical conditioning, vacuum filtration and incineration facilities.

Stage Three was placed into operation in 1972. This phase added four more aeration tanks and two more air compressors to provide enough capacity to operate the step aeration activated sludge process. Incremental feed pipes were required as modification to the original aeration tanks. This completed the West Battery activated sludge system. One new incinerator was also constructed during this time to allow additional sludge disposal capacity.

By the mid 1970's, the fourth stage of construction was initiated to meet the following objectives: (1) to protect the plant from flood damage; (2) to maintain secondary treatment during flood periods; (3) to provide a minimum of primary treatment and disinfection for all dry and wet weather flows that reached the plant; (4) to provide secondary treatment capacity based on secondary treatment standards as defined by the 1972 Water Pollution Control Act Ammendments (PL92-500); (5) to provide solids processing capacity to handle the increased sludge generated by the liquid treatment expansion; and (6) to minimize energy consumption for solids processing at the plant.

By 1978, the bulk of the liquid treatment construction program had been completed. Completed projects included the flood protection facility, effluent pumping station, east battery pretreatment (screening and grit removal), east battery primary settling tanks and east battery aeration and final settling tanks.

By 1980, the first portion of the solids processing facilities was completed. These projects included floatation thickening for secondary sludge, sludge storage, thermal conditioning, return liquor treatment facilities and filter press dewatering. The sludge incineration and energy recovery facilities were behind schedule at that time. To meet air pollution control requirements, scrubbers were installed on the F & I No. 1 incinerators. Further, to allow temporary shutdown of F & I No. 2 incinerators, an interim land disposal program was implemented. This required construction of sludge loadout facilities and asphalt sludge storage pads and composting area.

By late 1982, the startup phase had begun for the roll presses and the distributed digital acquisition and control system (computer system). Also during 1982, a new warehouse and maintenance facility was completed, providing the maintenance staff with the necessary facilities to properly and efficiently maintain this extensive and complex treatment facility. Computer-assisted inventory and maintenance systems now optimize storage and retrieval of materials and response time and reporting of maintenance work.

During 1983, the remaining solids processing facilities began operation. These include two new sludge incinerators, four modified F & I No. 2 sludge incinerators, energy recovery facilities, air pollution control equipment, dry ash handling and storage facilities, auxiliary boilers, and sludge dryers. As a result of successful incinerator startup and air compliance testing, a consent decree with the EPA, regarding plant air pollution control problems, was successfully concluded in December, 1983. In addition, the sludge energy recovery facilities began producing steam for plant process and heating uses, significantly reducing the plant's fuel costs.

Operation of the South St. Paul pretreatment facility was ceased in June, 1984. Wastewater is now screened and pumped directly to the Metro Plant.

Operation of the sludge incineration and energy recovery facilities saved \$1.2 million in fuel costs, despite a shutdown for ash handling modifications in early 1984. Conversion to energy recovery as the primary sludge management method, with land application as the backup method, was completed during 1984. Modifications to the dry ash handling system were evaluated and implemented during 1984, eliminating an ash dust problem in the dry ash storage and loadout facility area. Experimentation with ash recycling by using ash as an admixture in commercial asphalt production was continued during 1984.

The new facilities at the Metropolitan Plant have enabled the transition from an inefficient, energy-intensive operation, unable to consistently meet the federal-mandated minimum requirements of secondary treatment standards, to a modern, efficient, flood-protected, energy-conserving operation, projected to meet the minimum standards for the metropolitan area to the year 2000. The massive program for land spreading of sludge, required to satisfactorily dispose of sludge when incineration capacity was inadequate, has now been transformed to a back-up role by the new system of incineration with heat recovery.

Following an extended public hearing, the Minnesota Pollution Control Agency issued a new NPDES permit for the Metropolitan Plant on December 14, 1982. The new permit requires progressively more stringent effluent quality to be achieved. In the summer months of 1985, the monthly discharge BOD standard drops to 18 mg/L and may decrease to as low as 10 mg/L in 1988. Ammonia standards, set to prevent toxic effects to fish, become applicable in the summer months of 1985 (8 mg/L) and may be further reduced to 5 mg/L in 1988. Final limitations for heavy metals (mercury, copper, and cadmium) and cyanide begin in 1986. In June, 1986, residual chlorine in the plant effluent must be removed to satisfactorily protect aquatic life in the Mississippi River. Effluent BOD and ammonia limits scheduled for 1985 were met during the summer months of 1984 when biological ammonia removal was provided in the west secondary treatment facilities. Completion of the East Battery Expansion should provide greater treatment reliability and an industrial pretreatment program will assist in providing compliance with cyanide and metals limitations. Addition of effluent dechlorination facilities are under construction to achieve compliance with future chlorine residual limitations.

#### Performance

Plant flow averaged 222 mgd in 1984, similar to the 225 mgd in 1983. Effluent quality during 1984 was similar to that of 1983. Average effluent BOD and TSS concentrations during 1984 were 10 mg/L and 11 mg/L as compared to 1983 average effluent BOD and TSS values of 10 mg/L and 9 mg/L. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

Effluent Concentration, mg/1

|       |      | 50% of | Time |      |      | 75% of | Time |               | 90% of Time |      |      |      |  |
|-------|------|--------|------|------|------|--------|------|---------------|-------------|------|------|------|--|
|       | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1 <b>9</b> 84 | 1981        | 1982 | 1983 | 1984 |  |
| * BOD | 14   | 10     | 8    | 8    | 24   | 15 -   | 13   | 12            | 36          | 22   | 19   | 17   |  |
| TSS   | 10   | 7      | 7    | 8    | 24   | 12     | וו   | 12            | 47          | 21   | 17   | 19   |  |

\*1982 through 1984 values represent CBOD.

#### Future

The Metropolitan Plant will continue to be the largest treatment facility in the Metropolitan Disposal System. Construction of additional aeration and final sedimentation tanks for the East Battery activated sludge system is underway and is expected to be completed in early 1985. Disinfection improvements and dechlorination to meet a chlorine residual standard are scheduled for completion by spring of 1986. Retrofit of existing facilities to be compatible with the distributed digital acquisition and control system, and rehabilitation of older plant systems, such as west pretreatment, west primary, and west secondary, are scheduled for construction during 1985-1988.

## METROPOLITAN PLANT PROCESS UNIT LOADINGS

| Parameter                                                                                                      | 10.02                                  | Annual<br>Average                      | 1084                                   | M<br>1982 -                            | laximum<br>Month<br>1983               | 1984                                   |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Wastewater Flow, mgd<br>Flow-East, mgd (l)<br>Flow-West, mgd (2)<br>BOD Loading, lb/day<br>TSS Loading, lb/day | 208<br>176<br>32<br>350,000<br>420,000 | 225<br>194<br>31<br>330,000<br>360,000 | 222<br>179<br>43<br>330,000<br>370,000 | 239<br>204<br>35<br>440,000<br>600,000 | 285<br>238<br>47<br>390,000<br>460,000 | 285<br>234<br>65<br>370,000<br>490,000 |
| Primary Sludge, dtpd<br>Secondary Sludge, dtpd<br>Total Sludge (with recycle), dtpd                            | 184<br>114<br>298                      | 197<br>103<br>300                      | 227<br>96<br>323                       | 220<br>140<br>360                      | 235<br>118<br>353                      | 240<br>160<br>400                      |
| Bar Screens                                                                                                    | •                                      |                                        |                                        |                                        |                                        |                                        |
| East Battery<br>No. of Units<br>Unit Flow, mgd<br>West Battery<br>No. of Units                                 | 4.<br>4<br>0.                          | 2 5.9<br>2 33<br>6 0.9                 | 9 5.2<br>3 34<br>5 0.7                 | 4.8<br>42<br>0.7                       | 3 6.7<br>2 36<br>7 0.7                 | 6.3<br>37<br>1.3                       |
| Unit Flow, mgd                                                                                                 | 5                                      | 0 69                                   | 9 61                                   | 50                                     | ) 72                                   | 40                                     |
| <u>Grit Tanks</u>                                                                                              | ,                                      |                                        |                                        |                                        |                                        |                                        |
| East Battery<br>No. of Units<br>Hor. Velocity, fps<br>Unit Flow, mgd                                           | 4.<br>0.<br>4                          | 2 5.<br>4 0.<br>2 3                    | 9 5.2<br>3 0.3<br>3 34                 | 4.8<br>0.4<br>4                        | 3 6.7<br>4 0.3<br>2 36                 | 6.3<br>0.3<br>38                       |
| West Battery<br>No. of Units<br>Hor. Velocity, fps(3)<br>Unit Flow, mgd                                        | ].<br>].<br>2                          | 2 0.<br>0 1.<br>5 3                    | 9 1.4<br>0 1.0<br>5 31                 | 1.0<br>1.0<br>2!                       | 4 1.3<br>0 1.0<br>5 36                 | 2.5<br>1.0<br>20                       |
| Primary Sedimentation                                                                                          |                                        |                                        |                                        |                                        |                                        |                                        |
| East Battery<br>No. of Units<br>Detention Time, hr.<br>Overflow Rate, gpd/sq. ft.                              | 7.<br>3.<br>93                         | 9 7.<br>0 2.<br>0 1,02                 | 9 7.7<br>7 2.9<br>0 980                | 8.<br>2.<br>1,06                       | 0 8.0<br>6 2.3<br>0 1,240              | 8.0<br>8 2.3<br>9 1,220                |
| West Battery<br>No. of Units<br>Detention Time, hr.<br>Overflow Rate, gpd/sq. ft.                              | 5.<br>8.<br>35                         | 6 4.<br>0 7.<br>0 39                   | 9 5.8<br>1 6.5<br>0 470                | 4.<br>6.<br>44                         | 9 5.9<br>4 5.7<br>0 490                | 5.6<br>5.0<br>560                      |
| Activated Sludge-Aeration                                                                                      |                                        |                                        | •                                      |                                        |                                        |                                        |
| East Battery<br>Flow, mgd<br>No. of Units<br>F:M Ratio, day-1                                                  | 9<br>3.<br>0,2                         | 97 9<br>.8 3.<br>22 0.2                | 08 102<br>6 3.2<br>20 0.24             | 11<br>4.<br>0.2                        | 2 110<br>0 3.9<br>7 0.2                | 5 123<br>9 3.5<br>1 0.20               |

## METROPOLITAN PLANT PROCESS UNIT LOADINGS (cont.)

| Daramater                                                                                                                                                                                                                             |                                               | Annual<br>Average                             |                                                 | M                                             | laximum<br>Month                              |                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------|
| Faraneter                                                                                                                                                                                                                             | 1982                                          | 1983                                          | 1984                                            | 1982 -                                        | <u>1983</u>                                   | 1984                                            |
| Activated Sludge-Aeration (Cont.)                                                                                                                                                                                                     |                                               |                                               |                                                 | <u></u>                                       |                                               |                                                 |
| BOD Load, lb/day/1000 cu. ft.<br>Air Use, cu. ft./lb. BOD removed<br>Detention Time, hr.                                                                                                                                              | 47<br>1,700<br>4.7                            | 40<br>2,590<br>4.6                            | 52<br>1,830<br>3.5                              | 62<br>2,600<br>4.3                            | 41<br>1,820<br>3.7                            | 39<br>2,320<br>3.3                              |
| Flow, mgd<br>No. of Units<br>F:M Ratio, day-1<br>BOD Load, 1b/day/1000 cu. ft.<br>Air Use, cu. ft./1b. BOD removed<br>Detention Time, hr.                                                                                             | 111<br>4.0<br>0.23<br>49<br>1,800<br>4.3      | 127<br>4.2<br>0.35<br>46<br>2,120<br>3.0      | 120<br>4.4<br>0.39<br>49<br>1,870<br>2.9        | 127<br>4.3<br>0.30<br>59<br>2,100<br>4.0      | 169<br>5.0<br>0.33<br>38<br>1,580<br>3.2      | 162<br>6.0<br>0.32<br>34<br>2,420<br>3.5        |
| Final Sedimentation                                                                                                                                                                                                                   |                                               |                                               |                                                 |                                               |                                               |                                                 |
| East Battery<br>No. of Units<br>Detention Time, hr.<br>Overflow Rate, gpd/sq. ft.<br>Solids Load, lb./sq. ft./day<br>West Battery<br>No. of Units<br>Detention Time, hr.<br>Overflow Rate, gpd/sq. ft.<br>Solids Load lb /sg. ft./day | 8.8<br>3.5<br>560<br>10<br>11.6<br>4.0<br>490 | 8.3<br>3.5<br>630<br>10<br>11.4<br>3.4<br>590 | 9.0<br>3.1<br>690<br>11.5<br>11.5<br>3.2<br>640 | 9.0<br>3.1<br>630<br>14<br>12.0<br>3.6<br>540 | 7.0<br>2.8<br>720<br>11<br>11.3<br>2.9<br>680 | 8.7<br>2.6<br>800<br>12.3<br>11.6<br>2.7<br>740 |
| Chlorination                                                                                                                                                                                                                          |                                               | 10                                            | 1010                                            |                                               |                                               | 1242                                            |
| Chlorine Use, lb/day <sup>(4)</sup><br>Chlorine Dose, mg/L<br>Contact Time, minutes                                                                                                                                                   | 8,500<br>4.6<br>28                            | 12,200<br>6.1<br>25                           | 10,400<br>4.7<br>25                             | 14,000<br>7.3<br>24                           | 13,600<br>6.8<br>21                           | 15,300<br>6.6<br>20                             |
| Gravity Thickening                                                                                                                                                                                                                    |                                               |                                               |                                                 |                                               |                                               |                                                 |
| Solids Loading, lb./sq. ft./day<br>Overflow Rate, gpd/sq. ft.<br>Sludge Concentration, % TS(5)                                                                                                                                        | 20<br>430<br>6.5                              | 19<br>450<br>7.4                              | 19<br>505<br>7.0                                | 26<br>470<br>6.4                              | 23<br>530<br>8.8                              | 22<br>600<br>7.8                                |
| Flotation Thickening                                                                                                                                                                                                                  |                                               |                                               |                                                 |                                               |                                               |                                                 |
| No. of Units<br>Solids Loading, lb./sq. ft./day<br>Air:Solids Ratio<br>Sludge <u>C</u> oncentration, % TS(6)                                                                                                                          | 10.9<br>9.4<br>0.03<br>3.3                    | 9.5<br>15.2<br>0.04<br>3.6                    | 11.5<br>9.2<br>0.04<br>3.5                      | 12.7<br>11<br>0.03<br>3.0                     | 13.1<br>20.8<br>0.05<br>3.8                   | 11.6<br>13.0<br>0.02<br>3.3                     |

## METROPOLITAN PLANT PROCESS UNIT LOADINGS (cont.)

|                                                                                                             |                        | Annual                   |                        |                         | Maximum                  |                        |
|-------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|------------------------|-------------------------|--------------------------|------------------------|
| Parameter                                                                                                   | 1982                   | <u>1983</u>              | 1984                   | <u>1982</u>             | <u>1983</u>              | 1984                   |
| Thermal Conditioning                                                                                        |                        |                          |                        |                         |                          |                        |
| No. of Units<br>Feed Concentration, % TSS<br>TSS Solubilization, %<br>Decant Tank Underflow, % TSS          | 3.0<br>3.9<br>42<br>14 | 3.3<br>4.5<br>39<br>14   | 3.7<br>4.1<br>36<br>14 | 3.6<br>4.1<br>46<br>14  | 3.6<br>6.8<br>38<br>15   | 4.8<br>3.7<br>38<br>14 |
| Chemical Conditioning                                                                                       |                        |                          |                        |                         |                          |                        |
| Vacuum Filters (F & I No. 1)<br>Lime Dose, % of dss<br>FeCL3 Dose, % of dss<br>Vacuum Filters (F & I No. 2) | 9<br>2.6               |                          |                        | 10<br>3.1               |                          |                        |
| Lime Dose, % of dss<br>FeCL <sub>3</sub> Dose, % of dss                                                     | 27<br>11               | 29<br>13                 |                        | 38<br>15                |                          |                        |
| Roll Press<br>Dry Polymer, lb/day<br>Dry Polymer, lb/tds                                                    |                        | 1,400<br>13              | 2,200<br>15            |                         | 2,200<br>18              | 2,600<br>17            |
| <u>Vacuum Filters</u> <sup>7</sup>                                                                          |                        |                          |                        |                         |                          |                        |
| F & I No. 1<br>No. of Units<br>Filter Rate, lb./sq. ft./day<br>Cake Solids, % TS<br>Dry Sludge, tpd         | 4.4<br>3.3<br>28<br>87 |                          |                        | 5.0<br>3.6<br>30<br>108 |                          |                        |
| F & I No. 2<br>No. of Uuits<br>Filter Rate, lb./sq. ft./day<br>Cake Solids, % TS<br>Dry Sludge, tpd         | 5.6<br>2.0<br>25<br>90 | 1.1<br>1.1<br>24.4<br>11 |                        | 6.9<br>1.9<br>26<br>110 | 3.9<br>28.7<br>53        |                        |
| Roll Presses                                                                                                |                        |                          |                        |                         |                          |                        |
| No. of Units<br>Dry Sludge, tpd<br>Cake Solids, % TS                                                        |                        | 1.6<br>108<br>32.1       | 2.4<br>150<br>34.2     |                         | 2.5<br>145<br>31.2       | 2.8<br>190<br>37.8     |
| Filter Presses                                                                                              |                        |                          |                        |                         |                          |                        |
| No. of Units<br>Dry Sludge, tpd <sup>8</sup><br>Cake Solids, % TS <sup>9</sup>                              | 2.6<br>41<br>48        | 3 <b>.4</b><br>75<br>42  | 4.0<br>69<br>38        | 3.1<br>87<br>45         | <b>4.</b> 2<br>110<br>48 | 4.8<br>82<br>41        |

#### METROPOLITAN PLANT PROCESS UNIT LOADINGS (cont.)

| Parameter                                                                                                  | <u>1982</u>             | Annual<br><u>Average</u><br><u>1983</u> | 1984                     | <u>1982</u>              | Maximum<br>Month<br>1983 | <u>1984</u>              |
|------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Incineration <sup>10</sup>                                                                                 |                         |                                         |                          |                          |                          | e e e                    |
| No. of Units per day]]<br>Auxiliary Fuel Use, MMBtu/tds<br>Dry Sludge, tpd<br>Wet Loading, lb./sq. ft./day | 2.0<br>6.5<br>73<br>6.0 | 1.2<br>1.6<br>89<br>8.7                 | 2.6<br>0.7<br>157<br>6.9 | 1.7<br>5.8<br>108<br>6.5 | 158                      | 3.3<br>1.1<br>208<br>7.0 |

#### NOTES:

1 Flow to East Pretreatment and East Primary. 2 Flow to West Pretreatment and West Primary. 3 Velocity in West Battery Grit Tank is gate controlled. 4 Average for months when disinfection is required (i.e., March - October). 5 Sludge concentration in Gravity Thickener underflow. 6 Sludge concentration in Flotation Thickener Sludge. 7 Vacuum filters ran only 8 months in 1983, and were not used in 1984. Maximum month when most dry cake was produced. 8 9 Maximum month cake solids production as % TS. 10 F & I No. 1 not used since 1982. 11 Incinerators shut down March 2 - April 6, 1984.

## METROPOLITAN WASTEWATER TREATMENT PLANT **FLOW DIAGRAM**



#### Liquid Phase

- 1. Screening
- Grit Removal 2.
- **Primary Sedimentation** 3. 4. Activated Sludge
- Final Sedimentation 5.
- 6. Chlorination
- 7.
- 8.
- Gravity Thickening Holding Tank Vacuum Filtration 9.
- Incineration 10.
- Concentration 11.
- Vacuum Filtration 12.
- 13. Incineration

- Solid Phase
- Ash Pond 14.
- 15. Flotation Thickening
- Sludge Storage 16.
- Thermal Conditioning 17.
- Decant Thickening 18.
- 19. Plate & Frame Press
- 20. North Loadout
- South Loadout 21. Return Liquors Bio. 22. 23. Return Liquors P-Chem. Vacuum Filter 24. 25. Incinerator 26. Roll Press Silos 27.



| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | TBOD<br>mg/1 | TSS<br>mg/1 | pH Range | KJN<br>mg/1 | Total-P<br>mg/1 | NH3<br>mg/l | COD<br>mg/l |
|--------------|-------------------------|-------------------|--------------|-------------|----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 186                     | 12                | 186          | 190         | 5.6-9.2  | 29.6        | 5.3             | 14.4        | 413         |
| FEBRUARY     | 231                     | 12                | 180          | 208         | 6.4-9.6  | 22.1        | 4.0             | 10.6        | 373         |
| MARCH        | 221                     | 12                | 196          | 219         | 6.7-9.4  | 26.5        | 4.4             | 12.9        | 422         |
| APRIL        | 230                     | 13                | 170          | 213         | 6.9-9.4  | 23.1        | 4.1             | 11.3        | 383         |
| MAY          | 239                     | 14                | 155          | 157         | 6.8-8.9  | 19.9        | 3.5             | 9.0         | 324         |
| JUNE         | 285                     | 17                | 130          | 158         | 6.2-8.9  | 16.8        | 2.8             | 6.6         | 297         |
| JULY         | 223                     | 19                | 148          | 196         | 6.0-9.3  | 18.8        | 3.6             | 6.0         | 349         |
| AUGUST       | 226                     | 21                | 193          | 258         | 6.2-8.5  | 18.3        | 3.4             | 8.4         | 401         |
| SEPTEMBER    | 215                     | 20                | 166          | 174         | 6.1-8.6  | 21.3        | 3.8             | 9.1_        | 345         |
| OCTOBER      | 231                     | 18                | 193          | 221         | 5.6-9.1  | 23.4        | 4.1             | 9.8         | 405         |
| NOVEMBER     | 191                     | 16                | 197          | 198         | 6.5-9.7  | 27.8        | 4.8             | 11.6        | 432         |
| DECEMBER     | 190                     | 13                | 196          | 180         | 6.4-9.5  | 24.8        | 3.8             | 13.3        | 411         |
| 1984 AVERAGE | 222                     | 16                | 176          | 198         | 5.6-9.7  | 22.8        | 4.0             | 10.3        | 379         |
| 1983 AVERAGE | 225                     | 17                | 174          | 192         | 5.3-11.1 | 24.3        | 4.4             | 13.2        | 375         |

#### MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Metropolitan

#### MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Metropolitan</u>

|           | TBOD        | CBOD              | COD | TSS                 | FECAL COLI<br>Geo Mean | TURB | KJN<br>Rg/l | NH3  | ND2  | NO3  | Total<br>P<br>mm/1 | C12*<br>Used<br>1bs | C12<br>Res | D0  | pH<br>Raoge | Remo<br>BDD | val<br>TSS |
|-----------|-------------|-------------------|-----|---------------------|------------------------|------|-------------|------|------|------|--------------------|---------------------|------------|-----|-------------|-------------|------------|
| NPDES     | 100/1<br>24 | <u>mq/1</u><br>24 |     | <u>1114/1</u><br>30 | 200                    |      |             | +    |      |      |                    |                     |            | #   | 6.5-8.5     |             |            |
| JANUARY   | 22          | 12                | 81  | 9                   |                        | 4    | 23.9        | 16.2 | 0.36 | 3.63 | 2.5                |                     |            | 0.3 | 7.0-7.7     | 93          | 95         |
| FEBRUARY  | 19          | 9                 | 77  | 8                   |                        | 4    | 17.8        | 10.8 | 0.36 | 3.48 | 1.7                | 3387*               | 0.6*       | 0.5 | 6.9-8.1     | 95          | 96         |
| MARCH     | 15          | 10                | 101 | 8                   | 3                      | 5    | 23.1        | 15.4 | 0.62 | 0.71 | 2.0                | 7252                | 2.0        | 3.3 | 7.1-8.0     | 95          | 96         |
| APRIL     | 19          | 9                 | 79  | 9                   | 5                      | 5    | 21.6        | 14.6 | 0.82 | 1.04 | 1.9                | 6833                | 1.8        | 8.0 | 7.2-7.8     | 95          | 96         |
| MAY       | 25          | 10                | 60  | 7                   | 11                     | 5    | 17.8        | 10.2 | 1.44 | 1.18 | 1.5                | 7568                | 1.7        | 5.9 | 7.3-7.9     | 94          | 96         |
| JUNE      | 27          | 16                | 83  | 14                  | 59                     | 8    | 11.5        | 6.1  | 1.73 | 1.94 | 1.7                | 11160               | 1.7        | 7.6 | 7.3-7.7     | 88          | 91         |
| JULY      | 18          | 9                 | 66  | 13                  | 46                     | 6    | 8.7         | 3.5  | 0.77 | 5.68 | 2.0                | 8923                | 1.3        | 6.3 | 7.3-7.8     | 94          | 93         |
| AUGUST    | 15          | 8                 | 62  | 11                  | 127                    | 6    | 9.4         | 4.9  | 0.70 | 6.11 | 2.1                | 15329               | 2.5        | 5.6 | 6.9-7.6     | 96          | 96         |
| SEPTEMBER | 16          | 9                 | 66  | 16                  | 60                     | 8    | 11.2        | 5.5  | 0.51 | 7.30 | 2.5                | 13527               | 3.2        | 5.7 | 7.1-7.7     | 94          | 91         |
| OCTOBER   | 20          | 11                | 74  | 14                  | 34                     | 8    | 15.4        | 9.2  | 0.80 | 2.10 | 1.9                | 11784               | 3.2        | 4.6 | 6.8-8.0     | 94          | 93         |
| NOVEMBER  | 20          | 10                | 83  | 9                   |                        | 4    | 19.6        | 11.2 | 0.99 | 2.70 | 2.0                |                     |            | 2.2 | 7.2-7.8     | <b>9</b> 5  | 96         |
| DECEMBER  | 21          | n                 | 87  | 10                  |                        | 5    | 16.5        | 11.0 | 0.51 | 5.19 | 2.0                |                     |            | 2.9 | 7.1-7.6     | 94          | 95         |
| 1984 AVG. | 20          | 10                | 78  | 11                  | 43                     | 6    | 16.3        | 9.9  | 0.79 | 3.42 | 2.0                | 10297               | 2.2        | 4.4 | 6.8-8.1     | 94          | 95         |
| 1983 AVG. | 19          | 10                | 74  | 9                   | 25                     | 5    | 16.3        | 11.7 | 0.87 | 3.08 | 2.2                | 12120               | 2.9        | 3.4 | 7.0-8.2     | 94          | 95         |

\*Values represent a 3 day average for Feburary and are not included in the 1984 average. \*\*For disinfection only.

#Dissolved oxygen limitation of 7 mg/l for river flows less than 7,000 cfs and river D.O. values less than 6 mg/l
upstream or less than 5.5 mg/l downstream for two consecutive sample days, during the period of June-September.









| MONTH     | Ըս<br>mg/1 | Cr<br>mg/l | Zn<br>mg/l | Pb<br>mg/l | Cd<br>mg/l | Hg<br>ug/1 | CN<br>mg/l | As<br>ug/l | PCB<br>ug/l | Ni<br>mg/l | Phenol<br>ug/1 | Fe<br>mg/1 |
|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|----------------|------------|
| January   | 0.22       | <0.18      | 0.41       | <0.06      | 0.013      | <0.30      | <0.044     | <1.3       | 0.04        | <0.13      | 46.8           | 1.23       |
| February  | 0.22       | <0.19      | 0.36       | <0.08      | 0.014      | <0.30      | <0.063     | 1.9        | 0.04        | <0.12      | 58.0           | 3.12       |
| March     | 0.24       | 0.19       | 0.38       | <0.07      | 0.014      | <0.30      | <0.079     | 1.4        | 0.03        | 0.14       | 57.6           | 1.91       |
| April     | 0.24       | <0.20      | 0.46       | <0.07      | 0.011      | <0.40      | <0.047     | 1.9        | 0.05        | 0.13       | 17.5           | 1.60       |
| May       | 0.19       | <0.16      | <0.34      | <0.06      | 0.010      | <0.30      | <0.040     | 1.8        | 0.04        | <0,10      | 24.0           | 1,80       |
| June      | 0.17       | <0.15      | 0.37       | <0.07      | 0.009      | <0.20      | <0.060     | 1.9        | 0.04        | <0.10      | 38.0           | 2.68       |
| July      | 0.21       | <0.15      | 0.40       | <0.08      | 0.044      | <4.30      | <0.055     | 1.4        | 0,07        | <0.11      | 35.0           | 1.73       |
| August    | 0.28       | <0.17      | 0.46       | <0.08      | 0.014      | <0.50      | <0.054     | 2.3        | 0.07        | <0.11      | 28.0           | 1.90       |
| September | 0.21       | <0.15      | 0.42       | <0.06      | 0.010      | <0.30      | <0.068     | 1.4        | 0.07        | <0.10      | 42.8           | 1.62       |
| October   | 0.22       | 0.18       | 0.48       | <0,05      | 0.013      | 0.40       | <0.058     | 1.7        | 0.06        | <0,20      | 35.6           | 1.73       |
| November  | 0.25       | 0.16       | 0.47       | <0.06      | 0,009      | <0.40      | <0.059     | 1.4        | 0,06        | <0.13      | 8.2            | 1.52       |
| December  | 0.19       | <0.14      | 0.30       | <0.06      | 0.010      | <0.60      | <0.050     | 1.2        | 0.07        | <0.10      | 72.0           | 1.43       |
| 1984 Avg. | 0,22       | <0.17      | 0.40       | <0.06      | 0.014      | <0.70      | <0.056     | <1.6       | 0.05        | <0.12      | 38.6           | 1.86       |
| 1983 Avg. | 0.20       | <0.18      | <0.36      | <0.07      | 0.015      | <0.55      | <0.071     | <1.5       | 0.40        | <0.12      | 33.8           | 1.70       |

#### 1984 INFLUENT DATA TREATMENT PLANT <u>Metropolitan</u>

| the second se |             |            |            |                                                                                                                                                      |             |                                                                                                                               |         |              |             |            |                |            | 4 |
|-----------------------------------------------------------------------------------------------------------------|-------------|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------|---------|--------------|-------------|------------|----------------|------------|---|
| Month                                                                                                           | Cu*<br>mg/l | Cr<br>mg/l | Zn<br>mg/l | Pb<br>mg/1                                                                                                                                           | Cd*<br>mg/1 | Hg*<br>ug/l                                                                                                                   | CN*<br> | As<br>ug/1   | PC8<br>ug/1 | Ni<br>mg/l | Phenol<br>ug/1 | Fe<br>mg/1 |   |
| NPDES<br>Limit**                                                                                                | 0.14        |            |            |                                                                                                                                                      | 0.030       | 4.00                                                                                                                          | 0.193   | •            |             |            |                |            | ļ |
| January                                                                                                         | 0.03        | <0.05      | 0.11       | <0.05                                                                                                                                                | 0.002       | <0.20                                                                                                                         | <0,020  | 1.8          | 0.01        | 0.12       | 15.9           | 0.16       | ļ |
| February                                                                                                        | 0.03        | <0.06      | 0.13       | <0.05                                                                                                                                                | 0.003       | <0.20                                                                                                                         | <0.040  | 1.6          | 0.01        | 0.11       | 7.9            | 0.25       | ļ |
| March                                                                                                           | 0.04        | <0.05      | 0,11       | <0.06                                                                                                                                                | 0.002       | <0.20                                                                                                                         | <0.030  | 2.1          | <0.01       | 0.11       | 5.9            | 0.15       | ļ |
| April                                                                                                           | 0.03        | <0.05      | 0.10       | <0.05                                                                                                                                                | 0.001       | <0,20                                                                                                                         | <0.030  | <1 <b>.2</b> | 0.02        | 0.10       | 4.5            | 0.15       | ļ |
| May                                                                                                             | 0.03        | <0.05      | 0.11       | <0.05                                                                                                                                                | 0.002       | <0.20                                                                                                                         | <0.020  | <1.0         | 0.01        | <0.08      | 30.2           | 0.16       | ļ |
| June                                                                                                            | 0.03        | <0.05      | 0.11       | <0.05                                                                                                                                                | 0.002       | <0.20                                                                                                                         | <0.020  | 1.8          | 0.01        | 0.08       | 4.7            | 0.38       | l |
| July                                                                                                            | 0.02        | <0.05      | 0.11       | <0.05                                                                                                                                                | 0.006       | <0.20                                                                                                                         | <0.020  | 2.0          | 0.03_       | 0.08       | 3.5            | 0.16       |   |
| August                                                                                                          | 0.03        | <0.05      | 0.11       | <0.05                                                                                                                                                | 0.005       | <0.20                                                                                                                         | <0.030  | <2.2         | 0.03        | 0.08       | 5.0            | 0.13       |   |
| Sentember                                                                                                       | 0.03        | <0.05      | n.13       | <0.05                                                                                                                                                | 0.004       | <0.20                                                                                                                         | <0.030  | 1.8          | 0.03        | 0.08       | <u></u>        | 0.66       |   |
| Detaber                                                                                                         | 0.02        | (0.05      | 0.12       | <0.05                                                                                                                                                | 0.003       | <0.20                                                                                                                         | 0.030   | 1.4          | 0.02        | 0.09       | 10.3           | 0.18       |   |
| Nevember                                                                                                        | 0.02        | (0.05      | 0.10       | <n.05< td=""><td>0.002</td><td>&lt;0.20</td><td>&lt;0.020</td><td>&lt;1.1</td><td>0.02</td><td>0.09</td><td>56.6</td><td>0.23</td><td>I</td></n.05<> | 0.002       | <0.20                                                                                                                         | <0.020  | <1.1         | 0.02        | 0.09       | 56.6           | 0.23       | I |
| December                                                                                                        | 0.02        | 20.05      | 0.10       | <0.05                                                                                                                                                | 0.002       | <0.20                                                                                                                         | <0.020  | 1.3          | <0.01       | 0.09       | 15.5           | 0.14       | I |
| December                                                                                                        | 0.02        | 20.05      | 0.11       | 20.05                                                                                                                                                | 0.003       | <n.20< td=""><td>&lt;0.026</td><td>&lt;1.6</td><td>&lt;0.02</td><td>&lt;0.09</td><td>14.5</td><td>0.23</td><td>Į</td></n.20<> | <0.026  | <1.6         | <0.02       | <0.09      | 14.5           | 0.23       | Į |
| 1983 Avg.                                                                                                       | 0.03        | <0.05      | 0.12       | <0.05                                                                                                                                                | 0.002       | <0.34                                                                                                                         | <0.068  | <1.2         | 0.13        | <0.09      | 7.3            | 0.21       |   |

# 1984 EFFLUENT DATA TREATMENT PLANT <u>Metropolitan</u>

\*Monthly average reported values are monthly medians for Copper, Cadmium, Mercury, and Cyanide. The remaining parameters are monthly arithmetic averages. \*\* Limits are median values.

#### ROSEMOUNT WASTEWATER TREATMENT PLANT

#### Plant History and Description

The Rosemount Plant was designed by Banister, Short, Elliot, Hendrickson, and Associates and constructed in 1973. The plant has a design capacity of 0.6 mgd.

Liquid treatment consists of solids-contact clarification, dual media filtration, activated carbon column absorption and chlorination. Plant effluent is discharged to the Spring Lake area of the Mississippi River.

Solids processing facilities consist of sludge storage and sludge hauling to the Metropolitan Plant Interceptor System. The plant is presently operating at about 60 percent of capacity and subject to secondary treatment limits, and a phosphorus limit of 1 mg/L.

#### Performance

Plant flow averaged 0.37 mgd in 1984, slightly higher than 0.34 mgd in 1983. Average plant effluent quality was 18 mg/L BOD, 3 mg/L TSS and 0.2 mg/L P. Plant performance was good throughout the year with two NPDES Permit violations; one daily pH, and one monthly BOD. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

#### Effluent Concentration, mg/1

|       | 50% of Time |      |      |      |      | 75% of | Time |      | 90% of Time |      |      |      |  |
|-------|-------------|------|------|------|------|--------|------|------|-------------|------|------|------|--|
|       | 1981        | 1982 | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1981        | 1982 | 1983 | 1984 |  |
| * BOD | 12          | 15   | 13   | 16   | 15   | 18     | 18   | 21   | 19          | 24   | 29   | 30   |  |
| TSS   | 1           | 1    | 1    | 2    | 2    | 2      | 2    | 3    | 3           | 4    | 4    | 5    |  |

\*1982 through 1984 values represent CBOD.

#### Future

The plant was designed as a demonstration project and uses equipment intensive unit processes. As a result, the plant's useful life could be expected to be on the order of 10 to 15 years. For this reason, the plant is nearing the end of its useful life. The 201 Facility Plan recommended replacement of the physical-chemical facility with a biological treatment plant sometime during the 1980's. It is expected that a replacement plant will be constructed in the late 1980's.

## ROSEMOUNT PLANT PROCESS UNIT LOADINGS

| Deventer                                                                                                                |                                   | Annual<br>Average                 |                                 | M                                 | laximum<br>Month                    |                                   |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|
| Parameter                                                                                                               | <u>1982</u>                       | <u>1983</u>                       | 1984                            | 1982                              | 1983                                | <u>1984</u>                       |
| Wastewater Flow, mgd<br>BOD Loading, 1b/day<br>TSS Loading, 1b/day<br>Phosphorus Loading, 1b/day<br>COD Loading, 1b/day | 0.31<br>440<br>620<br>19<br>1,100 | 0.34<br>460<br>680<br>21<br>1,200 | 0.37<br>390<br>400<br>20<br>990 | 0.40<br>490<br>700<br>21<br>1,200 | 0.38<br>520<br>1,300<br>29<br>1,400 | 0.40<br>510<br>470<br>26<br>1,160 |
| Solids Contact Clarifier (One in Use)                                                                                   |                                   |                                   |                                 |                                   |                                     |                                   |
| Surface Loading Rate, gpd/sq. ft.<br>TSS Removal, %<br>Phosphorus Removal, %<br>COD Removal, %                          | 700<br>89<br>93<br>77             | 700<br>96                         | 750<br>94                       | 900<br>92<br>95<br>80             | 770<br>98                           | 810<br>88                         |
| Dual Media Filters (Four in Use)                                                                                        | . •                               |                                   |                                 |                                   |                                     |                                   |
| Surface Loading Rate, gpm/sq.ft.<br>TSS Removal, %                                                                      | 1.1<br>59                         | 1.1                               | 1.2                             | 1.4<br>80                         | 1.3                                 | 1.4                               |
| Activated Carbon Columns (One Train)                                                                                    |                                   |                                   | . *                             |                                   |                                     |                                   |
| Surface Loading Rate, gpd/sq.ft.<br>COD Loading Rate, lb/day<br>COD Removal, %<br>TSS Removal, %                        | <b>4.3</b><br>190<br>28<br>82     | 4.7<br>220                        | 5.1<br>190                      | 5.6<br>290<br>60<br>85            | 5.2<br>280                          | 5.5<br>380                        |
| Sludge Production                                                                                                       |                                   |                                   |                                 |                                   |                                     |                                   |
| Volume, gpd<br>Mass, lb/day<br>Concentration, % TS                                                                      | 4,000<br>3,400<br>10              | 5,000<br>4,000                    | 5,100<br>4,100                  | 4,800<br>4,000<br>12              | 6,300<br>4,600                      | 6,600<br>5,800                    |

### **ROSEMOUNT WASTEWATER TREATMENT PLANT**

**FLOW DIAGRAM** 


| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | T800<br>mg/1 | TSS<br>mg/1 | pH Range | KJN<br>mg/l | Total-P<br>mg/l | NH3<br>mg/1 | COD<br>mg/1 |
|--------------|-------------------------|-------------------|--------------|-------------|----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 0.37                    | 13                | 131          | 141         | 6.8-7.8  | 45.6        | 6.8             | 27.3        | 328         |
| FEBRUARY     | 0.40                    | 12                | . 105        | 113         | 6.7-7.7  | 41.1        | 6.0             | 22.2        | 324         |
| MARCH        | 0.39                    | 11                | 119          | 109         | 7.0-8.2  | 38.5        | 5.7             | 22.3        | 305         |
| APRIL        | 0.37                    | 11                | 113          | 106         | 7.2-8.0  | 36.3        | 5.4             | 23.2        | 311         |
| MAY          | 0.37                    | 12                | 142          | 148         | 7.1-7.7  | 40.8        | 6.0             | 23.0        | 333         |
| JUNE         | 0.34                    | 14                | 113          | 132         | 7.1-7.8  | 34.8        | 5.4             | 20.0        | 291         |
| Y BIL        | 0.34                    | 16                | 102          | 161         | 7.0-7.8  | 38.9        | 5.4             | 21.0        | 322         |
| AUGUST       | 0,36                    | 17                | 116          | 140         | 7.1-7.9  | 40.5        | 5.9             | 20.8        | 317         |
| SEPTEMBER    | 0,39                    | 18                | 137          | 119         | 7.2-8.9  | 40.9        | 6.5             | 24.2        | 311         |
|              | 0, 38                   | 17                | 118          | 92          | 7.0-8.3  | 44.1        | 6.8             | 21.2        | 285         |
|              | 0, 37                   | 16                | 165          | 144         | 7.3-9.0  | 44.8        | 8.4             | 25.8        | 376         |
| DECEMBER     | 0, 35                   | 15                | 159          | 140         | 7.3-8.1  | 39.1        | 7.7             | 25.7        | 365         |
| 1984 AVERACE | 0, 37                   | 14                | 127          | 129         | 6.7-9.0  | 40.6        | 6.4             | 22.9        | 322         |
| 1983 AVERAGE | 0.34                    | 14                | 159          | 236         | 6.2-11.3 | 44.4        | 7.2             | 26.1        | 413         |

## HONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Rosemount

## MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: Rosemount

|                | TBOD  | C80D | COD         | TSS   | FECAL COLI<br>Geo Mean | TURB | KJN    | NH3  | NO2   | NO3  | Total<br>P  | C12*<br>Used | C12<br>Res | DO   | pН      | Remo | í<br>Ival |
|----------------|-------|------|-------------|-------|------------------------|------|--------|------|-------|------|-------------|--------------|------------|------|---------|------|-----------|
| Month          | mg/1_ | mg/l | <u>mg/1</u> | ang/1 | no/100 ml              | NTU  | mg/1   | mg/1 | nig/1 | mg/1 | <u>mq/1</u> | 108          | mg/1       | mg/1 | Kange   | 800  | 155       |
| NPDES<br>LIMIT | 25    | 25   |             | 30    | 200                    | 25   |        |      |       |      | 1.0         |              |            |      | 6.5-8.5 |      |           |
| JANUARY        | 16    | 14   | 54          | 4     |                        | 3    | 35.6   | 28.6 | 0.29  | 0.37 | 0.1         |              |            | 8.0  | 6.8-8.4 | 89   | 97        |
| FEBRUARY       | 12    | 11   | 44          | 2     |                        | 2    | 33.0   | 26.0 | 0.24  | 0.43 | 0.1         | 23           | 0.4        | 8.6  | 6.7-8.3 | 90   | 98        |
| MARCH          | 16    | 14   | 59          | 1     | 3                      | 3    | 34.7   | 26.4 | 0.09  | 0.12 | 0.1         | 20           | 1.5        | 9.5  | 6.6-7.4 | 88   | 99        |
|                | 22    | 20   | 72          | 2     | 2                      | 4    | 32.4   | 25.8 | 0.30  | 0.87 | 0.1         | 19           | 1.5        | 9.1  | 6.8-8.4 | 82   | 98        |
| MAY            | 21    | 21   | 70          | 2     | 2                      | 3    | 33.4   | 25.3 | 0.24  | 1.36 | 0.1         | 20           | 1.4        | 7.2  | 6.8-8.2 | 85   | 99        |
| UNE            | 15    | 14   | 54          | 3     | 3                      | 6    | 32.1   | 23.3 | 0.09  | 0.62 | 0.4         | 17           | 1.9        | 4.5  | 6.6-8.1 | 88   | 98        |
|                | 20    | 21   | 77          | 5     | 11                     | 10   | 32.8   | 24.6 | 0.03  | 0.18 | 0.6         | 23           | 1.9        | 5.2  | 6.6-8.4 | 79   | 97        |
| AUCUST         | 19    | 19   | 78          | 2     | <br>                   | 6    | 30.0   | 22.3 | 0.40  | 0.40 | 0.2         | 24           | 1.5        | 4.2  | 6.6-8.4 | 84   | 99        |
| CEDTEMPER      | 11    | 29   | 69          | 2     | 6                      | A    | 32.8   | 25.0 | 0.11  | 0.19 | 0.3         | 37           | 1.5        | 4.5  | 6.6-8.0 | 79   | 98        |
|                | 22    | 20   | 57          | 2     | 9                      | 8    | 33.0   | 24.0 | 0.09  | 0.21 | 0.3         | 42           | 3.0        | 5.2  | 6.6-8.4 | 83   | 97        |
| NOVEMBER       | 10    | 17   |             |       |                        |      | 36 1   | 27 0 | 0.15  | 0.17 | 0.7         | 1            |            | 61   |         | l on | 1 07      |
| NUVEMBER       | 1 19  | 1 1/ | <u> </u>    | +     | <u> </u>               |      | - 14.1 | 2/.0 | 0.17  | 0,1/ | 1.0.7       |              |            | 0.1  | 0./-0.4 | 70   | +*/       |
| DECEMBER       | 17    | 15   | 68          | 3     |                        | 9    | 33.0   | 29.3 | 0.94  | 0.48 | 0.2         |              |            | 7.2  | 6.6-9.0 | 90   | 98        |
| 1984 AVG.      | 20    | 18   | 64          | 3     | 5                      | 6    | 33.0   | 25.7 | 0.26  | 0.47 | 0.2         | 25           | 1.8        | 6.6  | 6.6-9.0 | 86   | 98        |
| 1983 AVG.      | 17    | 16   | 51          | 2     | 4                      | 3    | 33.5   | 28.0 | 0.60  | 1.85 | 0.2         | 30           | 1.7        | 7.2  | 6.2-8.4 | 90   | 99        |

\*For disinfection only.











## SAVAGE WASTEWATER TREATMENT PLANT

## Plant History and Description

The original Savage Treatment Plant was designed by Ellison-Philstrom, Inc. and constructed in 1963 with a capacity of 0.36 mgd. Interim improvements to the plant were designed by RCM and construction was completed in 1979. These plant modifications included the addition of a new synthetic media trickling filter, a new chlorine contact tank and a new sludge holding/decant tank. The current plant design capacity is 0.86 mgd. The plant serves the community of Savage in Service Area No. 4.

Liquid treatment consists of screening, influent pumping, primary clarification, a roughing filter, a synthetic media high-rate trickling filter, final clarification, chlorination and discharge to the Minnesota River.

Solids processing consists of a sludge holding and decant tank, anaerobic digestion, and sludge hauling to another plant for further treatment or sludge landspreading. The plant is presently operating at about 75 percent of its design capacity and is subject to secondary treatment limits.

# Performance

Plant flow averaged 0.62 mgd during 1984, slightly higher than 0.59 mgd in 1983. Average plant effluent quality was 7 mg/L BOD and 3 mg/L TSS. Plant performance was excellent throughout the year with one NPDES Permit violation of the weekly fecal coliform limit. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

Effluent Concentration, mg/1

|       |      | 50% of | Time |      |      | 75% of | Time |      | 90% of Time |      |      |      |  |  |
|-------|------|--------|------|------|------|--------|------|------|-------------|------|------|------|--|--|
|       | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1981        | 1982 | 1983 | 1984 |  |  |
| * BOD | 9    | 6      | 7    | 6    | 12   | 9      | 9    | 7    | 15          | 20   | 10   | 10   |  |  |
| TSS   | 5    | 2      | 2    | 2    | 12   | 5      | 3    | 4    | 17          | 11   | 4    | 6    |  |  |

\*1982 through 1984 values represent CBOD.

#### Future

The long-term plan for the Savage Plant is to phase it out of service and divert the flow to the Seneca Plant. This is projected to occur in the late 1980's as the plant reaches its capacity.

# SAVAGE PLANT PROCESS UNIT LOADINGS

| •                                                                                                                                    |                                    | Annua                              | 1                                  | Ma                            | lximum                        | . *                           |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Parameter                                                                                                                            | 1982                               | 1983                               | <u>1984</u>                        | 1982                          | 1983                          | 1984                          |
| Wastewater Flow, mgd<br>BOD Loading, lb/day<br>TSS Loading, lb/day<br>COD Loading, lb/day<br>Sludge Production, lb/day               | 0.48<br>610<br>700<br>1,120<br>280 | 0.59<br>590<br>960<br>1,200<br>500 | 0.62<br>540<br>860<br>1,300<br>520 | 0.62<br>910<br>1,010<br>1,400 | 0.87<br>690<br>2,100<br>1,500 | 0.89<br>710<br>1,790<br>1,570 |
| Grit Removal                                                                                                                         |                                    |                                    |                                    |                               |                               |                               |
| Overflow Rate, gpd/sq. ft.                                                                                                           | 26,700                             | 33,000                             | 34,000                             | 34,400                        | 48,000                        | 49,000                        |
| Primary Sedimentation                                                                                                                |                                    |                                    |                                    |                               |                               |                               |
| Detention Time, hr.<br>Weir Overflow Rate, gpd/lin. ft.<br>Surface Overflow, gpd/sq. ft.                                             | 1.5<br>6,960<br>1,260              | 1.2<br>8,600<br>1,600              | 1.2<br>9,000<br>1,600              | 1.2<br>8,990<br>1,630         | 0.8<br>13,000<br>2,300        | 0.8<br>12,900<br>2,300        |
| Trickling Filter No. 1                                                                                                               |                                    |                                    |                                    |                               |                               |                               |
| Hydraulic Loading, gpd/sq.ft.<br>(inc. recir.)<br>Organic Loading, 1b. BOD/day/1000 cu.ft.<br>(Assume 20% Primary BOD Removal)       | <u>+</u> 400<br>+45                | <u>+</u> 400<br>+45                | 600<br>60                          |                               |                               |                               |
| Trickling Filter No. 2                                                                                                               | _                                  |                                    |                                    |                               |                               |                               |
| Hydrualic Loading, gpd/sq. ft.<br>(inc. recir)<br>Organic Loading, 1b. BOD/day/1000 cu. ft.<br>(Assume 50% Filter No. 1 BOD Removal) | <u>+</u> 3,000<br><u>+</u> 10      | <u>+</u> 3,000<br><u>+</u> 10      | 2,500<br>18                        |                               |                               |                               |
| Final Sedimentation                                                                                                                  |                                    |                                    |                                    |                               |                               |                               |
| Detention Time, hr.<br>Weir Overflow Rate, gpd/lin. ft.<br>Surface Overflow Rate, gpd/sq. ft.                                        | 2.4<br>5,000<br>530                | 1.9<br>6,200<br>650                | 1.8<br>6,500<br>690                | 1.8<br>6,460<br>680           | 1.3<br>9,100<br>970           | 1.3<br>9,300<br>990           |
| <u>Chlorination</u>                                                                                                                  |                                    |                                    |                                    |                               |                               |                               |
| Contact Time, minutes<br>Chlorine Use, lb/day                                                                                        | 73<br>19                           | 59<br>25                           | 56<br>39                           | 56<br>30                      | 40<br>34                      | <b>39</b><br>51               |
| Sludge Holding Tank                                                                                                                  |                                    |                                    |                                    |                               |                               | •                             |
| Detention Time, days                                                                                                                 | <u>+</u> 11                        | <u>+</u> 13                        | 11                                 |                               |                               |                               |

# SAVAGE PLANT PROCESS UNIT LOADINGS (cont.)

| Parameter                                              |              | Annua<br>Avera               | ll<br>Ige    | Maximum<br>Month |             |  |
|--------------------------------------------------------|--------------|------------------------------|--------------|------------------|-------------|--|
|                                                        | 1982         | 1983                         | <u>1</u> 984 | <u>1982 1983</u> | <u>1984</u> |  |
| Anaerobic Digester                                     |              |                              |              |                  |             |  |
| Detention Time, days<br>Solids Loading, lb/cu. ft./day | +50<br>+0.05 | <u>+</u> 57<br><u>+</u> 0.04 | 48<br>0.04   |                  |             |  |
| Sludge Transport                                       |              |                              |              |                  | ÷           |  |
| Volume, gpd                                            | 690          | 1,500                        | 1,800        | 3,100            | 3,900       |  |

# SAVAGE WASTEWATER TREATMENT PLANT

FLOW DIAGRAM







| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | TBOD<br>mg/1 | TSS<br>mg/1 | pH Range  | KJN<br>mg/l | Total-P<br>mg/l | NH3<br>mg/l | COD<br>mg/1 |
|--------------|-------------------------|-------------------|--------------|-------------|-----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 0.48                    | 12                | 104          | 152         | 6.4-12.0  | 27.0        | 4.9             | 16.3        | 225         |
| FEBRUARY     | 0.61                    | 10                | 97           | 133         | 6.4-12.2  | 22.5        | 14.9            | 12.3        | 223         |
| MARCH        | 0.60                    | 10                | 92           | 171         | 1.6-13.4  | 20.6        | 10.6            | 12.0        | 256         |
| APRIL        | 0.64                    | 10                | 91           | 105         | 6.6-10.2  | 18.9        | 3.4             | 12.3        | 177         |
| MAY          | 0.71                    | 12                | 87           | 311         | 5.6-9.8   | 19.8        | 10.7            | 9.8         | 227         |
| JUNE         | 0.89                    | 15                | 64           | 103         | 0.0-12.8* | 14.6        | 5.3             | 7.9         | 185         |
| JULY         | 0.64                    | 16                | <b>9</b> 6   | 181         | 0.0-11.0* | 24.2        | 12.3            | 11.3        | 279         |
| AUGUST -     | 0.61                    | 18                | 121          | 211         | 6.6-10.2  | 23.5        | 8.6             | 12.3        | 295         |
| SEPTEMBER    | 0.53                    | 19                | 154          | 190         | 6.6-10,4  | 26.8        | 11.8            | 14.8        | 340         |
| OC TOBER     | 0.59                    | 18                | 109          | 173         | 6.8-10.8  | 23.6        | 7.8             | 12.5        | 269         |
| NOVEMBER     | 0.60                    | 15                | 111          | 101         | 6.6-10.2  | 23.3        | 10.5            | 14.4        | 230         |
| DECEMBER     | 0.59                    | 12                | 122          | 114         | 6.2-10.4  | 25.0        | 8.3             | 14.9        | 281         |
| 1984 AVERAGE | 0.62                    | 14                | 104          | 165         | 0.0-13.4  | 22.6        | 9.1             | 12.5        | 249         |
| 1983 AVERAGE | 0.59                    | 13                | 120          | 195         | 1.2-12.4  | 24.3        | 16.7            | 13.5        | 253         |

# MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: <u>Sevage</u>

\*Minimum pH 0.0 as reported on Operators Report.

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Savage</u>

| Month          | T80D<br>mg/1 | CBOD<br>mg/l | COD<br>mg/l | TSS<br>mg/1 | FECAL COLI<br>Geo Mean<br>no/100 ml | TURB<br>NTU | KJN<br>mg/1 | NH3<br>mg/1 | NO2<br>mg71 | NO3<br>ma/l | Total<br>P<br>ma/l | CI2*<br>Used<br>1bs | C12<br>Res<br>ma/1 | 00<br>ma/1 | pH<br>Range | Remo<br>BOD | val<br>I TS |
|----------------|--------------|--------------|-------------|-------------|-------------------------------------|-------------|-------------|-------------|-------------|-------------|--------------------|---------------------|--------------------|------------|-------------|-------------|-------------|
| NPDES<br>LIMIT | 25           | 25           |             | 30          | 200                                 | 25          |             |             |             |             |                    |                     |                    |            | 6.5-8.5     |             |             |
| JANUARY        | 8            | 6            | 37          | 2           |                                     | 3           | 2.4         | 1.4         | 0.23        | 12.13       | 3.6                |                     |                    | 9.1        | 7.4-7.7     | 94          | 99          |
| FEBRUARY       | 9            | 7            | 57          | · 1         |                                     | 2           | 3.6         | 1.2         | 0.26        | 8.65        | 9.7                | 44                  | 2.0                | 9.4        | 7.4-7.8     | 92          | 99          |
| MARCH          | 7            | 5            | 61          | 4           | 5                                   | 3           | 4.0         | 2.1         | 0.15        | 5.93        | 6.9                | 33                  | 1.9                | 9.5        | 7.4-7.7     | 95          | 98          |
| APRIL          | 6            | 5            | 37          | 1           | 7                                   | 3           | 3.6         | 1.5         | 0.12        | 5.00        | 4.0                | 27                  | 1.3                | 9.5        | 7.4-7.8     | 94          | 99          |
| MAY            | 9            | 8            | 54          | 3           | 14                                  | 5           | 4.9         | 1.7         | 0.17        | 4.59        | 6.3                | 23                  | 1.1                | 9.3        | 7.4-7.8     | 90          | 99          |
| JUNE           | 10           | 8            | 55          | 5           | 153                                 | 6           | 2.4         | 0.8         | 0.08        | 6.64        | 6.4                | 29                  | 1.2                | 9.3        | 7.5-7.9     | 87          | 95          |
| JULY           | 8            | 6            | 60          | 9           | 56                                  | 7           | 2.8         | 0.7         | 0.02        | 9.78        | 8.3                | 50                  | 2.3                | 8.5        | 7.4-7.8     | 94          | 95          |
| AUGUST         | 9            | 7            | 62          | 5           | 99                                  | 4           | 3.3         | 1.6         | 0.04        | 12.21       | 6.0                | 51                  | 2.4                | 8.2        | 7.4-7.7     | 94          | 98          |
| SEP TEMBER     | 10           | 8            | 42          | 2           | 41                                  | . 4         | 2.8         | 0.4         | 0.03        | 7.74        | 14.7               | 42                  | 2.6                | 8.3        | 7.4-7.8     | 95          | 99          |
| OCTOBER        | 6            | 5            | 36          | 4           | 49                                  | 6           | 2.0         | 1.3         | 0.02        | 10.59       | 6.4                | 50                  | 2.5                | 8.6        | 7.6-7.8     | 96          | 98          |
| NOVEMBER       | 10           | 7            | 45          | 3           |                                     | 3           | ·<br>2.4    | 0.8         | 0.17        | 12.09       | 9.1                | 56                  | 25                 | 8.8        | 75.93       | 9/          | 07          |
| DECEMBER       | 11           | 10           | 60          | 2           |                                     | 3           | 3.3         | 1.2         | 0.26        | 11 36       | 7 4                |                     | 217                | 0.0        | 7570        |             |             |
| 1984 AVG.      | 8            | 7            | 50          | 3           | 53                                  | 4           | 31          | 1 2         | 0.13        | .0 07       | 7 7                | 70                  | 1.0                |            | 7.5-7.8     | 72          | 98          |
| 1983 AVG.      | 8            | 8            | 44          | 3           | 22                                  | 3           | 3.7         | 1.4         | 0.17        | 7.77        | 4.6                | 25                  | 2.0                | 8.9        | 7.3-7.9     | 93<br>93    | 98          |

\*For disinfection only.









#### SENECA WASTEWATER TREATMENT PLANT

### Plant History and Description

The Seneca Plant was designed by Black and Veatch Consulting Engineers, and was placed into operation in 1972, with a design capacity of 24 mgd.

Liquid treatment consists of screening, grit removal, primary sedimentation, complete mix activated sludge aeration, final clarification, chlorination, and discharge to the Minnesota River.

Solids processing consists of waste activated sludge air floatation thickening, combined sludge storage, chemical conditioning, vacuum filtration or belt filter press dewatering, and incineration. A polymer conditioning system and belt filter press dewatering system has been added and began operation in mid-1983. Operation of the belt filter press for sludge dewatering allowed the Seneca Plant to process 20% more sludge during 1984. An odor nuisance problem from the belt filter press operation was solved by installing a system to feed potasium permanganate to the liquid sludge as it is fed to the belt filter press. A plant odor assessment was completed during 1984. Several operational improvements and small capital improvements were recommended. The plant is presently operating at about 75 percent of its design capacity and is subject to secondary treatment limits.

#### Performance

Plant flow averaged 17.6 mgd during 1984, considerably higher than 15.8 mgd in 1983. Average plant effluent quality was 17 mg/L BOD and 21 mg/L TSS. Plant performance was good throughout the year with no NPDES Permit violations. Statistical analysis of data show the following trend in effluent BOD and TSS from 1981 through 1984.

Effluent Concentration, mg/1

|       |      | 50% of | Time |      |      | 75% of | Time |      | 90% of Time |      |      |      |  |
|-------|------|--------|------|------|------|--------|------|------|-------------|------|------|------|--|
|       | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1981        | 1982 | 1983 | 1984 |  |
| * BOD | 19   | 17     | 13   | 15   | 22   | 21     | 17   | 19   | 30          | 25   | 24   | 24   |  |
| TSS   | 19   | 19     | 15   | 19   | 23   | 23     | 23   | 26   | 28          | 26   | 29   | 34   |  |

\*1982 through 1984 values represent CBOD.

#### Future

The Seneca Plant is one of the Commission's permanent regional plants. Space is available for future plant expansion and advanced treatment as needed. Additional sludge processing improvements are planned for construction by the late 1980's.

# SENECA PLANT PROCESS UNIT LOADINGS

|                                                                                                                                                       |                                 | Annual                          |                                 | M                                | laximum<br>Month                |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|----------------------------------|
| Parameter                                                                                                                                             | <u>1982</u>                     | <u>1983</u>                     | 1984                            | 1982                             | 1983                            | 1984                             |
| Wastewater Flow, mgd<br>BOD Loading, lb/day<br>TSS Loading, lb/day                                                                                    | 14.8<br>27,200<br>25,000        | 15.8<br>29,000<br>27,500        | 18.0<br>31,200<br>30,900        | 15.9<br>32,500<br><b>34,6</b> 00 | 17.2<br>32,400<br>40,000        | 23.2<br>38,700<br>47,645         |
| Grit Chambers                                                                                                                                         |                                 |                                 |                                 |                                  |                                 |                                  |
| Detention Time, minutes                                                                                                                               | 25                              | 23                              | 20                              | 23                               | 22                              | 16                               |
| Primary Clarifiers                                                                                                                                    |                                 |                                 |                                 |                                  |                                 |                                  |
| Surface Overflow Rate, gpd/sq.ft.<br>Weir Overflow Rate, gpd/lin.ft.<br>Detention Time, hr.<br>Removal Efficiency, % BOD<br>Removal Efficiency, % TSS | 320<br>6,700<br>6.8<br>28<br>72 | 340<br>7,200<br>6.4<br>37<br>71 | 390<br>8,200<br>5.6<br>35<br>70 | 340<br>7,200<br>6.3<br>39<br>74  | 370<br>7,800<br>5.9<br>46<br>83 | 500<br>10,500<br>4.4<br>45<br>80 |
| Aeration Tanks (Two)                                                                                                                                  |                                 |                                 |                                 |                                  |                                 |                                  |
| BOD Loading, 1b/day/1000 cu.ft.<br>F:M Ratio, 1b/day/1b.MLSS<br>Detention Time, hr.                                                                   | 92<br>0.58<br>2.4               | 94<br>0.59<br>2.2               | 104<br>0.66<br>1.9              | 102<br>0.69<br>2.2               | 112<br>0.76<br>2.1              | 110<br>0.70<br>1.7               |
| Final Clarifiers (Two)                                                                                                                                |                                 |                                 |                                 |                                  |                                 |                                  |
| Surface Overflow Rate, gpd/sq. ft.<br>Weir Overflow Rate, gpd/lin. ft.<br>Detention Time, hr.                                                         | 600<br>9,900<br>4.5             | 640<br>10,600<br>4.2            | 730<br>12,100<br>3.9            | 650<br>10,600<br>4.2             | 700<br>11,500<br>3.8            | 940<br>15,500<br>2.8             |
| Chlorination                                                                                                                                          |                                 |                                 |                                 |                                  |                                 |                                  |
| Chlorine Dose, mg/L<br>Chlorine Feed Rate, lb/day<br>Contact Time, minutes                                                                            | 4.3<br>520<br>36                | 4.3<br>550<br>40                | 3.7<br>580<br>1 381             | 5.0<br>610<br>34                 | 5.0<br>650<br>39                | 5.1<br>742<br>1 321              |
| Flotation Thickeners                                                                                                                                  |                                 |                                 | ·                               |                                  |                                 |                                  |
| Solids Loading, lb./sq. ft./day                                                                                                                       | 12                              | 12                              | 12                              | 15                               | 15                              | 15                               |
| <u>Vacuum Filters</u> <sup>2</sup>                                                                                                                    |                                 |                                 |                                 |                                  |                                 |                                  |
| Lime Dose, %<br>Ferric Chloride Dose, %<br>Filtration Rate, lb./sq. ft./day<br>Cake Solids, %                                                         | 30<br>8<br>3.2<br>23.5          | 30<br>8<br>3.2<br>22            | 30<br>8<br>3.2<br>22            | 40<br>10<br>3.5<br>24.7          | 40<br>10<br>3.5<br>23           | 40<br>10<br>3.5<br>23            |

# SENECA PLANT PROCESS UNIT LOADINGS (cont.)

| Parameter                                                                                           | ·                        | Annua<br>Avera                  | l]<br>Ige                       | Ma<br>M            | ximum<br>onth                  |                                 |
|-----------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------|--------------------|--------------------------------|---------------------------------|
|                                                                                                     | 1982                     | 1983                            | <u>1984</u>                     | 1982               | 1983                           | 1984                            |
| Belt Filter Press <sup>2</sup>                                                                      |                          |                                 |                                 |                    |                                |                                 |
| Polymer Dosage, lbs/tds<br>Throughput of Dry Solids, lb/hr.<br>Cake Solids, %                       |                          | 8.5 <sup>3</sup><br>1,700<br>24 | 150 <sup>4</sup><br>2,100<br>25 |                    | 10 <sup>3</sup><br>2,000<br>26 | 180 <sup>4</sup><br>3,000<br>27 |
| <u>Incinerators</u> <sup>2</sup>                                                                    |                          |                                 |                                 |                    |                                |                                 |
| Wet Sludge Loading Rate, lbs./sq. ft<br>Dry Solids Loading, lb/hr.<br>Auxiliary Fuel Use. MMBtu/tds | ./hr. 4.0<br>1,700<br>10 | 4.0<br>1,700<br>10              | 4.0<br>1,700<br>10              | 4.3<br>1,800<br>14 | 4.3<br>1,800<br>14             | 4.3<br>1,900<br>14              |

<sup>1</sup>Based on field measurements at the contact tanks and outfall flow characteristics. <sup>2</sup>Solids processed includes sludge from Blue Lake Plant. <sup>3</sup>Dry polymer. <sup>4</sup>Liquid polymer.





FLOW DIAGRAM





| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | T800<br>mg/1 | TSS<br>mg/1 | pH Range | KJN<br>neg/1 | Total-P<br>mg/l | NH3<br>mg/1 | COD<br>mg/l |
|--------------|-------------------------|-------------------|--------------|-------------|----------|--------------|-----------------|-------------|-------------|
| JANUARY      | 15.4                    | 14                | 207          | 207         | 6.6-7.4  | 36.6         | 7.0             | 18.3        | 448         |
| FEBRUARY     | 17.0                    | 14                | 185          | 225         | 4.9-8.3  | 36.4         | 7,7             | 16.0        | 433         |
| MARCH        | 18.1                    | 13                | 206          | 184         | 6.7-7.6  | 36.0         | 7.4             | 20.5        | 419         |
| APRIL        | 18.3                    | 14                | 195          | 167         | 6.8-7.8  | 34.9         | 7.5             | 18.6        | 414         |
| MAY          | 17.7                    | 15                | 206          | 195         | 6.7-8.6  | 31.5         | 7.1             | 14.4        | 421         |
| JUNE         | 19.3                    | 17                | 224          | 296         | 6.9-8.1  | 28.6         | 7.3             | 13.8        | 489         |
| JULY         | 18.6                    | 19                | 202          | 205         | 6.8-7.5  | 35.1         | 7.2             | 14.7        | 439         |
| AUGUST       | 18.1                    | 20                | 200          | 197         | 6.8-8.0  | 34.3         | 8.2             | 17.5        | 411         |
| SEP TEMBER   | 17.4                    | 20                | 214          | 196         | 6.8-7.5  | 34.3         | 7.1             | 16.8        | 463         |
| OCTOBER      | 17.9                    | 19                | 208          | 198         | 6.9-7.8  | 36.6         | 7.1             | 19.1        | 489         |
| NOVEMBER     | 16.6                    | 17                | 219          | 199         | 6.7-7.3  | 36.3         | 7.1             | 20.1        | 486         |
| DECEMBER     | 16.9                    | 18                | 222          | 194         | 6.5-7.1  | 36.7         | 6.6             | 23.4        | 478         |
| 1984 AVERAGE | 17.6                    | 17                | 207          | 205         | 4.9-8.6  | 34.8         | 7.2             | 17.8        | 449         |
| 1983 AVERAGE | 15.8                    | 16                | 221          | 211         | 6.2-8.7  | 34.9         | 7.7             | 19.1        | 469         |

# MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Seneca

• •

## MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: Seneca

| · · · · · · · · · · · · · · · · · · · |              |              |             |             |                                     |             |             |             |             |             |                    |                     |                    |            |             | •           | •           |
|---------------------------------------|--------------|--------------|-------------|-------------|-------------------------------------|-------------|-------------|-------------|-------------|-------------|--------------------|---------------------|--------------------|------------|-------------|-------------|-------------|
| Month                                 | TB00<br>mg/1 | CBOD<br>mg/l | COD<br>mg/l | TSS<br>mg/1 | FECAL COLI<br>Geo Mean<br>no/100 ml | TURB<br>NTU | KJN<br>mg/1 | NH3<br>mg/l | NO2<br>mg/1 | NO3<br>mg/1 | Total<br>P<br>Mq/l | C12*<br>Used<br>1bs | C12<br>Res<br>mg/1 | DO<br>mg/l | pH<br>Range | Reno<br>BOD | val<br>I TS |
| NPDES<br>LIMIT                        | 25           | 25           |             | 30          | 200                                 | 25          |             |             |             |             |                    |                     |                    |            | 6.5-8.5     |             |             |
| JANUARY                               | 28           | 24           | 94          | 28          |                                     | 9           | 28.5        | 20.8        | 0.13        | 0.37        | 5.1                |                     |                    | 8.6        | 6.7-8.4     | 88          | 87          |
| FEBRUARY                              | 19           | 16           | 80          | 24          |                                     | 7           | 24.5        | 18.0        | 0.12        | 0.39        | 4.6                |                     |                    | 8.4        | 6.8-7.4     | 91          | 89          |
| MARCH                                 | 15           | 11           | 75          | 15          | 3                                   | 7           | 26.8        | 20.5        | 0.16        | 0.74        | 5.2                | 558                 | 3.2                | 9.1        | 6.9-7.6     | 95          | 92          |
| APRIL                                 | 22           | 13           | 76          | 14          | 3                                   | 9           | 24.8        | 18.5        | 0.26        | 1.09        | 4.2                | 536                 | 2.4                | 8.6        | 7.1-7.8     | 93          | 92          |
| MAY                                   | 18           | 14           | 74          | 14          | 3                                   | 8           | 23.1        | 15.8        | 0.18        | 0.97        | 3.6                | 518                 | 2.9                | 9.1        | 7.0-7.5     | 93          | 93          |
| JUNE                                  | 24           | 19           | 77          | 21          | 9                                   | 8           | 19.8        | 13.8        | 0.49        | 0.93        | 3.2                | 504                 | 2.4                | 8.8        | 7.1-7.7     | 92          | 93          |
| JULY                                  | 22           | 16           | 74          | 20          | 21                                  | 9           | 22.6        | 14.6        | 0.28        | 0.71        | 3.9                | 519                 | 2.4                | 9.3        | 7.0-7.7     | 92          | 90          |
| AUGUST                                | 24           | 18           | 75          | 23          | 56                                  | 12          | 21.1        | 13.5        | 0,58        | 0.62        | 3.6                | 585                 | 1.9                | 9.0        | 7.1-7.6     | 91          | 88          |
| SEP TEMBER                            | 24           | 13           | 76          | 23          | 17                                  | 9           | 17.8        | 10.4        | 1.37        | 1.25        | 4.4                | 742                 | 3.2                | 9.2        | 6.6-7.6     | 94          | 88          |
| OCTOBER                               | 26           | 16           | 89          | 22          | 29                                  | 9           | 24.0        | 15.3        | 0.49        | 1.15        | 4.1                | 680                 | 3.4                | 9.5        | 6.8-7.8     | 93          | 89          |
| NOVEMBER                              | 21           | 18           | 93          | 22          |                                     | 7           | 25.0        | 18.1        | 0.09        | 0.34        | 2.9                |                     |                    | 9.6        | 69-74       | 02          | 1 00        |
| DECEMBER                              | 29           | 24           | 106         | 30          |                                     | 11          | 27.4        | 19.8        | 0.11        | П. 32       | 5.0                |                     |                    | 8.4        | 6.7-7.4     | 92<br>80    | 07          |
| 1984 AVG.                             | 23 .         | 17           | 82          | 21          | 18                                  | 9           | 23.8        | 16.6        | 0 35        | 0 74        | <u> </u>           | 590                 | 27                 | 0.0        |             | 07          | 04          |
| 1983 AVG.                             | 22           | 14           | 72          | 18          | 26                                  | 7           | 20.6        | 15.9        | 0.57        | 0.73        | 3.7                | 528                 | 0.7                | 9.1        | 6.7-7.8     | 92          | 90          |

\*For disinfection only.









#### STILLWATER WASTEWATER TREATMENT PLANT

# Plant History and Description

The Stillwater Plant was originally constructed in 1959 as a primary treatment plant. In 1970, the plant was upgraded to include secondary treatment and phosphorus removal facilities were added to the plant in 1973. The design capacity of the plant is 3.0 mgd. Actual operating capacity is somewhat less, due to the additional phosphorus removal facilities.

Liquid treatment consists of screening, grit removal, primary sedimentation, activated sludge aeration, alum addition for phosphorus removal, final clarification, chlorination, and discharge to Lake St. Croix (St. Croix River).

Solids processing consists of combined thickening in primary tanks, anaerobic digestion, and sludge hauling to either the Metropolitan Plant Interceptor System or sludge landspreading sites. The plant is presently operating at about 95 percent of its design capacity and is subject to secondary treatment limits and a phosphorus limit of l mg/L.

#### Performance

Plant flow averaged 2.95 mgd during 1984, slightly higher than 2.84 mgd in 1983. Average plant effluent quality was 8 mg/L BOD, 9 mg/L TSS and 0.4 mg/L P. Plant performance was excellent throughout the year, as no NPDES Permit violations were experienced. Statistical analysis of data show the following trend in BOD and TSS from 1981 through 1984.

#### Effluent Concentration, mg/l

|        |      | 50% of | Time |      |      | 75% of | Time |      | 90% of Time |      |      |      |  |  |
|--------|------|--------|------|------|------|--------|------|------|-------------|------|------|------|--|--|
|        | 1981 | 1982   | 1983 | 1984 | 1981 | 1982   | 1983 | 1984 | 1981        | 1982 | 1983 | 1984 |  |  |
| * 80 D | 14   | 10     | 9    | 7    | 24   | 12     | 12   | 10   | 33          | 14   | 18   | 13   |  |  |
| TSS    | 8    | 8      | 10   | 8    | 12   | 10     | 14   | 10   | 15          | 12   | 20   | 13   |  |  |

\*1982 through 1984 values represent CBOD.

#### Future

The Stillwater Plant is considered a permanent plant. The plant is expected to be expanded in the late 1980's to allow for the inclusion of flow from the City of Bayport and increased flow from the present service area.

# STILLWATER PLANT PROCESS UNIT LOADINGS

| Danamatan                                                                                      |                                 | Annua<br>Avera                  | l<br>Idé                        | Ma<br>Ma                        | ximum<br>Ionth                  |                                 |
|------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| ratameter                                                                                      | 1982                            | 1983                            | 1984                            | 1982                            | 1983                            | 1984                            |
| Wastewater Flow, mgd<br>BOD Loading, lb/day<br>TSS Loading, lb/day<br>COD Loading, lb/day      | 2.61<br>2,940<br>3,050<br>5,350 | 2.84<br>2,940<br>3,220<br>5,720 | 2.95<br>3,054<br>3,713<br>6,454 | 3.16<br>3,290<br>3,940<br>5,920 | 3.45<br>4,080<br>4,980<br>7,280 | 3.41<br>4,077<br>6,771<br>9,272 |
| Primary Sedimentation                                                                          |                                 |                                 |                                 |                                 |                                 |                                 |
| Detention Times, hr.<br>Weir Overflow Rate, gpd/lin. ft.<br>Surface Overflow Rate, gpd/sq. ft. | 2.3<br>10,700<br>594            | 2.1<br>11,600<br>650            | 2.0<br>12,100<br>670            | 1.9<br>13,000<br>719            | 1.7<br>14,100<br>790            | 1.7<br>14,000<br>780            |
| Aeration Basin                                                                                 |                                 |                                 | `                               |                                 |                                 |                                 |
| BOD Loading, 1b/day/1000 cu. ft.<br>Alum Feed Rate, gal/day                                    | 54<br>399                       | 43<br>410                       | . <b>45</b><br>410              | 61<br>416                       | 61<br>470                       | 60<br>433                       |
| Final Sedimentation                                                                            |                                 |                                 |                                 |                                 |                                 |                                 |
| Detention Time, hr.<br>Weir Overflow Rate, gpd/lin. ft.<br>Surface Overflow Rate, gpd/sq. ft.  | 2.7<br>8,310<br>665             | 2.5<br>9,000<br>720             | 2.4<br>9,400<br>750             | 2.2<br>10,100<br>805            | 2.0<br>11,000<br>880            | 2.1<br>10,900<br>870            |
| Chlorination                                                                                   |                                 |                                 |                                 |                                 |                                 |                                 |
| Contact Time, minutes<br>Chlorine Use, lb/day                                                  | 36<br>48                        | 33<br>62                        | 32<br>54                        | 30<br>56                        | 27<br>70                        | 28<br>60                        |
| Anaerobic Digesters                                                                            |                                 |                                 |                                 |                                 |                                 |                                 |
| Solid Detention Time, days                                                                     | 27                              | 36                              | 28                              | 24                              | 27                              | 21                              |
| Sludge Transport                                                                               |                                 |                                 |                                 |                                 |                                 |                                 |
| Volume, gpd<br>Mass, lb/day dry solids                                                         | 13,800<br>3,090                 | 11,100<br>2,600                 | 1 <b>4,6</b> 00<br>3,400        | 19,500<br>4,220                 | 15,000<br>4,000                 | 18,800<br>4,300                 |

# STILLWATER WASTEWATER TREATMENT PLANT

FLOW DIAGRAM



| Month        | Wastewater<br>Flow, MGD | Temperature<br>°C | TBOD<br>mg/1 | TSS<br>mg/l | pH Range | KJN<br>mg/1 | Total-P<br>mg/l | NH3<br>mg/l | COD<br>mg/1 |
|--------------|-------------------------|-------------------|--------------|-------------|----------|-------------|-----------------|-------------|-------------|
| JANUARY      | 2.67                    | 11                | 114          | 114         | 6.6-8.2  | 24.6        | 4.8             | 14.1        | 213         |
| FEBRUARY     | 2.84                    | 10                | 100          | 120         | 6.4-8.4  | 20.1        | 4.8             | 9.8         | 203         |
| MARCH        | 2.77                    | 10                | 115          | 112         | 6.8-8.4  | 24.1        | 4.4             | 13.1        | 252         |
| APRIL        | 3.38                    | 11                | 112          | 142         | 6.8-8.7  | 20.3        | 4.2             | 11.4        | 259         |
| MAY          | 3.38                    | 11                | 127          | 140         | 6.8-8.4  | 21.0        | 4.3             | 9.5         | 257         |
| JUNE         | 3.41                    | 13                | 110          | 166         | 6.6-8.8  | 18.2        | 4.1             | 9.2         | 252         |
| JULY         | 3.00                    | 15                | 158          | 258         | 6.4-8.2  | 22.2        | 4.7             | 8.8         | 358         |
| AUGUST       | 2.85                    | 17                | 117          | 129         | 6.8-8.2  | 22.4        | 4.5             | 11.5        | 246         |
| SEPTEMBER    | 2.75                    | 15                | 154          | 193         | 6.9-7.6  | 23.3        | 5.5             | 9.6         | 313         |
|              | 2.92                    | 15                | 108          | 140         | 6.8-7.8  | 24.4        | 4.6             | 11.8        | 248         |
|              | 2.78                    | 14                | 149          | 156         | 6.8-8.6  | 25.6        | 4.9             | 12.3        | 295         |
| DECEMBER     | 2.68                    | 12                | 121          | 115         | 4.0-9.6  | 22.9        | 4.4             | 14.1        | . 233       |
| 198A AVERACE | 2,95                    | 13                | 125          | 150         | 4.0-9.6  | 22.6        | 4.6             | 11.2        | 262         |
| 1983 AVERAGE | 2.84                    | 13                | 124          | 137         | 6.2-8.4  | 22.8        | 4.7             | 11.9        | 243         |

## MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: <u>Stillwater</u>

.

# MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Stillwater</u>

| Month     | TBOD |    | COD |    | FECAL COLI<br>Geo Mean<br>no/100 m1 | TURB | KJN<br>ma/1 | NH3<br>mg/1 | NO <sub>2</sub><br>mg/1 | NO3<br>mg/1 | Total<br>P<br>mg/l | C12*<br>Used<br>1bs | C12<br>Res<br>mg/1 | 00<br>mg/1 | pH<br>Range | Remo<br>BOD    | i<br>val<br>TSS |
|-----------|------|----|-----|----|-------------------------------------|------|-------------|-------------|-------------------------|-------------|--------------------|---------------------|--------------------|------------|-------------|----------------|-----------------|
| NPDES     | 25   | 25 |     | 30 | 200                                 | 25   |             |             |                         |             | 1.0                |                     |                    |            | 6.5-8.5     |                |                 |
| JANUARY   | 16   | 13 | 43  | 12 |                                     | 5    | 16.4        | 12.6        | 0.37                    | 2.06        | 0.4                |                     |                    | 5.1        | 6.9-7.1     | 88             | 89              |
| FEBRUARY  | 14   | 12 | 50  | 12 |                                     | 4    | 13.5        | 9.1         | 0.61                    | 2.10        | 0.5                | 22                  | 0.4                | 5.3        | 6.9-7.0     | 88             | 90              |
| MARCH     | 11   | 8  | 56  | 9  | 3                                   | 5    | 14.5        | 10.4        | 0.36                    | 2.15        | 0.4                | 60                  | 2.0                | 5.3        | 7.0-7.1     | 93             | 92              |
| APRIL     | 15   | 9  | 36  | 9  | 3                                   | 4    | 13.1        | 10.3        | 0.17                    | 1.08        | 0.3                | 58                  | 1.9                | 5.1        | 6.9-7.2     | 92             | 94              |
| MAY       | 12   | 8  | 42  | 8  | 6                                   | 4    | 13.4        | 8.3         | 0.34                    | 1.56        | 0.3                | 50                  | 1.7                | 4.7        | 7.0-7.1     | 94             | 94              |
| JUNE      | 20   | 7  | 40  | 11 | 12                                  | 3    | 8.9         | 6.0         | 1.92                    | 1.79        | 0.3                | 50                  | 2.0                | 4.7        | 7.0-7.2     | 94             | 94              |
|           | 13   | 6  | 41  | 7  | 14                                  | 4    | 9.8         | 5.0         | 1.12                    | 3.53        | 0.3                | 59                  | 1.8                | 4.5        | 7.0-7.2     | 96             | 97              |
| AUGUST    | 10   | 6  | 41  | 6  | 4                                   | 4    | 9.4         | 5.5         | 0.47                    | 3.73        | 0.4                | 55                  | 1.8                | 4.5        | 7.0-7.1     | 95             | 95              |
| SEPTEMBER | 12   | 8  | 33  | 8  | 8                                   | 5    | 9.5         | 5.1         | 0.51                    | 4.02        | 0.5                | 50                  | 1.5                | 4.4        | 6.9-7.1     | <del>9</del> 5 | 96              |
|           | 9    | 5  | 31  | 8  | 4                                   | 4    | 10.9        | 7.4         | 0.40                    | 4.36        | 0.4                | 50                  | 1.4                | 4.8        | 6.9-7.3     | 95             | 94              |
| NOVEMBER  | 16   | 8  | 40  | 8  |                                     | 4    | 12.5        | 8.5         | 0.21                    | 3.72        | 0.3                |                     |                    | 5.1        | 6.8-7.1     | 94             | l<br>195        |
| DECEMBER  | 18   | 10 | 48  | 13 |                                     | 6    | 12.1        | 8.7         | 0.21                    | 4.18        | 0.4                |                     |                    | 4.7        | 6.9-7.1     | 92             | 89              |
| 1984 AVG. | 14   | 8  | 41  | 9  | 7                                   | 4    | 12.0        | 8.0         | 0.56                    | 2.86        | 0.4                | 54                  | 1.8                | 4.8        | 6.8-7.3     | 93             | 93              |
| 1983 AVG. | 16   | 10 | 44  | 12 | 25                                  | 5    | 14.1        | 10.9        | 0.93                    | 1.67        | 0.6                | 61                  | 2.0                | 4.8        | 6.8-7.2     | 92             | 91              |

\*For disinfection only.











s yr



| MONTH     | Cu<br>mg/l | Cr<br>mg/l | Zn<br>mg/l | Pb<br>mg/1 | Cd<br>mg/l | Hg<br>ug/l | CN<br>mg/l | As<br>ug/l | PCB<br>ug/1 | Ni<br>mg/l | Phenol<br>ug/1 | Fe<br>mg/l |
|-----------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|----------------|------------|
| January   |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| February  |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| March     |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| April     |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| May       |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| June      |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| July      |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| August    |            |            |            |            |            |            |            |            |             |            |                |            |
| September |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| October   |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| November  |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| December  |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| 1984 Avg. |            |            |            |            |            | <0.20      |            |            |             |            |                |            |
| 1983 Avg. |            |            |            |            |            | <0.20      |            |            |             |            |                |            |

## 1984 EFFLUENT DATA TREATMENT PLANT <u>Stillwater</u>

# APPENDIX

# TABLE A-1

- 3...

## 1984 ANNUAL AVERAGE TREATMENT PLANT INFLUENT DATA

٦.

|                 |             |            |              |                    |             |           | t               | Nutrients   |             |
|-----------------|-------------|------------|--------------|--------------------|-------------|-----------|-----------------|-------------|-------------|
| Treatment Plant | Flow<br>mgd | Temp<br>°C | TBOD<br>mg/1 | COD<br><u>mg/1</u> | 755<br>mg/1 | pH Range  | fotal P<br>mg/l | KJN<br>mg/1 | NH3<br>mg/1 |
| Anoka           | 2.49        | 19         | 184          | 381                | 150         | 6.5-8.8   | 7.2             | 34.1        | 15.7        |
| Bayport         | 0.50        | 18         | 174          | 339                | 210         | 5.8-9.4   | 6.2             | 29.6        | 14.6        |
| Blue Lake       | 19.5        | 14         | 177          | 434                | 204         | 4.3-9.4   | 6.1             | 27.8        | 10.7        |
| Chaska          | 1.09        | 14         | 115          | 263                | 148         | 3.0-10.0  | 4.2             | 31.2        | 16.1        |
| Cottage Grove   | 1.30        | 15         | 180          | 389                | 158         | 7.2-8.5   | 6.8             | 40.6        | 22.8        |
| Empire          | 5.19        | 15         | 193          | 387                | 189         | 5.9-10.5  | 9.1             | 32.9        | 14.3        |
| Hastings        | 1.64        | 17         | 196          | 472                | 196         | 4.4-11.2  | 10.6            | 45.7        | 23.1        |
| Maple Plain     | 0.40        | 13         | 116          | 279                | 195         | 7.2-7.8   | 4.2             | 25.8        | 10.6        |
| Medina          | 0.278       | 14         | 103          | 241                | 131         | 7.3-7.7   | 3.8             | 26.2        | 10.0        |
| Metropolitan    | 222         | 16         | 176          | 379                | 198         | 5.6-9.7   | 4.0             | 22.8        | 10.3        |
| Rosemount       | 0.37        | 14         | 127          | 322                | 129         | 6.7-9.0   | 6.4             | 40.6        | 22.9        |
| Savage          | 0.62        | 14         | 104          | 249                | 165         | 0.0-13.4* | 9.1             | 22.6        | 12.5        |
| Seneca          | 17.6        | 17         | 207          | 449                | 205         | 4.9-8.6   | 7.2             | 34.8        | 17.8        |
| Stillwater      | 2.95        | 13         | 125          | 262                | 150         | 4.0-9.6   | 4.6             | 22.6        | 11.2        |
|                 |             |            |              |                    |             |           |                 |             |             |

\*Minimum pH 0.0 as reported on Operator's Report.

## TABLE A-2

## ANNUAL AVERAGE FLOW DATA FOR THE PERIOD 1971-1984

|                      |             |             |              |             | ANN   | IUAL AVE    | RAGE FL       | OW (MGD | )           |      |             |             |              |             |
|----------------------|-------------|-------------|--------------|-------------|-------|-------------|---------------|---------|-------------|------|-------------|-------------|--------------|-------------|
| Treatment Plant      | <u>1971</u> | <u>1972</u> | <u>1973</u>  | <u>1974</u> | 1975  | <u>1976</u> | <u>1977</u>   | 1978    | <u>1979</u> | 1980 | <u>1981</u> | <u>1982</u> | <u>1983</u>  | <u>1984</u> |
| ANOKA                | 1.76        | 1.93        | 1.88         | 1.78        | 1.62  | 1.77        | 1.92          | 2.01    | 1.98        | 2.09 | 2.01        | 2,14        | 2.33         | 2.49        |
| APPLE VALLEY         | 0.57        | 0.71        | 1.16         | 1.26        | 1.48  | 1.46        | 1.67          | 1.94    | 2.03        | *    |             |             |              |             |
| BAYPORT              | 0.48        | 0.48        | 0.42         | 0.45        | 0.56  | 0.50        | 0.48          | 0.47    | 0.54        | 0.44 | 0.47        | 0.52        | 0.54         | 0.50        |
| BLUE LAKE (POND)     | 1.43        | 2.96        | 3.74         |             |       |             |               |         |             |      |             |             |              |             |
| BLUE LAKE            |             |             | 3.94         | 6.78        | 9.05  | 9.03        | 9.86          | 12.49   | 14.1        | 14.1 | 13.7        | 16.1        | 18.1         | 19.5        |
| BURNSVILLE           | 1.76        | 2.10        | *            |             | ***** |             |               |         |             |      |             |             |              |             |
| CHASKA               | 0.53        | 0.58        | 0.74         | 0.75        | 0.91  | 0.81        | 0.75          | 0.97    | 0.89        | 0.64 | 0.70        | 0.80        | 1.02         | 1.09        |
| CHANHASSEN           | 0.07        | *           |              |             |       |             |               |         |             |      |             |             |              |             |
| COTTAGE GROVE        | 0.62        | 0.85        | 0.92         | 0.91        | 0.91  | 0.91        | 0 <b>.9</b> 7 | 1.31    | 1.60        | 1.58 | 1.21        | 1.26        | 1.30         | 1,30        |
| **EAGAN TOWNSHIP     |             |             | *_~~~        |             |       |             |               |         |             |      |             |             |              |             |
| EMPIRE               | 0 5/        | 0.50        |              |             |       |             |               |         | 3.54        | 3.48 | 3.51        | 4.05        | 4.81         | 5.19        |
| EXCELSION            | 0.75        | 0.70        | T            | 0.75        |       | ~ 77        |               |         |             |      |             |             |              |             |
| TARMINGIUN           | 0.33        | 0.20        | <u></u> 0.40 | 0.32        | 0.59  | U.3/        | U. 35         | 0.52    | ŭ. 78       | *    |             |             |              |             |
| FUREST LAKE TUWNSHIP | 0.16        | 0.17        | *            |             |       |             |               |         |             |      |             |             |              |             |
| FURESI LAKE VILLAGE  | 0.25        | 0.25        | *            | 7           |       | , 20        |               |         | 1 75        |      |             |             |              | 1 44        |
|                      | 0.91        | 1.14        | 1.32         | 1.29        | 1.29  | 1.30        | 1.40          | 1.42    | 1.35        | 1.44 | 1.50        | 1.50        | 1.65         | 1.64        |
| INVER GRUVE HEIGHIS  | 0.29        | 0.74        | ******       | 0 77        | 0 50  | 0 70        | 0 7/          |         | 0 /0        |      | ****        |             |              |             |
|                      | 0.45        | 0.30        | 0.22         | 0.27        | 0.20  | 0.20        | 0.25          | 0.40    | 0.60        | <br> | *           |             |              |             |
|                      | 0.10        | 0.17        | 0.12         | 0.20        | 0.23  | 0.17        | 0.21          | 0.20    | 0.22        | 0.20 | 0.95        | 0 75        | 0 76         | 0 40        |
| MEDINA               | 0.22        | 0.40        | 0.22         | 0.24        | 0.00  | 0.42        | 0.10          | 0.20    | 0.27        | 0.20 | 0.22        | 0.22        | 0.22         | 0.40        |
|                      | 213         | 213         | 202          | 104         | 202   | 104         | 104           | 210     | 217         | 204  | 202         | 200         | 225          | 222         |
| MAIND                | 1 19        | 1 23        | 1 26         | 1 69        | *     | . 120       | 174           | 210     | 217         | 200  | 202         | 200         | 22)          | 222         |
| NEWPORT              | 0.18        | л 17        | 0 19         | 0 17        | 0 21  | *           |               |         |             |      |             |             |              |             |
| OAK PARK HEIGHTS     | 0.07        | 0.10        | 0.10         | *           |       |             |               |         |             |      |             |             |              |             |
| DROND                | 0.20        | 0.25        | n. 27        | 0.34        | 0.32  | 0.31        | 0.34          | 0.46    | n.49        | 0.62 | *           |             |              |             |
|                      | 0.10        | 0.12        | 0.13         | 0.17        | 0.31  | 0.01        | 0.10          | 0.40    | *           | 0.02 |             |             |              |             |
| ROSEMOUNI (trickling | 0.10        | 0.11        | 0.12         | *           |       |             |               |         |             |      |             |             |              |             |
| filter)              |             |             |              |             |       |             |               |         |             |      |             |             |              |             |
| ROSEMOUNT AWTP       |             |             | 0.20         | 0.20        | 0.22  | N. 24       | 0.27          | 0.29    | 0.30        | 0.29 | 0.30        | 0.31        | <b>N. 34</b> | 0.37        |
| ST. PAUL PARK        | 0.30        | 0.31        | 0.30         | 0.28        | 0.36  | *           |               |         |             |      |             |             |              |             |
| SAVAGE               | 0.31        | 0.33        | 0.29         | 0.38        | 0.42  | 0.38        | 0.39          | 0.37    | 0.44        | 0.38 | 0.40        | 0.48        | 0.59         | 0.62        |
| SENECA               |             | 7.76        | 10.12        | 9.89        | 10.34 | 10.81       | 11.72         | 12.71   | 13.6        | 13.0 | 13.8        | 14.7        | 15.8         | 17.6        |
| SHAKOPEE             | 1.24        | *           |              |             |       |             |               |         |             |      |             |             |              |             |
| SOUTH ST. PAUL       | 10.10       | 9.38        | 9.66         | 9.72        | *     |             |               |         |             |      |             |             |              |             |
| STILLWATER           | 2.14        | 1.96        | 1.88         | 1.92        | 2.09  | 2.10        | 2.11          | 2.21    | 2.51        | 2.30 | 2.31        | 2.61        | 2.84         | 2.95        |
| **VICTORIA           |             |             |              | *           |       |             |               |         |             |      |             |             |              |             |
| WACONIA              |             |             |              |             | 0.23  | 0.26        | 0.25          | *       |             |      |             |             |              |             |
| WAYZATA              | 0.53        | *           |              |             |       |             |               |         |             |      |             |             |              |             |
| ALL PLANTS EXCEPT    | •           |             |              |             |       |             |               |         |             |      |             |             |              |             |
| METRO                | 26          | 31          | 36           | 39          | 32    | 32          | 33            | 39      | 45          | 41   | 40          | 45          | 50           | 54          |
| ALL PLANTS           | 239         | 244         | 238          | 235         | 234   | 228         | 227           | 249     | 262         | 247  | 242         | 253         | 275          | 276         |
|                      |             |             |              |             |       |             |               |         |             |      |             |             |              |             |

\* Plant phased out during previous year. \*\*Flow data not available.

## TABLE A-3

÷.

# ANNUAL AVERAGE EFFLUENT CONCENTRATIONS FOR THE PERIOD 1971-1984

|                             |             |             |             |             | A           | NNUAL       | AVERAG      | E 800       | (MG/L)      |      |             |               |                |                |
|-----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|-------------|---------------|----------------|----------------|
| Treatment Plant             | <u>1971</u> | <u>1972</u> | <u>1973</u> | <u>1974</u> | <u>1975</u> | <u>1976</u> | <u>1977</u> | <u>1978</u> | <u>1979</u> | 1980 | <u>1981</u> | <u>1982**</u> | <u>1983</u> ** | <u>1984</u> ** |
| ΔΝΠΚΔ                       | 20          | 29          | 36          | 21          | 16          | 11          | 9           | 12          | 14          | 14   | 16          | 12            | 11             | 13             |
| APPLE VALLEY                | 74          | 113         | 22          | 24          | 7           | 7           | 6           | 12          | 23          | *    |             |               |                |                |
| BAYPORT                     | 27          | 40          | 32          | 9           | 15          | 14          | 11          | 8           | 7           | 7    | 8           | 8             | 6              | 6              |
| BUIELAKE (POND)             | 31          | 31          | 39          |             |             |             |             |             |             |      |             |               |                |                |
|                             |             |             | 12          | 18          | 15          | 15          | 13          | 13          | 9           | 9    | 12          | 10            | 9              | 9              |
|                             | 20          | 55          | *           |             |             |             |             |             |             |      |             |               |                |                |
|                             | 34          | 49          | 52          | 58          | 43          | 42          | 24          | 78          | 112         | 20   | 18          | 14            | 11             | 9              |
|                             | 84          | *           |             |             |             |             |             |             |             |      |             |               |                |                |
| CHANNASSEN<br>COTIACE CROVE | 57          | 52          | <b>4</b> 0  | 36          | 25          | 55          | 39          | 34          | 19          | 11   | 12          | 10            | 9              | 9              |
| CUTTAGE GROVE               | 50          | 52          | *           |             | <u></u>     |             |             |             |             |      |             |               |                |                |
| LAGAN IUWNSHIP              | 20          | 52          |             |             |             |             |             |             | 10          | 3    | 3           | 2             | 3              | 2              |
| EMPIRE                      |             |             |             |             |             |             |             |             | 10          |      |             |               |                |                |
| EXCELSIOR                   | 12          | 20          | ***         | 05          |             | 20          | 74          | 31          | 52          | *    |             |               |                |                |
| FARMINGTON                  | 29          | 22          | 40          | 82          | 04          | 27          | 70          | 71          | 72          |      |             | ·             |                |                |
| FOREST LAKE TOWNSHIP        | 8           |             | *           |             |             |             |             |             |             |      |             |               |                |                |
| FOREST LAKE VILLAGE         | - 77        | 114         | *           |             |             |             |             |             | 10          | 10   | 20          | 20            | 14             | 22             |
| HASTINGS                    | 12          | 7           | 15          | 54          | 12          | 12          | 16          | 19          | Τa          | 10   | 20          | 20            | 10             | 46             |
| INVER GROVE HEIGHTS         | 76          | 110         | *           |             |             |             |             |             |             |      |             |               |                |                |
| LAKEVILLE                   | 36          | 33          | 34          | 25          | 28          | 54          | 51          | 6/          | 67          | *    | <br>×       |               |                |                |
| LONG LAKE                   | 53          | 24          | 18          | 35          | 40          | 41          | 43          | 42          | 45          | 28   | *           |               | ~~~~           | 10             |
| MAPLE PLAIN                 | 12          | 11          | 13          | 10          | . 9         | 8           | 11          | 11          | 18          | 20   | 12          | 12            | 10             | 10             |
| MEDINA                      | 12          | 9           | 14          | 10          | 13          | 14          | 25          | 22          | 22          | 22   | 26          | 14            | 10             | 10             |
| ME TROPOLITAN               | 84          | 72          | 46          | 42          | 41          | 67          | 42          | 39          | 43          | 23   | 19          | 13            | 10             | 10             |
| MOUND                       | 24          | 35          | 53          | 98          | *           |             |             |             |             |      |             |               |                |                |
| NEWPORT                     | 48          | 88          | 58          | 47          | 49          | *           |             |             |             |      |             |               |                |                |
| DAK PARK HEIGHTS            | 39          | 32          | 48          | *           |             |             |             |             |             |      |             |               |                |                |
| ORONO                       | 15          | 10          | 10          | 6           | 6           | 8           | 12          | 24          | 18          | 31   | *           |               |                |                |
| PRIOR LAKE                  | 34          | 26          | 28          | 22          | 24          | 35          | 22          | <u>2</u> 4  | *           |      |             |               |                |                |
| ROSEMOUNT (trick)ing        | 36          | 68          | 76          | *           |             |             |             |             |             |      |             |               |                |                |
| filter)                     |             | ••          | •=          |             |             |             |             |             |             |      |             |               |                |                |
| POSEMOUNT ANTE              |             |             | 7           | 23          | 16          | 14          | 14          | 13          | 13          | 12   | 14          | 16            | 16             | 18             |
|                             | 66          | 50          | 52          | 51          | 63          | *           |             |             |             |      |             |               |                |                |
| ST. FAUL FARE               | 22          | 26          | 28          | 27          | 21          | 20          | 46          | 27          | 27          | 7    | 10          | 8             | 8              | 7              |
|                             |             | 20          | 14          | 15          | 11          | 15          | 16          | 21          | 16          | 16   | 20          | 18            | 14             | 17             |
| SENELA                      | 755         | *           | 10          |             |             |             |             |             |             |      |             |               |                |                |
|                             | 20          | 42          | 31          | 44          | *           |             |             |             |             |      |             |               |                |                |
| SUUTH ST. PAUL              | 24          | 17          | 1.6         | 1.2         | 11          | ġ           | 12          | 10          | 10          | 12   | 18          | 10            | 10             | 8              |
| STILLWAILK                  | 24          | 50          | 70          | . <u>*</u>  | 11          |             |             |             |             |      |             |               |                |                |
| VICTURIA                    | 15          | 22          | 10          |             | 17          |             | 52          | 31          | *           |      |             |               |                |                |
| WACUNIA                     |             |             |             |             | 17          | 02          | 2           | <u></u>     |             |      |             |               |                |                |
| WAYZATA                     | 41          | *           |             |             |             |             |             |             |             |      |             |               |                |                |
| ALL PLANTS EXCEPT           | 52          | ٦A          | 27          | 26          | 16          | 17          | 17          | 1 <b>9</b>  | 17          | 12   | 15          | 13            | 10             | 11             |
| WE HO (METALLED BAA')       | 25          | 20          |             | 80 G        | 10          | ±.          | •••         |             |             |      |             |               |                |                |
| ALL PLANTS (weighted        |             |             |             |             |             |             |             |             |             |      |             |               |                |                |
| average)                    | 81          | 67          | 43          | 40          | 38          | 60          | 38          | 36          | 39          | 21   | 18          | 12            | 10             | 10             |
|                             | -           |             |             |             |             |             |             |             |             |      |             |               |                |                |
| ALL PLANTS EXCEPT           |             |             |             |             |             |             |             |             | _           |      | . –         |               |                |                |
| METRO (actual average)      | 50          | 45          | 34          | 32          | 24          | 23          | 27          | 26          | 28          | 17   | 15          | 12            | 10             | 11             |
|                             |             |             |             |             |             |             |             |             |             |      |             |               |                |                |
| ALL PLANTS (actual          |             |             |             |             |             |             |             | - <b>-</b>  |             |      |             | 1.4           | 10             | • •            |
| average)                    | 51          | 46          | 34          | 33          | 25          | 26          | 28          | 27          | 28          | 18   | 15          | 12            | 10             | ŤŢ             |
| -                           |             |             |             |             |             |             |             |             |             |      |             |               |                |                |

\* Plant phased out during previous year. \*\*CBOD5 values listed for 1982, 1983, and 1984.
## ANNUAL AVERAGE EFFLUENT CONCENTRATIONS FOR THE PERIOD 1971-1984

|                                 |             |             |             |             |             | ANNUA       |             | AGE TS      | is (MG/   | Ľ)          |             |             |      |             |
|---------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|-------------|-------------|-------------|------|-------------|
| Treatment Plant                 | <u>1971</u> | <u>1972</u> | <u>1973</u> | <u>1974</u> | <u>1975</u> | <u>1976</u> | <u>1977</u> | <u>1978</u> | 1979      | <u>1980</u> | <u>1981</u> | <u>1982</u> | 1983 | <u>1984</u> |
| ANOKA                           | 24          | 36          | 40          | 19          | 13          | 15          | 14          | 16          | 12        | 11          | 14          | 8           | 10   | 11          |
| APPLE VALLEY                    | 93          | 148         | 16          | 14          | 5           | 5           | 3           | 6           | 10 .      | *           |             |             |      |             |
| BAYPORT                         | 22          | 43          | 28          | 15          | 10          | 8           | 10          | Ř           | 8         | 7           | 7           | 8           | 6    | 8           |
| BLUE LAKE (POND)                | 34          | 58          | 45          |             |             |             |             |             |           |             |             |             |      |             |
| BLUE LAKE                       |             |             | 22          | 21          | 14          | 19          | 13          | 14          | 12        | 9           | 6           | 7           | 7    | 7           |
| BURNSVILLE                      | 60          | 86          | *           |             |             |             |             |             |           |             |             |             |      |             |
| CHASKA                          | 72          | 86          | 79          | 91          | 62          | 55          | 54          | 66          | 59        | 12          | 13          | 11          | 11   | 11          |
| CHANHASSEN                      | 71          | *           |             |             |             |             |             |             |           |             | 12          | **          | 11   | 11          |
| COTTAGE GROVE                   | 63          | 70          | 93          | 84          | 34          | 25          | 23          | 20          | 16        |             | 7           |             | 21   |             |
| FAGAN TOWNSHIP                  | 60          | 69          | *           |             |             | 25          | 27          | 20          | Τ.4       | Ŷ           |             | /           | 11   | ,           |
| EMPTRE                          |             |             |             |             |             |             |             |             |           |             |             |             |      |             |
| EYESI STOP                      | 17          |             | *           |             |             |             |             |             | ,         | 2           | Ζ.          | ▲           | 1    | 2           |
| FADMINGTON                      | 70          | 70          | <br>5 A     | 75          |             |             |             |             |           |             |             | "           |      |             |
| FOREST LAKE TOWNED TO           | 11          | 26          | 24          | 15          | 29          | 25          | 24          | - 24        | 57        | *           |             |             | ***  |             |
| FOREST LAKE TURNSHIP            | 105         | 14          | *           | *           |             |             |             |             |           |             |             |             |      |             |
| TUREST LAKE TIELAGE             | 102         | 10          | 10          |             |             |             | 10          |             |           |             |             |             |      |             |
| TRUED CONVE HE LOUTS            | 170         | 10          | *           | 20          | 20          | 21          | 19          | 20          | 19        | 23          | 22          | 51          | 25   | - 52        |
| THACK REACHE RETRUIS            | 177         | 1/4         | *           |             |             |             |             |             |           |             |             |             |      |             |
|                                 | 47          | 26          | 26          | <u>ж</u>    | 33          | 59          | 55          | 68          | 71        | ***         |             | ***         |      |             |
|                                 | >>          | 4/          | 25          | 50          | 39          | 48          | - 37        | 30          | 26        | 43          | *           |             |      |             |
| MAPLE PLAIN                     | 20          | 13          | 12          | 19          | 12          | 16          | 16          | 10          | 13        | 14          | . 9         | 7           | 9    | 10          |
|                                 | 11          | 15          | 16          | 13          | 13          | 15          | 20          | 18          | 19        | 25          | 18          | 14          | 14   | 16          |
| METROPOLITAN                    | 12          | 24          | 57          | 43          | 40          | 60          | 49          | 43          | 64        | 26          | 19          | 11          | 9    | - 11        |
| MUUNU                           | 2/          | . 26        | 4/          | 38          | *           |             |             |             |           |             |             |             |      |             |
| NEWPURI                         | 85          | 120         | 96          | 110         | 89          | *           |             |             |           |             |             |             |      |             |
| UAK PARK HEIGHTS                | 36          | 47          | 85          | *           |             |             |             |             |           |             |             |             |      |             |
| ORONO                           | 19          | 15          | 10          | 10          | 11          | 17          | 21          | 32          | 23        | 43          | *           |             |      |             |
| PRIOR LAKE                      | 28          | 33          | 27          | 25          | 25          | 28          | 17          | 17          | *         |             |             |             |      |             |
| ROSEMOUNT (trickling<br>filter) | 51          | 63          | 58          | *           | ***         |             |             |             |           |             |             |             |      |             |
| ROSEMOUNT AWTP                  |             |             | 2           | 9           | 4           | 3           | 3           | 4           | 3         | 2           | 2           | 2           | 2    | 3           |
| ST. PAUL PARK                   | 69          | 77          | 47          | 48          | 47          | *           |             |             |           |             |             |             |      |             |
| SAVAGE                          | 24          | 28          | 14          | 15          | 13          | 10          | 14          | 15          | 14        | 7           | 8           | 4           | 3    | 3           |
| SENECA                          |             | 29          | 17          | 19          | 16          | 15          | 15          | 17          | 20        | 16          | 20          | 19          | 18   | 21          |
| SHAKOPEE                        | 146         | *           |             |             |             |             |             |             |           |             |             |             |      |             |
| SOUTH ST. PAUL                  | 38          | 22          | 22          | 31          | *           |             |             |             |           |             |             |             |      |             |
| STILLWATER                      | 23          | 12          | 13          | 13          | 7           | 10          | 8           | - 10        | 11        | 15          | 10          | 8           | 12   | 9           |
| VICTORIA                        | 59          | 45          | 52          | *           |             |             |             |             |           |             |             |             | 12   |             |
| WACONTA                         |             |             |             |             | 33          | 53          | 62          | 40          | *         |             |             |             |      |             |
| WAYZATA                         | 34          | *           |             |             |             |             |             |             |           |             |             | ***         |      |             |
|                                 |             |             |             |             |             |             |             |             |           |             |             |             |      |             |
| ALL PLANIS EXCEPT               |             |             |             |             |             |             |             |             |           |             |             |             |      |             |
| METRO (weighted avg.)           | 44          | 38          | 27          | - 26        | 17          | 18          | 15          | 18          | 16        | 12          | 14          | 11          | 11   | 12          |
| ALL PLANTS (weighted            |             |             |             |             |             |             |             |             |           |             |             |             |      |             |
| average)                        | 69          | 52          | 36          | 40          | 37          | 54          | 44          | 38          | 56        | 24          | 18          | 11          | 9    | 11          |
| ALL PLANTS EXCEPT               |             |             |             |             |             |             |             |             |           |             |             | •           |      |             |
| METRO (actual average)          | 50          | 57          | 37          | 35          | 25          | 22          | 22          | 26          | 21        | 14          | 11          | 10          | 10   | . 11        |
| mento (eccoar average)          | 20          |             |             |             | 23          | 24          | 22          | 24          | <b>21</b> | 19          | ΤŢ          | τU          | tu   | 11          |
| ALL PLANTS (actual              |             |             |             |             |             |             |             |             |           |             |             |             |      |             |
| average)                        | 51          | 57          | 37          | 36          | 26          | 24          | 23          | 25          | 23        | 16          | 12          | 10          | 10   | 11          |
| -                               |             |             |             |             |             |             |             |             |           | -           | . —         |             |      |             |

\* Plant phased out during previous year.

## ANNUAL AVERAGE EFFLUENT PERCENT REMOVAL EFFICIENCY FOR THE PERIOD 1971-1984

|                        |             |                |             |             | A           | NNUAL       | AVERAG      | E 80D       | REMOVA      | L (%)      |             |             |             |             |
|------------------------|-------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|
| Treatment Plant        | <u>1971</u> | 1972           | <u>1973</u> | <u>1974</u> | <u>1975</u> | <u>1976</u> | <u>1977</u> | <u>1978</u> | <u>1979</u> | 1980       | <u>1981</u> | <u>1982</u> | <u>1983</u> | <u>1984</u> |
| ANOKA                  | 89          | 87             | 85          | 91          | 92          | 94          | <b>9</b> 5  | 94          | 93          | 92         | 92          | 95          | 94          | 93          |
| APPLE VALLEY           | 65          | 52             | 90          | 89          | 97          | 96          | 97          | 94          | 88          | *          |             |             |             |             |
| BAYPORT                | 88          | 86             | 86          | 97          | 95          | 95          | 95          | 96          | 96          | 96         | 96          | 95          | 96          | 97          |
|                        | 87          | 92             | 88          |             |             |             |             |             |             |            |             |             |             |             |
| DEUE LAKE (FUND)       |             |                | 92          | 9/          | 94          | 95          | 95          | 95          | 96          | 96         | 95          | 95          | 96          | 95          |
|                        | 76          | <u></u>        | *           | 74          |             |             |             |             |             |            |             |             |             |             |
| BURNSVILLE             | 74          | 75             | 74          | 20          | <b>0</b> 1  | 93          | 79          | <u>61</u>   | 57          | 91         | 92          | 93          | 92          | 92          |
| CHASKA                 | 77          | ,15            | 74          | 07          | 01          | 07          | 70          | Q1          |             |            |             |             |             |             |
| CHANHASSEN             | /0          | *              |             |             |             |             |             | 07          | 00          | 04         | 0/          | 05          | 05          | 05          |
| COTTAGE GROVE          | 81          | 6Ú             | /6          | 5           | 89          | 12          | 91          | 6)          | 87          | - 24       | 74          | 72          | ,,,         | ,,,         |
| EAGAN TOWNSHIP         | 75          | 69             | *           |             |             |             |             |             |             |            |             |             |             |             |
| EMPIRE                 |             |                |             |             |             |             |             |             | 95          | 98         | 99          | 99          | 99          | 22          |
| EXCELSIOR              | 92          | 91             | *           |             |             |             |             |             |             |            |             |             |             |             |
| FARMINGTON             | 86          | 87             | 86          | 91          | 86          | 94          | 83          | 91          | 82          | *          |             |             |             |             |
| FOREST LAKE TOWNSHIP   |             |                | *           |             |             |             |             |             |             |            |             |             |             |             |
| FOREST LAKE VILLAGE    | 51          | 40             | *           |             |             |             |             |             |             |            |             |             |             | '           |
| LASTINCS               | 96          | 97             | 92          | 81          | 91          | 94          | 92          | 93          | 92          | 91         | 91          | 92          | 93          | 89          |
| TAULED COOVE HEICHIE   | 24          | Śi             | *           |             |             |             |             |             |             |            |             |             |             |             |
| THACK GUIL HEIGHIS     | 70          | 70             | 0           | 04          | 02          | 94          | 89          | 77          | 75          | *          |             |             |             |             |
| LAKEVILLE              | - 12        | /0             | 04          | 74          | 74          | 74          | 70          | 74          | 76          | <b>Z</b> 1 | *           |             |             |             |
| LONG LAKE              | ()          | 86             | 22          | 86          |             | /0          | /7          | 74          | /4          | 00         | 07          | 00          | 02          | 01          |
| MAPLE PLAIN            | 90          | 86             | 93          | 75          | 89          | 94          | 93<br>07    | 92          | 87          | 00         | 72          | 7U<br>07    | 01          | 90          |
| MEDINA                 | 92          | 90             | 90          | · 92        | 92          | 94          | 86          | 95          | 82          | 84         | 80          | 0/          | 71          | 07          |
| ME TROPOL I TAN        | 66          | 73             | 82          | 84          | 83          | 75          | 83          | 82          | 79          | 89         | 91          | 72          | 94          | 94          |
| MOUND                  | 82          | 7 <del>9</del> | 75          | 52          | *           |             |             |             |             |            |             |             |             |             |
| NEWPORT                | 79          | 64             | 72          | 78·         | 71          | *           |             |             |             |            |             |             |             |             |
| OAK PARK HEIGHTS       | 85          | 88             | 83          | *           |             |             |             |             |             |            |             |             |             |             |
| OPONO                  | 88          | 93             | 94          | 96          | 94          | 93          | 91          | 79          | 82          | 68         | *           |             |             |             |
|                        | 82          | 79             | 80          | 80          | 77          | 68          | 71          | 78          | *           |            |             |             |             |             |
| PRIUR LAKE             | 02          | /0             | UU          | 00          |             |             | · <b>-</b>  |             |             |            |             |             |             |             |
| RUSEMUUNI (TETERTING   | 74          | 70             | <b>7</b> E  |             |             |             |             |             |             |            |             |             |             |             |
| filter)                | 74          | 12             | 62          | *           |             |             | 07          | 07          | 07          | 07         | 02          | <u>an</u>   | 90          | 86          |
| ROSEMOUNT_AWTP         |             | 77             | 쑀           | 71          | 72          | *           | 7)          | 72          | 72          | <i>,,,</i> | 72          |             |             |             |
| SI. PAUL PAKK          | 00          | 00             | 17          | . 05        | 00          | 00          | 96          | 95          | 70          | 95         | 93          | 94          | 93          | 93          |
| SAVAGE                 | 84          | 88             | 04          | 0)          | 00          | 00          | 07          | 02          | 07          | á2         | 01          | 92          | 9/          | 92          |
| SENECA                 |             | 88             | 94          | 94          | 72          | 74          | ,,,         | 76          | ,,          | 72         | 1           | 12          |             | ~           |
| SHAKOPEE               | 11          | . <b>*</b>     |             |             |             |             |             |             | ·           |            |             |             |             |             |
| SOUTH ST. PAUL         | 88          | 92             | 90          | 87          | ·*          |             |             |             |             |            |             |             |             |             |
| STILLWATER             | 73          | 84             | 87          | 92          | 93          | 94          | 90          | . 93        | 92          | 90         | 87          | 93          | 92          | 93          |
| VICTORIA               | 57          | 68             | 66          | *           |             |             |             |             |             |            |             |             |             |             |
| WACONTA                |             |                |             |             | 90          | 90          | 85          | 90          | +           |            |             |             |             |             |
|                        | 79          | *              |             |             |             |             |             |             |             |            |             |             |             |             |
| MATZATA                | /0          |                |             |             |             |             |             |             |             |            |             |             |             |             |
|                        |             |                |             |             |             |             |             |             |             |            |             |             |             |             |
| ALL PLANTS EXCEPT      |             |                | ~~          |             |             |             | 07          |             | 00          | 04         | 07          | 94          | 05          | Q/i         |
| MEIRO (weighted avg.)  | 83          | 85             | 89          | 90          | 93          | .95         | 32          | 92          | 92          | 74         | 72          | 74          |             | 74          |
|                        |             |                |             |             |             |             |             |             |             |            |             |             |             |             |
| ALL PLANTS (weighted   |             |                |             |             |             |             |             |             |             |            |             |             |             | ~           |
| average)               | 68          | 75             | 83          | 85          | 84          | 77          | 84          | 84          | 81          | 90         | 91          | 94          | 94          | 94          |
|                        |             |                |             |             |             |             |             |             |             |            |             |             |             |             |
| ALL PLANTS EXCEPT      |             |                |             |             |             |             |             |             |             |            |             |             |             |             |
| METRO (actual avarage) | 77          | 78             | 84          | 86          | 88          | 89          | 88          | 87          | 86          | 89         | 92          | 94          | 94          | 93          |
| meinu (accuar average) |             | ,0             |             | 00          |             | •,          |             | **          |             |            |             |             |             |             |
| ALL DLANTS (actual)    |             |                |             |             |             |             |             |             |             |            |             |             |             |             |
| ALL PLANIS (BCCUBL     | ·           | 70             | 04          | 07          | 00          | 00          | 00          | 07          | ۵۷          | 90         | 92          | 94          | 94          | 93          |
| average)               | 11          | 78             | 64          | 00          | 00          | 07          | ¢0          | 0/          | 00          | 09         | 12          |             |             |             |
|                        |             |                |             |             |             |             |             |             |             |            |             |             |             |             |

\* Plant phased out during previous year.

## ANNUAL AVERAGE EFFLUENT PERCENT REMOVAL EFFICIENCY FOR THE PERIOD 1971-1984

|                        |             |             |             |             | A           | NNUAL       | AVERAG      | E TSS       | REMOVA      | L (%)    |             |                                              |                                         |             |
|------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|-------------|----------------------------------------------|-----------------------------------------|-------------|
| Treatment Plant        | <u>1971</u> | <u>1972</u> | <u>1973</u> | <u>1974</u> | <u>1975</u> | <u>1976</u> | <u>1977</u> | <u>1978</u> | <u>1979</u> | 1980     | <u>1981</u> | 1982                                         | <u>1983</u>                             | <u>1984</u> |
| ΔΝΠΚΔ                  | 90          | 88          | 85          | QA          | 94          | 92          | 92          | on.         | 01          | 02       | 01          | as                                           | 04                                      | 07          |
|                        | 64          | 55          | 95          | 94          | 00          | 92          | 00          | 90          | 91          | *        | 71          | <i>,,,</i>                                   | 74                                      | 7)          |
| RAYPORT                | 90          | 84          | 86          | 95          | 97          | 94          | 97          | 90<br>94    | 20          | Q2       | 02          | <u>0</u> /                                   | 02                                      | 02          |
| BILIFIAKE (POND)       | 78          | 66          | 75          | ,,,         |             | 20          | <b>7</b> 7  | 74          | <i>,,,</i>  | 70       | 70          | 74                                           | 70                                      | 70          |
| BILLE LAKE             |             |             | 91          | 94          | 96          | 95          | 96          | 96          | 96          | 96       | 99          | 97                                           | 97                                      | 07          |
| BURNSVILLE             | 75          | 72          | *           |             |             |             |             | ~~          |             |          | 70          |                                              | 21                                      | 21          |
| CHASKA                 | 66          | 54          | 57          | 53          | 73          | <u>9</u> 1  | 70          | 23          | 70          | 07       | -07         | 07                                           | 01                                      | 07          |
| CHANHASSEN             | 75          | *           |             |             |             |             | 70          | 97          | 70 -        | ,,       | ,,          | ,,,                                          | 71                                      | 75          |
| COTTACE CROVE          | 82          | 79          | 44          | 71          | 05          | 92          | 00          | 92          |             | 05       | 02          | - 07                                         | 07                                      |             |
| FACAN TOWNSHIP         | 72          | 41          |             | /1          | 67          | 00          | 90          | 00          | 71          | 72       | 70          | 70                                           | - 72                                    | 94          |
| FMPTRF                 |             | 01          |             |             |             |             |             |             | 00          |          | 00          |                                              |                                         |             |
| FYCELSTOR              | 93          | 80          | *           |             |             |             |             |             | 70          | 77       | 77          | .22                                          | 77                                      | 77          |
| FARMINGTON             | 73          | 74          | 76          | 79          | 88          | 90          | 84          | 92          | 75          | *        |             |                                              |                                         |             |
| FOREST LAKE TOWNSHIP   |             |             | *           |             |             | <i>,</i> ,  | 00          | 02          | 15          |          |             |                                              |                                         |             |
| FOREST LAKE VILLACE    | <u>61</u>   | 37          | *           |             |             |             |             | ~~          |             |          |             |                                              |                                         |             |
| HASTINGS               | 97          | 97          | 92          | 97          | <br>00      | 00          | <u>an</u>   | 02          | 01          | 00       | <u> </u>    |                                              | 07                                      | 07          |
| INVED CONVE HETCHTS    | 42          | 31          | * 2         | 07          | 70          | 70          | 70          | 72          | 71          | 70       | 71          | 0/                                           | 0/                                      | 0)          |
| INVER GROVE HEIGHIS    | 42          | 07          | 00          |             | 07          | ~           | 07          |             |             |          |             |                                              |                                         |             |
|                        | 77          | 0.0         | 07          | 70          | 7/          | 70          | 7)          | 82          | 90          | 70       | <br>_       |                                              |                                         |             |
|                        | 49          | 70          | 74          | 07          | 17          | 02          | 00          | 82          | 00          | 79       | 7<br>OE     | 04                                           | 07                                      |             |
| MEDINA                 | 92          | 88          | 88          | 91          | 91          | 96          | 71<br>88    | 70<br>94    | 94<br>Q1    | 9)<br>81 | 72<br>94    | 74<br>00                                     | 72<br>00                                | 92          |
| METROPOLITAN           | 77          | 83          | 88          | 86          | 87          | 92          | 00<br>20    | 20<br>R1    | 71          | 99       | 00          | 00                                           | 07                                      | 00          |
| MOUND                  | ต์          | 82          | 7/          | 20          | *           | 02          | 65          | 01          | 11          | 02       | 74          | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 77          |
| NEWPOPT                | 44          | 50          | 54          | 52          | 51          | *           |             |             |             |          |             |                                              |                                         |             |
| NAV DADY DETCHTS       | 90          | 01          | 71          |             | 21          | ~           |             |             |             |          |             |                                              |                                         |             |
| ÓPONO                  | 94          | 01          | 0/1         | 02          |             |             |             | 01          | 04          |          |             |                                              |                                         |             |
|                        | 90          | 21          | 74<br>02    | 20          | 72          | 00          | 00          | 00          |             | 12       | *           |                                              |                                         |             |
| ROSEMOINT (trickling   | 0/          | 02          | 00          | 00          | 00          | av          | 00          | 00          | ~           |          |             |                                              |                                         |             |
| filter)                | 72          | 97          | 63          | *           |             |             |             |             |             |          |             |                                              |                                         |             |
| ROSEMOUNT AWTP         |             |             | 96          | 92          | 98          | <br>00      | 00          | 00          | 00          |          | 00          | 00                                           | 00                                      |             |
|                        | 79          | 75          | 97          | 90          | 90          | 37          | 77          | 70          | 77          | 77       | 77          | 77                                           | . 77                                    | 70          |
| SAVACE                 | 91<br>91    | 92          | 95          | 94          | 00          |             | 04          | 04          | 07          | 00       | 07          |                                              | 00                                      |             |
| SENERA                 |             | 90          | 07          | 24<br>QA    | 97          | 97<br>03    | 24          | 24          | 22<br>00    | 77       | 27<br>01    | 27<br>00                                     | 20<br>01                                | 70          |
| SHAKOPEE               | 38          | *           | ,,          | 74          | 24          | "           | 75          | 33          | 50          | 71       | 71          | 70                                           | 71                                      | 70          |
| SOUTH ST. PAU          | 93          | 94          | 97          | 92          | *           |             |             |             |             |          |             |                                              |                                         |             |
| STILLWATER             | 80          | 90          | οn θ        | 07          | 97          | 07          | 07          | 94          | 01          | 00       | 04          | 06                                           | 0)                                      | 07          |
| VICTORIA               | 62          | 69          | 72          | *           | 21          | ,,          | "           | 74          | 71          | 00       | 74          | 74                                           | 71                                      | 75          |
| WACONTA                |             |             |             |             | 92          | 94          | 9A          | 90          | *           |          |             |                                              |                                         |             |
| WAY7ATA                | 72          | *           |             |             | . 02        | 00          | 04          |             |             |          |             |                                              |                                         |             |
| MILLAIA                | <b>~</b>    |             |             |             |             |             |             |             |             |          |             |                                              |                                         |             |
| ALL PLANTS EXCEPT      |             |             |             |             |             |             |             |             |             |          |             |                                              |                                         |             |
| METRO (weighted avo.)  | 82          | 83          | 88          | 93          | 94          | 93          | 94          | 93          | . 93        | 94       | QÁ          | 95                                           | 9/                                      | QA          |
|                        | ~~          | •••         | 00          |             | ~           |             | 74          |             |             |          | /+          | 11.                                          | /4                                      | 24          |
| ALL PLANTS (weighted   |             |             |             |             |             |             |             |             |             |          |             |                                              |                                         |             |
| average)               | 78          | 83          | 88          | 87          | 88          | 83          | 86          | 86          | 75          | 90       | 97          | 95                                           | 95                                      | 05          |
| everage,               |             |             |             | 0,          | 00          | <b>U</b> 2  |             | <b>6</b> 4  | 15          | 70       | 14          | ,,                                           | ,,,                                     | ,,          |
| ALL PLANTS EXCEPT      |             |             |             |             |             |             |             |             |             |          |             |                                              |                                         |             |
| METRO (actual average) | 76          | 76          | 83          | 86          | 88          | 91          | <b>9</b> 0  | 89          | 90          | 91       | 94          | 95                                           | 94                                      | 93          |
|                        | • •         |             |             | ~~          | ~~          |             |             |             |             | ~ -      | ~~          |                                              | 74                                      |             |
| ALL PLANTS (actual     |             |             |             |             |             |             |             |             |             |          |             |                                              |                                         |             |
| average)               | 76          | 76          | 84          | 86          | 88          | 90          | 89          | 89          | 89          | 91       | 94          | 95                                           | 94                                      | 93          |
| -                      |             |             |             |             |             | -           |             |             |             |          |             |                                              |                                         |             |

\* Plant phased out during previous year.

| INFLUENT BOD DATA 1971-19 | 84 |  |
|---------------------------|----|--|
|---------------------------|----|--|

|                                      |             |             |             |             | ANNI        | UAL AVE     | rage vai    | LUES, B     | OD (MG/I    | L)         |             |      |              |             |
|--------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|------|--------------|-------------|
| <u>Treatment Plant</u>               | <u>1971</u> | <u>1972</u> | <u>1973</u> | <u>1974</u> | <u>1975</u> | <u>1976</u> | <u>1977</u> | <u>1978</u> | <u>1979</u> | 1980       | <u>1981</u> | 1982 | 1983         | <u>1984</u> |
| ANOKA                                | 182         | 223         | 240         | 237         | 189         | 170         | 175         | 199         | 206         | 176        | 211         | 223  | 1 <b>93</b>  | 184         |
| APPLE VALLEY                         | 211         | 235         | 220         | 228         | 204         | 189         | 228         | 216         | 194         | *          |             |      |              |             |
| BAYPORT                              | 225         | 286         | 229         | 282         | 330         | 270         | 228         | 200         | 198         | 197        | 184         | 161  | 158          | 174         |
| ALLE LAKE                            |             |             | 300         | 304         | 271         | 282         | 258         | 266         | 216         | 228        | 230         | 228  | 194          | 177         |
| CHASKA                               | 171         | 196         | 200         | 185         | 222         | 241         | 203         | 200         | 258         | 220        | 229         | 189  | 141          | . 115       |
| COTTAGE GROVE                        | 279         | 260         | 250         | 234         | 222         | 1 <b>97</b> | 209         | 198         | 172         | 171        | 204         | 208  | 181          | 180         |
| FMPIRE                               |             |             |             |             |             |             |             |             | 208         | 181        | 234         | 204  | 217          | 193         |
| FARMINGTON                           | 279         | 400         | 329         | <b>9</b> 57 | 453         | 452         | 447         | 338         | 293         | *          |             |      |              |             |
| HASTINGS                             | 300         | 233         | 188         | 175         | 161         | 187         | 189         | 243         | 221         | 210        | 227         | 251  | 230          | 196         |
| LAKEVILLE                            | 144         | 150         | 213         | 426         | 373         | 570         | 432         | 290         | 257         | *          |             |      |              |             |
| LONG LAKE                            | 212         | 171         | 257         | 258         | 150         | 183         | 201         | 163         | 164         | 148        | *           |      |              |             |
| MAPLE PLATN                          | 120         | 79          | 186         | 186         | 80          | 1 <b>29</b> | 156         | 142         | 165         | 173        | 165         | 146  | 125          | 116         |
| MEDINA                               | 150         | 90          | 140         | 124         | 156         | 246         | 285         | 300         | 119         | 139        | 128         | 122  | 133          | 103         |
| METROPOLITAN                         | 247         | 267         | 256         | 256         | 241         | 266         | 246         | 215         | 205         | 215        | 208         | 203  | 174          | 176         |
| NEWPORT                              | 229         | 244         | 207         | 217         | 170         | *           |             |             |             |            |             |      |              |             |
| ORONO                                | 125         | 143         | 167         | 158         | 105         | 110         | 141         | 116         | 102         | 98         | *           |      |              |             |
| PRIOR LAKE                           | 189         | 118         | 140         | 111         | 104         | 110         | 76          | - 103       | *           |            |             |      |              |             |
| ROSEMOUNT                            |             |             | 70          | 246         | 213         | 220         | 203         | 198         | 193         | 165        | 177         | 168  | 159          | 127         |
| ST. PALI PARK                        | 550         | 274         | 248         | 227         | 224         | *           |             |             |             |            |             |      |              |             |
| SAVAGE                               | 138         | 217         | 175         | 184         | 191         | 163         | 283         | 179         | 130         | 151        | 153         | 151  | 120          | 104         |
| SENECA                               |             | 242         | 267         | 270         | 235         | 247         | 230         | 252         | 219         | 194        | 217         | 221  | 221          | 207         |
| STILLWATER                           | 89          | 106         | 108         | 157         | 161         | 140         | 116         | 146         | 118         | 121        | 141         | 135  | 1 <b>2</b> 4 | 125         |
| WACONIA                              |             |             |             |             | 169         | 676         | 341         | *           |             |            |             |      |              |             |
| ALL PLANTS EXCEP                     | т           | ÷           |             |             |             |             |             |             |             |            |             |      | 100          | 107         |
| METRO (weighted a                    | avg.)       |             |             |             | 234         | 243         | 229         | 239         | 207         | 197        | 217         | 214  | 198          | 183         |
| ALL PLANTS (weigh                    | hted        |             |             |             | 240         | 963         | 243         | - 210       | 205         | 212        | 202         | 205  | 178          | 177         |
| average)                             |             |             |             |             | 240         | 20)         | 24)         | 217 .       | 207         | <b>L14</b> | 20)         | 202  | 1,0          | 1           |
| ALL PLANTS EXCEP<br>METRO (actual av | T<br>erage) |             |             |             | 209         | 252         | 232         | 208         | 191         | 171        | 1 <b>92</b> | 185  | 169          | 154         |
| ALL PLANTS (actu<br>average)         | al          |             |             |             | 210         | 252         | 232         | 209         | 191         | 174        | 193         | 186  | 169          | 156         |
|                                      |             |             |             |             |             |             |             |             |             |            |             |      |              |             |

\*Plant phased out during previous year.

# INFLUENT ISS DATA 1971-1984

|                        |             |      |      |      | ANNUAL      | AVERAGE     | VALUES | , TSS (I | MG/L) |      |              |      |      |             |
|------------------------|-------------|------|------|------|-------------|-------------|--------|----------|-------|------|--------------|------|------|-------------|
| <u>Treatment Plant</u> | <u>1971</u> | 1972 | 1973 | 1974 | 1975        | <u>1976</u> | 1977   | 1978     | 1979  | 1980 | 1981         | 1982 | 1983 | <u>1984</u> |
| ANOKA                  | 240         | 300  | 267  | 302  | 234         | 195         | 176    | 164      | 132   | 141  | 152          | 154  | 165  | 150         |
| APPLE VALLEY           | 258         | 329  | 320  | 378  | 300         | 229         | 271    | 274      | 240   | *    |              |      |      |             |
| BAYPORT                | 220         | 269  | 200  | 326  | 317         | 227         | 147    | 144      | 169   | 191  | 165          | 150  | 178  | 210         |
| BLUE LAKE              |             |      | 244  | 364  | 347         | 361         | 324    | 317      | 270   | 244  | 241          | 230  | 224  | 204         |
| CAHSKA                 | 212         | 190  | 184  | 194  | 226         | 292         | 180    | 180      | 195   | 167  | 189          | 167  | 127  | 148         |
| COTTAGE GROVE          | 350         | 318  | 274  | 294  | 241         | 185         | 220    | 200      | 163   | 152  | 187          | 173  | 160  | 158         |
| EMPIRE                 |             |      |      |      |             |             |        |          | 226   | 190  | 251          | 212  | 250  | 189         |
| FARMINGTON             | 259         | 296  | 225  | 361  | 250         | 223         | 235    | 189      | 147   | *    |              |      |      |             |
| HASTINGS               | 333         | 333  | 225  | 198  | 199         | 207         | 184    | 252      | 223   | 224  | 235          | 233  | 187  | 196         |
| LAKEVILLE              | 174         | 212  | 327  | 849  | <b>99</b> 7 | 876         | 759    | 388      | 365   | *    |              |      |      |             |
| LONG LAKE              | 206         | 294  | 288  | 446  | 187         | 261         | 274    | 195      | 210   | 196  | * <b>_</b> _ |      |      |             |
| MAPLE PLAIN            | 63          | 62   | 118  | 193  | 83          | 134         | 182    | 228      | 233   | 209  | 179          | 199  | 171  | 195         |
| MEDINA                 | 138         | 125  | 133  | 141  | 214         | 365         | 385    | 487      | 205   | 151  | 132          | 127  | 208  | 131         |
| METROPOLITAN .         | 313         | 318  | 308  | 317  | 316         | 332         | 288    | 231      | 222   | 237  | 230          | 241  | 192  | 198         |
| NEWPORT                | 250         | 248  | 218  | 248  | 181         | *           |        |          |       |      |              |      |      |             |
| ORONO                  | 136         | 167  | 167  | 235  | 168         | 146         | 176    | 167      | 140   | 154  | *            |      |      |             |
| PRIOR LAKE             | 255         | 183  | 193  | 123  | 180         | 139         | 83     | 149      | *     |      |              |      |      |             |
| ROSEMOUNT              |             |      | 50   | 230  | 258         | 230         | 226    | 235      | 202   | 236  | 221          | 239  | 236  | 129         |
| ST. PAUL PARK          | 318         | 308  | 276  | 270  | 241         | *           |        |          |       |      |              |      |      |             |
| SAVAGE                 | 267         | 700  | 280  | 269  | 278         | 241         | 249    | 265      | 190   | 565  | 234          | 170  | 195  | 165         |
| SENECA                 |             | 242  | 243  | 319  | 282         | 225         | 209    | 240      | 204   | 186  | 211          | 203  | 211  | 205         |
| STILLWATER             | 115         | 120  | 130  | 193  | 210         | 140         | 118    | 158      | 119   | 127  | 159          | 139  | 137  | 150         |
| WACONIA                |             |      |      |      | 187         | 381         | 270    | *        |       |      |              |      |      |             |
| ALL PLANTS EXCEPT      | ·           |      |      |      |             |             |        |          |       |      |              |      |      |             |
| METRD (weighted a      | wg.)        |      |      | •    | 292         | 264         | 243    | 255      | 219   | 204  | 218          | 206  | 209  | 194         |
| ALL PLANTS (weigh      | ted         |      |      |      |             |             |        |          |       |      |              |      |      |             |
| average)               |             |      |      |      | 313         | 323         | 281    | 235      | 221   | 232  | 228          | 235  | 195  | 197         |
| ALL PLANTS EXCEPT      | r           |      |      |      | •           |             |        |          |       |      |              |      |      |             |
| METRO (actual ave      | erage)      |      |      |      | 266         | 266         | 246    | 235      | 202   | 209  | 197          | 184  | 188  | 172         |
| ALL PLANTS (actua      | 1           |      |      |      |             |             |        |          | ×     |      |              |      |      |             |
| average)               | =           |      |      |      | 268         | 269         | 248    | 235      | 203   | 211  | 199          | 188  | 189  | 173         |
|                        |             |      |      |      |             |             |        |          |       |      |              |      |      |             |

\*Plant phased out during previous year.

#### STATISTICAL ANALYSES OF BIOCHEMICAL OXYGEN DEMAND DATA FOR PLANTS IN OPERATION DURING 1984

#### TREATMENT PLANT EFFLUENT STATISTICAL DATA

BIOCHEMICAL OXYGEN DEMAND, mg/1\*

| Treatment       |             |             | ç           | 50% of      | F Time         |                |                |             |             |             | 75% of       | f Time |        | 1001.00 | 7777 | 1070            | 1000 | 90%  | of Time | 1007## | 100/ ## |
|-----------------|-------------|-------------|-------------|-------------|----------------|----------------|----------------|-------------|-------------|-------------|--------------|--------|--------|---------|------|-----------------|------|------|---------|--------|---------|
| <u>Plant</u>    | <u>1978</u> | <u>1979</u> | <u>1980</u> | <u>1981</u> | <u>1982</u> ** | <u>1983</u> ** | <u>1984</u> ** | <u>1978</u> | <u>1979</u> | <u>1980</u> | <u>1981</u>  | 1982** | 1983** | 1984**  | 19/8 | 19/9            | 1780 | 1701 | 1702**  | 1767   | 1704    |
| ANOKA           | 11          | 12          | 12          | 15          | 10             | 10             | 12             | 16          | 16          | 17          | 20           | 14     | 14     | 16      | 22   | 22              | 22   | 26   | 19      | 17     | 21      |
| BAYPORT         | 6           | 6           | 5           | 7           | 7              | 6              | 5              | 10          | 8           | 8           | 8            | 9      | 7      | 7       | 14   | 11              | 11   | 10   | 13      | 8      | 8       |
| BLUE LAKE       | 11          | / 7         | 8           | 9           | 10             | 8              | 9              | 14          | 10          | 10          | 13           | 13     | 11     | 11      | 22   | 15              | 14   | 19   | 16      | 12     | 14      |
| CHASKA          | 61          | 93          | 14          | 14          | 12             | 9              | 6              | 100         | 160         | 22          | 24           | 16     | 13     | 10      | 140  | 210             | 38   | 34   | 22      | 1/     | 14      |
| COTTAGE GROVE   | 28          | 12          | 10          | 9           | 8              | 8              | 8              | 38          | 20          | 14          | 15           | 13     | 11     | 11      | 52   | . 50            | TR   | 20   | 18      | 14     | 14      |
| EMPIRE          |             | 4           | 2           | 3           | 2              | 2              | 1              |             | 10          | 2           | 4            | 3      | 3      | 2       |      | 28              | 71   | 4    | 4       | 24     | 75      |
| HASTINGS        | 16          | 16          | 17          | 18          | 17             | 14             | 16             | 22          | 22          | 22          | 24           | 27     | 20     | 23      | 28   | 28              | 21   | 22   | 21      | 20     | 22      |
| MAPLE PLAIN     | 7           | 16          | 19          | 10          | 11             | 8              | 6              | 14          | 23          | 29          | 12           | 18     | 12     | 12      | 22   | <i>ככ</i><br>וד | 27   | 74   | 20      | 10     | 17      |
| ME TROPOL I TAN | 40          | 36          | 20          | 14          | 10             | .8             | 8              | 55          | >>          | 29          | 24           | 12     | 10     | 12      | 22   | 20              | 20   | 19   | 22      | 29     | 30      |
| ROSEMOUNT       | 11          | 10          | 11          | 12          | 15             | 13             | 16             | 15          | 12          | 14          | 12           | 18     | 18     | 21      | 42   | 50              | 20   | 15   | 24      | 10     | ĩñ      |
| SAVAGE          | 26          | 26          | - 5         | . 9         | .6             |                | 6              | <u>)4</u>   | 41          | 20          | 12           | 21     | 17     | 10      | 42   | 27              | 25   | 30   | 25      | 24     | 24      |
| SENECA          | 18          | 14          | 14          | 19          | 1/             | 12             | 12             | 25          | 10          | 20          | 22           | 21     | 17     | 17      | 10   | 21              | 19   | 33   | 14      | 18     | 13 .    |
| STILLWATER      | 8           | 8           | - 12        | 14          | 10             | 9              | 1              | 14          | 12          | 14          | <b>Z</b> 4 · | 14     | 14     | tu      | 10   | 41              | 1/   | 11   | **      |        |         |

\* The data shows that for the percent of time shown, the effluent concentration was less than or equal to the tabulated values.

\*\*1982 through 1984 data represents CBOD values.

#### STATISTICAL ANALYSES OF TOTAL SUSPENDED SOLIDS EFFLUENT DATA FOR PLANTS IN OPERATION DURING 1984

#### TREATMENT PLANT EFFLUENT STATISTICAL DATA

| TOTAL | SUSPEN | NDF D | SOLIDS. | ma/1*     |
|-------|--------|-------|---------|-----------|
|       |        |       |         | 100 C C C |

| Treatment       |             |             | 50%  | of T        | ime         |             |             |             |             | 75%  | of Ti       | іле  |      |      |             |             | 90%         | of T        | ime  |            |      |
|-----------------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|------|-------------|------|------|------|-------------|-------------|-------------|-------------|------|------------|------|
| <u>Plant</u>    | <u>1978</u> | <u>1979</u> | 1980 | <u>1981</u> | <u>1982</u> | <u>1983</u> | <u>1984</u> | <u>1978</u> | <u>1979</u> | 1980 | <u>1981</u> | 1982 | 1983 | 1984 | <u>1978</u> | <u>1979</u> | <u>1980</u> | <u>1981</u> | 1982 | 1983       | 1984 |
| ANOKA           | 13          | 10          | 10   | 12          | 7           | 9           | 10          | 20          | 15          | 15   | 18          | 10   | 12   | 13   | 28          | 21          | 20          | 24          | 15   | 16         | 16   |
| BAYPORT         | 8           | 7           | 7    | 7           | 7           | 6           | 7           | 10          | 10          | - 9  | -9          | -9   | 7    | -9   | 12          | 13          | īĭ          | 10          | 12   | - <u>9</u> | ้ำกั |
| BLUE LAKE       | 13          | 11          | 8    | 6           | 6           | 7           | 5           | 28          | 14          | 11   | 7           | 8    | 9    | 7    | 22          | 17          | 15          | -9          | ĩõ   | n          | 10   |
| CHASKA          | 58          | 43          | 11   | 13          | 10          | 8           | 5           | 88          | 83          | 15   | 16          | 14   | 14   | 9    | 120         | 130         | 18          | 22          | 19   | 22         | 18   |
| COTTAGE GROVE   | 17          | 10          | 7    | 5           | 6           | 10          | 7           | 28          | 16          | 13   | 8           | 10   | 14   | 11   | 51          | 28          | 22          | 14          | 14   | 18         | 14   |
| EMPIRE          |             | 3           | 1    | 1           | 1           | 1           | 1           |             | 5           | 3    | 1           | 1    | 1    | 2    |             | 11          | 4           | 2           | 2    | 2          | 3    |
| HASTINGS        | 18          | 17          | 22   | 19          | 28          | 22          | 24          | 26          | 24          | 30   | 28          | 38   | 32   | 32   | <u>3</u> 3  | 31          | 38          | 36          | 48   | 41         | 59   |
| MAPLE PLAIN     | 6           | 10          | 11   | 6           | 6           | 6           | 8           | 12          | 18          | 15   | 8           | 10   | 12   | 15   | 40          | 30          | 24          | 16          | 16   | 16         | 19   |
| ME TROPOL I TAN | 37          | 43          | 15   | 10          | 7           | 7           | 8           | 55          | 85          | 33   | 24          | 12   | 11   | 12   | 78          | 137         | 60          | 47          | 21   | 17         | 19   |
| ROSEMOUNT       | 3           | 2           | 2    | 1           | 1           | 1           | 2           | 5           | 3           | 3    | 2           | 2    | 2    | 3    | 7           | 5           | 3           | 3           | 4    | 4          | 5    |
| SAVAGE          | 14          | 10          | 4    | 5           | 2           | 2           | 2           | 20          | 18          | 7    | 12          | 5    | - 3  | 4    | 25          | 28          | 15          | 17          | 11   | 4          | 6    |
| SENECA          | 14          | 13          | 15   | 19          | 19          | 15          | 19          | 19          | 24          | 19   | 23          | 23   | 23   | 26   | 27          | 32          | 23          | 28          | 26   | 29         | 34   |
| STILLWATER      | 10          | 10          | 9    | 8           | 8           | 10          | 8           | 14          | 12          | 14   | 12          | 10   | 14   | 10   | 18          | 16          | 21          | 15          | 12   | 20         | 13   |

\*The data shows that for the percent of time shown, the effluent concentration was less than or equal to the tabulated values.

| TAB | LE | A- | 11 |
|-----|----|----|----|
|     |    |    |    |

|                                               |                           |                           |                           | 1984 MET                 | ROPOL I TA                | N PLANT               | sludge q              | UANTITIE              | S                      |                       |                       |                       |                              |                           |
|-----------------------------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|------------------------------|---------------------------|
| PARAMETER                                     | JAN.                      | FEB.                      | MAR.                      | APR.                     | MAY                       | JUNE                  | JULY                  | AUG.                  | SEP.                   | OCT.                  | NOV.                  | DEC.                  | TOTAL                        | AVERAGE                   |
| SLUDGE: PRODUCTION<br>WET TONS                |                           |                           |                           |                          |                           |                       |                       |                       |                        |                       |                       |                       |                              |                           |
| Roll Press Cake<br>Filter Press Cake<br>TOTAL | 12,636<br>5,404<br>18,040 | 12,633<br>3,976<br>16,609 | 14,888<br>6,176<br>21,064 | 9,318<br>6,257<br>15,575 | 14,255<br>2,531<br>16,786 | 16,535<br>0<br>16,535 | 15,044<br>0<br>15,044 | 14,693<br>0<br>14,693 | 14,100<br>56<br>14,156 | 17,229<br>0<br>17,229 | 16,027<br>0<br>16,027 | 16,325<br>0<br>16,325 | 173,683<br>24,400<br>198,083 | 14,474<br>2,033<br>16,507 |
| DRY TONS (Sludge Solids)                      |                           |                           |                           |                          |                           |                       |                       |                       |                        |                       |                       |                       |                              |                           |
| Roll Press Cake<br>Filter Press Cake<br>TOTAL | 4,300<br>1,920<br>6,220   | 4,369<br>1,332<br>5,701   | 4,555<br>2,552<br>7,107   | 2,965<br>2,497<br>5,462  | 5,024<br>468<br>5,492     | 6,247<br>0<br>6,247   | 5,227<br>0<br>5,227   | 5,070<br>0<br>5,070   | 4,906<br>2<br>4,908    | 5,761<br>0<br>5,761   | 5,444<br>0<br>5,444   | 5,602<br>0<br>5,602   | 59,470<br>8,771<br>68,241    | 4,956<br>731<br>5,687     |
| SLUDGE: INCINERATED<br>WET TONS               |                           |                           |                           |                          |                           |                       |                       |                       |                        |                       |                       |                       |                              |                           |
| Roll Press Cake<br>Filter Press Cake<br>TOTAL | 12,622<br>5,404<br>18,026 | 12,633<br>3,229<br>15,862 | 318<br>180<br>498         | 7,006<br>0<br>7,006      | 14,108<br>0<br>14,108     | 16,513<br>0<br>16,513 | 15,044<br>0<br>15,044 | 14,693<br>0<br>14,693 | 14,100<br>56<br>14,156 | 17,200<br>0<br>17,200 | 16,027<br>0<br>16,027 | 16,325<br>0<br>16,325 | 156,589<br>8,869<br>165,458  | 13,049<br>739<br>13,788   |
| DRY TONS (Sludge Solids)                      |                           |                           |                           |                          |                           |                       |                       |                       |                        |                       |                       |                       |                              |                           |
| Roll Press Cake<br>Filter Press Cake<br>TOTAL | 4,295<br>1,920<br>6,215   | 4,369<br>1,082<br>5,451   | 97<br>75<br>172           | 2,229<br>0<br>2,229      | 4,972<br>0<br>4,972       | 6,239<br>0<br>6,239   | 5,227<br>0<br>5,227   | 5,070<br>0<br>5,070   | 4,906<br>2<br>4,908    | 5,751<br>0<br>5,751   | 5,444<br>0<br>5,444   | 5,602<br>0<br>5,602   | 54,201<br>3,079<br>57,280    | 4,517<br>257<br>4,774     |
| SLUDGE TO LAND<br>Wet tons                    |                           |                           |                           | ·                        |                           |                       |                       |                       |                        |                       |                       |                       |                              |                           |
| Roll Press Cake<br>Filter Press Cake<br>TOTAL | 15<br>0<br>15             | 0<br>747<br>747           | 14,570<br>5,996<br>20,566 | 2,312<br>6,257<br>8,569  | 146<br>2,531<br>2,677     | 21<br>0<br>21         | 0<br>0<br>0           | 0<br>0<br>0           | 0<br>0<br>0            | 29<br>0<br>29         | 0<br>0<br>0           | 0<br>0<br>0           | 17,093<br>15,531<br>32,624   | 1,424<br>1,294<br>2,718   |
| DRY TONS (Sludge Solids)                      |                           |                           |                           |                          |                           |                       |                       |                       |                        |                       |                       |                       |                              |                           |
| Roll Press Cake<br>Filter Press Cake<br>TOTAL | 5<br>0<br>5               | 0<br>250<br>250           | 4,458<br>2,477<br>6,935   | 736<br>2,497<br>3,233    | 52<br>488<br>540          | 8<br>0<br>6           | 0<br>0<br>0           | 0<br>0<br>0           | 0<br>0<br>0            | 10<br>0<br>10         | 0<br>0<br>0           | 0<br>0<br>0           | 5,269<br>5,712<br>10,981     | 439<br>476<br>915         |

•

.

## 1984 METRO PLANT SLUDGE QUALITY

|                 |             |           |          |            |     |     |       | mg/k | g (dr | y weigh | t basis |       |     |     |
|-----------------|-------------|-----------|----------|------------|-----|-----|-------|------|-------|---------|---------|-------|-----|-----|
|                 | Solids<br>% | Volatiles | KĴN<br>% | NH3-N<br>% | P ¥ | Cđ  | Cu    | Ni   | РЬ    | Zn      | Cr      | к     | Hg  | PC8 |
| Roll Press Cake |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| January         | 32.9        | 76.0      | 2.0      | 0.07       | 1.0 | 94  | 1.015 | 155  | 243   | 1.921   | 945     | 1.009 |     |     |
| February        | 34.9        | 68.3      | 2.2      | 0.05       | 1.0 | 43  | 888   | 138  | 372   | 1.433   | 716     | 1,289 | 2.0 | 0.9 |
| March           | 27.4        | 75.4      | 1.7      | 0.09       | 1.0 | 69  | 1.175 | 168  | 219   | 1.628   | 974     | 1,120 |     |     |
| April           | 32.8        | 71.8      | 2.1      | 0.10       | 0.8 | 21  | 814   | 159  | 256   | 1.601   | 1.238   | 1,116 |     |     |
| May             |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| June            |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| July            | 33.2        | 64.0      | 2.0      | 0.06       | 1.0 |     | 1.551 | 440  | 410   | 2.515   | 1.111   | 1.111 |     |     |
| August          |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| September       | 32.1        | 70.4      | 4.9      | 0.13       | 1.7 | 75  | 1,287 | 181  | 255   | 2.202   | 710     | 779   |     |     |
| October         | 33.3        | 63.9      | 2.6      | 0.08       | 1.3 | 78  | 1,174 | 207  | 315   | 2.174   | 829     | 1.207 |     |     |
| November        | 33.5        | 75.9      | 2.5      | 0.13       | 1.0 | 63  | 1.421 | 212  | 251   | 2.328   | 782     | 910   | 1.5 |     |
| December        | 35.5        | 68.3      | 3.4      | 0.15       | 1.8 | 96  | 1.685 | 248  | 389   | 2.392   | 961     | 1.146 |     |     |
| Average         | 32.8        | 70.4      | 2.6      | 0.09       | 1.2 | 67  | 1,223 | 212  | 301   | 2,022   | 919     | 1,077 | 1.7 | 0.9 |
| Press Cake      |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| January         | 35.2        | 67.5      | 3.5      | 0.14       | 2.8 | 261 | 1.682 | 212  | 372   | 2.760   | 1.537   | 1.152 |     |     |
| February        | 36.5        | 64.0      | 2.8      | 0.11       | 2.7 | 123 | 2.027 | 225  | 548   | 2,904   | 1.753   | 1.315 | 3.8 | 2.3 |
| March           | 41.3        | 67.5      | 3.2      | 0.15       | 2.8 | 99  | 1,680 | 217  | 305   | 2,481   | 1.783   | 1.344 | 0.6 | 2.0 |
| April           | 40.1        | 66.1      | 3.2      | 0.10       | 2.6 | 71  | 1.794 | 228  | 359   | 2.456   | 1.874   | 1.111 | 1.7 |     |
| May             | 44.2        | 60.1      | 3.1      | 0.11       | 2.9 | 69  | 1.650 | 259  | 495   | 2.711   | 1.840   | 1,565 | 2.5 |     |
| June            |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| July            |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| August          |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| September       | 34.8        | 69.6      | 3.1      | 0.18       | 2.3 | 158 |       |      |       |         |         |       |     |     |
| October         |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| November        |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| December        |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| Average         | 39.7        | 66.1      | 3.2      | 0.12       | 2.8 | 107 | 1,720 | 221  | 388   | 2,684   | 1,664   | 1,185 | 2.0 | 2.2 |
| Load Out Cake   |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| January         |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| February        |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| March           | 28.4        | 67.8      | 2.4      | 0.09       | 0.9 | 50  | 1.071 | 152  | 209   | 1.489   | 922     | 1.117 | 1.0 | 0.6 |
| April           | 28.1        | 67.1      | 2.7      | 0.08       | 1.2 | 44  | 958   | 147  | 192   | 1.243   | 1,156   | 974   | 1.3 |     |
| May             | 29.6        | 52.4      | 2.7      | 0.04       | 1.2 | 27  | 905   | 169  | 361   | 1.446   | 1.024   | 1.294 | 1.4 |     |
| June            |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| July            |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| August          |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| September       |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| October         |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| November        |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| December        |             |           |          |            |     |     |       |      |       |         |         |       |     |     |
| Average         | 28.4        | 67.3      | 2.4      | 0.09       | 1.0 | 48  | 973   | 154  | 239   | 1.355   | 1.064   | 1.090 | 1.2 | 0.6 |

## 1984 SLUDGE DISPOSAL

# GALLONS HAULED (X 1000)

| Plant - Disposal                | JAN.         | FEB.        | MAR.    | APR.         | MAY    | JUN.   | JUL.         | AUG.         | SEP.        | OC1.                                    | NOV.              | DEC.  | SUB-<br>Total    | TOTAL  |
|---------------------------------|--------------|-------------|---------|--------------|--------|--------|--------------|--------------|-------------|-----------------------------------------|-------------------|-------|------------------|--------|
| Analia                          |              |             |         |              |        |        |              |              |             |                                         |                   |       |                  |        |
| Coon Rap. Int.                  | 169.6        | 451.2       | 246.4   | 278.4        | 326.4  | 355.2  | 310.4        | 374.4        | 310.4       | 419.2                                   | 467.2             | 435.2 |                  | 4,144  |
| Bayport                         |              |             |         |              |        |        |              |              |             |                                         |                   |       | 000              |        |
| Oakdale Int.<br>South St. Paul  | 114.6<br>0.0 | 88.8<br>0.0 | 107.4   | 119.8<br>0.0 | 127.4  | 101.4  | 120.8<br>0.0 | 107.0<br>0.0 | 0.0<br>85.8 | 0.0                                     | 0.0<br>125.2      | 94.2  | 408              | 1,296  |
| Blue Leke                       |              |             |         |              |        |        |              |              |             |                                         |                   |       |                  |        |
| 3rd & Comm.                     | 739.0        | 1027.3      | 2235.1  | 1161.9       | 1133.1 | 763.6  | 975.0        | 2066.4       | 1802.6      | 2493.1                                  | 2305.0            | 176.1 | 16,878<br>23,824 | 40.702 |
| Seneca                          | 2440.4       | 1912.0      | 0/7.7   | 2207.0       | 2027.1 | 2170.7 | 21//12       | 1,,,,,,      | 1700.0      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 04012             |       |                  |        |
| Chaska<br>Blue Lake             | 162.6        | 295.8       | 274.4   | 288.0        | 261.2  | 235.4  | 318.4        | 274.4        | 177.0       | 271.0                                   | 68.6              | 10.4  | 2,637            |        |
| Landspreading                   | 0.0          | 0.0         | 0.0     | 0.0          | 0.0    | 0.0    | 0.0          | 0.0          | 0.0         | 46.5                                    | 230.4             | 236.8 | 514              | 3,151  |
| Cottage Grove                   |              |             |         |              | 177 0  | 12.0   |              |              | 0.0         |                                         | 0.0               | 0.0   | 150              |        |
| U of M<br>  Landspreading       | 0.0          | 0.0         | 0.0     | 0.0          | 137.0  | 0.0    | 0.0          | 0.0          | 0.0         | 0.0                                     | 0.0               | 0.0   | 0                |        |
| South St. Paul                  | 233.6        | 262.4       | 275.2   | 56.0<br>0.0  | 63.6   | 188.8  | 150.4        | 373.4        | 393.6       | 444.8                                   | 453.2             | 227.2 | 3,122<br>0       | 3,272  |
|                                 |              |             |         |              |        | · .    |              |              |             |                                         |                   |       | ******<br>*      |        |
| U of M                          | 0.0          | 0.0         | 0.0     | 86.4         | 124.8  | 108.8  | 0.0          | 0.0          | 112.0       | 211.2                                   | 131.2             | 147.2 | . 922            | ł      |
| Landspreading<br>South St. Paul | 0.0<br>201.6 | 0.0         | 0.0     | 198.3        | 0.0    | 0.0    | 48.0         | 192.0        | 0.0         | 0.0                                     | 9.6<br><u>3.2</u> | 0.0   | 208<br>959       | 2,088  |
| Menle Plain                     |              |             |         |              |        |        |              |              |             |                                         |                   |       |                  |        |
| Drying Beds                     | 0.0          | 0.0         | 0.0     | 0.0          | 0.0    | 0.0    | 0.0          | 0.0          | 0.0         | 0.0                                     | 0.0               | 0.0   | 0                |        |
| Plymouth Int.                   | 12.0         | 0.0         | 0.0     | 0.0          | 0.0    | 0.0    | 12.0         | 20.0         | 0.0         | 0.0                                     | 0.0               | 0.0   | 44               | 44     |
| Rosemount                       |              | I           |         |              |        | · ·    |              |              |             |                                         |                   |       |                  | 1      |
| 3rd & Comm.                     | 191.3        | 163.5       | 164.9   | 156.4        | 205.6  | 145.5  | 132.6        | 153.1        | 140.0       | 172.5                                   | 141.9             | 113.8 |                  | 1,881  |
| Savage                          |              |             |         |              |        | 07.7   |              |              |             |                                         |                   |       | 24               |        |
| Drying Beds                     | 0.0          |             | 0.0     | 0.0          | 0.0    |        | 0.0          | 6.4          | 64.0        |                                         | 0.0               | 0.0   | 70               |        |
| 3rd & Commm.                    | 0.0          | 0.0         | 18.0    | 54.0         | 0.0    | 45.0   |              | 0.0          | 0.0         | 60.0                                    | 0.0               | 0.0   | 299<br>281       | 674    |
|                                 | 1 72.0       | 1 20.0      | 1       | (            | 1      | 1      | 1            | <u></u>      |             | 1                                       |                   | T     |                  |        |
| Oakdale Int.                    | 414.6        | 420.0       | 502.2   | 464.6        | 475.0  | 487.6  | 452.6        | 473.0        | 0.0         | 0.0                                     | 0.0               | 0.0   | 3,689            | 1      |
| Landspreading<br>South St. Paul | 0.0          | 0.0         | 0.0     | 0.0          | 0.0    | 0.0    | 0.0          | 0.0          | 417.2       | 83.0<br>185.6                           | 142.6             | 454.0 | 1,097<br>565     | 5,351  |
|                                 | <u> </u>     |             |         |              |        |        | •            |              |             |                                         |                   |       | <u></u>          |        |
| Empire                          | Fabrur       | ev – lun    | a 1 419 | 000 mall     | 008    |        |              |              |             |                                         |                   |       |                  |        |

TABLE A-14

|                                           |              |              | ••••         |              | ·            |              |              |              |              |              |              |                | · · ·           |              |
|-------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|-----------------|--------------|
|                                           | ··· ·        |              |              | 1            | .984 SENE    | CA PLANT     | SLUDGE       | QUANTIT      | ES*          |              |              |                |                 |              |
| MONTH                                     | JAN.         | FE.B.        | MAR.         | APR.         | MAY          | JUNE         | JULY         | AUG.         | SEP.         | OCT.         | NOV.         | DEC.           | TOTAL           | AVERAGE      |
| BELT FILTER PRESS<br>Wet Tons<br>Dry Tons | 2,097<br>499 | 2,658<br>670 | 2,624<br>601 | 1,949<br>468 | 2,788<br>686 | 3,000<br>780 | 2,354<br>586 | 2,111<br>483 | 2,031<br>451 | 2,534<br>560 | 1,833<br>414 | 4,039<br>1,034 | 30,018<br>7,232 | 2,502<br>603 |
| VACUUM FILTER<br>Wet Tons<br>Dry Tons     | 1,744<br>394 | 185<br>43    | 255<br>54    | 2,399<br>528 | 1,723        | 2,224        | 1,759<br>426 | 2,005<br>461 | 1,943<br>446 | 1,530<br>308 | 1,269        | 573<br>138     | 17,609<br>4.034 | 1,467        |

\*All values include conditioning chemicals.

## 1984 SENECA PLANT SLUDGE QUALITY

|                               |          |           |          |       |            |      |          | mg/     | kq (dry | weight | basis)  |          |            |      |
|-------------------------------|----------|-----------|----------|-------|------------|------|----------|---------|---------|--------|---------|----------|------------|------|
| i                             | Solids   | Volatiles | KJN      | NH3-N | P          |      |          | N 2     | 06      | 70     | 6.0     | -<br>v   | <u>н</u> а | PCB  |
| 1                             | <u>%</u> | <u>×</u>  | <u>~</u> | Ĩ,    | - <b>N</b> | ια   | <u> </u> | <u></u> | FU I    |        | <u></u> | <u> </u> |            |      |
| Seneca Filter Cake<br>January | 23.0     | 46.7      | 2.58     | 0.07  | 1.00       | 12.1 | 1,435    | 321     | 328     | 512    | 450     | 788      | 2.4        | ~    |
| February                      |          |           |          |       |            |      |          |         |         |        |         |          |            |      |
| March                         |          |           |          |       |            |      |          |         |         |        |         | 077      |            |      |
| April                         | 23.1     | 43.4      | 3.22     | 0.07  | 1.08       | 10.3 | 1,231    | 831     | 203     | 454    | /4/     | 857      | 1./        |      |
| May                           | 22.7     | 44.6      | 3.78     | 0.10  | 1.20       | 11.0 | 681      | 556     | 189     | 441    | 407     | 860      | 1.4        | 1.90 |
| June                          | 24.2     | 42.8      | 3.42     | 0.06  | 1.14       | 10.2 | 1,334    | 671     | 435     | 443    | 441     | 997      | 1.4        | 1.60 |
| July                          | 26.2     | 40.9      | 2.79     | 0.05  | 0.94       | 12.4 | 932      | 278     | 214     | 466    | 328     | 872      | 1.4        |      |
| August                        | 23.7     | 44.7      | 3.09     | 0.09  | 1.13       | 14.4 | 931      | 183     | 189     | 483    | 250     | 921      | 0.9        |      |
| Sentember                     | 24.3     | 37.0      | 2.85     | 0.06  | 0.94       | 12.4 | 1,063    | 507     | 182     | 436    | 482     | 738      | 1.5        |      |
| October                       | 20.9     | 28.9      | 2.37     | 0.18  | 3.42       | 9.6  | 622      | 206     | 153     | 335    | 325     | 670      | 0.0        |      |
| November                      | 21.9     | 55.2      | 3.66     | 0.05  | 1.28       | 11.0 | 1,677    | 1,472   | 235     | 494    | 1,143   | 932      | 1.3        |      |
| December                      | 23.2     | 41.4      | 3.06     | 0.06  | 0.99       | 11.2 | 1,597    | 202     | 252     | 420    | 256     | 798      | 1.7        |      |
| Average                       | 23.7     | 42.7      | 3.12     | 0.07  | 1.14       | 11.6 | 1,127    | 509     | 241     | 456    | 466     | 855      | 1.4        | 1.75 |

|                   |        |           |      |       |      |      |       | mg/  | kg (dry   | weight | basis) |       |     |      |
|-------------------|--------|-----------|------|-------|------|------|-------|------|-----------|--------|--------|-------|-----|------|
|                   | Solids | Volatiles | KJN  | NH3-N | Ρ    |      |       |      |           |        |        |       |     |      |
|                   | *      | %         | ×    | şe    | ×    | Cd   | Çu    | Ni   | <u>Pb</u> | Zn     | Cr     | K     | Hq  | PCB  |
|                   |        |           |      |       |      |      |       |      |           |        |        |       |     |      |
| Seneca Press Cake |        |           |      |       |      |      |       | 1    |           |        |        |       |     |      |
| January           | 23.7   | 63.8      | 3.96 | 0.68  | 1.37 | 14.7 | 1,759 | 211  | 407       | 687    | 423    | 1,353 | 3.8 | 0.30 |
| February          | 25.3   | 73.7      | 3.85 | 0.95  | 1.35 | 13.2 | 1,332 | 52   | 394       | 666    | 406    | 1,684 | 1.6 | 1.60 |
| March             | 22.8   | 74.8      | 4.82 | 0.97  | 1.71 | 12.0 | 1,090 | 48 [ | 297       | 577    | 395    | 1,704 | 3.3 | 1,30 |
| April             | 23.6   | 72.1      | 4.54 | 1.06  | 1.31 | 9.6  | 1,578 | 108  | 281       | 643    | 306    | 1,542 | 2.7 |      |
| Mav               | 24.0   | 73.0      | 4.02 | 1.16  | 1.21 | 12.9 | 1,308 | 105  | 294       | 631    | 281    | 1,573 | 2.3 | 2,20 |
| June              | 25.3   | 68.4      | 5.18 | 0.93  | 1.61 | 11.9 | 1,415 | 93   | 275       | 662    | 277    | 1,807 | 2.1 | 1.80 |
| July              | 27.6   | 69.2      | 4.51 | 0.71  | 1.48 | 9.8  | 1,498 | 81   | 265       | 700    | 201    | 1,621 | 2.8 |      |
| August            | 23.7   | 71.8      | 4.67 | 0.81  | 1.59 | 13.9 | 1,504 | 55   | 244       | 715    | 177    | 1,714 | 1.1 |      |
| September         | 20.7   | 71.8      | 4.95 | 0.93  | 1.84 | 14.9 | 1,728 | 107  | 267       | 807    | 252    | 1,954 | 1.7 |      |
| October           | 19.3   | 71.5      | 5.48 | 0.96  | 1.97 | 13.0 | 1,389 | 96   | 262       | 746    | 251    | 1,870 | 1.4 |      |
| November          | 23.0   | 76.0      | 5.96 | 2.23  | 1.73 | 23.7 | 834   | 104  | 265       | 699    | 303    | 1,997 | 1.8 |      |
| December          | 24.9   | 74.7      | 4.46 | 0.44  | 1.24 | 12.3 | 2,056 | 62   | 304       | 656    | 170    | 1,011 | 2.3 |      |
| Average           | 24.0   | 71.6      | 4.60 | 0.95  | 1.49 | 13.0 | 1.483 | 92   | 297       | 679    | 286    | 1,697 | 2.2 | 1.44 |

194

| TD 525 TO MA20 1904                    |              |  |  |  |  |  |  |  |
|----------------------------------------|--------------|--|--|--|--|--|--|--|
| Hetropolitan Waste Control             |              |  |  |  |  |  |  |  |
| Commission                             |              |  |  |  |  |  |  |  |
| Annual wastewater treatment            |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
| DATE                                   | ISSUED TO    |  |  |  |  |  |  |  |
| -                                      |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        | ·            |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
| ······································ |              |  |  |  |  |  |  |  |
|                                        |              |  |  |  |  |  |  |  |
|                                        | <b></b>      |  |  |  |  |  |  |  |
| ·····                                  | DEMCO 32-209 |  |  |  |  |  |  |  |

•••••

# TD 525 .T9 M42c 1984 Metropolitan Waste Control Commission Annual wastewater treatment ېر رو خو سارېمې LEGISLATIVE REFERENCE LIBRARY 645 State Office Suilding Saint Paul, Minnesuta 55155