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Sound bite of Project Outcomes and Results 
A combination of ground-based monitoring and satellite data were used to quantify freshwater in Central 
Minnesota. Quantification of stored water is essential to improve water resources management and planning.  
 
Overall Project Outcome and Results 
Our freshwater resources reside in surface water bodies (ponds, wetlands, lakes, streams/rivers) and 
subsurface water reservoirs (soil and groundwater aquifers). Management of these freshwater 
resources has always been a challenge because we do not have a good idea of how much water is 
stored in these various entities. The objective of this project was to improve the methods for real-time 
quantification of the amount of water stored in these entities using existing ground-based 
measurement networks as well as satellite data. The study region stretched from St. Paul to Moorhead, 
and encompassed 17 HUC-8 watersheds. The study region has an area of about 53,000 km3. We 
collected archived ground-based measurements including streamflows, observation wells, and lake 
levels for the period 2002-2015. We also acquired satellite data from the GRACE (Gravity Recovery and 
Climate Experiment), SMOS/SMAP, and Landsat satellites. The GRACE satellite provides data on the 
total water stored in the earth. The spatial resolution of the data used in this study was 100 km by 100 
km. The SMOS/SMAP satellites provide a measure of the surface soil moisture over areas of about 36 
km by 36 km. The Landsat satellite provides visual images at a scale of 30 m, and can be used for 
measuring the surface area of individual lakes; this surface area data can be used to estimate the 
volume of water stored in a given lake at a given moment in time. The project demonstrated that the 
variation in total water storage can be monitored by the GRACE satellite, and variations in lake storage 
can be monitored by the Landsat satellite. For the period 2002-2015 the estimates of time-averaged 
water storage is 1,500 km3 for groundwater in the Quaternary (surficial) aquifer, 15 km3 for lakes, 20 
km3 for soil moisture, and 1.5 km3 for wetlands. The GRACE satellite became inoperable in late 2017, 
far exceeding the original planned life for the satellite. However, in May 2018 a new satellite, GRACE-
FO (GRACE-Follow On) was launched and it now is providing the same information about total water 
storage. One of the outcomes of this project is a new research activity to test the utility of water 
storage information gained from the GRACE-FO satellite to forecast flooding and hydrological droughts 
in Minnesota. 
 
Project Results Use and Dissemination  
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The project results have been presented at a number of different forums including the Minnesota Water 
Resources Conference (October 2019), the Water Resource Sciences Graduate Seminar at the University of 
Minnesota (September 2019), and the Western Regional Project 4188 Meeting in Las Vegas (January 2020). Two 
MSc theses were completed based on the work in the project, and the work of two Ph.D. students got started 
(one to finish in December 2020 and the other to finish in December 2021) based on work in the project.   
 
A methodology for quantifying the volume of water in a lake based on the surface area of a lake was adapted 
from previous work and was tested during this project for the project study region. This tested methodology  
was then used in a separate LCCMR funded project in which the volumes of lakes across the State of Minnesota 
were estimated. This objective of this other project was to use remote sensing to quantify the water quality of 
lakes and the lake volume estimates were needed to examine lake processes affecting lake water quality.  
 
A methodology was developed for quantifying the volume of water stored in the Quaternary aquifer spanning 
across the study region. The methodology uses observation well data and lake level data to map the water table 
across the region. This methodology will be shared with the MNDNR, but also it will also now be used in some 
immediate future research to assess the water table mapping in quantifying the forecasting of floods, and 
possibly in forecasting hydrologic droughts.   
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I.  PROJECT TITLE: Techniques for Water Storage Estimates in Central Minnesota 
 
II. PROJECT STATEMENT:  
 
Minnesota is known as a land of plentiful water – but nobody can tell us how much water there is. This project 
will answer the question ‘How much water is there?’ It will improve our ability to monitor and quantify the 
amount of water stored in groundwater aquifers, soils, lakes, wetlands, and streams throughout Minnesota. 
Knowledge of total water storage is essential to sustainable management and wise use of water resources 
throughout the state. For purposes of this proposal, water storage is defined as the total water volume at a 
single point in time in the groundwater aquifers, soil, and surface waters. This differs from water availability, 
which is a smaller volume, because the total volume stored cannot fully be extracted or used. 
 
Water storage affects the availability of the water for human use (industry, irrigation, power production, 
domestic), and the availability of the water needed to support ecosystems throughout the state. Currently water 
storage in aquifers can be estimated using the sparse network of MNDNR observation wells, water storage in 
soils can be estimated from the very sparse network of soil moisture monitoring sites, and water storage in lakes 
and wetlands can be estimated from water level measurements at MNDNR/citizen monitoring sites. To our 
knowledge, to date none of these available data have been used to make estimates of total water storage 
throughout the state. In fact, to this day, we do not have an estimate of the total water present within 
Minnesota’s borders or even to estimate the storage within a select region of the state. 
 
We will improve the ability to monitor water storage by developing a methodology that joins data from remote 
sensing and ground-based measurements. Vast amounts of data are available from NASA satellites, but these 
are underutilized for Minnesota. For our project there are three satellites of particular interest. One is the 
GRACE satellite which provides data that can be used to quantify the change in storage of all water sources over 
large, multi-state size areas. A second is the SMAP satellite that provides data on the moisture stored in the soil 
over intermediate size areas. The third is the World-View3 satellite that provides high resolution images for 
outlining water levels in lakes and wetlands. Of course, ground-truth data are needed for proper interpretation 
of satellite-based data, and this is where the network of ground-based monitoring data is essential. The ground-
based data sources include observation wells, meteorological stations, lake water levels, stream gages, surface 
topography, soil maps, and geological maps.  
 
Within the scope of this project the methodology for water storage estimation and mapping will be conducted 
for a 100-mile-wide swath of area lying along a line between the Twin Cities Metro Area and Moorhead, MN.    
 
The effort in this project should be compared to other ongoing efforts around the world to derive estimates of 
water storage on the Earth. There are several documented efforts by university researchers and government 
agency personnel within the U.S., Canada, and countries in Western Europe to derive estimates of storage of 
water within watersheds in groundwater and surface waters. Examples include the estimation of changes of 
water storage in the Central Valley of California, Eastern Canada, the Eastern U.S., the Middle East, the Indian 
Subcontinent, and Mongolia. These documented efforts show that the methods to be used within this project 
are viable and supported by the success of those other efforts.  
 
 
III. OVERALL PROJECT STATUS UPDATES:  
 
Project Status as of January 1, 2018:    
 

1. Conducted evaluation of available hydrologic models to be used with the water storage analysis. Here 
we were interested in being able to consider water balances on a daily time scale, and also at a spatial 
scale conducive to the footprint of the GRACE total water storage satellite and the SMOS/SMAP soil 
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moisture satellites. Several models were considered and reviewed. These included the CLM (Community 
Land Model) model, the NOAA (National Oceanic and Atmospheric Administration) model, and the VIC 
(Variable Infiltration Capacity) model. Review of the literature showed all of these models to be quite 
similar in their abilities, but the CLM model appears to have a bit better groundwater recharge 
component. So, the CLM model was favored from that standpoint. Then in addition, we compared the 
soil moisture balance over a 10-year period for the Rum River watershed and found that the CLM model 
provided a better prediction of soil moisture data (1 meter depth) measured within that watershed. 
Finally, one member of our group (Dr. Griffis) was already heavily invested in using the CLM model so we 
selected that model for the remainder of our project.  

2. The project study area included a 100-mile swath of land between Dakota County and Moorhead, MN. 
For this area we delineated seventeen (17) HUC-8 watersheds and an image of that area is shown in 
Figure 1.  

 

 
 

Figure 1. The study area is outlined and is composed of 17 HUC-8 watersheds. The watershed outlined in yellow 
is for the Rum River watershed. It is highlighted because that watershed was used for trial runs of our water 

storage estimation reported in the July 2018 update.  
 

3. During this period, we were collecting water data for the study area. The data include streamflow data 
for 54 gaging stations, average daily precipitation for each of the watersheds, average 
evapotranspiration for the watersheds, GIS layers for surface topography, soil classifications, and 
surficial geology, well logs for individual wells located within the study area, monitored water level sin 
monitoring wells within the study area, and data for the GRACE satellite, SMOS/SMAP satellites, and 
data for LandSat and WorldView satellites. Except for the groundwater monitoring well data, these data 
have been processed and transferred to a DVD for distribution to interested parties. We are using these 
data for our water storage analyses. The groundwater monitoring data are still being processed and 
once complete those data will be transferred to the DVD for distribution.   

Project Status as of July 1, 2018:  
 

1. Soil moisture data from a station located in the Rum River watershed have been used as ground truth 
for testing the three alternative water balance models, the CLM, NOAA and VIC models. The 
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comparisons have led us to choose the CLM model for this project. In addition to giving a better 
prediction of the observed data, one or our team members, Dr. Timothy Griffis has already been using 
the CLM in his related work.  

2. Baseflow recession analysis using the method of Brutsaert and Nieber (1977) has been applied to all of 
the seventeen watersheds. This analysis yields a residence time parameter that is needed to be able to 
quantify water storage change using baseflow recession data (Brutsaert, 2008). This storage change 
analysis has been applied to the Rum River watershed for the period 2001 – 2016. A similar analysis will 
be conducted for the remaining sixteen watersheds. The results of this analysis will be presented in our 
January 1, 2019 update. This work is the subject of the M.S. thesis by Mr. Xiang Li, a graduate student in 
the WRS graduate program.  

3. Methods have been developed to quantify the storage of water in lakes and wetlands. For lakes we are 
using a regression method in which we use hydrography data available for about 900 lakes to establish a 
relation between lake surface area and water volume. The idea is that we can measure lake surface area 
from satellite data, and then with the regression relation estimate the volume stored in lakes. A more 
sophisticated method applies an equation that relates the topography in the buffer around a lake to the 
stored volume. This second procedure is the subject of a M.S. thesis study by Ms. Chelsea Delaney, 
graduate student in the WRS graduate program. She will also apply a fractal analysis method, in which 
surface topography along with fractal analysis procedures will be used to estimate volume. For wetlands 
we are making use of the National Wetland Inventory (currently using the older inventory since the new 
one is only being completed now). We are attempting to apply some scale analysis to quantify storage 
within wetlands.  

4. We have applied these methods in a test trial to the Rum River watershed. Our initial estimates of water 
storage in the watershed are: lakes – 4.86 km3 , mostly in Lake Millacs (4.3 km3). 0.1 km3 in wetlands, 
33.4 km3 in groundwater, and 5.8 km3 in the unsaturated zone overlying the groundwater. Improved 
estimates for water storage in the Rum River watershed, as well as the other sixteen watersheds will be 
completed by September 30, 2018.  

5. In a new development we have found that our estimations of lake volume are of significant value to 
current work being conducted by Dr. Jacques Finlay on a current LCCMR project. In that project they are 
estimating the total amount (mass) of dissolved organic carbon (DOM) in Minnesota Lakes. They are 
using satellite data to quantify the concentration of DOM in lakes, but the volume of the lakes are 
necessary to convert the concentration estimate to mass of DOM. We are thereby collaborating with Dr. 
Finlay to provide volume estimates for lake across the entire state (not just within our study area), and 
expect to have this completed by mid-October. Results of their work on DOM mass distribution in lakes 
across the state has been proposed for presentation at the 2018 Fall meeting of the American 
Geophysical Union.  

Brutsaert, W., 2008. Long-term groundwater storage trends estimated from streamflow records: climatic 
perspective. Water Resour. Res. 44: W02409. doi:10.1029/2007WR006518. 
Brutsaert, W. and J.L. Nieber, 1977. Regionalized drought flow hydrographs from a mature glaciated plateau. 
Water Resour. Res. 13(3):638-643.  
Nieber, J.L., 2018. Minnesota: How much water is there; how is it changing? Open Rivers; Rethinking Water, Place 
and Community, Issue 10, Spring 2018.  
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Project Status as of January 1, 2019:  
 

1. We have completed the analysis of lake volumes in lakes within the study regions using two different 
methods. The methods both provide a relation between lake volume and lake surface area. One method 
is based on regression analysis using some 900 lakes in the region for which we have quantified lake 
volume and lake surface area. The other method applies a topographic surface scaling methodology to 
relate lake surface area to lake volume. This second method does not require lake volume-lake surface 
area data to develop the predictions, but it is necessary to have such data to verify the output of the 
method. The two methods are in quite good agreement. 

2. Xiang Li continues to conduct analysis of baseflow recession flows as a way of estimating water storage 
change. He already had much of this completed within the previous period but he continues to refine his 
analysis as this work is the subject of his M.Sc. thesis.  

3. The estimation of groundwater storage within the study region. They have acquired geological data and 
well data for the region and are using interpolation methods to map water table levels across the study 
region. At this point they are able to make animated videos of the change in water levels with time 
during the period of interest (2002 – 2015). Next steps to get water storage will be to incorporate the 
porosity of geological material. From this mapping we will also be able to quantify the variation in 
thickness of the unsaturated zone and from that be able to quantify the dynamics of water storage in 
the unsaturated zone.  

Mr. Francisco Lahoud is working with data from the GRACE satellite to quantify changes in water storage at the 
scale of individual watersheds. We have 17 watersheds in our study region, and the satellite data are being used 
to track water storage change. At issue is to be able to confirm that the satellite data is really giving water 
storage change, and not something else. To confirm this, we are working with water balance calculations using 
precipitation data, evapotranspiration estimates, and streamflow data to calculate water storage changes. Our 
estimates of precipitation and streamflow are very good, but the evapotranspiration estimates seem to be a 
problem right now. For evapotranspiration estimation we are using various sources of information (e.g., from 
NOAA, USGS, University of Minnesota) and attempting to find the method that gives the most reasonable 
results.  
 
Amendment Request as of June 5, 2019: 
 
I am requesting an extension for this ENRTF funded project. The project was written into statute as running from 
July 1, 2017 to June 30, 2020, and so the funds for the project need to be spent by June 30, 2020. It has this end 
date because originally, we planned for a 3-year project, but then when project funds were reduced, we 
proposed to finish by June 30, 2019. However, due to some circumstances we have now decided we would like 
to work on the original timeline of completing all project requirements by June 30, 2020. Justifications are given 
below.  
 

1. The USGS counterpart of the project was not able to get started on the project until October 2017 due 
to other responsibilities. Secondly, the government shutdown in late fall, 2018-January 2019 stopped all 
work being conducted by the USGS counterpart. Extending the completion date to June 30, 2020 will 
allow the USGS counterpart to continue to improve our estimates of water storage based on water well 
and lake level data.  

2. While we have been working on the modeling aspect of the project throughout the duration of the 
project, there is still significant effort to complete that work. We started the project working with the 
Community Land Model, but we have later decided to work with the HSPF (Hydrologic System Program 
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Fortran) model, partly because the MPCA has contracted the development of calibrated HSPF models 
for all of the watersheds in our project area, thus making it convenient to use that model. We currently 
have a new graduate student who is working with the HSPF model and the MPCA (Chuck Regan) to get 
the data for the calibrated models for our study area watersheds. The student is currently on a 
fellowship and will be conducting the modeling work during this summer (2019), but in the fall of 2019 
he will work on funds from the ENRTF funded project. I expect this work will be carried out mostly in this 
summer and fall but would like to have the flexibility to complete all requirements by June 30, 2020.  

 
Budget: Currently the balance at the University of Minnesota is shown below. I do not know the balance at the 
USGS subcontract, but the USGS counterpart has indicated that funds are available still to cover his efforts 
through June 30, 2020.  
 
I am requesting that that $3,000 originally budgeted for project travel be allowed to be used for salaries. We had 
budgeted the $3,000 in case we might need to visit field sites during the project, but we have found that to be 
unnecessary, and now find the funds would be of help in our analyses and modeling.  
 
We request a change in scheduling for project activities. The project activities to be delayed include: 1) the 
enhancement of the methods for quantifying baseline water storage and temporal change in water storage to 
be completed by January 1, 2020; 2) the validation of the methods used to quantify water storage change based 
on coupled field measurements, modeling, and satellite measurements, to be completed by March 31, 2020; 
and 3) completion of the project final report.    
 
Amendment Approved by LCCMR 6/19/2019. 
 
 
Project Status as of July 1, 2019:  
 

1. Although we had completed the analysis of lake volumes in lakes within the study regions as of January 
1, 2019, we continue to test one of the two methods as it is the subject of M.Sc. student Chelsea 
Delaney. Chelsea will graduate in September 2019 and at that time all improvements in lake volume 
estimation will be complete. A map of lake volume estimates by HUC-8 watershed is illustrated in Figure 
A.1. The total lake volume is about 1,600,000 ha-m (4,200 billion gallons). An amazing feature of this is 
that Lake Mille Lacs composes about 25% of the total lake volume in the study region. This map 
represents the estimation of lake volume for a given date in the 2002 – 2015 period. We have annual 
estimates of lake volume. 

2. Estimation of volume of water in wetlands in the study region is underway and as of the report date the 
volume is about 180,000 ha-m of water (475 billion gallons). So the wetland volume is about 10% that of 
the lakes in the region. This work is being conducted by Chelsea Delaney. The estimation of wetland 
water volume will be completed by September 30, 2019, the date when Chelsea will complete her M.Sc.  

3. Xiang Li has completed his analysis of baseflow recession flows for the seventeen HUC-8 watershed, and 
has found a good regionalization of baseflow parameters for watersheds in the region. The results for 
that analysis are being used in another analysis that predicts the change in groundwater storage in the 
project region. as a way of estimating water storage change. The work is the subject of his M.Sc. thesis. 
He will defend his thesis before September 2019.  

4. The estimation of groundwater storage within the study region is based on the method described in the 
January 1, 2019 report. The estimates have been completed but there is still some revising to refine the 
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way of representing the volume of groundwater associated with interactions with lakes, streams and 
wetlands (we call this active groundwater). A map of the estimation of groundwater storage by HUC-8 
watershed in the study region is illustrated in Figure A.2. The estimated volume of active groundwater is 
about 690,000 ha-m (1,813 billion gallons). This estimation is about 43% of the estimated lake volume in 
the region. The estimated volume of groundwater within the quaternary aquifer (this includes the active 
groundwater volume) is 1,620,000,000 ha-m (427,858 billion gallons) is mapped in Figure A.3. Our study 
has produced annual estimates of groundwater storage. The maps shown in Figures A.2 and A.3 are for 
the year 2015.  

5. Based on the mapping of the groundwater table we will also be able to quantify the variation in 
thickness of the unsaturated zone and from that be able to quantify the dynamics of water storage in 
the unsaturated zone. The estimation of water storage in the unsaturated zone is ongoing and will be 
completed by September 30, 2019.  

6. Water storage changes in the study region as estimated by the GRACE satellite signal (specifically, the 
Mascon data) and the estimated water storage based on the water table mapping across the region are 
compared in Figure A.4, covering the period from 2004 to 2015. There appears to be good agreement 
between the two plots of water storage change. We will note here that there are eight GRACE products 
available to us, and the Mascon product represented in the figure is just one of those products. We will 
be testing the other products as well during the next several months.  

7. We have started to use the HSPF (Hydrologic Simulation Program Fortran) is being used for simulation of 
the components of the hydrologic cycle with each of the HUC-8 watershed. We selected the HSPF model 
because the MPCA has developed calibrated HSPF models for most of the HUC-8 watersheds in the 
state, and we have access to those models through Dr. Chuck Regan at the MPCA. To date we have been 
working with the HSPF models for the Rum River and for the Wild Rice River. The model provides a 
consistent way to handle the water balance components in these watersheds and will be comparing the 
HSPF simulations to the GRACE satellite data. Before selecting the HSPF model we had been conducted 
the water balances using a simple ‘checkbook’ method, but that method did not allow us to separate 
out the lake volume, soil moisture, or groundwater volumes from each other. The HSPF model allows us 
make this separation in a way such that it is consistent with available meteorological data. The work 
with the HSPF model will continue into the period from now until March 2020.  

8. The project website development began in February 2019 and we now have a project website under 
construction. The website includes visuals of maps showing the distribution of water storage in lakes 
and groundwater, and also plots of the variation of water storage for the period 2002 – 2015. The 
website now includes files of some of the data used for the project and these are available for download 
to interested users. Much more will be added to the website as it continues to be developed. Additions 
to the website occur about every other week.  

 
Project Status as of January 1, 2020: 
 

1. Completed analysis of lake volumes in lakes within the study region. The volume of water in lakes (about 
43,000 lakes total in the study region), is 15 km3 , or an equivalent water depth of 280 mm across the 
study region (53,000 km2 area). The results are described in detail in the MSc. Thesis of Ms. Chelsea 
Delaney. She officially graduated in December 2019. A copy of the thesis is given in Appendix E to this 
report. Note that although this report contains information on the lake volume estimates for an instant 
in time, we have annual estimates of lake volume as well.  
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2. Estimation of volume of water in wetlands in the study region was completed by Chelsea Delaney and 
the estimated volume is 1.5 km3 of water (28 mm equivalent water depth). So the wetland volume is 
about 10% that of the lakes in the region.  

3. Xiang Li has completed his analysis of baseflow recession flows for the seventeen HUC-8 watershed. The 
result is an estimate of mean groundwater drainage time for each watershed. He found a good 
relationship between the mean drainage time and geomorphic and hydraulic characteristics of the 
quaternary aquifer for each the watersheds. This relationship can then be used to determine the mean 
groundwater drainage time for ungagged watersheds in the region. The derived mean groundwater 
drainage times were used in an analysis to predict the change in groundwater storage for each of the 
HUC-8 watersheds, and the results were compared to storage change estimates derived from pointwise 
measurements. The comparisons were found to be favorable. The details of this work are given in the 
M.Sc. thesis for Mr. Li. A copy of his completed thesis is given in Appendix F.  

4. Estimation of water storage in groundwater within the study region was limited to just the quaternary 
aquifer. The total groundwater storage was estimated to be 1,500 km3 , with 33 km3 being the portion of 
groundwater we defined as being ‘active’ groundwater. Active groundwater is defined as being that 
groundwater storage that directly interacts with surface water (lakes, wetlands, and streams). Details of 
the methods for estimation of water volume have been given in previous status report sections. 
Estimates of the uncertainty of the groundwater volumes are still being derived and will be given in the 
final report.  

5. An estimate of water storage in the unsaturated zone is now complete, and the estimated volume is 20 
km3, or an equivalent water depth of 373 mm. The estimate of soil moisture storage was derived using 
the mapping of water table and the land surface elevation across the study region. It was assumed that 
the soil moisture content within the unsaturated zone (between the land surface and the water table) 
was equal to field capacity for the texture of the soil.  

6. Comparisons between water storage changes derived by the GRACE satellite data (specifically, the 
Mascon data) and those from pointwise data as well as from water balance calculations are found to be 
favorable. The comparisons cover the period from 2004 to 2015.  

7. We are continuing to apply the HSPF (Hydrologic Simulation Program Fortran) model for simulation of 
the components of the hydrologic cycle within each of the HUC-8 watersheds. The objective is to 
determine how well the HSPF model can match the change in total water storage derived from the 
GRACE satellite data. The HSPF model provides a consistent way to handle the water balance 
components in these watersheds, and we will be comparing the HSPF simulations to the GRACE satellite 
data. Before selecting the HSPF model we had been conducting the water balances using a simple 
‘checkbook’ method for a lumped model representation of the watershed, but that method did not 
allow us to separate out the lake volume, soil moisture, or groundwater volumes from each other. The 
HSPF model allows us make this separation in a way such that it is consistent with available 
meteorological data. The work with the HSPF model will continue into the period from now until June 
2020. This work is also being directed to determine whether the combination of the satellite data and 
the model analysis can be used to improve the forecasting of floods and hydrological droughts.  

 
Project Status as of July 1, 2020: 

1. Mr. Xiang Li completed his MSc. Thesis in June. A copy of his thesis is presented in Appendix F. His thesis 
involved the study of baseflow discharge in each of the 17 HUC-8 watersheds, and regionalization of the 
baseflow recession parameters for the associated groundwater systems. A good correlation (R2=0.59) 
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between measureable watershed characteristics and the baseflow recession response characteristics 
was found. The derived baseflow recession characteristic (mean travel time) for each watershed was 
then used in a groundwater storage change analysis for the period 2002 – 2015. As a reference, water 
table mapping (described below) was used to quantify annual groundwater storage change (in the 
Quaternary aquifer) for each watershed for that same time period. This tests the question as to whether 
baseflow discharge recession data alone are sufficient to provide estimates of water storage change in 
watersheds. The tests showed that for all but three of the seventeen HUC-8 watersheds the agreement 
between the reference storage change and the change estimated from baseflow recession discharge 
was quite good. The poorer agreement for the three watersheds was attributed to the poor quality of 
data during the critical period of the year (winter) when the characteristic baseflow discharge values are 
selected. 

2. The analysis for generating annual groundwater storage change using ground-based observations has 
been completed. This is for the groundwater storage in the Quaternary aquifer. The analysis for 
quantifying a reference water storage in the Quaternary aquifer was completed previously, showing that 
the estimated volume for the entire study area is about 1,500 km3. The methodology used water levels 
in observations wells (about 700 in the region), static water levels derived from the County Well Index, 
and water levels in lakes and streams/rivers (the water table was assumed to be connected to surface 
waters in the region). The analysis required a very detailed interpolation of the water table across the 
entire landscape area (53,000 km2) on a 30 m grid. Several state-of-art methods were applied for the 
interpolation. The result is a model of the interpolated water table for quantifying the water table map 
on an annual basis. The annual change in water storage in the Quaternary aquifer is then determined 
based on this interpolated map. As mentioned above, this change information was used as a reference 
for comparison of the storage change analysis based on the baseflow recession discharge. A detailed 
report about this water table analysis is presented in Appendix G.  

3. The last task of the project was to apply a physically based watershed model to the watersheds, with the 
objective to develop a downscaling satellite data that yield storage estimates at too large a spatial scale. 
While we had previously shown results for water balance calculations for full watersheds using a lumped 
water balance model, we also wish to know the distribution of water storage within a watershed. The 
lumped water balance model does not provide this spatial distribution of the storage. For this task we 
selected to use the HSPF model (Hydrologic System Program Fortran). The model is a semi-distributed 
physically-based model. Details of reasons for selecting this model were given presented in previous 
reports. For completion of this project objective it was considered sufficient to show the value of the 
HSPF model in water storage modeling by modeling only one of the HUC-8 watersheds. For this case the 
model was applied to the Rum River watershed, as that watershed was analyzed in detail for the lumped 
water balance calculations outlined in previous reporting.  A report on the modeling of the Rum River 
watershed water storage and watershed discharge with the HSPF model is presented in Appendix H. The 
output from the HSPF model provides information on the total water storage, the spatial (horizontally 
and vertically) distribution of storage, and the associated watershed discharge. An example of the 
spatial distribution of water storage for the Rum River watershed is shown in Figure 2 for January 1995 
and January 2005. The modeling has shown the relationship between the total water storage and the 
watershed discharge. The relationship is not unique (it is hysteretic as seen for 1995 in Figure 3), but it is 
still useful in terms of being able to forecast flow (normal flow, flood flows, drought flows). The non-
unique relation between total water storage and discharge is shown in Figure 4. This demonstrates that 
with monitoring of water storage, by satellite for instance, it should then be possible to forecast flows 
from the remotely sensed storage measurements. Carry-forward work that is now ongoing beyond this 
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project is to relate the watershed discharge to the spatial distribution of water storage (rather than the 
total storage in the watershed). This effort is ongoing by applying the HSPF model along with machine 
learning methods (methods from data science) within the scope of National Science Foundation grant. 
We anticipate this approach will allow the use of large-scale data available from satellites (GRACE-CO, 
SMAP, and Landsat) to be downscaled for more accurate forecasting, with applications to flood 
forecasting and drought forecasting.  

 

 
Figure 2. Distribution of water storage in the Rum River on two dates, Jan. 1995 and Jan. 2005.  
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Figure 3. Hysteresis in the storage-discharge relation for the Rum River for 1995.  
 
 

 
Figure 4. The relation between total water storage and watershed discharge for the Rum River. This is for the 

period of simulation, 1995 – 2015.  
 

 
Overall Project Outcomes and Results: 
Our freshwater resources reside in surface water bodies (ponds, wetlands, lakes, streams/rivers) and subsurface 
water reservoirs (soil and groundwater aquifers). Management of these freshwater resources has always been a 
challenge because we do not have a good idea of how much water is stored in these various entities. The 
objective of this project was to improve the methods for real-time quantification of the amount of water stored 
in these entities using existing ground-based measurement networks as well as satellite data. The study region 
stretched from St. Paul to Moorhead, and encompassed 17 HUC-8 watersheds. The study region has an area of 
about 53,000 km3. We collected archived ground-based measurements including streamflows, observation 
wells, and lake levels for the period 2002-2015. We also acquired satellite data from the GRACE (Gravity 
Recovery and Climate Experiment), SMOS/SMAP, and Landsat satellites. The GRACE satellite provides data on 
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the total water stored in the earth. The spatial resolution of the data used in this study was 100 km by 100 km. 
The SMOS/SMAP satellites provide a measure of the surface soil moisture over areas of about 36 km by 36 km. 
The Landsat satellite provides visual images at a scale of 30 m and can be used for measuring the surface area of 
individual lakes; this surface area data can be used to estimate the volume of water stored in a given lake at a 
given moment in time. The project demonstrated that the variation in total water storage can be monitored by 
the GRACE satellite, and variations in lake storage can be monitored by the Landsat satellite. For the period 
2002-2015 the estimates of time-averaged water storage is 1,500 km3 for groundwater in the Quaternary 
(surficial) aquifer, 15 km3 for lakes, 20 km3 for soil moisture, and 1.5 km3 for wetlands. The GRACE satellite 
became inoperable in late 2017, far exceeding the original planned life for the satellite. However, in May 2018 a 
new satellite, GRACE-FO (GRACE-Follow On) was launched and it now is providing the same information about 
total water storage. One of the outcomes of this project is a new research activity to test the utility of water 
storage information gained from the GRACE-FO satellite to forecast flooding and hydrological droughts in 
Minnesota. 
 
IV. PROJECT ACTIVITIES AND OUTCOMES:   
 
ACTIVITY 1:  Acquire archived data and select hydrologic models. 
Description: Hydrologic and meteorological data will be acquired from archived records available from main 
sources including the Minnesota DNR (MNDNR), Minnesota Pollution Control Agency (MPCA), the Minnesota 
Department of Health (MDH), the Minnesota Department of Agriculture (MDA), the National Weather Service, 
the Minnesota Geological Survey (MGS), the State Climatology Office, and the U.S. Geological Survey (USGS). 
Data will include gauged streamflows, lake water levels, wetland water levels, soil moisture, groundwater levels, 
and meteorological variables. These data will be used in Activity 2 in establishing the reference levels of water 
storage for the years 2002 and 2015. We will also conduct an exhaustive search of reports involving analyses of 
water storage estimates in the area of study.  
 
Within the project we will utilize satellite data in concert with ground-based data and water balance modeling to 
quantify the changes in water storage over space and time. The satellite data appropriate for this include the 
GRACE (Gravity Recovery and Climate Experiment) satellite, the SMOS (Soil Moisture and Ocean Salinity) 
satellite, the SMAP (Soil Moisture Active Passive) satellite, and the World View3 satellite. The satellite data will 
be acquired for all the area of study for the period 2002-2015 (the GRACE satellite was launched in 2002). These 
data will be processed, stored, and made ready for use in Activity 3.  
 
A unique feature of this project is that data from different sources will be used to derive the estimates of water 
storage and estimates of changes in water storage. The data to be used represent different time scales and 
spatial scales. To combine all the data sources and make the most use of them for estimating water storage an 
appropriate hydrologic model will be used to fuse the information contained in the data. We will conduct a 
review of available models and will choose the one most appropriate for this project.  
 

Summary Budget Information for Activity 1: ENRTF Budget: $ 43,500 
 Amount Spent: $ 43,500 
 Balance: $   0 

 
Outcome Completion Date 
1. Complete set of hydrologic, soil, geologic, groundwater level, meteorological, 
topographic data, and satellite data prepared for project use. All data will be archived 
and available on DVD. While used for this project, the summarized data will be useful to 
state and federal agencies, and to consultancies.  

3/31/18 

2. Model selected. Documentation of selection procedures and details of tests 
completed in making the model selection. The selected model will also be of use to 
consultancies, and for class instruction in hydrology courses. 

6/30/18 
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Activity Status as of January 1, 2018:    
 

1. Delineated seventeen HUC-8 watersheds for the study area. See Figure 1 for a map of the watersheds. 
2. This was an active period of data acquisition from different sources, and processing of the data for our 

needs. The groundwater data acquisition was slow in starting because Jared Trost was delayed in 
starting his part of the project. However, activity on groundwater picked up in late October and the data 
acquisition moved along fine.  

3. Models identified for use in the project included the CLM, NOAA and the VIC models. These were chosen 
for evaluation because the models work on a spatial scale conducive to the scale of measurements by 
the satellites, and also because most agencies and other researchers working with the same satellites 
use these models. Our criterion for selection is completeness of hydrologic process analysis, and 
accuracy in predicting soil moisture balances.  

Activity Status as of July 1, 2018:  
 

1. The acquired and processed data we transferred to a DVD disk for distribution. The only missing data are 
the groundwater monitoring well data and some of the aquifer data. These data will be added to the 
DVD disk once processing is complete.  

2. Algorithms have been developed to estimate water storage and water storage change in the watersheds, 
and these algorithms have been applied to the Rum River watershed, one of the 17 watersheds 
delineated for the project study area. Estimates for the volumes stored in the lakes, wetlands, soil and 
groundwater within the watershed are given in the overview report above.  

3. Among the three hydrologic models considered for use in the project, the CLM model has been selected 
as the best of the three.  The model is currently being used by our team on the computers at the 
Minnesota Supercomputer Institute. The report on the application of the model to our watersheds has 
not been completed yet but will be completed by January 1, 2019. We have also decided to apply the 
HSPF (Hydrologic System Program Fortran) to the watersheds. This model is currently being used by the 
MPCA for TMDL studies and the model has been set up and calibrated for most or all of the major 
watersheds (81 of them) in the state. The data files for model setup are available from the MPCA and we 
will be acquiring those input data file. Currently we are setting up the HSPF for use in the modeling and 
acquiring the input files (from the MPCA) for the Rum River watershed.  

Activity Status as of January 1, 2019:  
 

1. We have acquired water well data for hundreds of monitored wells located across the study region. 
Currently we are working with those data to map the dynamics of water levels across the study region. 
Next, we will be coordinating aquifer property data (in particular porosity) associated with the wells. As 
we work with these data, we will eventually store those data into the DVD prepared for the July 1, 2018 
report. That DVD will then be available upon request.  

 
Activity Status as of July 1, 2019: 
 

1. Although we continue to come across new data available for our study region, we have essentially 
completed the data acquisition for the project. These data are available on DVD and also the data are 
being loaded to the project website, so they are available for use by others.  
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Activity Status as of January 1, 2020: 
 
N/A 
 
Final Report Summary:   
 

1. All project data were made available on DVD, but also available on the project website.  
2. The HSPF model was selected for the watershed modeling platform. This model is part of the suite of 

models associated with the EPA BASINS model toolkit. We have applied it to watersheds within the 
study region. Model data for all 17 HUC-8 watershed within the study region are available from the 
MPCA website, and detailed information on the model inputs as applied within this project are available 
from the project website.  

 
ACTIVITY 2:  Develop estimates of baseline water storage for the study region. 
Description: The data fusion methodology developed in this project is not intended to provide estimates of the 
absolute storage of water but instead to quantify the temporal change in water storage relative to a reference 
baseline. Therefore, a baseline of the water storage will be determined using available pointwise ground-based 
data. The baseline estimates will be derived for two dates, October 1, 2002 and October 1, 2015. The data to be 
used for this analysis will be acquired and processed in Activity 1. The storage estimates for these two reference 
points will then be used in Activity 3 to test the ability of the developed methodology to estimate the change in 
stored water between those two dates. Brief descriptions of the approach for estimation of storage for the 
three domains, groundwater, soil, and surface water are given in the following paragraphs.  
 
Groundwater storage. Estimation of groundwater storage will be based on water level measurements from 
MNDNR monitoring wells and also from monitoring wells operated by others. The MNDNR monitoring well 
network is the best available data because it is consistently monitored over time. Using the water level 
measurements at a given location, along with the porosity of the geologic formation at the location the volume 
stored is simply the product of the porosity times the saturated depth of the formation. The geological maps 
available from the MGS will be invaluable to deriving the depth and porosity information for the geological 
features. These estimates will be at the point of the monitoring well and it will be necessary to integrate all the 
point measurements to get a total volume stored within an area. To achieve this methods of interpolation 
between points will be adopted, specifically methods that were developed in the mining industry, and applied in 
the soil science and groundwater hydrology disciplines.  
 
Soil moisture storage. In estimating water storage in the soil profile, it will be assumed that the depth of the soil 
profile is 5 feet. Where available, soil moisture measurements at point locations within the area of study will be 
used to estimate the average water stored in the soil profile. As with the groundwater storage estimation, the 
point estimates (measurements) of soil water storage will be interpolated between points to derive area 
average values so that total water stored in the landscape can be estimated.   
 
Surface water storage. The storage of water on the land surface includes the water in lakes, wetlands and rivers. 
To estimate the storage it is necessary to have the water surface elevation within the given water body (lake, 
wetland, river), and also the bottom topography (or morphometry) of the water body. The morphometry of the 
lakes and wetlands within the study area will be acquired/derived within Activity 1. Water level data are 
available from the MNDNR and municipalities for selected lakes and wetlands within the study area.  
Estimating the volume of water stored in rivers and streams will be made based on the use of stream gauging 
water surface elevations, and available (directly measured or else derived from LIDAR) channel cross-section 
data.  
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Summary Budget Information for Activity 2: ENRTF Budget: $ 79,000 
 Amount Spent: $ 79,000 
 Balance: $  0 

 
Outcome Completion Date 
1. Estimates of baseline water storage for 2002 and 2015 for specific locations (i.e., 
point estimates) within the study area. The location specific estimates will be useful to 
the MNDNR in evaluating the effectiveness of current water management procedures.     

9/30/18 

2. Maps showing distribution of water storage estimates for surface water, soil 
moisture, and groundwater across the study area for 2002 and 2015. The mapped area-
specific estimates of storage will be useful to the MNDNR in evaluating the effectiveness 
of current water management procedures. 

12/31/18 

 
Activity Status as of January 1, 2018:    
 
N/A. 
 
Activity Status as of July 1, 2018:  
 

1. Estimates for the volumes stored in the lakes, wetlands, soil and groundwater within the Rum River 
watershed are given in the overview report above. These estimates are for a single period of time. We 
have also estimated lake volumes and wetland storage volumes for all of the 17 watersheds; however, 
we are working on verifying those estimates. Estimates for 2002 and 2015 will be completed by 
September 30, 2019 and included in the January 1, 2019 report.  

Activity Status as of January 1, 2019: 
 

1. There are two methods developed for estimating lake volume. The one method developed by Kerry 
Holmberg is based on regression analysis using observed lake volumes and lake surface area. The model 
then relates lake volume to lake surface area. Lake surface area can be quantified with aerial remote 
sensing platforms, so this is the way of keeping track of lake volumes. This method is pretty much 
completely done at this point and we have estimates of total lake volume for the study region. The 
second method is being implemented by graduate student Chelsea Delaney, and it is based on land 
surface topography and ideas about scaling theory. The method is developing well and Chelsea has been 
able to estimate the total volume of water in lakes within the study region. Her estimate is quite close to 
the estimate obtained by Kerry Holmberg. Chelsea also assisted an LCCMR project by Dr. Jacques Finley 
to quantify lake volumes across the State of Minnesota using the methodology she developed. Results of 
that work were reported at the 2018 Fall meeting of the American Geophysical Union. Chelsea is 
continuing to refine her analysis as it is the subject of her M.Sc. thesis. We are hoping to be able to 
extend the work of Chelsea to estimating water storage volumes in seasonal and perennially flooded 
wetlands. 

2. Mr. Xiang Li and Mr. Jared Trost have continued to work on the estimation of groundwater storage 
within the study region. They have acquired geological data and well data for the region and are using 
interpolation methods to map water table levels across the study region. At this point they are able to 
make animated videos of the change in water levels with time during the period of interest (2002 – 
2015). Next steps to get water storage will be to incorporate the porosity of geological material. From 
this mapping we will also be able to quantify the variation in thickness of the unsaturated zone and from 
that be able to quantify the dynamics of water storage in the unsaturated zone. Estimation of soil 
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moisture storage will depend on the thickness of the unsaturated zone, and the estimate of soil 
moisture content within the unsaturated zone. There are a few locations within the study region where 
soil moisture profiles are available, but we also have near surface soil moisture data available from the 
SMAT and SMOS satellites.  

Activity Status as of July 1, 2019: 
 

1. Estimates of water storage in lakes, wetlands, and groundwater have been derived on an annual basis for 
the period 2002 to 2015. The estimates for lakes are pretty much finalized, but for wetlands, and 
groundwater we continue to improve the estimates. The estimate of soil moisture is still being worked 
on and should be complete by September 30, 2019. We expect that we will continue to tweak the 
estimates of storages in each of these terrestrial components right up to the end of the project.  

Activity Status as of January 1, 2020: 
 

1. Estimates of water storage in lakes and groundwater have been updated and estimates of storage in 
wetlands and soil moisture have been completed.  

Final Report Summary:   
 

1. The estimates of reference storage of water in lakes, wetlands, groundwater and soil moisture were 
finalized prior to the January 2020 report and have been reported previously. Details of the 
estimates of water storage in lakes are presented in Chelsea Delaney’s MSc thesis provided in 
Appendix E.1, and a draft manuscript in Appendix E.2.  

2. The methodology for mapping water table distribution across the study region continued to be 
refined until May 2020, and is now final. The methodology and results are described in detail in a 
report contained in Appendix G. The model used to do the mapping utilizes observation well data 
and lake level data. It is available for use by agencies and/or consultants. Water table maps for each 
year 2002 – 2015 have been developed and are available for viewing on the project website.   

ACTIVITY 3:  Estimate the changes in water storage over the period 2002 to 2015. 
Description: Of main interest is to be able to detect changes in water storage in a watershed or in a region. If 
there exists a reference value of absolute storage to go along with the change in storage it is then possible to 
derive the changed absolute storage if so desired. The methodology developed in this project will be used to 
quantify changes in water storage at spatial scales and time scales of practical interest.  
 
The methodology for quantify changes in water storage will be based on the application of satellite remote 
sensing data in conjunction with ground-based measurements and water balance modeling. Some details of the 
steps to be taken in this methodology are presented in the following paragraphs. First the information of the 
hydrologic water balance model will be presented followed by the presentation of the assimilation of the 
satellite data.  
 
Hydrologic water balance model. Hydrologic water balance models are typically used to quantify the water 
balance of an area. Models are used for different scales, ranging from the field-scale (acres) to the river basin 
scale (hundreds of thousands of acres). In the methodology to be developed in this project a selected hydrologic 
water balance model will be used with the readily available ground-based data to simulate the water balance of 
a watershed, and satellite data (GRACE, SMOS/SMAP, World View3) will be used to constrain the results of the 
water balance to keep the model calculating the water balance accurately. The outcome of this combined 
modeling and data processing will be accurate measures of water storage change at the spatial scale of interest.  
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GRACE satellite data. The GRACE satellite was launched into orbit in a collaboration between the German space 
agency and NASA. The satellite quantifies changes in density of different areas of the Earth. Since the amount of 
water present in an area is dynamic, it is changes in water storage that will cause a change in the satellite signal 
as the satellite passes over an area. Other researchers have shown that one can monitor changes in water 
storage on watersheds as small as 10,000 square miles through a combination of preprocessed GRACE data and 
hydrologic water balance modeling supplemented with ground-based data.   
 
SMOS and SMAP satellite data. To further improve the ability to constrain the water storage change estimates 
the project will involve the use of soil moisture data quantified using the SMOS and SMAP satellites. These 
satellites provide soil moisture estimates on the spatial scale of about 90 square miles.  
 
WorldView3 satellite data. High resolution digital images of the Earth surface are now available through the 
World View satellite data. With these data it will be possible to quantify the elevation of the surface of open 
bodies of water, including lakes and wetlands. Changes in storage of these open bodies of water can be 
determined by using the satellite measure of water surface elevation and the morphometry of the water body.  
 
The developed methodology will be tested by selecting a watershed within the studied area to assess the 
change in water storage. The estimate of water storage change between 2002 and 2015 available from the 
analysis of ground-based data in Activity 2 will be used as the reference, or correct value of storage change. The 
hydrologic model will be run with the input ground-based data and constrained by the satellite data to derive an 
estimation of the change in storage for the same period of time. If the methodology is sound the reference 
change and the change calculated by the water balance model should be within reasonable agreement.  
 
 

Summary Budget Information for Activity 3: ENRTF Budget: $ 127,500 
 Amount Spent: $ 127,500 
 Balance: $            0 

 
Outcome Completion Date 
1. Completed methodology for estimating the change in water storage within the study 
area. Documentation on the methodology. The developed methodology will be suitable 
for publication in the scientific literature and also a part of the graduate student’s Ph.D. 
thesis.  

1/1/20 

2. Validation of water storage change estimation methodology. The result of the 
validated methodology will be suitable for publication in the scientific literature and 
also a part of the graduate student’s Ph.D. thesis. 

03/31/20 

3. Final completion report. The analyses derived from this project will be valuable to 
state and federal agencies for the tracking of water storage changes in areas of concern 
within Minnesota.  

7/31/20 

 
Activity Status as of January 1, 2018:    
 
N/A. 
 
Activity Status as of July 1, 2018:  
 

1. Work is being conducted on the water storage change analysis for all seventeen HUC-8 watersheds. The 
storage change analysis that is based on the baseflow recession analysis has been completed for the 
Rum River watershed, and the analysis for the remaining 16 watersheds will be completed by December 
31, 2018.  
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2. The analysis of water storage change based on modeling (CLM and HSPF models) is underway. The CLM 
model is being run on the Minnesota Supercomputer Center computing facilities. The HSPF model is 
currently being tested on PC computers, and the input data files for the HSPF model are being acquired 
from the MPCA.  

3. The water storage variation estimation from the GRACE satellite and the SMOS/SMAP satellites has been 
completed, but we are continuing to test those results as we complete more of the analysis of the 
ground-based measurement data, and also as results are completed from the models (CLM and HSPF).   

 
Activity Status as of January 1, 2019: 
 

1. Work with the HSPF model was put on hold during the fall because the graduate student working on it, 
not directly funded by the project, was busy with taking classes. We expect to be able to pick up on the 
model again in the last phase of the project and apply the model to the project area. Up until now the 
water balance analyses conducted has been to use simple water balance calculations. These calculations 
use our watershed-scale average precipitation, evapotranspiration, and streamflow. Our precipitation 
and streamflow data are considered to be accurate enough, but the evapotranspiration data used are 
variable depending on the source of the data. We have sourced data from NOAA, the USGS, and the 
University of Minnesota. A task during the next period will be to select one of these data sources for our 
final analysis.  

2. Mr. Xiang Li continues to conduct analysis of baseflow recession flows as a way of estimating water 
storage change. He already had much of this completed within the previous period but he continues to 
refine his analysis as this work is the subject of his M.Sc. thesis. 

3. Mr. Francisco Lahoud is working with data from the GRACE satellite to quantify changes in water storage 
at the scale of individual watersheds. We have 17 watersheds in our study region, and the satellite data 
are being used to track water storage change. At issue is to be able to confirm that the satellite data is 
really giving water storage change, and not something else. To confirm this we are working with water 
balance calculations using precipitation data, evapotranspiration estimates, and streamflow data to 
calculate water storage changes. Our estimates of precipitation and streamflow are very good, but the 
evapotranspiration estimates seem to be a problem right now. As mentioned in item 1 above, for 
evapotranspiration estimation we are using various sources of information (e.g., from NOAA, USGS, 
University of Minnesota) and attempting to find the method that gives the most reasonable and 
consistent results. 

 
Activity Status as of July 1, 2019: 
 

1. We have corrected the source of data used for precipitation within the study region. Previously we were 
using data acquired from the Oak Ridge National Laboratory (ORNL), but we have found that those data 
have some bias of being too high. So now we have changed the data source over to the MNDNR source.  

2. We have corrected the source of data for large scale evapotranspiration (ET). Previously we were using ET 
estimated from meteorological stations, but now we have moved to using data acquired from satellites. 
The source of the new ET estimates is CIGA. We have used ground-based eddy-covariance estimates of 
ET to compare to the large-scale spatial estimates and found the CIGA estimates to have the highest 
agreement. Our confirmation (ground-truthing) of these estimates is as good as any tests one will find in 
the peer-reviewed literature, so we feel confident in our results.  
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3. The new estimates of spatially distributed precipitation and ET are being applied along with stream gage 
measurements to quantify changes in water storage (by simple water balance) at the HUC-8 watershed 
scale, and these calculated changes are being compared to water storage changes estimates derived 
from the GRACE satellite. We are also comparing the water balance calculations to our analysis of lake, 
groundwater, wetland and soil moisture storages. Preliminary work with the Rum River watershed and 
the Wild Rice River watershed indicates that there is good agreement between the satellite derived and 
the ground-based data derived estimates and the water balance calculations.  

4. The work with the HSPF model is continuing and will pick up more in late summer and fall of 2019. While 
the HSPF model calculation is also for the HUC-8 watershed scale, the advantage of the HSPF water 
balance calculation is that it will provide a way to separate the water balance estimated storages into 
the lake, wetland, soil moisture and groundwater components; the current water balance calculations 
we are conducting lumps all the water together into a total terrestrial water storage within a given HUC-
8 watershed.  

Activity Status as of January 1, 2020: 
 

1. Water storage calculations using a lumped representation of a watershed, and comparison to estimates of 
water storage change based on GRACE data and pointwise measurements has been completed.  

2. Water storage calculations using the HSFP model is ongoing and will be complete by June 2020.  

 
Final Report Summary:   
 

1. Work on the groundwater storage continued improve the accuracy of storage estimates until May 2020, 
and is now complete. A detailed report on the groundwater storage is presented in Appendix G.  

2. The application of the lumped parameter watershed model to the study region and comparison of the 
calculated water storage change to the water storage change derived from GRACE data was completed 
in mid-2019. A brief report on this analysis is presented in Appendix H.1.  

3. The HSPF model was applied to the Rum River watershed to analyze the relation between water storage 
and river discharge. A report on this work is presented in Appendix H.2. The model is shown to be useful 
to quantify this relation and to quantify the spatial and temporal distribution of water storage within the 
watershed. In work ongoing beyond the scope of this project we are applying this model to attempt to 
downscale satellite-derived water storage data (GRACE, SMOS/SMP, Landsat). It is expected that by 
downscaling the water storage it will be possible to improve the storage-discharge relation, and thereby 
enhance the ability to forecast floods, hydrologic droughts, and ecosystem flows.  

 
V. DISSEMINATION: 
Description:  
Project results will be disseminated through seminars conducted within Minnesota and at national and 
international meetings. Example meetings in Minnesota will include the Minnesota Water Resources Conference 
held each October in St. Paul, seminars for the Water Resources Sciences Graduate seminar program at the 
University of Minnesota, other seminars held within the University, a webinar for the UZIG (Unsaturated Zone 
Interest Group) held quarterly, and an annual presentation at the annual meeting for the regional project W-
3188 (“Soil, Water, and Environmental Physics Across Scales”, J.L. Nieber is the University representative) held in 
Las Vegas. Opportunities to present the results in a seminar format to the MnDNR will also be sought. Seminars 
at national/international meetings include the American Geophysical Union meeting held in San Francisco each 
December (travel to national/international meetings will be funded from a University funding source).  
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A project web site was created on the network server at the University of Minnesota to provide the platform for 
illustrating the ongoing development of project outcomes. Included there will be visuals of maps, and 
information about databases created throughout the project. Data will be stored on this server so that 
interested parties will be able to acquire data compiled by the project activities. Also, reports/manuscripts 
prepared based on the results will be made available on the server.  
 
Status as of January 1, 2018:    
 

1. Presented a poster of the quantifying soil moisture by satellite; presented at the Minnesota Water 
Resources Conference, October 2017 

2. Presented preliminary finds of the research at the regional project meeting, W-3188 in January 2018.  

Status as of July 1, 2018:  
 

1. J.L. Nieber, Minnesota: How much water is there; how is it changing? article in the Open River: Rethinking 
Water, Place & Community, Issue 10: Spring 2018.  

2. Presented a poster on the use of the GRACE satellite to quantify changes in watershed water storage. 
Poster represented at the 1st Water Resources Assembly meeting held at the University of Minnesota, St 
Paul campus, January 19, 2018. 

3. Presented a poster on the use of the GRACE satellite to quantify changes in watershed water storage. 
Poster represented at the 11th GEWEX meeting held in Canmore, Canada, May 6 – 11, 2018. 

Status as of January 1, 2019:  
 

1.  Xiang Li. Baseflow Recession Analysis for 17 Watersheds in Central Minnesota, Seminar presented to the 
University of Minnesota Water Resources Science seminar, November 30, 2018. 

2. Claire G. Griffin, Kerry Holmberg, Chelsea Delaney, Leif G. Olmanson, Patrick L. Brezonik, Jacques C. 
Finlay, and John L. Nieber. Remote sensing of dissolved organic matter pools in lakes at regional scales, 
poster presented at the 2018 Fall meeting of the American Geophysical Union, Washington, DC 

3. Francisco Lahoud and J.L. Nieber. Quantifying Total Water Storage in the Minnesota River Combining 
Remote Sensing and Land Use Models Poster presented at the Minnesota Water conference, October 
2018. 

Status as of July 1, 2019: 
 
A project web site has been created and is currently being populated with project results and accessible project 
data. One can think of this web site as being ‘under construction’ and it will continue to be improved 
incrementally with time (about once every two weeks). Our projection is that the web site will be complete by 
June 30, 2020. We do expect that the project website will be a useful focal point for this and related research, so 
we intend to continue to add to and improve the website even beyond the completion of the project in 2020.  
 
As the website is still under construction at this time, we are giving access to a limited number of people, 
including project team members and any interested LCCMR staff upon request. The link to the website is  
 
https://sites.google.com/s/1VFVvT77dGQvki9gRj-DClaLxTIs-7LV3/p/1Zj1HZo-
dOipNlTOfh9ruDUgmb2eJ29mi/edit?userstoinvite=kerry.holmberg%40gmail.com 
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Status as of January 1, 2020: 
 

1. Presentations at meetings. 
a. Li, X., Drainage Timescale estimates and storage change analysis on a basin scale, Poster, 

American Geophysical Union Fall meeting, December 2019  
b. Nieber, J.L., Quantifying terrestrial water storage in Central Minnesota, Water Resource Sciences 

Graduate Student seminar, University of Minnesota, September 2019 
c. Nieber, J.L., Estimating total terrestrial water storage in Central Minnesota, Minnesota Water 

Resources Conference, St. Paul, October, 2019 
d. Teng, Pai-Feng, The evolution of remote sensing of flood forecasting and potential improvement 

with Gravity Recovery and Climate Experiment (GRACE): A review, Poster, American Geophysical 
Union Fall meeting, December 2019 

 
2. Two MSc. Theses. 

a. Ms. Chelsea Delaney, Estimating Lake Water Volume Using Scale Analysis, University of 
Minnesota, December 2019 

b. Mr. Xiang Li,  Drainage Timescale estimates and storage change analysis on a basin scale, June 
2020. 

 
3. Manuscript on lake volume estimation. Chelsea Delaney, John Nieber, Kerry Holmberg, Jared Trost, 

Adam Heathcote, Bruce Wilson, Estimating Lake Water Volume Using Scale Analysis, Draft Manuscript 
for submission to a scientific journal, September 2020.  
 

4. The results of the lake volume method used in this project have been adopted in a LCCMR funded 
project managed by Dr. Jacques Finley for a statewide analysis of lake volumes. In that case the lake 
volume was being used to assess the water quality of the lakes as monitored using satellite data. A draft 
manuscript for the results of that study has been developed and the manuscript should be submitted for 
publication in September 2020.  

 
Final Report Summary: 
The project has tested the idea of using satellite data, with application to Central Minnesota, to monitor the 
changes in water storage from space. The GRACE satellite has provided estimates of the change in total water 
stored in the landscape (surface water, soil moisture and groundwater), while the Landsat satellite has provided 
data for quantifying the storage of water in lakes (about 43,000 lakes) in the study region. A water table 
mapping application was developed within the scope of the project to allow mapping of the water table across 
the study region, and from that mapping the storage of water in the Quaternary aquifer was completed. This 
mapping provides estimates of water storage change in the groundwater aquifer on an annual basis and 
estimates of change from this method were compared to the changes derived from the GRACE satellite and the 
results compared favorably. This water table mapping application is available for use by state agencies and will 
be of value to land developers, land managers, and water resource planners. This mapping application is being 
used in a follow-up study to examine the use of the water table mapping to assess the potential of flooding or 
the potential for hydrologic drought. Three methods for estimating water storage change have been 
developed/tested within this project; GRACE satellite, water table mapping, and baseflow analysis (work 
described in the M.Sc. thesis of Xiang Li). All of these methods yield compatible estimates of water storage 
change, so each can be used independently. The use of all three methods, when data are available for all 
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methods, is probably the best approach since an ensemble average estimate of water storage change from all 
three methods will eliminate the shortcomings of any one of the methods.  
 
VI. PROJECT BUDGET SUMMARY:   
A. ENRTF Budget Overview: 
*This section represents an overview of the preliminary budget at the start of the project. It will be reconciled 
with actual expenditures at the time of the final report. 

Budget Category $ Amount Overview Explanation 
Personnel: $ 198,160 The personnel working on the project from 

the University of Minnesota include research 
faculty J. Nieber, J. Baker, B. Wilson, T. Griffis, 
no funding required;  graduate student (F. 
Lahoud, $79,416 (60% salary, 40% benefits), 
0.5 FTE each year for two years); graduate 
student (TBD), meteorologist, $29,729, (60% 
salary, 40% benefits), 0.38 FTE for year 1; 
undergraduate students (TBD), $8,502 (100% 
salary), 0.5 FTE in summer of both years, and 
0.2 FTE during school year of both years; 
research scientist (B. Hansen, Senior Scientist, 
$63,590 (73% salary, 27% benefits), 0.6 FTE in 
year 1 and 0.15 FTE in year 2; R. Kanivetsky, 
Hydrogeologist; $13,923 (67% salary, 33% 
benefits), 0.13 FTE for year 1.).   

Professional/Technical/Service 
Contracts: Subcontract with the 
U.S.G.S. 

$ 51,840 Mr. Jared Trost with the Water Resources 
Center of the U.S.G.S. located in Mounds 
View, who will work collaboratively with the 
University of Minnesota research group to 
accomplish the goals of Activity 1 and Activity 
2.  

Travel Expenses in MN: $ 0 Travel within Minnesota is necessary to visit 
field sites where monitoring of groundwater, 
soil moisture, streamflow and weather is 
conducted. The project will not involve 
collection of field data, but acquisition of data 
collected by others. However, visiting field 
sites will be necessary to confirm documented 
local information about the field sites. Also, 
travel between St. Paul and Mounds View to 
conduct project meetings, or to travel within 
Minnesota to present research results.  

Other: $ 9,909 Summer salary for Tim Griffis received from a 
NSF/NASA grant that is directly related to the 
work being done in this project.  

TOTAL ENRTF BUDGET: $ 250,000  
 
Explanation of Use of Classified Staff:  N/A 
 
Explanation of Capital Expenditures Greater Than $5,000:  N/A 
 
Number of Full-time Equivalents (FTE) Directly Funded with this ENRTF Appropriation: 3.15 FTE 
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Number of Full-time Equivalents (FTE) Estimated to Be Funded through Contracts with this ENRTF 
Appropriation: 0.5 FTE 
 
B. Other Funds: $9,909. Funding from a NSF/NASA grant for Tim Griffis which covers one month of his summer 
salary for both years. This is a match to the ENRTF funding for the project.  
 
 
VII. PROJECT STRATEGY:  
A. Project Partners:    
A. Project Team/Partners  
 
No ENRTF funding required: 
John L. Nieber, Professor, Department of Bioproducts and Biosystems Engineering, will serve as project principal 
investigator and will work on all aspects of the project. 
Bruce Wilson, Professor, Department of Bioproducts and Biosystems Engineering, will work on the uncertainty 
analysis of water storage estimates.  
Timothy Griffis, Professor, Department of Soil, Water and Climate, will conduct the research related to the water 
balance (hydrology) model. Dr. Griffis has summer support from a NSF/NASA grant to cover his part of the effort 
on the project.  
John Baker, Professor and Research Leader, USDA-ARS, Department of Soil, Water and Climate, will work 
alongside Dr. Griffis on the application of the land surface/atmosphere interaction model to estimate soil 
moisture storage, aquifer recharge, and generation of surface runoff.   
 
ENRTF funding required: 
Jared Trost, Hydrologist, USGS, Mounds View, will work on the estimation of water storage in the aquifers of the 
study area.  
Roman Kanivestsky, Adjunct Professor, Department of Bioproducts and Biosystems Engineering, will assist with 
the interpretation of quaternary and bedrock geologic data for the study area for the estimation of unsaturated 
zone and aquifer storage.  
Kerry Holmberg, Assistant Research Scientist, Department of Bioproducts and Biosystems Engineering, will work 
on the acquisition of monitoring well data, soil data and lake/wetland data for the study area. She worked on 
the estimation of water stored within the surface waters of the study area.  
Francisco Lahoud, Graduate Student, will work on the satellite data and combining it with ground-based data. 
He will be involved in acquisition of data, data processing, modeling, and data analysis.  
Xiang Li, Graduate Student, will work on the water table mapping, and the analysis of baseflows for quantifying 
water storage change in aquifers. 
Chelsea Delaney, Graduate Student, will work on the estimation of water storage in lakes and wetlands.  
Ke Xiao, Graduate Student in meteorology, will work on the modeling of evapotranspiration and will also assist 
with the water balance (hydrology) model. 
Undergraduate Research Assistant, will assist with acquisition of data and data processing, and preparation of 
visual aids for presentation of results. 
 
B. Project Impact and Long-term Strategy:   
Quantification of water storage on the surface and in the subsurface across Minnesota is essential for 
sustainable management of water use and improvement of the quality of Minnesota water resources. The 
quantification of water storage will help to reduce the uncertainty about the state of water resources and 
reduce the potential for conflicts between competing users. It will also assist with accounting for the needs of 
adequate flows of water in streams and rivers for sustaining aquatic health. In early discussions with the MNDNR 
it was been established that a method for estimating changes in water storage, regionally and locally will be 
useful to the MNDNR water allocation planning activities. It is also expected that the methodology will be 
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helpful to state and federal agencies in the forecasting of potential flooding as well as assessments of impacts of 
drought on available water supplies, and useful as well to agencies and consultancies in conducting water 
quality assessments. The scope of the current project is limited to a study of the mid-central region of the state. 
It is hoped that the methodology will be found valuable enough that additional funding will be available to 
expand the data-base and methodology to the entire state. In the long-term, but beyond the scope of the 
current project it is hoped to install the developed methodology, which will be data intensive and modeling 
intensive, on a server computer at the University of Minnesota, and made available to state agencies for 
installation on agency computers and use by state agency staff. If that happens the methodology will be taught 
to water resource managers within the agencies. It is also expected that the methodology will be taught to 
graduate students at the University of Minnesota. The methodology is currently being used in a follow-up grant 
from the National Science Foundation to estimate the potential for flooding.  
 
C. Funding History: N/A 
 
VIII. FEE TITLE ACQUISITION/CONSERVATION EASEMENT/RESTORATION REQUIREMENTS: 
 
A. Parcel List: N/A 
 
B. Acquisition/Restoration Information: N/A 
 
 
IX. VISUAL COMPONENT or MAP(S): 
See map on the next page for the study area.  
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X. RESEARCH ADDENDUM: 
 
The research addendum for this project is presented in Appendix I.  
 
 
XI. REPORTING REQUIREMENTS: 
Periodic work plan status update reports will be submitted no later than January 1, 2018, July 1, 2018, January 
1, 2019, and July 1, 2019.  A final report and associated products will be submitted between June 30 and 
August 15, 2019. 
 
XII. RESULT APPENDICES: 
 
Appendices A-D were put here for additional information reported during the duration of the study. 
Appendices E-H are full reports that are too voluminous to be included here but are associated with this 
report. Appendix I is the original Research Addendum which is kept here for any future reference.  
 
A. Lake water storage estimation. Statistical approach. 
 
Lake Volumes: 
A breakpoint regression model relating lake surface area to lake volume (n=909) is being used to estimate lake 
volume for all of the lakes in our study area (n=30,000).  The Yearly History sub-dataset from the Global Surface 
Water dataset (https://data.europa.eu/euodp/en/data/dataset/jrc-gswe-global-surface-water-explorer-v1) 
provides surface water delineations from 1984-2015. Delineations were defined using expert systems, visual 
analytics and evidential reasoning from big data exploration and information extraction techniques to identify 
water and land from LandSat images.  Rough estimates of total lake volume in the study area from 2001-2015 
are given below.  Volumes were estimated with surface areas from the GSW dataset using breakpoint 
regression. River volumes are not included and will be estimated before the next progress report. 
 
Table A.1.  Total lake water volume estimates for project area. 

w/o Mille lacs     

Year Count Area m2 
Volume 
Hect-m 

2001 27288 2710323257 1168192 
2002 28359 2745875486 1171406 
2003 28155 2790395635 1189470 
2004 28247 2757821342 1176828 
2005 30709 2759010237 1177992 
2006 30764 2759010655 1178933 
2007 30111 2791131904 1188157 
2008 29158 2789532512 1188904 
2009 30142 2781118526 1185969 
2010 30709 2759846726 1178302 
2011 30334 2767956913 1181870 
2012 24671 2791264617 1188387 
2013 28642 2761926450 1181745 
2014 30482 2626386470 1131923 
2015 28089 2702117204 1156865 
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w/Mille lacs     

Year Count Area m2 
Volume 
Hect-m 

2001 27288 3227649660 1617911 
2002 28359 3263326882 1621234 
2003 28155 3307836793 1639289 
2004 28247 3275229199 1626617 
2005 30709 3276665545 1627997 
2006 30764 3276623642 1628901 
2007 30111 3308726875 1638109 
2008 29158 3307030349 1638772 
2009 30142 3298503037 1635739 
2010 30709 3277215773 1628058 
2011 30334 3285346452 1631644 
2012 24671 3308726875 1638224 
2013 28642 3279437273 1631624 
2014 30482 3143516350 1581471 
2015 28089 3219112630 1606296 

 
 
 
B. Lake water storage estimation. Topographic scaling method.  
 
Methods: 

Using the Minnesota Department of Natural Resources (DNR) hydrography data, 40,054 lakes were 
selected in Minnesota’s 17central watersheds to be used to predict their volumes (Figure B.1) (DNR Division of 
Fish & Wildlife, 2012).  785 lakes with known volumes from the DNR morphology data of the state were also 
compiled to compare the predicted volumes to the known volumes (Minnesota Department of Natural 
Resources (DNR), 2015).   

Using ArcMap 10.6.1, the area was projected in the NAD_1983_UTM_Zone_15N coordinate system for 
all layers. Following Heathcote et al. (2015) method, each lake had a buffer created around the lake using an 
equation as seen in the following: 

D = 2 . √ (A / π) (Equation 1) 
where D is the equivalent diameter and A is the lake surface area.  Once the equivalent diameter was 

determined, 25% of the equivalent diameter was calculated and used to determine the optimal buffer area.  The 
25% buffer resulted in the best prediction of lake volume when compared to the set of known volumes.   

Topography for each buffer was calculated using a 1/3 arc-second Digital Elevation map (DEM) of 
Minnesota provided by United States Geological Survey (USGS) and the DNR hydrography layer (U.S. Geological 
Survey, 2017).  Within each lake’s buffer, topography was summarized as the minimum, maximum, and mean 
elevation change which was determined by calculating the difference between the mean elevation within the 
buffer and the minimum elevation.   

Once the topography was determined, we used Heathcote et al. (2015) volume equation as a basis for 
calculating lake volume (V).  Using lakes that were in both the hydrography layer and the morphology layer, a 
regression analysis was conducted using the known volumes from the morphology layer and the mean elevation 
change and surface area from the hydrography layer.  Once run, coefficients for the volume equation was 
determined as seen in equation 2. 

 
log10 V = log10 lake area · 1.07 + log10 elevation change25 · 0.249 (Equation 2) 
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After computing lake volumes, a correction for a bias towards back-transformations of values was conducted 
from Ferguson (1986) 
 

Ŷ corr =10log10 Ŷ · exp (2.65 · s2) (Equation 3) 
 
where Ŷ corr is the uncorrected predicted value, s2 is the residual variance from the model, and 2.65 is a 
constant.  This provided a better estimate for the lake volumes calculated.   
 Comparing the known and predicted lake volumes, the model explained 76% of the variation in lake 
volume (R2 = 0.76, F [2, 782] = 1224, P < 2.2e-16).  All statistical analysis was conducted using the statistical 
software R (RStudio Team, 2016). 
 
Results/ Discussion: 

Our results supported our use of the terrestrial slope and surface area to predict the volume of a lake.  
When comparing the known and predicted lake volumes, the model explained 76% of the variation in lake 
volume (Figure B.2).  The RSE for the model was 0.336 log10 m3. Furthermore, when looking at the total volume 
of the 785 lakes with a bias correction to a nonbiased correction, we saw that with a bias correction the 
predicted lake volume was only 0.32% different than the 2.6% difference of the nonbiased total to the observed 
volume total (Table B.1).  

 While different models are becoming more abundant in calculating lake volumes, we can see that this 
model developed by Heathcote et al. can in fact significantly predict the volumes of lakes.  Even though 
determining volume could be calculated by field surveying, that is time consuming and expensive.  Therefore, 
there must be a continuation on developing models that can accurately predict lake volumes with only limited 
data.   

Despite the fact there is a significance occurring within this watershed, only 785 lakes were surveyed 
with a total of over 40,000 lakes within the watersheds.  Due to the small sample size of lakes with known 
volumes, the predicted coefficient is not as accurate as it would be if the sample size was larger.  In addition, 
using a 1/3 arc-second DEM resulted in a loss of smaller lakes when calculating the elevations within each lake 
buffer.  For further research, a better resolution will be used in order to more accurately predict volumes.   

While this study is only limited to central Minnesota, a full state calculation has been undergone to 
determine if an extremely large-scale attempt at using these calculations can accurately predict lake volume 
across vast distances and ecoregions.  Based on preliminary research, the model explained 82% of the variation 
in lake volume with over 1,000 lakes of 15 acres or larger to compare from. Further research is needed in order 
to determine if we can better accurately predict lake volumes at different scales.   
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Figures: 
 

 
Figure B.1. Map of 40,054 lakes and ponds contained within 17 watersheds of Minnesota showing ones 

selected for calculating individual and total volume of lakes.   
 
 

 
Figure B.2. Observed and predicted lake volume (log10 m3) calculated from a 1/3 arc-second DEM of 17 

watersheds in central Minnesota.  
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Table B.1. Percent differences between the total observed lake volume compared to total predicted lake volume 
with a statistical correction and without a statistical correction (n=785 lakes). 

 

 Total Volume (hectare) 
Percent Difference between 

Predicted Volume and Observed 
Volume 

Predicted Uncorrected Volume  585875.45 2.6% 
Predicted Corrected Volume  789585.65 0.32% 

Observed Volume 787038.95 -- 
 
 
References: 
DNR Division of Fish & Wildlife - Fisheries Unit. (2012). DNR Hydrography - Lakes and Open Water. Minnesota 

DNR - Division of Fisheries. 
ftp://ftp.gisdata.mn.gov/pub/gdrs/data/pub/us_mn_state_dnr/water_dnr_hydrography/metadata/dnr
_hydrography_lakes_and_open_water.html 

 
Ferguson, R. I. (1986). River loads underestimated by rating curves. Water resources research, 22(1), 74-76. 
Heathcote, A. J., del Giorgio, P. A., & Prairie, Y. T. (2015). Predicting bathymetric features of lakes from the 

topography of their surrounding landscape. Canadian journal of fisheries and aquatic sciences, 72(5), 
643-650.  

Minnesota Department of Natural Resources (DNR). 2015. Lake Basin Morphology. Minnesota DNR, Division of 
Fish and Wildlife. 
ftp://ftp.gisdata.mn.gov/pub/gdrs/data/pub/us_mn_state_dnr/water_lake_basin_morphology/metadat
a/metadata.html 

RStudio Team (2016). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL 
http://www.rstudio.com/. 

U.S. Geological Survey (2017). 1/3rd arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP 
Downloadable Data Collection: U.S. Geological Survey. 

 
C. Water table mapping and water storage estimation. 
 
To understand physical changes in water storage, water level data were acquired from the following publicly 
available sources for the period 2002 to 2015: 

1. The Minnesota DNR cooperative groundwater monitoring network 
(https://www.dnr.state.mn.us/waters/cgm/index.html)  

2. The Minnesota DNR lakefinder database (https://www.dnr.state.mn.us/lakefind/index.html)  
3. The U.S. Geological Survey (https://waterdata.usgs.gov/mn/nwis/gw/) 
4. The Minnesota Department of Agriculture (personal communication) 
5. The Minnesota Department of Health Well Index online (http://www.health.state.mn.us/divs/eh/cwi/)  

The data were processed to a common horizontal datum (WGS84) and a common vertical datum (NAVD88).  
Water levels for wells were constrained to the water table aquifer or wells drilled to less than 50 ft in unknown 
aquifers. Daily mean levels were computed for sites with hourly water level data.  The data were reviewed for 
clear outliers and outliers were removed.  For example, a water level of 100 ft was removed from a record for a 
lake where the remainder of the values were greater than 800 ft.  The resulting data set contains 343,580 water 

ftp://ftp.gisdata.mn.gov/pub/gdrs/data/pub/us_mn_state_dnr/water_dnr_hydrography/metadata/dnr_hydrography_lakes_and_open_water.html
ftp://ftp.gisdata.mn.gov/pub/gdrs/data/pub/us_mn_state_dnr/water_dnr_hydrography/metadata/dnr_hydrography_lakes_and_open_water.html
http://www.rstudio.com/
https://www.dnr.state.mn.us/waters/cgm/index.html
https://www.dnr.state.mn.us/lakefind/index.html
https://waterdata.usgs.gov/mn/nwis/gw/
http://www.health.state.mn.us/divs/eh/cwi/
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level measurements across the study area for 8,325 measurement locations. Lakes were considered to be 
surface expressions of the groundwater level.   
An annual mean water level for each year from 2002 to 2015 was calculated for each site.  Only sites with at 
least 1 measurement per year were included for the analysis presented below. Only 650 sites met this criteria: 
499 lakes and 151 wells.  Figure C.1 shows some consistent trends in water levels across the study area during 
certain periods.  For example, most water levels across the study area increased between 2009 and 2011.  
Water levels were generally above average across the study site in 2002, 2011, and 2014; water levels were 
generally below average in 2004 and 2007.  These large-scale consistent patterns should be apparent in the 
GRACE satellite data.  
 

 
Figure C.1.  Boxplot showing water level anomalies by year for all 650 sites with data for each year between 
2002 and 2015.  Each water level anomaly data point was calculated as the difference between  annual mean 
water level at a site and the 2002-2015 mean annual water level at that site.   
 
Despite the abundance of water level data, substantial portions of the study area have little information.  Other 
data sources are being explored to improve water table mapping through the project area.  These include Global 
Surface Water data from Google Earth Engine, perennial stream centerlines, the National Wetlands Inventory, 
and a 30-m statewide DEM derived from 1-m LIDAR data. To convert water levels into groundwater storage, the 
porosity of geologic materials is needed.  Porosity is the void space between sediment particles that can be filled 
with water.  Porosity values have been assigned according to USDA texture classes available in the Minnesota 
Geological Survey’s Surficial Geology Map (https://conservancy.umn.edu/handle/11299/191889).   
 
D. Satellite estimation of water storage variations.  
 
This is a brief summary of the progress made in the Water Storage Central Minnesota project in determining 
terrestrial water balances in each of the watersheds in the study area. 
 
For such a determination the pilot test was started in the Rum River Watershed, with the following results: 
 

https://conservancy.umn.edu/handle/11299/191889
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Figure D.1. Time series of precipitation, evapotranspiration and monthly river discharge (all given in mm) for the 
period 2002 – 2015.  
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Grace Data for Water Storage Central Minnesota: 
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There are no negative values for GRACE values because a 150 mm datum was used to avoid them. 
There is a net decrease of 15 mm in the evaluated period, from 155 mm to 140 mm. 
 
 

 
 

0

50

100

150

200

250

300

4/
1/

20
02

12
/1

/2
00

2

8/
1/

20
03

4/
1/

20
04

12
/1

/2
00

4

8/
1/

20
05

4/
1/

20
06

12
/1

/2
00

6

8/
1/

20
07

4/
1/

20
08

12
/1

/2
00

8

8/
1/

20
09

4/
1/

20
10

12
/1

/2
01

0

8/
1/

20
11

4/
1/

20
12

12
/1

/2
01

2

8/
1/

20
13

4/
1/

20
14

12
/1

/2
01

4

8/
1/

20
15

m
m

Axis Title

Grace Data Rum River Watershed (MN)

Series1

Linear (Series1)

y = 1.4859x - 203.19
R² = 0.2739

0

50

100

150

200

250

300

0 50 100 150 200 250 300

W
at

er
 B

al
an

ce
 (m

m
)

Grace data 2002-2015 mm 

Grace vs. Water Balance Rum River Watershed



35 
 

The correlation is acceptable taking into account the Watershed scale and the GRACE satellite measurement 
scale. 
 
Finally, in the water balance calculation of monthly volumes (using monthly precipitation, evapotranspiration, 
and streamflow data) there is a net increase of 1170 mm. This result contradicts the result obtained from the 
GRACE satellite. Thus far we have identified that the probable reason for the discrepancy is that the water 
balance calculation is very susceptible to the estimation of the watershed-scale estimates of evapotranspiration. 
For the evapotranspiration data product sources available to us (NOAA, USGS, University of Minnesota) there is 
significant difference among the estimates. We will be evaluating these data sources in the final part of the 
project.  
 
July 1, 2019 
 

 
Figure 1. Map of water volume in lakes by HUC-8 watershed within the study region. Volumes are given in 
billions of gallons.  
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Figure 2. Map of water storage in active groundwater by HUC-8 watershed within the study region for 2015. 
Volumes are given in billions of gallons.  
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Figure 3. Map of water storage in groundwater by HUC-8 watershed within the study region for 2015. Volumes 
are given in billions of gallons. The groundwater zone represented is for the quaternary aquifer in the region.  
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Figure 4. Comparison of two estimates of water storage change in the study region for the period 2004 – 2015. 
One of the estimates is from the water table mapping approach that uses observation well and lake level data to 
quantify the water stored in groundwater. The other estimate is from one of the available GRACE satellite 
products (Mascon).  
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The volume of a lake is a crucial component in understanding environmental and

hydrologic processes. The State of Minnesota (USA) has tens of thousands of lakes,

but only a small fraction has readily available bathymetric information. In this paper

we develop and test methods for predicting water volume in the lake-rich region of

Central Minnesota. We used three different published regression models for predicting

lake volume using available data. The first model utilized lake surface area as the sole

independent variable. The second model utilized lake surface area but also included an

additional independent variable, the average change in land surface area in a designated

buffer area surrounding a lake. The third model also utilized lake surface area but

assumed the land surface to be a self-affine surface, thus allowing the surface area-

lake volume relationship to be governed by a scale defined by the Hurst coefficient.

These models all utilized bathymetric data available for 816 lakes across the region

of study. The models explained over 80% of the variation in lake volumes. The sum

difference between the total predicted lake volume and known volumes were <2%. We

applied these models to predicting lake volumes using available independent variables

for over 40,000 lakes within the study region. The total lake volumes for the methods

ranged from 1,180,000- and 1,200,000-hectare meters. We also investigated machine

learning models for estimating the individual lake volumes and found they achieved

comparable and slightly better predictive performance than from the three regression

analysis methods. A 15-year time series of satellite data for the study region was used to

develop a time series of lake surface areas and those were used, with the first regression

model, to calculate individual lake volumes and temporal variation in the total lake volume

of the study region. The time series of lake volumes quantified the effect on water volume

of a dry period that occurred from 2011 to 2012. These models are important both

for estimating lake volume, but also provide critical information for scaling up different

ecosystem processes that are sensitive to lake bathymetry.
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INTRODUCTION

Fresh water is a crucial resource to humans. With an ever-
changing environment, we need to be better prepared to protect
it. One of the most important freshwater bodies are lakes.
While the surface area of all lakes covers <4% of the global
landmass and the total volume of water is a small fraction of
total terrestrial freshwater, they are home to a wide range of
biodiverse ecosystems (McDonald et al., 2012). The ecosystem
functioning of lakes provides tangible ecologic and economic
value, yet key information such as lake datasets that contain
basic morphological and hydrologic characteristics needed to
determine these functions are missing (Hollister et al., 2011;
Crétaux et al., 2016). Lake volume and maximum lake depth are
vital components in many lake functions related to the physical,
biological, and chemical processes within a lake. For example, the
volume of a lake can affect the water residence time which in
turn can affect the nutrient dynamics and primary productivity
(Sobek et al., 2011) as well as the zooplankton dynamics of a lake
(Obertegger et al., 2007). With missing or inaccurate data, the
prediction of these functions is not as precise as they could be,
making it more difficult to quantify the changes that may occur
within these environments (Sobek et al., 2011; Crétaux et al.,
2016; Messager et al., 2016).

As two important parameters determining the nature of
circulation processes and biogeochemical processes in lakes, data
on lake volume and lake depth are scarce. Even the available
data in many parts of the world are merely present for only a
very small fraction of the total number of lakes. For instance,
in Minnesota, ‘the land of lakes,’ the number of lakes with
detailed bathymetric data is <2% of the total number of lakes
in the state. Given that current technology makes it impractical
to directly measure bathymetric information at large scales,
it becomes necessary to develop predictive models for these
parameters using the information that is available. At present,
a widely used approach is to estimate lake volume with lake
surface area data. Models for lake volume using lake surface area
were among the first models developed and include the work by
Håkanson and Karlsson (1984). Improvements in lake volume
models were made by including a second prediction variable
that involved some measure of the land surface topography in
the area surrounding a lake. The idea of this second variable
is that the topography of the surface surrounding a lake would
reflect the topography of the lake bottom. Studies that involved
a prediction variable representing the surrounding topography
include Håkanson and Peters (1995), Hollister et al. (2011), and
Sobek et al. (2011).

A modification of the lake buffer topography variable was
proposed by Heathcote et al. (2015). In this study, they used
the change in surface elevation in a buffer area surrounding the
lake, with the buffer area scaled according to lake surface area.
Heathcote et al. applied this model to the data for 433 lakes
located in different geographic regions in the southern part of the
Province of Quebec (Canada). In doing so, the model explained
95% of the variation in lake volume.

While the Heathcote et al. (2015) method predicted lake
volumes using self-similar scaling, the Cael et al. (2017) method

developed a model assuming that the land surface is self-affine.
The scaling of such surfaces has been shown theoretically to
be related to the Hurst coefficient. Since lake water fills in the
depressions of the land surface, a description of the surface as
being self-affine should provide a theoretical background for
predicting the volume of water in the depressions. According
to the theory of such self-affine surfaces, the volume of the
depression will be proportional to the depressional surface area
raised to some exponent. This exponent can be shown to be
calculated from the Hurst coefficient, which itself can be related
to the fractal dimension of the surface. For the earth surface, the
Hurst coefficient has been determined to be about 0.4 ± 0.1 for
the spatial scale relevant to lakes (see for example Renard et al.,
2013).

In their study, Cael et al. (2017) predicted lake volumes
on a global scale with vastly different regions and topographic
features. The model is meant to be used to predict the total
volume and mean depth of a collection of lakes. However, the
model can be used to estimate the volume for individual lakes,
but these are determined on a statistical basis. Their estimate of
the total volume of lakes globally was 199,000 km3, which is lower
than previous estimates of 210,000 km3.

Both Heathcote et al. (2015) and Cael et al. (2017)
methods estimate lake volume in a statistical regression model.
Statistical models are elegant in their solid theoretical foundation,
interpretability, and easy implementation. Nevertheless, their
ability to handle non-linearity and complex prediction problems
are also constrained by their simple model architecture. Recently,
machine learning (ML) methods have become a popular
approach to model complex non-linearities from scientific data
and their contributions to tackle water-related problems have
been previously acknowledged (Shen et al., 2018). Despite the
wide applicability of machine learning, their use in lake volume
prediction, to our knowledge, has not been explored. Thus,
we have additionally developed and applied machine learning
models to predict lake volume using limited lake bathymetric
data and compared this technique to the performance of the
regression models.

The ability of ML to solve predictive problems (Sejnowski,
2020) has already made its scientific applications span a diversity
of fields. Among them, ML applications in hydrology have also
experienced unprecedented progress (Shen et al., 2018). Kratzert
et al. (2018, 2019) built machine learning models to predict
catchment scale streamflow using weather forcing data and
achieves state-of-the-art performance, which also scientifically
advances the development in hydrologic regionalization. Jia et al.
(2020) coupled physical knowledge into machine learning and
builds knowledge-guided machine learning models to model
lake temperature. Shukla et al. (2022) applied machine learning
methods and Gaussian process modeling techniques to predict
discharge with hydrologic knowledge in complex stage-discharge
relationships. Additionally, machine learning has also been
applied to map lake spreading areas (Deoli et al., 2021) and
flooding regions (Avand et al., 2022).

For this paper, we tested the ability of several methods to
predict lake volumes in the central region of Minnesota (USA),
a region that has over 40,000 lakes (Delaney, 2019). The objective
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TABLE 1 | Averages of morphology traits from 816 surveyed lakes provided by Minnesota Department of Natural Resources (DNR).

Lake Volume

(m3)

Number of

lakes

Average size

(m2)

Average max

depth (m)

Average

depth (m)

Average

volume (m3)

Average surface

area (m2)

≤104 11 124,239 2.3 0.8 55,032 124,156

104-105 192 3,338,656 6.7 2.2 530,127 333,926

105-106 436 1,054,611 11.0 4.0 3,653,086 1,054,480

106-107 166 4,477,037 18.9 6.3 25,600,190 4,477,055

>107 11 25,148,785 31.2 7.9 190,669,424 25,148,967

of this study was to predict volumes of lakes to better understand
lake processes using readily available, remotely sensed data. The
methods included a model using just lake surface area, the model
of Heathcote et al. (2015) using lake surface area and near lake
topography, the model of Cael et al. (2017) using lake surface
area and assuming self-affine surfaces, and methods based on
conventional machine learning tools with lake surface area and
near lake topography as independent variables. In addition to
testing the ability of these models to predict lake volume for one
point in time, we also applied the lake surface area regression
model to determine the temporal variability in total lake water
volume for the entire region for the period 2002–2015.

METHODS

The database used for developing the regression models and
the machine learning models was derived from archived lake
data available from the Minnesota Department of Natural
Resources (Minnesota Department of Natural Resources, 2017).
The available data was for 816 lakes, with known volumes
and a shapefile of each lake with corresponding bathymetric
data. These 816 lakes ranged from volumes of 104 to greater
than 107 m3 with known maximum depths, average depths,
and surface areas for each lake. A summary of each lake size
category is given in Table 1. The developed regression models
were then applied to the other lakes in the study region.
The hydrography data for these other lakes, absent depth or
volumes, were also available from the MnDNR (Department
of Natural Resources Division of Fish Wildlife, 2014). The
distribution of these lakes, a total of 40,054, is illustrated in
Figure 1. The boundaries of the Hydrologic Unit Code (HUC)-
8 watersheds, 17 of them, in the region are shown in the
illustration. Lake Mille Lacs is noticeable in the northeastern
part of the study region by its large size. It contains nearly 25%
of the total lake water volume in the 17 HUC-8 watersheds.
To better illustrate the range and variability in predictions
of lake volume, and because the bathymetric data of large
lakes such as Lake Mille Lacs are usually well-defined due
to their large economic and recreational value, this lake was
excluded from the estimates of total regional lake water volume
that follow.

Data for the temporal variation of lake surface area was
acquired from satellite data provided by the Global SurfaceWater
(GSW) observations program (Pekel et al., 2016). These data were
acquired for the period 2002–2015.

FIGURE 1 | Map of 40,054 lakes contained within 17 HUC-8 watersheds of

central Minnesota used in lake volume prediction.

Method Using Surface Area Alone
The first model developed was one using lake surface area only,
with the equation being

V = aAb (1)

where a and b are empirical constants. A regression model
was developed by regressing log-transformed lake volume on
log-transformed lake surface area for the 816 lake dataset.

Heathcote Method
The original concept of using lake surface area and land surface
slope came from Håkanson and Peters (1995) who suggested
using an empirical model that calculated lake volume from lake
surface area and maximum slope of the catchment from 95 lakes
in Sweden. While the lake volume model was able to explain a
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high percentage of the variability in volume, the model requires
catchment area data which may not always be available in some
locations. Sobek et al. (2011) improved this concept by using
surface area and the maximum slope of the land surface within
a static buffer of 50m around each lake, for a total of 6,130
lakes, to calculate lake volume within Sweden resulting in the lake
volume model that explained 92% of the variability in volume.
Heathcote et al. (2015) further developed this method to predict
lake volume as well as maximum depth, by using the lake surface
area and the average change in land surface elevation within a
near-lake buffer with the buffer length dependent on the lake
surface area. This allowed the lake’s buffer area to be proportional
to the size of the lake rather than a static buffer distance as done
by Sobek et al. (2011).

Heathcote et al. (2015) found the average change in elevation
between the surrounding terrestrial landscape and the lake
surface to be the best predictor of bathymetric properties, lake
volume, and maximum depth (Heathcote et al., 2015). The
terrestrial buffer surrounding the lake was used because of the
assumption that the elevation change surrounding the lake was
formed by the same geomorphic process forming the elevation
change within the lake and that the slope of the surrounding
topography is near to that of the slope of the lake bottom
(Hollister et al., 2011). Due to not being able to calculate the
slope occurring under the water because that information is
not available, the method uses elevation change surrounding
the lake as an independent variable to predict the lake volume.
The concept is that by studying the relationship between the
morphology of a lake and the surrounding area, lake volumes can
be predicted without detailed bathymetric data. Based on their
empirical testing, Heathcote et al. (2015) found that the length of
buffer should be 25% of the equivalent diameter (D) of the lake

surface, where D = 2
√

A
π
and A is the lake surface area. In our

application of the Heathcote et al. (2015) method, the topography
for each buffer of Minnesota lakes was calculated using a 1/3 arc-
second Digital Elevation map (DEM) (∼10m) (U.S. Geological
Survey, 2017).

The prediction equation for lake volume based on the
Heathcote et al. (2015) approach is given by

V = AcDEd25 (2)

where DE25 corresponds to the average elevation
change within the buffer of length equal to 25% of the
equivalent lake surface diameter, and c and d are empirical
parameters. This regression equation, in log transformed form,
log10 V = c log10A + d log10D E25, was fit to the data for the 816
lakes. According to Heathcote et al., this log transformation helps
to prevent heteroscedasticty. Due to there being a bias introduced
when estimates are being back transformed from regressions,
corrections were conducted based on Ferguson (1986) to
prevent variables from being underestimated (Ferguson,
1986). The Pearson’s partial correlation coefficient and the
Akaike information criteria (AIC) (Akaike, 1974) test were
run to determine the strength in relationship and to assess the
predictive power of the regression model between variables
(surface area and elevation change). All statistical analysis was

conducted using the statistical software R (RStudio Team,
2016) and the “ppcor” package was used to calculate the partial
correlation coefficient (Kim, 2015).

Due to the size range and the variability of lake formation
within the region further testing was conducted to determine
whether or not pooling the lakes within the region into groups of
similarity might improve the accuracy of lake volume prediction
(Delaney, 2019). Two group selections were tested: grouping by
lake size and grouping by the HUC-8 watershed within which a
set of lakes are located.

Lakes were categorized by surface area size into the following
size ranges: <104, 104-105, 105-106, 106-107, and >107 m2. Due
to the lack of known volumes of lakes with a surface area <104

m2, those lakes were assigned a depth of 0.5m in order to
calculate volume by multiplying the depth and surface area. This
depth was chosen because known lake morphology within the
region for lakes within a surface area between 104 and 105 had an
average depth of 0.8m (Table 1) and we assumed that the average
depth of lakes with a surface area <104 m2 would be smaller
than that of lakes with a surface area between 104 and 105. Each
of the size groups had their own regression analysis conducted
following the Heathcote et al. (2015) method.

Lakes were also segregated by HUC-8 watersheds to examine
whether geographic location played a role in the lake volume
relation. Each watershed with its own lakes had a regression
analysis conducted following the protocol above.

With all individual lake volumes calculated, the volume of the
40,054 lakes with known surface area and elevation change was
calculated to find a sum total of water storage for each of the
different lake groupings.

Cael Method
Cael et al. (2017) proposed a volume-surface area scaling method
to estimate the cumulative volume of a collection of lakes.
They provided theoretical background on the relationship by
proposing that when scaling self-affine surfaces, the volume
and area of a lake existing on that surface has a relationship
through the use of the Hurst coefficient. Through this theoretical
approach, the lake volume is given by

VαA1+H
2 (3)

where H is the Hurst coefficient. For the surface of the earth, the
Hurst coefficient has been determined to be 0.4 ± 0.1. Rather
than accounting for the near-lake surface topography as done
in the Heathcote et al. (2015) approach, the Cael et al. method
already has the surface topography accounted for in the use of
the Hurst coefficient. This approach facilitated the prediction of
lake volumes across diverse regions and topography with limited
bathymetric data. Of course, the equation above is a theoretical
result and it requires empirical data to test whether the theory
applies. To test this, we fitted the empirical equation (Equation
4) to lake surface area and corresponding volume data for the
816 lakes in the data set for Central Minnesota, where ζ is the
volume-area scaling exponent, κ is a proportionality coefficient,
and ε is an error term.

V = 10κ+εAζ (4)
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The regression analysis was conducted using log transformed
surface area and volume to compare known volumes to predicted
volumes derived from the empirical formula. The ζ and κ

were determined by the regression analysis from the slope
and intercept. To consider the variability in lake volumes
within the study area, confidence intervals from bootstrapping
resampling procedures were calculated (Leschinski, 2019). These
two procedures were used to account for the different sources of
uncertainty within ζ and κ . The error (ε) within the equation
was determined from the root-mean-square error (RMSE) of the
residuals of the scaling relationship.

The equation was then applied to all the lakes within
the study area (40,054) and then summed to determine the
total lake volume. All statistical analyses were conducted
using the statistical software R (RStudio Team, 2016) and the
“pracma” package was used to calculate the Hurst coefficient
(Borchers, 2019).

Machine Learning Method
Although there is a large pool of ML model options to utilize,
we selected the artificial neural network (ANN) (Dreyfus, 1990)
as one important baseline approach to investigate. ANN became
one of the popular sub-families of ML in recent years because
of its internal function and architectural advantages in capturing
non-linearities in data. In particular, a few ANN variants
have already made tremendous improvements to address some
difficult computer science challenges, such as computer vision
(LeCun et al., 2015) and natural language processing (Hirschberg
and Manning, 2015). Details of ANN are explained in the
section below.

In addition to ANN, we also explored other traditional ML
alternatives which were once popular ML baseline options before
neural networks arose. Those other ML models we investigate
include support vector regression (SVR) (Cortes and Vapnik,
1995), random forests (RF) (Breiman, 2001), and Gradient
boosted regression tree (GT) (Chen and Guestrin, 2016). Because
we emphasize the application of ANN to represent ML in this
paper, we will not provide as much detail on these alternative
models, however, we wanted to highlight our consideration of
other ML candidate models.

By nature, ML models are data hungry (Adadi, 2021) and
a generalizable ML model requires training process involving
abundant data, which in reality often leads to a challenge for
data collection. In other words, the ML model using limited
data will learn behaviors in a way that is hard to generalize
to out of sample scenarios. For this reason, ML models should
not be trained and evaluated using the same dataset because
they can easily overfit the data during the training process but
achieve unsatisfactory performance for unseen testing data. Thus,
evaluatingMLmodels based on seen training data without testing
on unseen data gives a biased model assessment. To evaluate the
ML model on unseen testing data, we performed 5-fold cross-
validation to evaluate the ML models. The whole dataset was
split into five equal-sized chunks, each time one portion of it was
dropped as the testing data while the remaining four chunks were
used for training the MLmodel. For eachMLmodel, we will only

FIGURE 2 | Illustration of an artificial neural network. Each circle is a neuron,

basic computation unit, in the network. Each arrow represents a computation

connection from the neurons in last layer to the one in current layer.

assess its testing performance and report those statistics across
five different trainings as the model evaluation metrics.

In this paper the machine learning models were compared
only to the Heathcote et al. (2015) regression model. To provide
a fair comparison between the machine learning results and
regression results, the Heathcote method was also subjected to
the 5-fold cross validation.

Artificial Neural Networks
ANN maps input data (xi) into the output target variable (xo). It
is a computation architecture stackingmultiple layers of neurons.
Neurons are basic computation units in the ANN and store
numbers to proceed to the next step of computation. Layers are
a collection of neurons whose computation occurs at the same
stage. We use a simple three-layer artificial neural network for
illustration purposes (Figure 2), which consists of input layers,
intermediate layers, and output layers. The input data enters
the ANN via the input layer and is then transformed into
intermediate layer output (xm), the dimension of which has
been predefined. This transformation (Equation 5) firstly linearly
transforms xi and then often adapts a non-linear operator (σ )
that takes a non-linear function to introduce non-linearity into
the system. xm is then transformed to yield the final prediction
(xo) as the output in the output layer (Equation 6).

xm = σ (Wm
i xi + bi) (5)

xo = σ
(

WO
m xm + bm

)

(6)

L
(

Wm
i , W

O
m, bi, bm

)

=
1

N

∑

N

(

xo − y
)2

(7)

xi = [log10a, log10DE] (8)

The predicted output is compared against the given observed
data (y) and a loss value is calculated through a loss function L
(Equation 7) that often takes a form of root mean squared error
for numeric prediction problems, consistent withmost regression

Frontiers in Water | www.frontiersin.org 5 June 2022 | Volume 4 | Article 886964

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Delaney et al. Data Driven Lake Volume Prediction

problems. N is the number of input data records. Note that the
loss L is a function of trainable parameters in an ANN. For this
illustration network, there are four trainable parameters—Wm

i ,
WO

m, bi, and bm. W
m
i and bi denotes the linear transformation

matrix and intercept term that maps xi to xm, respectively. W
O
m

and bi functionalize to map xm to xo, respectively. Training an
ANN will update those trainable parameters until the L reaches
a minimum, a process called optimization that adopts specific
algorithms to search for optimal trainable parameters.

For the lake volume prediction problem, xi is a 2-dimensional
vector of surface area and lake elevation change in a log
scale (Equation 8). xo is log10V̄, the predicted volume (log
scale), and y is the observed lake volume in log scale
(log10 V). Although the illustrated ANN architecture adopts
a three-layer ANN, in practice, the depth of ANN and the
number of neurons of intermediate layers can also vary and
is determined empirically. For details of the ANN architecture
we used, and other implementation details, please refer to
Appendix A1.

Note that compared to statistical models, the parameters
of ANN models are difficult to interpret mechanistically.
Regression coefficients quantify the relationship between
independent variables and target variables. In contrast, the
learned parameters in ANN functionalize collectively without an
explicit interpretation to understand the relationship between
input features to outputs. Although some research has attempted
to unveil its black-box mechanism (Montavon et al., 2018), its
internal functions are still not as transparent and understandable
as regression models and thus merits further research efforts to
advance its progress.

Temporal Variation of Total Lake Volume
Using the lake volume estimation model based on lake surface
area alone, the temporal variation in the total volume of water
in the region’s lakes was determined using data from the Global
Surface Water (GSW) observations program, which is based on
LANDSAT imagery at a 30-meter resolution. The first regression
formulation, Equation (1) was applied with surface areas derived
from the digitized lake maps taken from the GSW data set
for the period 2002 through 2015. An example of a digitized
map image for two lakes for two dates (one in 2012 and one
in 2015) is illustrated in Figure 3. The digital cells show the
locations where the satellite sensed the presence of water. The
blue colored cells show the presence of water in both 2012 and
2015, while the magenta colored cells show the presence of water
in 2015, but not in 2012. The surface areas for each lake in the
region was determined for each year (for the month of June),
the areas were substituted into the regression model (Equation
1) to estimate the volume for each lake, and the total of water
volume in the region was calculated by the sum of volumes for
all lakes.

RESULTS

Lake Surface Area Model
The bathymetric data for the 816 lakes were used to perform a
regression by fitting to the measured surface area and the lake

FIGURE 3 | The digital map for two lakes showing the presence of water in

the cells; the magenta cells are locations where water was present in 2015 but

not in 2012.

volume calculated from the bathymetric information. The model
fit yielded

V = 0.256A1.13 A ≥ 1.25 km2 (9)

V = 0.0328A1.236 A < 1.25 km2 (10)

This model explained 83% of the variability of the lake volume.
A plot of the predicted and observed lake volume using this
regression is presented in Figure 4.

Heathcote Method
All Lakes Pooled
Equation (2) represents the Heathcote et al. (2015) model
for lake volume. The independent variables in this equation
were determined as the best predictors based on the Pearson
partial correlation coefficient and AIC test (Tables 2, 3). When
comparing the known and predicted lake volumes, the model
explained 82% of the variation in lake volume [R2 = 0.82, F(1,812)
= 3,811, p < 2.2e−16] (Figure 5). The surface area and elevation
change accounted for 82% and 2% of the variation within the
model, respectively. The RSE for the model was 0.282 log10 m

3.
The coefficients for the all-lakes pooled data model were c = 1.17
and d = 0.07. The total lake volume predicted by the model for
the pooled lakes was 7.5% different from the known total volume
for the 816 lakes (Figure 5).

Lakes Grouped by Size
Splitting the lake regression analysis by surface area resulted in
an 83% explanation of the variation in lake volume [R2 = 0.83,
F(1,812) = 3,835, p < 2.2e−16] (Table 4). The RSE for the model
was 0.281 log10 m3. The coefficients c and d were different for
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FIGURE 4 | Plot of predicted lake volume vs. observed lake volume for the 816 lakes using the simple regression on lake surface area model.

TABLE 2 | Pearson partial correlation coefficient tested to determine correlation

strength of independent variables to lake volume.

Coefficient variables Lake volume

Surface area 0.90

Elevation change 0.15

TABLE 3 | Akaike information criteria (AIC) and 1AIC for the different predictive

models tested for determining lake volume.

Model variables AIC 1AIC

Surface area + elevation change 317.79 0.0

Surface area 334.89 17.1

each category of lake area, with c ranging from 0.78 to 1.26, and
d ranging from−0.04 to 0.75. The total lake volume predicted by
the size-segregated regression equations was 1.9% different from
the known total lake volume (Table 4).

Lakes Grouped by Watershed
Grouping the lakes by watershed resulted in themodel explaining
84% of the variation in lake volume [R2 = 0.84, F(1,814) = 4,342,
p < 2.2e−16] (Table 5). The RSE for the model was 0.269 log10
m3. The coefficients c and d were different for each category of
watershed, with c ranging from 0.91 to 1.67, and d ranging from
−0.30 to 0.78. The total lake volume predicted by the watershed-
segregated regression equations was 2.6% different from the
known total lake volume (Table 5).

Using the different groupings of lakes, the total volumes
were calculated for the 40,054 lakes within the region (Table 6).
When comparing the three lake groupings, surface size grouping

FIGURE 5 | Heathcote method of observed vs. predicted lake volumes for a

linear regression model [R2 = 0.82, F (1,812) = 3,811, p < 2.2e−16].

resulted in the highest lake volume with 1,236,436 hectare-meters
while the model with all the lakes pooled yielded the lowest lake
volume with 1,179,284 hectare-meters, a 4.7% difference (99%
confidence interval 1,152,266–1,247,112 hectare-meters).

Cael Method
The Cael et al. (2017) method uses surface area which is the
most significant variable to determine lake volume as seen in
the Pearson partial correlation coefficient (Table 2). The analysis

Frontiers in Water | www.frontiersin.org 7 June 2022 | Volume 4 | Article 886964

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Delaney et al. Data Driven Lake Volume Prediction

TABLE 4 | Total predicted volume by each lake size in the study area based on Heathcote et al. (2015) model.

Size Known volume (m3) Predicted volume (m3) Percent difference Number of lakes (n) c Coefficient d Coefficient

104-105 4,761,038 4,272,646 10.3% 25 0.78 0.08

105-106 806,186,183 726,584,526 9.9% 438 1.12 0.05

106-107 4,538,884,627 4,478,136,636 1.3% 333 1.26 0.08

>107 2,692,298,510 2,677,799,591 0.5% 20 0.94 0.75

Total 8,042,130,358 7,886,793,399 1.9% 816 1.17 0.07

Regression analysis using surface area and elevation change in terrestrial buffer was conducted for each size [R2 = 0.83, n = 816, F(1,812) = 3,835, p < 2.2e−16).

TABLE 5 | Total predicted volume by each watershed in study area based on Heathcote et al. (2015) model.

Watersheds Known volume (m3) Predicted volume (m3) Percent differences Number of lakes (n) c Coefficient d Coefficient

Buffalo river 36,350,941 37,246,650 2.4% 19 1.13 0.19

Cannon river 220,456,231 242,749,474 9.6% 32 0.95 −0.04

Crow Wing river 1,359,708,747 1,278,342,131 6.2% 112 1.18 0.75

Long Prairie river 952,569,927 837,593,468 12.8% 51 1.21 0.10

Lower St. Croix river 203,413,119 165,149,343 20.7% 46 1.15 0.02

Mississippi River- Brainerd 624,888,496 676,090,233 7.9% 60 0.91 0.41

Mississippi river—Lake Pepin 13,431,687 14,608,058 8.4% 5 1.05 −0.04

Mississippi river—Sartell 121,815,236 127,774,030 4.8% 35 1.22 −0.17

Mississippi river—St. Cloud 284,449,132 266,029,558 6.7% 85 1.07 −0.08

Mississippi river—Twin Cities 332,693,906 317,921,490 4.5% 110 1.04 0.58

Ottertail river 2,509,976,730 2,597,468,051 3.4% 82 1,12 0.25

Pine river 902,738,899 822,873,334 9.3% 79 1.04 0.54

Redeye river 51,419,386 50,341,558 2.1% 8 1.67 0.18

Rum river 104,355,324 82,893,697 22.9% 25 1.35 0.78

Sauk river 147,591,348 157,164,850 6.3% 49 0.92 0.30

Snake river 61,919,196 55,757,269 10.5% 7 1.57 −0.10

Wild Rice river 114,352,053 104,835,498 8.7% 11 1.40 −0.30

Total 8,042,130,358 7,834,838,692 2.6% 816 1.17 0.07

Regression analysis using surface area and elevation change in terrestrial buffer was conducted for each watershed [n = 816, R2 = 0.84, F(1,814) = 4,342, p < 2.2e−16].

TABLE 6 | Comparison of total volume of the 40,054 lakes based on three

approaches of Heathcote et al. (2015) method (Mille Lacs Lake not included).

Distribution of lakes Total volume (m3)

Project area 11,792,840,000

Size 12,364,360,000

Watershed 11,833,470,000

of Cael et al. was for lakes sampled from the US, Canada, and
Sweden, and their analysis yielded a Hurst coefficient of 0.41. In
our study of the 816 lakes the Cael et al. model yielded

V = 10−0.498+εA1.17 (11)

For this model result, the Hurst coefficient is 0.34 which is within
the theoretical range (0.4± 0.1) for the earth’s surface.

When comparing the known and predicted lake volumes
based on Equation 11, the model explained 82% of the variation

in volume for individual lake volumes [R2 = 0.82, F(1,812)
= 3,697, p < 2.2e−16] (Figure 6). For this same regression
equation, the total observed volume to the predicted volumes of
the 816 lakes were compared. Our predictions were 1.4% different
than that of the observed volume total (Table 7). The RSE for
the model was 0.296 log10 m

3. After calculating the total volume
with the 40,054 lakes by bothmethods, the difference between the
Heathcote et al. (2015) and the Cael et al. (2017) methods for all
the lakes pooled was 3% (Table 8).

Machine Learning Method
All ML models were trained using the lake surface area and land
surface elevation change, both of which are used in the Heathcote
method while the Cael method uses only surface area. Therefore,
we benchmarked ML methods against the Heathcote method.
Without further grouping lake data based on the watershed
location or lake surface area size, we used the full dataset for
the purpose of investigating ML modeling ability in contrast
to statistical regression models. To allow a fair comparison
between machine learning methods and regression methods,

Frontiers in Water | www.frontiersin.org 8 June 2022 | Volume 4 | Article 886964

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Delaney et al. Data Driven Lake Volume Prediction

FIGURE 6 | Cael method of observed vs. predicted lake volumes for a linear

regression model [R2 = 0.82, F (1,812) = 3,697, p < 2.2e−16].

TABLE 7 | Using Cael et al. (2017) method, percent difference between the 816

observed lake volumes and the predicted volumes.

Comparison Total volume (m3) Percent difference

Observed volume 8,042,130,358 -

Predicted volume 7,928,754,557 1.4%

TABLE 8 | Heathcote et al. (2015) vs. Cael et al. (2017) total volume comparison

for all lakes pooled.

Method Total volume (m3)

Heathcote, all lakes pooled 11,792,840,000

Cael, all lakes pooled 12,113,930,000

the Heathcote method is evaluated using the cross-validation
approach as well. Note that 5-fold cross-validation will evaluate
the models using five different portions of the testing data and
thus yield five different testing metrics. The less variant those
testing metrics are, the more stable the corresponding models
behave. As shown in Table 9, averages of the R2 and RMSE
values across 5-fold validations are reported. Meanwhile, the
standard deviation across 5-fold validations is also reported
to show the stability of the model performance. Among all
the ML models, although the ANN testing performance is less
stable during cross-validation than the Heathcote method, ANN
exhibits the best predictive performance with a RMSE of 0.286
and a R2 of 0.819 in contrast to the Heathcote method (0.296
RMSE and 0.811 R2). Besides, SVR (0.291 RMSE score and
0.819 R2) also achieves slightly better predictive performance
than the Heathcote method. Both RF and GT yield a predictive
performance slightly worse than, if not comparable to, the

TABLE 9 | ML methods comparison against the Heathcote method results in a

5-fold cross validation test.

Models R2 RMSE

Heathcote method 0.811 (0.11) 0.296 (0.009)

ANN 0.819 (0.041) 0.286 (0.035)

SVR 0.819 (0.026) 0.291 (0.017)

RF 0.789 (0.004) 0.311 (0.020)

GT 0.809 (0.024) 0.296 (0.017)

Both R2 and RMSE shows the average of testing performance. The number in the

parentheses is the standard deviation.

Heathcote method. The result is that the ANNmodel yielded the
best predictive performance.

Temporal Variation of Total Lake Volume in
Central Minnesota Region
The data acquired from the GSW observation program was used
to determine the surface areas of lakes on an annual basis for
the study region. Those surface areas for the over 40,000 lakes
were substituted into the regression model (Equation 1) and the
volumes summed for all lakes. The resulting temporal variation
of the total lake water stored (in equivalent mm) in the region
is illustrated in Figure 7. There is a clear drop in water stored in
the lakes in 2011–2012. Those years corresponded to a period of
rainfall deficit.

DISCUSSION

Regression Methods
All three regression models, the simple regression given by
Equation (1), the regression given by the Heathcote et al. (2015)
model (Equation 2), and the Cael et al. (2017) model (Equation
3), provided fairly accurate predictions of the lake volumes
for the 816 surveyed lakes. Among these, the Heathcote et al.
model provided the best representation of the known individual
lake volumes, while the Cael et al. model provided the best
representation of the total volume of lake water in the region.

When comparing our research to the Heathcote et al. (2015)
research, the lake surface area of lakes in Central Minnesota
has a larger correlation to lake volume than that of the buffer
elevation difference. This may be because of there being a smaller
range of elevation within the study area, being a relatively flat
region, resulting in the elevation difference in the buffer having a
weaker relationship. The Heathcote et al. (2015) study compared
433 lakes selected from five different regions, two of which
were situated in a mountainous region. When comparing the
five regions, the mountainous region models produced the most
accurate lake volumes as well as the highest R2 (R2 > 0.90).
The regions with less elevation change such as the Eastmain
region resulted in R2 similar to the results reported herein for
Central Minnesota’s R2 (R2 ≈ 0.80). This affirms the hypothesis
that when the elevation has a larger range, the estimate of lake
volume will have a stronger correlation to surface elevation
change (Heathcote et al., 2015).
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FIGURE 7 | The temporal variation in total water stored in the lakes of the region. Note the sharp drop in volume in the year 2011–2012, and the gradual recovery in

following 2 years.

Among the three groupings of lakes using the Heathcote
et al. (2015) procedure, determining lake volume by watershed
resulted in the best prediction. A reason why the watershed
grouping was the best prediction when compared to the known
volumes is most likely that the lakes within a given subregion
(or watershed) are almost all formed by the same geomorphic
process, resulting in the lakes’ formation being similar. Like
Heathcote et al. (2015), we assumed that similar processes formed
the lake and their landscape.

One issue with the analysis for all of the methods, regression
and machine learning is that no bathymetric data exist for lakes
smaller than 104 m2 surface area. To fill in this data, it was
assumed that a lake smaller than 104 m2 surface area had an
average depth of 0.5m. This, of course, imposes an error in the
data for a very large number of lakes that exist in the region.
The predominance of larger lakes in the bathymetric data set
is clear from Table 1, and it is clear from the estimates of total
lake volume for the region that most of the total volume, about
66%, is contained in the 816 recorded lakes. The remaining
39,000+ lakes for which estimates were made contained the
smaller fraction of the total volume. One improvement that could
be made for the development of the prediction models would be
to increase the amount of bathymetric data for the lakes in the
small size range.

Another source of error in the analysis for the Heathcote
et al. (2015) model was the use of a 1/3 arc-second DEM (U.S.
Geological Survey, 2017). This approach essentially eliminated
elevation data for lakes smaller than 104 m2 due to the lakes
being too small for the DEM to pick up the elevation difference.
For further research, DEM data with better resolution should be

used in order to predict volumes more accurately by obtaining
the buffer elevations from the smaller lakes.

It is not clear why the regression coefficient for the elevation
change was negative for some of the data sets involving watershed
groupings and lake area groupings. Theoretically, the coefficients
should be positive. Perhaps the resulting negative coefficients
occurred from less accurate elevation measurements resulting
from the coarse DEM resolution. Further analysis is needed to
determine the cause of the negative coefficients.

While this study is only limited to central Minnesota, an
independent study covering the full state was completed to
determine if the Heathcote et al. (2015) approach can accurately
predict the lake volume for lakes across the entire state of
Minnesota. For example, using the surface area and elevation
change for lakes >4,047 m2 across the entire state of Minnesota,
Griffin et al. (2018) and Finlay (2019) used the Heathcote et al.
(2015) method to estimate lake volumes for the purpose of
quantifying the regional variability of DOM pools in the water
column of the region’s lakes. Based on preliminary research, the
model explained 82% of the variation in the lake volume with
over 1,000 lakes of 4,047 m2 or larger. This research reaffirmed
that using the lake’s surface area and surrounding landscape can
be used to accurately predict a lake’s volume and can be used in
diverse geographic areas with little morphologic and bathymetric
data available.

The results for the Cael et al. (2017) model yielded a Hurst
coefficient of 0.34 for the lakes in the Central Minnesota region.
Cael et al. applied the method to four regions some of which
had topographic features more like the Central Minnesota
landscapes (Sweden, Wisconsin, some parts of Quebec), while
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others were more mountainous, for example the Adirondack
region of New York. The resulting Hurst coefficients derived for
these different regions reflected the topography of the individual
regions. The Hurst coefficients derived by Cael et al. were 0.24
for the Wisconsin region, 0.32 for Sweden, 0.33 for Quebec
(data included mountainous as well as more flat regions), and
0.48 for the Adirondack region. With all regions combined the
derived Hurst coefficient was 0.40. This demonstrated that the
Hurst coefficient picks up the topographic features through the
relationship formed between lake surface area and lake volume.

In order to see whether, like the Heathcote et al. (2015)
method, the Cael et al. (2017) method can have its lakes grouped
by size and watershed, the lakes were grouped by the same
categories. The significance of predicting total lake volumes
when comparing the total volume of known lakes within the
region was decreased when splitting into groups. Meaning that
grouping the lakes by surface area size and watershed did not
produce any significant results. Therefore, having a larger set of
lakes when comprising the Cael et al. (2017) model improves
the predictability of total lake volume. Even though the Cael
et al. (2017) method was unable to significantly predict total
lake volume when grouped by surface area and watershed, both
the Heathcote et al. (2015) and the Cael et al. (2017) method
were both able to significantly predict volumes when pooling all
lakes together.

While both methods predict lake volume, the Cael et al.
(2017) method, by design, is better suited to predict a group of
lakes rather than individual lakes. The Heathcote et al. (2015)
method is better at predicting volume and depth for individual
lakes and therefore can be used when calculating individual lake
processes. Consequently, onemethodmay bemore advantageous
than the other depending on what future research questions are
being asked.

Machine Learning Method
Although the popularity of ML seemingly makes it a strong
candidate approach for our lake volume predictions, a drastic
improvement of the lake volume prediction accuracy is not
observed in our case. Even though, among them, the ANN yields
the best performance and suggests that its modeling ability to
capture complex data patterns is more pronounced than the
other three alternative models.

RF yields the relatively worst performance, which is likely
caused by the low dimensions of input features (2-D data of
lake surface area and elevation change) and its data hungry
characteristics. Prediction tasks often benefit from the RF
modeling because RF automatically finds uniform input feature
subspace. However, given a 2-D input feature, the advantage of
subspace searching is not leveraged. Further, a collection of 816
lakes is not a rich dataset for RF and would easily make RF overfit
the training data and produce worse testing performance.

GT and SVR yielded comparable performance to the
regression method. ANN exhibited the best performance
among the selected ML methods and is slightly better than
regression approaches. The reason for such a negligible
performance improvement is possibly because the Heathcote
method has achieved a performance satisfactory enough

FIGURE 8 | The relationship between lake volume (log scale) and lake surface

area (log scale).

that the performance improvement room for ANN is too
small. As shown in Figure 8, the correlation between log10(A)
and log10(V) is as high as 0.90, which suggests a limited
non-linear complexity between input data and lake volume.
Such a limited non-linear data pattern constrained the ANN
predictive performance improvement in contrast to the
Heathcote method.

All ML models show relatively more variant testing
performance in contrast to the Heathcote method, which
suggests the randomness in machine learning models and
the uncertainty in its trainable parameters. On the contrary,
the regression style Heathcote method preserves consistent
testing performance (lower standard deviation of the testing
performance in the cross-validation evaluation), which implies
that linear regression models’ generalization performance is
more stable than ML for this problem.

Although ANN shows relatively better prediction accuracy,
it does not have well-understood mechanisms underlying its
explanatory power. For the Heathcote method, regression
coefficients can offer sufficient interpretation to understand
models. The positive regression coefficient of lake surface
area and its statistical significance indicates the significant
contribution of the surface area variable to lake volume
estimation. However, this insight is missing for the ANNmodel.

Additionally, ANN only takes a 2-dimension input,
which collectively groups all lakes together without any
distinguishment among individual lakes. The model lacks
distinct lake awareness information that might help more
accurately predict volumes. It is likely that lake surface area
and elevation change does not contain sufficient additional
information for the volume prediction that is not already
captured in the linear regression models. Therefore, it
would be necessary to provide more physical information
of lakes, such as, more lake geometry information, and
surrounding land surface features, to further improve lake
volume prediction accuracy.
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Although the benefit of applying a machine learning model
is not obvious for lake volume in our results, other bathymetric
characterization of lakes, such as, lake depth may gain more
from this approach. Heathcote et al. (2015) reported that
a statistical model for predicting maximum lake depth only
explains half of the system variance, which suggests that
the majority of lake depth variance is difficult for statistical
models to explain. Converse to the linear relationship between
lake area and lake volume, relationships among other lake
morphology features may be more complex. We hypothesize
that this complexity is also accompanied with hidden non-
linearities, which provides another research opportunity for
implementing machine learning models and exploring their
predictive capability in the future.

CONCLUSION

We predicted lake volume through Central Minnesota using
readily available morphologic data and a variety of previously
published and novel methods. Three regression-based analysis
methods and four machine learning methods were applied to
develop predictions of lake volumes for over 40,000 lakes located
in the central section of Minnesota. The methods were developed
using detailed lake bathymetric data for 816 lakes located in the
same region. The resulting prediction methods estimated the
total volume of lake water in the region to be in the range of about
12± 0.2 km3.

The regression models included a regression on lake surface
area, a model based on the Heathcote et al. (2015) model that
included lake surface area and mean elevation change in a
designated buffer area outside the lake area, and a model based
on the Cael et al. (2017) model that utilized the theory of self-
affine surfaces. Among the machine learning models, the ANN
performed the best, and it was found that the ANN performance
was slightly better than any of the regression models. The small
incremental benefit in performance of the ANN method over
the regression models is explained by the fact that the relation
between log-transformed lake surface area and log-transformed
lake volume is nearly linear. If the relation were more non-linear,

theMLmethodsmight have been able to provide a larger increase
in performance. This is the power of ML approaches, in that
they facilitate the development of data-driven models when the
relations between variables are complex and non-linear. One
immediate future need is to evaluate the ability of ML methods
for prediction of lake maximum depth.
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APPENDIX A1

Hyper-parameters of the applied ML models are listed below.
Those values were determined after hyper-parameter tuning.

Artificial Neural Network
Activation function for each layer: ReLu.
Model architecture: input (2d) -> 4d -> 16d -> 32d -> (output) 1d
Optimization algorithm: Adam optimizer (learning rate: 0.001).

Random Forest
Number of trees: 100
Maximum tree depth: 8.

Support Vector Machine
Radial basis function kernel.

Gradient Boosted Regression Tree
Number of trees: 80.

APPENDIX A2

Abbreviation Glossary
MnDNR, Minnesota Department of Natural Resources.
HUC-8, Hydrologic unit codes.
GSW, Global surface water.
DEM, Digital Elevation map.
AIC, Akaike information criteria.
RMSE, Root-mean-square error.
RSE, Relative standard error.
ML, Machine Learning.

ANN, Artificial neural network.
SVR, Support vector regression.
GT, Gradient boosted regression tree.
RF, Random forests.
CDOM, colored dissolved organic matter.
DOC, dissolved organic carbon.
LANDSAT, Satellite that studies and photographs the surface by
using remote-sensing techniques.

Variable Glossary
V, Volume.
a, b, c, d, empirical constants.
A, Lake surface area.
D, Buffer distance from the shoreline outward.
DE25, 25% of the average elevation changes within the buffer.
H, Hurst Coefficient.
ζ , volume-area scaling exponent.
κ , proportionality coefficient.
ε, error term.
xi, input data.
xo, output target variable.
xm, intermediate layer output.
σ , non-linear operator.
Wm

i ,W
o
m, trainable parameters (weight matrix in neural

network layers).
bm, bo, trainable parameters (bias terms in neural
network layers).
L, Loss Function.
N, Number of input data records.
y, observed data.
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