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Sound bite of Project Outcomes and Results 
The MNDNR’s Resource Assessment Program studied using light detection and ranging (LiDAR) technology to 
innovate how forest inventory is conducted. The study found that using LiDAR can cut costs by as much as 55%, 
enables the collection of this valuable information across all lands, and makes data available much faster. 
 
Overall Project Outcome and Results 
Comprehensive forest inventory systems are a universal desire, but the costs of maintaining such a system with 
boots on the ground, especially considering Minnesota’s extensive and diverse forest land base, continue to be a 
challenge. This project served as an important pilot to explore the accuracies achieved and cost savings gained 
with changing the way forest inventory is conducted. Two field sampling methods were tested in this project in 
over 300 plots, measuring over 9,000 trees: fixed radius plots placed in a gridded array (pre‐stratification) and 
random plots placed proportionately within strata (post‐stratification). Model results show that a gridded 
allocation performs better and has greater flexibility to reduce/expand the number of plots without risking 
model performance. Several forest inventory models (combined forest types, broadleaf only, and conifer only) 
were evaluated using numerous spatial predictors and two sources of LiDAR data: new high density and old low 
density. Model results show higher accuracies for conifers compared to broadleaf for both sources of LiDAR, and 
the combined models showed high density LiDAR performs much better. Another area of exploration was 
mapping cover types, since this is a crucial characteristic of a forest stand. The suite of remotely sensed data 
used and machine learning techniques applied have enabled cover type mapping with relatively good accuracy. 
The forest inventory and cover type mapping results in this project are incredibly encouraging and the methods 
developed are ready for statewide application once high density LiDAR data are available. Overall, the project 
results show that using remotely sensed data can cut inventory costs by about 55%, enables the analysis of this 
valuable information across all lands, makes data available much faster than traditional methods, and ultimately 
benefits the many agencies, organizations, and stakeholder groups who are hungry for an affordable change to 
how forest inventory is conducted. 
 
Project Results Use and Dissemination  
Analyses of the newly acquired high density LiDAR has resulted in several forest inventory metrics and cover 
type models created, utilizing more than 300 newly acquired field forest inventory plots with over 9,000 trees 
measured. All of the LiDAR and derived products will be provided free to the public and will be hosted as LiDAR 
point cloud files on an ftp server with other state LiDAR data holdings, as well as several web mapping services 
produced by the MNDNR and accessible via the Minnesota Geospatial Data Commons (https://gisdata.mn.gov/). 
The project team from DNR Resource Assessment has already and will continue to deliver the results of this 
project in a number of other ways, including presentations at regional and national conferences in the fields of 
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forestry, geographic information systems, and remote sensing, meetings and conference calls to share 
information directly with stakeholder groups, as well as the eventual submission of peer‐reviewed manuscripts 
to scientific journals. In addition, DNR Resource Assessment has created a webpage that will be a central 
repository for all of the methods, reports, and links to access data. 



 

Environment and Natural Resources Trust Fund (ENRTF) 
M.L. 2016 Work Plan Final Report 

 
 
Date of Report:  August 16, 2019  

Final Report   

Date of Work Plan Approval:  June 7, 2016   

Project Completion Date:  June 30, 2019       

 
 
PROJECT TITLE:   Development of Innovative Cost‐Saving Methodology for Forest Inventory 
 
Project Manager:   Dennis Kepler 

Organization:  Minnesota Department of Natural Resources 

Mailing Address:  483 Peterson Road 

City/State/Zip Code:  Grand Rapids, MN. 55744 

Telephone Number: (218) 322‐2512 

Email Address:  dennis.kepler@state.mn.us 

Web Address:   
 
Location: Northern Cass County 

 

 
Total ENRTF Project Budget: ENRTF Appropriation: $800,000 

 Amount Spent: $796,117 

 Balance: $    3,883 
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$800,000 the second year is from the trust fund to the commissioner of natural resources to develop and pilot a 
new and more cost‐effective methodology for an enhanced stand‐based forest inventory, with the goal of 
extending the methodology statewide. This appropriation is available until June 30, 2019, by which time the 
project must be completed and final products delivered. 
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I.  PROJECT TITLE: Development of Innovative Cost‐Saving Methodology for Forest Inventory 
 
II. PROJECT STATEMENT: Minnesota has an extensive and diverse forest land base important to multiple 
agencies and stakeholders, such as the U.S. Forest Service, DNR, counties, tribes, non‐government organizations, 
and private citizens. Using cutting-edge technologies, a less expensive and highly robust inventory of the 
forest land base will be developed through a pilot study across a diverse ecological landscape with multiple 
ownerships. This pilot will assess methodology, accuracy, and costs, to evaluate the anticipated extension of this 
methodology statewide. After evaluation, we fully expect to establish and implement this cutting‐edge 
inventory, thereby eliminating the need to return to the ENRTF for forest inventory funding.  
 All agencies and stakeholders rely on forest inventory data for a wide variety of natural resource 

management purposes, including:  assessing climate and landscape change, ecosystem fire and health risks, 
wildlife habitat, water resources, forest recreation, biomass estimations, and renewable timber assessments. 

 Costs for accomplishing such forest inventories are increasingly expensive ‐‐ over $35 million is needed to 
inventory just the 5 million acres of DNR forest land, out of Minnesota's 17 million acres of forest land. 

 Forest inventories are completed once every 10 to 20 years, making it difficult to respond to emerging issues. 
 Technological advances in remote sensing and computing have now made it possible to rapidly collect, 

analyze, and characterize, in detail, ecological condition over large landscapes with very little ground data. 
 Given these advancements, it is now possible to refine and apply these technological improvements to 

develop a revolutionary methodology for statewide forest inventory across diverse types of land ownerships. 
 Ultimately, this project will demonstrate a highly effective, detailed, and robust method of achieving a 

comprehensive, accurate and regularly updated forest inventory at dramatically lower costs for the state.  
The goal of this project is to create an updated, efficient, and revolutionary forest inventory technique by: 
1. Developing a stand based forest inventory, including species composition, detailed attributes of the 

vegetation and forest structure, and characteristics that relate to wildlife and ecological habitat suitability. 
2. Estimating a suite of tree attributes per stand (e.g., height, diameter at breast height (DBH), crown size, age, 

basal area, biomass, and volume) that relate to those ecological suitability characteristics. 
Both the stand characteristics in (1) and the tree estimates in (2) are generated by acquiring cutting‐edge, high 
density LiDAR data in concert with aerial and sub‐meter satellite imagery and fewer, more detailed field 
reference information. The proposed work uses and builds on other recent ENRTF‐funded projects such as 
Improved Rapid Forest Ecosystem and Habitat Inventory (Ek 2013), Mapping Landscapes for Better Land and 
Water Management (Knight et al. 2014), and the statewide light detection and ranging (LiDAR). 
 
III. OVERALL PROJECT STATUS UPDATES:  
 
Project Status as of January 31, 2017:  

• Purchased one eCognition license seat for object‐based individual forest stand segmentation processing. 
• Began preliminary forest plot design and metrics research and analysis. 
• Began the research into the best type of sub‐meter GPS unit and digital input devices for the field work. 
• Wrote the LiDAR + Digital Aerial Photography bid specifications for fall 2017 flight. We’ve moved the 

LiDAR Acquisition from October 2016 to October 2017. This will not affect the final timeframe or 
outcomes of this project. 

  
Project Status as of July 31, 2017: 

• Began field data collection on forest plots on May 15, 2017. 
o DNR Interns and staff have collected field data on 114 ‐ 1/10 acre plots. 
o County foresters have collected field data on 4 ‐ 1/10 acre plots. 

• Unmanned Aerial Systems (UAS) work has begun. 
o High resolution aerial imagery have been flown on 9 plots. 

• Awarded the LiDAR bid to Quantum Spatial to be collected this fall. 
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• Amendment request: July 31, 2017 
o We were able to purchase two items for less than anticipated:  
 eCognition software – anticipated cost = $15,000, actual cost = $14,321.25, savings = $678.75. 
 LiDAR ‐ anticipated cost = $375,000, actual cost = $371,409, savings = $3,591. 

o We over spent for the GPS data recorders by $883.66: 
 Anticipated cost = $30,000, actual cost = $30,883.66, over = ($883.66). 

o I request to move funding as follows: 
 $883.66 from the LiDAR acquisition in Activity 1, line item 20, to the purchase of GPS units in 

Activity 2, line item 26. 
 The remaining $2,707.37 from the LiDAR acquisition in Activity 1, line item 20, to the contract 

for segmentation in Activity 1, line item 21. 
 The $678.75 from the purchase of eCognition software in Activity 1, line item 25, to the contract 

for segmentation in Activity 1, line item 21. 
• Amendment Approved by LCCMR: August 29, 2017 

 
• Amendment request (10/12/17):  

o I request to move funding as follows: 
 Because the DNR has determined that Resource Assessment is exempt from direct and 

necessary costs, these dollars need to be moved to another activity. Moving the D&N dollars to 
the contract for segmentation with the UMN will enhance the LiDAR processing to include the 
classification after the stand boundary segments have been created. Classifying the new stand 
segmentations through the process the University proposes will provide significantly improved 
forest stand information we otherwise wouldn’t have been able to complete. 

 $14,321 from Other: DNR’s direct and necessary costs in Activity 1, line item 30 to the contract 
for segmentation in Activity 1, line item 21. 

 $9,215 from Other: DNR’s direct and necessary costs in Activity 2, line item 30 to the contract 
for segmentation in Activity 1, line item 21. 

 $586 from Other: DNR’s direct and necessary costs in Activity 3, line item 30 to the contract for 
segmentation in Activity 1, line item 21. 

• Amendment Approved by LCCMR 10-16/2017 

Project Status as of January 31, 2018: 
• LiDAR + 30cm aerial photography has been acquired between September 20 and October 20, 2017 for 

628,000 acres in northern Cass County by Quantum Spatial for $371,409. This data will be delivered 
during the winter months of 2018. 

• Began field data collection on forest plots on May 15, 2017. 
o DNR Interns and staff have collected field data on 170 ‐ 1/10 acre plots. 
o County foresters have collected field data on 21 ‐ 1/10 acre plots. 

• UAS aerial imagery, including pix4‐D surface models work: 
o 44 plots visited, 37 had imagery acquired, and 7 plots were inaccessible via UAS. 

• Wrote and entered into a contract with the University of Minnesota to create forest and non‐forest 
delineated stand boundaries over the project area based on LiDAR, imagery, and other ancillary data; 
attempt to classify delineated stands into cover types mimicking CSA stands, and investigate the 
potential of species level classification with derived data attributes agreed upon by the State and the 
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Contractor: and use stand level object to investigate which relevant stand level metrics can be derived – 
Stand level metrics will include summaries for LiDAR‐derived elevation and height, area and other 
relevant sub‐stand metrics for $77,819. 

 

Project Status as of July 31, 2018: 
• 413 out of 500 field plots have been completed. 

o DNR Interns and staff have collected field data on 333 ‐ 1/10 acre plots. 
o County foresters have collected field data on 80 ‐ 1/10 acre plots. 
o 55 1/10 acre plots deemed inaccessible. 
o Remaining 32 1/10 acre plots will be completed by September 1, 2018  

• Unmanned Aerial Systems (UAS) work has continued. 
o 44 plots sites have been flown for high resolution aerial imagery. 
o Imagery processed using AgVault and Pix4D software and delivered: 
 Raw imagery in .tiff format. 
 Point Cloud files in .las format 
 Digital Surface Models (DSM) in .tiff format. 
 Digital Terrain Model (DTM) in .tiff format. 
 Ortho‐Mosaics in .tiff format 

o All data uploaded to Northland OneDrive for DNR evaluation and use. 
• Acquisition of high density LiDAR and 30cm imagery has been completed and delivered to the DNR by 

Quantum Spatial. 
• University of Minnesota (UMN) has begun the process of creating both individual tree objects and 

subsequent stand boundaries in the project area. 
• Resource Assessment Remote Sensing Analyst has also begun creating gridded stand metrics to impute 

CSA like attributes within each stand boundary created by UMN. 

 
• Amendment request (07/31/18):  

o I request to move funding as follows: 
 Because field data collection has been more challenging and more difficult than first thought 

and intern wages have increased by $3.00 per hour, I request that funding be moved from the 
Personnel (Wages and Benefits in Activity 1 to in Activity 2: 

 $43,940 from Personnel (Wages and Benefits) in Activity 1 line item 12 to Personnel (Wages and 
Benefits) Activity 2 line item 12. 
• $16,940 from Remote Sensing Analyst – 1 in Activity 1 line item 15 to the Forester in Activity 

2, line item 18. 
• $27,000 from Remote Sensing Analyst – 2 in Activity 1 line item 16 to the Interns in Activity 

2, line item 19. 
• Amendment Approved by LCCMR 08/07/2018 

 
• Amendment request (12/10/18):  

o I request to move funding as follows: 
 $2,860 from Travel expenses in Minnesota in Activity 2 line item 28 to Travel expenses outside 

Minnesota (outstate) Activity 1 line item 30. 
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o Justification: 
 We’re in our last FY of this project and would like to present it to the International LiDAR 

Mapping Forum, a major conference in Denver, Co. I realize Out of state transportation and 
travel expenses are generally ineligible, however, I’d like to ask approval for our Remote Sensing 
Consultant to go to the convention and present our project to the group. 

 The use of high density LiDAR to enhance and improve forest inventory is a significant paradigm 
shift from traditional forest inventory. Minnesota is a leader in this type of work and Resource 
Assessment’s LCCMR pilot project’s preliminary results have successfully shown that the State’s 
investment will pay off. The International LiDAR Mapping Forum (ILMF) on January 28‐30, 2019 
in Denver, CO is a part of three joint national technical conferences. These conferences gather 
the practitioners, academics, and professionals in the field of remote sensing in a forum that is 
unlike any other to discuss and review airborne, terrestrial, and underwater LiDAR as well as 
emerging remote sensing and data collection tools and technologies. The conference content 
and vendors attending aim to emphasize on data acquisition, fusion, integration, processing and 
visualization, making it one of the most important events in this field for strategic networking, 
dissemination of results, and getting feedback from our colleagues. We’ve presented this 
project to many small groups within the region and plan to present to the Minnesota State 
Chapter of the Society of American Foresters (SAF) in Duluth this coming February. We also plan 
to utilize other funding to present this project at the National Society of American Foresters 
(SAF) in Louisville, Kentucky Next October/November. By sending the MNDNR Remote Sensing 
Program Consultant, Jennifer Corcoran to this conference, not only will we be sharing the great 
work that we have accomplished here in Minnesota, we will be learning how to maintain our 
innovative stance among our peers. Presenting at national meetings will also assist our efforts 
for improvements to the project outcomes through discussions and networking opportunities 
while attending such meetings. 

• Amendment Approved by LCCMR 01/08/2019 

 
Project Status as of December 10, 2018 for the January 31, 2019 update: 

• UMN has completed both individual tree objects, stand boundaries, and forest metrics in the project 
area, however, they’ve not yet delivered results. RA expects delivery by January 1, 2019. 

• Met with the UMN on a monthly basis for project updates and quality control checking 
• Presented to more than 10 different stakeholder groups, regional and national conferences, and internal 

DNR meetings on the preliminary results from the UMN, field data, and the goals for the near future 
• Clipped and processed several hundred statistics from the LIDAR point cloud for every field data plot 
• In the process of developing imputation and regression models of several forest inventory metrics using 

the field data as well as the USFS Forest Inventory and Analyses (FIA) data, including diameter at breast 
height, volume, and site index 

• In the process of comparing LIDAR‐derived model results from stereo‐derived model results. 
• 432 out of 500 field plots have been completed. 

o Field work is complete and no more plots will be field visited. 
• Unmanned Aerial Systems (UAS) work has continued. 

o 30 more plots sites have been flown for high resolution aerial imagery. 
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Overall Project Outcomes and Results: 
Comprehensive forest inventory systems are a universal desire, but the costs of maintaining such a system with 
boots on the ground, especially considering Minnesota’s extensive and diverse forest land base, continue to be a 
challenge. This project served as an important pilot to explore the accuracies achieved and cost savings gained 
with changing the way forest inventory is conducted. Two field sampling methods were tested in this project in 
over 300 plots, measuring over 9,000 trees: fixed radius plots placed in a gridded array (pre‐stratification) and 
random plots placed proportionately within strata (post‐stratification). Model results show that a gridded 
allocation performs better and has greater flexibility to reduce/expand the number of plots without risking 
model performance. Several forest inventory models (combined forest types, broadleaf only, and conifer only) 
were evaluated using numerous spatial predictors and two sources of LiDAR data: new high density and old low 
density. Model results show higher accuracies for conifers compared to broadleaf for both sources of LiDAR, and 
the combined models showed high density LiDAR performs much better. Another area of exploration was 
mapping cover types, since this is a crucial characteristic of a forest stand. The suite of remotely sensed data 
used and machine learning techniques applied have enabled cover type mapping with relatively good accuracy. 
The forest inventory and cover type mapping results in this project are incredibly encouraging and the methods 
developed are ready for statewide application once high density LiDAR data are available. Overall, the project 
results show that using remotely sensed data can cut inventory costs by about 55%, enables the analysis of this 
valuable information across all lands, makes data available much faster than traditional methods, and ultimately 
benefits the many agencies, organizations, and stakeholder groups who are hungry for an affordable change to 
how forest inventory is conducted. 
 
IV. PROJECT ACTIVITIES AND OUTCOMES:   
 
ACTIVITY 1:  Acquisition, processing, and utilization of remotely sensed and ground data 
Description: We will use an object‐based individual forest stand segmentation (polygon mapping) approach with 
newly acquired high density LiDAR (this proposal) and other remotely sensed imagery to identify a suite of forest 
stand attributes and tree estimates.  Each stand will be populated with detailed forest metrics using a statistical 
imputation process developed by Dr. Alan Ek derived from newly collected and existing inventory data. The pilot 
project area will consist of 500,000 acres across multiple landowners in northern Cass County. The LiDAR cost 
estimate is based on information from several possible vendors currently acquiring this type of data. Because 
remote sensing technologies change very quickly, the cost of the LiDAR acquisition may be less than our current 
estimate. Therefore, if LiDAR acquisition costs are less than the expected $375K, we would ask that those dollars 
be reallocated, through the amendment process, to either additional remote sensing analysis (activity 1) or 
more outreach and analyses of the methodology (activity 3). 
 

Summary Budget Information for Activity 1: ENRTF Budget: $  621,369 
 Amount Spent: $  619,781 
 Balance: 

 
$      1,588 

Outcome Completion Date 
1. Acquire high density LiDAR data for 500,000 acres in the pilot study area ($0.75/acre) October 2017 
2. Segment the forested land‐cover data to individual stand polygons April 2017 
3. Develop forest stand metrics based on imputation with existing plots June 2018 
4. Develop stand metrics based on new LiDAR data February 2019 

 
Activity Status as of January 31, 2017:    

• In preparation of the segmentation process needed to produce forest stands and to work with the 
University of Minnesota  one eCognition license seat has been purchased for object‐based individual 
forest stand segmentation processing. 

• We’ve also began working on preliminary forest plot design research and analysis. 
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• Research into the best type of sub‐meter GPS units and digital input devices for the field work is almost 
completed and ready for purchase. 

• Finally, Resource Assessment has completed writing the LiDAR + Digital Aerial Photography bid 
specifications for the fall 2017 acquisition. Due to weather and timing complications, we’ve moved the 
LiDAR Acquisition date from October 2016 to October 2017. This will not affect the final timeframe or 
outcome of this project. 

• Awarded the fall 2017 acquisition of LiDAR bid to Quantum Spatial on 728,000 acres for $445,086: 
o Cass County – 628,000 acres for $371,409.00 

Activity Status as of July 31, 2017: 
• Awarded the LiDAR bid to Quantum Spatial to be collected this fall 

o Reassessed RFP contract. 
• Amendment request: July 31, 2017 

o We were able to purchase two items for less than anticipated:  
 eCognition software – anticipated cost = $15,000, actual cost = $14,321.25, savings = $678.75. 
 LiDAR ‐ anticipated cost = $375,000, actual cost = $371,409, savings = $3,591. 

o I request to move funding as follows: 
 $883.66 from the LiDAR acquisition in Activity 1, line item 20, to the purchase of GPS units in 

Activity 2, line item 26. 
 The remaining $2,707.37 from the LiDAR acquisition in Activity 1, line item 20, to the contract 

for segmentation in Activity 1, line item 21. 
 The $678.75 from the purchase of eCognition software in Activity 1, line item 25, to the contract 

for segmentation in Activity 1, line item 21. 
• Amendment Approved by LCCMR August 29, 2017 

 
• Amendment request (10/12/17):  

o I request to move funding as follows: 
 $14,321 from Other: DNR’s direct and necessary costs in Activity 1, line item 30 to the contract 

for segmentation in Activity 1, line item 21.  
• Amendment Approved by LCCMR 10-16/2017 

Activity Status as of January 31, 2018: 
• LiDAR + 30cm aerial photography has been acquired (September 20 and October 20, 2017 for 628,000 

acres in northern Cass County by Quantum Spatial for $371,409.  
o Because the cost of LiDAR has reduced substantially over the last year, Resource Assessment was 

able to increase the overall size of the area of acquisition to 628,000 acres for the same price listed 
in the approved budget. 

o A partial payment has been made for the acquisition of the entire area.  
o This data will be delivered during the winter months of 2018. 
 

• Wrote and entered into a contract with the University of Minnesota to complete the following: 
o Use eCognition to perform object based image analyses (OBlA) over the LiDAR study area to develop 

meaningful 'stand level objects', including objects that are forest and non‐forest classes, defined as 
homogeneous areas based on attributes such as, LiDAR‐derived elevation data (such as all returns 
and/or first returns, normalized digital surface models (nDSM), and digital elevation models (DEM), 
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spectra, texture, geometry, and contextual information. Through OBIA, forested 'stands' will be 
segmented (aka delineated) and classified through an iterative process using those representative 
attributes and reference data. The deliverable will be polygons of non‐forested and forested stands. 

 
o Attempt to classify forested stand objects, where the scheme will be determined by iterative trial 

and error, field validated data from stand level forest inventory plots, and discussions between The 
State and The Contractor. Stand classification should be at the cover type level and not be 
interpreted as a representation of the mix or dominant tree species within any given stand, as 
species classification requires additional data and observations beyond those provided by aerial 
imagery and LiDAR. The classification scheme should mimic the Cooperative Stand Assessment (CSA) 
as close as possible. The Contractor will investigate the potential of species level classification, as 
defined by trial and error with the derived data attributes and conversations with The State and The 
Contractor.  

 
o Use the stand level objects to investigate which relevant stand level metrics can be derived and 

discuss these findings with The State throughout the project. Stand level metrics will include 
summaries for LiDAR‐derived elevation and height area, and other relevant sub‐stand metrics. These 
metric may include, but are not limited to: statistics of all LiDAR point cloud returns and first returns 
using agreed upon categories of height strata (such as mean, median, mode, skewness and standard 
deviation). size class, density class, site index, topographic code, canopy closure/gap percentage) 
volume of vegetation (i.e. biomass and/or basal area), estimates of mortality and/or damage, 
understory related metrics, and crown width/diameter and/or height to base of crown. 

 
Activity Status as of July 31, 2018: 

• Acquisition of high density LiDAR and 30cm imagery has been completed and delivered to the DNR by 
Quantum Spatial. 

• University of Minnesota (UMN) has begun the process of creating both individual tree objects and 
subsequent stand boundaries in the project area. 

• Resource Assessment Remote Sensing Analyst has also begun creating gridded stand metrics to impute 
CSA like attributes within each stand boundary created by UMN. 
 

• Amendment request (07/31/18):  
o I request to move funding as follows: 
 $43,940 from Personnel (Wages and Benefits) in Activity 1 line item 12 to Personnel (Wages and 

Benefits) Activity 2 line item 12. 
• $16,940 from Remote Sensing Analyst – 1 in Activity 1 line item 15 to the Forester in Activity 

2, line item 18. 
• $27,000 from Remote Sensing Analyst – 2 in Activity 1 line item 16 to the Interns in Activity 

2, line item 19. 
• Amendment Approved by LCCMR 08/07/2018 

 
• Amendment request (12/10/18):  

o I request to move funding as follows: 
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 $2,860 from Travel expenses in Minnesota in Activity 2 line item 28 to Travel expenses outside 
Minnesota (outstate) Activity 1 line item 30. 

• Amendment Approved by LCCMR 01/08/2019 

Activity Status as of December 10, 2018 for the January 31, 2019 update: 
• UMN has completed both individual tree objects, stand boundaries, and forest metrics in the project 

area, however, they’ve not yet delivered results. RA expects delivery by January 1, 2019. 
• Met with the UMN on a monthly basis for project updates and quality control checking 
• Clipped and processed several hundred statistics from the LIDAR point cloud for every field data plot 
• In the process of developing imputation and regression models of several forest inventory metrics using 

the field data as well as the USFS Forest Inventory and Analyses (FIA) data, including diameter at breast 
height, volume, and site index 

• In the process of comparing LIDAR‐derived model results from stereo‐derived model results 

 
 
Final Report Summary:   
 
LiDAR Acquisition: 
The original 500,000 of LiDAR acquisition in Cass County increased to 628,000 acres for $371,409 ($0.59/acre) 
 
Object-based (segmentation) Image Analysis for stand and sub-stand mapping completed by UMN: 
The object‐based approach used a divide and conquer approach to identify sub‐stands and stands. The approach 
used multi‐threshold segmentation and the CHM to create large objects consisting of tall features (> 1.37m) and 
low features such as ground and water. The tall features are then segmented using multi‐resolution 
segmentation to differentiate buildings and trees and were classified as such using spectral information and 
building footprints. The forest objects were then segmented using watershed segmentation to identify individual 
canopies or sub‐stand objects. Watershed segmentation inverts the canopy height model and uses the low areas 
as seeds to fill the objects until it reaches the high values thus creating the sub‐stand objects. These objects 
were then classified as coniferous and deciduous based on the difference between summer and fall normalized 
difference vegetation indices (NDVI) where coniferous trees have higher values and deciduous trees have lower 
values. The updated Minnesota National Wetland Inventory (NWI) was then used to assign overlapping sub‐
stand objects to upland and wetland classes. 
 
Stands were created by aggregating sub‐stand objects and assigning then to area‐based classes. Sub‐stand 
objects were aggregated using multiresolution region grow, a merging segmentation algorithm that merges 
neighboring objects with similar spectral, textural, and height values. Canopy gaps and other small ground areas 
(< 0.2 ac) were merged with the stand objects. Stands were then assigned to five area categories using area 
metrics derived from the distribution of forest inventory management (FIM) plots: < 5ac, 5ac <= 10ac, 10ac <= 
20ac, 20ac <= 30ac, and > 30ac. Stand attributes were then calculated and included percent canopy cover, 
percent cover type, mean, max, and median height. A complete list of algorithms with parameters and attributes 
are attached to this document.   
  



10 
 

Attribute Description 

Class Cover class 

PerConif Percent Coniferous Cover 

PerDecid Percent Deciduous Cover 

PercCanopy Percent Canopy Cover (Classification) 

NoConif Number of Deciduous Sub‐Objects 

NoDecid Number of Coniferous Sub‐Objects 

acres Area in acres 

conif_AC Deciduous Cover in Acres 

decid_AC Coniferous Cover in Acres 

max_hgt Maximum Height Value (CHM) 

mean_hgt Mean Height Value (CHM) 

med_hgt Median Height Value (CHM) 

min_hgt Minimum Height Value (CHM) 

q10_hgt 10th percentile of height (CHM) 

q25_hgt 25th percentile of height (CHM) 

q95_hgt 95th percentile of height (CHM) 

sd_hgt standard deviation of height (CHM) 

skew_hgt skewness of height (CHM) 
 
Stand geodatabases contain the sub‐stand objects and super‐stand polygons. 
 
ChippewaStands.gdb 
> Superstands_2017_chippewa 
> Substands_2017_chippewa  
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Examples:  
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LiDAR-derived spatial forest inventory models (forest stand metrics): 
LiDAR applications in forestry have been continuously expanding since the past few decades because of 
recognized accuracy in inventory predictions and cost‐effectiveness compared to the traditional approach 
(design‐based) based solely on field measurements. LiDAR is an active remote sensing technology that are highly 
sensitive to structural attributes and provide accurate three‐dimensional coordinates of the pulse returns from 
intercepting canopy and terrain elements. While the cost of acquisitions is declining and the resolution of data is 
continuously improving with the development of new sensors and technology, LiDAR has become an affordable 
and reliable tool for both public and private agencies involved in natural resource management. Consequently, 
spatial and temporal monitoring of resources (i.e., status and trend) have become feasible in operational forest 
management as various agencies are involved in periodic acquisition of data, also supplemented by satellite 
data. For example, MN DNR completed a state‐wide LiDAR (of density 1 to 1.5 points per m2) baseline between 
2007 and 2012 and is preparing further plans for statewide and periodic collections of high density LiDAR while 
already piloting few large‐area acquisitions in Cass and Lake Counties with different modes of LiDAR. This 
documentation describes inventory modeling work in Cass County, Minnesota where high density data were 
acquired using Single Photon LiDAR (SPL) instrument from Leica/Hexagon. The SPL are considered to be efficient 
for large scale projects as the sensor operates at a faster speed with a wider track coverage and captures data 
using 100 outlet beams; it requires only one detected photon per ranging measurement as opposed to hundreds 
or thousands of detected photons per ranging measurement in conventional airborne LiDARs. MN DNR Forestry 
Resource Assessment Program intends to supplement and/or substitute the ground‐based measurements via 
cutting‐edge remote sensing technology such as LiDAR because the traditional field‐based estimates are costly 
and quickly become outdated with stand growth and disturbances (natural or anthropogenic). The purpose of 
SPL together with simultaneously collected high resolution aerial photography was to produce forest inventory, 
and ultimately to update regional forest cover type maps and to evaluate forest condition and trends for timber 
production, wildlife habitat, forest health, and land managers. 
 
The Quantum Spatial Inc. was contracted to acquire the SPL data and 30‐cm color‐infrared (CIR) aerial imagery 
simultaneously in fall of 2017. Field sample plots were also measured in summers of 2017 and 2018, and the 
inventory data were integrated with SPL‐ and CIR‐derived metrics to produce spatial inventory models for 
several attributes including standing volume and aboveground biomass.  The remotely sensed metrics were 
combined with the field inventory to produce eight different models in R statistical software using the Random 
Forest machine learning algorithm. In addition, tree objects and stand objects were produced from LiDAR point 
cloud. Ram Deo, Senior Remote Sensing Analyst of MN DNR Resource Assessment, was responsible for the 
processing of SPL and analysis of field inventory data. The SPL processing was done using FUSION software of 
the US Forest Service (McGaughey, 2018) and some publicly available tools from the LAStools software suite 
(https://rapidlasso.com/lastools/).  
 
Field data analysis 
Field data for model training was collected in the Cass AOI (Figure 1) during the summers of 2017 and 2018 using 
one‐tenth acre fixed radius plots that were distributed systematically in a grid sample design with a density of 
about one plot per 920 acres. The x,y coordinates of the plot centers were estimated using Trimble R2 GNSS 
Receiver and differential correction post‐processing that resulted in an average horizontal error of less than a 
meter; the average horizontal accuracy of plot locations after post processing was 0.23m. Altogether 418 sample 
plots were established and measured, however, only 362 plots contained trees while the other 56 plots were in 
open (non‐forest) areas. Every tree with 5‐inch minimum diameter at breast height (DBH) was measured in the 
plots and DBH, total height, foliate height, crown class, azimuth and distance from plot center and other tree 
size variables along with species were recorded (using Survey123 field app on mesa2 devise).  

https://rapidlasso.com/lastools/
https://rapidlasso.com/lastools/
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Figure 1. Cass County Areas of Interest. 
Using the species‐specific standard allometric models and the techniques adopted by the FIA program of the 
USDA Forest Service Northern Research Station, tree‐level metrics were calculated and summed to obtain the 
plot‐level inventory. The following plot‐level inventories were calculated as combined and separately by 
softwood and hardwood.  

• Aboveground biomass 
• Standing volume 
• Maximum height 
• Basal area weighted height 
• Stand basal area 
• Trees per are 
• Quadratic mean diameter 
• Site index 
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LiDAR data and processing 
Quantum Spatial Inc. (QSI) was the main contractor for simultaneously acquiring the high density SPL and 4‐
band (RGB NIR) aerial imagery in southwestern Chippewa National Forest site (663,293 acres) in Cass County. 
The data was collected between September 30, 2017 and October 16, 2017, during peak fall foliage color using a 
laser system operating at 532 nm wavelength, from an aircraft flying at an altitude of 3750‐m above ground 
level with a speed of 160 knots, scan angle (field‐of‐view) of 30 degrees, effective scan rate of 6Mhz (PRR: 
60kHz, 100 beamlets per laser pulse), beam divergence of 0.08 mrad/beamlet, swath width of 2000‐m, and side 
overlap 50%. The data was acquired during peak fall color with an anticipation that canopy conditions will 
enhance forest species discrimination. Since single photon are considered to be sensitive to solar noise, QSI 
performed solar noise removal processing (prior to flightline calibration) by applying a kernal density estimation 
to the data. 
 
The vendor delivered classified LiDAR point cloud data (in las 1.4 format) in 4772 tiles, each of 750×750‐m size, 
and some derived products such as digital surface model (DSM) and bare‐earth digital elevation models (DEM) 
at 30‐cm spatial resolutions. However, QSI used only the first return of LiDAR pulses to derive DSM and so the 
full potential of LiDAR was not used to fully capture the canopy structure. Hence, we reproduced the DSM and 
canopy height model (CHM) in FUSION which also required production of DEM in PLAN’s DTM format. The LiDAR 
point cloud was separated into ground and non‐ground returns and DEM (in DTM format) was created for each 
tile using ground returns only. The DEM was next subtracted from the DSM to obtain CHM. Orthorectified and 
radiometrically corrected 4‐band imagery were also delivered by QSI as 8 bit GeoTiffs (total 398 tiles, each of 
2418×3505‐m dimensions). 
 
The LiDAR system captured up to five returns per pulse and generated point cloud data with average return 
density of 27.8 points/m2 (ranging from 2.9 to 44.8 points/m2) and vertical accuracy RMSE was 0.067 m. The 
point density was examined using Catalogue command in FUSION. The LiDAR datasets were processed following 
FUSION commands to obtain more than 150 grid metrics at 20‐m spatial resolutions that matches the size of 
field inventory plots. However, only 36 metrics (Table 1) were found to be important in inventory models when 
evaluated using Random Forest model selection algorithm. The heights of aboveground pulse returns were also 
summarized to obtain the grid metrics for canopy cover and vertical strata density as described in Deo et al. 
2017.  
 
Inventory modelling 
In order to obtain a training data frame consisting of response and predictor variables, SPL and CIR‐derived 
predictors were attached to the field plot measurements in a GIS environment. The SPL point cloud was clipped 
(e.g., Figure 3) for each plot location and numerous LiDAR metrics describing canopy height distribution, vertical 
strata density, and canopy cover were produced in FUSION software. The training data frame included more 
than 100 SPL‐derived grid metrics and two CIR‐derived metrics (namely, normalized difference vegetation index 
(NDVI) and near‐infrared band). Random Forest (RF) and ordinary least‐square multiple linear regression 
methods were used to formulate the spatial inventory models based on the integration of remotely sensed and 
field sample data. Spatial inventory models were developed separately for softwood‐ and hardwood‐ plots and 
also combined (Table2). 
 
Before fitting the models, firstly multi‐collinear predictors were identified and removed using a multivariate 
variable screening process based upon QR‐matrix decomposition (Deo et al. 2017). Subsequently, a RF‐based 
model selection procedure was applied to obtain a parsimonious set of predictor variables. The set of predictors 
identified in the RF model selection procedure were further subjected to both forward and backwards 
elimination methods of stepwise regression to remove statistically insignificantly predictors that did not improve 
model fits. The optimal sets of predictors thus selected were used separately in multiple‐linear regression (MLR) 
and RF modeling frame works. RF have the ability to rank importance of predictors, and was used to plot 
importance of predictors for each model. RF also gives an unbiased estimate of mean square error through 
internal cross‐validation, and hence does not require separate validation dataset. In fact, RF creates an 

https://www.researchgate.net/publication/327899581_FEASIBILITY_INVESTIGATION_ON_SINGLE_PHOTON_LIDAR_BASED_WATER_SURFACE_MAPPING
https://www.researchgate.net/publication/327899581_FEASIBILITY_INVESTIGATION_ON_SINGLE_PHOTON_LIDAR_BASED_WATER_SURFACE_MAPPING
https://www.researchgate.net/publication/327899581_FEASIBILITY_INVESTIGATION_ON_SINGLE_PHOTON_LIDAR_BASED_WATER_SURFACE_MAPPING
https://www.researchgate.net/publication/327899581_FEASIBILITY_INVESTIGATION_ON_SINGLE_PHOTON_LIDAR_BASED_WATER_SURFACE_MAPPING
https://www.fs.usda.gov/treesearch/pubs/55909
https://www.fs.usda.gov/treesearch/pubs/55909
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ensemble of multiple regression tree models (for continuous variables), each constructed from a bootstrap 
subsample (about 66%) of the training data frame, and estimates model mean square error (MSE) as the 
average value of the errors met with the out‐of‐bag data corresponding to approximately 33% of the plots that 
are withheld from the bootstrap subsample. 
 

 
Figure 2. LiDAR point cloud clipped for one of the plots measured in summer 2018.  
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Finally, the models were extended spatially (wall‐to‐wall) using the LiDAR‐derived grid metrics. Few samples of 
the inventory metrics are shown in Figure 3. 

 
Figure 3. Some sample inventory metrics derived from Single Photon LiDAR in the Cass County. 
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Tree and stand objects 
Tree objects (polygons) were produced for individual tiles in FUSION which employs watershed segmentation 
algorithm to canopy height model and outputs tree crown boundaries. A height threshold of 7‐m was used in 
the process with an assumption that 7‐m tall trees have an average DBH of 5‐inch. Each tree objects are 
attributed with crown area, and locations of maximum elevations. The tree objects of individual tiles are 
combined into a big shape file for the entire AOI. An example of tree objects along with CIR imagery is shown in 
Figure 4. 

  
Figure 4. Color-infrared fall imagery (left) and LiDAR-derived tree objects (right). 
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Stand segments were produced using mean shift segmentation tool in ArcMap. The tool was applied to biomass, 
volume, basal area weighted height, and maximum height raster’s and found that maximum height raster 
produced better objects compared to others. A minimum area threshold of 5‐acre was set in the process of 
segmentation. An example of stand objects is shown in the Figure 5 below: 

 

 
Figure 5. DNR managed FIM stands overlaid on CIR imagery (top) and on the stand segments (below) produced 
from LiDAR. 
 
Results 

• Only 36 LiDAR metrics were found to be useful in the inventory models, and none of the CIR‐derived 
variables were significant in the model. 

• Maximum canopy height and basal‐area weighted height models provided the best fit statistics while 
site index and trees per acre models performed poor (Table 2). Further, softwood models were always 
stronger than hardwood models. 

• The site index model can be improved if actual field measurements of tree age are done. In this study, 
tree age was predicted based on a formulated model depending on DBH and height data from FIA online 
database. 

• Single photon LiDAR did not properly capture deciduous canopy as segmentation of canopy height 
model did not produce comparable number of tree objects as field counts. 

• Stand objects can be reliably produced using high density LiDAR and CIR imagery from full leaf‐on 
condition. 

 
Table 1. Some LiDAR‐derived grid metrics that were used in inventory modeling 

LiDAR grid metrics Description 

ElevCV 
Coefficient of variation of elevations of all returns above 15cm, per 20‐m by 20‐m grid 
cells 

ElevIQ Interquartile range of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevKurtosis Kurtosis of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevL3 Third L‐moment of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevL4 Fourth L‐moment of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevLCV L‐moment coefficient of variation of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevLkurtosis L‐moment kurtosis of all returns above 15cm, per 20‐m by 20‐m grid cells 
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ElevLskewness L‐moment skewness of all returns above 15cm, per 20‐m by 20‐m grid cells 

ElevMADmedian 
Median of the absolute deviations from the overall median of elevations, per 20‐m by 
20‐m grid cells 

ElevMADmode 
Mode of the absolute deviations from the overall mode of elevations, per 20‐m by 20‐m 
grid cells 

ElevMax Maximum of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevMean Average of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevMode Mode of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevP01 First percentile of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevP05 5th percentile of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevP10 10th percentile of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevP20 20th percentile of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevP30 30th percentile of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevP80 80th percentile of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevP90 90th percentile of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevP95 95th percentile of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevSD Standard deviation of elevations of all returns above 15cm, per 20‐m by 20‐m grid ells 
ElevSkewness Skewness of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
ElevVar Variance of elevations of all returns above 15cm, per 20‐m by 20‐m grid cells 
IntCV Coefficient of variation of all returns intensity, per 20‐m by 20‐m grid cells 
IntL2 Second L‐moment of all returns intensity, per 20‐m by 20‐m grid cells 
IntMax Maximum intensity per 20‐m by 20‐m grid cells 
IntMin Minimum intensity per 20‐m by 20‐m grid cells 
Ist_rtns_ab_mean Total first returns (count) above the mean 
Perc_all_returns_a
bove_3m 

Percent of all returns above 3m from ground (i.e., all returns above 3m * 100/ total 
count of all returns); this is proxy metric for canopy cover 

Perc_all_returns_a
bove_mode 

Percent of all returns above mode elevation of 0‐m by 20‐m grid cells (i.e., all returns 
above mode * 100/ total count of all returns) 

Stratum1 
Proportion of total returns in the vertical interval from ground to 1.37m above ground 
per 20‐m by 20‐m grid cells 

Stratum2 
Proportion of total returns in the vertical interval from 1.37 to 5m above ground per 20‐
m by 20‐m grid cells 

Stratum3 
Proportion of total returns in the vertical interval from 5 to 10m above ground per 20‐m 
by 20‐m grid cells 

Stratum4 
Proportion of total returns in the vertical interval from 10 to 15m above ground per 20‐
m by 20‐m grid cells 

Stratum5 
Proportion of total returns in the vertical interval from 15 to 20m above ground per 20‐
m by 20‐m grid cells 
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Table 2. Fit statistics of SPL‐dependent spatial inventory models 

  Model fit statistics: R2 (%) and RMSE Cross‐validation: R2 (%) and RMSE 

Forest 
Inventory 
Attributes 

Softwoods Hardwoods  Combined Softwoods Hardwoods Combined 

Maximum 
height         
(ft) 

83.17 
(8.85) 

60.8 
(10.25) 

71.39 
(9.97) 

80.67 
(9.59) 

60.11  
(10.27) 

71.15  
(10.01) 

Standing 
Volume  
(ft3/ac) 

82.12  
(789.41) 

66.95  
(864.59) 

67.5 
(932.29) 

74.94 
(957.91) 

64.98 
(899.44) 

66.17 
(955.45) 

Aboveground 
biomass  
(US tons/ac) 

80.83  
(14.88) 

70.59   
(17.57) 

69.56 
(18.23) 

79.43  
(15.55) 

66.86  
(18.87) 

67.99  
(18.69) 

Basal area 
weighted 
height (ft)    

80.25 
(8.93) 

56.11 
(8.73) 

67.79 
(9.03) 

78.96 
(9.42) 

55.44 
(8.99) 

67.32 
 (9.09) 

Stand basal 
area  
(ft2/ac) 

64.63  
(37.48) 

58.17 
(34.26) 

55.82  
(37.61) 

60.65 
 (39.97) 

55.16  
35.65 

53.75  
(38.63) 

Quadratic 
mean dia.      
 (inch) 

71.5 
(1.76) 

44.31 
(1.77) 

51.48 
(1.90) 

65.73 
 (1.91) 

34.44 
(1.94) 

46.44 
(1.99) 

Stem density 
(trees per 
acre) 

29.64  
(104.80) 

38.54 
(90.64) 

34.11 
(96.54) 

31.05  
(100.19) 

37.58 
 (91.45) 

31.37  
(98.63) 

Site index 
(ft) 

48.45 
(20.80) 

27.41 
(12.20) 

29.9 
(17.12) 

46.17  
(21.75) 

26.18  
(12.46) 

29.39  
(17.21) 

 
Forest Cover Type Mapping: 
Cover type and stand species composition are crucial stand parameters. They are the “What” in forest inventory. 
Given their importance, it is a necessity that timely and accurate data be collected. Current forest inventory 
methods used to collect stand species composition consist of a timber cruise, where given the size of the stand, 
X number of plots are established (i.e. a 50 acre stand would have 6 plots established). At each plot tree 
characteristics are recorded (see MN DNR CSA manual for detailed field protocols). Plot data are averaged for 
the stand and the majority tree species (based on volume) is selected as the cover type for that stand. While the 
CSA methods have proven effective there are three major limitations: 1) Stand cruising is time consuming and a 
complete state inventory can take decades, 2) The potential for rare species to be missed due to sampling 
design, 1) The potential for rare species to be missed due to sampling design, 3) The shape and size of the stand 
plays a large role in cover type determination. Resource Assessment created a study to investigate if remote 
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sensing can be used to accurately determine cover type and species composition while also addressing the CSA 
limitations.  
For this study we employed Sentinel‐1 radar imagery, Sentinel‐2 multi‐spectral imagery, Single Photon Lidar 
(SPL), and Peak Fall Color (PFC) 4 band aerial imagery along with Random forest  Classification methods and MN 
DNR Forest Inventory (FIM), USFS Forest Stands, and 356 20m field collected inventory plots.  
 
Imagery 
Sentinel‐1 and Sentinel‐2 are satellite constellations launched and managed by the European Space Agency. 
Sentinel‐1 consists of two satellites, Sentinel‐1A and Sentinel‐1B that carry identical C‐band synthetic‐aperture 
radars that collect in a single (HH or VV) polarization at a 5x20 meter pixel size. The revisit time is 12 days. 
Sentinel‐2 consists of two satellites, Sentinel‐2A and Sentinel‐2B that carry identical multi‐spectral sensors that 
collect 12 bands in varying wavelengths at 10 m, 20m, and 60m bands (Table 1). The revisit time is 5 days.  For 
this project Google Earth Engine (GEE) was used to process the Sentinel‐1 and Sentinel‐2 data. GEE leverages the 
processing power of unused Google servers to conduct remote sensing analysis. Processes that would weeks to 
compile and run on a single desktop, take minutes on GEE. Four Sentinel‐1 and six Sentinel‐2 composites were 
processed and downloaded from GEE. Composites area created by first selecting a date range, then all images 
that were collected during the date range are gathered into an image collection, a median filter is then passed 
over each pixel in the image collection, calculating  the median value for that pixel from the all the images in the 
image collection. The median filter removes speckle from the radar imagery and clouds from the multispectral 
imagery. Sentinel‐1 VV and VH images were downloaded for the following image collection dates: 5/1/2017 – 
5/15/2017, 7/1/2017 – 7/15/2017, 9/15/2017 – 10/30/2017, and 5/1/2017 – 10/30/2017.Sentinel‐2 bands 
2,3,4,5,6,7,8,11, and 12 were downloaded for the following image collection dates: 5/1/2018 – 6/1/2018, 
6/10/2017 – 7/15/2017, 6/1/2018 – 7/10/2018, 10/1/2017 – 11/1/2017, 9/1/2018 – 11/1/2018, and 11/1/2017 
– 3/31/2018. 
SPL data and PFC imagery were collected by Quantum Spatial for the study area (627,722 acres) from September 
30, 2017 ‐ October 16, 2017. SPL data were collected using a Leica – SPL100 and were processed and height 
filtered by Quantum Spatial resulting in ~60 points/meter. For this project Fusion was used to process the SPL 
data into 92 LiDAR metric. 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Training Data 
MN DNR FIM polygons, USFS forest stand polygons, and 356 20m field collected inventory plots were analyzed 
for viability to be used as training data for forest cover training data. Early model results revealed that MN DNR 
FIM polygons and USFS forest stand polygons were too large spatially to be used to train a classifier, while the 
356 20m inventory plots were too small. Therefore the PFC imagery along with the MN DNR FIM polygons, USFS 

Sentinel-2 bands Central wavelength 
(nm) 

Bandwidth 
(nm) 

Spatial resolution 
(m) 

Band 1 – Coastal aerosol 442.7 21 60 
Band 2 – Blue 492.4 66 10 
Band 3 – Green 559.8 36 10 
Band 4 – Red 664.6 31 10 
Band 5 – Vegetation red edge 704.1 15 20 
Band 6 – Vegetation red edge 740.5 15 20 
Band 7 – Vegetation red edge 782.8 20 20 
Band 8 – NIR 832.8 106 10 
Band 8A – Narrow NIR 864.7 21 20 
Band 9 – Water vapour 945.1 20 60 
Band 10 – SWIR – Cirrus 1373.5 31 60 
Band 11 – SWIR 1613.7 91 20 
Band 12 – SWIR 2202.4 175 20 
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forest stand polygons, and 356 20m field collected inventory plots were used to generate 260 “pure” cover type 
points. Cover type points were buffered with a 40m buffer to create 260 cover type polygons.  
 
Random Forest Classifier 
Mean pixel values for each band of Sentinel‐1 and Sentinel‐2 imagery were extracted for each cover type 
polygon using R. SPL Lidar data for each cover type polygon were extracted and the mean value for each LiDAR 
metric was calculated for each polygon. Resulting mean values from each dataset were compiled into a training 
dataset consisting of a response, i.e. cover type, and predictor variables, i.e. mean band values. Training data 
were used for Random forest  Classification. A total of 3 Random forest  classification models each predicted 
cover type but with varying input predictor variable were produced: a Sentinel‐1 and Sentienl‐2 model (SS), a 
LiDAR only model (L) , and a Sentinel‐1, Sentinel‐2, and LiDAR model (SSL). Random forest  models require 
variables to be removed or trimmed in order to achieve best model results. To this end a variable importance 
metric, Mean Decrease in Gini was used to remove variables between model iterations until model accuracies 
began to decrease. Model accuracies were 78%, 65%, and 78% for the SS, L, and SSL models respectively. The SS 
and SSL models performed similarly, therefore, the SS model was selected as the final model given the 
applicability of the model to areas that lack LiDAR.  
The SS model was imputed using the caret package in R. The resulting 20m cover map was analyzed for accuracy 
visually using FIM and FS Veg polygons. It was found that there was confusion between upland and lowland 
coniferous cover types. To address this issue a hybrid classification scheme was developed that consisted of 
three additional Random forest  cover maps : one that classified just the lowland coniferous cover types, one 
that classified just the upland coniferous cover types, and one that classified the remaining cover types along 
with compressed upland and lowland coniferous cover types. The resulting maps were combined using raster 
calculator in ArcMap to produce a 20m cover type map with the same classes as the SS model. Given that the 
resulting map was a combination of three Random forest  models and independent dataset was needed to 
assess model accuracy. Ecological Land Classification System (ECS) site classification data are collected by 
division foresters while in the field. These data are spatial in nature and one of the attributes collected is 
dominate tree species. Therefore, ECS site classification data were extracted for the cover type mapping area, 
were filtered to remove those sites that had mixed dominate/no dominate tree species, and were compared 
with a disturbance layer to ensure no changing classes. The resulting ECS dataset was buffered using a 20m 
buffer to convert the point locations into polygons. Zonal statistics as table in ArcGIS was used to extract the 
majority cover type within each ECS polygon. ECS cover type was compared to the map cover type using a 
confusion matrix to assess map accuracies. The resulting map accuracy was also 78%, however, confusion 
between upland and lowland conifers has been reduced. It should be noted that there were no water, non‐
forest, and balsam fir ECS points, therefore accuracies for those cover classes are taken from the Random forest  
models. 

Aspen Balsam 
Fir 

Black 
Ash 

Black 
Spruce 

Cedar Jack Pine Non‐
Forested 

Northern 
hardwood 

Oak Red 
Pine 

Tamarack Water White 
Pine 

White 
Spruce 

0.758 
 

0.533 
 

0.822 
 

0.839 
 

0.722 
 

0.632 
 

0.95 
 

0.808 
 
 

0.718 
 

0.761 
 

0.794 
 

1 0.617 0.830 

 
 
Conclusion 
The use of passive remote sensing i.e. satellite multispectral imagery, for cover type mapping has never been 
easier to implement. Cloud based platforms along with machine learning techniques, like Google Earth Engine 
and Random forest , make processing and training large amounts of satellite data trivial. The low cost of 
handheld GPS units and the improvement in location accuracies make ground truth data collection easier and 
more accurate. Therefore the time has never been better to explore the potential for cover mapping at large 
scales. 
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ACTIVITY 2:  Relating field plot data to remotely sensed data for tree level forest metrics 
Description: Extensive plot information will be collected (~300 plots) across the project pilot area to build a 
strong relationship between ground reference data and high density LiDAR and other imagery. We will use this 
large dataset to examine the use of Alan Ek’s imputation methodology to populate stand inventory with detailed 
tree attributes pertinent to wildlife and ecological applications. A sample of these plots will also be assessed 
with very high resolution aerial photography taken from an unmanned aerial system (UAS) provided by partners 
at Northland Community and Technical College (NCTC) to assess the cost savings for such a data collection 
method. Additional plots will be collected by County, Forest service, and other DNR Division personnel for in‐
kind contributions. 
 

Summary Budget Information for Activity 2: ENRTF Budget:    $  167,574 
 Amount Spent: $  165,280 

 Balance: 
 
 

$      2,294 

Outcome Completion Date 
1. Establish and collect field plot data for use with LiDAR and imagery data (Fig. 1) September 2017 
2. Training and verification of new and existing LiDAR data and imputation on new field 
data 

June 2018 

3. Acquisition of very high resolution photography via UAS, including training, 
verification, and analysis of this imagery with LiDAR and imputation from field data 
(performed by NCTC) 

December 2017 

 
Activity Status as of January 31, 2017:    

• No work completed on this activity to date. 

Activity Status as of July 31, 2017: 
o 15 plots have been photographed remotely using UAS. 

• Amendment request: July 31, 2017 
o We over spent for the GPS data recorders by $883.66: 
 Anticipated cost = $30,000, actual cost = $30,883.66, over = ($883.66). 

o I request to move funding as follows: 
 $883.66 from the LiDAR acquisition in Activity 1, line item 20, to the purchase of GPS units in 

Activity 2, line item 26. 
• Amendment Approved by LCCMR: August 29, 2017 

 
• Amendment request (10/12/17):  

o I request to move funding as follows: 
 $9,215 from Other: DNR’s direct and necessary costs in Activity 2, line item 30 to the contract 

for segmentation in Activity 1, line item 21. 
• Amendment Approved by LCCMR 10-16/2017 

Activity Status as of January 31, 2018: 
• DNR Interns and staff have collected field data on 170 ‐ 1/10 acre plots. 

o County foresters have collected field data on 21 ‐ 1/10 acre plots. 
• UAS aerial imagery, including pix4‐D surface models work: 

o 44 plots visited, 37 had imagery acquired, and 7 plots were inaccessible via UAS. 

Activity Status as of July 31, 2018: 
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• 413 out of 500 field plots have been completed. 
o DNR Interns and staff have collected field data on 333 ‐ 1/10 acre plots. 
o County foresters have collected field data on 80 ‐ 1/10 acre plots. 
o 55 1/10 acre plots deemed inaccessible. 
o Remaining 32 1/10 acre plots will be completed by September 1, 2018  

• Unmanned Aerial Systems (UAS) work has continued. 
o 44 plots sites have been flown for high resolution aerial imagery. 
o Imagery processed using AgVault and Pix4D software and delivered: 
 Raw imagery in .tiff format. 
 Point Cloud files in .las format 
 Digital Surface Models (DSM) in .tiff format. 
 Digital Terrain Model (DTM) in .tiff format. 
 Ortho‐Mosaics in .tiff format 

o All data uploaded to Northland OneDrive for DNR evaluation and use. 

 
o I request to move funding as follows: 
 $43,940 from Personnel (Wages and Benefits) in Activity 1 line item 12 to Personnel (Wages and 

Benefits) Activity 2 line item 12. 
• $16,940 from Remote Sensing Analyst – 1 in Activity 1 line item 15 to the Forester in Activity 

2, line item 18. 
• $27,000 from Remote Sensing Analyst – 2 in Activity 1 line item 16 to the Interns in Activity 

2, line item 19. 
• Amendment Approved by LCCMR 08/07/2018 
• Amendment request (12/10/18):  

o I request to move funding as follows: 
 $2,860 from Travel expenses in Minnesota in Activity 2 line item 28 to Travel expenses outside 

Minnesota (outstate) Activity 1 line item 30. 
• Amendment Approved by LCCMR 01/08/2019 

Activity Status as of December 10, 2018 for the January 31, 2019 update: 
• 432 out of 500 field plots have been completed. 

o Field work is complete and no more plots will be field visited. 
• Unmanned Aerial Systems (UAS) work has continued. 

o 30 more plots sites have been flown for high resolution aerial imagery. 

Final Report Summary:   
 
Field Sampling 
The literature supports using a fixed radius plot methodology for developing models relating remotely sensed 
auxiliary variables to field measurements. Fixed radius is considered an area based approach. Within the 37.2 
foot radius of the sample plot used, all trees down to a specified DBH are measured. Other authors have 
identified this 1/10 acre circular plot as the smallest plot size that corresponds well to a 20m pixel, and reduces 
edge effects. These studies utilized lower density LiDAR, other plot sizes may be possible with higher density 
LiDAR, which is under investigation. The literature is unclear if variable radius plots using a 10 BAF prism could 
be utilized, this is ongoing research in the forestry community, but currently the literature does not support this 
methodology for sampling. In total sample plots, approximately one mile apart, were allocated in an evenly 
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spaced grid over the 628,000 acres of the study area.  Sample plots that fell on privately‐owned land, were 
excluded from the study.  Plots on Federal, State, County and Industrial ownerships, with agreements for access, 
were selected to visit and for data collection.  501 plots met this criteria and were identified as Sample plots to 
be included in the study. 
Using a custom measurement protocol, plot center was monumented with a sub‐meter GPS coordinates using a 
Trimble R2 high‐precision GPS.  Careful consideration was given to ensuring measurements were made 
accurately and referenced to the plot’s center.  Distance and azimuth from plot center to each stem was 
measured.  Tying on‐the‐ground data to the correct location is important to ensure it’s matched to the LiDAR 
signature.  Inventory metrics were measured on each tree within the plot area. Trees >= 5 in DBH were 
measured for height, diameter at breast height (DBH), as well as crown position, relative to the other trees.  
Within each plot, we assessed the densities of vegetation in the volume of cylinders of varying heights, 
encompassing the footprint of the 1/10th acre plot.  Ocularly estimated densities of the grasses and forbs, shrubs 
and tree species were assessed within the strata of 0‐2 feet, 2‐6 feet, 6‐16 feet and 16 feet and higher.  
Capturing this measurement was an attempt to quantify the amount of vegetation present in understory strata 
that LiDAR returns may pick up, to better fit to measured field data.  All measurements were electronically 
recorded on a Juniper Mesa tablet using a custom Survey 123 (ESRI), data entry form.  Data sheets were 
uploaded each time the tablet was connected to Wi‐Fi.  A total of 400 plots were conducted this way at a cost of 
approximately $40 per plot.  
In total there were 356 plots, of the 400 accessible plots, that were forested. Nominal plot densities within the 
study area were 1 plot per 1,459 acres, which roughly corresponds to 333 plots, which were used for modeling. 
While in total there were 356 forested plots, 23 plots were reserved for validation exercises. The non‐forested 
plots were used for other processes such as cover type mapping, however they were not used to develop forest 
inventory metrics.  
 
Model Assisted Yield Estimation and Sampling Size Evaluation 
Introduction 
Models relating remotely sensed variables to other natural resource variables of interest are developed using 
either multivariate  least squares regression, machine learning (e.g Random Forest), or other model based 
estimation approach. Once developed models can be leveraged to derive estimates of attributes being 
measured, in this case forest inventory attributes. While all metrics provide useful information to managers, 
estimated yield information is often desired. Yield metrics provide crucial information which typically informs a 
management direction, whether to enhance, harvest, or defer management within a stand. Likewise planners 
and economist are interested in yield information for resource planning and exploitation.  
Models were developed relating LiDAR metrics to field measured plot data using multivariate least squares 
regression. Upon completion of this effort, the models were applied to other downstream analysis, including 
yield and other attribute estimation for the area, as well as an evaluation of sampling intensity, and finally a cost 
benefit analysis. Details of this analysis are detailed. 
 
Methods: 
Model Assisted vs. Simple Random Sample 
Upon completion of model development, regression models were used to estimate a number of forest yield 
variables. Using a regression estimator has been termed a model assisted (MA) approach, while using a simple 
random sample, as in only the field plots, has been termed a simple random sample or SRS approach (Strunk et 
al. 2012). The MA approach may be utilized when the LiDAR based auxiliary variables are measured for the 
complete study area or entire population being measured (Lohr 1999, Särndal et al 2003).  Equation 1 and 
equation 2 represent the total population estimate and the total variance respectively for the MA. 

(1) T�𝒚𝒚.re𝒈𝒈 = N ∗ (B�μx) 

(2)             𝑆𝑆𝐸𝐸T�𝒚𝒚.𝒓𝒓𝒓𝒓𝒈𝒈
= �𝑁𝑁2 𝑠𝑠

2𝑟𝑟𝑟𝑟𝑟𝑟

𝑛𝑛
 

Where T�y.reg is the regression based estimate of the mean. N is the area sampled (i.e. the forested region of the 
Cass AOI), B � is the vector of regression coefficients and μx vector of auxiliary variable means. SET�y.reg

 is the 
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standard error of the regression model residuals, s2reg is the variance of regression model residuals. Estimates 
from the SRS to make comparisons of the total population were also conducted. From Lohr 1999, equation 3 
represent the total SRS population estimate, and equation 4 represents the SRS variance. 
(3)    T�𝒚𝒚 = NY� 

(4) 𝑆𝑆𝐸𝐸�𝑇𝑇�𝑦𝑦� = �𝑁𝑁2 𝑠𝑠
2𝑦𝑦

𝑛𝑛
 

 
Where 𝑇𝑇�y is the SRS total estimate and Ŷ is the mean of the observed sample. Finally the variance of the MA and 
SRS were compared to assess the impact of the two different estimates. Referred to here as the design effect 
(DE), equation 5. 

(5)  𝐷𝐷𝐸𝐸 =
SET�y.reg

SE�T�y�
 

 
Sample Size Considerations 
After comparison between the MA and SRS metric estimates and estimating the design effect, the impact of 
different sample sizes on the regression estimator was conducted. Plots were reduced via random sampling with 
replacement to desired plot numbers, and the population parameters (i.e inventory attributes) reassessed. The 
relative precision (RP, similar in calculation to DE) was evaluated against the SRS. This analysis followed the 
methodology outlined in Strunk et al. (2012) which utilized a resampling methodology at different sample sizes. 
Sample sizes were chosen based on reducing plots, as well as matching sampling intensities found in other 
studies for comparison. Though those studies are not discussed here. 
 
 
UAS Imagery acquisition performed by NCTC: 
 
Number of Site Covered in FY19: 
38 Sites have drone imagery this year 
74 Sites have drone imagery collection total 
70 Sites were inaccessible or visited but could not be flown 
 
144 Total Sites have been investigated (Flown/Visited/Inaccessible-some twice) during the project 
 
Services provided: 
‐Northland owned UAS and camera sensors 
‐Imagery Processed using AgVault and Pix4D Software 
‐Operations compliant with FAA Part 107 Regulations 
‐Compliant with State policies and MN DNR UAS policy. 
‐Report out and presentation at Society of American Foresters Conference 
 
Database Management: 
All data has been uploaded to Northland’s OneDrive 
Access provided to DNR 
Admin Folder contains a spread sheet capturing each flight activity and data collection 
Dataset Folder contains plot specific folders containing the 3 types of collection profiles used at each site 
described in more detail below. 
 
Collection profile of drone imagery data includes (most sites): 
‐Plot Center photos at various altitudes 
‐Low overlap, wide areas imagery coverage around site (10‐30 Acres) 
‐High overlap, wide area imagery coverage around site (5‐15 Acres) 
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Product outputs include products that can be integrated into existing GIS and other software: 
‐All raw imagery 
‐Point Cloud (.las) 
‐Ortho‐Mosaics (.tiff) 
‐Digital Surface Model (.tiff) 
‐Digital Terrain Model (.tiff) 
 
Concept of Operations 
In 2016 Minnesota Department of Natural Resources Forestry Division was awarded a grant project through the 
Legislative‐Citizen Commission on Minnesota Resources, Titled “Enhancing Forest Inventory Using 
Multiple Remote Sensing Technologies”. The initial concept for the DNR Forestry LCCMR project was to develop 
a robust cost‐saving methodology for an enhanced stand‐based forest inventory, including attributes that relate 
to forest structure and habitat suitability, using LiDAR, high resolution imagery, and plot data.  UAS was one 
platform to be used to collect the high‐resolution imagery.  The research area, 500K acres in northern Cass 
County, contained hundreds of small research plot areas (1/10 acre), that would be inventoried by ground 
assessment. 
 
In addition to the ground assessment UAS would collect high resolution imagery over these 1/10 acre research 
plots.  As the project began, ideas were discussed about some of the other recent projects and additional data 
collection that might be useful.  This included expanding the flight profile and collecting imagery of a wider area 
surrounding the plot.  This additional collection would allow for the generation of other products that could 
provide added value to the project. 
 
The collection profiles of drone imagery data included (most sites): 
‐Plot Center Imagery at various altitudes 
‐Low overlap, wide area imagery coverage around site (10‐30 Acres) 
‐High overlap, wide area imagery coverage around site (5‐15 Acres) 
 
Plot Center Imagery was captured at multiple altitudes including: 100ft, 200ft, 300ft, 400ft.  Not all areas 
allowed for capturing imagery at the lower altitudes due to line of sight requirements and the environment 
surrounding the research plot areas.  The entire research plot was captured at an altitude of roughly 200ft.  The 
additional altitudes allowed for viewing of higher resolution imagery, as well as expanded coverage around the 
research plot location. 
 
Low Overlap profiles provided wide area coverage with a NADIR camera position.  Imagery was collected with 

minimal amounts of overlap.  The low overlap imagery allowed for a quick turn around on being 
able to view the imagery at the field end.  Although the product generated in post processing 
software was not a stitched orthomosaic or point cloud, specific post processing software allows 
the imagery to be placed in roughly the correct location for quick viewing of the general area.  
Imagery maintained resolution so the user could zoom in on key areas of interest on the field 
edge and from the office. 
 
High Overlap profiles provided a smaller area of coverage around the plot area.  Imagery was 
collected at shorter intervals and with a low oblique camera position.  This collection profile 

allowed for post processing imagery into an orthmosiac and point cloud.  The point cloud has a similar function 
as the LIDAR data and can be used with the same tools during post processing analysis.  
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Challenges 
Line of Sight: Per current regulatory requirements the operator of the system must ensure a visual line of sight 

with the unmanned aircraft at all times.  In the forestry environment this 
created challenges to the areas that could be flown, the setup for operations, 
and how much area could be flown. 
 
Corrective Action: Many times, this resulted in evaluating multiple approaches 
to be able to find a takeoff and landing location within a visual line of sight to 

the research plot. 
 
Degraded GPS Signal: Different locations with rolling hills and tall trees caused degradation of GPS signals and 
performance of the aircraft. GPS is not required for the operation of the UAS.  However inconsistent GPS caused 
variation in flight performance, including significant drifting.  This must be considered when flying in areas with 
small clearances due to things such as vegetative cover.  Although GPS is not required for flight, it is required for 
contingency or return home modes if anomalies are experienced causing loss of communication between the 
ground control station and aircraft. 
 
Corrective Action:  Extreme caution should be used and in many cases,  flight is not recommended. 
 
Lack of Data Services: Many locations in the project area did not have data service or had very inconsistent data 
service. The use of maps as a reference background is very common with most UAS control software.  Without 
the data service, maps could not be readily updated in the field. 
 
Corrective Actions: Each application or software program must be evaluated individually.  Most applications will 
allow for caching or storing of maps before going to the field. 
 
Power Management: Power Management is a key element for the success of remote field operations.  It begins 
with pre‐field operations and for the UAS, control devices, computers, etc.  Power management must also be 
exercised during all operations.   
 
Corrective Action: A sine wave power inverter and/or small generator are recommended for field operations. 
 
Software Anomalies: Some UAS allow third party developers to engineer 3rd party solutions to controller UAS for 
specific functions.  However, due to the rapid advance in software developments for the UAS and the control 
software it is fairly common to have mismatches in the software creating anomalies while operating the UAS. 
 
Corrective Action: Take manual control and when properly maintaining line of sight and situational awareness 
the UAS can be flown back to the return home location and safely landed. 
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Roads and Access: There are many unpredictable factors that obstruct access to areas throughout the national 
forest. 

 
 
Temperature and Precipitation: Most UAS today are referred to as fair weather aircraft.  This means they have 
limitations for many environmental conditions.  Most systems are not rated for any amount of precipitation. 
Temperatures during the Minnesota winters limit their operations as well. 
 
Corrective Action:  In some cases, there are no corrective actions for the limitations induced by weather 
conditions.  However, there are accessories like battery warmers that can help alleviate some of the 
temperature related limitations. 
 
Intrusive Pests: 
Mosquitos, gnats, flies 
Corrective Action: Insect repellent, body netting, general awareness training of hazards. 
 
Lessons Learned 
Homogenous Environments: When processing imagery with a common homogenous surface (i.e. snow, water, 
vegetation) it was noted that automated stitching software frequently had difficulty in matching the similar 
georeferenced images to create a mosaic.  This commonly resulted in a blank spot or black spot in the mosaic. 
 
Time of day considerations: Since stitching software utilizes similarities of image and georeferencing to create 
the mosaic, the differing times of day can affect the shadowing of vegetation and terrain.  This in turn can 
negatively affect the stitching of the images. 
 
Corrective Action:  It is ideal to collect imagery when the sun is closest to apogee. Try to get all of the imagery 
for a given subject on the same date and time. Recommend not mixing imagery from different dates and times. 
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Reliable Repeatable Processes – During the imaging and processing of the DNR Forestry Plots, a couple of 
reliable repeatable processes were developed.   
 
Actions Taken: Flight planning and imagery capture processes were developed to preplan plots to be flown, 
define efficient routing to each plot, and team tasks on site; Image capture and processing was also developed 
to optimize efficiency by immediately downloading data from asset to computer/thumb drive, saving data in 
established naming convention/data management format while in route to next site, and uploading to server at 
earliest convenience; Data Flow Process was established to pass completed mosaics to customer via OneDrive, 
allowing them to pull down finished imagery from that site.   
 
External use/share of data/applications – The imagery obtained thru the DNR has been added to our continuing 
working relationship with SCSU.  Work has begun to incorporate SCSU’s SARC to assist in the processing and 
database management of the imagery.  Also, potential use of the Visualization lab at SCSU is currently being 
discussed. 
 
Actions Taken: Establish Labs/Lesson Plans/Practical Exercises ‐ Utilizing DNR Imagery (RGB, LiDAR), Labs, Lesson 
Plans, and Practical Exercises are being developed to be integrated into curriculum as real‐world examples of 
applications of geospatial technology; Plot/image sizes optimum – Imagery taken of the forestry plots has 
assisted in ascertaining optimal sizes for different species of tree plots for evaluation; Use in class – All imagery 
can be of use in class, but some more than others.  One plot provided an excellent educational opportunity 
when it presented challenge due to a spike in the point cloud causing a severe skew to the image.  This 
presented an opportunity to utilize this example in class to identify the issue with the image, analyze the 
possible causes, and determine a working solution to the issue bringing the image into a more reasonable, 
representative state; Imagery types available – The DNR has SPL, Linear, RGB, and LiDAR imagery available for 
use and processing in conjunction with their LCCMR project.  This data has been made available to us to 
compare and analyze.  This creates a wealth of imagery and data that can be utilized and integrated into 
curriculums. 
 
Extended external reach to other areas/agencies – The lessons learned while working with the DNR have been 
applied and utilized in other grant projects.   
 
Action Takens: Our work with the BWSR project has been enhanced from workflow processes and data 
management developed in the DNR project.  Also, lessons learned from both projects have been incorporated 
into the Imagery Analysis and Geospatial Intelligence Analysis curriculum. 
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ACTIVITY 3:  Analyses of the methodology: comparing accuracies, cost, and value 
Description: To determine cost savings and identify overall efficiencies and information gains achieved using the 
above approaches, a simple cost‐benefit analysis and a simple accuracy assessment will be conducted to 
compare traditional inventory methods to our use of high density LiDAR and high resolution imagery using fewer 
ground reference plots. Additionally, a brief report will be written to discuss our results. 
 

Summary Budget Information for Activity 3: ENRTF Budget: $ 11,057 
 Amount Spent: $ 11,057 
 Balance: $           0 

 
Outcome Completion Date 
1. Develop a cost‐benefit analysis comparison to forest inventory methods from 2010‐
2015 

June 2018 

2. Develop a manual with protocols for practical application May 2019 
3. Submit final reports, including methods of outreach and technology transfer June 2019 

 
Activity Status as of January 31, 2017:    

• No work completed on this activity to date. 

Activity Status as of July 31, 2017: 
• No work completed on this activity to date. 
• Amendment request (10/12/17):  

o I request to move funding as follows: 
 $586 from Other: DNR’s direct and necessary costs in Activity 3, line item 30 to the contract for 

segmentation in Activity 1, line item 21. 
• Amendment Approved by LCCMR 10-16/2017 

Activity Status as of January 31, 2018: 
• No work completed on this activity to date. 

 
Activity Status as of July 31, 2018: 

• Project Manager, Biometrician, Remote Sensing Analysts, and the Forester have begun to develop a cost 
benefit analysis in several areas: 
o Difference between field collection costs of this fixed radius plot method and the CSA variable radius 

stand method – no final outcomes yet. 
o The development of our methods has begun to be written but not yet finalized. 
o Presentations of our methods and of the data has occurred as listed below in part V dissemination. 

 
Activity Status as of December 10, 2018 for the January 31, 2019 update: 

• No real work was completed on this portion of the project after the July update. This will be completed 
by the next and final update. 
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Final Report Summary:  
 
A cost comparison was also conducted, the model assisted (MA), and the business as usual (BAU) approach was 
evaluated. The BAU was based on the DNR’s current cooperative stand assessment protocols. To draw formal 
comparisons, a number of assumptions were used.  

(1)  If a stand is less than 10 acres it receives 8 variable radius plots, more than 10 acres it receives 12 
variable radius plots. 

(2) The cost to survey an acre of forest under the BAU is approximately $6.80 
(3) The cost of high density LiDAR acquisition is $0.50 cents an acre.  
(4) We estimated the total cost of acquiring one fixed radius plot to be 0.50 cents per acre (this includes the 

cost of placing the plot, as well as travel times). 
(5) An analyst costs $2.00 per acre for the MA approach. 

Model Assisted vs. Simple Random Sample 
In general we found that the MA approach improved precision over the simple random sample alone.  

(a)                                                                       (b) 

 
 
Figures (a; basal area (ft2)) and (b; volume (ft3)) demonstrate the increase in precision achieved by the MA 
compared to the SRS. The MA approach improved the overall precision for all forest inventory metrics from both 
a yield (basal area, volume, trees per acre, and biomass), as well as non‐yield metrics (max height, quadratic 
mean diameter (QMD), and basal area weighted height (BAWHt)), see table 1 below: 
 

Table 1. LiDAR metrics and associated statistics 

Metric Method SRS Estimate CI Half Width SE (%) DE (%) Plots to Match 
MA 

Volume (ft3)† SRS 1,152,976,164 94,402,383 4.2 ‐‐‐ 1214 
Volume (ft3)† MA 1,122,885,280 50,028,656 2.3 27 ‐‐‐ 
AGB (tons)† SRS 45,761,544,289 3,747,140,631 4.1 ‐‐‐ 1246 
AGB (tons)† MA 46,750,439,614 1,960,233,170 2.2 26 ‐‐‐ 

Stems† SRS 86,995,482 6,197,488 3.4 ‐‐‐ 488 
Stems† MA 93,656,646 5,180,779 3.0 68 ‐‐‐ 

Basal Area (ft2)† SRS 42,367,243 3,265,009 3.7 ‐‐‐ 890 
Basal Area (ft2)† MA 44,896,340 2,020,827 2.4 37 ‐‐‐ 

QMD (in.) SRS 9.3 0.3 1.6 ‐‐‐ 644 
QMD (in.) MA 9.4 0.2 1.1 51 ‐‐‐ 
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Max Height (ft.) SRS 68.8 2.0 1.5 ‐‐‐ 1114 
Max Height (ft.) MA 68.6 1.1 0.8 29 ‐‐‐ 

BAWHt (ft.) SRS 54.2 1.7 1.6 ‐‐‐ 990 
BAWHt (ft.) MA 53.7 1.0 1.0 33 ‐‐‐ 

DE is design effect, CI is confidence interval, SE is standard error 
AGB is above ground biomass, QMD is quadratic mean diameter, and BAWHT is basal area weighted 
height. 
† Indicates an area total. All DE estimates are essentially divisions, so only reported under MA.  

 
In all cases it would require additional plots to apply an SRS estimate alone that matched the precision gained 
under the MA approach (see last column in table 1). The largest gain in precision was in biomass estimation, 
where it would require 1248 plots to match the MA estimate. As a baseline for comparison estimations were 
based on using 333 forested plots. Stems showed the least gain from including LiDAR, though still gained 
precision over plots alone.  
 
Sample Size Considerations 
The number of sample plots could be reduced in most cases, and still achieve benefit over the SRS. It was found 
that in most cases the number of plots could be reduced to approximately 1 plot per 2730 acres, before the MA 
estimate no longer showed gain over the SRS estimate in terms of precision (See table 2).  

Table 2. Relative precision (RP) of MA to SRS estimates at different sample sizes 
Plot N Acres Per Plot Volume(ft3) AGB (tons) BA (ft3) Stems BAWHT 

333 1459 0.27 0.26 0.37 0.68 0.33 
296 1641.8 0.58 0.55 0.64 0.69 0.36 
237 2050.5 0.66 0.64 0.73 0.79 0.42 
178 2730.0 0.8 0.79 0.89 1 0.5 
119 4083.7 1.13 1.12 1.25 1.32 0.69 
59 8236.7 2.21 2.33 2.45 2.79 1.21 
30 16198.8 5.78 6.8 5.8 7.22 2.39 

Bold and italic numbers indicate an  RP value >1, 1 indicates similar precision from SRS and 
MA 

 
For Volume, AGB and BA, a sample size of 178 plots was adequate to achieve some gain in precision over the 
simple random sample. Stems showed parody with the SRS at 237 plots, while BAWHT showed that 119 plots 
exhibited gain over the SRS.  
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(c) 

 
Figure (c) shows the simulated residual distributions at different acres per plot (APP). The distribution of 
residuals expands as the sample size decreases. Distributions for other metrics showed similar responses.  
 
Final Cost Benefit Analysis 
Cost benefit analysis indicates savings from the MA to the BAU approach (see table 3). In most cases under 
these assumptions the gain from LiDAR could be as much as 55.6% savings in direct costs, with an increase in 
efficiency of 2.25 times over the BAU approach to forest inventory. 

Table 3. Model assisted (MA) vs. business as usual (BAU) approach to forest inventory  

  
Model Assisted 

(MA) 
Business as 

Usual (BAU)* MA vs. BAU* 

Cost of 126K Acres of Forest Inventory $380,520 $856,800 55.6 % savings 
2.7 Million Acres of State Commercial Forest $8,154,000 $18,360,000 55.6 % savings 

3.7 Million Acres of State Administered Forest  $11,174,000 $25,160,000 55.6 % savings 
Acres done per year for $1.4 Million  463,576 ac 205,882 ac 2.25 times more  
Years to update complete inventory 8 years 18 years 2.25 times faster 

*BAU plot estimates are based on a 10 Basal Area Factor (BAF) methodology for CSA 
 Comparisons to lower sample sizes was not conducted, however these results indicate the above estimated 
savings as conservative compared to even further reductions in costs on a per acre basis. 
 
Conclusion: 
Using a model assisted approach to forest inventory showed direct gains in precision over a simple random 
sample alone. In some cases the gain was an almost 100% decrease in the standard error of the estimate. This 
increase in precision is important for confidence in the inventory within an area. In determining allowable 
harvest, or other management activities of interest, understanding the availability of a resource is critical to 
managers across the natural resources spectrum. In this case LiDAR assisted estimation provided gains in 
confidence through a reduction in the CI half width and reducing the standard error of the estimates of all forest 
inventory metrics. 
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While gains in precision are desirable, gains in precision may increase operating costs. In this case a field sample 
plot was approximately US. $40. When looked at in the context of a statewide acquisition, it may be desirable to 
reduce sample sizes, or reduce samples over time to minimize cost increases. However a desired sample size 
must be vetted to insure that gains in precision are still realized. Ultimately, managers must decide an 
acceptable precision level factoring time and cost considerations. 
 
Within this study it was found that sampling size could be reduced from the 333 plots used for modeling, to a 
lower sampling intensity and still achieve some gains in precision as measured through the relative precision 
metric. Models with higher coefficients of variation and low residual standard error were more robust to 
reductions in the number of plots, versus weaker models. Basal area weighted height (BAWHt) was robust to 
sample size reductions, maintaining a relative precision gain over the SRS down to approximately 119 plots, or 
4083.7 acres per plot. Whereas trees per acre, had a relative precision < 1 down to 237 plots or 2050 acres per 
plot. Other metrics were able to achieve some gain in relative precision down to 178 plots or 2730 acres per 
plot. This compares with other studies using lower density LiDAR (Strunk et al. 2012) that achieved gains down 
to 35 plots, but similar acres per plot at 2303.8 acres per plot. Stems in that study showed a similar pattern of 
being the metric least robust again reduced sample size, having a relative precision >1 at 65 plots or 886 acres 
per plot. The high density LiDAR allowed for large reductions in plot density relative to other studies, as 
measured by acres per plot, however more studies are needed in this area. 
 
While it is clear that a reduction in the number of plots is possible and still achieve some gain over the SRS, 
caution should be exercised. While some gain is achieved errors tend to increase as could be seen by the 
distribution of residuals (see Figure (c)) as the acres per plot is increased (i.e plot count is reduced). The optimal 
number of plots may differ for various forest metrics, and determining metrics most germane to forest 
managers will be critical in determining an optimal sample based on minimizing plot count. Further sampling 
design may be a critical factor, as different sampling designs may not allow for reductions. This study points to a 
reduction of approximately 95 plots is possible given our study area, and still achieve gain from an MA approach 
vs the SRS. In real dollars that equates to approximately $3800 dollars. This savings may not be worth the 
reduction in precision. 
 
Overall, the MA approach could reduce the overall costs of conducting inventory by approximately 55%, given 
cost assumptions. The MA approach benefits from taking advantage of economies of scale around technology. 
This dictates that over time, and with large enough LiDAR acquisitions the cost of acquiring LiDAR data will 
remain similar or possibly decrease. While boots on the ground, inevitably will increase in costs, as price of labor 
increases. Analysts are the estimated largest portion of the expense at approximately $2.00 per acre for the MA 
approach. This cost however can also be kept in check by automation. Overall the MA approach points to the 
possibility of major immediate cost and time reductions to the DNR to complete a statewide inventory of the 
forest lands it administers in eight years. Long term the MA approach can benefit from advances in technology 
that will likely control costs, and possibly improve methodology and estimation precision.  
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V. DISSEMINATION: 
Description:  we will conduct an analysis of the newly acquired high density LiDAR and any high resolution aerial 
photography with the 300 newly acquired field plots and whatever existing plot data is easily accessed and 
statistically/spatially accurate. If possible, all of the newly acquired data will be provided free to the public and 
will be hosted through the most effective acceptable internet website (e.g., http://www.mngeo.state.mn.us/, 
https://gisdata.mn.gov/). A brief report will be prepared to summarize the project research and development, 
including a condensed version of an accuracy assessment. 
 
Activity Status as of January 31, 2017:    

• No work completed on this activity to date. 

Activity Status as of July 31, 2017: 
• No work completed on this activity to date. 

Activity Status as of January 31, 2018: 
• No work completed on this activity to date. 

Activity Status as of July 31, 2018: 
• Several presentation have been given to the following groups: 

o DNR Forestry Supervisors and Management team. 
o Minnesota Forest Industry (MFI) 
o Minnesota Forest Resources Council (MFRC) 
o Society of American Foresters (SAF) 
o ASPRS Remote Sensing community 

Project Status as of January 31, 2019: 
• Several presentation have been given to the following groups: 

o Presented to more than 10 different stakeholder groups, regional and national conferences, and 
internal DNR meetings on the preliminary results from the UMN, field data, and the goals for the 
near future 

o DNR Forestry Area Staff. 
o Minnesota Forest Resources Council (MFRC) 

Final Report Summary: 
Analyses of the newly acquired high density LiDAR has resulted in several forest inventory metrics and cover 
type models created, utilizing more than 300 newly acquired field forest inventory plots with over 9,000 trees 
measured. All of the LiDAR and derived products will be provided free to the public and will be hosted as LiDAR 
point cloud files on an ftp server with other state LiDAR data holdings, as well as several web mapping services 
produced by the MNDNR and accessible via the Minnesota Geospatial Data Commons (https://gisdata.mn.gov/). 
The project team from DNR Resource Assessment has already and will continue to deliver the results of this 
project in a number of other ways, including presentations at regional and national conferences in the fields of 
forestry, geographic information systems, and remote sensing, meetings and conference calls to share 
information directly with stakeholder groups, as well as the eventual submission of peer‐reviewed manuscripts 
to scientific journals. In addition, DNR Resource Assessment has created a webpage that will be a central 
repository for all of the methods, reports, and links to access data. 
 
 
 
 
 

http://www.mngeo.state.mn.us/
http://www.mngeo.state.mn.us/
https://gisdata.mn.gov/
https://gisdata.mn.gov/
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VI. PROJECT BUDGET SUMMARY:   
A. ENRTF Budget Overview: 

 
Budget Category $ Amount Overview Explanation 

Personnel: $ 260,170 DNR project manager: 12% FTE for 3‐yrs. 
($30,673), remote sensing analyst 1: 30% FTE 
for 3‐yrs. ($77,060) remote sensing analyst 2: 
20% for 3‐yrs. ($52,400), biometrician: 4% FTE 
for 3‐yrs. ($10,037), forester: 12% FTE for 3‐yrs. 
($30,000) and 6 interns: 2 FTE for 1‐yr. 
($60,000). 

Professional/Technical/Service Contracts: $ 459,988 Acquisition of remotely sensed data, high 
density LiDAR data & possibly aerial 
photography, over ~500,000 acres in northern 
Cass County ($371,409);  technical contract with 
UofM to segment the remote sensing data into 
stands ($77,819); technical contract with 
Northland Technical College to collect high 
resolution imagery using Unmanned Aerial 
Systems ($10,760)  

Equipment/Tools/Supplies:   
Capital Expenditures over $5,000: $ 45,205 Purchase 3‐survey grade GPS units to tie field 

plot data to LiDAR data ($30,884), purchase 
developer eCognition software for LiDAR 
classification ($14,321) 

Travel Expenses in MN: * $ 30,755 Activity1 ($0), meetings and outreach for 
project manager and remote sensing analysts; 
Activity2 ($28,136), forester and interns field 
work; Activity3 ($2,618), meetings and outreach 
for project manager and biometrician. 

   
TOTAL ENRTF BUDGET: $ 796,117  
   
   
   
   
 
Explanation of Use of Classified Staff: This funding will be used to pay project‐associated costs for classified and 
unclassified staff paid with special project funds. Each year these positions are assigned work based on the 
particular combination of soft funding available to address DNR Program activities. These classified positions 
(Project Manager, Remote Sensing Analysts, Biometrician, and Forester) are all currently available within RA and 
paid through independently funded project assignments. The Biometrician position and one Remote Sensing 
Analyst position are currently vacant and soon to be filled. Resource Assessment (RA) is a government enterprise 
within the DNR Division of Forestry per statute 89.421.  This LCCMR project and the LCCMR funding structure 
are both well suited to enhance RA’s soft funded project based business model, staffing structure, professional 
expertise and future forest inventory service potential. 
 
Explanation of Capital Expenditures Greater Than $5,000:  For accurate results, survey grade GPS’s are critical 
in connecting field plots to high density LiDAR. eCognition software is a major component to accurately and 
successfully segment and classify aerial imagery and LiDAR data.  
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Number of Full-time Equivalents (FTE) Directly Funded with this ENRTF Appropriation: Professional staff: ~0.8 
average FTE’s per year over the 3‐year grant period (~2.4 FTE’s total), temporary forest interns: ~1.15 FTE for 1‐
year, total number of FTE’s funded by this grant is ~3.5. 
 
*Overall travel expenses changed significantly for both professional outreach and field work; the elimination of 
meetings and outreach for the Project Manager, Remote Sensing Analysts, and Biometrician resulted in a $7,000 
reduction, and the reduction in field plots decreased overall field assessment work from $57,000 to $33,400. 
The total reduction in travel expenses is $30,600. Total travel expenses are all field work for the Forestry interns 
and the Forester training and assessing the data collection 
   
Number of Full-time Equivalents (FTE) Estimated to Be Funded through Contracts with this ENRTF 
Appropriation:  
 
B. Other Funds: 

Source of Funds 
$ Amount 
Proposed 

$ Amount 
Spent Use of Other Funds 

Non-state     
Cass County $30,000 $30,000 Contribution to LiDAR acquisition. 
Cass County $10,000 $10,000 In‐kind inventory and QA field work. 
Chippewa National Forest $120,000 

 
$119,878 In‐kind inventory and QA field work. 

Fish & Wildlife Service $20,000 $20,000 In‐kind sub‐meter satellite imagery + 
contribution for LiDAR data. 

State    
 $3,677 $3,599.24 Contribution to LiDAR acquisition. 

TOTAL OTHER FUNDS: $183,677 $183,477.24  
 
VII. PROJECT STRATEGY:  
A. Project Partners: Collaborators include the University of Minnesota, providing expertise, resources, and staff 
time (professors Alan Ek, Joe Knight, and Michael Falkowski); U.S. Fish & Wildlife Service providing free sub‐
meter satellite imagery and feedback; Chippewa National Forest and Cass County Land Department will also be 
giving in‐kind and financial support; Northland Community and Technical College will provide high resolution 
imagery via UAV; and the Minnesota Forest Resources Council  will be providing a venue for information 
dissemination and feedback; Ronald McRoberts from the USFS Northern Research Station will also provide 
analytical and feedback support. 
 
B. Project Impact and Long-term Strategy:  The long‐term strategy is to benefit Minnesota’s natural resource 
stakeholders by developing a revolutionary, enhanced forest inventory method at a significantly reduced cost 
that can be used across all ownerships. This project will enable Minnesota to continue its leadership role of 
using emerging technologies to collect and maintain modern and valuable information for a plethora of natural 
resource management objectives. It also coincides well with other long‐term initiatives, such as the permanent 
plots being established by DNR project partners in the 2016 ENRTF proposal; A statewide Monitoring Network 
for Changing Habitats in Minnesota. 
 
C. Funding History: 

Funding Source and Use of Funds Funding Timeframe $ Amount 
General Fund (1000) and Forest Management Investment 
Account (2113): AC1:23402‐FOR Forest Inventory Direct 
Activity Charge ($407,415), Areas CSA Inventory General 
Operations & Admin Allocation ($309,432), FOR Resource 

July 1, 2014 – June 30, 2015 $ 1,026,848 
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Assessment CSA Inventory amount; AC1: FY15=23700 
($310,000) 
General Fund (1000) and Forest Management Investment 
Account (2113): AC1:23402‐FOR Forest Inventory Direct 
Activity Charge ($382,290), Areas CSA Inventory General 
Operations & Admin Allocation ($297,039), FOR Resource 
Assessment CSA Inventory amount; AC1: FY14=23700 
($238,566) 

July 1, 2013 – June 30, 2014 $ 917,896 

General Fund (1000) and Forest Management Investment 
Account (2113): AC1:23402‐FOR Forest Inventory Direct 
Activity Charge ($170,024), Areas CSA Inventory General 
Operations & Admin Allocation ($130,918), FOR Resource 
Assessment CSA Inventory amount; AC1: FY13=23654 
($233,058) 

July 1, 2012 – June 30, 2013 $ 534,000 
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FUND BUDGET
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01/08/2019
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01/08/2019
Amount 
Spent
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Budget 
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Amount 
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Balance

TOTAL 
BUDGET

TOTAL
BALANCE

BUDGET ITEM
Personnel (Wages and Benefits) $154,960 $153,613 $1,347 $95,500 $95,499 $1 $11,057 $11,057 $0 $261,517 $1,347 $260,170
Project Manager: $32,012 (76% salary, 24% benefits); Ave. 
8% FTE for three years.
Remote Sensing Analyst - 1: $94,000 (70% salary, 30% 
benefits); Ave. 36% FTE for three years.
Remote Sensing Analyst - 2: $79,400 (70% salary, 30% 
benefits); Ave. 22% FTE for three years.
Biometrician: $10,000 (75% salary, 25% benefits) Ave. 3% 
FTE for three years
Forester: $13,000 (70% salary, 30% benefits) Ave. 4% FTE 
for three years.
6 Interns for ~3 months: $33,00 (93% salary, 7% benefits); 
1.15 FTE for one year.
Professional/Technical/Service Contracts
Contract for high density LiDAR acquisition on ~ 500K acres 
in Northern Cass County - TBD through competitive bid 
contract.

$371,409 $371,409 $0 $371,409 $0

Contract for Segmentation of LiDAR data using eCognitions 
software with the University of Minnesota's remote sensing 
lab.

$77,819 $77,819 $0 $77,819 $0

Contract for high resolution imagery of a sample number of 
field plots using an Unmanned Aerial system with Northland 
Technical College.

$10,650 $10,760 -$110 $10,650 -$110

Equipment/Tools/Supplies
Capital Expenditures Over $5,000
Purchase desktop eCognition software with one (1) license. $14,321 $14,321 $0 $14,321 $0

Purchase three (3) survey grade GPS units to be used by 
field crews to accurately tie the field data to the high density 
LiDAR data.

$30,884 $30,884 $0 $30,884 $0

Travel expenses in Minnesota
In-state travel expenses: fleet ($4,160), lodging ($17,000), 
and meals ($12,240) for interns & Forester field 
reconnaissance.

$30,540 $28,136 $2,404 $30,540 $2,404

Travel expenses outside Minnesota (outstate)
Out-state travel expenses: registration ($1,200) Shuttle/Taxi 
($50), lodging ($750), and meals ($360) Airfare ($500) for 
attending conferences. The use of these funds is for out of 
state travel and conference attendance to present project 
findings.

$2,860 $2,618 $242 $0 $0 $0 $2,860 $242

COLUMN TOTAL $621,369 $619,781 $1,588 $167,574 $165,280 $2,294 $11,057 $11,057 $0 $800,000 $3,883

Project Title: Development of Innovative Cost Saving Methodology for Forest Inventory
Legal Citation: M.L. 2016, Chp. 186, Sec. 2, Subd. 03o

Organization: Department of Natural Resources, Division of Forestry, Resource  Assessment

Acquisition, processing, and utilization of 
    

Relating field plot data to remotely sensed 
     

Analyses of the methodology: comparing 
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