

Photo by Jean Helget

1982 ANNUAL WASTEWATER TREATMENT PLANT REPORT

prepared by the

Quality Control & Operations Department Metropolitan Waste Control Commission 350 Metro Square Building Saint Paul, Minnesota 55101

Report No. QC 82-59

TABLE OF CONTENTS

																• .															
Table Abbre Defi	es and Fig eviations nition of	ures and 1 Para	Sym net	bo er	1s 's	•	• •	•	• •	•	• •	• •	•	•	•	•	•	• •	• • •	•	•	•	•	•	•	• •	• • •	• • •	. V	v ii ix	
1.0 2.0 3.0 4.0 5.0 6.0	Summary . Introduct Effluent Incinerat Sludge Ma Individua	ion. Qual or E Inage	ity mis men eat	isi it :Me	on ent	• • • •	Qua P1a	al i	i ty	/. ?ei		rts	•	•	•	•	•	• • • • •	• • • • •	• • • •	• • • •	• • • • • •	• • • • •	•	•	•	• • • • •	•		1 9 13 29 39 47	
	Anoka Bayport . Blue Lake Chaska Cottage G Empire Hastings. Maple Pla Medina Metropoli Rosemount Savage Seneca Stillwate	tan.	• • • • • •		• • • • • • • •	· · · · · · · · · · · · ·	• • • • • • • • • •		· · · · ·	• • • • • • • • • • • • • • • •	•					• • • • • • • • •			• • • • • • • • • •	• • • • • • • • •		• • • • • • • • • •			• • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • •	1 1 1 1 1 1 1 1 1 1 1 1	49 59 67 75 83 91 01 11 27 41 49 57 67	
Appe	ndix		•	•	•,	•				•	•		•			•	•	•	•	•		•	•		•			•	1	77	

Appendix .

iii

LIST OF TABLES AND FIGURES

Table Number		Page
1 -1 1-2 1-3 1-4 1-5 2-1 3-1	1982 Annual Summary of Treatment Plant Effluent Quality Trends in NPDES Permit Compliance	2 3 4 7 8 11
3-2 3-3 3-4 3-5 3-6 3-7 3-8	4.8015	13 14 18 19 20 21 26 27
4-1 4-2	Emission Standards For Existing Sewage Sludge Incinerator, APC-28	30 31
4-3 4-4 4-5	Summary of Opacity Measurements, Metropolitan Plant, 1982	33 34
4-6 5-1 5-2 5-3 5-4	Odor Monitoring Results of Incinerator Stack Discharge, 1982. Summary of Sludge Processing, 1982. Summary of Sludge Production and Disposal Methods, 1982. Summary of 1982 Sludge Hauling.	36 37 40 41 42 44
5-5 · A-1 A-2	Summary of Quantities of Metropolitan Plant Dewatered Sludge Disposed of by Landspreading Program	45 178 179
A-3 A-4	Annual Average BOD Effluent Concentrations For The Period 1971-1982	180 181
A-5 A-6	Annual Average BOD Effluent Percent Removal Efficiency For The Period 1971-1982 Annual Average TSS Effluent Percent Removal Efficiency For The	182
	Period 1971-1982	183

۷

LIST OF TABLES AND FIGURES CONT.

Table Number		Page
A-7	Influent BOD Data, 1971-1982	184
A-8		185
A-9	Statistical Analyses of Biochemical Uxygen Demand Data For	
	Plants in Operation During 1982	186
A-10	Statistical Analyses of Total Suspended Solids Effluent Data	
	For Plants in Operation During 1982	187
A-11	1982 Metro Plant Sludge Quantity	188
A-12	1982 Metro Plant Sludge Quality	189
A-13	1982 Out-Plant Sludge Quantity	190
A-14	1982 Senera Plant Sludge Quantity	191
A=15	1982 Seneca Plant Sludge Quality	192

Figure <u>Number</u>

1-1	Trends in Plant Performance, 1971-1982	5
2-1	Number of Treatment Plants in Operation, 1970-1982	10
4-1	Summary of Opacity Testing, 1978-1982	35

<u>Page</u>

ABBREVIATIONS AND SYMBOLS

MGD or mga	Million Gallons per Day
mg/i	Milligrams per Liter
ug/I	Micrograms per Liter
MPN/100 ml	Most Probable Number per 100 Milliliters
NTU	Nephelometric Turbidity Units
°F	Degrees Fahrenheit
BOD	Biochemical Oxygen demand (generally means
	BOD5, or Five Day Biochemical Oxygen Demand)
COD	Chemical Oxygen Demand
DO	Dissolved Oxygen
K.I-N	Kjeldahl Nitrogen
NH3	Ammonia (nitrogen)
NO ₂	Nitrite (nitrogen)
NOS	Nitrate (nitrogen)
н	Indicates Acidity/Alkalinity
Total P	Total Phosphorus
TSS	Total Suspended Solids
Turb.	Turbidity
>	Greater Than
<	Less Than
INF	Influent
FFF	Fffluent
NPDES	National Pollutant Discharge Elimination System
Std.	Standard
Cd	Cadmium
Cr	Chromium
Сн	Copper
Ha	Mercury
Ni	Nickel
Pb	Le ad
As	Arsenic
Zn	Zinc
Sn	Tin
Cn	Cvanide
ar/dscf	Grains/dry standard cubic foot
SCEM	Standard Cubic Feet per minute
NTPH	dry ton/hour
ma/ka	Milligram per kilogram

DEFINITION OF PARAMETERS

Biochemical Oxygen Demand (BOD) is a measure of the dissolved oxygen required by organisms for the aerobic decomposition of organic matter present in wastewater. A low BOD in the plant discharge is desirable because this would cause the least amount of oxygen depletion in the receiving body of water. This test normally takes five days before results are available.

Chemical Oxygen Demand (COD) is a measure of the oxygen equivalent required to chemically oxidize the organic matter present in wastewater. A low COD is desirable in plant effluent discharges. This test takes approximately three hours to complete and the results can be used to estimate BOD values. It is, therefore, extremely useful as a process control tool.

Total Suspended Solids (TSS) is a measure of the amount of particulate matter found suspended in a given amount of wastewater. Suspended solids adversely affect receiving waters by exerting an oxygen demand during decomposition or filtering out available sunlight needed by aquatic organisms for photosynthesis.

pH is a measure of the hydrogen ion concentration in a given sample of water. It is used as an indication of acidity or alkalinity. A pH of 7 is neutral - neither acid or alkaline. pH values below 6 or above 9 are usually harmful to aquatic life.

Dissolved Oxygen (DO) is a measure of the concentration of oxygen dissolved in a given sample of water. A sufficient DO level in plant effluent discharges is important because dissolved oxygen is required for the life processes of aquatic organisms.

Fecal Coliform organisms are a group of bacteria present in wastewater and are used as indicators of the possible presence of pathogenic or disease producing bacteria. Monitoring of fecal coliform organisms is also done to determine the efficiency of effluent disinfection processes.

Ammonia (NH₃), Nitrate (NO₃), and Nitrite (NO₂) are nitrogenous compounds found in wastewater. Excessive discharges of these compounds can adversely affect the receiving body of water. Degradation of NH₃ to NO₃ is an oxygen demanding reaction. Monitoring of nitrogenous compounds is also useful for controlling secondary treatment processes.

Phosphorus (P) is monitored because it also can have adverse effects on the receiving body of water. When discharged in sufficient quantities it aids in stimulating excessive and undesirable algal growth.

DEFINITION OF PARAMETERS CONT.

Heavy Metals covered in this report include the following: copper (Cu), chromium (Cr), zinc (Zn), lead (Pb), cadmium (Cd), mercury (Hg), nickel (Ni), arsenic (As), and tin (Sn). Close monitoring of heavy metals is necessary due to their possible toxicity to aquatic organisms present in the receiving waters.

х

1.0 SUMMARY

During 1982, the Commission operated fourteen wastewater treatment plants. The performance of these facilities is related to: (1) the effluent quality of each plant and the record of compliance with NPDES permit conditions; (2) the quality of air emissions from sludge incineration at two regional plants; and (3) management of sludge generated at each plant as a result of wastewater treatment. The purpose of this report is to summarize the performance of Commission treatment plants during 1982 by presenting and analyzing data generated to monitor these major areas.

1.1 Effluent Quality

Table 1-1 is a summary of average annual effluent quality at each plant. Annual average effluent BOD was below permitted discharge limitations at all plants. Annual average effluent TSS were below permitted discharge limitations at all plants except the Hastings Plant. At Bayport, Rosemount, and Stillwater, annual average effluent phosphorus was below the limit of 1 mg/L. At Empire, annual average effluent ammonia was below the limit of 1 mg/L.

One of the most important indicators of performance of individual treatment plants, and performance of the Commission in the operation of all plants, is compliance with NPDES permit limitations. Table 1-2 summarizes the trend in NPDES permit compliance for the period of NPDES administration, 1974-1982. During this period, the number of plants operated by the Commission was reduced from 21 in 1974 to its present number of 14. The total number of violations was reduced from 163 in 1974 to 30 in 1982. Overall percent compliance with NPDES permit limitations improved from 86.4% in 1974 to 98.3% in 1982.

Individual NPDES compliance records of the fourteen plants currently in operation are given for the period 1977-1982 in Table 1-3. In general, performance at each plant improved significantly through the period 1977-1980, and remained relatively constant from 1980-1982. The number of permit violations decreased from 35 in 1981 to 30 in 1982.

Trends in plant performance can also be evaluated by examining the two major effluent parameters, BOD and TSS, in the form of a single performance indicator (BOD + TSS). Figure 1-1 shows these trends for the Metropolitan Plant alone, and for all other plants combined. Performance at the Metropolitan Plant has been somewhat erratic in the past, with particularly poor performance in 1976 and 1979. NPDES permit limitation levels were eased in 1977 and in 1978 in recognition of reduced plant performance capabilities. During the period of 1980-1982, NPDES permit limitations for the Metropolitan Plant approached and equaled secondary treatment levels (BOD = 25 mg/L and TSS = 30 mg/L or BOD + TSS = 55 mg/l) while performance was consistently better than secondary treatment.

1

1982 ANNUAL SUMMARY OF TREATMENT PLANT EFFLUENT QUALITY

	Wastew Flo mgd	ater. W	19 Per Rem	82 cent oval		800 mg/1	1866	TS mg/	S 1	Fecal Geome Mea <u>MPN/10</u>	Coli. tric n <u>O ml</u>	Nu Pho	trient sphoru	s, mg/l s Ammon	ia	Turbi NT	di ty U	Disso Oxyg mg/	lved en 1
Treatment Plant	<u>Design</u> *	1982 <u>Avq</u> .	<u>BOD</u>	<u> TSS</u>	NPDES Limit	CBOD Avg.	1982 TBOD <u>Avg.</u>	NPDES <u>Limit</u>	1982 <u>Avg.</u>	NPDES Limit	1982 <u>Avg.</u>	NPDES <u>Limit</u>	1982 <u>Avg</u> .	NPDES Limit	1982 <u>Avg</u> .	NPDES Limit	1982 <u>Avg.</u>	NPDES <u>Limit</u>	1982 <u>Avg</u> .
Anoka	2.46	2.14	95	95	25	12	14	30	8	200	48		3.7		15.8	- 25	5		1.1
Bayport	0.65	0.52	9 5	94	25	.8	10	30	. 8	200	5	1.0	0,5	¹	3.4	25	4		3.7
Blue Lake	20.00	16.1	95	.97	25	10	24	30	7	200	16		3.8		13.9	25	7		11.3
Chaska	1.40	0.80	93	93	25	14	20	- 30	11	200	5		1.7		9.6	25	5	<u></u>	9.0
Cottage Grove	1.80	1.26	95	96	25	10	14	30	7	200	11	·	5.3		JII.3	25	4		6.1
Empire	6.00	4.05	99	99	10	2	3	10	1	200	1		7.1	1.0	0.7	25	1	>4.0	8.9
Hastings	1.83	1.50	92	87	25	20	31	30	31	200	21		4.5		17.6	25	12		6.0
Maple Plain	0.22	0.35	90	94	25	13	15	30	7	200	14		2.8		13.6		- 9		5.8
Medina	0.10	0.149	87	88		14	17		14				2.7		11.4		8		3.4
Metropolitan	250	208	95	95	24	13	22	30	11	200	24		2.0		14.9		6		3.1
Rosemount	0.60	0.31	90	99	25	16	18	30	2	200	2	1.0	0.3		29.0	25	5		6.2
Savage	0.86	0.48	94	97	25	8	9	30	4	200	34		3.8		1.5	25	5	-	9.0
Seneca	24.00	14.7	92	90	25	18	24	30	19	200	7		3.4		18.9	25	8		8.0
Stillwater	3.02	2.61	93	94	25	10	17	30	8	200	5	1.0	0.4		10.6	25	5	****	5.1

*Represents NPDES permitted flow. See text of report for discussion of design flow capacity.

N

1

TRENDS IN NPDES PERMIT COMPLIANCE

Year	Number of Plants In Operation (at Year-End)	Number of Violations	Percent <u>Compliance</u>
1974	21	163	86.4
1975	20	81	94.5
1976	20	109	92.7
1977	20	101	93.6
1978	18	94	94.5
1979	16	109	93.8
1980	14	36	98.0
1981	14	35	98.0
1982	14	30	98.3

NPDES PERMIT COMPLIANCE AT EXISTING PLANTS

			ANNUAL	NUMBER	OF	VIOL	ATIONS	(V) AN	D PERCENT	COMPL	IANCE	(C)	
TREATMENT PLANT	<u>v</u> <u>19</u>	<u>77</u> <u>C</u>	<u>v</u> <u>1</u>	<u>978</u> <u>C</u>	7	<u>19</u>	<u>179</u> <u>C</u>	<u>v</u> <u>1</u>	<u>980</u> C	<u>19</u>	<u>081</u> <u>C</u>	<u>v</u> .1	<u>1982</u> C
ANOKA	13	90	27	90		3	97	3	99	8		2	99
BAYPORT	2	99	0	100		0	100	0	100	0	100	0	100
BLUE LAKE	0	100	1	99		0	100	• 0	100	0	100	0	100
CHASKA	4	92	15	69	2	25	58	4	96	3	98	1	99
COTTAGE GROVE	2	96	3	94		4	95	1	99	4	96	1	99
EMPIRE						1	90	1	99	0	100	3	98
HASTINGS	7	9 5	2	98		2	99	5	97	8	94	18	87
MAPLE PLAIN	2	97	2	97			95	3	95	1	99	2	96
MEDINA	0	100	0	100		1	92	0	100	2	83	Ó	100
METROPOLITAN	2	96	6	88	-	15	69	2	96	5	89	0	100
ROSEMOUNT	4	93	1	9 9		1	99	1	99	0	100	1	99
SAVAGE	6	88	2	96		6	92	0	. 100	0	100	1	99
SENECA	5	97	5	97		8	94	0	100	2	99	1	99
STILLWATER	1	99	0	100		0	100	2	99	2	99	0	100
TOTALS	48	96	64	94	7	74	95	22	99	35	98	30	98

FIGURE 1 TRENDS IN PLANT PERFORMANCE 1971-1982

YEAR OF OPERATION

5

Other plants show a trend of improved performance throughout 1971-1981, with marked improvement in 1971-1975, and 1979-1981. NPDES permit limitations became more stringent between 1975-1980. In 1982, NPDES permit limits were at the secondary treatment level (BOD = 25 mg/L and TSS = 30 mg/L) or better at all plants.

1.2 Air Emissions

There are four major sources of air emissions at the Metropolitan and Seneca Plants: Metropolitan F & I No. 1 sludge incinerators, Metropolitan F & I No. 2 sludge incinerators, Metropolitan scum incinerator, and Seneca sludge incinerators. Each source is limited in discharge of particulates, opacity and odors. Sludge incinerators also have a limit on mercury emission.

Table 1-4 is a summary of sludge and scum incinerator emissions measured during 1982. At the Metropolitan Plant F & I No. 1 and Seneca Plant, compliance with particulate, opacity, and mercury standards were demonstrated to be acceptable. At the Metropolitan Plant Scum Incinerator, annual average particulate emissions and opacity slightly exceeded emission standards. Excursion of standards was due to the efforts of minimizing stack emissions and maintaining significant incinerator loadings by experimental operation of the incinerator/scrubber system after installation. Incinerators in Metropolitan Plant F & I No. 2 remained inactive during 1982 as incinerator and scrubber renovation continued. Incinerators in Metropolitan Plant F & I No. 1 were shutdown on September 19, and all sludge generated at the Metropolitan Plant was disposed of by land application or composting.

1.3 Sludge Management

Each of the fourteen plants operated by the Commission produces sludge as a result of wastewater treatment, and with the exception of Medina, each plant provides some form of sludge processing leading to ultimate disposal of the sludge. Table 1-5 is a summary of sludge generated at Commission plants.

Ultimate disposal of sludge generated at Commission plants involves either landspreading or incineration. The Metropolitan Plant and the Seneca Plant represent major points of final sludge disposal. At the Metropolitan Plant, sludge is either landspread or incinerated; at Seneca, sludge is incinerated. The Empire Plant has on-site sludge landspreading facilities; all other plants transport sludge to the Metropolitan or Seneca Plant, or directly to landspreading sites.

6

SUMMARY OF 1982 INCINERATOR EMISSION QUALITY

		Merc	ury			Partic	ulate		Opacity				
-	Emission std.	Annual Avg.	No. of	Percent of Tests	Emission std.	Annual Avg.	No. of	Percent of Tests	Opacity	Annual Avg.	No. of	Percent of Tests	
Source	<u>q/24 hr</u> .	<u>g/24 hr.</u>	lests	Mtq. Stds.	_q/dscf_	<u>gr/dscf**</u>	<u>lests</u>	<u>Mtq. Stds.</u>	<u>Std., %</u>	<u>Opacity, %</u>	<u>lests</u>	<u>Mtq. Stds.</u>	
Metro, F & I No. l	3200	452	2	100	0.1	0.08	5	100	20	. 7	75	92	
Metro Scum Incinerator***	<u> </u>		-		0.2	0.24	9	22	20	17	5	60	
Seneca	3200	137	2	100	0.2*	0.20	7	71	20	13	34	76	

* Seneca incinerators were derated from 1.4 DTPH to 1.0 DTPH on November 1, 1981, resulting in an increase in the particulate emission standard to 0.2 gr/dscf at 12% CO2.

** Grains/dry standard cubic foot corrected to 12% CO2.

 \sim

***During 1982, scrubber installation on the Scum Incinerator was completed. The annual averages listed above reflect experimentation with various modes of incinerator/scrubber operation. Emission standard is based on a feed rate of 1100 lbs/day.

SUMMARY OF SLUDGE GENERATED, 1982

	ANNUAL V	VASTEWATER	ANNU	AL SLUDGE PROD	UCTION				
TREATMENT	FL	LOM				SLUDGE DISPOSAL			
PLANT	MGD	MG	MG	% SOLIDS	DRY TONS	ME THOD			
ANOKA	2.14	781	3.99	. 1.78	295	(1)			
BAYPORT	0.52	190	1.24	2.15	112	(1)			
BLUE LAKE*	16.1	5,876	37.12	4.92	7,594	(1) (2)			
CHASKA	0.80	292	2.64	1.59	175	(3)			
COTTAGE GROVE	1.26	460	3.48	1.63	234	(1) (4)			
EMPIRE	4.05	1,478	فن بن ج چ ک	13.2	544	(4)			
HASTINGS	1.50	548	2.76	3.18	350	(1) (4)			
MAPLE PLAIN	0.35	128	0.06	5.94	15	(1) (4)			
MEDINA	0.15	55	0		0				
METROPOLITAN*	208	75,920		28.7	81,767	(4) (5)			
ROSEMOUNT	. 0.31	113	1.45	10.33	618	(1)			
SAVAGE	0.48	175	0.25	4.88	47	(2) (4)			
SENECA*	14.7	5,365		23.5	12,402	(5)			
STILLWATER	2.61	953	5.05	2.68	563	(1) (4)			

SLUDGE DISPOSAL METHODS:

- (1) Transported to Metropolitan Plant for further processing
- (2) Transported to Seneca Plant for futher processing
- (3) Transported to Blue Lake Plant for further processing

(4) Landspreading

(5) Incineration

NOTES:

*Annual Sludge Production includes sludge transported from other plants for further processing, and chemicals added for sludge conditioning (where applicable).

œ

2.0 INTRODUCTION

The Metropolitan Waste Control Commission was established as the areawide operational water pollution control agency by the Minnesota State Legislature, through the Metropolitan Sewer Act in 1969. This Act gives the Commission formal charge to prevent, abate, and control water pollution in lakes, rivers, and streams of the seven county Metropolitan area. The accomplishment of these responsibilities required that the Commission acquire, construct, operate, and maintain all interceptors and treatment works necessary for the collection, treatment, and disposal of wastewater in the area.

The Commission originally acquired 33 existing wastewater treatment plants in 1970. During the following ten years, the Commission reduced the number of plants in operation to 14, by constructing three new plants and closing 22. The number of plants in operation at the end of each year is shown graphically in Figure 2-1. A history of each plant is summarized in Table 2-1. Through this program of regionalization, the Commission eliminated old and outdated plants which could not comply with more stringent modern effluent limitations. New and modern plants were designed and constructed to economically meet required effluent limitations, and provide for expansion to accomodate future growth in the area.

The 14 plants currently operated by the Commission include the Metropolitan Plant. This is the largest plant in the system and serves the greater Minneapolis-St. Paul area. Three other regional plants, Blue Lake, Empire, and Seneca, each serve several suburban communities. The remaining ten smaller plants generally serve individual communities in the area.

Throughout each year, the performance of each plant is monitored, recorded, and reported to regulatory agencies, Commission administrators, and Commission program managers, in order to insure consistently good performance and indicate areas where additional effort is necessary to improve performance. At the end of each year, the record of performance of each of the Commission's Plants is summarized. This report is a summary of treatment plant performance during 1982.

The purposes of this report are as follows:

- To provide a summary of 1982 treatment plant performance data for future reference;
- (2) To compare plant effluent quality to NPDES permit effluent limitations;
- (3) To compare effluent quality to plant and administrative program performance goals;
- (4) To compare major air emissions to emission standards;
- (5) To summarize quantity and quality of sludge production and methods of sludge treatment and disposal at each plant;

NUMBER OF TREATMENT PLANTS IN OPERATION 1970-1982

YEAR OF OPERATION

TABLE 2-1

,

TREATHENT PLANTS IN OPERATION DURING THE PERIOD IN 1971-1982

	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
ANGKA	****	*****	****	****	*****	*****	*****	*****	*****	******	******	*****	*****
APPLE VALLEY	****	****	*****	****	*****	****	*****	*****	*****	XXXXXXXXX (F)	ow diverted to	Empire Plant	9/79)
BAYPORI	****	*****	****	*****	****	*****	*****	*****	******	*****	*****	*****	*****
BLUE LAKE	(Plant Start-	up 0/71}XXXXX	*****	*****	*****	****	*****	*****	****	****	*****	*****	*****
BURNSVILLE	****	****	XXXXXXXXX (FI	low diverted to	n Blue Lake 9/2	2/72))			-
CHASKA	*****	*****	****	*****	*****	*****	*****	XXXXXXXXXXXXX	*****	*****	XXXXXXXXXXXX	*****	*****
CHANHASSEN	****	*****	X (Flow dive	ted to Blue La	ike Plant 1/10/	72)							
COTTAGE GROVE	*****	*****	****	*****	****	****	XXXXXXXXXXXX	XXXXXXXXXXXXX	*****	****	****	****	*****
EAGAN IDWNSHIP I	*****	*****	XXXXXXX (Flow	diverted to 5	ieneca Plant, 7	/21/72)							
CAGAN IDWNSHIP II	****	*****	XXXXXXX (Flo	e diverted to S	ieneca Plant, 7	/21/72)							
EMPTRE									(Plant Stert	up 9/79) XXXX	XXXXXXXXXXX	****	******
EXCELSION	*****	*****	XX (Flow dive	erted to Blue L	.eks Plant 2/20	/72)			· .				
FARNING FUN	****	****	****	****	****	*****	*****	*****	*****	XXXXXXXXX (F1	ow diverted to	Empire Plant	9/79)
FOREST LAKE TOWNSHIP	****	****	XXXXXXXXX (F)	low diverted to	a Hetropolitan	Plant 9/28/72))						
FOREST LAKE VILLAGE	*****	*****	XXXXXXXXX (F)	low diverted to	Hetropolitan	Plant 9/28/72))						
HASTINGS	****	****	****	****	****	*****	*****	*****	*****	****	****	*****	*****
INVER GROVE HEIGHTS	*****	*****	*****	Flow diverted	to Metropolite	n Plent 11/8/3	72)						
LAKEVILLE	*****	*****	*****	****	XXXXXXXXXXXXX	*****	*****	XXXXXXXXXXXX	*****	XXXXXXXXX (FI	ow diverted to	Empire Plant	9/79)
LONG LAKE	****	*****	*****	*****	*****	*****	*****	*******	*****	*****	XXXXXX (Flow	diverted to Bi	us Leke Plant 6/80)
HAPLE PLAIN	*****	****	****	****	****	*****	*****	******	XXXXXXXXXXXX	*****	*****	*****	*****
HEDINA	*****	*****	****	*****	*****	*****	*****	*****	*****	*****	*****	*****	*******
HE IROPOL LIAN	XXXXXXXXXXX	*****	*****	****	****	*****	****	*****	****	*****	*****	*****	*****
HERIND	*****	*****	*****	******	. XXXXX (FĻom c	liverted to Blu	ue Lake Plant 5	/74)					
NE WPOR F	*****	*****	*****	*****	*****	XXXXXX (Flow	diverted to M	stropolitan Ple	nt 6/11/75)				
QAK PARK HEIGHIS	*****	*****	*****	XXXXXXX (Flan	• diverted to S	itiliwater Pler	nt 7/11/73)						
OKIMA	*****	****	****	****	*****	*****	****	******	*****	****	XXXXXX (Flow	diverted to Bl	ua Lake Plant 6/80)
PRIDA LAKE	*****	*****	******	*****	*****	******	****	*****	XXXXX (Flow o	liverted ta Blu	e Lake Plant 5	/78)	
ROSÉ HOUN L. T	*****	****	*****	******	(Flow diverted	to Rosemount	11 11/20/73)						
ROSE HIRUN D E.L			(Plant Start	-up 11/73) XX	****	*****	*****	*****	XXXXXXXXXXXX	*****	*****	****	*******
ST. PAIR PARK	*****	******	*****	*****	******	XXXXXX (Flow	diverted to He	atropolitan Pla	nt 6/18/75)				
SAVADE	*****	****	*****	*****	*****	*****	*****	****	****	*****	****	*****	*****
SENECA	((Plant Start-u	p 7/72) XXXXXX	*****	****	*****	*****	*****	*****	****	****	*****	****
SHAKOPET	******	XXXXXXX (Flo	diverted to	Blue Leke Plan	E 7/71)						1		
SCHEH ST. PAUL	****	******	*****	*****	XXXXXX (flow	diverted to M	etropolitan Pla	mt 6/24/74)					
STIFT WATER	*****	****	*****	****	*****	*****	*****	****	*****	****	****	*****	*****
VICTORIA	*******	*****	*****	*******	(flow diverted	to Blue Lake (Plant 11/7/73)						
WACON FA					(Plant angu	ired 11/75) XX	*****	*****	X (flow dive	rted to Blue Le	ske Plant 1/78)	
WAYZATA	*******	**********	flaw diverted	to Blue Lake P	fant 10/7£)				-				

(6) To summarize activities related to plant performance at each plant; and

(7) To compare 1982 plant performance data to historical performance data.

This report is divided into seven major sections. Sections 1 and 2 are a summary and introduction, respectively. Section 3 discusses plant effluent quality relative to NPDES effluent limitations and performance goals. Section 4 discusses air emissions from the four major sources at the Metropolitan and Seneca Plants. Section 5 summarizes plant sludge production and sludge quality. Section 6 consists of individual treatment plant reports giving details of plant treatment processes, plant efficiencies, plant loadings, and 1982 activities at each plant. Section 7 is an appendix which presents additional data analyses in several forms.

3.0 EFFLUENT QUALITY

3.1 Water Pollution Control Regulations

In October, 1972, Congress passed the Water Pollution Control Act Ammendments of 1972 (Public Law 92-500). The purpose of the Act was to enhance the quality and value of water resources and to establish a national policy for the prevention, control, and abatement of water pollution. The U.S. Environmental Protection Agency (EPA) was established as the agency to administer and regulate the requirements of the Act. The national goals established for publicly owned treatment works were the attainment of a minimum of secondary treatment standards by July 1, 1983, and additional treatment standards based on receiving water quality. Congress amended Public Law 92-500 by the Clean Water Act of 1977, and the Municipal Wastewater Treatment Construction Grant Amendments of 1981. These amendments eased the compliance date for secondary treatment standards and water quality related effluent limitations to July 1, 1988.

To meet adopted receiving water quality standards stated in 6 MCAR § 4.8014 and 6 MCAR §4,8015, the Minnesota Pollution Control Agency's Rules and Regulations also establish secondary treatment as a minimum treatment level for all publicly owned treatment plants. Secondary treatment facilities are defined, in these Rules and Regulations, as works which will provide effective sedimentation, biochemical oxidation and disinfection, or the equivalent, including effluents conforming to the limits shown in Table 3-1.

TABLE 3-1

DEFINITION OF SECONDARY TREATMENT EFFLUENT - 6 MCAR 4.8014-4.8015

	Limiting Conce	ntration or Range
Substance or Characteristic	30 Day Mean	7 Consecutive Day Mean
5-Day Biochemical Oxygen Demand, mg/L(1) Fecal Coliform Group Organisms, Number/100 mL(2	2) 200	45 400
Phosphorus, mg/L(3)	30	40
Turbidity, mg/L ⁽¹⁾	25	
pH Range ⁽⁴⁾	6.5-8.5	
Unspecified loxic or corrosive Substances of		

- (1) Arithmetic Mean
- (2) Geometric Mean; Disinfection required from March 1 through October 31.

(3) In effect where discharge is directly to lake or reservoir.

- (4) Not subject to averaging.
- (5) None allowed at levels acutely toxic to humans or other animals or plant life.

Where it is evident that the concentration levels specified in Table 3-1 are not effective in preventing pollution, or the specified stream flow is inadequate to protect the applicable water quality standards, effluent standards more stringent than those specified in Table 3-1 may be adopted. As such, specific water quality based effluent limitations have been adopted for the Vermillion River, and are applied to the Empire Plant. These limitations are listed in Table 3-2.

TABLE 3-2

WATER QUALITY BASED EFFLUENT STANDARDS (WPC-41)

Limiting Concentration

or Range

Substance or Characteristic

5-Day Biochemical Oxygen Demand, mg/L(1) Fecal Coliform Group Organisms, Number/100 mL(2) Total Suspended Solids, mg/L(1)	10 200 10
Phosphorus, mg/L(3)	· · · · · · · · · · · · · · · · · · ·
Turbidity, mg/L ⁽¹⁾	25
PH Ranger // (1)	כ.ס-ס.ס ו
Dissolved Oxygen, mg/L ⁽¹⁾	4
Unspecified Toxic or Corrosive Substances(5)	

- (1) Arithmetic Mean
- (2) Geometric Mean; Disinfection required from March 1 through October 31.
- (3) In effect where discharge is directly to lake or reservoir.
- (4) Not subject to averaging.
- (5) None allowed at levels acutely toxic to humans or other animals or plant life.

During 1974, the National Pollutant Discharge Elimination System (NPDES) was established as the major regulatory tool to be used in implementing the requirements of Public Law 92-500. Under this system, each individual wastewater discharge to state or federal waters is required to have an NPDES permit. The NPDES permit places limitations on the quantity and quality of the wastewater discharge. After establishment of initial policies and procedures, the EPA transferred the responsibility for issuing permits to individual state governments.

3.2 Effluent Limitations

In 1974, all Commission Plants were issued discharge permits by the MPCA. The permits stipulated interim effluent quality standards to be achieved for compliance with permit conditions. Effluent quality standards established for each plant were the same as, more stringent than, or less stringent than those of secondary treatment depending on the water quality standards of the receiving waters and the practicability of attaining certain levels of treatment under existing operating conditions.

These standards have been revised in the past and will be revised in the future as receiving water quality standards change, and as facilities are constructed capable of achieving higher levels of treatment.

This standards revision process was experienced by the Commission during 1982, when the MPCA approved a new five-year NPDES Permit for the Metropolitan Plant as a reissuance of the old permit which expired on June 30, 1982. The action by MPCA represents the culmination of a process which began more than a year ago and which involved a lengthly public hearing on the provisions of the new permit. Whereas, the old NPDES Permit contained provisions to attain and to maintain compliance with secondary treatment standards, the new permit considered effluent limitations and compliance schedules to meet water quality standards for the Mississippi River. Specifics of the new Metropolitan Plant permit are addressed in Section 6 of this report. Permit revision and renewal can be expected for several of the Commission's plants during 1983. The NPDES effluent quality limitations in effect during 1982 are shown in Table 3-3.

3.3 Plant Performance

During 1982, the Commission's network of treatment plants had available capacity to treat 114 billion gallons of wastewater (312 mgd). The actual volume of wastewater treated during 1982 was approximately 92 billion gallons (253 mgd). This represents an increase of wastewater volume from the previous year of approximately 4 billion gallons. Wastewater treated during 1982 represented 81 percent of the Commission's total treatment capacity.

Of the 92 billion gallons of wastewater received during 1982, 82 percent was treated at the Commission's largest facility, the Metropolitan Wastewater Treatment Plant. Approximately 12 percent of the total flow was divided between the next two largest facilities, Blue Lake and Seneca.

During 1982, the Commission's laboratories began to measure and report both carbonaceous BOD (CBOD) and total BOD (TBOD). Measurement of the CBOD eliminates misleading data which is sometimes obtained due to nitrification occurring in the standard or total BOD test. Nitrification is an oxygen consuming process and, therefore, tends to increase the BOD value. Comments made regarding 1982 treatment plant performance, for the most part, draw upon CBOD data and should be viewed with consideration for the fact that there are differences between the test procedures. TBOD and CBOD effluent data are tabulated for each plant in Section 6 of this report.

At the Metropolitan Plant, effluent quality during 1982 improved from that of 1981. Average effluent CBOD and TSS concentrations during 1982 were 13 mg/L and 11 mg/L, as compared to 1981 average effluent BOD and TSS values of 19 mg/L and 19 mg/L, respectively. Removal efficiencies for BOD and TSS increased from 91 percent for BOD and 92 percent for TSS in 1981, to 95 percent for BOD and 95 percent for TSS in 1982. This is the third consecutive year that the Metropolitan Plant has shown significant improvement.

Effluent quality for plants other than the Metropolitan Plant also improved during 1982. Annual average effluent CBOD and TSS concentrations during 1982 were 12 mg/L and 10 mg/L as compared to 1981 annual average BOD and TSS values of 15 mg/L and 11 mg/L.

The annual average BOD removal efficiency for all plants increased from 91 percent in 1981 to 93 percent in 1982, and the TSS removal efficiency increased from 92 percent in 1981 to 95 percent in 1982.

Figure 1-1, located in the first section of the report, illustrates the trend in NPDES compliance for the years 1971 through 1982, for both the Metropolitan Plant and other plants. It can be seen from Figure 1-1, that excellent plant performance continued during 1982 and that effluent BOD and TSS have been significantly reduced in 1982 for the Metropolitan Plant and slightly reduced at other plants. The annual average effluent concentration (BOD and TSS) has been below permissible NPDES discharge limits for the Metropolitan Plant during the past three years, while the annual average effluent concentration (BOD and TSS) for all other plants has been consistently below permissible NPDES discharge limits since 1975.

Annual performance and monthly variations in performance at each treatment plant are summarized in Table 3-4. Plant flow and major effluent quality parameters are included in the summary.

Nominal design flow for each plant is included in each NPDES permit, as shown in Table 3-4. While it is normal practice to compare average annual flow to nominal design flow when relating current plant operation to plant capacity, this practice is often deceiving. Nominal design flow must be adjusted to reflect unique flow variation factors, organic loading and organic load variation factors, and individual unit process capacities, in order to be an accurate indicator of plant capacity. These flow and loading variations can vary from year to year, depending on changes in infiltration/inflow (precipitation related) and activities of local industries.

It is not within the scope of this report to analyze and define realistic current plant capacities. Treatment plant capacities will be evaluated on an ongoing basis and periodically summarized in separate reports. However, the following summary of realistic capacity versus nominal design capacity of several plants is necessary in order to understand subsequent discussions of plant performance in 1982.

Anoka: Current plant capacity has been determined to be slightly less than 2.46 mgd, due to existing activated sludge aeration and sludge processing limitations.

Bayport: Plant capacity is somewhat less than nominal design capacity (0.65 mgd), due to chemical feed which was added for phosphorus removal subsequent to the original plant construction. This addition has reduced activated sludge and sludge processing capacity.

Chaska:

Plant capacity is somewhat less than nominal design capacity (1.4 mgd) due to high and variable organic loadings. At current organic loading concentrations, plant capacity is about 1.0 mgd.

Hastings: Current plant capacity has been determined to be approximately 1.5 mgd (instead of 1.83 mgd), due to final clarification and sludge processing limitations.

Stillwater:

Plant capacity is somewhat less than nominal design capacity (3.02 mgd), due to the addition of a phosphorus removal system. This addition has reduced activated sludge and sludge processing capacity.

Table 3-4 indicates that Maple Plain and Medina are currently operating beyond their plant capacity. Based on realistic plant capacities discussed above, Anoka, Bayport, Chaska, Hastings, and Stillwater are also currently operating at or near plant capacity.

Average annual effluent CBOD compared favorably with monthly effluent limitations at all plants. The monthly average effluent CBOD values exceeded NPDES effluent limitations at Hastings and Maple Plain, resulting in a total of five monthly CBOD violations. Average annual effluent TSS compared favorably with monthly effluent limitations at all plants. Monthly average effluent TSS values exceeded NPDES effluent limitations only at the Hastings Plant, resulting in six monthly permit violations.

Table 3-5 is a comprehensive summary of NPDES permit violations which occurred in 1982. Violations of weekly and monthly mass limitations on BOD and TSS, not shown in Table 3-3 are included in Table 3-5. Also shown are pH and fecal coliform violations. A total of 30 violations occurred in 1982, ranging from 18 at Hastings to none at Bayport, Blue Lake, Medina, Metropolitan, and Stillwater. A maximum of eight violations occurred in March, while no violations occurred in May or October.

The distribution of violations among effluent parameters and major problem areas are presented in Table 3-6. As shown in Table 3-6, 17 of 30 violations were caused by a plant operating at its capacity, 16 of which involved the Hastings Plant. Expansion of the Hastings Plant is planned to begin by late 1983.

Process Control problems during 1982, centered around: (1) ammonia loading from solids processing recycle streams at the Empire Plant and; (2) difficulty maintaining required close control of chlorination, resulting in violations of the fecal coliform standards at several plants.

The number of violations caused by industrial wastes decreased in 1982, as compared to 1981. This improvement was basically due to the absence of heavy metal and cyanide problems from the two major industries in Anoka. It should be noted, however, that industrial wastes have contributed to the problems at Hastings, even though the violations are all attributed to plant capacity in the aforementioned tabulation.

The number of effluent BOD violations decreased from 15 to 9 in 1982. This decrease approximately accounts for the decrease in total violations from 35 in 1981 to 30 in 1982. The change in number of effluent BOD violations did not occur because of process improvements alone. As previously mentioned, during 1982, effluent BOD violations were based on CBOD, rather than TBOD. During 1981, five of the 15 effluent BOD violations were attributed to nitrification in the BOD test.

/ TABLE 3-3

NPDES EFFLUENT LIMITATIONS - 1982

	•	5-Day mg/	80D 1	TSS,	<u>mg/1</u>	Fecal (MPN/) <u>Geomet</u> :	Coliform 100 ml <u>ric Mean</u> (f)	Turb- idity <u>NTU</u>	Phos- phorus _mg/l	Ammonia <u>mg/l</u>	Dissolved Oxygen mg/l
TREATMENT PLANT (a)	Standards Applicable	7-Day Avg.	30-Day Avg.	7-Day Avg.	30-Day Avg.	7-Day Mean	30-Day Mean	7-Day Mean	30-Day Mean	30-Day Mean	30-Day Mean
	At All Times		25	<u> </u>	30	400	200		<u></u>		
BAYPORT	At All Times	45	25	45	30	400	200	25	1.0		
BLUE LAKE	At All Times	45	25	45	30	400	200	25		·	
CHASKA	At All Times	45	25	45	30	400	200	25			_ <u>`</u> _
COTTAGE GROVE	At All Times	45	25	45	30	400	200	25	`		
EMPIRE	At All Times		10		10	400	200	25		1.0	4.0
HASTINGS	At All Times	45	25	45	30	400	200	25			
MAPLE PLAIN	At All Times		25		30		200				
MEDINA(q)	At All Times	45	25	45	30	400	200	25			
METROPOLITAN(c)	At All Times	44	24(d)	45	30		200	25			7.0(e)
ROSEMOUNT	At All Times	45	25	45	30	400	200	25	1.0		
SAVAGE	At All Times	45	25	45	30	400	200	-25			
SENECA	At All Times	45	25	45	30	400	200	25			
STILLWATER	At All Times	45	25	45	30	400	200	25	1.0	· -	

18

(a) General Requirements for Essentially All Plants:

1) The pH shall not be less than 6.5 nor greater than 8.5. These upper and lower limitations are not subject to averaging and shall be met at all times.

2) There shall be no discharging of floating solids or visible foam in other than trace amounts,

3) The discharge shall not contain oil or other substances in amounts suficient to create a visible color or film.

(b) Additional 30-day mean permit standards for Anoka: chromium - 0.4 mg/l; copper - 0.3 mg/l lead - 0.5 mg/l; zinc - 0.5 mg/l; cyanide - 0.5 mg/l.

(c) Additional 30-day median permit standards for the Metropolitan Plant: copper - 0.14 mg/l; cadmium - 0..03 mg/l; mercury - 4.0 ug/l; cyanide - 0.193 mg/l.

(d) The Metropolitan Plant BOD and TSS limits were revised in the newly issued permit. The new permit limitations are retroactive to July 1, 1982.

(e) Dissolved oxygen limitation of 7 mg/L for river flows less than 7,000 cfs and river D.O. values less than 6.0 mg/l upstream or less than 5.5 mg/L downstream for two consecutive sample-days, during the period June through September.

(f) Disinfection required from March 1 through October 31 excpet for the Anoka Plant where disinfection is required year round.

(g) Medina Plant discharge from absorption ponds only - Must be authorized by MPCA.

SUMMARY OF PLANT PERFORMANCE 1982

	<u> </u>	<u> </u>											·	
Treatment Plant	Permit Limitation	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Avg.
	Flow 2.46	2.11	2.15	2.30	2.25	2.34	2.27	2.12	2.07	2.04	2.02	2.05	1.98	2.14
	CBOD 25	13	10	10	12	1 10	11	12	9	10	13	18	12	12
Anoka .	TSS 30	l ē	6	5	Ē	8	7	10	5	5	8	17	1 II	8
	Flow 0.65	0.48	0.48	0.47	0.65	0.55	0.56	0.52	0.52	0.48	0.52	0.53	0.54	0.52
·	CBOD 25	12	1 11	9) 9	5	6	6	6	5	5	9	9) 8
Bayport	TSS 30	8	13	9	10	5	5	í s	6	9	6 8	i ii	10	8
	Flow 20.0	14.3	14.7	17.5	18.2	17.6	15.8	14.9	15.6	15.8	16.0	16.7	16.1	16.1
	CBOD 25	14	16	9	1 11] 12	6	8] 9] 8] 9] 12	12] 10
Blue Lake	TSS 30	6	8	6	10	8	4	6	[5	[8	7	6	(5	<u> </u>
	Flow 1.40	0.70	0.64	0.99	1.06	0.90	0.76	0.71	0.71	0.75	0.74	0.84	0.77	0,80
	CBOD 25	L 15	[<u>1</u> 9	14	14	[13	12	12	13	21	8	14] 11	14
<u>Chaska</u>	<u>TSS 30</u>	13	16	11	7	9	10	8	9	8	11	15	14	<u> </u>
	Flow 1.80	1.22	1.29	1.30	1.22	1.27	1.26	1.19	1.21	1.28	1.24	1.27	1.32	1.26
	CBOD 25	18			12	15	8	8	6	4	1 . 2	8	13	10
<u>Cottage Grove</u>	<u>155 30</u>	9		<u> </u>	10	<u> </u>		3	6	4		6	12	$\frac{7}{1}$
	F10W 6.00	1 3.31	J.40	3.14	4.89	4.//	4.26	3.8/	4.05	4.10	4.08	4.12	3.72	4.05
- .		4#	, <u>,</u> *					1 2	1 ?	1 <u>7</u>		2	ļ ļ	l z
LMpire		┥╴╴╤╧╌		<u> </u>				1	<mark>┥┈╶╗╼┲╧</mark> ╶╴	<u> </u>		1	<u> </u>	
	1 F10W 1-85	1.77	1 1.42	1.2/	1.52	1.62	1.00	1.44	1. 1.72	1 1.7	1.27	1.42	1 1.4/	
Usebiese				50	24		12	10	12		27		25	
<u>nascinda</u>		20							0 20	- 0 37	<u> </u>	- 0 /11-	40	0 15
	CBOD 25	28	0.24	19	27	1 0.20	14	10	13		1.27			
Masla Plain	TSS 30	20		10	É Á		14	10	ែក	Ĭĭ			1 2	
Hante Lietu	Elow 0-10	1 0.095	0.115	0.173	0.228	0.255	0.212	0.150		0.117	0.116	0.106	0.113	0.149
	Discharge NO	VES	NO	WES	VES	VES	NO	NO	NO NO	NO	NO	YES	NO	
	CBOD 25	1 17	1 1	1 16	1 19		1 13	1 14	20	1 11	1	16	15	14
Medina	TSS 30	19	12	1 īĭ	19	20	1 16	16	Ī		19	13	1 13	14
1044114	Flow 220	179	185	215	236	239	214	212	230	230	194	182	177	208
	CB0D 24	14	1 19	21	10	1 10 ·	1 18	$1 \overline{11}$	8	1 11	1 11	1 ii	1 ii	1 13
Metropolitan	TSS 30	7	19	27	7	18	17	10	4	1 11	8	8	8	n n
	Flow 0.60	0.28	0.31	0.40	0.32	0.29	0.29	0.29	0.31	0.32	0.31	0.32	0.32	0.31
	CB0D 25	18	16	12	19	15	15	14	16	21	20	14	12	16
Rosemount	TSS 30] 3	2] 1	2	2] 2	3	2	2] 2	2	2	. 2
	Flow 0.86	0.41	0.42	0.56	0.62	0.58	0.44	0.42	0.47	0.45	0.44	0.49	0.49	0.48
	CBOD 25	14	6	6	8	7	7	7	8	5	14	16	6	8
Savage	TSS 30	5	2	3	2	3	11	10	3	2	2	7	1	4
	Flow 24.0	14.0	14.7	15.6	15.6	15.5	14.6	14.8	11.5	14.6	14.7	15.6	15.9	14.7
	CBOD 25	18	16	21	25	19	17	19	15	13	16	19	20	18
Seneca	<u>155 30</u>	19	17	18	21	13	16	24	22	20	21	23	19	19
	Flow 3.02	2.26	2.29	2.44	3.16	2.98	2.71	2.51	2.46	2.43	2.68	2.64	2.78	2.61
	CBOD 25	9	L 8		12		9	13	9	1 - 7	8	10		10
Stillwater	155 30	1 6	1 7	1 7.	17	10	1 7	9	19	1 8-	14	10	1 10	8

*Values represent TBOD

61

SUMMARY OF NPDES PERMIT NON-COMPLIANCE IN 1982

[1					1							TOTAL	. BY:
TREATMENT PLANT	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEP.	OCT.	NOV.	DEC.	NUMBER	MONTH
ANOKA	-		WFC								WFC		2	2
BAYPORT			-										O	0
BLUE LAKE								_					O	0
CHASKA									WB				1	1
COTTAGE GROVE						WFC							1	1
EMPIRE	MAm	MAm		MAm									3	3
HASTINGS	MB, MS	MB, MS	MB, WB <u>MS, WS</u> MB, MS				WFC	WFC	-		MS	MS.WS	18	8
MAPLE PLAIN	MB			MB									2	2
MEDINA					و								0	. 0
METROPOLITAN												· · · ·	D	- 0
ROSEMOUNT									рH				1	1
SAVAGE										1	WB		1	1
SENECA			pH										1	1
STILLWATER											:		0	0
TOTALS	3	2	3	3	0	1	1	1	2	0	3	1	30	20

Symbols: MB,WB= Monthly and Weekly BOD Conc; MS,WS= Monthly and Weekly TSS Conc; MB,WB,WS,WS= Mass Limits; MFC,WFC= Monthly and Weekly Fecal Coliform; pH; MP= Monthly Phosphorus Conc; MP= Mass Limit; T-Turbidity; MAm= Monthly NH3-N; MDD= Monthly Dissolved Oxygen; MCN,DCN= Monthly and Daily Cyanide; MCu,DCu= Monthly and Daily Copper; MCr,DCr= Monthly and Daily Chromium; MPb= Monthly and Daily Lead; MZn,DZn= Monthly and Daily Zinc.

NPDES PERMIT VIOLATION DISTRIBUTION 1982

Distribution of Violations Among Effluent Parameters

		NUMBER OF	VIOLATIONS	· · · · · · · · · · · · · · · · · · ·	
PARAMETER	IST QUARTER	2ND QUARTER	3RD QUARTER	4TH QUARTER	TOTAL
BOD	6	1	1	1 · · ·	9
TSS	6	2	0	3	11
FECAL COLIFORM	1	1	2	1	5
рН	1	0	I	0	2
AMMONIA	2	1	_0	0	3
,	16	5	4	5	30

Distribution of Violations Among Problem Areas

PROBLEM AREA	1ST QUARTER	2ND QUARTER	3RD QUARTER	4TH QUARTER	TOTAL
PROCESS CONTROL	3	2	2	ľ	8
INDUSTRIAL WASTES	1	0	1	1	3
PLANT CAPACITY	11	3	0	3	1.7
EQUIPMENT FAILURE	<u> </u>	0	<u> </u>	0	2
	16	5	4	5	30

21

Accounting for this change in analytical procedure, overall plant performance during 1981 and 1982 was essentially unchanged. However, an analysis of individual plants indicates that only Hastings had increased violations, whereas most plants improved their performance or maintained a continued record of excellence.

The following is a plant-by-plant summary of non-compliance problems during 1982.

- Anoka: The Anoka Plant had two weekly fecal coliform violations. One violation was the result of chlorination equipment problems. The other violation resulted from experimentation with chlorine feed rates, aimed at reducing effluent chlorine residual. The experimentation took place after the chlorine contact tank had been modified to eliminate short-circuiting problems. Chlorine mixing improvements will be made in 1983, in an attempt to reduce effluent chlorine residual.
- Chaska: The Chaska Plant had one weekly BOD violation. The plant was organically overloaded for a short period, as a result of an industrial waste discharge. This problem is being resolved through the industrial pretreatment program.
- Cottage Grove: The Cottage Grove Plant had one weekly fecal coliform violation resulting from partial nitrification in the activated sludge process. This reduced the disinfection efficiency of the chlorination process.
- Empire: The Empire Plant had three monthly ammonia violations, resulting from process control problems related to the solids processing facilities, i.e. recycle loads from digestion and dewatering.
- Hastings: The Hastings Plant had 16 BOD and TSS violations, which were primarily caused by operation at or above effective plant capacity. In addition, there were industrial waste problems. The plant had two weekly fecal coliform violations, due to partial nitrification in the activated sludge process which reduced the disinfection efficiency of the chlorination process.
- Maple Plain: The Maple Plain Plant had two monthly BOD violations. One violation resulted from aeration equipment problems and the other violation was caused by flows well above plant capacity.

Rosemount: The Rosemount Plant had one daily pH violation, which was caused by an acid spill within the plant that resulted in some acid passing through the treatment process.

Savage: The Savage Plant had one weekly BOD violation, which was caused by a high pH waste discharge from a local industry, resulting in a biological treatment process upset at the plant. Seneca:

The Seneca Plant had one daily pH violation, for which there was no apparent cause.

The following comments of 1982 treatment plant performance are also significant:

- The Metropolitan Plant performance has met secondary treatment limitations during the past three years. Effluent quality during 1982 was consistently below the secondary treatment limitations of 25 mg/L BOD and 30 mg/L TSS.
- 2. The Metropolitan Plant had no significant bypasses during 1982. Only 0.04% of the untreated wastewater was bypassed. Improved effluent quality has been achieved despite the burden posed by the larger volume of combined sewage treated. This has been made possible by the near completion of the plant expansion program, which has effectively reduced the volume of combined sewer overflows to the Mississippi River by about half.
- 3. In addition to the Metropolitan Plant, plant performance in 1982 improved at Anoka, Chaska, Maple Plain, and Stillwater. Only Hastings experienced poorer performance during 1982 and this is attributable to plant capacity limitations.
- 4. Nearly all of the treatment plants are performing as well as can be expected for the type of facilities available. Plant performance can be expected to stabilize during 1983 and beyond. Performance at some plants may deteriorate as plant capacity is approached or exceeded, or as equipment reaches the end of its useful life and becomes subject to more frequent downtime.
- 3.4 Program Goals

Initially developed in 1976, the Commission continues to utilize a criteria which rapidly assesses plant performance. The assessment is made in terms of four parameters: Compliance (C), Frequency (F), Severity (S), and Noncompliance Index (NCI).

Compliance (C) is the percentage compliance with NPDES effluent limitations as listed in each plant's NPDES Permit. The nearer the compliance number is to 100 percent, the better the plant performance.

Frequency (F) is the frequency of compliance with NPDES effluent limitations. It is calculated by dividing the total number of BOD and TSS analyses complying with effluent standards by the total number of BOD and TSS analyses performed and expressing the result as a percentage. The nearer the frequency number is to 100 percent, the better the plant performance as related to effluent quality standards.

Severity (S) is the deviation from the standard for those BOD and TSS analyses which exceed NPDES effluent limitations. It is determined by locating the median value of those values exceeding the standards and expressing the deviation as a percentage of the NPDES limit. The larger the severity number, the greater the magnitude of violation of effluent standards. In judging the performance of plants, both frequency and severity must be considered; therefore, noncompliance index was developed to allow a rapid, single-number assessment of plant performance. The noncompliance index (NCI) is determined by multiplying the percent severity by the noncompliance (100-frequency) and dividing by 100. A low noncompliance index indicates better overall compliance with effluent quality standards.

Performance objectives in terms of compliance, frequency, and severity are defined in the operating budget of each individual treatment plant. In addition, Administration and Management (Program OOl-Chief Administrator) has goals for compliance and severity at the Metropolitan Plant, and at all other plants combined. Operations Administration (Program O29-Director of Operations) has goals for compliance, frequency, and severity, related to the Metropolitan Plant, and to all other plants combined. Process Assurance (Program O30-Process Assurance Manager) has a goal based on compliance.

A summary of 1982 goals and actual performance at each plant is provided in Table 3-7. During 1982, thirteen plants met their compliance goals, thirteen plants met their frequency goals, eight plants met their severity goals, and thirteen plants met their noncompliance index goals. Individual plant goal attainment is summarized as follows:

<u>All Goals</u>	Three Goals	<u>No Goals</u>
Anoka Bayport** Blue Lake** Chaska Maple Plain Medina Metropolitan Seneca	Cottage Grove (C, F, NCI)* Empire (C, F, NCI)* Rosemount (C, F, NCI)* Savage (C, F, NCI)*	Hastings

* Letter in parentheses indicates goal(s) met.

**These plants have a perfect record of 100% compliance, 100% frequency, and no severity.

The causes of the non-achievement of goals are as follows:

- 1. <u>Cottage Grove (S)</u> Severity is above the goal level, because one reported BOD value in May was quite high. Based on other data collected at that time, this value appears to be unrepresentative of actual conditions, perhaps due to sampling problems.
- 2. <u>Empire (S)</u> The severity is above the goal because a filter bypass on June 22 resulted in one high TSS value.
- 3. <u>Hastings (C, F, S)</u> Performance was poor during 1982, because the plant was operated at plant capacity, in conjunction with activated sludge toxicity problems related to industrial wastes.
- 4. <u>Rosemount (S)</u> Severity is above the goal level, due to several high effluent BOD values related to carbon column regeneration schedules.

- 5. <u>Savage (S)</u> Severity is above the goal level, because there was one very high BOD value in November, due to an industrial waste shock loading that upset the biological treatment system.
- 6. <u>Stillwater (S)</u> Severity is above the goal because a major rainfall event in July necessitated bypassing of the plant flow around the activated sludge process causing higher effluent BOD and TSS for that day.

A summary of 1982 goals and performance for other administrative programs is provided in Table 3-8. All goals were met during 1982.

SUMMARY OF TREATMENT PLANT GOAL PARAMETERS Compliance, Frequency, Severity, and Noncompliance Index Values for 1982 Compared to 1982 Goals and 1981, 1980 Actual Goals

	· <u> </u>	Compli	ance		Frequency			Severity				<u>Noncompliance Index</u>				
<u>Treatment Plant</u>	Actual _ 1980	Actual 1981	Actual 1982	Goal <u>1982</u>	Actual 1980	Actual 1981	Actual 1982	Goal <u>1982</u>	Actual 1980	Actual 1981	Actual 1982	Goal <u>1982</u>	Actual 1980	Actual 1981	Actual 1982	Goal <u>1982</u>
Anoka	97	97	99	98	97	94	98	93	10	16	- 4	33	0.3	1.0	0.1	2.3
Bayport	100	100	100	98	99	100	100	93	13	0	0	33	0.1	0.0	0.0	2.3
Blue Lake	100	100	100	99	99	97	100	95	36	40	0	33	0.4	1.2	0.0	1.6
Chaska	96	98	99	98	90	89	96	93	52	32	24	33	5.2	3.5	0.9	2.3
Cottage Grove	99	96	99	97	99	97	99	93	75	32	36	33	0.8	1.0	0.4	2.3
Empire	99	100	98	97	9 9	99	99	95	30	30	80	25	0.3	0.3	0.3	1.2
Hastings	97	94	87	95	79	80	64	80	24	24	37	33	5.0	4.8	13.1	6.6
Maple Plain	95	99	96	92	80	-94	93	85	20	37	12	45	4.0	2.2	0.8	6.8
Medina	100	83	100	100	72	74	90	70	20	60	32	50	5.6	15.6	3.3	15.0
Metropolitan	96	89	100	97	B1	81	93	90	40	40	36	40	7.6	7.6	2.5	4.0
Rosemount	99	100	99	98	98	97	97	95	56	48	36	25	1.1	1.4	. 1.0	1.2
Savage	100	100	99	98	99	98	97	93	13	36	43	33	0.1	0.7	1.1	2.3
Seneca	100	99	90	97	95	91	94	93	16	27	16	33	0.8	2.4	0.9	2.3
Stillwater	99	9 9	100	98	96	90	99	95	42	32	37	33	1.7	3.2	0.2	1.6

SUMMARY OF ADMINISTRATIVE GOAL ATTAINMENT

Administration and Management (001) Goal Attainment

	NPDES Cor	npliance, %	Seve	rity, %
<u>Plant(s)</u>	Goal	Actual	<u>Goal</u>	<u>Actual</u>
METROPOLITAN	97	100	40	36
ALL OTHERS	96	98	34	28

Operations Administration (029) Goal Attainment

	NPDES Cor	mpliance, %	Freque	ency, %	Severity, %		
<u>Plant(s)</u>	Goal	<u>Actual</u>	Goal	<u>Actual</u>	Goal	Actual	
METROPOLITAN	97	100	90	93	40	36	
ALL OTHERS	96	98	90	94	34	28	

Process Assurance (030) Goal Attainment

	NPDES	Compliance, %
<u>Plant(s)</u>	<u>Goal</u>	Actual
ALL	97	98

4.0 INCINERATOR EMISSION QUALITY

Sludge generated at Commission Treatment Plants is disposed of by either digestion, landspreading, or incineration. Much of the sludge generated at the Metropolitan and Seneca Treatment Plants is incinerated, with the ash landfilled. When incineration is used as a sludge disposal method, emissions from the incineration process are subject to limitations. The purpose of these limitations is to prevent deterioration of existing ambient air quality. Incinerator emission limitations or standards are contained in MPCA's Air Quality Rules and Regulations.

4.1 Emission Standards

APC-9 of MPCA's Air Quality Rules and Regulations deals with the control of odors by limiting odor emission rates from defined odor sources and by establishing odor standards for ambient air based upon local zoning.

Odor standards are expressed as odor concentration units. The odor concentration unit is defined as the number of standard cubic feet of odor free air needed to dilute each cubic foot of contaminated air to a point where at least 50 percent of the individuals comprising the odor test panel do not detect an odor in the diluted mixture.

An odor source as defined in APC-9 includes, but is not limited to, any stack, chimney, vent, window, opening, lagoon, basin, pond, open tank, or any organic or inorganic discharge and or application which emits odorous gas, gases, or particulates.

The odor emission rate is the product of the number of standard cubic feet per minute of air or other gases emitted from a suspected odor pollution source and the number of odor concentration units determined for that source.

The following odor limitations are contained in APC-9:

- Sources emitting odors from well defined stacks, 50 feet or more above grade elevation, and with adequate dispersion characteristics, as determined by the Agency, shall not emit odors greater than 150 odor concentration units.
- 2. Sources emitting odors of less than 50 feet elevation above grade or otherwise failing to create good dispersion conditions, as determined by the Agency, shall not emit more than 25 odor concentration units.
- 3. No odor source shall have an odor emission rate in excess of 1,000,000 odor concentration units per minute.
APC 28 of MPCA's Air Quality Rules and Regulations sets standards for particulate matter and opacity. These standards apply to emissions from both new and existing sewage sludge incinerators. Incinerators operating at the Metropolitan and Seneca Plants, during 1982, fall into the existing sludge incinerator category. Portions of APC 28, dealing with existing sewage sludge incinerators, state that no owner or operator of an existing sewage sludge incinerator shall cause to be discharged into the atmosphere from the sewage sludge incinerator any gases which exhibit greater than 20 percent opacity and which contain particulate matter in excess of the concentrations shown in Table 4-1.

TABLE 4-1

EMISSION STANDARDS FOR EXISTING SEWAGE SLUDGE INCINERATOR, APC-28

Incinerator Burning	Particulate Emission Standard	Percent	Opacity
Capacity (1b/hour)	grain/dscf corrected to 12% CO2	Average	Maximum*
200	0.3	20	40
200-2000	0.2	20	40
>2000	0.1	20	40

*A maximum of 40 percent opacity is permissible for four minutes in any 60 minute period.

Burning capacity is defined as the manufacturer's or designer's maximum rate, or such other rate that is considered good engineering practice.

APC 31 of MPCA's Air Quality Rules and Regulations sets standards for mercury emissions. This regulation states that no owner or operator of a sludge incineration and drying plant shall cause to be discharged into the atmosphere from such plant more than 3,200 grams of mercury per 24 hour period.

During the latter part of 1981, permits were issued by MPCA to the Commission for the operation of sludge incinerators at the Metropolitan and Seneca Plants. In September, 1982, installation of a scrubber system was completed on the Scum Incinerator at the Metropolitan Plant.

Emission limitations contained in operating permits and state air quality regulations are summarized in Table 4-2. Presently, standards listed in Table 4-2 apply to Incinerators 1-4 in Filtration and Incineration Building No. 1, and the Scum Incinerator at the Metropolitan Plant and Incinerators 1 and 2 in the Solids Processing Building at the Seneca Plant.

TABLE 4-2

SUMMARY OF EXISTING INCINERATOR EMISSION STANDARDS FOR THE METROPOLITAN AND SENECA PLANTS

Parameter	Metrop	olitan Plant	Seneca
	F & I No. 1	Scum Incinerator**	Plant
Particulate Matter, grain/dscf at 12% CO2	0.1 20/40*	0.2	0.2 20/40*
Gas Odor Content, Odor Concentration Units	25	25	150
units/min.	ן א 106	1 X 106	1 X 106
Mercury emission rate, grams/24 hour	3200		3200

* Average opacity standard is 20 percent; except that a maximum of 40 percent opacity is permissible for four minutes in any 60 minute period.

**Emissions from the Scum Incinerator are derived from APC-7 of MPCA's Air Quality Rules and Regulations which deals with refuse incineration.

4.2 Summary of 1982 Air Emissions

During 1982, stack gases from incinerators at the Metropolitan and Seneca Plants were sampled and analyzed for particulate matter, opacity, odors, and mercury. Tables 4-3 and 4-4 present summaries of 1982 opacity test results for Filtration and Incineration Building No. 1 and the Scum Incinerator at the Metropolitan Plant, and the Seneca Plant Solids Processing Building. Figure 4-1 illustrates that the percentage of opacity tests meeting standards, for Filtration and Incineration Building No. 1 at the Metropolitan Plant, has increased to 92 percent in 1982 and that the percentage of opacity tests meeting standards, for the Solids Processing Building at the Seneca Plant, has increased from approximately 40 percent in 1978 to 76 percent in 1982. The percentage of opacity tests meeting standards for the Scum Incinerator at the Metropolitan plant was 60 percent during 1982. Opacity failures of the Scum Incinerator are due to the operation of the incinerator/scrubber equipment in various experimental modes during 1982.

Table 4-5 summarizes results of particulate testing conducted at the Metropolitan and Seneca Plants during 1982. Annual average particulate emission from the Filtration and Incineration Building No. 1 at the Metropolitan Plant was 0.074 g/dscf. Annual average particulate emission from the Scum Incinerator at the Metropolitan Plant was 0.237 g/dscf. Annual average particulate emission at the Seneca Plant was 0.200 g/dscf.

Tests results from odor monitoring of incinerator stack discharge at the Seneca Plant are presented in Table 4-6 and show that the Seneca Plant was in compliance with MPCA standards while the Metropolitan Plant failed to meet MPCA odor emission standards. Mercury emission testing conducted during 1982 show that both the Metropolitan and Seneca Plants met standards set forth in APC 31. Annual average mercury emissions were 137 gm/24 hr. at the Seneca Plant and 452 gm/24 hr. at the Metropolitan Plant.

Incinerators in Filtration and Incineration Building No. 2 at the Metropolitan Plant remained inactive during 1982 as incinerator and scrubber renovation continued. Incinerators in Filtration and Incineration Building No. 1 at the Metropolitan Plant were shutdown in late September of 1982 and all sludge generated at the Metropolitan Plant was disposed of by land application or composting.

TABLE 4-3

SUMMARY OF OPACITY MEASUREMENTS METROPOLITAN PLANT FILTRATION AND INCINERATION BUILDING NO. 1 AND SCUM INCINERATOR BUILDING 1982

	· · · · · · · · · · · · · · · · · · ·	.				-1 0	
· · · · · · · · · · · · · · · · · · ·		L	Frank	N	Perce	nt Upacity	Cours Too
Maath	Data		STRCK	NO.	1 1	(Scubber ByPage)	Scum Inc.
Month	vace	┟─╧──		<u> </u>	4	(Srubber Byrass)	onriorud .
7	<u>د</u>	100		*		*	*
January	12	109	14			*	
	12	7	14	н. ж		· · · · ·	
	20	148	5 ×	10		· · ·	× ·
	20	0	*	10		E 7	×
redruary	<u>1</u>))	<u> </u>
. '	2			17		*	
	4	Ē		12			
	10	2					Ĩ
	12			6		.	*
	16	2		6	8		
	26	2	*	6		*	*
March	2	*				*	
	19	Ξ	zua	.		* `	
	29	-				48	
	20		*	*	6	*	.*
Аргіі	19	6		*	6	*	
	26	Ĩ	6			т.	*
· · · · · · · · · · · · · · · · · · ·	21	2	*		<u> </u>	*	
May	4	1 1 1	10			*	× 10-
	10			- <u>-</u> -		H	169
· · · · ·	10		0			· •	
· · ·	14	1.0	~		0	*	* *
	20	1U	9.		6	*	*
	21	*	*	*		*	*
		*	10	*		*	*
June	9	8	*	*	*	*	*
	14		*	*		*	*
	17	4	*	*	1.2	*	*
•	25	*	*	*		*	*
	28	0	*	*	3	*	<u>*</u>
July	6	U	*	*		*	*
•	15	6	7	*		*	*
	22	6	5	*	6	#	
	30	2	1	*	*	*	*
August	2	*	*	*	6	*	
	4			7	1 1	29	*
	6	6	U			· · · · · ·	44
· · · · · · · · ·	U IU	l î	U U			*	
					2 -	*	*
	16		U		ן א	*	
	23		1	*		*	
· .	24	*	*	*		. 🗕	* '
	26	*	2	*	<u> </u>	*	*
September	2	2	1		8	*	*
	8	2	L T	*		#	
	10 .	*	*		6	*	
			4			· · · · · · · · · · · · · · · · · · ·	
	29	* '	*	×	₩.	*	10
Uctober		. .		~			
Ni		Incir	ierator	rs Shui	t Down	·	× ×
Navender		. .	· · · ·				
	ļ	Incir	nerato	rs Shui	t Down		*
December	6						6
	21	<u>i aa</u>	1 60		+		
lotal lest Measurements	ļ	28	20	L 6.	1 18	5	
Number of Tests Passing Std.		26	119	6	18	l Ö	3
Number of Tests Failing Std.		2				. 3	2
Percent of Tests Passing Std.		93	95	100	100	0	60

(a)Exceed 40 percent opacity longer than 4 minutes in 60 minute period - Fails to meet APC 28 Limits.

TABLE 4-4

SUMMARY OF OPACITY MEASUREMENTS SENECA PLANT 1982

Month	Date	Percent Opacity
January	11 19 28	5 8 17a
February	1	14
March	3 9 19	19 6 21
	22 31	15a 35
April	7 15 23 27	8 18 57 5
May	4 10 17	7 16 25
June	1 9 18 22	6 18 7 6
July	30 6 20 26	8 13 7 8
August	2 13 17	6 29 23
September	3 14 20	5 8 5
October	4 13 18	3 11 7
November	*	*
December	*	*
Total Test Measurements Number of Tests Passing Std. Number of Tests Failing Std.		34 26 8
Percent of Tests Passing Std.		/0

(a)Exceed 40 percent opacity longer than 4 minutes in 60 minute period - Fails to meet APC 28 Limits.

FIGURE 4-1

SUMMARY OF OPACITY TESTING

METROPOLITAN PLANT F & I NO. 1 BUILDING SENECA PLANT SOLIDS PROCESSING BUILDING 1978-1982

TABLE 4-5

SUMMARY OF 1982 PARTICULATE TESTING METROPOLITAN AND SENECA PLANTS

A. Metropolitan Plant, Filtration and Incineration Building No. 1

Date	Stack ID	Burning Rate % of Design Capacity	Stack Gas Flow Rate, SCFM	Particulate grains/dscf at 12% CO2
2/18	4-3	85	13,646	.0909**
4/6	4-1	91	12,934	.0749**
4/30	4-4	87	11,919	.1210*
5/11	4-2	83	14.529	.0716**
5/18	4-1	81	12,667	.0440**
7/7	4-4	<u>75</u>	14,204	.0424*
	Average	84	13.316	.0741

B. Metropolitan Plant, Scum Incinerator

		Burning Rate %	Stack Gas Flow	Particulate
<u>Date</u>	<u>Stack ID</u>	of Design Capacity	Rate, SCFM	grains/dscf at 12% CO2
10/19	Scrubber Stad	.k 67	5,160	.3283*
10/26	Scrubber Stad	ck 55	2,914	.3305*
11/5	Scrubber Stad	:k 48	3,603	.2295*
11/18	Scrubber Stad	ck 48	3,118	.2282*
11/24	Scrubber Stad	:k 48	3,010	.2295*
12/1	Scrubber Stad	:k 49	2,321	.1766*
12/6	Scrubber Stad	ck 48	2,843	.2073*
12/15	Scrubber Stad	ck 40	2,662	,1802*
12/21	Scrubber Sta	ck <u>43</u>	2,990	.2300**
	Average	50	3,180	.2377

C. Seneca Plant, Solids Processing Building

Date	<u>Stack_ID</u>	Burning Rate % of Design Capacity	Stack Gas Flow Rate, SCFM	Particulate grains/dscf at 12% CO2
3/11	Common	64	21,980	.1535*
3/25	Common	79	21,769	.1981**
5/28	Common	109	18,306	.2452**
6/11	Common	59	12,977	.3332**
6/23	Common	57	13,310	.1874**
6/29	Common	55	12,061	.1366**
10/7	Common	<u>53</u>	11,003	<u>.1493</u> *
	Average	68	15,915	.2005

* Calculated using CO2 produced by sludge only.

**Calculated using CO2 produced by sludge and fuel oil.

36

TABLE 4-6

<u>Plant</u>	<u>Date</u>	<u>Stack ID</u>	Stack Gas Odor(1) Concentration, 0.U.	Stack Odor Emission ⁽²⁾ Rate, O.U./Min.
Seneca	8/5/82	Common	34	1,000,000
Metropolitan F & I No. 1	7/27 7/27 7/27	4-1 4-2 4-4	107 111 127	2,000,000 2,100,000 2,300,000

ODOR MONITORING RESULTS OF INCINERATOR STACK DISCHARGE 1982

- (1) MPCA Standard for Seneca Plant = 150 0.U. MPCA Standard for Metropolitan Plant = 25 0.U.
- (2) MPCA Standard for stack odor emission rate at Seneca and Metropolitan Plants is 1,000,000 0.U./Min.

ı

5.0 SLUDGE, MANAGEMENT

Each of the Commission's treatment plants produces sludge as a result of wastewater treatment. At Medina, sludge settles in treatment ponds, and although periodic removal will ultimately be required, formal treatment is not provided. At all other plants, sludge treatment may include thickening, digestion, chemical conditioning, and dewatering. Final disposal of sludge is accomplished either by landspreading or incineration.

5.1 Sludge Processing

Table 5-1 is a summary of sludge processing and disposal methods utilized at Commission Plants. As shown in Table 5-1, most plants provide some form of sludge thickening, either in primary tanks or in independent thickener units. At the Metropolitan and Seneca Plants, gravity thickening is provided for primary sludge, while air flotation thickening is provided for secondary or waste activated sludge. At the Empire and Cottage Grove Plants, gravity thickening is provided for combined sludge.

Most of the smaller outlying plants provide sludge digestion to reduce and stabilize sludge solids. One exception is the Rosemount Plant, where chemical sludge produced by physical-chemical treatment of wastewater, is concentrated and transported to the Metropolitan Plant for disposal.

5.2 Sludge Disposal

During 1982, 104,716 dry tons of sludge were processed at Commission plants. A summary of sludge quantities processed at each of the Commission plants is shown in Table 5-2.

Sludge disposal methods presently utilized by the Commission include: (1) transporting of sludge to the Blue Lake, Seneca, or Metropolitan Plants for further processing; (2) landspreading; and (3) incineration.

Digested sludge from the Chaska Plant is transported to the Blue Lake Plant. Sludge from the Blue Lake Plant is transported by tanker truck to either the Seneca or Metropolitan Plant. Digested sludges from the Anoka, Bayport, Cottage Grove, Hastings, Maple Plain, and Stillwater Plants and undigested sludge from the Rosemount Plant are transported through the interceptors to the Metropolitan Plant for further processing. Digested sludge from the Hastings, Cottage Grove, Stillwater, Maple Plain and Savage Plants is also landspread. Table 5-3 lists the annual quantities of sludge transported from each of the outlying plants, the interim disposal location, and the final disposal location.

SUMMARY OF SLUDGE PROCESSING 1982

TREATMENT PLANT	THICKENING	DICESTION	CONDITIONING	DEWATERING	SLUDGE DISPOSAL METHOD
Anoka	In Primaries	Anaerobic	None	None	(1)
Bayport	None	Aerobic	None	None	(1)
Blue Lake	In Primaries	None	None	None	(1) (2)
Chaska	None	Aerobic	None	None	(3)
Cottage Grove	Gravity	Anaerobic	Non e	None	(1) (4)
Empire	Gravity	Anaerobic	Polymer	Centrifuging	(4)
Hastings	In Primaries	Anaerobic	None	None	(1) (4)
Maple Plain	In Primaries	Anaerobic	None	None	(1) (4)
Medina	None	None	Non e	None	
Metropolitan	Gravity (Primary) Air Flotation (Secondary)	Non e Non e	Chemical Chemical Thermel	Vacuum Filters/Roll Presses Vacuum Filters Plate & Frame Presses	(4) (5) (4) (5) (4) (5)
Rosemount	In Holding Tank	None	None	None	(1)
Savage	In Holding Tank	Anaerobic	None	None	(2) (4)
Seneca	Air Flotation (Secondary)	None	Chemical	Vacuum Filters	(5)
Stillwater	In Primaries	Anaerobic	Non e	None	(1) (4)
	METHODS +				

SLUDGE DISPUSAL METHODS:

(1) Transported to Metropolitan Plant for further processing

(2) Transported to Seneca Plant for further processing

(3) Transported to Blue Lake Plant for further processing

(4) Landspreading

(5) Incineration

Treatment Plant	<u>Annual S</u> <u>MG</u>	ludge Production Dry Tons	Sludge <u>Disposal Method</u>
Anoka	3,99	295	(1)
Bayport	1.24	112	(1)
Blue Lake	37.12	7,594	(1) (2)
Chaska	2.64	175	(3)
Cottage Grove	3.48	234	(1) (4)
Empire		544	(4)
Hastings	2.76	350	(1) (4)
Maple Plain	0.06	15	(1) (4)
Medina			
Metropolitan a) Filtration and Incineration Bldg. 1, Vacuum Filters b) Filtration and Incineration Bldg. 2, Vaccum Filters c) Filter Presses d) Roll Presses		28,359 33,006 14,862 5,540	(4) (5) (4) (5) (4) (5) (4) (5)
Rosemount	1.45	618	(1)
Savage	0.25	47	(2) (4)
Seneca	1910 at as 19	12,402	(5)
Stillwater	5.05	563	(1) (4)

SUMMARY OF SLUDGE PRODUCTION AND DISPOSAL METHODS 1982

(1) Transported to Metropolitan for further processing.
(2) Transported to Seneca Plant for further processing.
(3) Transported to Blue Lake Plant for further processing.

(4) Landspreading

(5) Incineration

Annual sludge production includes sludge transported from other plants for further processing and chemicals added for sludge conditioning where applicable. NOTE:

SUMMARY OF 1982 SLUDGE HAULING

Treatment Plant	Interim Disposal Location	Final Disposal	Amount Hauled During 1982 (MG)
Anoka	Coon Rapids Interceptor	Metropolitan Plant	3.99
Bayport .	Oakdale Interceptor	Metropolitan Plant	1.24
Blue Lake	Seneca Plant	Seneca Plant	12.21
	Sru and commercial interceptor	Metropolitan Plant	24.92
Chaska	Blue Lake Plant	Seneca Plant	2,64
		Metropolitan Plant	
Cottage Grove	U of M Experimental Ag. Station	Landspread	0.51
	Oakdale Interceptor	Metropolitan Plant	0.22
	Farm Land	Landspread	0.48
	So. St. Paul Interceptor	Metropolitan Plant	2.11
Hastings	U of M Experimental Ag. Station	Landspread	0.37
	Farm Land	Landspread	1.17
	Oakdale Interceptor	Metropolitan Plant	0.02
	3rd and Commercial Interceptor	Metropolitan Plant	0.07
	South St. Paul Interceptor	Metropolitan Plant	1.12
Maple Plain	Sludge Drying Beds	Landspread	0.008
	Orono Interceptor	Blue Lake/Metropolitan	0.020
	Plymouth Interceptor	Blue Lake/Metropolitan	0.032
Rosemount	3rd and Commerical Interceptor	Metropolitan Plant	1.45
Savage	Farm Land	Landspread	0.15
-	Sludge Drying Beds	Landspread	0.04
	Seneca Plant	Seneca Plant	0.04
	3rd and Commercial Interceptor	Metropolitan Plant	0.02
Stillwater	Oakdale Interceptor	Metropolitan Plant	4.67
· · · · · · · · · · · · · · · · · · ·	Farm Land	Landspreading	0.38

42

At the Empire, Metropolitan, and Seneca Plants, sludge conditioning and dewatering are provided. At the Empire Plant, dewatered sludge is landspread; at the Metropolitan Plant dewatered sludge is either incinerated or landspread; at the Seneca Plant, dewatered sludge is incinerated.

5.3 Sludge Quality

During 1982, digested sludge from the outlying plants and dewatered sludge or sludge cake from the Metropolitan and Seneca Plants were analyzed routinely for solids, nutrients, and metals. Results of analyses are summarized in Table 5-4. Total solids are shown as percent; volatile solids are shown as percent of total solids; nutrients (TKN, NH3-N, P) are shown as percent (dry weight basis); and metals are shown as mg/kg (dry weight basis). A more extensive summary of the quantity and quality of sludges from the various plants is listed in the Appendix of this report.

5.4 Landspreading

As shown in Tables 5-2 and 5-3, a portion of sludge generated at Commission treatment plants is landspread as a fertilizer supplement and soil conditioner. Prior to 1978, landspreading was limited to utilizing sludges, generated at the smaller treatment plants for application to adjacent farm land. All other sludges were ultimately dewatered and disposed of by incineration.

In 1978, a sludge application program was initiated at the Metropolitan Plant. Because solids processing facilities at the plant were limiting the removal of solids from the sewage, the plant could not consistently meet NPDES discharge limitations. The land application program was developed as a means of disposing sludge solids generated in excess of the existing capacity of sludge handling facilities. This land application program was continued throughout 1982, since renovation and construction of additional sludge handling facilities was not completed.

At the Metropolitan Plant, sludges are conditioned and dewatered to produce sludge cake. Two types of sludge cake are produced: filter cake and press cake. The filter cake is produced by treating sludge with chemicals and removing water with a vacuum filter. The press cake is produced by thermally conditioning the sludge and dewatering the resulting material in a press. Both chemical addition and heat treatment have been shown to reduce pathogenic organisms to an acceptable level.

Since the initiation of landspreading as a disposal method at the Metropolitan Plant, most of the dewatered sludge that is suitable for soil incorporation has been landspread. Table 5-5 presents a summary of sludge quantities disposed of by the landspreading program since 1978.

|--|

		Total	Volatile													
		Solids	Solids	Cu	Ni	РЬ	Zn	Cợ	Cr	Hg		NH 3-N	KJN	ĸ	P	PCB
Freatment Plant	:	şé	ě	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	pH	*	%	%	*	mg/kg
Anoka	Avg.	1.78	63.6	1,542	281	579	1,730	10.1	1,934	4.9	7.4	5.48	10.3	0.49	3.17	0.8
	Range			1.343-	221-	432-	1.427-	6.7-	1.404-	2.7-	7.0-7.9	3.1-	6.9-	0.3-	2.6-	0.7-
	- 1			2.087	408	951	2.427	15.5	2.767	7.8		7.8	14.9	0.7	3.9	0.8
Bavport	Ava.	2.15	61.4	250	25	145	750	7.2	55	4.5	6.7	0.12	4.15	0.25	3.24	0.7
	Range			186-	14-	113-	567-	4.8-	34-	2.8-	6.2-7.1	0.06-1	2.1-1	0.2-1	1.8-1	
				337	- 36	193	1,193	10.9	131	6.9		0.24	5.8	0.3	4.1	
Blue Lake	Ava	4.92	71.9	2,284	62	239	692	4.2	138	4.5	5.8	0.36	4.32	0.29	1.26	1.1
	Rende															
Chaska	Ava.	1.59	65.0	712	40	181	876	7.9	381	5.3	6.5	0.11	4.75	1.05	3.37	0.6
	Ranne			541-	27-	102-	601-	5.4-	164-	1.7-	5.5-7.1	0.04-	1.5-	0.5-	2.5-	0.5-
	itungo			1.240	76	350	1,283	11.5	796	18.1		0.21	6.3	1.4	4.1	0.7
ottane Grove	Avo.	1.63	67.4	492	106	183	1,098	8.8	53	3.9	7.4	4.39	9.42	0.58	2 63	0.3
oolige croit	Ranne			426-	83-	155-1	935-	5.6-	29-	1.9-	7.0-7.8	2.9-	6.8-	n.4-	2.0-	
				571	126	210	1 463	10.8	132	5.9		8.8	13.5	0.9	3.3	
Moire	Avo.	13.2	61.7	1.235	38	225	5.118	11.4	182	5.7	8.0	1.39	6,12	0.18	3.34	1.0
	Rance			1.084-	27-	169-	4.044-	9.0-	140-	3.7-	7.5-8.2	1.1-	5.0-	0.1-	2.8-	
				1.809	54	276	6.000	14.3	264	12.2		3.8	7.7	0.3	4.3	
lastinos	Ava.	3.18	59.5	1.803	31	257	857	4.7	18.454	2.4	7.3	1.93	6.48	0.29	3.02	(0.4
-	Range			888-	22-	166-	255-	3.7-	14.613-	1.1-	7.0-7.6	1.3-	5.3-	0.2-	2.2-	<0.1-
			l l	2.682	42	447	1,143	6.4	22.880	6.8		2.2	8.3	0.4	3.8	0.8
Maple Plain	Avg.	5,94	57.3	1,334	74	703	1,035	8.9	191	8.5	6.5	1.06	6.58	0.25	2.14	0.7
•	Range		ĺ	1,085-	56	689-	736-	7.5-	142-	8.4-	6.0-7.0	0.6-	5.4-	0,1-	1.5-	
	[[1,582	93	717	1,333	10.3	239	8.5		1.5	7.7	0.4	2.7	
Metropolitan																
F&INo.1Ca	ake [27.6	58.8	783	169	314	1,317	33	786	1.5	11.1	.04	2.7	0.08	1.1	1.0
F&INo, 2Ce	ke j	25.5	52.3	894	180	325	1,428	41	919	2.0		.06	3.2	0.10	1.4	0.9
Plate & Frame	Press Cake	47.8	64 . 6	1,574	222	413	2,745	89	1,758	2.4		.09	3.4	0.09	2.8	1.7
Roll Press Cak	(e*	25.0	74.3	728	112	197	1,154	26	800	1.8		0.36	2.4	0.12	1.0	0.5
Savage	Avg.	4.88	57.0	1,326	48	387	1,094	9.0	151	65.1	7.1	0.97	4,92	0.19	2.10	1.4
	Range			1,132-]	39]	326-	868-	7.8-	119-	7.0-	6.8-7.3	0.6~	3.4-	0.2-	1.3-	1.3-
	-	(1,604	57	436	1,228	9.8	191	94.1		1.3	5.8	0.3	2.6	1.6
Seneca	Avg.	23.5	46.3	940	141	299	542 ·	9.5	301	2.4		.06	3.0	.08	1.3	0.6
	Range			602-	49-	179-	387-	6.4-	182-]	1.6-		.05-	2.2-	.08-	[1,1-[0.2-
			[1,219	481	472	1,009	12.7	529	3.9		.08	3.5	0.1	1.5	1.1
Stillwater	Avg.	2.68	51.4	688	33	180	1,478	8.0	128	4.3	7.2	2.81	6.63	0.33	3.90	0.2
	Range	(ſ	479-	21-	120-	1,040-	5.9-	7-	1.7-	7.0-7.5	1.7-	4.0-	0.2-	3.1-	
				1,441	90	378	3,604	18.0	246	22.1		6.1	14.1	0.8	6.9	

1982 SLUDGE QUALITY SUMMARY

*Data represents operation during Nov. and Dec., 1982.

44

SUMMARY OF QUANTITIES OF METROPOLITAN PLANT DEWATERED SLUDGE DISPOSED OF BY LANDSPREADING PROGRAM

<u>Year</u>	Agricultural Land (wet tons)	Other (wet tons)	Total wet tons disposedby landspreading
1978	13,700	7094ED	13,700
1979	18,700	15,500	34,200
1980	75,600	29,600	105,200
1981	189,600	9,900	199,500
1982	184,600	11,145	195,745

In addition to disposing of sludge cake directly on land, portions of cake are composted prior to land application. Composting provides for additional destruction of pathogenic organisms and organic matter.

All land application of sludge is done under permits from MPCA. Each permit is granted for an individual parcel of land and specifies the maximum sludge application rate per acre. These application rates are based upon maximum allowable application rates of the various chemical constituents of the sludge (NH3, Cd, etc.). All sludge is analyzed before applications to ensure meeting conditions of each permit.

During 1982, approximately 185,000 wet tons of dewatered sludge was applied to 180 permitted sites. The permitted sites totaled approximately 5,700 acres and corn was the principal crop grown on the sludge amended land. An additional 11,000 wet tons of dewatered sludge were composted during 1982. The composting was accomplished using the static aerated pile method with wood chips as a bulking agent. Composted dewatered sludge was used primarily to establish turf grasses on public areas such as parks and cemetaries.

In addition to landspreading of dewatered sludge from the Metropolitan Plant, approximately three million gallons of liquid sludge generated at the Cottage Grove, Hastings, Savage, and Stillwater Plants were applied to private farm lands or utilized at the University of Minnesota Experimental Agricultural Station. Approximately 4,100 wet tons of digested dewatered sludge from the Empire Plant were applied to adjacent farm land owned by the Commission.

6.0 INDIVIDUAL TREATMENT PLANT REPORTS

This section contains the individual treatment plant reports for 1982. For each plant report there is an introduction briefly describing the background of the plant, its design basis, 1982 performance and activities, and a statement regarding the future of the plant. The introduction is followed by a listing of 1982 unit process loadings and a liquid and solids flow diagram of the treatment process. In addition, a graphical presentation of flows for individual months of 1982 and annual average flows for 1971-1982 is included. Monthly flow data are shown as a vertical bar corresponding to the range of flow for that month with the top cross bar representing the maximum flow and the bottom cross bar the minimum flow. A solid line connects the vertical bars and is drawn to the average wastewater flow for that month. Flow data are followed by 1982 monthly influent and effluent summaries. These tables contain monthly and annual average data on virtually all of the parameters for which the influent and effluent of that plant are analyzed.

Graphs of BOD and TSS for 1982 show a vertical bar which encompasses the maximum and minimum parameter range for that month. The solid line connects the monthly averages. Fecal coliform data are also presented graphically with the 1971-1982 annual averages (arithmetic average of monthly geometric means) shown on one graph and the 1982 monthly geometric means shown on another graph. Finally, plots of effluent BOD and TSS are shown illustrating the percent of the time the effluent concentrations were less than or equal to a given value. On these graphs, data from 1974-1981 are compared to data obtained during 1982.

ANOKA WASTEWATER TREATMENT PLANT

Plant History and Description

The Anoka Plant was designed by Toltz, King, DuVall, Anderson and Associates and built in two stages. The original plant was constructed in 1954-55, with a design capacity of 1.4 mgd. The plant was expanded in 1969 to its present design capacity of 2.46 mgd. The Anoka Plant serves the communities of Anoka, Champlin, and Ramsey in Service Area No. 3.

Liquid treatment consists of screening, grit removal, influent pumping, primary sedimentation, primary effluent pumping, conventional activated sludge aeration, final clarification, chlorination, and discharge to the Mississippi River.

Solids processing consists of combined thickening in primary tanks, anaerobic digestion, and sludge hauling for disposal in the Metropolitan Plant Interceptor System.

The plant is presently operating at about 85 percent of its rated capacity and provides good BOD and TSS removal. Significant flow increases are anticipated in the next two years which may exceed the capacity of certain process units. These additional flow sources are from the construction of the Anoka Interceptor and a Champlin Station expansion. The plant is subject to secondary treatment limits and additional limits on heavy metals and cyanide.

Performance

Plant flow averaged 2.14 mgd in 1982, up slightly from 2.01 mgd in 1981. Average plant effluent quality was 12 mg/L BOD and 8 mg/L TSS. Plant performance was good throughout the year, although two NPDES Permit violations occurred due to failure to comply with weekly effluent fecal coliform limitations. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/L

		50% o	f Time	•		75% o	f Time	:	90% of Time				
	1979	1980	1981	1982	1979	1980	1981	1982	1979	1980	1981	1982	
BOD	12	12	15	10	16	17	20	14	22	22	26	19	
TSS	10	10	12	7	15	15	18	10	21	20	24	15	

Future

The plant will continue to serve Service Area No. 3 until the late 1980's, when it is scheduled for phase-out, with flow transported to the Metropolitan Plant. Plant phase-out is contingent upon completion of the Champlin-Anoka-Brooklyn Park (CAB) Interceptor. In the interim period prior to phase-out no major plant improvements are scheduled. Limited capital improvements may be necessary to ensure adequate capacity in the interim.

ANOKA PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual <u>Average</u>	Maximum Month
Wastewater Flow, MGD BOD Loading, 1b/day TSS Loading, 1b/day COD Loading, 1b/day Sludge Production, 1b/day	2.14 3,980 2,770 6,350 1,500	2.34 4,500 3,160 7,120 1,970
Grit Removal		
Overflow Rate, gpd/Sq. Ft.	41,150	45,000
Primary Sedimentation		
Detention Time, Hr. Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	2.0 7,980 715	1.9 8,730 780
Aeration Tanks		
Detention Time, Hr. BOD Loading, 1b/Day/1000 Cu. Ft.	7.9 43	7.2 48
Final Sedimentation	,	
Detention Time, Hr. Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	3.6 6,560 500	3.3 7,180 550
<u>Chlorination</u>	ч.	
Contact Time, Minutes Chlorine Use, lb/Day	37 123	34 146
Anaerobic Digestion (Primary Digester Only)		
Solids Loading, lb/Cu. Ft./Day Detention Time, Days	0.08 20.0	0.10 15.8
<u>Sludge</u> Transport		
Volume, Gal./Day	10,930	14,040

ANOKA WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

- -

Month	Wastewater Flow, MGD	Temperature °C	780D mg/1	T55 mg/1	pH Range	KJN mg/l	Total-P mg/l	NH3 mg/l	COD mg/1
JANUARY	2.11	14	256	157	7.6-8.1	38.6	7.9	19.7	345
FEBRUAR Y	2.15	14	228	142	7.7-8.1	37.5	6.8	20.1	357
MARCH	2.30	14	205	144	7.7-8.1	32.5	6.4	18.9	348
APRIL	2.25	14	238	139	7.7-8.2	34.4	5,8	19.4	374
MAY	2.34	15	209	158	7.7-8.2	36.0	7.0	19.5	365
	2.27	17	176	128	7.6-8.2	32.0	5,9	15.6	31.2
JULY	2.12	20	195	122	7.7-8.1	34.8	5.5	18.0	304
AUGUST	2.07	21	219	150	7.7- <u>8.2</u>	34.4	6.2	16.4	324
SEPTEMBER	2.04	20	234	172	7.5-8.3	42.4	7.5	19.6	362
OCTOBER	2.02	19		170	7.2-8.2	43.9	7.1	21.0	390
NOVEMBER	2.05	17	245	185	7.0-8.4	39.0	6.4	22.8	389
DECEMBER	1.98	15	226		7.0-8.3	49.4	9.2	32.2	399
1982 AVERAGE	2.14	17	223	154	7.0-8.4	37.9	6.8	20.3	356
1981 AVERAGE	2.01	18	211	152	7.5-8.7				362

MONTHLY SUMMARY OF INFLUENT QUALITY

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: Angka_____

Month	TBOD mg/1	C80D mg/1	COD mg/l	TSS mg/1	FECAL COLI Geo Mean no/100 ml	TUR8 NTU	KJN mg∕l	NH3 mg/l	NO2 mg/1	NO3. mg/1	Total P mg/l	CI2 Used 1bs	Cl2 Res mg/l	00 mg/1	pH Range	Remo BOD	val TSS
NPDES LIMIT	25	25		30	200 _	25_									6.5-8.5		
JANUARY	18	13	59	8	43	5	23.4	16.0	0.10	0.19	4.1	129	6.9	1,3	7.3-7.5	95	95
FEBRUARY	11	10	67	6	17	4	23.3	<u>16.7</u>	0.07	0.44	3.4	125	6.0	1.2	7.3-7.6	96	96
MARCH	11	10	71	5	131	4	22.6	16.6	0,09	0.16	3.7	108	5,0	1.3	7.3-7.6	95	97
APRIL	14	12	83	8	21	6	25.0	17.2	0.07	0.09	3.5	<u>10</u> 8	5.9	1.3_	7.3-7.6	95	94
MAY	12	10	67	8	71	6	22.4	<u>16.</u> 7	0.16	0.12	3.7	122	5.6	1.1	7.3-7.6	95	95
JUNE	14	11	75	7	33	5	20.2	<u>1</u> 3.9	0.75	0.15	3.8	134	4.7	0.8	7.2-7.7	94	95
	17	12	65	10	15	7_	22.0	15.0	1.05	0,35	3.5	119	5.3	1.0	7.2-7.5	94	92
AUGUST	11	9	57	5	10	5	16.8	10.6	1.27	0,48	3.5	146	5.2	1.2	7.3-7.5	96	96
SEPTEMBER	13	_ 10	58	5	54	4	16.3	10.1	1.68	0.56	3.7	138	5.1	1.1	7.3-7.6	96	97
OCTOBER	15	13	72	8	30	5	27.1	<u>16.2</u>	0.58	0.68	3.9	118	5.7	1.1	7.2-7.6	95	95
NOVEMBER	19	19	84	17	115_	e	27.4	20.2	0.39	0.11	4.1	99	5.6	1.1	7.3-7.6	93	91
DECEMBER	14	12	67	11	37	6_	29.2	19.9	0.71	0.24	3.8	125	5.3	1.2	7.2-7.5	95	94
1982 AVG.	14	12	<u>6</u> 9	8	48	5_	23.0	<u>15.8</u>	0.58	0,30	3.7	123	5.5	1.1	7.2-7.7	95	95
1981 AVG.	16		92	14	36	6	18.6	<u>1</u> 4.4	1.05	0.39	3.4	123	6.0	1.3	7.0-7.8	92	91

55 .

MONTH	Cu mg/l	Cr mg/l	Zn mg/l	Pb mg/l	Cd mg/l	Hg ug/l	CN mg/l	As uq/l	Sn mg∕1	Ni mg/l	Phenal ug/l	Fe mg/1	PCB ug/1
NPDES Limit	0.30	0.40	0.50	0.05			0.500						
January	<0.02	<0.05	0.07	<0.05			<0.024						
February	<0.03	<0.07	0.08	<0.05			0.043						
March	0.02	<0.05	0.06	<0.05			0.049				-		
April	<0.02	<0.05	0.10	<0.05		<u> </u>	0.071						
May	0,03	<0.05	0.09	<0.05			0.161						
June	0.03	<0.05	0.09	<0.05			0.206						
July	0.04	<0.05	0.08	<0.05			<0.227						
August	0.04	<0.05	0.07	<0.05			0.187						
September	0.03	<0.05	0.13	<0.05		• .	0.115	1997 - A.					
October	0.04	<0.06	0.06	<0.05			0.198						
November	0.04	<0.05	0.12	<0.05			0.308						· .
December	0.04	<0.05	0.14	<0.05			0.144						
1982 Avg.	<0.03	<0.05	0.09	<0.05		· · · · · · · · · · · · · · · · · · ·	<0.144						

1982 EFFLUENT DATA TREATMENT PLANT Anoka

BAYPORT WASTEWATER TREATMENT PLANT

Plant History and Description

The original Bayport Wastewater Treatment Plant was built in 1939, consisting of a primary clarifier, two mechanical aeration tanks, final clarifier, chlorine contact tank, heated anaerobic digester, drying beds, and a control and pumping building. In 1956, the digester was converted to external heating, and a sludge recirculating pump added. In 1958, the plant was expanded by addition of a chlorine contact tank, an aeration tank, a final settling tank, an anaerobic digester, a barminutor, and a drying bed.

In 1964, extensive plant remodeling and additions, designed by Banister, Short, Elliot, Hendrickson, and Associates were completed. In 1973, chemical feed for phosphorus removal was provided and in 1982, mechanical screening was replaced by a stationary hydrasieve fine screening mechanism.

Liquid treatment consists of screening, influent pumping, contact stabilization, activated sludge aeration, alum addition for phosphorus removal, final clarification, chlorination, and discharge to Lake St. Croix (the St. Croix River).

Solids processing consists of aerobic digestion and sludge hauling to the Metropolitan Plant Interceptor System.

The Bayport Plant is presently operating at about 80 percent of its design capacity, and is subject to secondary treatment limits and a phosphorus limit of 1 mg/L.

Performance

Plant flow averaged 0.52 mgd in 1982, slightly higher than 0.47 mgd in 1981. Average plant effluent quality was 8 mg/L BOD, 8 mg/L TSS, and 0.5 mg/l P. Plant performance was excellent throughout the year, with no NPDES Permit violations. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/1

		50% o	f Time	-		75% o	f Time		90% of Time				
	1979	1980	1981	1982	1979	1980	1981	1982	1979	1980	1981	1982	
BOD	6	5	7	· 7 ´	8	8	. 8	9	11	11	10	13	
TSS	7	7	7	7	10	9	· 9·	. 9	13	11	10	12	

Future

The long-term plan for this plant is to phase it out of service and divert flows to the Stillwater Plant. This is projected to occur in the late 1980's or early 1990's, when the plant is expected to reach its capacity.

BAYPORT PLANT PROCESS LOADINGS 1982

Parameter	Annual Average	Maximum Month
Wastewater Flow, MGD BOD Loading, 1b/day TSS Loading, 1b/day COD Loading, 1b/day	0.52 698 664 1,227	0.65 968 999 1,453
Aeration Basin		
BOD Loading, 1b/Day/1000 Cu. Ft. Alum Feed Rate, 1b/day	21 100	29 133
Final Sedimentation		
Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	4,260 430	5,330 540
<u>Chlorination</u>		
Contact Time, Minutes Chlorine Use, 1b/day	60 29	48 34
Aerobic Digestion	,	
Solid Retention Time, day	31	26
Sludge Transport		
Volume, gpd Mass, lb/day	3,400 610	4,040 749

BAYPORT WASTEWATER TREATMENT PLANT FLOW DIAGRAM

Unit Description

Liquid Phase

- 1.
- 2.
- 3.
- Screening Activated Sludge Sludge Reaeration Chemical Addition Final Sedimentation Chlorination
- 4. 5.
- 6.
- Aerobic Digestion Sand Drying Beds 7.
- 8.
- Land Spread 9.

Solids Phase

Month	Wastewater Flow, MGD	Temperature °C	180D mg/1	TSS mg/l	pH Range	KJN mg/l	Total-P mg/l	NH3 mg/l	COD mg/1
JANUARY	0.48		192	130	6.0-10.0	30.6	5.4	17.4	284
FEBRUARY	0.48	18	192	162	6.4-8.6	28.2	4.8	15.5	331
MARCH	0.47	17	160	136	6.2-9.4	29.2	5.1	17.8	296
APRIL	0.65	17	144	123	5.0-9.2	20.9	4.0	11.3	268
MAY	0.55	20	174	153	6.2-8.6	30.4	5,8	16.5	300
JUNE	0.56	20	158	175	6 .8- 8.8	30.8	6.3	17.1	298
JULY	0.52	23	134	161	6.2-8.6	26.5	5.3	13.8	281
AUGUS T	0.52	23	141	120	6.4-9.8	27.0	5.1	15.3	255
SEPTEMBER	0.48	22	164	132	6.2-8.2	29.7	6.1	16.6	271
OCTOBER	0.52	20	115	155	6.0-8.6	26.4	5.6	14.2	210
NOVEMBER	0.53	19	219	226	6.2-8.8	30.8	6.5	16.3	297
DECEMBER	0.54	18	143	132	6.4-8.4	30.2	6.2	19.1	306
1982 AVERAGE	0.52	20	1 <u>6</u> 1	150	5.0-10.0	28.4	5.5	15.9	283
1981 AVERAGE	0.47	19	184	165	6.0-9.6				316

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: <u>Bayport</u>

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Bayport</u>

Month	TB0D mg/1	C80D mg/1	COD mg/1	TSS mg/l	FECAL COLI Geo Mean no/100 ml	TURB NTU	KĴN mg/1	NH3 mg/1	N02 mg/1	N03 mg/1	Total P mg/1	C12 Used 1bs	C12 Res mg/1	00 mg/1	pH Range	Remo 800	val TSS
NPDES LIMIT	25	25		30	200	25					1.0				6.5-8.5		
JANUARY	17	12	27	8	*	4	7.4	4.7	0.37	_10.64	0.5			4,1	7.0-7.2	94	94
FEBRUARY	14	11	36	13		5	6.3	4,5	0.38	10,26	0.4			3.9	6.9-7.2	95	92
MARCH	9	9	40	9	2	5	6.1	5.0	0.04	11.75	0.5	30	3.6	4.2	6.8-7.1	95	94
APRIL	10	9	41	10	3	5	6.9	3.9	0.11	8.40	0.5	30	3.4	3.9	6.9-7.2	94	92
MAY	5	5	26	5	3	3	5.8	4.1	0.16	6.26	0.3	30	2.6	3.6	6.9-7.1	97	97
JUNE	6	6	34	5	4	3	4.7	2.8	0.18	13.20	0.6	30	2.2	3.4	6.8-7.1	96	97
JULY	6	6	21	5	7	3	4.3	3.3	0.17	12.34	0.3	30	2.2	3.3	6.9-7.1	96	97
AUGUST	7	6	23	6	3	3	5.0	3.0	0.26	11.73	0.4	34	2.5	3.2	6.8-7.0	96	95
SEPTEMBER	.6	5	27	9	2	4	5.7	2.6	0.48	12.90	0.6	30	2.4	3.9	6.8-7.3	97	94
OCTOBER	6	5	27	8	16	3	5.1	1.0	0.77	13.11	0.5	30	2.0	3.4	6.9-7.1	96	95
NOVEMBER	16	. 9	26	11		3.	4.7	3.0	0.95	10.29	0.7			3.8	7.0-7.1	96	95
DECEMBER	20	9	23	10		2	3.2	2.0	0.68	9,72	0.6		1	3.7	6.8-7.1	94	93
1982 AVG.	10	8	29	8	5	4	5.4	3.4	0,38	10,88	0.5	30	2.6	3.7	6.8-7.3	95	94
1981 AVG.	8		29	7	2	3	6.3	3.7	0.35	12.18	0.4	34	3.5	3.6	6.8-7.3	96	96

BLUE LAKE WASTEWATER TREATMENT PLANT

Plant History and Description

The Blue Lake Wastewater Treatment Plant was designed by Rieke-Carroll-Muller and Associates to be built in several stages and treat wastewater contributed by Sewer Service Area No. 4. Stage I, placed in operation in July, 1971, consisted of an aerated pond and chlorination facilities to provide temporary wastewater treatment. Stage II, consisting of the liquid treatment portion of a secondary treatment activated sludge plant, utilizing the existing aerated pond as an effluent polishing pond was constructed in 1973. Stage III, consisting of sludge processing facilities has not yet been constructed.

Liquid treatment consists of screening, primary sedimentation, complete mix activated sludge aeration with integral final clarification, an effluent polishing pond, chlorination, and discharge to the Minnesota River.

Solids processing consists of sludge thickening in spare primary clarifiers and sludge hauling to either the Seneca or Metropolitan Plant.

The Blue Lake Plant is operating at approximately 80 percent of its capacity and is subject to secondary treatment limits.

Performance

Plant flow averaged 16.1 mgd in 1982, considerably higher than 13.7 mgd in 1981. Average plant effluent quality was 10 mg/L BOD and 7 mg/L TSS. Plant performance was excellent throughout the year with no NPDES Permit violations. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/1

		50% o	f Time			75% o	f Time		90% of Time				
	1979	1980	1981	1982	1979	1980	1981	1982	1979	1 9 80	1981	1982	
BOD	7	- 8	9	10	10	10	13	13	15	14	19	16	
TSS	11	8	6	6 -	. 14	11	7	8	17	15	19	10	

Future

The Blue Lake Plant is one of the Commission's permanent regional treatment plants. Space is available for future expansions to serve Sewer Service Area No. 4. The first phase of Stage III, gravity thickeners and sludge loadout facilities, has been designed and is awaiting construction funding. The remainder of Stage III is planned to include anaerobic digestion, dewatering and land application. The timing of implementing these facilities is uncertain.

BLUE LAKE PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual Average	Maximum Month
Wastewater Flow, MGD BOD Loading, Ib/day TSS Loading, Ib/day	16.1 30,600 30,800	18.2 36,100 44,500
Primary Sedimentation ¹		
Surface Overflow Rate, gpd/Sq. Ft. Weir Overflow Rate, gpd/Lin. Ft.	800 16,100	910 18,200
Aeration Tanks		
BOD Loading, 1b/Day/1000 Cu. Ft. Detention Time, hr.	82 3.3	91 2.9
Final Sedimentation		
Surface Overflow Rate, Sq. Ft. Weir Overflow Rate, gpd/Lin. Ft.	620 12,000	710 14,000
Aerated Pond		
BOD Loading, 1b/day Detention Time, Days	3,800 3.2	5,600 2.9
Total Air Flow, cfm	12,400	14,700
Chlorine Use, 1b/day	210	260
Thickened Sludge		
Production, 1b/day Volume, gpd Concentration, %TSS Volatile Solids, %	42,000 99,000 4.9 72	48,000 114,000 5.6 71

¹Two clarifiers are used for combined settling and gravity sludge thickening. These clarifiers normally receive less flow than the other two clarifiers, but flow to each pair of clarifiers is not measured. Overflow rates shown are based on equal flow to all clarifiers. Į

BLUE LAKE WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

69

D. D

JAN FEB

MAR RPR MAY JUN JUL AUG SEP OCT NOV DEC

р, р

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
Month	Wastewater Flow, MGD	Temperature °C	Т800 mg/1	TSS mg/1	pH Range	KJN mg/1	Total-P mg/l	NH3 mg/1	COD mg/1
JANUARY	14.3	12	213	180	6.6-8.0	39.2	8.7	18.9	462
FEBRUARY	_ 14.7	12	223	186	6.8-7.6	34.0	6.8	17.6	460
MARCH	17.5	11	216	189	6.3-7.7	30.0	6.9	14.1	433_
APRIL	18.2	11	192	161	6.9-7.6	26.2	5.6	12.1	400
MAY	17.6	12	202	202	6.7-7.8	28.2	6.5	12.6	426
JUNE	15.8	15	212	238	6.8-7.6	33.0	6.7	12.9	491
JULY	14.9	16	222	281	6.7-8.1	34.4	6.8	13.9	527
AUGUS T	15.6	17	253	342	6.5-7.6	34.6	7.3	13.4	615
SEPTEMBER	15.8	17	244	255	6.8-7.5	35.8	7.6	13.4	530
OCTOBER	16.0	17	262	244	6.9-7.4	35.5	7.9	12.7	566
NOVEMBER	16.7	15	259	248	6.9-7.5	33.0	6.9	16.0	554
DECEMBER	16.1	14	238	241	7.0-7.4	33.8	6.7	18.0	531
1982 AVERAGE	16.1	14	228	230	6.3-8.1	33.1	7.0	14.6	500
1981 AVERAGE	13.7	14	230	241	5.6-9.4				508

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Blue Lake

MONTHLY	SUMMARY	OF I	EFFLUENT	QUALITY
TREATMENT	PLANT:	Blue	Lake	

Month		C80D	COD mg/1	TSS ma/l	FECAL COLI Geo Mean no/100 m1	TURB NTU	KJN mor∕l	NH3 mg/1	NO2 mg/1	NO3 mg/1	Total P mg/l	C12 Used 1bs	C12 Res mg/1	00 mg/1	pH Range	Remo BOD	val TSS
NPDES	25	25		30	200	25									6.5-8.5		
JANUARY	28	14	75	6		5	28.4	20.3	0.36	1.29	5.1			13.9	6.8-7.6	93	96
FEBRUARY	29	16	80	8		. 7	24.4	16.8	0.16	2.15	4.2			13.5	7.0-7.5	93	96
MARCH	10	9	73	6	10	6	20.0	13.5	0.05	0.12	3.5	200	0.6	12.6	7.0-7.8	96	97
APRIL	16	11	75	10_	5	10	16.8	11.8	0.37	0.08	2.7	200	0.5	12.5	7.1-7.8	94	94
MAY	26	12	76	8	14	8	18.6	12.8	1.87	0.64	3.7	206	0.5	11.8	7.1-7.9	94	96
JUNE	19	6	71	4	8	6	20.2	13.3	1.25	0.11	3.6	205	0.7	11.2	7.0-7.6	97	9.8
JULY	21	8	72	6	4.	7	20.9	13.1	3.48	0.10	3.3	201	0.7	9.2	7.1-8.4	96	98
AUGUST	27	9	73	5	7	6	18.3	11.6	2.10	1.96	3.7	200	0.7	9.5	7.1-7.7	96	99
SEPTEMBER	28	8	75	8	49	8	20.8	13.0	1.55	1.71	3.9	202	0.7	8.7	7.1-7.8	97	97
OCTOBER	38	9	73	7	28	7	26.5	10.6	1.62	1.10	4.8	256	0.7	8.8	7.1-7.6	97	97
NOVEMBER	17	12	69	6		6	19.4	14.2	0.69	1.01	3.5			11.6	7.1-7.6	95	97
DECEMBER	24	12	69	5		6	18.9	15.7	0.13	2.53	3.4			11.9	7.1-7.8	95	98
1982 AVG.	24	10	73	7	16	7	21.1	13.9	1.14	1.07	3.8	209	0.6	11.3	6.8-8.4	95	97
1981 AVG.	12		75	6	20	5	22.3	16.6	0.42	0.39	3.6	190	0.7	11.0	6.8-8.1	95	98

. 4

CHASKA WASTEWATER TREATMENT PLANT

Plant History and Description

The original Chaska Plant was designed by Lindsey Engineering Co. and constructed in 1963, with a design capacity of 0.75 mgd. The plant was converted to a pure oxygen activated sludge process in 1973, and final effluent filters were added in 1974. A plant expansion designed by McCombs-Knutson was constructed in 1980, increasing plant design capacity to 1.4 mgd. Actual operating capacity is somewhat less, due to high and widely variable organic loadings.

Liquid treatment consists of screening, grit removal, influent pumping, pure oxygen activated sludge aeration, final clarification, final effluent pumping, chlorination, and discharge to the Minnesota River.

Solids processing consists of aerobic digestion, and hauling to the Blue Lake Plant for further treatment and disposal.

The Chaska Plant is presently operating at about 60 percent of its rated hydraulic capacity and is subject to secondary treatment limits.

Performance

Plant flow averaged 0.80 mgd in 1982, up slightly from 0.70 mgd in 1981. Average plant effluent quality was 14 mg/L BOD and 11 mg/L TSS. Plant performance was affected by one NPDES weekly average effluent BOD violation, related to an excessively high influent organic loading. The probable source of the high organic loading was an industrial discharge. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/l

		50% o	f Time	!		75% o	of Time		90% of Time					
	1979	1980	1981	1982	1979	1980	1981	1982	1979	1980	1981	1982		
80 D	93	14	14	12	160	22	24	16	210	38	34	22		
TSS	43	11	13	10	83	15	16	14	130	18	22	19		

Future

This plant is one of the Commission's permanent treatment plants. A plant expansion is scheduled for mid-1980's.

CHASKA PLANT PROCESS UNIT LOADINGS 1982

I

Parameter	Annual Average	Maximum Month
Wastewater Flow, MGD BOD Loading, lb/day TSS Loading, lb/day COD Loading, lb/day Sludge Production, lb/day	0.80 1,260 1,120 2,380 960	1.06 1,490 1,520 2,940 1,510
<u>Grit Removal</u>	-	
Overflow Rate, gpd/Sq. Ft.	17,780	23,560
Aeration Tanks		
Detention Time, Hr. BOD Loading, 1b/Day/1000 Cu. Ft. Oxygen Utilization, 1b/day as O2	3.0 93 1,870	2.3 110
Final Sedimentation		
Detention Time, Hr. Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	7.0 4,260 280	5.3 5,640 380
<u>Chlorination</u>		
Contact Time, Minutes Chlorine Use, lb/day	147 29	111 33
Aerobic Digestion	•	•
Solids Loading, 1b/Cu. Ft./Day Detention Time, Days	0.025 53	
<u>Sludge Transport</u>		÷
Volume, Gal./Day	7,220	10,650

t

CHASKA WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

77

JAN

FEB MAR

RFR MAY

JUN

JUL AUG SEP DET NOV DEC

Month	Wastewater Flow, MGD	Temperature °C	TBOD mg/1	TSS mg/l	pH Range	KJN mg/1	Total-P mg/l	NH3 mg/l	COD mg/l
JANUARY	0.70	11	256	260	7.2-10.0	52.5	7.4	25.3	503
FEBRUARY	0.64	10	214	194	<u>7.0-11.2</u>	46.4	7.3	20.5	443
MARCH	0,99	9	168	135	6.6-9.3	22.6	4.2	14.4	309
APRIL	1.06	10	158	120	6.0-9.2	23.2	4.0	12.5	276
MAY	0.90	12	145	153	5.6-9.0	28.7	6,3	13.4	295
JUNE	0.76	14	175	<u>1</u> 82	7.0-9.0	29.2	5.5	13.8	3 <u>7</u> 7
JULY	0.71	16	168	145	6,8-8.8	29.6	5.0	14.6	344
AUGUST	0.71	18	191	161	6.7-10.1	31.4	5,9	13.8	343
SEPTEMBER	0.75	18	237	165	6.0-8.90	34.5	6.4	13.5	<u>39</u> 0
OCTOBER	0.74	17	192	168	5.6-10.0	29.9	5.2	13.2	322
NOVEMBER	0.84	15	189	176	5.8-10.8	32.0	5.3	17.7	<u>351</u>
DECEMBER	0.77	13	173	146	<u>6.5-9.2</u>	32.7	5.2	19.2	319
1982 AVERAGE	0.80	14	189	167	5.6-11.2	32.7	5.6	16.0	356
1981 AVERAGE	0.70	14	229	189	4.6-12.0				428

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: <u>Chaska</u>

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: Chaska

Month	1800 mg/1	CBOD mg/l	COD mg/1	TSS mg/1	FECAL COLI Geo Mean no/100 ml	TURB NTU	KJN mg/l	NH3 Mg/1	ND2 mg/1	NO3 mg/1	Total P mg/l	Cl2 Used 1bs	C12 Res Mg/1	00 mg/1	pH Range	Remo BOD	val TSS
NPDES LIMIT	25	25		30	200	25									6.5-8.5		
JANUARY	21	15	89	13		5	18.6	12.5	0.54	0.55	2,2			10.7	6.8-7.7	94	95
FEBRUARY	25_	19	97	16		-6	21.0	13.0	<u>0.</u> 59	1.74	2.0	1		9.3	7.1-7.7	91	92
MARCH	18	_14	81	11	2	6	14.8	10.2	1.08	0.74	1.7	30	2.2	10.0	7.0-7.7	92	92
APRIL	14	14	72	7	2	5	13.6	9.2	0.69	0.71	1.2	32	2.4	10.6	7.1-7.7	91	94
MAY	17	13	_71	9	7	7	13.6	10.2	0.68	0.54	1.9	29	2.2	10.1	6.9-7.8	91	94
JUNE	16	12	83	10	2	_ 5	17.3	9.9	0.97	0.46	2.4	27	2.0	9.6	7.0-7.7	93	95
JULY	1 <u>8</u>	_12	_73	8	5	5	16.5	8.9	1.52	0.68	0.8	25	1.7	8.5	7.2-8.2	93	95
AUGUS T	19	13	70	9	3	5	14.1	7.5	1.56	0.80	1.2	27	1.8	7.5	7.2-7.8	93	94
SEPTEMBER	27	<u>21</u>	_78	8	14	5	15.8	7,2	2.13	1.16	2.2	33	2.0	7.4	7.1-7.6	91	95
OC TOBER	21	8	57	_11	2	4	14.4	7.6	1.93	1.81	1.7	28	2.0	8.3	7.1-7.6	96	94
NOVEMBER	25	14	64	15		5	13.6	8.6	2.06	1.81	_1.2_			7,6	7.0-7.8	93	92
DECEMBER	22	11	64	14		_ 5	14.5	10.9	1.55	2.14	1.4	+-		8.9	7.1-7.6	94	91
1982 AVG.	20	14	75	11	5	5	15.6	9.6	1.27	1.10	1.7	29	2.0	9.0	6.8-8.2	93	93
1981 AVG.	18_		_79_	13	7	_ 5	16.0	9.5	1.32	0.26	1.3	32	2.7	8.6	6.6-8.1	92	93

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

COTTAGE GROVE WASTEWATER TREATMENT PLANT

Plant History and Description

The Cottage Grove Plant was designed by Bonestroo, Rosene, Arnderlik, and Associates, originally constructed in 1962 and expanded in 1963 and 1968. In 1975, effluent polishing filters were added to the plant. In 1976, primary anaerobic digester volume was increased and a new cover was installed. In 1979, the plant was expanded to its current design capacity of 1.8 mgd.

Liquid treatment consists of screening, primary sedimentation, activated sludge aeration, final clarification, effluent polishing filters, chlorination, and discharge to the Mississippi River.

Solids processing consists of combined sludge gravity thickening, anaerobic digestion with ultimate disposal by landspreading or the Metropolitan Plant Interceptor System.

The plant is presently operating at about 70 percent of its design capacity and is subject to secondary treatment limits.

Performance

The plant flow averaged 1.26 mgd in 1982, up slightly from 1.21 mgd in 1981. Average plant effluent quality was 10 mg/L BOD and 7 mg/L TSS. Plant performance was good throughout the year although one NPDES Permit violation occurred in June. The violation, exceeding the weekly effluent fecal coliform limit, was the result of nitrification (nitrite ion) interfering with chlorination. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/l

		50% o	f Time	:		75% o	f Time		90% of Time					
	1979	1980	1981	1982	1979	1980	1981	1982	1979	1980	1981	1982		
BOD	12	10	9	8	20	14	15	13	50	18	20	18		
TSS	10	7	5	6	16	13	8	10	28	22	14	14		

Future

The Cottage Grove facility is considered a permanent plant. The plant is expected to be expanded in the late 1980's.

COTTAGE GROVE PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual Average	Maximum Month
Wastewater Flow, MGD BOD Loading, 1b/day TSS Loading, 1b/day COD Loading, 1b/day	1.26 2,186 1,829 4,174	1.32 2,528 2,245
Primary Sedimentation		
Detention Time, hour-North Detention Time, hour-South Weir Overflow Rate, gpd/Lin. FtNorth Weir Overflow Rate, gpd/Lin. FtSouth Surface Overflow Rate, gpd/Sq. FtNorth Surface Overflow Rate, gpd/Sq. FtSouth	2.5 3.8 6,680 4,320 530 530	2.4 3.6 7,000 4,520 550 550
Aeration Basin		
BOD Loading, 1b/Day/1000 Cu. Ft.	43	50
Final Sedimentation		
Detention Time, hour Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	2.7 4,470 396	2.6 4,680 415
Polishing Filtration		
Average Filtration Rate, gpm/Sq. Ft.	2.9	3.1
Chlorination		
Contact Time, Minutes Chlorine Use, lb/day	34 86	32: 108
Gravity Thickener		
Surface Loading Rate, gpd/Sq. Ft. Mass Loading Rate, 1b/Sq. Ft./day	730 6	
Anaerobic Digestion		
Solid Retention Time, day	48	39
<u>Sludge Transport</u>		
Volume, gpd Mass. lb/day	9,528	13,000 1 800

COTTAGE GROVE WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

Month	Wastewater Flow, MGD	Temperature °C	TBOD mg/1	TSS mg/l	pH Range	KJN mg/1	Total-P mg/l	NH3 mg/1	COD mg/1
JANUARY	1.22	.11	230	202	7.4-8.5	54.0	9.0	31.9	441
FEBRUARY	1.29	11	201	171	7.7-8.7	53.0	7.6	26.3	403
MARCH	1.30	11	233	207	7.8-8.6	37.6	7.3	26.7	456
APRIL	1.22	11	207	184	7.4-8.5	40.4	6.9	26.1	413
MAY	1.27	14	192	150	7,4-8.3	42.1	7.3	25.8	349
JUNE	1.26	17	180	185	7.2-8.4	51.8	8.5	24.7	378
JULY	1.19	18	201	153	7.4-8.1	44.6	7.4	24.2	377
AUGUS T	1.21	20	194	166	7.4-8.1	41.3	7.3	23.1	356
SEPTEMBER	1.28	20	218	170	7.4-8.2	50.5	8.2	26.3	422
OCTOBER	1.24	19	212	172	7.3-8.1	45.9	6.8	23.8	392
NOVEMBER	1.27	16	220	155	7.3-8.2	46.1	7.8	28.8	381
DECEMBER	1.32	14	207	164	7.6-8.3	45.8	7.2	30.6	400
1982 AVERAGE	1.26	_15	208	173	7.2-8.7	46.1	7.6	26.5	397
1981 AVERAGE	1.21	16	204	187	7.2-8.6				399

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Cottage Grove

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Cottage Grove</u>

Month	TBOD	CBOD	COD	TSS mg/l	FECAL COLI Geo Mean no/100 ml	TURB NTU	KJN mg/1	NH3 ma/1	NO2 mg/1	N03 mg/1	Total P mg/l	C12 Used 1bs	C12 Res mg/l	D0 mg/1	pH Range	Remo BOD	val TSS
NPDES LIMIT	25	25		30	200	25									6,5-8,5		
JANUARY	22	18	69	9		5	21.9	14.3	1.25	14.66	5.4			6.2	7.1-7.7	92	96
FEBRUARY	17	13	71	10		6	34.8	26.8	0.48	3.43	5.6			7.1	7.3-7.8	94	94
MARCH	11	11	80	9	2	8	34.9	28.8	0.59	0.45	5.4	99	6.6	6.6	7.2-7.9	95	95
APRTI	13	12	82	10	12	7	34.3	26.8	2.18	0.08	5.2	74	5.0	6.5	7.1-7.6	94	95
MAY	18	15	63	7	29	4	21.5	15.5	9.93	1.58	5.5	72	4.8	6.4	6.7-7.5	92	96
JINE	12	8	65	8	13	5		3.2	4.89	15.11	4.7	108	4.8	6.2	7.0-7.3	96	96
	10	8	39	3	11	4	3.4	0.3	0.41	18.88	5.0	106	5.2	5.7	7.1-7.6	96	98
ALICHST	9	6	۵1	6	8	4	2.4	0.2	0.01	22.90	5.4	99	12.1	6.3	6.9-7.4	97	96
SEDTEMBER			33	4	3	2	3.0	0.1	0.02	24.74	5.5	96	10.7	5.9	7.0-7.3	98	98
		5	41	5	11	2	2.4	n.4	0.02	24.61	5.3	93	8.5	5.7	6.9-7.3	98	97
NOVEMBER	14		48	6		,	7.5	2.6	2.44	16.76	5.1			5.3	7.1-7.4	97	96
	37	13	58	12		4	24.8	16.6	1.80	6.14	5.2			4.8	7,2-7.7	94	93
	16	10	57	7	11		16.6	11.3	2.00	12.44	5.3	93	7.2	6.1	6.7-7.9	95	96
1981 AVG.	12	<u> </u>	47	7	55	5	8.4	9.5	1.25	18.88	5.0	102	5.2	5.9	6.7-8.3	94	96

EMPIRE WASTEWATER TREATMENT PLANT

Plant History and Description

The Empire Plant was designed by Short, Elliot, Hendrickson and Associates and was constructed in 1977-1979. The Empire Plant began operation in the fall of 1979. The plant replaced three treatment plants (Lakeville, Farmington, and Apple Valley) which were overloaded and required upgrading to meet water quality based effluent standards. The Empire Plant serves Apple Valley, Empire Township, Farmington, and Lakeville in Service Area No. 6 and has a design capacity of 6.0 mgd.

Liquid treatment consists of screening, influent pumping, grit removal, primary sedimentation, high rate activated sludge aeration, intermediate sedimentation, nitrification activated sludge aeration, final clarification, effluent filtration, chlorination, and discharge to the Vermillion River.

Solids processing consists of combined sludge gravity thickening, anaerobic digestion, centrifuge dewatering, sludge storage and sludge landspreading. The plant is operating at about 70 percent of design capacity and is subject to effluent limits of 10 mg/L BOD and TSS, and 1 mg/L ammonia.

Performance

Plant flow averaged 4.05 mgd, considerably higher than 3.5 mgd in 1981. Average plant effluent quality was 2 mg/L BOD, 1 mg/L TSS and 0.7 mg/L ammonia. Plant performance was good throughout the year even though 3 NPDES Permit violations occurred. The three violations were the result of exceeding monthly ammonia limitations and were caused by high ammonia loading from solids processing recycle streams. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/1

		50% o	f Time	!		75% c	of Time	!		90% of Time				
	1979	1980	1981	1982	1979	1980	1981	1982	1979	1980	1981	1982		
BOD	4	2	3	· 2	10	2	4	3	28	5	-4	4		
TSS	3	1	1	1	5	3	1	1	11	4	2	2		

Future

The Empire Plant is one of the Commission's permanent regional plants. Provisions have been made for doubling the plant's capacity when the area's growth requires plant expansion.

EMPIRE PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual Average	Maximum <u>Month</u>
Wastewater Flow, MGD BOD Loading, lb/day TSS Loading, lb/day Ammonia Loading, lb/day	4.05 6,900 7,200 740	4.89 7,600 9,500 1,000
Aerated Grit Chamber (One in Use)		
Flow Through Velocity, fps Detention Time, Minutes	0.05 12	0.06
Primary Clarifiers (Two in Use)		
Surface Overflow Rate, gpd/Sq. Ft. Weir Overflow Rate, gpd/Lin. Ft. Detention Time, Hr. Removal Efficiency, %BOD Removal Efficiency, %TSS	400 8,000 5.3 31 58	490 9,800 4.4 32 70
High Rate Aeration (Two in Use)		
Mixed Liquor Suspended Solids, mg/L F:M Ratio, 1b. BOD/Day/1b. MLSS BOD Loading, 1b./Day/1000 Cu. Ft. Detention Time, Hr.	1,600 0.72 66 3.0	1,900 0.87 79 2.5
<u>High Rate Clarifiers</u> (Two in Use)		
Surface Overflow Rate, gpd/Sq. Ft. Weir Overflow Rate, gpd/Lin. Ft. Detention Time, Hr.	400 8,000 5.3	490 9,800 4.4
Nitrification Aeration (3/2 in Use)		:
Mixed Liquor Suspended Solids, mg/L Ammonia: Mass Ratio, 1b. NH3/Day/1b. MLSS Ammonia Loading, 1b. NH3/Day/1000 Cu. Ft. Detention Time, Hr.	2,400 0.024 3.8 6.8	2,100 0.04 5.8 4.9
Nitrification Final Clarifiers (Two in Use)		
Surface Overflow Rate, gpd/Sq. Ft. Weir Overflow Rate, gpd/Lin. Ft. Detention Time, Hr.	320 7,200 6.5	390 8,700 5.4
Dual Media Filters		
Filtration Rate, gpd/Sq. Ft.	1.9	2.3

Parameter	Annual Average	Maximum Month
Chlorination		. · · · · · · · · · · · · · · · · · · ·
Chlorine Dose, mg/L Chlorine Use, lb./Day Contact Time, Minutes	3.6 130 38	3.9 140 32
Cascade Aeration		
Effluent Dissolved Oxygen, mg/l	8.9	9.8
Gravity Thickener		
Solids Loading, psf/day Surface Overflow Rate, gpd/Sq. Ft. Sludge Concentration, % TS	4 600 3.8	5 600 4.9
Anaerobic Digesters (Primary)		
Solids Loading, lb. VS/Cu. Ft./Day Detention Time, Days	0.04 40	0.05 30
Dewatered Sludge		
Quantity, 1b/Day Cake Solids, % TS	3,000 13	5,600 14

EMPIRE WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

.

- 5.
- Nitrification Activated Sludge Aeration Final Clarification 6.
- 7.
- Effluent Filtration 8.
- 9. Chlorination

94

MONTHLY FLOW

AUG

SEP DET NOV DEC

Month	Wastewater Flow, MGD	Temperature °C	TB00 mg/1	fss mg/1	pH Range	KJN mg/l	Total-P mg/l	NH3 mg/l	COD mq/1
JANUARY	3.31	11	241	223	6.4-8.4	45.2	14.5	26.3	448
FEBRUARY	3.40	11	218	193	6.1-8.9	48.8	14.3	24.4	412
MARCH	3.74	10	209	176	5.7-9.4	<u> </u>	12.3	19.7	363
APRIL	4.89	11	168	149	6.4-9.2	30.7	9.2	19.6	339
MAY	4.77	12	154	169	6.0-9.2	32.0	9.6	18.4	345
JUNE	4.56	14	185	200	6.5-9.6	33.8	9.4	16.6	389
JULY	3.87	16	205	210	6.0-9.5	38.1	13.8	17.4	389
AUGUS T	4.05	18	201	231	6.6-9.5	36.6	14.3	19.0	441
SEPTEMBER	4.10	18	214	266	6.7-8.2	53.5	17.0	30.1	451
OCTOBER	4.08	17	220	233	6.3-10.2	38.7	16.0	23.6	415
NOVEMBER	4.12	15	220	233	6.2-9.6	41.3	15.8	23.4	395
DECEMBER	3.72	13	211	258	6.2-9.0	38.8	-13.0	22.9	428
1982 AVERAGE	4.05	14	204	212	5.7-10.2	39.0	13.3	21.8	401
1981 AVERAGE	3.51	14	234	251	5.6-8.8				460

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Empire

				<u>.</u>							Total	C12	C12				· • •	
					FECAL CULI		1/ 1 4	MH2	NO2	NEIS	P	Used	Res	D0 (pH	Remo	val	
	TBOD	CBOD	COD	155	Geormean ac/100 ml	NTH	mn/1		ma/1	m_{1}	$m_{\rm m}/1$	lbs_	_mq/1	_mg/1	Range	BOD	TSS	ŀ
Month	<u>@q/1</u>	mq/1	- Mg/ 1		10/100_01					_					< e a s			i
	10	10		10	200	25		1.0						24.0	6.7-0.7			ł
							20	1.2		25.47	8.0			9.8	6.9-7.6	99	99	Ĺ
JANUARY	4.		26	_		<u></u>	2.8	1.0	0.00	27.47							- 00	l
FEDRIJARY	3		30	1		1	2.5	1,1	0.16	27.35	7.9		. 	9.7	6 <u>.8-7.2</u>	99_	99	ł
							23	0.9	0.05	22.64	6.8	114	1.2	9.2	6.8-7.4	99	9 9	ļ
MARCH	2	2	0	<u> </u>	<u> </u>			<u> </u>						0.7	6 7 7 9		00	١
	2	2	28	2	1	1	3.3	3.0	0.07	21.93	7.1	137	2.0	9.5	6.1-1.2	<i>"</i>		ł
		1		Γ.		Γ,	1	0.2	0.04	22.94	7.3	129	1.6	8.9	6.7-7.8	99_	99	l
MAY	2	2	<u> </u>	╞═┸	<u> </u>	┼╌╧╴	2.0		10.00				<u> </u>				00	ł
1105	7	3	29	2	1	1	2.0	0.1	0.04	21.78	6.6	135	1.9	8.3	6.6-7.9	98	99	ł
JUNC	<u> </u>	<u> </u>	╞╧─						0.10	1 14 20	6 1	124	2 0	7.6	6.5-7.6	98	99	
JULY	4	3	22	1	11	$\frac{1}{1}$	1.5	U.I	10.10	4.50	- <u>•</u> •-	<u></u>		1		1		
		.	25	1 1	3	1 1	1.6	0.1	0,18	25.52	7.7	129	1.7	8.9	6.8-7.3	99	99	-
AUGUST	<u> </u>	<u>├</u> ∕	╞╧	<u> </u>						1	7.0	1 3 3	117	7.7	6.6-7.5	99	99	Í
SEPTEMBER	2	2	24	1_1_	1	$\frac{1}{1}$	2.0	0.2	0.20	- >>.26	/.0		+	<u>, , , , , , , , , , , , , , , , , , , </u>				1
	T		27	Ι ₁	· ,	Ι.	11.7	0.3	0.11	29.68	8.2	126	2.2	7.8	6.5-7.4	99	99	_
OCTOBER	<u></u>		1 27	┼─┶	<u>+</u>	+							Τ.		6777	00	00	
NOVEMBER	3	2	21	1		0.5	2.0	0.5	0.13	26.02	6.4	+		7.4	<u> </u>	<u> </u>	 ″	-
		,	25	,	1	1	2.2	0.6	0.23	23.26	5.2			9.7	6.7-7.4	99	99	_
DECEMBER	44	<u>+</u>	+ 27	+	\	┼──						120	1.0	1	6.5-7.9	99	99	
1982 AVG.	3	2	27	1	1 1	1	2.1	10.7	0.12	25.35	/.1	1128	1.0	1 0.7	1.0.2-7.07	┼╌╴	1	-
1001 440	1		25	2	3	1	2.2	0.3	0.15	25.41	5.7	98	1.0	8.5	6.7-7.8	99	99	-
I LYOL AVU.	1 2					_	_											

95 -

HASTINGS WASTEWATER TREATMENT PLANT

Plant History and Description

The Hastings Plant was designed by Toltz, King, DuVall, Anderson, and Associates and built in 1955 as a "primary treatment" plant. Principal items included a primary control building, primary settling and chlorination tanks, anaerobic digester, and sludge drying beds. In 1967, the plant was modified to include secondary treatment facilities. Major additions included one fourpass aeration tank, two final settling tanks, a chlorine contact tank and a secondary sludge digester. After 1967 modifications, the plant's design capacity was 1.83 mgd. Actual operating capacity is somewhat less, estimated to be about 1.5 mgd.

Liquid treatment consists of screening, grit removal, primary sedimentation, primary effluent pumping, activated sludge aeration, final clarification, chlorination, and discharge to the Mississippi River.

Solids processing consists of combined thickening in primary tanks, anaerobic digestion with ultimate disposal by landspreading or through the Metropolitan Plant Interceptor System. The Hastings Plant is operating near its effective capacity and is subject to secondary treatment limits.

Performance

Plant flow averaged 1.50 mgd in 1982, unchanged from that of 1981. Average plant effluent quality was 20 mg/L BOD and 31 mg/L TSS. Plant performance was marginal due to operation near plant capacity. A total of 18 NPDES violations occurred throughout the year. Statistical analysis of data show the following trend in effluent quality from 1979 through 1982.

Effluent Concentration, mg/l

	50% of Time					75% o	f Time	!	90% of Time				
	1979	1 9 80	1981	1982	1979	1980	1 9 81	1982	1979	1980	1981	1982	
BOD	16	17	18	17	22	22	24	27	28	31	33	37	
TSS	17	22	19	28	24	30	28	38	31	38	36	48	

Future

The Hastings Plant will be expanded to a capacity of 2.34 mgd. Construction grants for a plant expansion were received and construction is expected to begin in late 1983. Completion of the plant expansion is scheduled for late 1985.

HASTINGS PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual Average	Maximum Month
Wastewater Flow, MGD BOD Loading, lb/day TSS Loading, lb/day COD Loading, lb/day	1.50 3,140 2,930 6,770	1.63 3,550 3,820 8,120
Primary Sedimentation		
Surface Overflow Rate, gpd/Sq. Ft.	1,330	1,390
Aeration Tanks		
BOD Loading, 1b/Day/1,000 Cu. Ft.	45	51
Final Sedimentation		
Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	9,100 625	9,900 680
Chlorination		
Contact Time - Primary, Minutes Contact Time - Secondary, Minutes Chlorine Use, lb/day	37 10 126	34 10 185
<u>Sludge Transport</u>		
Volume, gpd Mass, lb/day	7,560 2,000	9,810 2,550

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

Month	Wastewater Flow, MGD	Temperature °C	T800 mg/1	TSS mg/I	pH Range	KJN mg/l	Total-P ∕mg/l	NH3 mg/1	COD mg/1
JANUARY	1.55	13	252	212	6.1-11.6	56.0	11.5	28.0	554
FEBRUARY	1.42	12	225	240	6.0-9.6	54.0	13.0	26.4	553
MARCH	1.57	12	247	222	6.0-9.4	37.6	10.5	25.8	546
APRIL	1.52	12	223	223	6.1-9.7	54.0	10.7	30.9	531
MAY	1.63	14	259	281	4.1-12.0	47.5	10.3	21.9	597
JUNE	1.60	18	266	243	5.1-11.4	53.2	12.6	31.1	546
JULY	1.44	19	220	174	3.7-9.4	46.2	9.1	27.3	440
AUGUS T	1.52	21	246	259	3.0-12.0	44.0	11.6	19.4	517
SEPTEMBER	1.51	21	224	218	3.7-10.8	48.5	9.8	26,6	484
OC TOBER	1.37	20	265	205	5.7-10.3	44.0	10.8	23.8	529
NOVEMBER	1.43	18	288	284	5.8-11.0	40.8	13.2	25.6	582
DECEMBER	1.47	16	297	234	6.2-10.2	36.8	10.8	25.6	610
1982_AVERAGE	1.50	16	251	233	3.0-12.0	46.9	11.1	26.0	541
1981 AVERAGE	1.50	17	227	235	5.6-10.8				488

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: <u>Hastings</u>

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: Hastings

Month	TBOD mg/l	CBOD mg/l	COD mg/l	TSS mg/l	FECAL COLI Geo Mean no/100 ml	TURÐ NTU	KJN mg/1	NH3 mg/1	ND2 mg/1	NO3 mg/1	Total P mg/l	Cl2 Used lbs	Cl2 Res mg/1	00 mg/1	pH Range	Remo BDD	val TSS
NPDES LIMIT	25	25		30	200	25									6.5-8.5		
JANUARY	42	31	154	36	****	14	31.5	20.1	4.28	2.14	7.2			6.1	7.2-7.6	88	83
FEBRUARY	56	31	151	39		14	35.4	20.9	1.02	4.63	8.1			6.2	7.2-7.8	86	84
MARCH	36	34	190	50	7	23	32.7	22.0	0.57	0.89	7.6	107	4.2	6.1	7.0-7.8	86	77
APRIL	25	24	147	37	2	17	32.6	24.2	0.63	2.26	6,4	115	5.2	6.0	7.1-7.6	89	83
MAY	22	14	103	28	18	12	26.0	17.3	1.43	3.29	3.2	109	3.4	6.2	7.1-7.6	95	90
JUNE	18	12	107	25	8	10	31.7	20.7	1.01	4.14	2.9	118	4.0	7.0	7.1-7.6	96	90
JULY	31	22	113	19	43	13	24.5	13.9	2.14	6.14	5.4	146	4.5	5.3	7.0-7.4	90	89
AUGUST	17	12	93	25	46	10	26.9	15.6	0.80	1.16	2.3	183	5.8	5.1	6.5-7.4	95	90
SEPTEMBER	10	8	75	18	6	7	19.3	10.0	0.38	4.41	1.8	154	7.4	5.3	6.5-7.6	96	92
OCTOBER	10	9	100	22	38	8	23.3	12.1	0.53	2.06	2.8	135	5.5	5.8	6.8-7.8	97	89
NOVEMBER	51	22	104	35		9	22.2	14.9	1.68	7.03	3.1			6.1	6.8-7.6	92	88
DECEMBER	52	23	106	40		10	26.9	20.1	0.71	4.97	3.0			6.5	6.7-7.4	92	83
1982 AVG.	31	20	120	31	21	12	27.7	17.6	1.27	3.59	4.5	133	5.0	6.0	6.5-7.8	92	67
1981 AVG.	20		100	22	11	11	32.0	20.6	1.58	1.75	5.8	168	6.7	6.2	7.1-7.3	91	91

BIDCHEMICAL DXYGEN DEMAND

HASTINGS PLANT

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982

MONTH	Cu mg/l	Cr mg/l	Zn mg/l	Pb mg/l	Cd mg/1	Hg ug/l	CN mg/l	As ug/l	Sn mg/l	Ni mg/l	Phenol ug/1	Fe mg/l	PCB ug/1
January	0.56	0.80	0.09			<0.20	0.195				7,3		
February	0.47	0.81	0.12			<0.12	0.125				9.7		
March	0.45	1.14	0.13	<0.05	<0.008	<0.10	0.018			<0.04	5.0	0.33	
April	0.49	0.73	0.16			<0.15	0.013				6.9		
May	0.37	0,30	0.14			<0.20	<0.090				6.5		
June	0.25	0,27	0.12			<0.22	<0.034				4.0		
July	n.20	0.35	0,12	<0.05	<0.008	<0.20	<0.047			<0.04	7.2	0.23	
Aunust	0.26	0.43	0.11	<0.05	<0.008	<0.22	0.073			<0.04	5.6	0.32	
Sentember	0.18	0.24	0.13			<0.28	<0.096	-		-	5.5		
October	0.25	0.23	0.10			<0.20	0.093				5.9		
November	0.39	0.27	n.09			<0.20	0.145				4.7		
December	D.68	0.15	0.08	<0.05	<0.008	<0.20	0.046			0.06	4.9	0.48	
	0.00		0.00						·				
1982 Avg.	0.38	0.48	0.12	<0.05	<0.008	<0.19	<0.08	l	· ·	<u> <0.05</u>	6.1	U.34	I

1982 EFFLUENT DATA TREATMENT PLANT <u>Hastings</u>

MAPLE PLAIN WASTEWATER TREATMENT PLANT

Plant History and Description

The original Maple Plain Plant was designed by Toltz, King, DuVall, Anderson and Associates and constructed in 1952. A plant expansion was designed by W.T. Mills, and constructed in 1965. Current plant design capacity is 0.22 mgd.

Liquid treatment consists of grit removal, screening, influent pumping, primary sedimentation, roughing trickling filter, complete mix activated sludge aeration, final clarification, chlorination, effluent polishing pond, and discharge through a swamp to Lake Minnetonka.

Solids processing consists of combined thickening in primary tanks, anaerobic digestion, and sludge hauling to other plants for processing or to landspreading sites.

The plant is presently operated at about 150 percent of its rated hydraulic capacity and is subject to secondary treatment limits.

Performance

Plant flow averaged 0.35 mgd in 1982, a significant increase from 0.25 mgd in 1981. Average plant effluent quality was 13 mg/L BOD and 7 mg/L TSS. Although the flow was in excess of plant capacity, plant performance was good throughout the year. Two NPDES Permit violations occurred during 1982. These violations consisted of failing to meet monthly BOD limitations for the months of January and April and were the result of process problems and high flows. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/1

		50% o	f Time			75% o	f Time	90% of Time				
	1979	1980	1981	1982	1979	1980	1981	1982	1979	1 9 80	1981	1982
80 D	16	19	10	11	23	29	15	18	33	37	21	26
TSS	10	11	6	6	18	15	8	10	30	24	16	16

Future

The future of the Maple Plain Plant is uncertain. The plant will either be phased out by construction of an interceptor at the Blue Lake Plant, or it will be upgraded for higher levels of treatment including phosphorus removal.

MAPLE PLAIN PLANT PROCESS UNIT LOADINGS

Parameter	Annual Average	Maximum Month
Wastewater Flow, MGD BOD Loading, lb/day TSS Loading, lb/day COD Loading, lb/day Sludge Production, lb/day	0.35 425 580 860 80	0.59 490 1,080 1,090
Grit Removal		
Overflow Rate, gpd/Sq. Ft.	21,880	36,880
Primary Sedimentation		
Detention Time, Hr. Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	0.7 9,720 1,440	0.4 16,390 2,430
Trickling Filters		
Hyraulic Loading, gpd/Sq. Ft. BOD ₅ Loading, 1b/Day/1000 Cu. Ft.	220 41	370 47
Aeration Tanks		
Detention Time, Hr. BOD5 Loading, 1b/Day/1000 Cu. Ft. (Assume 50% trickling filter reduction)	7.1 <u>+</u> 15	4.2 +18
Final Sedimentation		
Detention Time, Hr. Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	2.0 8,970 1,030	1.2 15,130 1,730
Chlorination	•. •	
Contact Time, Minutes Chlorine Use, lb/day	15 36	9 50
Polishing Pond		
Detention Time, Days BODs. lb/acre/day	2.9	1.7

Anaerobic Digestion (Prim. Dig. Only)

Solids Loading, lb/Cu. Ft./Day Detention Time, Days

0.08 29

160

ij

Sludge Transport

Volume, Gal/day

MAPLE PLAIN WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

Final Sedimentation
 Chlorination

- 8. Effluent Pond

Month	Wastewater Flow, MGD	Temperature °C	780D mg/1	755 mg/1	pH Range	KJN mg/l	Total-P mg/l	NH 3 mg/1	COD mg/l
JANUARY	0.20	12	240	597	7.6-7.8	62.9	10.5	27.6	653
FEBRUARY	0.24_	11	181	16 8	7.7-7.8	52.0	7.5	22.1	399
MARCH	0.47	11	91	72	7.7-7.9	<u>23.</u> 0	2.7	1 <u>0.4</u> .	173
APRIL	0.59	12	100	90	7.7-7.8	25.4	3.4	7.7	· 156
MAY	_0.58	12	75	86	7.7-7.8	23.7	3.2	9.5	171
JUNE	0.32	13	154	129	6.9-7.8	38.8	5.2	21.4	279
JULY	0.26	16	188	496.	7.0-7.6	39.7	6.3	20.6	378
AUGUST	0.24	17	191	157	6.9-7.4	45.3	8.3	29.7	372
SEPTEMBER	0.27	16	172	275	7.0-7.5	42.5	5.9	21.6	289
OCTOBER	0.29	15	125	135	7.1-7.5	41.1	5.2	16.8	287
NOVEMBER	0.41	13	118	118	7.2-7.4	30.8	3.9	14.1	245
DECEMBER	0.37	10	112	66	7.3-7.5	29.2	3.6	16.3	186
1982 AVERAGE	0.35	13	146	199	6.9-7.9	37.9	5.5	18.1	299
1981 AVERAGE	0.25	14	165	179	7.3-8.0				274

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Maple Plain

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: Maple Plain

Month	T80D mg/1	C800 mg/1	COD mg/l	TSS mg∕1	FECAL COLI Geo Mean no/100 ml	TURB N TU	KJN mg/1	NH3 mg/1	N02 mg/1	N03 mg/1	Total P mg/l	C12 Used 1bs	C12 Res mg/1	 mg/1	pH Range	Remo BOD	val TSS
NPDES LIMIT	25	25		30	200										6.5-8.5		
JANUARY	29	28	87	8		13	28 <u>.</u> 9	20.9	0.01	0.10	4.1			5.6	7.5-7.8	89	99
FEBRUARY	9	9	55	2		4	29.8	22.1	0.05	0.14	2.9			5,5	7.5-7.7	95	99
MARCH	18	18	65	- 10	13	10	15.4	11.0	0.07	0.94	2.2	26	0.3	5.8	7. <u>5-7</u> ,8	80	86
APRIL	28	27	82	8	1	12	11.2	6.5	0.07	1.51	1.9	50	1.0	6.8	7.5-7.9	74	91
MAY	15	15	52	13	3	7	11.8	8.1	0.18	0.38	1.9	50	0.6	6.8	7.6-7.9	80	85
JUNE	19	16	70	14	24	11	19.0	12.7	0.02	0.07	2.7	47	0.0	4.1	7.5-7.8	90	89
JULY	12	10	48	5	63	9	24.5	17.6	0.01	0.18	3.8	24	0.0	5.3	7.5-7.8	95	,99
AUGUST	15	13	59	10	1	23	27.4	19.3	0.01	0.06	4.1	30	0.0	5.1	7.4-7.7	93	93
SEPTEMBER	9	8	37	3	7	6	22.7	15.1	0.01	0.05	_3.2	30	0.0	5.4	7.5-7.8	95	99
OCTOBER	5	4	33	3	ŀ	3	14.7	9.1	0.20	1.14	2.6	30	0.0	5.7	7.5-7.7	97	98
NOVEMBER	10	8	33	5		3	12.7	9.2	0.19	2.06	2.3			. 66	7.5-7.6	93	96
DECEMBER	9	7	35	6		3	13.8	11.2	0.10	0.90	2.3			6.5	7.5-7.7	93	91
1982 AVG.	15	13	55	7	14	9	19.3	13.6	0.08	0.63	2.8	36	0.2	5.8	7.4-7.9	90	94
1981 AVG.	12		50	9	23	-5	15.4	11.2	0.17	2.05	3.4	13	0.3	5.6	7.3-8.1	93	95

• •

MEDINA WASTEWATER TREATMENT PLANT

Plant History and Description

The Medina Plant was designed by W.T. Mills, and constructed in 1969. The plant serves the Hamel area and the City of Medina and has a design capacity of 0.10 mgd. The plant consists of a two-staged aerated lagoon system followed by two seepage ponds. The seepage pond contents are emptied by evaporation, percolation, and controlled discharge to nearby Elm Creek, when necessary.

Performance

Plant flow averaged 0.149 mgd in 1982, slightly greater than 0.104 mgd in 1981. Average aeration pond effluent quality was 14 mg/L BOD and 14 mg/L TSS, representing removal rates of 87 percent for BOD and 88 percent for TSS. The plant is presently operating at about 125 percent of its rated design capacity. Major problems with the seepage pond operation have been experienced since the fall of 1981 when the ponds overflowed their dikes. The Commission applied for, and received on November 1, 1982, a revised NPDES Permit which allows for controlled discharge directly to Elm Creek. The plant is subject to inflow/infiltration.

Future

The Medina Plant is scheduled to be phased out of operation in December, 1984, by construction of an interceptor sewer through the City of Plymouth and into the Metropolitan Plant collection system. The newly issued NPDES Permit requires plant phaseout by the end of 1984.

MEDINA PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual Average	Maximum Month
Wastewater Flow, MGD BOD5 Loading, Ib/day TSS Loading, Ib/day COD Loading, Ib/day	0.132 135 140 255	0.224 360 490 300
Primary Aeration Pond		
Detention Time, Days BOD5, 1b/Day/1000 Cu. Ft.	12.5 0.6	7.4
Final Aeration Pond		
Detention Time, Days	12.5	7.4
Seepage Ponds	· ·	
Detention Time, Days* BOD5 Loading, lb/acre/day	72 1.8	42 3.7

*Calculated assuming zero percolation and evaporation.

MEDINA WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

NO SURFACE DISCHARGE EVAPORATION AND PERCOLATION

Unit Description

Liquid Phase

- 1. 2.
- Screening Primary Aerated Pond Final Aerated Pond Absorption Pond
- 3.
- 4.

Legend

Liquid Flow Solids Transfér Existing Process Units Future Process Units

Month	Wastewater Flow, MGD	Temperature °C	780D mg/1	TSS mg/1	pH Range	KJN mg/1	Total-P mg/l	NH3 mg/l	COD mg/l
JANUARY	0.095	12	203	224	7.6-7.7	59.0	7.8	27.2	408
FEBRUARY	0.115	12	116	111	7.7-7.8	48.5	5.5	20.1	255
MARCH	0.173	12	101	106	7.8-7.8	24.4	3.0	12.0	197
APRIL	0.228	12	88	97.	7.7-7.9	15.0	2.9	5.6	155
MÁY	0.255	12	78	173	7.7-7.8	15.4	3.5	5.3	208
JUNE	0.212	13	229	194	7.6-7.8	31.8	4.5	12.8	315
JULY	0.150	15	115	84	7.6-7.7	25.6	3.2	13.9	201
AUGUST	0.111	16	105	136	7.5-7.7	25.8	3.5	11.6	195
SEPTEMBER	0.117	15	109	91	7.5-7.7	35.5	4.2	17.4	222
OC TO BER	0.116	14	130	124	7.5-7.6	42.2	4.8	17.1	242
NOVEMBER	0.106		107	99		28.9	3.5	12.6	203
DECEMBER	0.113	***	81	80		28.2	3.5	16.2	173
1982 AVERAGE	0.149	13	122	127	7.5-7.9	31.7	4.2	14.3	231
1981 AVERAGE	0.104	14	128	132	7.6-7.9				236

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: ______

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: Medina

Month	TBOD mg/1	C80D mg/1	COD mg/1	TSS mg/l	FECAL COLI Geo Mean no/100 ml	TURB NTU	KJN mg/l	NH3 mg/1	ND2 mg/1	N03 mg/1	Total P mg/1	C12 Used 1bs	C12 Res mg/1	D0 mg/1	pH Range	Remo BOD	val <u>TS</u> S
JANUARY	19	17	84	19		12	25.0	18.3	0.02	0.10	3.5		• [•]	3.0	7.5-7.7	92	91
FEBRUARY	11	11	67	12	1	-7	24.9	17.6	0.03	0.16	2.8			3.1	7.6-7.7	91	89
MARCH	12	16	92	11	•	9	17.9	8.7	0.23	0.61	3.0			3.1	7.5-7.8	84	90
APRIL	20	19	65	19	1	10	10.6	5.8	0.18	0.51	1.1			5.1	7.8-7.8	79	80
MAY	24	16	61	20	+	8	10.8	5.2	0.25	0.37	2.0			4.2	7.6-7.8	80	89
JUNE	17	13	62	16	1	9	15.4	10.1	0.03	0.09	2.3			2.8	7.6-7.8	94	92
JULY	17	14	62	16		10	22.5	13.0	0.09	0.19	3.3			3.1	7.4-7.8	68	81
AUGUS T	İ1	20	60	10		9	20.5	13.8	0.15	0.09	4.1			3.7	7.5-7.7	81	92
SEPTEMBER	8	8	36	2		5	22.6	15.6	0.02	0.05	3.6			3.4	7.5-7.7	93	98
OCTOBER	19	8	47	19		4	14.3	7.8	0.13	1.53	2.8	1		3.1	7,4-7.6	94	84
NOVEMBER	21	16	46	13		5	12.4	8.4	0.14	1.20	1.7			2.9	7.4-7.5	86	87
DECEMBER	26	15	51	13		6	15.2	12.1	0.10	0.85	2.3			2.9	7.3-7.4	81	84
1982 AVG.	17	14	61	14		8	17.7	11.4	0.12	0.48	2.7			3.4	7.3-7.8	87	88
1981 AVG.	26		65	18		9	13.4	8.2	0.31	0.57	3.2			3.4	6.5-7.9	80	86

METROPOLITAN WASTEWATER TREATMENT PLANT

Plant History and Description

The existing Metropolitan Plant has been constructed in several stages. The original 1938 primary treatment was designed on the basis of an average annual wastewater flow of 134 mgd. It included pretreatment by screening and grit removal, primary treatment by sedimentation, intermediate treatment by chemical precipitation, effluent filtration and chlorination. The sludge disposal system included chemical conditioning (lime and ferric chloride), vacuum filtration, incineration, and land disposal of ash.

In the early 1960's, construction was initiated on the second stage of the plant. In 1966, the secondary treatment portion of the plant was placed into operation. This expansion was based on an annual average flow of 218 mgd and was designed to operate as a high rate activated sludge process. It consisted of four aeration tanks, three aeration compressors, twelve final sedimentation tanks, additional chlorination facilities, and a new chlorine contact effluent channel. The original sludge disposal system was expanded by construction of new gravity sludge thickeners, sludge holding tanks, and additional chemical conditioning, vacuum filtration and incineration facilities.

Stage Three was placed into operation in 1972. This phase added four more aeration tanks and two more air compressors to provide enough capacity to operate the step aeration activated sludge process. Incremental feed pipes were required as modification to the original aeration tanks. This completed the West Battery activated sludge system. One new incinerator was also constructed during this time to allow additional sludge disposal capacity.

By the mid 1970's, the fourth stage of construction was initiated to meet the following objectives: (1) to protect the plant from flood damage; (2) to maintain full secondary treatment during flood periods; (3) to provide a minimum of primary treatment and disinfection for all dry and wet weather flows that reached the plant; (4) to provide secondary treatment capacity based on secondary treatment standards as defined by the 1972 Water Pollution Control Act Ammendments (PL92-500); (5) to provide solids processing capacity to handle the increased sludge generated by the liquid treatment expansion; and (6) to minimize energy consumption for solids processing at the plant.

By 1978, the bulk of the liquid treatment construction program had been completed. Completed projects included the flood protection facility, effluent pumping station, east battery pretreatment (screening and grit removal), east battery primary settling tanks and east battery aeration and final settling tanks.

By 1980, the first portion of the solids processing facilities was completed. These projects included floatation thickening for secondary sludge, sludge storage, thermal conditioning, return liquor treatment facilities and filter press dewatering. The sludge incineration and energy recovery facilities were behind schedule at this time. To meet air pollution control requirements, scrubbers were installed on the F & I No. 1 incinerators. Further, to allow temporary shutdown of F & I No. 2 incinerators, an interim land disposal program was implemented. This required construction of sludge loadout facilities and asphalt sludge storage pads and composting area.

The remaining solids processing facilities were nearing completion and had begun the start-up phase by late 1982. These projects include the roll presses for primary sludge dewatering, the four modified F & I No. 2 sludge incinerators, sludge dryers, energy recovery facilities, air pollution control facilities, and the distributed digital acquisition and control system.

On December 14, 1982, the MPCA approved a new five-year permit for the Metropolitan Plant as a reissuance of the old permit which expired on June 30, 1982. Whereas, the old NPDES Permit contained provisions to attain and maintain compliance with secondary treatment standards, the new permit considered effluent limitations and compliance schedules to meet water quality standards for the Mississippi River. The new permit, retroactive to July 1, 1982, immediately resulted in the following changes to effluent limitations:

- Effluent BOD limitations change from 25 mg/L to 24 mg/L. The effluent BOD limitations now applies to CBOD rather than TBOD;
- 2. A turbidity limitation of 25 NTU is required;
- A minimum dissolved oxygen limitation of 7 mg/L for river flows less than 7,000 cfs and river D0 values less than 6.0 mg/L upstream, and less than 5.5 mg/L downstream during the period June through September;
- 4. Interim limitations on cyanide, cadmium, copper, and mercury.

All of the above limitations are presently being met under existing conditions. Meeting dissolved oxygen limitations requires that the effluent pumping station be operated as necessary to increase the dissolved oxygen of the effluent.

In June, 1985, advanced secondary treatment standards become applicable upon completion of the East Battery Expansion. The effluent CBOD limitations decreases to 18 mg/L as a monthly average, and 36 mg/L as a weekly (7-consecutive day) average for the summer months. A monthly effluent limitation on ammonia nitrogen of 8 mg/L becomes effective for the summer months.

On January 1, 1986, final effluent limitations for cyanide, cadmium, copper, and mercury become applicable and on June 1, 1986, an effluent chlorine residual limitation of 0.026 mg/L must be achieved and maintained.

Effluent CBOD limits scheduled for 1985 were met during the summer months of 1982 and, in August, 1982, the future ammonia limitation was met when biological ammonia removal was provided in the east secondary treatment facilities. Completion of the East Battery Expansion should provide greater treatment reliability and the industrial pretreatment program will assist in providing compliance with cyanide and metals limitations. Addition of effluent dechlorination facilities or an alternate method of disinfection must be implemented to achieve compliance with future chlorine residual limitations.

Performance

Plant flow averaged 208 mgd in 1982, somewhat higher than 202 mgd in 1981. Effluent quality during 1982 improved from that of 1981. Average effluent BOD and TSS concentrations during 1982 were 13 mg/L and 11 mg/L as compared to 1981 average effluent BOD and TSS values of 19 mg/L and 19 mg/L. This is the third consecutive year that the Metropolitan Plant performance has shown improvement. This improvement becomes significant when 82 percent of all wastewater generated in the Metropolitan Area is treated to this level. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.'

Effluent Concentration, mg/1

	50% of Time					75% o	f Time	2	90% of Time			
	197 9	1980	1981	1982	1979	1980	1981	1982	1979	1980	1 9 81	1982
BOD	- 30	20	14	- 10	53	29	24	15	71	44	36	22
TSS	43	15	10	7	85	33	24	12	1 37	60	47	21

Future

The Metropolitan Plant will continue to be the largest treatment facility in the Metropolitan Disposal System. Construction of additional aeration and final sedimentation tanks for the East Battery activated sludge system is underway and is expected to be completed in early 1985. Future projects include: (1) disinfection improvements or changes to meet a chlorine residual standard by 1986; (2) retrofit of existing facilities to be compatible with the distributed digital acquisition and control system; and (3) rehabilitation of older plant systems such as west pretreatment, west primary, west secondary, etc.

METROPOLITAN PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual <u>Average</u>	Maximum Month
Wastewater Flow, MGD Flow-East, MGD (1) Flow-West, MGD (2) BOD Loading, 1b/day TSS Loading, 1b/day	208 176 32 350,000 420,000	239 204 35 440,000 600,000
Primary Sludge, ton/day Secondary Sludge, ton/day Total Sludge (with recycle), ton/day	184 114 298	220 140 360
Bar Screens		
East Battery No. of Units Unit Flow, MGD West Battery No. of Units Unit Flow, MGD	4:2 42 0.6 50	4.8 42 0.7 50
<u>Grit Tanks</u>		
East Battery No. of Units Hor. Velocity, fps Unit Flow, MGD West Battery No. of Units Hor. Velocity, fps Unit Flow, MGD	4.2 0.4 42 1.2 1.0 25	4.8 0.4 42 1.4 1.0 25
Primary Sedimentation		
East Battery No. of Units Detention Time, Hr. Overflow Rate, gpd/Sq. Ft. West Battery No. of Units Detention Time, Hr. Overflow Rate, gpd/Sq. Ft.	7.9 3.0 930 5.6 8.0 350	8.0 2.6 1,060 4.9 6.4 440
Activated Sludge-Aeration		
East Battery Flow, MGD No. of Units F:M Ratio, day-1	97 3.8 0.22	112 4.0 0.27

Parameter	-	Annual <u>Average</u>		Maximum _Month
BOD Load, 1b/Day/1000 Cu. Ft. Air Use, Cu. Ft./1b. BOD Detention Time, Hr. West Battery		47 1,700 4.7		62 2,600 4.3
Flow, MGD No. of Units F:M Ratio, day-1 BOD Load, 1b/Day/1000 Cu. Ft. Air Use, cf/1b. BOD Detention Time, Hr.		111 4.0 0.23 49 1,800 4.3		127 4.3 0.30 59 2,100 4.0
Final Sedimentation			. ·	
East Battery No. of Units Detention Time, Hr. Overflow Rate, gpd/Sq. Ft. Solids Load, psf/day		8.8 3.5 560 10	•	9.0 3.1 630 14
No. of Units Detention Time, Hr. Overflow Rate, gpd/Sq. Ft. Solids Load, psf/day		11.6 4.0 490 9		12.0 3.6 540 11
Chlorination				
Chlorine Use, lb/day (3) Chlorine Dose, mg/L (3) Contact Time, Minutes		8,500 4.6 28		14,000 7.3 24
Gravity Thickening				
Solids Loading, psf/day Overflow Rate, gpd/Sq. Ft. Sludge Concentration, % TS		20 430 6.5	· ·	26 470 6.4
Flotation Thickening	· · ·		κ.	• •
No. of Units Solids Loading, psf/day Air:Solids Ratio Sludge Concentration, % TS	• • • • •	10.9 9.4 0.03 3.3		12.7 11 0.03 3.0
Thermal Conditioning	•			
No. of Units Feed Concentration, % TSS TSS Solubilization, % Decant Tank Underflow, % TSS		3.0 3.9 42 14	•	3.6 4.1 46 14

Parameter	Annual Average	Maximum Month
Chemical Conditioning (4)		
Vacuum Filters (F & I No. 1)	<u>^</u>	10
$Fecl_{2} pocc_{2} f Of D_{2}S_{2}S_{2}$	2.6	10 31
Vacuum Filters (F & I No. 2)	200	
Lime Dose, % of D.S.S.	27	38
FeCL3 Dose, % of D.S.S.	11	15
<u>Vacuum Filters</u>		
F & I No.]		
No. of Units	4.4	5.0
Filter Rate, psf/Hr. (5)	3.3	3.6
Cake Solids, % TS (6)	28	30
Dry Sludge, IPD E & I No. 2	87	108
No. of lits	5.6	6 9
Filter Rate, psf/Hr. (5)	2.0	1.9
Cake Solids, % TS (6)	25	26
Dry Sludge, TPD	90	110
Filter Presses		
No. of Units	2.6	[′] 3.1
Dry Sludge, TPD	41	87
Cake Solids, % TS	48	45
Incineration		
F & I No. 1 (7)		
No. of Units	2.0	1.7
Auxiliary Fuel Use, MMBtu/TDS	6.5	5.8
Dry Sludge, TPD	73	108
wet Loading, pst/Hr. F & T No. 2 (9)	6.0	6.5
No. of Units		
Auxiliary Fuel Use, MMBtu/TDS		
Dry Sludge, TPD		-
Wet Loading, psf/Hr.		

NOTES:

(1) Flow to East Pretreatment and East Primary.

(2) Flow to West Pretreatment and West Primary.

(3) Average for months when disinfection was required, i.e. March-October, 1982.
(4) Polymer conditioning for roll presses is not shown, because these units began operation in late 1982.

(5) Filter rate is based on dry sludge solids.

(6) Cakes solids includes chemicals.

(7) Averages are based on months of operation, i.e. January-September, 1982.

(8) Incinerators in F & I No. 2 were shut down for modifications in March, 1981.

METROPOLITAN WASTEWATER TREATMENT PLANT FLOW DIAGRAM

133

Month	Wastewater Flow, MGD	Temperature °C	TBCD mg/l	TSS mg/l	pH Range	KJN mtg/1	Total-P mq/l	NH3 mg/1	COD mg/1
JANUARY	179	13	215	239	6.2-8.4				_441
FEBRUARY	185	13	214	253	6.5-7.7				438
MARCH	215	12	1 85 `	221	7.1-8.2				380
APRIL	236	12	171	194	7.1-7.6				375
MAY	239	15	169	229	.7,0-9,4				344
JUNE	214	16	187	251	6.8-7.5				407
JULY	212	19	189	254	6.8-7.5		4.4		397
AUGUST	230	21	231	316	6.8-7.8		5.0		448
SEPTEMBER	230	21	217	277	6.8-7.5		4.7	16.1	448
OCTOBER	194		206	211	6.2-9.2	31.1	5.2	14.6	406
NOVEMBER	182	17	210	206	5.7-8.5	29.7	4.8	16.6	392
DECEMBER	177	15	246	245	6.6-8.7	30.9	5.2	18.2	499
1982 AVERAGE	208	16	203	241	5.7-9.4	30.6	4.9	16.4	415
1981 AVERAGE	202	17	208	230	5.4-9.0				413

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: <u>Metropolitan</u>

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Metropolitan</u>

					FECAL COLI						Total	C12	C12			8	í –
	TBOD	CBOD	COD	TSS	Geo Mean		KJN	NH3	N02	ND3	P	Used	Res		pH	Remo	val
MONTIN MIPOES	_mg/1	mg/1	_ <u>mg/1</u>	<u>mg/1</u>		1110	<u>mg/1</u>	(mg/1	<u> (ng/).</u>	Ing/1	mg/1	108	(mg/1	1 119/1	nange	000	133
LIMIT	24	24		30	200										<u>6.</u> 5-8.5		
JANUARY	27	14	62	7		4	21.5	15.5	0.87	4.45	2.0			2.6	7.3-8.1	93	97
FEBRUARY	30	19	85	19		7	22.9	14.8	0.62	3.40	2.4			2.7	7.2-8.3	91	93
MARCH	30	21	102	27	2	13	21.3	14.4	0.92	2.05	1.8	7252	2.0	3.8	7.2-8.1	89	88
APRIL	13	10_	77	7	. 3	6	21.3	16.2	0.25	0.48	1.6	6953	1.7	3.4	7.2-8.1	94	96
MAY	19_	10	73	8	8	5	20.0	14.4	0.69	0.24	1.3	5813	1.3	3.2	7.2-8.3	94	96
JUNE	31	18	99	17	32	<u>11</u>	23.1	15.1	1.44	0.17	2.1	6780	1.6	2.6	7.1-8.4	90	93
JULY	.26	11	66	10	56	6	18.6	13.0	2.35	0.31	1.7	8594	2.6	2.9	7.1-8.2	94	96
AUGUST	15	8	55	4.	13	4	12.9	7.7	1.88	3.98	2.2	14387	2.5	3.4	6.9-8.0	<u>9</u> 6	99
SEPTEMBER	17	11	73	11	20	7	20.9	13.6	0.78	1.65	1.9	<u>986</u> 0	2.5	3.5	7.1-8.1	95	96
OC TOBER	21	11	81	8	62	5	24.1	15.7	0.86	0.32	2.1	8026	2.6	4.3	6.9-7.8	95	96
NOVEMBER	20	11	78	8		5	24.8	18.6	0.72	0.38	2.4			3.5	7.0-8.3	95	96
DECEMBER	20	11	75	8		•3	24.4	19,5	0.55	1.49	2.2			17	7.1-7.6	96	97
1982 AVG.	22	13	77	11	24	6	21.3	14.9	0.99	1.58	2.0	8458	2.1	3.1	6.9-8.4	95	95
1981 AVG.	19		77	19	60	10	19.2	12.9	0.85	2.27	· 2.0	7823	2.2	2.6	6.6-8.3	91	92

		•									_		
MONTH	Cu mg/l	Cr mg/l	Zn mg/1	Pb mg/l	Cd mg∕l	Hg ug/l	CN mg/l	As ug/l	Sn mg∕1	Ni mg/l	Phenol ug/l	Fe mg/l	PCB ug/1
NPDES Limit*	0.140				0.030	4.0	0.193						
January	<0.03	<0.05	0.13	<0.05	<0.008	<0.20	0.072	1.8	<0.8	0.12			
February	0.03	<0.06	0.11	<0.05	<0.008	<0.13	0.053	<1.0	<0.8	0.11			
March	0.04	<0.07	0.15	<0.08	<0.009	<0.10	0.069	<1.3	<0.8	0.12			
April	<0.02	<0.06	0.20	<0.05	<0.007	<0.14	0.045	<1.0	<0.8	0.09			
May	<0.01	<0.05	0.10	<0.05	<0.008	<0.20	0.056	<1.0	<0.8	<0.07			
June	0.02	<0.05	0.14	<0.05	<0.008	<0,22	0.092	<1.0	<0.8	0.08			
July	<0.02	<0.05	0.10	<0.05	<0.008	<0.37	0.101	<1.0	<0.8	0.08		_	
August	0.02	<0.12	0.13	<0.08	<0.008	<0.27	0.079	<1.0	<0.8	0,08		·	
September	0.03	<0.05	0.14	<0.05	<0.005	<0.28	0.078	<1.2	<0.8	0.10			
October	0.02	<0.06	0.08	<0.05	0.002	<0.20	0.076	<1.0		0.11	3.2	0.24	0.24
November	0.03	<0.07	0.09	<0.05	0.002	<0.41	0.057	<1.0		0.11	3.2	0.19	0.10
December	0.02	<0.06	0.12	<0.05	0.001	<0.20	0.045	1.5		0.09	14.6	0.19	0.10
1982 Avg.	<0.02	<0.06	0.12	<0.06	<0.006	<0.23	0.069	<1.2	<0.8	<0.10	7.0	0.21	0,15

1982 EFFLUENT DATA TREATMENT PLANT <u>Metropolitan</u>

* Limits are median values.

139

MONTH	Cu mg/l	Cr mg/l	Zn mg/l	Pb mg/l	Cd mg/l	Hg ug/l	CN mg/l	As ug/l	Sn mg∕l	Ni mg/l	Phenol ug/l	Fe mg/1	PCB ug/l
January													
February													
March													
April											•		
May					·						<i>2</i>		
June													
July													
August													
September													
October	0.20	0.22	0.32	<0.07	0.015	<0.52	<0.064	1.2		<0.12	58.4	2,43	0.37
November	0.21	0.24	0.34	<0.08	0.012	<0,59	0,108	<1.0		0.12	58.4	1.80	0.34
December	0,20	0.24	0.36	<0.07	0.015	<0.52	<0.073	1.7		<0.11		1.97	0.30
1982 Avg.	0.20	0.23	0.34	<0.07	0.014	<0.54	<0.082	<1.3		<0.12	58.4	2.07	0.34

1982 INFLUENT DATA TREATMENT PLANT <u>Metropolitan</u>

ROSEMOUNT WASTEWATER TREATMENT PLANT

Plant History and Description

The Rosemount Plant was designed by Banister, Short, Elliot, Hendrickson, and Associates and constructed in 1973. The plant has a design capacity of 0.6 mgd.

Liquid treatment consists of physical-chemical processes, dual media filtration, activated carbon column absorption and chlorination. Plant effluent is discharged to the Spring Lake area of the Mississippi River.

Solids processing facilities consist of sludge storage and sludge hauling to the Metropolitan Plant Interceptor System. The plant is presently operating at about 50 percent of capacity and subject to secondary treatment limits, and a phosphorus limit of 1 mg/L.

Performance

Plant flow averaged 0.31 mgd in 1982, nearly equal to 0.30 mgd in 1981. Average plant effluent quality was 16 mg/L BOD, 2 mg/L TSS and 0.3 mg/L P. Plant performance was excellent throughout the year with one NPDES Permit violation (effluent pH) occurring in September. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/1

		50% o	f Time	1		75% o	f Time			90% o	f Time	:
	1979	1980	1981	1982	1979	1980	1981.	1982	1979	1980	1981	1982
BOD	10	11	12	15	15	14	15	18	20	20	19	24
TSS	2	2	1	1	3	3	- 2	2	5	3	3	4

Future

The plant was designed as a demonstration project and uses equipment intensive unit processes. As a result, the plant's useful life could be expected to be on the order of 10 to 15 years. For this reason, the plant is nearing the end of its useful life. The 201 Facility Plan recommended replacement of the physical-chemical facility with a biological treatment plant sometime during the 1980's. It is expected that a replacement plant will be constructed in the mid-1980's.

ROSEMOUNT PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual Average	Maximum Month
Wastewater Flow, MGD	0.31	0.40
BOD Loading, lb/day	440	490
TSS Loading, lb/day	620	700
Phosphorus Loading, lb/day	19	21
COD Loading, lb/day	1,100	1,200
Solids Contact Clarifier (One in Use)		
Surface Loading Rate, gpd/Sq. Ft.	700	900
TSS Removal, %	89	92
Phosphorus Removal, %	93	95
COD Removal, %	77	80
<u>Dual Media Filters</u> (Four in Use)		
Surface Loading Rate, gpm/Sq. Ft.	1.1	1.4
TSS Removal, %	59	80
Activated Carbon Columns (One Train)		
Surface Loading Rate, gpd/Sq. Ft.	4.3	5.6
COD Loading Rate, lb/day	190	290
COD Removal, %	28	60
TSS Removal, %	82	85
Sludge Production		
Volume, gpd	4,000	4,800
Quantity, lb/day	3,400	4,000
Concentration, % TS	10	12

ROSEMOUNT WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

OEC

Month	Wastewater Flow, MGD	Temperature °C	TB0D mg/1	TSS mg/1	pH Range	KJN mg/1	Total-P mg/l	NH3 mq/1	COD mg/1
JANUARY	0.28	12	183	215	7.0-8.7	60.5	8.6	29.1	<u>399</u>
FEBRUARY	0.31	11	149	230	6.8-8.1	55.0	7.0	26.5	410
MARCH	0.40	10	138	178	6.2-7.9	28.4	5.8	22.4	329
APRIL	0.32	10	183	24.3	6.6-7.9	81.4	7.8	28.6	403
MAY	0.29	12	189	250	6.8-7.7	49.0	8.5	26.9	428
JUNE	0.29	13	170	256	6.0-11.0	47.2	7.5	25.8	474
JULY	0.29	15	174	279	6.8-7.7	39.5	6.7	23.7	459
AUGUST	0.31	17	170	246	7.1-7.8	42.0	7.2	23.9	438
SEPTEMBER	0.32	17	143	230	7.2-7.9	46.0	7.0	28.1	396
OCTOBER	0.31	17	180	252	6.1-8.0	50.0	8.0	28.4	441
NOVEMBER	0.32	15	172	261	7.0-9.0	44.0	7.5	31.1	438
DECEMBER	0.32	13	168	227	6.8-8.0	44.5	7.3	30.2	435
1982 AVERAGE	0.31	14	168	2 39	6.0-11.0	49.0	7.4	27.1	421
1981 AVERAGE	0.30	14	177	221	6.8-8.5				423

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: <u>Rosemount</u>

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: Rosemount

	_				FECAL COLI	7100	1. 14	ML-	100	10-	Total	C12	C12	m		Penne	
Manth	1800 ma/1	CBUD mg/1	CUD mg/1	155 mg/1	Geo Mean no/100 ml	NTU	KJN mg/l	NH3 mg/1	nu2 mg/1	nu3 mg/1	- mg/1	lbs	nes mg/l	mg/1	Range	800	TSS
NPDES LIMIT	25	25		30	200	25					1.0				6.5-8.5		
JANUAR Y	18	18	45	3		6	42.1	32.4	0.62	0.70	0.3			8.5	6.8-8.2	90	99
FEBRUARY	16	16_	54	2		ş	36.5	28.0	0.88	1.63	0.2			8.6	6.6-8.0	89	99
MARCH	12	12	31	1	1	3	26.9	22.1	0.17	1.63	0.2	31	2.2	8.7	6.5-7.4	91	99
APRIL	19	19	55	2	2	6	37.1	30.2	0.68	2.36	0.4	33	2.0	8.3	6.7-8.2	90	99
MAY	15	15	36_	2	1	5	37.1	30.1	0.34	4.28	0.3	32	1.6	5.3	6.9-7.6	92	99
JUNE	20	15	48	2	1	7	35.5	26.8	0.30	1.02	0.4	43	1.3	4.8	6.7-7.6	91	99
JULY	17_	14	40	3	2	4	32.4	24.7	0.44	1.70	0.2	42	1,4	4.9	6.8-7.5	92	99
AUGUS T	19	16	41	2	5	4	33.6	25.0	0.81	3,15	0.2	38	1.4	5.1	6.9-7.6	90	99
SEPTEMBER	22	21	51	2	4	5	38.6	31.2	0.56	3.01	0.3	40	1.4	4.7	5.3-8.1	85	99.
OCTOBER	24	20	46	2	4	5	36.0	30.4	0.03	0.16	0.3	50	1.6	4.9	6.6-7.9	89	99
NOVEMBER	15	14	39	2		4	36.2	32.9	1.10	2.20	0.2			4.8	6.6-8.0	92	99
DECEMBER	13	12	32	2		4	35.8	33.7	0.44	2.91	0.2			6.3	6.6-7.6	93	99
1982 AVG.	18	16	43	2	2	5	35.6	29.0	0.53	2.06	0.3	39	1.6	6.2	5.3-8.2	90	99
1981 AVG.	14		40	2	3	4	32.8	25.9	0.50	0.78	0.2	42	1.9	6.1	6.5-8.4	92	99

148

.

SAVAGE WASTEWATER TREATMENT PLANT

Plant History and Description

The original Savage Treatment Plant was designed by Ellison-Philstrom, Inc. and constructed in 1963 with a capacity of 0.36 mgd. Interim improvements to the plant were designed by RCM and construction was completed in 1979. These plant modifications included the addition of a new synthetic media trickling filter, a new chlorine contact tank and a new sludge holding/decant tank. The current plant design capacity is 0.72 mgd. The plant serves the community of Savage in Service Area No. 4.

Liquid treatment consists of screening, influent pumping, primary clarification, a roughing filter, a synthetic media high-rate trickling filter, final clarification, chlorination and discharge to the Minnesota River.

Solids processing consists of a sludge holding and decant tank, anaerobic digestion, and sludge hauling to another plant for further treatment or sludge landspreading. The plant is presently operating at about 67 percent of its design capacity and is subject to secondary treatment limits.

Performance

Plant flow averaged 0.48 mgd during 1982, slightly higher than 0.40 mgd in 1981. Average plant effluent quality was 8 mg/L BOD and 4 mg/L TSS. Plant performance was good throughout the year with one NPDES Permit violation. The permit violation consisted of exceeding weekly BOD limits during the month of November and was the result of an industrial discharge. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/1

		50% o	fTime		÷ .	75% o	f Time	1	90% of Time				
	1979	1980	1981	1982	1979	1980	1981	1982	1979	1980	1981	1982	
BOD	26	5	9	6	41	7	12	9	59	9	15	20	
TSS	10	4	5	2	18	7	12	5	28	15	17	11	

Future

The long-term plan for the Savage Plant is to phase it out of service and divert the flow to the Seneca Plant. This is projected to occur in the late 1980's as the plant reaches its capacity.

SAVAGE PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual Average	Maximum <u>Month</u>
Wastewater Flow, MGD BOD Loading, 1b/day TSS Loading, 1b/day COD Loading, 1b/day Sludge Production, 1b/day	0.48 610 700 1,120 280	0.62 910 1,010 1,400
Grit Removal	•	
Overflow Rate, gpd/Sq. Ft.	26,700	34,400
Primary Sedimentation		
Detention Time, Hr. Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow, gpd/Sq. Ft.	1.5 6,960 1,260	1.2 8,990 1,630
Trickling Filter No. 1		
Hydraulic Loading, gpd/Sq. Ft. (Inc. Recir.) Organic Loading, 1b. BOD5/Day/1000 Cu. Ft. (Assume 20% Primary BOD Removal)	<u>+400</u> <u>+45</u>	
Trickling Filter No. 2		
Hydrualic Loading, gpd/Sq. Ft. (Inc. Recir.) Organic Loading, 1b. BOD5/Day/1000 Cu. Ft. (Assume 50% Filter No. 1 BOD Removal)	<u>+3,000</u> <u>+</u> 10	
Final Sedimentation		
Detention Time, Hr. Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	2.4 5,000 530	1.8 6,460 680
Chlorination	•	•
Contact Time, Minutes Chlorine Use, lb/day	73 19	56 30
Sludge Holding Tank		
Detention Time, Days	<u>+</u> 11	
Anaerobic Digester		
Detention Time, Days Solids Loading, lb/Cu. Ft./Day	+50 +0.05	
Sludge Transport		
Volume, Gal./Day	690	

150

SAVAGE WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

Month	Wastewater Flow, MGD	Temperature °C	TBOD mg/l	T\$\$ mg/l	pH Range	KJN mg/1	Total-P mg/l	NH3 mg/l	COD mg/1
JANUARY	0.41	10	267	210	2.0-11.6	27.4	5.0	17.1	409
FEBRUARY	0.42	9	131	179	2.0-12.4	31.1	8.4	17.7	274
MARCH	0.56	8	129	126	6.4-10.6	19.2	7.4	12.2	200
APRIL	0.62	8	97	107	6.4-9.4	20.6	4.3	12.3	207
MAY	0.58	12	118	120	6.4-9.8	21.5	5,9	11.4	216
JUNE	0.44	14	119	160	6.4-9.6	27.0	7.4	14.1	315
JULY	0.42	16	155	179	6.0-12.0	27,8	5,5	15.0	272
AUGUS T	0,47	17	155	179	5.2-12.8	30,7	11.6	16.6	29 1
SEPTEMBER	0.45	17	145	225	6.0-13.4	33,2	5.5	18.4	358
OC TOBER	0.44	15	155	197	0.2-13.6	30,5	6.2	14.4	305
NOVEMBER	0,49	13	170	182	4.2-12.8	27.5	4.9	15.6	259
DECEMBER	0.49	11	177	175	2.0-10.0	27.1	4.8	16.9	264
1982 AVERAGE	0.48	13	151	- 170	0.2-13.6	27.0	6.4	15.1	281
1981 AVERAGE	0.40	15	153	234	4.0-12.2				336

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Savage

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Savage</u>

Month	TBOD	C800	COD mg/l	TSS Ra∕l	FECAL COLI Geo Mean no/100 ml	TURB	KJN mo∕l	NH3 na/1	NO2 mg/1	N03 mg/1	Total P mg/l	C12 Used 1bs	C12 Res mg/1	D0 mg/1	pH Range	Remo BOD	val TSS
NPDES	25	25		30	200	25									6.5-8.5		
JANUARY	14	14	44	5		4	4.4	2.2	0.53	7.10	3.3			9.7	7.4-7.9	95	9 8
FEBRUARY	7	6	47	2		3	4.6	1.0	0.19	10.70	3.9			10.1	7.4-7.9	96	99
MARCH	6	6	46	3	5	4	2.8	1.4	0.11	7.06	4.7	28	2.2	10.0	7.4-7.8	96	98
APRIL	7	8	39	2	3	4	3.0	1.3	0.10	6.60	3.3	30	2.0	10.1	7.4-7.7	92	98
MAY	6	7	33	3	19	3	3.0	0.5	0.09	6.13	4.3	21	1.9	9.0	7.4-7.8	94	97
JUNE	11	7	75	11	10	10	3.5	0.9	0.07	9.54	4.5	17	2.0_	8.2	7.4-7.8	94	93
JULY	8	7	41	10	57	8	2.1	0.2	0.02	11.33	3.9	14	1.9	8.0	7.4-7.8	96	94
AUGUST	9	8	37	3	35	3	2.2	0.3	0.03	14.47	4.9	12	1.9	8.1	7.4-7.8	95	99
SEPTEMBER	6	5	31	2	129	4	3.1	0.2	0.02	9.74	3.5	15	1.9	8.0	7.4-7.8	97	99
OCTOBER	15	14	57	2	11	4	11.3	5.1	0.13	7.14	3.4	16	1.9	8.6	7.4-7.8	91	99
NOVEMBER	17	16	58	7		4	8.4	4.0	0.70	6.20	3.5			9.2	7.4-7.9	90	96
DECEMBER	7	6	24	1		3	1.7	0.4	0.29	8.09	3.0			9.1	7.4-7.8	97	99
1982 AVG.	9	8	44	4	34	5	4.1	1.5	0.19	8.67	3.8	19	2.0	9.0	7.4-7.9	94	97
1981 AVG.	10		48	8	39	5	4.2	0.4	0.09	12.27	4.0	19	1.8	8.8	7.2-8.2	93	97

SENECA WASTEWATER TREATMENT PLANT

Plant History and Description

The Seneca Plant was designed by Black and Veastch Consulting Engineers, and was placed into operation in 1972, with a design capacity of 24 mgd.

Liquid treatment consists of screening, grit removal, primary sedimentation, complete mix activated sludge aeration, final clarification, chlorination, and discharge to the Minnesota River.

Solids processing consists of waste activated sludge air floatation thickening, combined sludge storage, chemical conditioning, vacuum filtration dewatering, and incineration. A polymer conditioning system and belt filter press dewatering system has been added during 1982-1983 and will become operational in mid-1983. The plant is presently operating at about 65 percent of its design capacity and is subject to secondary treatment limits.

Performance

Plant flow averaged 14.7 mgd during 1982, considerably higher than 13.8 mgd in 1981. Average plant effluent quality was 18 mg/L BOD and 19 mg/L TSS. Plant performance was good throughout the year with one NPDES Permit violation of effluent pH range. Statistical analysis of data show the following trend in effluent BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/1

•	-	50% o	f Time	•		75% o	fTime	2		90% o	f Time	
	1979	1980	1981	1982	1979	1980	1981	1982	197 <u>9</u>	1980	1981	1982
BOD	14	14	19	17	18	20	22	21	27	25	30	25
TSS	13	15	19	19	24	19	23	23	32	23	28	26

Future

The Seneca Plant is one of the Commission's permanent regional plants. Space is available for future plant expansion and advanced treatment as needed. Additional sludge dewatering facilities have been added and other sludge processing improvements are planned.

SENECA PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual Average	Maximum Month
Wastewater Flow, MGD BOD Loading, 1b/day TSS Loading, 1b/day	14.8 27,200 25,000	15.9 32,500 34,600
Grit Chambers		
Detention Time, Minutes	25	23
Primary Clarifiers	· · · · · ·	
Surface Overflow Rate, gpd/Sq. Ft. Weir Overflow Rate, gpd/Lin. Ft. Detention Time, Hr. Removal Efficiency, % BOD Removal Efficiency, % TSS	320 6,700 6.8 28 72	340 7,200 6.3 39 74
Aeration Tanks (Two)	•	
BOD Loading, 1b/Day/1000 Cu. Ft. F:M Ratio, 1b/Day/1b. MLSS Detention Time, Hr.	92 0.58 2.4	102 0.69 2.2
Final Clarifiers (Two)-		
Surface Overflow Rate, gpd/Sq. Ft. Weir Overflow Rate, gpd/Lin. Ft. Detention Time, Hr.	600 9,900 4.5	650 10,600 4.2
Chlorination		
Chlorine Dose, mg/L Chlorine Feed Rate, lb/Day Contact Time, Minutes	4.3 520 36	5.0 610 34
Flotation Thickeners		. .
Solids Loading, psf/Day	12	15
Vacuum Filters*		
Lime Dose, % Ferric Chloride Dose, % Filtration Rate, psf/Hr. Cake Solids, %	30 8 3.2 23.5	40 10 3.5 24.7

Parameter	Annual Average	Maximum <u>Month</u>
<u>Incinerators</u> *		
Wet Sludge Loading Rate, psf/Hr. Dry Solids Loading, 1b/Hr. Auxiliary Fuel Use, MMBtu/TDS	4.0 1,700 10	4.3 1,800 14

*Solids processed includes sludge from Blue Lake Plant.

SENECA WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

Month	Wastewater Flow, MGD	Temperature °C	TBOD mg/1	TSS mg/1	pH Range	KJN Mg/1	Total-P mg/l	NH3 mg/1	COD mg/1
JANUARY	14.0	14	256	255	6.7-8.2	42.8	9.8	24.3	562
FEBRUARY	14.7	13	222	255	6.6-7.6	53.0	9.0	23.7	540
MARCH	15.6	13	232	266	6.4-8.2	33,6	7.2	23.0	511
APRIL	15.6	13	209	186	6.7-7.7	33.9	7.3	21.8	419
MAY	15.5	16	224	208	6.7-7.4	51.7	8.6	21.8	435
JUNE	14.6	18	200	210	6.3-7.5	36.5	8.2	20.3	433
JULY	14.8	20	226	180	6.3-7.3	36.2	7.3	18.3	435
AUGUST	11.5	20	229	207	6.5-8.1	34.3	7.0	16.0	436
SEPTEMBER	14.6	19	189	158	6.5-8.3	32.7	5.9	18.3	348
OCTOBER	14.7	19	214	167	6.6-7.3	38.1	8.3	18.6	432
	15.6	17	208	158	6.6-7.8	40.5	7.4	25.7	420
DECEMBER	15.9	15	245	186	6.6-8.5	39.6	7.6	23.8	501
1982 AVERAGE	14.7	16	221	203	6.3-8.5	39.4	7.8	21.3	456
1981 AVERAGE	13.8		217	211	6.5-10.4				488

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: Seneca

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: Seneca

ľ	*000	0700	600		FECAL COLI	TUND			10.		Total	C12	C12	~			
 Month	1800 ma/1	CBUD ma/1	CUD ma/1	155 mg/1	Geomean ∩o∕100 ml	NTU	ma/l	NH3 Mg/1	NU2 mg/1	ma/1	mg/1	lbs	mg/l	$m_2/1$	Range	BOD	TSS
NPDES	25	25		30	200	25									6.5-8.5		
JANUARY	19	18	<u>8</u> 0	19	l 	7	28.1	23.0	0.26	0.30	3.9			9.1	6.8-7.6	93	93
FEBRUARY	_16	16	82	17		7	28.4	21.3	0.09	0.15	_3.6			9.2	6.9-7.3	93	93
MARCH	22	21	92	18	2	8	27.3	20.7	0.08	0.10	2.7	511	0.8	9.3	6.4-7.1	91	93
APRIL	25	25	99	21	3	9	26.4	20.3	0.06	0.09	3.4	520	0.7	9.9	6.8-7.3	88	89
MAY	22	19	83	13	7	7	27.3	21.7	0.07	0.06	2.8	512	0.7	7.9	6.8-7.7	91	94
JUNE	22	17	82	16	5	9	27.3	19.6	0.05	0.07	3.3	496	0.8	5.4	6.8-7.6	91 :	92
JULY	34	19	B3	24	10	11	24.6	16.6	0.73	0.08	3.7	484	0.7	6.7	6.9-7.2	92	87
AUGUST	29	15	71	22	9	10	21.7	13.8	2.38	0.15	2.3	432	0.4	6.1	6.9-7.7	93	89
SEPTEMBER	20	13	-70	20	10	B	20.7	13.8	1.79	0.49	3.2	577	0.8	7.0	6.9-7.6	93	88
OC TOBER	25	16	74	21	8	9	24.1	15.0	1.11	0.30	4.3	611	0.7	6.7	7.2-7.6	93	87
NOVEMBER	37	19	79	23	<u> </u>	9	25.3	19.1	0.85	0.29	4.0			9.5	7.1-7.5	<u>91</u>	85
DECEMBER	22	20	79	19		7	27.2	21.8	0.14	0.38	3.6			8.8	7.1-7.4	92	90
1982 AVG.	24	18	81	19	7	8	25.7	18.9	0.63	0.20	3.4	518	0.7	8.0	6.4-7.7	92	90
1981 AVG.	20	L	88	20	4	9	27.2	20.8	0.24	0.08	3.7	<u>91</u> 2	3.2	7.8	6.7-8.0	91	91

STILLWATER WASTEWATER TREATMENT PLANT

Plant History and Description

The Stillwater Plant was originally constructed in 1959 as a primary treatment plant. In 1970, the plant was upgraded to include secondary treatment, and phosphorus removal facilities were added to the plant in 1973. The design capacity of the plant is 3.0 mgd. Actual operating capacity is somewhat less, due to the additional phosphorus removal facilities.

Liquid treatment consists of screening, grit removal, primary sedimentation, activated sludge aeration, alum addition for phosphorus removal, final clarification, chlorination, and discharge to Lake St. Croix (St. Croix River).

Solids processing consists of combined thickening in primary tanks, anaerobic digestion, and sludge hauling to either the Metropolitan Plant Interceptor System or sludge landspreading sites. The plant is presently operating at about 85 percent of its design capacity and is subject to secondary treatment limits and a phosphorus limit of l mg/L.

Performance

Plant flow averaged 2.61 mgd during 1982, up slightly from 2.30 mgd in 1981. Average plant effluent quality was 10 mg/L BOD, 8 mg/L TSS and 0.4 mg/L P. Plant performance was excellent throughout the year, as no NPDES Permit violations were experienced. Statistical analysis of data show the following trend in BOD and TSS from 1979 through 1982.

Effluent Concentration, mg/1

		50% 0	f Timo			75%	f Time	- -		90% of Time				
	1979	1980	1981	1982	1979	1980	1981	1982	1979	1980	1981	1982		
BO ₂ D	8	12	14	10	12	14	24	12	21	19	33	14		
TSS	10	9	8	8	12	14	12	10	16	21	15	12		

Future

The Stillwater Plant is considered a permanent plant. The plant is expected to be expanded in the late 1980's to allow for the inclusion of flow from the City of Bayport and increased flow from the present service area.

STILLWATER PLANT PROCESS UNIT LOADINGS 1982

Parameter	Annual <u>Average</u>	Maximum Month
Wastewater Flow, MGD BOD Loading, lb/day TSS Loaidng, lb/day COD Loading, lb/day	2.61 2,940 3,050 5,350	3.16 3,290 3,940 5,920
Primary Sedimentation		
Detention Times, Hrs. Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	2.3 10,700 594	1.9 13,000 719
<u>Aeration Basin</u>		
BOD Loading, 1b/Day/1000 Cu. Ft. Alum Feed Rate, 1b/day	54 399	61 416
Final Sedimentation		
Detention Time, Hr. Weir Overflow Rate, gpd/Lin. Ft. Surface Overflow Rate, gpd/Sq. Ft.	2.7 8,310 665	2.2 10,100 805
<u>Chlorination</u>		
Contact Time, Minutes Chlorine Use, 1b/day	36 48	30 56
Anaerobic Digestors		
Solid Detention Time, Days	27	24
Sludge Transport		1
Volume, gpd Mass, lb/day	13,800 3,090	19,500 4,220

STILLWATER WASTEWATER TREATMENT PLANT

FLOW DIAGRAM

Month	Wastewater Flow, MGD	Temperature °C	TBOD mg/1	TSS mg/l	pH Range	KJN mg/l	Total-P mg/l	NH3 	COD դոգ/1
	2.26	10	144	126	6.6-8.9	25.9	5.6	15.4	262
FEBRUARY	2.29	12	109	112	6.8-9.6	26.5	4.7	13.8	226
MARCH	2.44	10	118	150	4.8-9.6	23.4	5.6	14.1	216
APRIL	3.16	10	124	116	6.4-9.6	17.2	4.0	10.1	224 _
MAY	2.98	12	123	137	6.8-9.0	19.4	4.5	10.8	<u>226</u>
JUNE	2.71	15	144	123	6.6-9.3	24.8	4.8	13.0	254
JULY	2.51	16	157	150	6.7-9.2	23.7	_ 5.3	11.2	<u>277</u>
AUGUST	2.46	17	139	171	6.8-9.0	25.6	5.5	11.6	264
SEPTEMBER	2.43	16	138	134	6.0-8.9	27.2	5.3	12.8	258
OCTOBER	2.68	15	143	151	3.8-8.6	22.1	5.0	9.7	252
NOVEMBER	2.64	13	148	179	4.0-8.2	24.8	5.0	14.8	271
DECEMBER	2.78	13	130	118	6.6-8.4	23.4	4.5	14.4	224
1982 AVERAGE	2.61	13	135	139	3.8-9.6	23.6	5.0	12.6	246
1981 AVERAGE	2,30	14	141	159	4.4-9.8		<u></u>		264

MONTHLY SUMMARY OF INFLUENT QUALITY TREATMENT PLANT: <u>Stillwater</u>

MONTHLY SUMMARY OF EFFLUENT QUALITY TREATMENT PLANT: <u>Stillwater</u>

Month	1800 mg/l	C BOD	COD		FECAL COLI Geo Meen no/100 ml	TURB NTU	KJN mo/l	NH3 Ma/1	N02 ma/1	N03 mg/1	Total P mg/l	C12 Used lbs	CI2 Res mg/1	D0 mg/1	pH Range	Remo 80 D	val TSS
NPDES	25	25		30	200	25					1.0				6.5-8.5		
JANUARY	10	9	31	6		4	17,3	14.1	0.40	1,70	Q.3			5.3	6.9-7.1	94	96
FEBRUARY	10	8	37	7		4	18.8	12.9	0.44	1.94	0,3			4.9	7.0-7.1	92	94
MARCH	18	11	39	7	1	4	15.5	10.2	1.49	1.39	0.3	50	1.7	5.0	7.0-7.1	91	96
APRIL	22	12	34	7	2	4	10.4	8.4	2.13	1.04	0.3	50	1.4	5.1	6.5-7.2	90	94
MAY	17	11	34	10	2	5	12.4	8.1	0.77	0.56	0.4	50	1.9	5.3	7.0-7.1	91	93
JUNE	25	9	45	7	3	6	10.6	7.3	3.71	0.81	0.4	50	2.1	5.0	7.0-7.2	94	95
JULY	31	13	46	9	3	5	15.6	10.9	2.00	0.89	0.4	50	2.0	4.9	7.0-7.1	91	94
AUGUST	24	9	34	9	6	6	13.7	9.8	0.94	1.65	0.6	50	2.0	5.0	6.8-7.2	93	95
SEPTEMBER	13	7	31	8	9	5	16.3	11.0	0.38	1.71	0.4	50	2.2	5.1	6.9-7.1	95	94
OCTOBER	17	B	34	14	14	6	15.0	9.3	0.36	1.79	0.7	56	2.3	5.2	7.0-7.1	95	91
NOVEMBER	12	10	33	10		4	15.5	13.4	0.45	0.94	0.6			5.2	7.0-7.1	94	95
DECEMBER	11	10	35	10		4	14.9	12.5	0.18	1.40	0.5			5.1	7.0-7.1	92	92
1982 AVG.	17	10	36	8	5	5	14.7	10.6	1.10	1.32	0.4	51	2.0	5.1	6.5-7.2	93	94
1981 AVG.	18		36	10	2	5	14.5	10.5	1.72	0.89	0.5	112	3.7	4.3	7.0-7.2	87	94

MONTH	Cu mg/l	Cr mg/l	Zn mg/l	Pb mg/l	Cd mg/1	Hg ug/1	CN mg/1	As ug/1	Sn mg/1	Ni mq/l	Phenol ug/1	Fe mg/1	PCB ug/1
January						<0.20		<u> </u>					
February						<0.20			-				
March						<0.10							
April							· · · · ·		<u></u>			<u> </u>	
May						<0.20							
June						<0.20							
July						<0.20							
August						<0.20							
September		·											
October						<0,20							
November						<0.20			Ţ				
December	· .					<0.20							
1982 Avg.						<0.19							

1982 EFFLUENT DATA TREATMENT PLANT <u>Stillwater</u>

APPENDIX

1982 ANNUAL AVERAGE TREATMENT PLANT INFLUENT DATA

<u>Treatment Plant</u>	Flow mgd	Temp C	TBOD mg/1	COD mg/1	TSS mg/l	pH Range	Total P mg/l	<u>Nutrients</u> KJN <u>mg/l</u>	NH3 mg/1
Anoka	2.14	17	223	356	154	7.0-8.4	6.8	37.9	20.3
Bayport	0.52	20	161	283	150	5.0-10.0	5.5	28.4	15.9
Blue Lake	16.1	14	228	500	230	6.3-8.1	7.0	33.1	14.6
Chaska	0.80	14	189	356	167	5.6-11.2	5.6	32.7	16.0
Cottage Grove	1.26	15	208	397	173	7.2-8.7	7.6	46.1	26.5
Empire	4.05	14	204	401	212	5.7-10.2	13.3	39.0	21.8
Hastings	1.50	16	251	541	233	3.0-12.0	11.1	46.9	26.0
Maple Plain	0.35	13	146	299	199	6.9-7.9	5.5	37 .9	18.1
Medina	0.149	13 ~	122	231	127	7.5-7.9	4.2	31.7	14.3
Metropolitan	208	16	203	415	241	5.7-9.4	4.9	30.6	16.4
Rosemount	0.31	14	168	421	239	6.0-11.0	7.4	49.0	27.1
Savage	0.48	13	151	281	170	0.2-13.6	6.4	27.0	15.1
Seneca	14.7	16	221	456	203	6.3-8.5	7.8	39.4	21.3
Stillwater	2.61	13	135	246	1 39	3.8-9.6	5.0	23.6	12.6

ANNUAL AVERAGE FLOW DATA FOR THE PERIOD 1971-1982

					ANNUA	L AVERA	GE FLOW	(MGD)				
Treatment Plant	1971	<u>1972</u>	1973	1974	<u>1975</u>	<u>1976</u>	<u>1977</u>	<u>1978</u>	<u>1979</u>	1980	<u>1981</u>	1982
ANOKA	1.76	1.93	1.88	1.78	1.62	1.77	1.92	2.01	1.98	2.09	2.01	2.14
APPLE VALLEY	0.57	0.71	1.16	1.26	1.48	1.46	1.67	1.94	2.03	*		
BAYPORT	0.48	0.48	0.42	0.45	0.56	0.50	0.48	0.47	0.54	0.44	0.47	0.52
BLUE LAKE (POND)	1.43	2.96	3.74									
BLUE LAKE			3.94	6.78	9.05	9.03	9.86	12.49	14.1	14.1	13.7	16.1
BURNSVILLE	1.76	2.10	*									
CHASKA	0.53	0.58	0.74	0.75	0.91	0.81	0.75	0.97	0.89	0.64	0,70	0,80
CHANHASSEN	0,07	*										
COTTAGE GROVE	0.62	0.85	0.92	0.91	0.91	0.91	0.97	1.31	1.60	1.58	1.21	1.26
**EAGAN TOWNSHIP			*									
EMPIRE									3.54	3.48	3,51	4.05
EXCELSIOR	0.56	0.50	*									
FARMINGTON	0.35	. 0,30	0.40	0,35	0.59	0.37	0.35	0.52	0,78	*		
FOREST LAKE TOWNSHIP	0.16	0.17	*									
FOREST LAKE VILLAGE	0,23	0.25	*									
HASTINGS	0.91	1.14	1.32	1.29	1,29	1.30	1.40	1.42	1.35	1.44	1.50	1.50
INVER GROVE HEIGHTS	0.59	0.64	*									
LAKEVILLE	0.45	0.36	0.33	0.37	0.50	0.38	0.36	0.48	0.60	*		
LONG LAKE	0.18	0.17	0.15	0.20	0.23	0.19	0.21	0.30	0.32	0.28	*	
MAPLE PLAIN	0.22	0.28	0.22	0.24	0.33	0.22	0.18	0.26	0.27	0.20	0.25	0.35
MEDINA	0.07	0.09	0.07	0.08	0.09	0.07	0.08	0.14	0.12	0.10	0.10	0.15
ME TROPOLITAN	213	213	202	-196	202	196	194	210	217	206	202	208
MOUND	1.09	1.23	1.26	1.48	*	*****						
NEWPORT	0.18	0.17	0.18	0.17	0.21	*						
OAK PARK HEIGHTS	0.07	0.10	0.12	*								
ORONO	0.20	0.25	0.27	0.34	0.32	0.31	0.34	0.46	0.49	0.62	*	
PRIOR LAKE	0.10	0.12	0.13	0.17	0.31	0.44	0.10	0.01	*			
ROSEMDUNT (trickling filter)	0.10	0.11	0.12	*								
ROSEMOUNT AWTP			0.20	0.20	0.22	0.24	0.27	0.29	0.30	0.29	0.30	0.31
ST. PAUL PARK	0.30	0.31	0.30	0.28	0.36	*				·		
SAVAGE	0.31	0.33	0.29	0.38	0.42	0.38	0.39	0.37	0.44	0.38	0,40	0.48
SENECA		7.76	10.12	9.89	10.34	10.81	11.72	12.71	13.6	13.0	13.8	14.7
SHAKOPEE	1.24	*										
SOUTH ST. PAUL	10.10	9.38	9.66	9.72	*							
STILLWATER	2.14	1.96	1.88	1.92	2.09	2.10	2.11	2.21	2.51	2.30	2.31	2.61
**VICTORIA				*								
WACONIA					0.23	0.26	0.25	*				
WAYZATA	0.53	*										
ALL DIANTS FYCEPT					· ·							
ALL FLANIJ LAULFI - METON	24	21	32	70	30	マク	. 33	39	45	41	ፈበ	45
MEINU	20	21	20	77		72	,,		47		40	
ALL PLANTS	239	244	238	235	234	228	227	249	262	247	242	253

* Plant phased out during previous year. **Flow data not available.

ANNUAL AVERAGE EFFLUENT CONCENTRATIONS FOR THE PERIOD 1971-1982

-	ANNUAL AVERAGE BOD (MG/L)													
Treatment Plant	<u> 1971</u>	<u>1972</u>	1973	<u>1974</u>	<u>1975</u>	<u>1976</u>	<u>1977</u>	<u>1978</u>	<u>1979</u>	<u>1980</u>	<u>1981</u>	1982**		
ΑΝΠΚΑ	20	29	36	21	16	11	9	12	14	14	16	12		
	74	113	22	24	-7	7	6	12	23	*				
	27	4 0	32	ġ	15	14	n	8	7	7	8	8		
	31	31	39											
			12	18	15	15	13	13	9	9	12	10		
	ልበ	55	*											
	32	ÁQ	52	58	43	42	<u>64</u>	78	112	20	18	14		
	20 04	47	72		-/									
LHANHASSEN	64			7/			70	34	10	11	12	١n		
CUTTAGE GRUVE	22	52	_6U	20	23	,,,	,,	.,4	17	11	14			
EAGAN IUWNSHIP	50	52	*									2		
EMPIRE									10)		2		
EXCELSIOR	13	26	*											
FARMINGTON	39	52	46	85	64	29	76	21	52	*				
FOREST LAKE TOWNSHIP	8	35	*											
FOREST LAKE VILLAGE	77	114	*											
HASTINGS	12	7	15	34	15	12	16	18	18	18	20	20		
INVER GROVE HEIGHTS	76	110	*											
IAKEVILLE	36	33	34	25	28	34	51	67	65	*				
	53	24	18	35	40	41	43	42	43	58	*			
	12	11	13	10	ġ	ัล	'n	ii ii	18	20	12	13		
MATLE FLAIN MEDINA	12		14	10	13	14	25	22	22	22	26	14		
	04	72	74	42	41	47	12	39	43	23	19	13		
METROPULITAN	04	72	40	94		07	44							
MOUND	24)) 00	22	70	40									
NEWPORT	48	88	28		49	7								
OAK PARK HEIGHTS	39	32	48	*							 ×			
ORONO	15	10	10	_6	6	_8	12	24	18	21	*			
PRIOR LAKE	34	26	28	22	24	35	22	24	*					
ROSEMOUNT (trickling	36	68	76	*										
filter)											_			
ROSEMOUNT AWTP			7	23	16	14	14	13	13	12	14	16		
ST. PAUL PARK	66	93	52	51	63	*								
SAVACE	22	26	28	27	21	20	46	27	27	7	10	8		
SENECA		29	16	15	ū	15	16	21	16	16	20	18		
	355	*												
	20	42		 h6	*									
CTILLMATED	24	42	14	10	11	 0	12	10	10	12	· 18	10		
	24	1/	70	* 12	11	U	12			**				
VICTURIA	15	52	/0				52	21	*					
WACUNIA					17	62	. 14	71						
WAYZATA	41	*												
ALL PLANTS EXCEPT												_		
METRO (weighted avg.)	52	38	27	26	16	17	17	19	17	12	15	13		
ALL PLANIS (weighted	<u>م</u>	17	43	<u>۸</u> ۵	τa	ፈበ	39	36	39	21	18	12		
average/	01	0/	47	40	70		70	70		_				
ALL PLANTS EXCEPT								• •				10		
METRO (actual average)	50	45	34	32	24	23	27	26	28	17	15	. 12		
ALL PLANTS (actual														
average)	51	46	34	33	25	26	28	27	28	18	15	12		

* Plant phased out during previous year. **CBOD5 values listed for 1982.

.

ANNUAL AVERAGE EFFLUENT CONCENTRATIONS FOR THE PERIOD 1971-1982

	ANNUAL AVERAGE TSS (MG/L)												
Treatment Plant	1971	<u>1972</u>	<u>1973</u>	<u>1974</u>	1975	<u>1976</u>	<u>1977</u>	<u>1978</u>	<u>1979</u>	1980	1981	1982	
ΑΝΠΚΑ	24	36	40	19	13	15	14	16	12	11.	14	8	
APPLE VALLEY	. 93	148	16	14	5	5	3	6	10	*			
BAYPORT	22	43	28	15	10	8	10	8	8	. 7	- 7	8	
BLHE LAKE (POND)	34	58	45								-		
BLUE LAKE			22	21	14	19	13	14	12	9	6	7	
	60	86	*										
CUACKA	72	86	79	91	62	55	- 54	66	59	12	13	11	
CHANNASSEN	71	*											
COTTACE COOVE	43	70	93	AA.	36	25	23	28	14	8	7	7	
	40	29	*										
	00	02							5	. 2	2	1	
	17	36	*						·				
	70	70 77	54	75	20	27	3/1	3/	37.	*			
FARMING ION	70	24		D	27	25			510				
FUREST LAKE TUWNSHIP	106	24	*		***								
FOREST LAKE VILLAGE	102	102	×						10			31	
HASTINGS	10	10	18	26	ZU	21	10	20	17	25	44	л	
INVER GROVE HEIGHTS	1.59	1/4	*							***			
LAKEVILLE	47	- 36 -	- 36	30	35	39	22	68	<u> </u>	*			
LONG LAKE	35	47	23	50	. 39 -	48	- 2/	90	26	42	*		
MAPLE PLAIN	20	13	13	19	12	16	16	10	15	- 14	, 7		
MEDINA	11	15	16	13	13	15	20	18	19	25	18	14	
METROPOLITAN	72	54	37	43	40	60	49	43	64	26	19	ш	
MOUND	37	- 36	47	38 .	*								
NEWPORT	85	120	96	110	89	*							
DAK PARK HEIGHTS	36	47	85	*									
ORONO	19	15	10	10	11	17	21	32	23	43	*		
PRIOR LAKE	28	33	27	25	25	28	17	17	*				
ROSEMOUNT (trickling	51	63	58	+	- 								
filter)			•			·	<u></u>	_				-	
ROSEMOUNT AWTP		``	2	9	4	: 3	- 3	4	3	2	2	2	
ST. PAUL PARK	69	77	47	48	47	*				·			
SAVAGE	24	28	14	15	13	10	14	ט	14	7	8	4	
SENECA		29	17	. 19 -	16	15	15	17	20	16 -	20	19	
SHAKOPEE	146	*											
SOUTH ST. PAUL	38	22	22	- 31	*								
STILLWATER	23	12	13	13	7	10	8	10	11	15	10	8	
VICTORIA	59	45	52	*									
WACONIA	-				33	. 53	42	40	*				
WAYZATA	34	*											
ALL PLANTS EXCEPT						н.,					÷ .		
METRO (weighted avg.)	44	38	27	26	17	18	15	18	16	12	14	11	
								-					
ALL PLANTS (weighted													
	69	52	36	40	37	54	44	38	56	24	18	11	
di di ayo/			24				•••						
ALL PLANTS EXCEPT													
METRO (actual average)	50	57	37	35	25	22	22	24	21	16	11	10	
WEIND (Groat average)	20		21		~ ~								
ALL PLANTS (actual													
average)	51	57	37	36	26	74	23	25	23	16	12	10 [.]	
atorayo/	7÷		21	70	24	<u> </u>							
		•											

* Plant phased out during previous year.

181

ANNUAL AVERAGE EFFLUENT PERCENT REMOVAL EFFICIENCY FOR THE PERIOD 1971-1982

	ANNUAL AVERAGE BOD REMOVAL (%)												
<u>Treatment Plant</u>	<u>1971</u>	<u>1972</u>	<u>1973</u>	<u>1974</u>	<u>1975</u>	<u>1976</u>	1977	<u>1978</u>	<u>1979</u>	1980	<u>1981</u>	1982	
ΑΝΩΚΑ	89	87	85	91	92	94	95	94	93	92	92	95	
	65	52	Ϋ́ο	89	97	94	97	94	99	*			
BAYPORT	89	84	94	97	as	95	05	92	92	92	92	05	
BLIF LAKE (POND)	87	92	88				<i>,,</i>					,,,	
BLUE LAKE			96	94	96	95	95	95	94	94	95	90	
BURNSVILLE	74	69	*							70		,,,	
CHASKA	79	75	74	49	 81	83	79	<u>41</u>	57	91	92	03	
CHANHASSEN	70	*		U 2	01		10	01	21	1	12	,,,	
COTTACE CONVE	01	00	7/	05	00	70	01	07		04			
CARAN TOWNSHID	76	20	±′°	6)	07	12	OT.	02	07 .	74	74	72.	
		07	~~~										
									72	98	99	99	
EAGELSION	72	71	*	01	07	0.6	07	01	00				
CODECT IANE TOWNELTD	00	Ø/	_00	71	00	74	6)	.71	82	*			
FUREST LAKE TURNSHIP				•									
FUREST LAKE VILLAGE	21	40	*										
HASTINGS	96	97		81	_ 91	94	92	93	92	- 91	91	92	
INVER GROVE HEIGHTS	66	51	*										
LAKEVILLE	75	78	84	94	92	94	88	77	75	*			
LONG LAKE	75	86	93	86	73	78	79	74	74 .	61	*		
MAPLE PLAIN	90	86	93	95	89	94	93	92	89	88	93	90	
MEDINA	92	90	90	92	92	94	86	93	82	84	80	87	
ME TROPOLITAN	66	73	82	84	83	75	83	82	7 9	89	91	95	
MOUND	82	79	75	52	*								
NEWPORT	79	64	72	78	71	*							
OAK PARK HEIGHTS	85	88	83	*									
ORONO	88	93	94	96	94	93	91	79	62	68	*		
PRIOR LAKE	82	78	80	80	77	68	71	78	*				
ROSEMOUNT (trickling			1										
filter)	74	72	65	*									
ROSEMOUNT AWTP			90	91	- 92	94	93	93	93	93	92	90	
ST. PAUL PARK	88	66	79	78	72	*							
SAVAGE	84	88	84	85	88	88	84	85	79	95	93	94	
SENECA		88	94	94	95	94	93	92	93	92	91	92	
SHAKOPEE	11	*											
SOUTH ST. PAUL	88	92	90	87	*								
STILLWATER	73	84	87	92	93	94	90	93	92	90	87	93	
VICTORIA	57	68	66	*									
WACONTA					90	90	85	90	*				
WAY7ATA	78	*											
ALL PLANTS EXCEPT													
WEIRO (weighted avg.)	83	85	90	90	50	03	50	92	92	0/	50	0/	
herno (hergheed arg.)	0.5	02	0/	/0		,,	,,	12	72	24	,,	24	
ALL PLANTS (weighted													
average)	4 8	75	59	85	94	77	06	04	01	90	01	04	
attrayo/	00	15	0,	0,	04		04	04	01	70	71	74	
ALL PLANTS FYCEPT													
METRO (notur) autors)	77	79	06	02	00	90	00	07	0/	00	02	•••	
ucturo (acmar averaĝe)	11	/0	04	00	00	07	00	0/	00	07	72	74	
ALL DIANTS (notural					-							•	
ALL FLANIS (ACLUAI	**	70	04	07	00	~	00	07	0.4	00	00	<u>.</u>	
average/	11	/0	84	90	88	87	89	87	96	89	92	94	

* Plant phased out during previous year.
ANNUAL AVERAGE EFFLUENT PERCENT REMOVAL EFFICIENCY FOR THE PERIOD 1971-1982

					ANNUAL	AVERA	GE TSS	REMOV	AL (%)			
Treatment Plant	<u>1971</u>	1972	1973	<u>1974</u>	1975	<u>1976</u>	<u>1977</u>	1978	<u>1979</u>	1980	<u>1981</u>	1982
ΑΝΠΚΑ	90	88	85	94	94	92	92	90	91	92	91	95
APPLE VALLEY	64	55	95	96	98	98	99	98	96	*		
BAYPORT	90	84	86	95	97	96	93	94	95	96	96	94
BLUE LAKE (POND)	78	66	75									
BLUE LAKE			91	94	96	95	96	96	96	96	98	97
BURNSVILLE	75	72	+			_ _`						
CHASKA	66	54	57	53	73	81	70	63	70	93	93	93
CHANHASSEN	75	*										
COTTAGE GROVE	82	78	66	71	85	86	90	86	91	95	96 -	96
EAGAN TOWNSHIP	72	61	*									
EMPIRE								`	98	99	99	9 9
EXCELSIOR	93	80	*									
FARMINGTON	73	74	76	79	88	90	86	82	75	*		
FOREST LAKE TOWNSHIP			*									
FOREST LAKE VILLAGE	41	37	*				·:					
HASTINGS	97	97	92	87	90	90	90	92	91	90	91	87
INVER GROVE HEIGHTS	42	31	*									
LAKEVILLE	73	83	89	96	97	96	93	82	81	*		
LONG LAKE	83	84	92	89	79	82	86	85	88	79	*	
MAPLE PLAIN	68	79	69	90	86	88	91	96	94	93	95	94
MEDINA	92	88	88	91	91	9 6	68	96	91	83	86	88
ME TROPOL I TAN	77	83	88	86	87	82	83	81	71	89	92	95
MOUND	80	82	74	80	*:							
NEWPORT	66	50	56 '	56	51	*						
OAK PARK HEIGHTS	85	81	71	*								
ORONO	86	91	94	96	93	88	88	81	84	72 .	*	
PRIOR LAKE	89	82	86	· 80	86	80	- 80	88	*			
ROSEMOUNT (trickling												
filter)	72	87	83	* <u></u>								
ROSEMOUN1 AWTP			96	96	98		99 .	98	99	99	99	99
SI. PAUL PARK	/8	/5	83	82	80	*						
SAVAGE	91	96	75	94	95	95	94	94	. 95		97	97
SENECA		្ទន	93	94	94	. 95	93	93	90	91	91	90
SHAKUPEE	28	*			 ¥							
SUUTH ST. PAUL	7) 90	- 74	- 7 2	92	*							
STILLWATER	0U (2	90 70	70		97	7)	95	94	91	99	94	94
	64	67	12	*	02	07			 *	·		
		*			82	00	04	07	*			
MAILAIA	12	~										
ALL PLANTS EXCEPT												
METRO (weighted avg.)	82	83	88	50	QΛ	93	94	93	93	94	94	95
METHO (WEIGHEEd avgi)	04		00		74					74		
ALL PLANTS (weighted												
average)	78	83	88	87	- 88	83	84	84	75	90	92	95
ALL PLANTS EXCEPT					· .							
METRO (actual average)	76	76	83	86	88	91	90	89	90	91	94	95
ALL PLANTS (actual	_	_		_			_					
average)	76	76	84	86	88	90	89	89	89	91	94	95
,												

* Plant phased out during previous year.

TABLE A-7 INFLUENT BOD DATA 1971-1982

				Anr	nual Ave	erage Va	lues,	BOD (mg,	/1)			
Treatment Plant	<u>1971</u>	<u>1972</u>	<u>1973</u>	1974	1975	1976	1977	1978	T979	1980	1981	1982
	100		~ ~ ~									
	182	223	240	237	189	170	175	199	206	176	211	223
APPLE VALLEY	211	235	220	228	204	189	228	216	194	*		
BAYPORT	225	286	229	282	330	270	228	200	198	197	184	161
BLUE LAKE			300	304	271	282 ·	258	266	216	228	230	228
CHASKA	171	196	200	185	222	241	203	200	258	220	229	189
COTTAGE GROVE	279	260	250	234	222	197	209	198	172	171	204	208
EMPIRE									208	181	234	204
FARMINGTON	279	400	329	957	453	452	447	338	293	*		
HASTINGS	300	233	188	175	161	187	189	243	221	2 10	227	251
LAKEVILLE	144	150	213	426	373	570	432	290	257	*		
LONG LAKE	212	171	257	258	150	183	201	163	164	148	*	
MAPLE PLAIN	120	79	186	186	80	129	156	142	165	173	165	146
MEDINA	150	90	140	124	156	246	285	300	119	139	128	122
METROPOLITAN	247	267	256	256	241	266	246	215	205	215	208	203
NEWPORT	229	244	207	217	170	*						
ORONO	125	143	167	158	105	110	141	116	102	98	*	
PRIOR LAKE	189	118	140	111	104	110	76	103	*			
ROSEMOUNT			70	246	213	220	203	198	193	165	177	168
ST. PAUL PARK	550	274	248	227	224	*						100
SAVAGE	138	217	175	184	191	163	283	179	130	151	153	151
SENECA		242	267	270	235	247	230	252	210	104	217	221
STILLWATER	89	106	108	157	161	140	116	146	118	121	141	136
WACONTA					169	676	241	*	110	121	171	155
					105	070	J-1					
ALL PLANTS EXCEPT	r											
METRO (weighted a	ya)				224	212	220	220	207	107	· 017	214
ALL PLANTS (woidk	atod				2.34	243	229	239	207	197	217	214
average)	ileu				24.0	262	24.2	210	205	212	200	205
ALL DIANTS EVCEDI	r				240	203	243	219	205	212	209	205
METON (actual aug	() () () () () () () () () () () () () (200	252	000	200	101	171	100	100
ALL DIANTS (SAF	si aye)				209	252	232	208	191	171	192	182
ALL FLANIS (dClub	11.				210	25.0	000	200	10.1	174	100	100
average)					210	252	232	209	191	174	193	199

*Plant phased out during previous year.

				Ani	nual Av	erage Va	alues,	TSS (mg,	/1)			
Treatment Plant	<u>1971</u>	<u>1972</u>	<u>1973</u>	<u>1974</u>	1975	1976	<u>1977</u>	<u>1978</u>	<u>1979</u>	<u>1980</u>	<u>1981</u>	<u>1982</u>
ΔΝΟΚΑ	240	200	267	30.2	234	105	176	164	132	141	152	154
	240	320	320	372	200	220	271	274	240	*	192	
APPLE VALLET	200	260	200	276	217	229	1/1	144	160	101	165	150
	220	209	200	261	247	261	22/1	217	270	211	2/1	230
BLUE LAKE	21.2	100	104	. 104	247 226	202	100	100	105	167	120	167
	212	190	184	194	241	292 105	220	100	190	10/	109	107
CUTTAGE GRUVE	350	318	274	294	24 1	100	220	200	103	102	107	212
EMPIRE				201	050		 0.25	100	-220	190	201	212
FARMINGTON	259	296	225	36 I	250	223	235	189	147	~ 004	 00E	
HASTINGS	333	333	225	198	199	207	184	252	223	224	230	233
LAKEVILLE	174	212	327	849	997	876	/59	388	365	· *		
LONG LAKE	206	294	288	446	187	261	274	195	210	196	*	
MAPLE PLAIN	63	62	118	193	.83	134	182	228	233	209	1/9	199
MEDINA	138	125	133	141	214	365	385	487	205	151	132	127
METROPOLITAN	313	318	308	317	316	332	288	231	222	237	230	241
NEWPORT	250	248	218	248	181	*						
ORONO	136	167	167	235	168	146	176	167	140	154	*	
PRIOR LAKE	255	183	193	123	180	1 39	83	149	*			
ROSEMOUNT			50	230	258	230	226	235	202	236	221	239
ST. PAUL PARK	318	308	276	270	241	*						
SAVAGE	267	700	280	269	278	241	249	265	190	565	234	170
SENECA	· ·	242	243	319	282	225	209	240	204	186	211	203
STILLWATER	115	120	1 30	193	210	140	118	158	119	127	1 59	1 39
WACONIA					187	381	270	*				
ALL DLANTS EVCED	т			•								
METRO (woightod	ама) Г		· .		202	264	24.3	255	210	204	218	206
ALL DLANTS (woight	avy.) htod		er Transformer		292	204	243	200	- 6 3	204	210	200
ALL PERMIS (WEIG	nrea				212	222	201	225	221	222	228	235
AVERAYE)	τ.		1.1.1 1.1.1		313	323	201	200	221	232	220	200
ALL PLANIS EXCEP	1				266	266	216	225	202	200	107	10/
MEIKU (actual av	erage)				200	200	240	230	202	209	131	104
ALL PLANIS (actu	al				000	200	040	0.05	202	011	100	100
average)			•		208	~ 209	248	235	203	211	133	199

TABLE A-8 INFLUENT TSS DATA 1971-1982

*Plant phased out during previous year.

STATISTICAL ANALYSES OF BIOCHEMICAL OXYGEN DEMAND DATA FOR PLANTS IN OPERATION DURING 1982

TREATMENT PLANT EFFLUENT STATISTICAL DATA

BIOCHEMICAL OXYGEN DEMAND, mg/1*

Treatment	50% of Time						75% of Time						90% of Time					
Plant	<u>1977</u>	<u>1978</u>	<u>1979</u>	<u>1980</u>	1981	<u>1982</u> **	1977	1978	1979	1980	1981	<u>1982</u> **	<u>1977</u>	1978	1979	<u>1980</u>	1981	1982**
ANOKA	7	11	12	12	15	10	10	16	16	17	20	14	13	22	22	22	26	19
BAYPORT	7	6	6	5	7	7	10	10	8	8	8	9	16	14	11	11	10	13
BLUE LAKE	10	11	7	8	9	10	15	14	10	10	13	13	20	22	15	14	19	16
CHASKA	33	61	93	14	14	12	58	100	160	22	24	16	98	140	210	38	34	22
COTTAGE GROVE	31	28	12	10	9	8	44	38	20	14	15	13	69	52	50	18	20	18
EMPIRE			4	2	3	2			10	2	4	3			28	5	4	4
HASTINGS	13	16	16	17	18	17	19	22	22	22	24	27	:29	28	28	31	33	37
MAPLE PLAIN 🐋	8	7	16	19	10	11	17	14	23	29	15	18	26	22	33	37	21	26
METROPOLITAN	40	40	36	20	-14	10	51	53	53	29	24	15	62	64	71	44	36	22
ROSEMOUNT	12	11	10	11	12	15	18	15	15	14	15	18	23	22	20	20	19	24
SAVAGE	20	26	26	5	9	6	30	34	41	7	12	9	42	4 2	59	9	15	20
SENECA	14	18	14	14	19	17	20	25	18	20	22	21	28	39	27	25	30	25
STILLWATER	8	8	8	12	14	10	14	14	12	14	24	12	24	18	21	19	33	14

* The data shows that for the percent of time shown, the effluent concentration was less than or equal to the tabulated values.

**1982 data represents CBOD values.

381

STATISTICAL ANALYSES OF TOTAL SUSPENDED SOLIDS EFFLUENT DATA FOR PLANTS IN OPERATION DURING 1982

TREATMENT PLANT EFFLUENT STATISTICAL DATA

TOTAL SUSPENDED SOLIDS, mg/l*

Treatment	50% of Time								75% of	f Time	<u>9</u>		90% of Time					
<u>Plant</u>	1977	<u>1978</u>	1979	1980	<u>1981</u>	1982	<u>1977</u>	<u>1978</u>	1979	1980	1981	1982	<u>1977</u>	1978	1979	1980	1981	1982
ΑΝΟΚΑ	12	13	10	10	12	7	16	20	15	15	18	10	21	28	21	20	24	15
BAYPORT	10	8	7	7	7	7	12	10	10	9	9	9	15	12	13	11	10	12
BLUE LAKE	11	13	11	8	6	6	17	28	14	11 ⁻	7	8	20	22	17	15	9	10
CHASKA	36	58	43	11	13	10	71	88	83	15	16	14	121	120	1 30	18	22	-19
COTTAGE GROVE	12	17	10	7	5	6	22	28	16	13	8	10	44	51	28	22	14	14
EMPIRE			3	1	1	1			5	3	1	1			- 11	4	. 2	2
HASTINGS	16	18	17 -	22	19	28	24	26	24	30	28	38	29	33	31	38	36	48
MAPLE PLAIN	7	6	10	11	6	6	24	12	18	15	8	, 10	42	40	30	24	16	<u> 16 </u>
METROPOLITAN	40	37	43	15	10	7.	53	55	85	33	24	12	88	78	137	60	47	21
ROSEMOUNT	2	3	2	2	1	1	3	- 5	3	3	- 2	2	5	7	5	.3	3	4
SAVAGE	10	14	10	4	5	2	16	20	18	7	12	-5	29	25	28	15	17	11
SENECA	14	14	13	15	19	19	18	19	24	19 0	23	23	22	27 -	32	23	28	26
STILLWATER	7	10	10	9	8	8	10	14	12	14	12	10	13	18	16	21	15	12

*The data shows that for the percent of time shown, the effluent concentration was less than or equal to the tabulated values.

TABLE A-11

	and the state of the					1982 METRO	PLANT SLUDO	GE QUANTITY							
	QUANTITY	JANUARY	FEBRUARY	MARCH	- APRIL	МАҮ	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL	AVERAGE
~	Sludge Production														
	F&I No 1 V F. Cake	0.074	0.541	11 507	10, 200	10 610		11 000				<u> </u>	<u> </u> .		-
	F&I No 2 V F Cake	<u><u> </u></u>	0.241	11.59/	12.298	12,512	9,503	11,828	10.045	9,004	4,973	<u> </u>	0	100,336	8,361
	Filter Press Cake	1 040		2 061	1 936	1,968	1,990	2.086	1,995	1,935	3,708	/ //5 A EIE	9,922	131.951	10,996
	Roll Press Cake	- 1,840 J			1,550				-		3,3/5	7,248	9,713	20.780	1.732
	Iotal	24,654	22,345	28,343	27,289	28,378	22,096	25,023	21,163	19,366	20,875	19,538	25,521	284,591	23,716
	Dry_Tons_(Intal)														
	F&I No.1 V.F. Cake	2,822	2,562	3,368	3.556	3,693	2.681	3,300	2,699	2,385	1_293	0	0	28,359	2.363
	F&I No.2 V.F. Cake	2,756	2,744	3,688	3,300	3,313	2,685	2,818	2,396	2,258	2,267	2,071	2,710	33,006	2,750
	Filter Press Cake	871	931	1,024	848	947	917	1,021	961	950	1,579	2,118	2,695	14,862	1,239
	Roll Press Cake		_		-	-			-	-	995	1,981	2,564	5,540	461
	Total	6,449	6,237	8,080	7,704	7,953	6,283	7,139	6,056	5,593	6,134	6,170	7,969	81,767	6,813
• •	Dry Ton (Sludge Solids)										· · ·			· · · ·	
	F&I No.1 V.F. Cake	2,527	2,297	3,053	3,257	3,360	2,408	2,963	2,383	2,096	1,116	0	0	25,460	2,122
	F&I No.2 V.F. Cake	2,148	2,116	2,480	2,395	2,343	1,965	1,971	1,733	1,519	1,589	1,523	2,073	23,855	1,988
	Filter Press Cake	871	931	1,024	E4 8	947	917	1,021	961	950	1,579	2,118	2,695	14,862	1,239
	Roll Press Cake	_	-				-	-		-	995	1,981	2,564	5,540	461
-		5,546	5,344	6,557	6,500	6.650	5,290	5,955	5,077	4,565	5,279	5,622	7,332	69,717	5,810
_	Sludge Disposal								•						· · ·
	Wet Tons														
	F&I No.1 Incin.	8,603	7,457	4,668	12,298	8,226	8,700	11,748	8,972	5,138	0	0	0	75,810	6,318
	F&I No.1 Loadout	1,371	1,084	6,929	0	4,286		80	1,074	3,866	4,973	0	0	24,526	2,044
	F&I No. 2 Loadout	12,840	11,867	14,685	13,055	13,898	10,543	11,109	9,122	8,427	8,708	7,775	9,922	131,951	10,996
	Press Cake Incin.	-				-	-				3//	349	-	720	60
	Press Lake Loadout	1,840	1.937	2.061	1,936	1.968	1,990	2,086	1,995	1,935	2,998	4,166	5,886	30,798	2,567
	Roll Cake Incin.							-		· -		820		020	
	Total Incineration	9 503	7 457		10 200					<u>-</u>	3,819	6,422	9,713	19,954	1,663
	The Dear Andrews	16.051	14,888	23 675	14 991	20 152	13 396	13 275	12 191	14 228	20.498	18,363	25.521	207.229	17,269
	Dry Tops (Sludge Solids)		14,000	23,075	141001		13,370	13,273	16,171	14,220	203400				
	F&I No.1 Incin.	2,180	2,005	1,229	3.257	2,209	2,191	2,943	2,128	1,196	0	0	0	19.338	1.612
[Et No 1 Loadout	247	202	1 024	0,201	1 101	217	20	-,	000	1 116	0		6 122	510
	F&I No.2 Loadout	2:148	2,116	2,480	2,395	2,343	1.965	1.971	1.733	1,519	1.589	1.523	2.073	23,855	1.988
	Proce Cake Incin.	<u>0</u>	0	0	0	0	0		0	0	171	140	0	311-	26
	Press Cake Loadout	871	931	1.024	848	947	917	1.021	961	950	1.408	1,978	2,695	14.551	1.213
`	Roll Cake Incin.	-	-	-	-		-	-	-		Ó	245	0	245	20
	Roll Cake Loadout	-	-	-	-	-	- 1	- 1		-	995	1,736	2,564	5,295	441
	Total Incineration	2,180	2,005	1.229	3,257	2,209	2,191	2,943	2,128	1,196	171	385	0	19,894	1,658
	Total Loadout	3,366	3,339	5,328	3,243	4,441	3,099	3,012	2,949	3,369	5,108	5,237	7,332	49,823	4,152
	~			-											

188

1982 METRO PLANT SLUDGE QUALITY

	Solids.	Volatiles	TKN %	NH3-N %	P.	Сd	Ću	Ni	РБ	Zn	Cr	К	На	РСВ
F & I No. 1 Vacuum Filter Cake January February March April May June July August September October November	28.2 29.5 28.0 28.4 27.0 27.8 26.9 27.3 25.8 27.4	59.6 58.4 59.5 62.0 56.3 54.7 62.1 57.3 57.7	2.6 2.2 2.3 2.7 3.3 2.7 2.4 3.3 3.3	.04 .07 .03 .09 .05 .02 .03 .03 .03 .02 .07	1.2 0.9 1.0 1.2 1.1 1.1 1.1 1.1	43 43 39 44 35 32 39 38 34 29	726 751 706 723 706 773 758 1,018 896 775	166 180 144 126 134 151 163 228 217 181	292 350 360 361 427 334 266 299 250 204	1,574 1,351 1,289 1,397 1,314 1,305 1,225 1,246 1,247 1,221	546 748 545 719 1,344 889 749 733 753 830	796 849 823 791 1,029 726 809 757 781 776	1.8 1.6 1.3 1.9 1.6 1.5 1.1 1.4 1.2 1.9	1.5 1.4 0.9 0.6 1.2 0.7 0.5 1.0 0.8 1.1
Average	27.6	58.8	2.7	.04	1.1	38	783	169	314	1,317	786	814	1.5	1.0
F & I No. 2 Vacuum Filter Cake January February March April May June July August September October November December Average	21.8 23.0 25.2 25.4 24.1 25.6 25.6 26.5 27.2 26.2 27.6 27.6 25.5	54.0 49.6 46.0 48.4 51.0 53.2 53.7 55.8 51.2 55.8 51.2 52.9 55.3 56.4 52.3	4.3 3.4 3.0 3.1 3.7 3.6 3.0 3.2 3.2 3.4 2.8 2.3 3.2	.10 .09 .07 .06 .03 .04 .04 .04 .04 .04 .04 .04 .04 .06	1.9 1.5 1.5 1.5 1.5 1.5 1.3 1.4 1.4 1.5 1.2 1.1 1.4	54 48 56 46 37 34 42 38 28 29 41	861 929 1,099 766 838 694 1,068 1,435 819 623 695 894	170 215 189 139 130 125 198 413 169 131 120 180	334 375 507 458 383 223 284 252 219 204 184 325	1,769 1,640 1,840 1,531 1,501 1,365 1,098 1,535 1,295 1,282 1,111 1,165 1,428	742 844 999 952 1,232 918 635 856 962 997 883 1,009 919	1,234 1,242 1,425 1,155 1,240 884 769 880 849 896 836 1,019 1,036	2.6 2.4 1.5 3.6 2.3 1.2 1.9 2.5 1.2 1.2 2.0	0.97 0.92 1.34 1.02 1.10 0.72 0.40 1.02 1.20 0.98 0.89 0.67 0.94
Plate & Frame Press Cake January February March April May June July August September October November December Average	46.6 48.4 50.0 46.0 47.5 47.7 48.7 48.0 50.1 47.2 46.8 46.9 47.8	67.1 66.3 60.5 63.5 62.1 63.8 62.6 63.7 63.0 65.3 66.7 70.0 64.6	3.8 3.6 2.9 3.2 3.3 3.1 3.5 3.2 3.7 3.4 3.4 3.4 3.4	.20 .09 .09 .09 .09 .05 .05 .05 .05 .05 .05 .09 .11	3.5 2.9 2.6 2.8 3.0 2.8 3.0 2.8 2.6 2.6 2.6 2.8 2.7 2.8	109 102 100 85 74 87 87 84 91 80 85 84 87 89	1,755 1,681 1,715 1,168 1,310 1,637 1,418 1,765 1,656 1,613 1,602 1,573 1,574	276 245 231 180 183 202 250 262 226 217 208 222	403 421 574 439 443 438 357 405 386 357 391 342 413	3,489 2,896 3,014 2,318 2,683 3,082 2,272 2,785 2,397 2,491 2,833 2,679 2,745	1,420 1,712 1,661 2,021 2,135 1,519 1,529 1,464 1,755 2,282 2,071 1,758	1,077 970 1,318 909 1,100 676 667 867 931 982 916 938	2.9 2.8 2.1 1.9 2.7 3.0 2.8 2.1 2.7 3.2 2.0 2.4	1.4 1.7 1.9 2.3 1.7 2.5 0.4 1.1 2.5 2.7 1.6 0.8 1.7
Roll Press Cake January February March April May June July August September October November December Average	25.7 24.4 25.0	71.4 77.2 74.3	2.5 2.3 2.4	.51 .20 .36	1.1 0.9 1.0	27 25 26	677 779 728	121 102 112	222 172 197	1,284 1,025 1,154	677 922 800	1,066 1,230 1,148	1.9 1.6 1.8	0.5 0.45 0.5

METROPOLITAN WASTE	CONTROL	COMMISSION
--------------------	---------	------------

	,.	•				198	32 OUT-PLANT	f sludge ou	ANTITY				-		
	TREATMENT PLANT	JAN.	FEB.	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL GALLONS	AVERAGE GALLONS
			['	[I		[!]				_	ļ		
	Gallons x 1,000	355.2	345.6	293.0	390.4	348.0	294.0	371.2	268.8	352.0	435.2	272.0	262.4	3,987,800	332,300
	Dry Tons	21.6	24.4	24.4	30.9	25.8	23.5	26.8	25.1	28.6	29,6	15.1	19.5	295.3	24.6
	BAYPORT						L								
	Gallons x 1.000	99,2	92.8	106-6	103.8	104.0	120.2	104.6	- 121.0	90.0	88,6	121.2	90.0	1,242,000	103,500
	Dry Tons	9.4	8.8	10.4	10.1	10.2]	11.2	9.9	10.1_	7.2	6.8	10.5	7.2	111.8	9.3
	BLUE LAKE					[]		[
	Gallons x 1,000	2,625.0	2,970.0	3,240.0	2,935.0	3,250.0	3,110.0	3,235.0	2,715.0	3,115.0	3,520.0	3,290.0	3,120.U	37,125,000	3'033'800
	Dry Tons	533.1	568.5	749.8	689.1	712.9	090.4	/23.1	030.0	593.6	603,3	559.7	568.6	7,593.6	632.8
	CHASKA	ŧ			<u> </u>		[]								
	Gallons x 1,000	160.0	250.0	218.0	205.0		270.0	225.0_	194.1	200.0	230.0_	160.0	195.0	2,637,100	219,800
	Dry Tons	11.8	18.2	16.4	13.6	23,4	18.2	13.1	13.2	<u> 11.7</u>	14.6	8.9	12.3	175.4	14.6
	COTTAGE GROVE					 			·	· · · · · · · · · · · · · · · · · · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·	···	
	Gallons_x 1,000	208.0	151.2	224.0	390.4	217.6	364.8	343.2	377.6	313.0	294.4	326.4	267.2	3,477,800	289,820
	Dry Tons	14.8	10.0	18.3	28.3	14.2	24.3	20.3	23.8	19.4	20.4	22.5	18.2	234.5	19.5
	UASTINGS	} +		<u> </u>	tt	i1	<u>├</u> /	/'		∤ ┦		<u>}</u>	}	F	<u>}</u>
	Gallons x 1,000	204.4	87.0	292.2	220.8	131.2	198.0	183.0	252.0	382.6	259.2	294.4	252.8	2.757.600	229,800
	Dry Tons	27.6	11.7	36.6	26 1	17.5	28.2	27.2	31.5	42.6	34.3	38.2	28.6	350.1	29.2
		 	Į		{}	ı!	<u>├</u>]	├ ────'	 	╉┈┈───┦		<u>↓</u>	{	·	{/
	MAPLE PLAIN	 l	{	4 0	4 0	_	16.0	4.0	32.0	<u>ا</u> ب	ļ	+	}	60 000	5.000
· ·	Dry Tons	h	 '		tt	/ /	3.0	1.0	7.0	t4		┟╌┈───	} ───┤	14.9	1 2
									(<u> </u>	<u> </u>	<u> </u>			
	ROSEMOUNT					<u> </u>	[]								
ŀ	Gallons x 1,000	129.0	108.0	149.0	132.5	103.5	130.0	109.0	112.3	107.0	111.5	129.1	129.0	1,449,900	120,800
	Dry Jons	62.0	50.7	47.1	44.8	46.5	47.8	44.2	53.2	54.7	55.5	53.5	57.6	617.6	51.5
	SAVAGE					······································				f			1		
	Gallons x 1,000		18.0	<u> </u>		12.8	57.6	12.0	70.4	6.4	34.0	-	40.0	251,200	20,930
	Dry Tons	[3.7	<u> </u> '	└ ───┤	3.9	9.3	2.4	12.2	1.3	6.1	F	8.1	47.0	3.9
	STILLWATER				<u> </u>	[]	<u> </u>			<u>∱</u> †	· · · · · · · · · · · · · · · · · · ·				
	Gallons x 1,000	315.8	304.0		398.6	603-8	548.6	495.6	480.8	453.6	292.8	402.2	389.6	5,050,800	420,900
	Dry Tons	27,5	31.8	48.5	53.4	65.5	56,7	53.1	55.3	. 44.1	35.7	39.4	52.0	563.0	46.9
	[]	[<u>├</u> }	<u>_</u> /	<u>├</u> ───┤	<u>├'</u>	┢	++		<u> </u>			}
]							[]					<u> </u>			
											_				

.

TABLE A-14

		· .				1982 S	ENECA P	LANT SLU	IDGE QUANTIT	Υ	· · · ·			
QUANTITY	JANUARY	FEBRUARY	MARCH	APRIL	МАУ	JUNE	JULY	AUGUS T	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL	AVERAGE
Wet Tons	3,682	4,271	4,668	5,159	4,440	4,992	5,168	4,349	4,241	4,351	4,139	4,343	53,803	4,484
Dry Tons	868	1,005	1,115	1,187	1,023	1,188	1,201	867	948	1,025	974	1,001	12,402	1,034

. .

101

TKN % NH3-N % Solids Volatiles P % * 2 Cd Cu Ni РЬ Zn Cr Κ Hq PCB Seneca Cake 1.5 1.1 1.3 1.4 1.5 46.7 46.5 46.3 23.4 6.8 6.9 6.4 1,219 1,190 1,129 1,267 1,040 1,121 1,004 574 633 751 929 729 Janu ar y 3.5 3.3 2.8 3.2 2.9 3.0 2.2 3.0 2.2 3.6 3.5 .07 481 212 245 311 476 537 549 529 294 2.3 2.3 2.5 24.6 0.7 February .06 24.1 .06 242 342 940 March 446 1.0 23.1 23.7 23.9 April May 9.2 7.3 645 590 344 346 281 50.6 .08 97 407 1,006 2.2 1.1 2.9 49.6 .07 84 894 1.0 472 .07 .06 92 74 599 1,009 0.9 June 48.7 1.4 1.2 1.2 1.3 1.3 1.2 1.3 8.2 439 814 48.9 23.9 364 232 217 194 July 10.1 183 1.8 764 .05 .05 .05 13.4 423 434 442 387 182 235 278 20.5 3.6 August 36.9 83 788 0.3 23.2 854 923 795 September 43.9 66 49 58 0.6 50.4 12.7 1.9 0.2 October 45.1 42.5 11.1 11.5 9.5 602 74 5 226 270 1.8 1.6 2.4 24.4 .06 189 November 23.5 156 409 .07 179 864 0.2 December 23.5 3.0 .06 940 141 299 542 301 858 46.3 0.6 Average

1982 SENECA PLANT SLUDGE QUALITY

TD 525 .T	9 M42c 1982
Metropoli	tan Waste Control
Commissi	on
Annual wa	stewater treatment
DATE	ISSUED TO
<u> </u>	
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	DEMCO 82-209

TD 525 .T9 M42c 1982 Metropolitan Waste Control Commission Annual wastewater treatment

CEGISLATIVE REFERENCE LIBRARY STATE OF MINNESOTA