Technical Manual for Minnesota's MCA and MTAS Assessments

Academic Year
2018-19

December 2019

Prepared by Pearson
Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability
Assessments
Table of Contents
Index of Tables 4
Table of Figures 5
PURPOSE 6
Chapter 1: Background 7
Minnesota Assessment System History 7
Organizations and Groups Involved 14
Minnesota Assessment System 17
Modes of Assessment 23
Chapter 2: Test Development 30
Test-Development Procedures 30
Test Specifications 31
Item Development 34
Item, Passage, and Scenario Review 37
Field-Testing 42
Data Review 42
Item Bank 47
Test Construction 48
CHAPTER 3: TEST ADMINISTRATION 49
Eligibility for Assessments 49
Administration to Students 50
Secure Testing Materials 53
Supports and Accommodations 55
ChAPTER 4: REPORTS 61
Description of Scores 61
Description of Reports 64
Appropriate Score Uses 68
Cautions for Score Use 70
Chapter 5: PERFORMANCE STANDARDS 73
Introduction 73
Standard Setting for Grade 11 Mathematics Minnesota Comprehensive Assessments-Series III and Mathematics Minnesota Test of Academic Skills 75
Standard Setting for Reading Minnesota Comprehensive Assessments-Series III and Reading Minnesota Test of Academic Skills 79
Standard Setting for Science Minnesota Comprehensive Assessments-Series III and Minnesota Test of Academic Skills 85
Standard Setting for Grades 3-8 Mathematics Minnesota Comprehensive Assessments-Series III 90
Standard Setting for Grades 3-8 Mathematics Minnesota Test of Academic Skills 96
Chapter 6: Scaling 102
Rationale. 102
Measurement Models 102
Scale Scores. 109
Latent-Trait Estimation 109
Chapter 7: EQUATING AND LINKING 121
Rationale. 121
Pre-Equating 121
Linking 126
Chapter 8: Validity 131
Evidence of Test Validity 131
Additional Validity Evidence 139
Chapter 9: Reliability 141
A Mathematical Definition of Reliability 141
Estimating Reliability 142
Standard Error of Measurement 146
Auditing of MTAS-III Administrations and Task Ratings 150

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability

Assessments

Classification Consistency 150
Chapter 10: Quality-Control Procedures 153
Quality Control for Test Construction 153
Quality Control Non-Scannable Documents 153
Quality Control for Online Test Delivery Components 153
Quality Control for Test-Form Equating 154
GLOSSARY OF TERMS 155
Achievement Level Descriptors (ALDs) 155
Achievement Levels 155
Adequate Yearly Progress (AYP) 155
Assessment 155
Career and College Readiness (CCR) 155
Classification Accuracy 156
Coefficient Alpha 156
Computer Adaptive Testing (CAT) 156
Consequential Validity 156
Construct Validity 156
Content Standards 156
Content Validity 156
Differential Item Functioning (DIF) 156
Elementary and Secondary Education Act (ESEA) 156
Every Student Succeeds Act (ESSA) 157
Internal Consistency Reliability Estimate 157
Lexile ${ }^{\circledR}$ Measure 157
Limited English Proficiency (LEP) 157
Longitudinal Reports 157
Modifications 157
MTAS-III Scoring Rubric 157
No Child Left Behind (NCLB) 157
On-Demand Reports 157
Parallel Forms 158
Pattern Scoring 158
Percentile Rank (PR) 158
P-Value 158
Quantile ${ }^{\circledR}$ Measure 158
Reliability 158
Reliability Coefficient 158
Scale Score 158
Standards 159
Standard Error of Measurement 159
Student Progress Score 159
Test-Centered Standard Setting Methods 159
Testlet 159
Test-Retest Reliability Estimate 159
Test Specifications 159
True Score 159
Validity 159
Annotated Table of Contents. 160
References 164
Appendix A: Benchmark Report Calculations Resource 172
Overview 172
Performance Indicator Calculations 172
Resources 174

Index of Tables

Table 1.1. Minnesota Assessment System Chronology 12
Table 1.2. Local Assessment Advisory Committee 14
Table 1.3. National Technical AdVisory Committee 16
Table 1.4. State Assessments Technology Work Group 16
Table 1.5. Standards-Based Accountability Assessments in 2018-19 17
Table 2.1. DIF COMPARISON GROUPS 44
Table 2.2. MH Contingency Table for Dichotomous Items 45
Table 2.3. DIF Classification Categories 46
Table 4.1. Achievement Levels for Minnesota Assessment System 64
Table 4.2. Student Test Reports 65
Table 5.1. Summary of Feedback by Round 78
Table 5.2. Participant-RECOMMENDED CUT SCORES FOR MATHEMATICS MCA-III 79
Table 5.3. Impact Data Associated with Participant-Recommended Cut Scores for MCA-III 79
Table 5.4. Participant-Recommended Cut Scores for Mathematics MTAS-III 79
Table 5.5. Impact Data Associated with Participant-Recommended Cut Scores for MTAS-III 79
Table 5.6. Summary of Feedback by Round 83
Table 5.7. Participant-Recommended Cut Scores (Final Moderation) for Reading MCA-III 83
TABLE 5.8. Participant-Recommended Cut Scores (Final Moderation) for Reading MTAS-III 84
Table 5.9. Impact Data Associated with Participant-Recommended Cut Scores (Final Moderation) FOR MCA-III 84
Table 5.10. Impact Data Associated with Participant-Recommended Cut Scores (Final Moderation) FOR MTAS-III 85
Table 5.11. Participant-Recommended Cut Scores (Round 2) For Science MCA-III 88
Table 5.12. Impact Data Associated with Participant-Recommended Cut Scores for Science MCA-III 88
Table 5.13. Participant-Recommended Cut Scores (Round 2) For Science MTAS-III 89
Table 5.14. Impact Data Associated with Participant-Recommended Cut Scores for Science MTAS-III 89
Table 5.15. Commissioner-Approved Science MCA-III Cut Scores 89
Table 5.16. Impact Data Associated with Commissioner-Approved Science MCA-III Cut Scores 89
Table 5.17. Commissioner-Approved Science MTAS-III Cut Scores. 90
Table 5.18. Impact Data Associated with Commissioner-Approved Science MTAS-III Cut Scores 90
TABLE 5.19. Participant-Recommended Cut Scores (Round 3) For Mathematics MCA-III 93
Table 5.20. Impact Data Associated with Participant-Recommended Cut Scores 93
Table 5.21. Vertical Articulation Panel's Smoothed Cut Scores for Mathematics MCA-III 94
Table 5.22. Impact Data Associated with Articulation Panel's Smoothed Cut Scores 95
Table 5.23. Commissioner-Approved Cut Scores for Mathematics MCA-III 95
Table 5.24. Impact Data Associated with Commissioner-Approved Cut Scores 95
TABLE 5.25. Participant-Recommended Cut Scores (Round 3) For Mathematics MTAS-III 98
Table 5.26. Impact Data Associated with Participant-Recommended Cut Scores 98
Table 5.27. Vertical Articulation Panel's Smoothed Mathematics MTAS-III Cut Scores 100
Table 5.28. Impact Data Associated with Articulation Panel's Smoothed Cut Scores 100
Table 5.29. COMMISSIONER-APPROVED MATHEMATICS MTAS-III CUT SCORES 100
Table 5.30. Impact Data Associated with Commissioner-Approved Cut Scores. 101
Table 6.1. Score Targets of Strand Performance Levels for MCA-III Mathematics 116
Table 6.2. Score Targets of Strand Performance Levels for MCA-III Reading 117
Table 6.3. Score Targets of Strand and Substrand Performance Levels for MCA-III Science 118
Table 9.1. Example Classification Table 151
Table A.1. Performance Indicator Symbols Used on Benchmark Reports 172

Table of Figures

Figure 6.1. Rasch Item Response Functions for Two Example Dichotomous Items 104
Figure 6.2. Rasch Partial Credit Model Category Response Functions for Example Polytomous Item WITH $\mathrm{B}_{1}=-1.5, \mathrm{~B}_{2}=-0.3, \mathrm{~B}_{3}=0.5{\text { AND } \mathrm{B}_{4}=2}^{2}$ 105
Figure 6.3. Rasch Partial Credit Model Item Expected Score Function for an Example Four-Point Item.. 106
Figure 6.4. 3PL Item Response Functions for Two Sample Dichotomous Items 107
Figure 6.5. Sample Test Response Function for Reading MCA-III 108
Figure 6.6. Example Test Characteristic Function for 40-Item Test 111

Purpose

This technical manual provides information about the development and measurement characteristics of the Minnesota Assessment System. It is organized into two parts: (1) chapters providing general information about the measurement process and (2) yearly appendices providing the specific data for a given year. The chapters outline general information about the construction of the Minnesota assessments, statistical analysis of the results, and the meaning of scores on these tests. There is a separate document, which serves as appendices organized as the Yearbook, which provides detailed statistics on the various assessments for a given academic year.

Improved student learning is a primary goal of any educational assessment program. This manual can help educators use test results to inform and improve instruction, thereby enhancing student learning. In addition, this manual can serve as a resource for educators in explaining assessment information to students, parents, teachers, school boards, and the general public.

A teacher constructing a test meant to provide immediate feedback on classroom instruction desires the most accurate assessment possible but typically does not need to identify the technical measurement properties of the test before or after administering it. However, a large-scale standardized assessment requires evidence to support the meaningfulness of the inferences made from the scores (validity) and the consistency with which the scores are derived (reliability, equating accuracy, and freedom from processing errors). That evidence is reported in this manual.

This manual does not include all the information available regarding the assessment program in Minnesota. Additional information can be found on the Minnesota Department of Education (MDE) website. Questions may also be directed to the Division of Statewide Testing at MDE by email: mde.testing@state.mn.us.

MDE is committed to following generally accepted professional standards when creating, administering, scoring, and reporting test scores. The Standards for Educational and Psychological Testing (American Educational Research Association, American Psychological Association, \& National Council on Measurement in Education, 2014) is one source of professional standards. As evidence of our dedication to responsible and fair testing practices, an annotated table of contents linking the sections of this manual to the Standards is provided immediately after the glossary.

Chapter 1: Background

With the enactment of the Elementary and Secondary Education Act of 1965 (ESEA), as amended by the No Child Left Behind Act (NCLB) in 2002, Minnesota accountability and statewide assessment requirements were dramatically increased. The State was required to develop academic content standards in the core academic areas, measure those standards, and define student proficiency levels-minimum scores that students must obtain on a state assessment in order to be considered academically proficient-in the core subjects. According to ESEA, by 2005-06, all students are required to take annual mathematics and reading tests in grades $3-8$ and once during high school. By 2007-08, students were required to be tested in science at least once in each of the following grade spans: grades 3-5, 6-9, and 10-12.

Under ESEA English Language Proficiency Assessments, the State was required to develop and assess English Language Proficiency (ELP) standards for all students identified as English learners (EL). This requirement establishes additional tests for EL students.

Since the NCLB passed in 2002, a more recent update has occurred with the passage of the Every Student Succeeds Act (ESSA). Similar to Title I assessments under ESEA, students are now required to complete standards-based accountability assessments that are aligned to the Minnesota Academic Standards. The standards were approved for reading, mathematics, and science in 2010, 2007, and 2009 respectively. Under ESEA and Minnesota Statute 120B.30, it is required that all public school students be assessed in both reading and mathematics yearly in grades 3-8 and once in high school as part of Minnesota's accountability system, the North Star Excellence and Equity System. In addition, ESSA and Minnesota Statue 120B. 30 require students to be assessed in science at grades 5 , 8 , and once in high school.

The reading, mathematics, and science standards-based accountability tests are given online; paper accommodated versions are available for students who are unable to take the test online because of disability. In addition, the grades 3-8 Mathematics Minnesota Comprehensive Assessment (MCA) have been adaptive since 2011-12, starting with the 2015-16 test administration; the grade 11 Mathematics Minnesota Comprehensive Assessments-Series III (MCA-III) and the grades 3-8 and 10 Reading MCA-III have also been adaptive.

Similar to Title III assessments under NCLB, ESSA requires that Minnesota develop a series of English language proficiency accountability assessments for students identified as ELs. Minnesota uses assessments created by the WIDA consortium, which include ACCESS for ELLs 2.0 and Alternate ACCESS for ELLs (Alternate ACCESS). The first online operational administration of ACCESS was 2015-16.

Minnesota Assessment System History

Prior to the ESEA of 1965, as amended by the NCLB, and the most recent passage of the ESSA, Minnesota had already developed an accountability system. The standards movement began in Minnesota in the late 1980s and evolved into a comprehensive assessment system with the development of test specifications and formal content standards during the 1990s. State and federal legislation has guided this process.

A Brief History of the Program

1995

The Minnesota legislature enacted into law a commitment to "establishing a rigorous, results-oriented graduation rule for Minnesota's public school students [. .] starting with students beginning ninth grade in the 1996-97 school year" (Minn. Stat. $\$ 120 B .30 .7 \mathrm{c}$). MDE developed a set of test specifications to measure the minimum skills needed in order to be successful in the workforce. This was the basis for the Minnesota Basic Skills Test (BST), the first statewide diploma test. To establish higher academic standards, teachers, parents, and community members from across Minnesota collaborated to develop the Profile of Learning, Minnesota's first version of academic standards, as well as classroom-based performance assessments to measure these standards. Minnesota developed its assessment program to evaluate student progress toward achieving academic excellence, as measured by the BST and performance assessments of the Profile of Learning.

1997

The Minnesota legislature mandated a system of statewide testing and accountability for students enrolled in grades 3,5 , and 7 (Minn. Stat. $\$ 120 B .30$). This legislation required all Minnesota students in those grades to be tested annually using a single statewide test by grade and subject for the purpose of system accountability.

1998

The Minnesota Department of Education (MDE) developed the MCAs to fulfill the mandates of the statewide testing statute enacted in 1997. The statewide testing law also required that high school students be tested on selected standards within the required learning areas beginning in the 1999-2000 school year (see Minnesota Statute 120B.30; (https://www.revisor.mn.gov/statutes/?id=120b.30). Special education students were required to participate in testing according to the recommendations of their Individualized Education Program (IEP) or 504 plan. English learners who were in the United States for less than three years were exempted from the BST.

Since 1998, all Minnesota grades 3 and 5 students have been tested annually using a single statewide test for the purpose of statewide system accountability.

2001

The Division of Special Education Policy developed Alternate Assessments (AAs)—checklists for mathematics, reading, writing, and functional skills-to be used in place of the MCA or BST for students whose IEP and 504 plan teams determined it was appropriate.

2004

Grade 11 students were administered the MCA Mathematics, and grade 10 students were tested with the MCA Reading. This year also marked the first operational administration of the MCA Mathematics and Reading assessments to grade 7 students.

2006

In 2005-06, in response to NCLB legislation, the Minnesota Assessment System was expanded. Students in grades $3-8,10$, and 11 were assessed with the first MCA-II in mathematics and reading. Information from these tests was used to determine proficiency levels in each school and district for the purpose of determining Adequate Yearly Progress (AYP) and to evaluate student, school, and district success in Minnesota's standards-based education system for NCLB. This assessment system would be expanded in future years to meet additional requirements under NCLB.

2007

The Minnesota legislature provided for the Graduation-Required Assessment for Diploma (GRAD) as the retest option for high school students to fulfill their graduation exam requirement. The GRAD measured the mathematics, reading, and writing proficiency of high school students. The Mathematics Test for English Language Learners (MTELL) was first introduced as an alternate assessment for those students learning English. Also in this year, students with the most significant cognitive disabilities participated in the Minnesota Test of Academic Skills (MTAS) for the first time.

2008

The grade 10 Reading MCA-II included the initial operational administration of the embedded Reading GRAD. Mathematics and Reading MTAS were lengthened and scoring procedures clarified. Students in grades 5, 8, and high school took the Science MCA-II using an interactive computer-based assessment. In those same grades, students with the most significant cognitive disabilities participated in the Science MTAS for the first time.

2009

The grade 11 Mathematics MCA-II included the initial operational administration of the embedded Mathematics GRAD. The Minnesota legislature provided an alternate pathway for meeting the GRAD requirement in mathematics: after making three unsuccessful attempts at the Mathematics GRAD, followed by remediation, a student would be considered to have met the GRAD requirement.

2010

Items for construction of the Minnesota Comprehensive Assessments-Modified (MCA-Modified) assessments in Mathematics and Reading were field-tested. Technology-enhanced (TE) items for the Mathematics MCA-III were field-tested. This year saw the final administration of the MTELL. A study was conducted to link scores on the Reading MCA-II and GRAD to the Lexile ${ }^{\mathbb{®}}$ scale in order to permit inferences about Lexile ${ }^{\mathbb{B}}$ Reading scores based on scores from Minnesota Reading assessments.

2011

This year saw the first operational administrations of Mathematics MCA-III as well as the MCA-Modified for Mathematics and Reading. Districts chose to administer the Mathematics MCA-III either on computer or on paper accommodated forms. The computer version included TE items. Grades 5-8 Mathematics MCA-Modified were computer delivered. Mathematics MCA-III, grades 5-8 Mathematics MCA-Modified, and grades 3-8 Mathematics MTAS assessed the 2007 Minnesota K-12 Academic Standards in Mathematics.

2012

For districts opting to participate online, the Mathematics MCA-III assessments in grades 3-8 were administered as a computer adaptive test (CAT) that offered students up to three testing opportunities, with the highest score used for score reporting and accountability purposes. In addition, this year saw the first operational administration of the Science MCA-III assessments in grades 5,8 , and high school, which continued to be administered online and assessed the 2008 Minnesota K-12 Academic Standards in Science. A new English language proficiency accountability assessment was introduced in 2012, the ACCESS for ELLs. Administration of the Test of Emerging Academic English (TEAE) and the Minnesota Student Oral Language Observation Matrix (MN SOLOM) was discontinued. ACCESS for ELLs is an online ELP accountability assessment given to students identified as English learners in grades $\mathrm{K}-12$. It is administered annually in states that are members of the WIDA consortium. Test development for ACCESS for ELLs is performed by the Center for Applied Linguistics (CAL), and Data Recognition Corporation (DRC) manages the printing, scoring, reporting, online test delivery and distribution of all ACCESS test materials.

2013

This year saw the first operational administration of the Reading MCA-III, MCA-Modified, and MTAS aligned to 2010 Minnesota K-12 Academic Standards in English Language Arts. Districts chose to administer the Reading MCA-III either on computer or on paper accommodated forms. The computer version included TE items, whereas the paper accommodated version included only multiple-choice (MC) items. A study linked Reading MCA-III scores to the Lexile ${ }^{\circledR}$ scale in order to permit inferences about Lexile ${ }^{\circledR}$ Reading scores based on scores from Minnesota Reading assessments. Grades 5-8 and 10 Reading MCA-Modified assessments were delivered on computer. This year also saw the first operational administration of the Optional Local Purpose Assessment (OLPA) for Mathematics administered as an adaptive test that offered students up to two testing opportunities. The administration of the Mathematics MCA-III was changed in spring 2013 to be a single-opportunity test. The Alternate ACCESS for ELLs was introduced this year as an alternate English language proficiency accountability assessment. Alternate ACCESS for ELLs is an individually-administered ELP accountability assessment given to students identified as English learners with significant cognitive disabilities in grades 1-12.

2014

This year saw the first operational administration of the grade 11 Mathematics MCA-III, MCA-Modified, and MTAS aligned to 2007 Minnesota K-12 Academic Standards in Mathematics. Districts chose to administer the grade 11 Mathematics MCA-III either on computer or on paper accommodated forms. The computer version included TE items. This year also marked the last operational administration of the Mathematics and Reading MCA-Modified. This year also marked the last year that districts were allowed to choose between paper accommodated and online assessments for MCA-III Mathematics, Reading, and Science.

2015

The Mathematics, Reading, and Science MCA-III were administered online only (with the exception of paper accommodated forms for special needs students). Census administrations of career and college readiness (CCR) exams in grades 8 and 10, Explore and Plan, took place in fall 2014. The college entrance exam, ACT Plus Writing, was administered to all grade 11 students in spring 2015. A college placement diagnostic exam, Compass, was given to some students after grade 10 Plan and prior to grade 11 ACT Plus Writing. Students who participated had been determined to be not yet academically ready for career and college based on their performance on the grades 8 and 10 assessments. This was the last academic year in which the GRAD retests were still available as an option to meet graduation assessment requirements for students who first enrolled in grade 8 through 2010-11.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

The first administration of the Reading OLPA as a single-opportunity fixed form online test took place. Reading MCA-III was being developed as a computer adaptive assessment, which was to be first administered in spring 2016.

2016

This year marked the first operational adaptive grades 3-8 and 10 Reading MCA-III assessment. During the 201516 operational year, the Reading MCA-III was only administered as a multi-stage computerized adaptive test (CAT), except for eligible students who took the test on paper accommodated forms. This was the first year the grade 11 Mathematics MCA-III assessment was administered as an adaptive assessment to all students except for students who were eligible to take the assessment on paper accommodated forms. The first operational administration of the online ACCESS for ELLs 2.0 was 2015-16; however, paper accommodations were available for eligible students. Also, WIDA conducted a standard setting study to reexamine proficiency level scores of the ACCESS for ELLs 2.0. This was the first year to include the off-grade items for Mathematics and Reading grades 3-8. Progress scores, which were calculated from on-grade and off-grade items, were reported for grades $3-8$ in Mathematics and Reading while CCR scores, the same scale scores as MCA-III accountability scale scores, will be reported for Mathematics grade 11 and Reading grade 10.

Refer to the CCR Technical Manual (a separate document) for more specifics regarding these scores. The adaptive grades 3-8 Mathematics OLPA item bank was increased. Refer to the OLPA Technical Manual (a separate document) for more detailed specifics. The grade 11 Mathematics OLPA was administered as a linear, fixed-form assessment only.

2017

The 2016-17 testing year marked the final operational administration of the OLPA for both mathematics and reading for all grades. Additionally, this was the first year that high school reading grade 10 and mathematics grade 11 scores can be used for course placement into Minnesota state colleges and universities.

2018

A study was conducted to link scores on the Mathematics MCA-III to the Quantile ${ }^{\circledR}$ scale in order to permit inferences about Quantile ${ }^{\circledR}$ Mathematics scores based on scores from Mathematics MCA-III.

2019

The MCA Benchmark Report has been redesigned for 2019 and uses a different calculation method to measure school and district performance on benchmarks. Because of the change in calculation methodology, 2019 and later benchmark reports cannot be compared to previous benchmark data.

The timeline in Table 1.1 highlights the years in which landmark administrations of the various Minnesota assessments have occurred.

Table 1.1. Minnesota Assessment System Chronology

Date	Event
1995-96	- First administration of grade 8 Minnesota BST Mathematics and Reading - First administration of grade 10 Minnesota BST Written Composition
1997-98	- First administration of grades 3 and 5 MCAs
1998-99	- Development of High School Test Specifications for grades 10-11 MCAs - Field-test of TEAE
2000-01	- First administration MCA/BST Written Composition - Field-test of grade 10 Reading MCA and grade 11 Mathematics MCA
2001-02	- Second field-test of grade 10 Reading MCA and grade 11 Mathematics MCA
2002-03	- First administration of grade 10 Reading MCA and grade 11 Mathematics MCA - Field-test of grade 7 Mathematics and Reading MCA - Revision of grade 11 Mathematics Test Specifications
2003-04	- First field-test of grades 4,6 , and 8 Reading and Mathematics MCA - First operational administration (reported) of grade 7 Mathematics and Reading MCA, grade 10 Reading MCA, and grade 11 Mathematics MCA
2004-05	- Second field-test of MCA Mathematics and Reading in grades 4,6 , and 8
2005-06	- First operational administration of grades 3-8, 10 , and 11 Mathematics and Reading MCA-II
2006-07	- First administration of grade 9 Written Composition GRAD test in grade 9 - Last year of grade 10 BST Written Composition as a census test - Field-test of MTELL and MTAS - First operational administration of Mathematics and Reading MTAS - First operational administration of MTELL
2007-08	- Field-test of MTAS - First administration of grades 5,8 , and high school Science MCA-II - First administration of Reading GRAD - First operational administration of Science MTAS
2008-09	- First operational administration of Mathematics GRAD
2009-10	- Field-test of TE Mathematics MCA-III items - Field-test of Mathematics and Reading MCA-Modified - Lexile ${ }^{\circledR}$ linking study
2010-11	- First operational administration of grades 3-8 Mathematics MCA-III - Districts given choice of computer or paper accommodated delivery of Mathematics MCA-III - First operational administration of Mathematics and Reading MCA-Modified
2011-12	- First operational administration of Science MCA-III and MTAS-III - First year of Mathematics MCA-III online assessments being delivered as a multi-opportunity computer adaptive assessment - First operational administration of ACCESS for ELLs as an English language proficiency accountability assessment

Table 1.1. Minnesota Assessment System Chronology (continued)

Date	Event
2012-13	- First operational administration of Reading MCA-III, MCA-Modified and MTAS-III aligned to 2010 Minnesota K-12 English Language Arts Standards - Districts given choice of computer-based or paper delivery of Reading MCA-III - Lexile ${ }^{\circledR}$ linking study for Reading MCA-III - First operational administration of the OLPA for Mathematics being delivered as a multiopportunity computer-based adaptive assessment - Online Mathematics MCA-III reverts to being a single-opportunity assessment - First operational administration of Alternate ACCESS for ELLs as an English language proficiency accountability assessment - Census administration of grade 10 Reading GRAD discontinued - Last year of grade 9 Written Composition GRAD as a census test
2013-14	- First operational administration of grade 11 Mathematics MCA-III, MCA-Modified, and MTAS aligned to 2007 Minnesota K-12 Mathematics Standards - Districts given choice of computer or paper delivery of grade 11 Mathematics MCA-III - Final operational administration of Mathematics and Reading MCA-Modified - Census administration of grade 11 Mathematics GRAD was discontinued
2014-15	- Census administrations of Explore, Plan, and ACT Plus Writing - Final administrations of Mathematics, Reading and Written Composition GRAD retests - First operational administration of Reading OLPA as a single-opportunity, fixed-form online test - First year of developing Reading MCA-III as a computerized adaptive assessment
2015-16	- First operational administration of the adaptive version of the grades 3-8 and 10 Reading MCAIII assessment - First operational administration of the adaptive version of the grade 11 Mathematics MCA-III assessment - First operational administration of the online ACCESS for ELLs 2.0 English language proficiency accountability assessment - First-year progress scores were calculated from on-grade and off-grade items for grades 3-8 in Reading and Mathematics while the CCR scores, the same scale scores as the MCA-III, will be reported for grade 10 reading and grade 11 mathematics. - The item pool for the adaptive grades 3-8 Mathematics OLPA was increased - First operational administration of the grade 11 Mathematics OLPA
2016-17	- The last operational administration of grade 3-8, and 11 Mathematics OLPA - The last operational administration of grade 3-8, and 10 Reading OLPA - The first year the Minnesota state colleges and universities used MCA-III scores for course placement and acceptance.
2017-18	- Quantile ${ }^{\circledR}$ linking study for Mathematics MCA-III
2018-19	- Redesign of Benchmark Reports

Organizations and Groups Involved

A number of groups and organizations are involved with the Minnesota assessment program. Each of the major contributors listed below serves a specific role, and their collaborative efforts contribute significantly to the program's success. One testing contractor constructs and administers all tests, while other contractors provide other independent services.

Human Resources Research Organization (HumRRO)

HumRRO is a separate contractor working with MDE to complete quality assurance checks associated with elements of the Minnesota Assessment System and accountability program. In collaboration with MDE and Minnesota's testing contractor, HumRRO conducts quality checks during calibration, equating, and scoring of Minnesota's standards-based accountability assessments, including MCA-III and MTAS-III. HumRRO has also conducted (a) alignment studies to evaluate the congruence between the items on Minnesota assessments and the skills specified in the Minnesota Academic Standards, (b) form review, and (c) psychometric research as requested by MDE. HumRRO has been in this role since 2006.

Local Assessment Advisory Committee

The Local Assessment Advisory Committee (LAAC) advises MDE on assessment technical issues.
Table 1.2. Local Assessment Advisory Committee

Name	Position	Organization
Sherri Dahl	District Assessment Coordinator, Standards-Based Accountability	Red Lake Schools
Liz Burkwald	Student Services/Enrollment	Academy for Sciences and Agriculture
Johnna Rohmer-Hirt	District Research, Evaluation, and Testing Achievement Analyst	Anoka-Hennepin Public Schools
Stacey Gray Akyea	 Assessment	St. Paul Public Schools
Laurie Krenz	Assessment \& Data Literacy Specialist	North St. Paul-Maplewood-Oakdale School District

Minnesota Department of Education

MDE's Division of Statewide Testing has the responsibility of carrying out the requirements in the Minnesota statutes and rules for statewide assessments. The division oversees the planning, scheduling, and implementation of all major assessment activities and supervises the agency's contracts with the testing contractors, Pearson, HumRRO, and WIDA. In addition, the MDE Statewide Testing staff, in collaboration with an outside contractor, conducts quality control activities for every aspect of the development and administration of the assessment program. The Statewide Testing staff, in conjunction with MDE's Compliance and Assistance Division, is also active in monitoring the security provisions of the assessment program.

Minnesota Educators

Minnesota educators-including classroom teachers from K-12 and higher education, curriculum specialists, administrators, and members of the best practice networks, who are working groups of expert teachers in specific content areas-play a vital role in all phases of the test-development process. Committees of Minnesota educators review the test specifications and provide advice on the model or structure for assessing each subject. They also work to ensure that test content and question types align closely with best practices in classroom instruction.

Draft benchmarks were widely distributed for review by teachers, curriculum specialists, assessment specialists, and administrators. Committees of Minnesota educators assisted in developing drafts of measurement specifications that outlined the eligible test content and test item formats. MDE refined and clarified these draft benchmarks and specifications based on input from Minnesota educators. After the development of test items by professional item writers, committees of Minnesota educators reviewed the items to judge appropriateness of content and difficulty and to eliminate potential bias. Items were revised based on input gathered from these committee meetings. After items were field-tested, Minnesota educator committees were convened to review each item and its associated data for appropriateness for inclusion in the item bank from which the test forms are built.

Many Minnesota educators have served on one or more of the educator committees involved in item development for Minnesota assessments. Sign up to participate by registering on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Register for Advisory Panels).

Minnesota's Testing Contractors

Pearson served as a testing contractor for MDE beginning in 1997 and as the primary contractor for all Minnesota assessments from 2005 through the close of the 2010-11 test administration cycle.

After that, the American Institutes for Research (AIR) served as MDE's primary testing contractor through the close of the 2013-14 test administration cycle. AIR worked with Data Recognition Corporation (DRC), a subcontractor primarily responsible for printing, distribution, and processing of testing materials, to manage all standards-based accountability assessments in Minnesota.

Beginning with the 2014-15 test administration cycle, Pearson again became the primary contractor. Currently, Pearson provides Minnesota's standards-based accountability assessments, resources for District and School Assessment Coordinators, as well as Test Monitors and Students.

MDE's testing contractors are responsible for the development, distribution, and collection of all test materials as well as for maintaining security for tests. These contractors work with MDE to develop test items and forms, maintain item pools, produce ancillary testing materials that include test administration manuals and interpretive guides, administer tests to students on paper accommodated forms and online, collect and analyze student responses, and report results to the field. Contractors are responsible for scoring all student tests, including paper accommodated tests, which are entered online by the administrator, and online tests that employ both MC items and other types of machine-scorable items.

The testing contractor may also conduct standard setting activities, in collaboration with panels of Minnesota educators, to determine the translation of scores on Minnesota assessments into performance levels on the Minnesota Academic Standards. Previously, AIR conducted standard setting procedures for grade 11 Mathematics MCA-III, MCA-Modified, and MTAS-III on June 18-19, 2014; Reading MCA-III, MCA-Modified, and MTAS-III on June 24-28, 2013; and Science MCA-III and MTAS-III on June 25-29, 2012.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

National Technical Advisory Committee

The National Technical Advisory Committee (TAC) serves as an advisory body to MDE. It provides recommendations on technical aspects of large-scale assessment, including item development, test construction, administration procedures, scoring and equating methodologies, and standard setting workshops. The National TAC also provides guidance on other technical matters, such as practices not already described in the Standards for Educational and Psychological Testing, and continues to provide advice and consultation on the implementation of new state assessments and meeting the federal requirements set forth by the ESSA.

Table 1.3. National Technical Advisory Committee

Name	Position	Organization
Wesley Bruce	Consultant	Indiana
Dr. Gregory J. Cizek	Professor of Educational Measurement and Evaluation, School of Education	University of North Carolina at Chapel Hill
Dr. Claudia Flowers	Associate Professor in Educational Research and Statistics	University of North Carolina at Charlotte
Dr. Susan E. Phillips	S.E. Phillips, Consultant	Mesa, Arizona
Dr. Mark Reckase	Professor of Measurement and Quantitative Methods, College of Education	Michigan State University

State Assessments Technology Work Group

The State Assessments Technology Work Group (SATWG) meets on an ad hoc basis to provide guidance to MDE and its contractors to ensure successful administration of online assessments.

Table 1.4. State Assessments Technology Work Group

Name	Position	Organization
Jonathan Beach	Technology Manager	Big Lake Schools Public Schools
Terry Berggren	Online Technical Support Specialist	Osseo Public Schools
Robert Berkowitz	Director of Technology	South Washington County Schools
Tracy Brovold	Director of Education Technology and Informational Services	Mankato Public Schools
Tina Clasen	District Technology Supervisor	Roseville Public Schools
Connie Erickson	Director of Assessment and Data Analysis	Burnsville-Eagan-Savage School District 191
Josh Glassing	System Support Specialist III	St. Paul Public Schools
James Robrahn	Technology Specialist	Anoka-Hennepin Public Schools
Kathy Lampi	Technology/Testing	Mounds View Public Schools
John Lindner	Research, Evaluation, and Assessment	St. Paul Public Schools
Mary Stobb	Coordinator of Assessment and Evaluation	Mounds View Public Schools
Jeanne Sorsen	Research, Evaluation, and Testing Technology Support Technician	Anoka-Hennepin Public Schools

Minnesota Assessment System

MDE provides general information about statewide assessments on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing). Minnesota's test contractor also maintains a website that provides information about Minnesota assessments. Material available on these websites includes such documentation as

- testing schedules;
- achievement level descriptors;
- test specifications, technical manuals, and other technical reports; and
- information for parents.

The standards-based accountability assessments are used to evaluate school and district success in Minnesota's new accountability system, the North Star Excellence and Equity System, which is related to the Minnesota Academic Standards for Mathematics, Reading, and Science. Additional alternate assessments exist for special populations of students, such as students with the most significant cognitive disabilities. All students in grades 38,10 , and 11 are required to take standards-based accountability assessments according to their eligibility status. Minnesota's standards-based accountability assessments are listed in Table 1.5 and are described in the paragraphs below.

Standards-Based Accountability Assessments

Table 1.5. Standards-Based Accountability Assessments in 2018-19

Test	Subject	Grades
MCA-III	Mathematics	$3-8,11$
	Reading	$3-8,10$
	Science	$5,8,9-12^{1}$
MTAS-III	Mathematics	$3-8,11$
	Reading	$3-8,10$
	Science	$5,8,9-12^{1}$

Mathematics

Minnesota Comprehensive Assessments-Series III

The MCA-III is an exam aligned with the 2007 Minnesota K-12 Academic Standards in Mathematics. It has been given in grades 3-8 since spring 2011 and in grade 11 since spring 2014. Students are asked to respond to questions involving mathematical problem-solving. They answer questions about concepts and skills in four different math content strands: (1) numbers and operations; (2) algebra; (3) geometry and measurement; and (4) data analysis and probability. The numbers and operations strand is not assessed for grade 11. Originally, the

[^0]
Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Mathematics MCA-III could be administered in either online or paper accommodated modes, according to district choice. Currently, only online administration is available (except for paper accommodated forms). The online Mathematics MCA-III exams include MC items and TE item types. The TE item types allow measurement of higher-level thinking and concepts. The 2011 online and paper accommodated administrations were fixed forms that included 50 operational items. Beginning in 2012, the online test was administered adaptively and included 42 scored items for grades $3-8$. The paper accommodated version included 50 operational MC and griddedresponse items (in grades 5 and above). A unique feature of the 2012 online Mathematics MCA-III administration was that students were permitted to take the computer adaptive assessment up to three times and use their highest score for accountability purposes. Since 2013, only a single testing opportunity has been allowed. Beginning in 2014, the grade 11 Mathematics MCA-III assessment was administered. The grade 11 Mathematics MCA-III assessment was first administered operationally as an adaptive assessment in 2016 with 47 items. The paper accommodated version of the assessment contains 56 items.

Beginning in 2015, the online adaptive test for Mathematics MCA-III is administered as a fully adaptive test, meaning the CAT algorithm uses the Weighted Penalty Model (WPM) method to select each item one-by-one during the assessment and the Conditional Randomesque Method (CRM), which controls the item exposure. The Mathematics MCA-III also has controls in place for calculator and non-calculator sections of the assessment for grades 3-8 to ensure that students are not given the ability to use a calculator in the non-calculator section. Students are administered four non-calculator items in the adaptive online assessments for grades 3-8 mathematics. Grade 11 mathematics does not contain non-calculator benchmarks so a calculator is available for all items. For more details regarding test length, refer to the test specifications document.

Minnesota Test of Academic Skills

The Mathematics MTAS-III is given in grades 3-8 and 11. Each test contains a set of nine scored performance tasks designed to measure mathematical problem-solving. The Mathematics MTAS-III has been aligned with the Minnesota K-12 Academic Standards. The math content strands are the same as those tested by the grades 3-8 and 11 Mathematics MCA-III and mirror their pattern of emphasis but the depth and complexity of concepts measured is reduced. The performance tasks can be administered on different days according to the needs of the student.

Reading

Minnesota Comprehensive Assessments-Series III

The Reading MCA-III is an exam aligned with the 2010 Minnesota K-12 Academic Standards in English Language Arts that has been given in grades 3-8 and 10 since spring 2013. Students are asked to read both literature and informational text. For literature, students use strategies to analyze, interpret, and evaluate fiction such as short stories, fables, poetry, and drama. For informational text, students use strategies to analyze, interpret, and evaluate nonfiction such as expository and persuasive text and literary nonfiction. Originally, the Reading MCA-III could be administered in either online or paper modes, according to district choice. Currently, only online administration is available, except for students eligible to take the accommodated paper form. The online Reading MCA-III test was administered in an adaptive mode starting in 2016 with 40 operational items for grades 3-5, 45 operational items for grades 6-8, and 51 operational items for grade 10. The online Reading MCA-III exams include MC items and TE item types. The TE item types allow measurement of higher-level thinking and concepts. Within the assessment, the total word count, passage length and Lexile ${ }^{\circledR}$ level, and passage counts are held within defined

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

limits so that all students will have similar test forms. The numbers of operational passages for the Reading MCAIII are as follows: four to seven passages for grades 3-8, and four to eight passages for grade 10. The total number of scored items for the 2014 paper accommodated administrations for Reading MCA-III were as follows: 48 items for grades 3-5, 54 items for grades 6-8, and 60 items for grade 10. The paper accommodated exam is administered in four or five separate segments that may be given on different days.

The Reading MCA-III is given as an adaptive assessment in which the items are administered as three testlets, each of which contains one passage or passages and their associated items. Similar to the Mathematics MCA-III, the Reading MCA-III controls the number of MC items and TE items.

Minnesota Test of Academic Skills

The Reading MTAS-III is given in grades 3-8 and 10. Each test contains a set of nine scored performance tasks designed to measure student understanding of text. The Reading MTAS-III has been aligned with the Minnesota K-12 Academic Standards. The reading content strands are the same as those tested by the Reading MCA-III and mirror their pattern of emphasis but with a reduction in the depth and complexity of concepts measured. The Reading MTAS-III passages feature simple sentence structure, repetition of words and ideas, and high-frequency, decodable words. The passages may be read aloud to students, signed manually, represented tactilely, and/or accompanied by objects, symbols, and illustrations. The complexity of grade-level passages increases from grades $3-8$ to high school by using grade- and age-appropriate vocabulary and subject matter as well as increases in word count and length. The performance tasks can be administered on different days according to the needs of the student.

Science

Minnesota Comprehensive Assessments-Series III

The computer-delivered Science MCA-III assessments, which are administered in grades 5 and 8 and once in high school, are aligned with the Minnesota K-12 Academic Standards. The grade 5 assessment covers the content standards taught in grades 3,4 , and 5 , and the grade 8 assessment covers the standards for grades 6,7 , and 8 . Students in grades 9-12 are expected to take the high school MCA-III if, in the current academic year, they are enrolled in a life science or biology course and/or have received instruction on all strands and standards that fulfill the life science requirement for graduation.

The grades 5,8 , and high school MCA-III tests were initially administered operationally in spring 2012. The assessments were administered online in fixed forms. The assessments had 41,51, and 68 operational items respectively in grades 5,8 , and high school. The scored operational item types for science include MC and TE items.

Minnesota revised its academic standards in science in 2009, and the new standards were implemented in May 2010. Most notably, the revised standards explicitly include engineering knowledge and skills so that they align with the emphasis on science, technology, engineering, and mathematics (STEM) necessary for success in the twenty-first century. In grades 5 and 8, students answer questions about concepts and skills in four different science strands:

1. Nature of Science and Engineering
2. Physical Science
3. Earth and Space Science
4. Life Science

In high school, students answer questions about concepts and skills in two different science strands:

1. Nature of Science and Engineering
2. Life Science

Minnesota Test of Academic Skills

The Science MTAS-III is given in grades 5,8 , and high school. Each test contains a set of nine scored performance tasks designed to measure student understanding of science concepts. The Science MTAS-III has been aligned with the Minnesota Academic Standards. The science content strands are the same as those tested by the Science MCA-III and mirror their pattern of emphasis but with a reduction in the depth and complexity of concepts measured. The performance tasks can be administered on different days according to the needs of the student.

English Language Proficiency Accountability Assessments

These assessments are administered to English learners to measure progress toward the English language proficiency requirement of ESSA. They also serve as evidence of proficiency for state funding for English language programming in districts. All ELs are required to take an English language proficiency accountability assessment.

ACCESS for ELLs

The ACCESS for ELLs (ACCESS) is a test of English language proficiency in reading, writing, listening, and speaking administered to ELs in grades K-12. The four language domains are aligned to WIDA's English language development standards, which describe performance in five areas:

1. Communication for social and instructional purposes within the school setting
2. Communication of information, ideas, and concepts necessary for academic success in the content area of Language Arts
3. Communication of information, ideas, and concepts necessary for academic success in the content area of Mathematics
4. Communication of information, ideas, and concepts necessary for academic success in the content area of Science
5. Communication of information, ideas, and concepts necessary for academic success in the content area of Social Studies

The kindergarten test is a one-on-one administration using paper materials. The grades 1-12 online tests are administered in the following grade clusters: grade 1; grades $2-3$; grades $4-5$; grades $6-8$; grades $9-12$. Paper accommodated tests are administered for the Listening, Reading and Writing domains in the following grade clusters: grade 1; grade 2; grade 3; grades 4-5; grades 6-8; grades 9-12. The Speaking Domain Clusters are as follows: Grade 1, Grades 2-3, Grades 4-5, Grades 6-8, and Grades 9-12.

Six levels of English language proficiency are measured by the ACCESS for ELLs. Students performing at level one have acquired very little English and communicate using single words, phrases, and simple statements or questions. The performance of students at level six is on par with that of their peers whose first language is English. Language is no longer a barrier to academic achievement for these students.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

In grades 1-12, students take the Listening and Reading domains of the adaptive online ACCESS for ELLs first. Based upon their performance in these domains, they are routed to the appropriate level for their Speaking and Writing test. Tier A tasks are for beginners, and they include test content intended to measure levels one to three. Students who have not yet learned any English may be assigned to Tier Pre-A. The majority of students are assigned to Tier B-C tasks, which measure levels two to six. For the paper accommodation, educators must preselect a Tier A, B or C test booklet based upon a student's current proficiency level.

The kindergarten test is not tiered but is adapted to each student's performance during the administration.
In grades 1-12, the listening, reading, writing, and speaking online tests are administered to groups of students. In the listening test, students listen to audio stimuli and answer MC questions. The reading test contains MC questions that are related to passages that increase in length and complexity by targeted proficiency levels and grades. The writing test requires students to write to prompts that range from single letters, words, and sentences at the lowest proficiency level to several paragraphs at the high proficiency levels and grades. Students in grades $1-3$ handwrite their responses to the writing test in a paper booklet. For grades $4-5$, states may select a default of handwritten or keyboarded responses for students. Minnesota selected handwritten responses in paper booklets for students in grades 4-5, with the option for schools to override this default for students who are comfortable with keyboarding. Students in grades 6-12 keyboard their responses to the writing test, but students who have little to no experience with computers may respond on paper. Specifically, districts need to order Writing Response booklets for students in grades 6-12 who require them based on an IEP or 504 plan or are newcomers with a proficiency level of 2.9 or lower during the Additional Materials ordering window. The speaking test consists of speaking prompts delivered online; students respond by speaking into the microphone of their headsets and their responses are recorded and sent to the contractor for scoring.

All four domains in the kindergarten ACCESS for ELLs are administered one-on-one. The listening and speaking domains are assessed together, followed by the writing and reading domains. The entire test takes about 45 minutes to administer.

For all four domains in $\mathrm{K}-12$, the stimuli and questions are aligned to the content areas listed above and represent the range of proficiency levels included in a given form's tier. Graphic stimuli and supports play a large role in the tests for all domains, tiers, and grades.

Alternate ACCESS for ELLs

The Alternate ACCESS for ELLs is a test of English language proficiency in reading, writing, listening, and speaking administered to ELs with the most significant cognitive disabilities in grades 1-12. The tests for all four domains are aligned to the WIDA English language development standards describing performance in Social and Instructional language, language of Language Arts, language of Mathematics, language of Science, and language of Social Studies.

The tests are administered in four grade clusters:

1. Grades 1-2
2. Grades $3-5$
3. Grades 3-5
4. Grades 9-12

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Six levels of English language proficiency are measured by the Alternate ACCESS for ELLs. Students performing at Levels A1, A2, and A3 may have minimal, basic communication skills in English. These three levels describe performance that is below Level 1 on the ACCESS for ELLs. A student performing at Level A1 may communicate using gestures, eye gaze, and imitations of sounds. Students performing at Level A3 may use familiar words and practiced, routine phrases. Levels P1, P2, and P3 describe performance that shares some characteristics of performance at Levels 1, 2, and 3 on ACCESS for ELLs, but these levels are not equivalent on the two tests. Students taking the Alternate ACCESS for ELLs may achieve up to a Level P2 in Reading, Listening, and Speaking, and up to a Level P3 in Writing. Level P1 performance is characterized by phrase-level communication. Students performing at Levels P2 and P3 can communicate using sentence-level discourse.

Unlike the ACCESS for ELLs, the Alternate ACCESS for ELLs has only one form per grade cluster. Test Administrators follow a script to administer all four domains of the test to students one-on-one. In the listening test, students listen to prompts read by the test administrator and demonstrate comprehension of MC questions by pointing to images in the test booklet. The reading test contains single word to sentence-length prompts. Answer options in the MC questions consist of text supported by graphics. In the listening and reading tests, each task is made up of three cues, and a student may need only one cue to respond to the task or all three. The cues provide increasingly more support so that a student responding to Cue A demonstrates more ability than a student responding to Cue B, and so on. The writing test requires students to write to prompts instructing the student to perform tasks ranging from demonstrating the ability to use a pencil to writing a word or sentence based on information provided in a graphic. In the speaking test, Test Administrators follow a script to elicit spoken language ranging from single sounds to one or more sentences. For all four domains, the stimuli and questions are aligned to the content areas of Social and Instructional language, language of Language Arts, language of Mathematics, language of Science, and language of Social Studies. Graphic stimuli and supports play a large role in the tests for all domains and grades.

Graduation Assessment Requirements

In prior years, in order to be eligible for a diploma from a Minnesota public high school, all students were required to fulfill graduation assessment requirements. There were different routes to meeting graduation assessment requirements depending on what year students were first enrolled in grade 8 in 2012-13. Based on the revisions to Minnesota Statute 120B. 30 enacted in 2013, the graduation assessment requirements transitioned from the GRAD requirements to the Career and College Assessments. Since this time, legislation in 2015 modified the requirement for the Career and College Assessments, so they are no longer administered statewide. Consistent with legislation, starting in 2016 student progress scores in mathematics and reading for grades 3-8 and MCA-III student scores in grades 10 and 11 for mathematics and reading will provide Career and College Readiness indicators. 2016-17 was the first year that MCA-III scores in reading grade 10 and mathematics grade 11 can be used for course placement into Minnesota state colleges and universities. Note: Technical information on the GRAD for the years it was given can be found in separate archival technical manuals.

Modes of Assessment

The Standards-based accountability assessments and English language proficiency accountability assessments are administered in one of the following three modes depending on the student characteristics, subject, grade, and assessment being given

1. Online Adaptive;
2. Online Fixed Form; and
3. Data Entry Fixed Form.

Online Adaptive Assessments

The items in the operational pools for the Minnesota assessments have been calibrated so that their difficulty level, ability to discriminate between students of similar proficiencies, and susceptibility to guessing is known. Based on these items' statistics, the point on the ability continuum where their measurement accuracy is highest and their degree of accuracy relative to other items can be calculated. As students work through the test, their ability is measured after each item has been answered, and the next item is selected adaptively from the pool by selecting the item with the highest degree of precision at each student's current level of ability (subject to content coverage requirements and item exposure controls).

CATs are a specific mode of test delivery where each item is adaptively selected for administration based on the responses to the prior items in the test. Because a series of items are taken by a given student in a restricted range of the distribution, adaptive online assessments must have item pools that have several items at each point across a wide range of student proficiency. Unlike a fixed form assessment, it is quite rare that multiple students will be administered identical tests because the item selection algorithms select each item on the test based on prior performance and also item exposure rules limit the exposure of individual items in the item pool.

Advantages of Online Adaptive Assessments

The assessments for the grades $3-8 \& 11$ Mathematics MCA-III, and grades $3-8 \& 10$ Reading MCA-III are administered in an online adaptive form. There are several advantages to transition their standards-based accountability assessments to an online adaptive mode. Adaptive assessments manage to be a flexible mode of assessment that accurately measures students' proficiency while also meeting the blueprint constraints listed in the test specifications. The primary advantage of an adaptive assessment is that each student is provided an assessment tailored to his or her proficiency level. Adaptive tests accomplish this by adaptively selecting each item (for the mathematics assessments), or testlet (for the reading assessments), depending on the student performance on the items they have already been administered on the assessment. This process results in an individualized assessment for students that best measures each student's proficiency with the items on the test, all while selecting items that satisfy the test specifications.

The CATs administered to Minnesota students use an algorithm that adaptively selects items to match both student proficiency as well as the content blueprint according to the test specifications. Because items can both vary in the proficiency they best measure and their ability to discriminate between students of similar proficiency levels, these factors can influence which items are selected for the adaptive assessment. As the ability of an item to discriminate between students of similar proficiency levels increase, so does the information of that given item. More specifically, as the information of an item increases, the error associated with the item decreases, conditional on proficiency. Likewise, as the item information decreases, the error will increase, conditional on proficiency level. Put simply, CAT algorithms select items that discriminate well between students of close proficiency and are appropriately difficult for a given student, thus resulting in items with high levels of
information and more accurate measurement than a non-adaptive test, which has a fixed set of items administered to the student. Refer to Chapter 9, "Reliability," for more information regarding the information of items selected for a given assessment.

In addition to estimating student proficiency more accurately than linear, fixed-form assessments, CATs are also able to estimate student proficiency levels with fewer items. Because CATs only administer items that are appropriate to each student's proficiency level, they can accurately estimate that student's proficiency level with fewer items than an assessment that is not adaptive. Similarly, adaptive tests can differentiate between students at or near the cut-points on the test because each student's assessment is tailored to their proficiency level. A related advantage is that CATs allow the test developer to more efficiently balance test length and test precision because adaptive tests can more accurately measure proficiency with fewer items; however, achieving content blueprints often require a number of test items close to that of linear-fixed form tests because coverage of all relevant content areas must be achieved.

Adaptive Item Selection

The WPM (Chien, Shin, Swanson, \& Way, 2009) for content balancing is the algorithm used for the Minnesota CAT assessments; the WPM selects each ordinal item in the test for mathematics and testlet for reading by balancing test specification and item information. In addition, the CRM (Shin \& Chien, 2017) is the method that is used to control item exposure. The CAT is configured to control for such things as starting person estimates (examinee theta), the range of theta, item exposure control, conditional ranges of theta, group sizes, and the balance of weights assigned to item information and the blueprint constraints. The test contractor chooses and refines these parameters based on the results of simulated administrations of the CAT to a sample of examinees ("simulees") drawn from a normal distribution with the mean and standard deviation drawn from the previous year's population results. In addition, the metadata and statistical parameters for the items in the CAT item pool were summarized and coded into the configuration file, as were the target item count ranges for each blueprint category (content strands, standards, and item types). The purpose of these simulations is to determine parameters that best balance the precision of the test against item exposure and usage rates.

The Weighted Penalty Model

According to Chien et al. (2009), "The WPM approach attempts to balance content properties across all content categories as well as other non-statistical constraints, while simultaneously considering item information at each item-selection level and the scarcity of items relative to some constraints." Ideally each item administered in each ordinal position during a test (or each testlet for Reading) would contain the item that best measures a student's level of proficiency; however, this becomes more challenging when trying to control item exposure rates as well as controlling for content and test specifications requirements that must be met during item selection. In order to form a list of candidate items to be selected at each point in the test, the WPM assigns penalties to each item for mathematics and testlet for reading in relation to the current estimated student theta and the remaining blueprint requirements. These blueprint requirements include target item count ranges for such things as the number of items in the strand/substrand and standard, the number of MC and TE items, and number of items at the various depth of knowledge levels. For each item for each individual, the WPM selects among the items with the lowest penalty values.

The WPM considers both statistical and non-statistical information about the item in order to select items for the test that address the test specifications as well as accurately measure the performance of a given student. The WPM adjusts the penalties for each item following each item administration, so an item that has a high penalty value at the beginning of the test may have a low penalty value at the end of the test because some constraints were reached while others have not. The penalty value is actually a combination of both an item

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

information penalty value, resulting from the weight the WPM should place on item information, and content penalty value, indicating the weight the WPM should place on the test specifications specified in the computer control files. Moreover, ability estimates are recalculated after each student response in order to select items. Expected A Priori (EAP) estimation is used to estimate student ability at the beginning of the test until a nonperfect or non-zero response string is observed. Put another way, as soon as a student has received at least one item correct and one item incorrect, Maximum Likelihood Estimation (MLE) is used to estimate student abilities. Both EAP and MLE are discussed later in this document.

The WPM has three stages: 1) calculating the weighted penalty value for each eligible item in the pool; 2) assigning each eligible item into different groups (referred to as "color groups"); and 3) forming a list of candidate items (it is here the CRM is used for item control). In the remainder of this section, we describe in detail the process the WPM takes prior to the selection of each item on the test for each student. The number of times the WPM calculates the penalty values depends on the number of items on the test.

For any given constraint j, the Prevalence $_{j}$ is the proportion of items in the pool that have the property
 the constraint, respectively. The Mid $_{j}$ is the midpoint between ${ }^{U p p e r} r_{j}$ and ${ }^{L o w e r}{ }_{j}$. As an example, consider a strand requirement with an item range of 7-14 items with a 42 item test when there are 700 items in the pool, and 175 of the items in the pool correspond to a specific strand. If no items had been administered prior, the calculations would be the following: Upper $_{j}=0.02(14 / 700)$, Lower $_{j}=0.01(7 / 700)$, Mid $_{j}=0.015$, and Prevalence $_{j}=0.25(175 / 700)$.

Prior to administration of any given item on the test, Prop $_{j}$ is first calculated which is the expected proportion of items with constraint j that will have been administered if all remaining items in the test are selected in proportion to their prevalence.

$$
\text { Prop }_{j}=\left(\text { nadm }_{j}+\text { Prevalence }_{j} \times \text { nremaining }\right) / \text { testlength }
$$

where ${ }^{n a d m} m_{j}$ is the number of items to this point in the test administration having this property and nremaining is the number of items remaining to be administered in the test, and testlength is the length of $^{\text {th }}$ the test. To be more specific if the constraint in question is the same strand as discussed above with a range of $7-14$ is being addressed ${ }^{n a d m_{j}}$ represents the number of items already administered to the student from that strand, so if six items were already administered from that strand, $n a d m_{j}$ would be six. Next, ${ }^{X_{j}}$, or the expected difference between ${ }^{P r o p_{j}}$ and ${ }^{M i d} d_{j}$ across the full length of the test is calculated.

$$
X_{j}=\left(\operatorname{Prop}_{j}-\text { Mid }_{j}\right) .
$$

Then, for each item, the actual penalty value is calculated for each constraint j using one of the following three equations depending on values for ${ }^{\text {Prop }_{j}, \text { Lower }_{j} \text {, and }{ }^{U p p e r}{ }_{j} \text {. }}$

$$
P_{i j}=\left(\frac{1}{k D_{j}} X_{j}^{2}+\frac{D_{j}}{k}\right) \times Z_{i j},{\text { if } \text { Prop }_{j}}<\text { Lower }_{j}
$$

OR

$$
P_{i j}=\left(\frac{1}{k A_{j}} X_{j}^{2}+\frac{A_{j}}{k}\right) \times Z_{i j},{\text { if } \text { Prop }_{j} \geq \text { Upper }_{j}}
$$

OR

$$
P_{i j}=X_{j} \times Z_{i j}, \text { if Upper }_{j}>\text { Prop }_{j} \geq \text { Lower }_{j} .
$$

where ${ }^{D_{j}}$ is $\left(\right.$ Lower $_{j}-$ Mid $\left._{j}\right), A_{j}$ is $\left(U\right.$ Pper $j_{j}-$ Mid $\left._{j}\right), k$ is arbitrary constant which the contractor constrains to a value of 2 , and $Z_{i j}$ is a dummy coded variable equal to 1 if item i has property j, otherwise $Z_{i j}$ equals 0 . As an example the j in $Z_{i j}$ could refer to strand 1 , so if a given item measures that strand, then $Z_{i j}=1$. Whereas, if the item instead measured strand 2 , it would equal 0 . Finally, because the prior calculations were repeated for each content constraint, the total content penalty value is calculated as follows, which takes into account all content constraints:

$$
F_{i}^{\prime \prime \prime}=\sum_{j=1}^{J} P_{i j} \times w_{j}
$$

where ${ }^{w_{j}}$ is the weight for constraint j. These weights are determined by the contractor by running a set of simulations prior to test administration in order to best balance estimating student ability as accurately as possible (by reducing the error of measurement) as well as meeting content constraints to achieve blueprint satisfaction. Lastly, the total content constraint penalty value is standardized as:

$$
F_{i}^{\prime}=\frac{F_{i}^{\prime \prime \prime}-\min \left(F_{i}^{\prime \prime \prime}\right)}{\max \left(F_{i}^{\prime \prime \prime}\right)-\min \left(F_{i}^{\prime \prime \prime}\right)^{\prime}}
$$

where $\min \left(F_{i}^{\prime \prime \prime}\right)$ and $\max \left(F_{i}^{\prime \prime \prime}\right)$ are the minimum and maximum $F_{i}^{\prime \prime \prime}$ across all eligible items remaining in the pool.

The information penalty value is calculated separately from the content penalty value. For any item i for a given estimate of ability $(\hat{\theta})$, the standardized item information value:

$$
S I_{i}(\hat{\theta})=\frac{I_{i}(\hat{\theta})}{I_{\max (\hat{\theta})}},
$$

where $I_{i}(\hat{\theta})$ is the information of item i given a specific $(\hat{\theta})$, and $I_{\max }(\hat{\theta})$ is the maximum information value across all eligible items given a specific $(\hat{\theta})$ is used to compute the information penalty value:

$$
F_{i}^{\prime \prime}=-S I_{i}(\widehat{\theta})^{2},
$$

Lastly, the weighted penalty value (total penalty value) for a given item is calculated by combining content and information values:

$$
F_{i}=w^{\prime} \times F_{i}^{\prime}+w^{\prime \prime} F_{i}^{\prime \prime},
$$

Where w^{\prime} and $w^{\prime \prime}$ are the weights for F^{\prime} and $F^{\prime \prime}$, respectively, and refer to the content constraint and information weights, respectively.

These penalty values are then used to categorize items by color group. The color groups represent the eligibility of an item depending on its status in regard to the test specification constraints. Because the assessments have multiple constraints, which are controlled for, a single item may have already reached the upper bounds for one of many constraints but may be under the minimum range for a different set of constraints. To reduce the frequency that a single constraint will be out of range, a color grouping method is used.

The WPM selects items based on the penalty values for the following color groups: first green, then orange, then yellow, and finally, red. Within the color groups the items are ordered by the weighted penalty values from smallest to largest. In order to assign items to color groups, items are first assigned one of the following letters ' A,' ' B,' or ' C ' based on the following rules.

- If the lower bound of the constraint has not been reached, the item receives an ' A ' for this specific constraint.
- If the lower bound of the constraint has been reached but not the upper bound, ' B ' is assigned for this specific constraint.
- If the upper bound has been either reached or exceeded, ' C ' is assigned to this specific constraint.

After all constraints have been assigned flags, the items are placed into the color groups.

- Items with all assigned flags of 'A's and 'B's for all constraints will be placed in the green group.
- Items with a combination of assigned flags 'A's, ' B 's, and ' C 's, or ' A 's and ' C 's will be assigned to the orange group.
- Items with all assigned flags 'B's will be placed in the yellow group.
- Items with assigned flags ' B 's and ' C 's or ' C 's only will be placed in the red group.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

The penalties for the MCA-III administrations utilize a constant blueprint constraint weight and a constant information weight over the course of the test.

Conditional Randomesque Method

After the list of candidate items has been compiled, the CRM is used for item exposure control. Conditional on the current estimated theta (proficiency level), the CRM selects a group of items from the group of the most informative items, of which the group size is determined prior to the operational administration of the assessment through the simulations conducted by the test contractor, and then randomly selects the next item to be administered from that group. For instance, if a group size of three was determined through the simulation to perform optimally for a conditional range, the CRM will select three items from the most optimal candidate item group (from the green color group unless the green color group contains no more items) and randomly selects one of those three items. The remaining items in the group will be blocked from appearing on the remaining portion of the assessment. If there are fewer than three items in the green color group, then items will be selected from the next available grouping (e.g., orange) to fill the positions in the group to select from. The group size is chosen with consideration of the number of items available at each point along the proficiency distribution that will satisfy the content and test specifications. If at any point in the administration of the test there are no available items because all eligible items have been previously blocked (but not previously selected), previously blocked items will be released.

Conditional on theta, the CRM controls the item exposure by a factor of $1 / \mathrm{N}$ where N is the group size; therefore, a group size of two items results in an item exposure rate of 0.5 (or $1 / 2$), and a group size of three items results in an item exposure rate of 0.33 (or $1 / 3$). However, because the exposure controls were conditional, even a group size of one does not necessarily lead to an item exposure of 100 percent across all examinees, although it would across the examinees that happened to fall within or pass though the respective corresponding region of the ability continuum. Given that only a fraction of examinees are in any particular region of the ability continuum (or pass though at some point during the test), the exposure of items in such regions remains limited.

This algorithm controls item exposure because it allows the random selection among a set of informative items instead of only selecting the most informative item. If an item was not randomly selected from a group of multiple items, the most highly discriminating item (most informative) would have very high exposure, even though there may be other suitable items available for administration. Because the starting theta is controlled, the first item on the assessment will be selected based on the MDE-approved starting theta control value selected from the simulation. It should be noted that, although Minnesota uses adaptive assessments, the test length is fixed for all MCA-III assessments.

The group size parameter is controlled for conditionally on the current estimated level of theta. This allows for a more lenient level of exposure control to be employed in regions of the ability range addressed by relatively few items. Stringent exposure controls applied to regions of the ability continuum addressed by relatively few items would result in elevated levels of error in the ability estimates from the CAT compared to less stringent controls. This error occurs because items inappropriate to (e.g., relatively far away from) the examinee's true ability level would be included in the candidate group of items. Relaxation of the level of exposure control allowed the selection of more appropriate items and more precise measurement of examinee ability, albeit at the price of a higher level of exposure of the items in the affected region.

Online Adaptive Scale Score Estimates

The MCA-III adaptive tests for mathematics and reading estimate theta. There are multiple reasons for this. First, all items in the adaptive CAT item pool for a given grade and subject are on the same scale. Item response theory (IRT) is used for the field-test equating, which places all items within a grade/subject on the same scale (Refer to Chapter 7 for Equating Details). Because all items are on the same scale, a direct theta to scale score transformation can occur. Generally, raw-score to scale-score tables are not created for three parameter-logistic IRT adaptive based tests like the mathematics and reading assessments. Second, the CAT algorithm will attempt to meet the blueprint specifications set forth in the test specifications. One result of the algorithm meeting specifications is that all students will be exposed to the same content on the assessments. Thus, it can be assumed that even though students are taking different tests, the tests are measuring the same content. Also, the dataentry assessments, described below, have been placed on the same metric as that of the operational adaptive items; therefore, scores from the data-entry and adaptive forms of the assessment are on the same metric and can be directly compared.

Online Fixed-Form Assessments

Currently, the grades 5, 8, and high school MCA-III Science assessments are administered as online fixed-form assessments. These assessments follow the online assessment test specifications found on the MDE webpage. The primary difference between the online adaptive assessments and online fixed-form assessments is that the items administered to the students in the fixed form are pre-selected and fixed to the form. The specific items found on a given assessment appear in the order corresponding to the form the student is administered. Each MCA-III form contains a different set of field-test items but the same operational items. Great care is taken during the test construction process to ensure that items on the fixed-form assessments both meet test specifications and measure students from across the distribution of proficiency, with an emphasis of accurate measurement near the cut-points. The presentation of items and online navigation system is identical to that of the online adaptive assessments.

Data-Entry Fixed-Form Assessments

The data-entry fixed-form assessments are administered in a one-on-one setting using a paper accommodated form of the test. Subsequently, the administrator enters the student's responses into the testing system. Dataentry fixed-form assessments are administered to students who are eligible for such as described in Chapter 3. Currently, grades 3-8 and 11 MCA-III Mathematics, grades 3-8 and 10 MCA-III Reading, and grades 5, 8, and high school MCA-III Science have data-entry forms that can be administered to eligible students (i.e., students who are unable to take the test on computer). All MTAS-III for mathematics, reading, and science assessments are assessed in this way. Like the online fixed-form assessments, the items on the data-entry fixed-form assessments are fixed prior to administration. One primary difference between online fixed-form assessments and data-entry assessments is that the data-entry assessments are first given in a one-on-one setting and then manually entered into the computer by a test administrator in the district (often a teacher), whereas responses to the online assessments are provided directly by the student. A second difference is that the data-entry fixed-form assessments for the MCA-III do not contain field-test items, whereas both the online adaptive assessments and online fixed-form assessments do.

Chapter 2: Test Development

The test-development phase of each Minnesota assessment includes several activities designed to ensure the production of high-quality assessment instruments that accurately measure the achievement of students with respect to the knowledge and skills contained in the Minnesota Academic Standards. The Standards are intended to guide instruction for students throughout the state. Tests are developed according to the content outlined in the Minnesota Academic Standards at each grade level for each tested subject area. In developing the Standards, committees review curricula, textbooks, and instructional content to develop appropriate test objectives and targets of instruction. These materials may include the following:

- National curricula recommendations by professional subject matter organizations
- College and Work Readiness Expectations, written by the Minnesota P-16 Education Partnership working group
- Standards found in the American Diploma Project of Achieve, Inc. (http://www.achieve.org)
- Recommended Standards for Information and Technology Literacy from the Minnesota Educational Media Organization (http://mnitem.org/standards)
- Content standards from other states

Test-Development Procedures

The following steps summarize the process followed to develop a large-scale criterion-referenced assessment such as the MCA-III and MTAS-III:

1. Development of Test Specifications. Committees of content specialists develop test specifications that outline the requirements of the test, such as eligible test content, item types and formats, content limits, and cognitive levels for items. These specifications are published as a guide to the assessment program. Committees provide advice on test models and methods to align the tests with instruction. Information about the content, level of expectation, and structure of the tests is based on judgments made by Minnesota educators, students, and the public. Minnesota educators guide all phases of test development.
2. Development of Items, Stimuli (Passages and Scenes), and Tasks. Using the Standards and test specifications, MDE Statewide Testing Division staff and Minnesota's testing contractor work with the item development contractor to develop culturally affirming items, stimuli (including Reading passages and Science scenes), and tasks.
3. Item (and Stimulus) Content Review. All members of the assessment team review the developed items (and stimuli for Reading and Science), discuss possible revisions, and make changes when necessary.
4. Item (and Stimulus) Content Review Committee. Committees of expert teachers review the items (some of which are revised during content review) for appropriate difficulty, grade-level specificity, and potential bias and sensitivity issues.
5. Field-Testing. Items are taken from the item content review committees, with or without modifications, and are field-tested as part of the assessment program. Data are compiled regarding student performance, item difficulty, discrimination, reliability, and possible bias.
6. Data Review. Committees review the items in light of the field-test data and make recommendations regarding the inclusion of the items in the item bank (from which forms are built for the fixed-form assessments).

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

7. New Forms Construction. Items are selected for the assessment according to test specifications. Selection is based on content requirements as well as statistical (equivalent passing rates and equivalent test form difficulty) and psychometric (reliability, validity, and fairness) considerations. For the MCA-III Mathematics, the item pool is finalized for operational administration. For MCA-III Reading, new testlets are built from newly field tested and existing operational items. These are combined with selected testlets from previous administrations and together comprise the testlet pools used for the final operational administration.

More detailed information regarding each step is provided in subsequent sections of this chapter.

Test Specifications

Criterion-referenced tests such as Minnesota's statewide tests are intended to estimate student knowledge within a domain such as mathematics, reading, or science proficiency. The characteristics of the items making up the domain must be specified and are known as the test specifications. They provide information to test users and test constructors about the test objectives, the domain being measured, the characteristics of the test items, and the way students will respond to the items. Test specifications are unique for each test and lay the framework for the construction of a test.

Test specifications developed by MDE since 2005 have been designed to be consistent in format and content, thereby making the testing process more transparent to the education community. The tests being developed are based on content standards defined by committees of Minnesota teachers. Thus, the content standards and their strands, substrands, and benchmarks serve as the basis for the test specifications. Item types, cognitive levels of understanding to be tested, range in the number of items, and content limits are assigned to each benchmark within the standards.

The item formats are constrained by the test delivery system (paper or online). The item format determines how the student responds to the item, such as selecting an answer, writing a response, or manipulating images on a computer screen.

The cognitive level of understanding for an item is determined by the type of cognition required for a correct response to the item. Teacher committees consider what types of cognition are appropriate for different content in order to determine the assigned cognitive levels for each benchmark. Cognitive levels for benchmarks are determined independently of the item formats and difficulty of the content; this runs counter to many people's perceptions that cognitive level and content difficulty are equivalent concepts. For example, a benchmark measured at a high cognitive level could be assessed with different item formats, such as a MC or TE item.

Similarly, the educator committees base the ranges in number of items and content limits on two things: the emphasis that a benchmark is given in the classroom and the type of curriculum content regularly taught to students in a grade level. This discussion guides the final information entered into the test specifications.

Test specifications facilitate building a technically sound test that is consistent from year to year. They demonstrate MDE's respect for teacher concerns about the amount of time students spend taking tests, and they account for the grade and age of students involved as well as other pedagogical concerns. Test specifications define, clarify, and/or limit how test items will be written. They can be used by schools and districts to assist in

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

the planning of curricula and instruction to implement the Minnesota Academic Standards. The test specifications also provide a basis for interpreting test results.

The remainder of this section provides details about the development of test specifications for each test in the Minnesota Assessment System.

Standards-Based Accountability Assessments

Minnesota Comprehensive Assessments-Series III

To develop the MCA-III, MDE held meetings with Minnesota educators to define general test specifications for each grade. Minnesota classroom teachers, curriculum specialists, administrators, and university professors served on committees organized by grade and subject area. MDE chose committee members to represent the state in terms of geographic region, type and size of school district, and the major ethnic groups found in Minnesota.

The committees identified strands, standards, and benchmarks of the Minnesota Academic Standards to be measured in the tests. Some strands, standards, or benchmarks were not suitable for the large-scale assessments. These were clearly identified as content to be assessed in the classroom.

After the measurable components of the standards were identified, teacher committees set item formats, cognitive levels, and content limits for each benchmark. Item prototypes were developed as part of the development of the test specifications.

Committees of Minnesota educators reviewed drafts of these specifications, and their suggestions were incorporated into the final versions of the test specifications. The complete MCA-III test specifications document for each subject is available on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Test Specifications).

Minnesota Test of Academic Skills

Criteria outlined by the National Alternate Assessment Center served as a guide in the development of the MTASIII to help ensure that items were based on the Minnesota grade-level academic standards. All the content of the MTAS-III is academic and derived directly from the Minnesota grade-level academic standards in mathematics, reading, and science.

A systematic and iterative process was used to create the MTAS-III test specifications. Prior to the on-site benchmark extensions meetings, MDE met with stakeholder groups and their contractors (Minnesota's testing contractor and ILSSA) to identify preliminary benchmarks at each grade level that would be finalized after a public comment period. The process was guided by test alignment criteria and balanced by characteristics of students with significant cognitive disabilities, as listed below.

1. The grade-level benchmark was assessed on the MCA-III.
2. Proficiency on the benchmark will aid future learning in the content area for students with significant cognitive disabilities.
3. Proficiency on the benchmark will help the student in the next age-appropriate environment for students with significant cognitive disabilities (that is, the next grade in school or a post-school setting).

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

4. A performance task can be written for the benchmark without creating a bias against a particular student population.

The benchmark contributed to the pattern of emphasis on the test blueprint for the MTAS-III, including multiple substrands, cognitive levels, and benchmarks.

The recommended benchmarks were taken to teacher groups who developed the extended benchmarks. Benchmark extensions represent a reduction in the depth or complexity of the benchmark while maintaining a clear link to the grade-level content standard. During the meetings, the teachers scrutinized the recommended benchmarks using their professional expertise and familiarity with the target student population and made changes to a subset of the recommended benchmarks in mathematics, reading, and science.

Content limits had been written and approved for the MCA-III but required review and further revisions for the MTAS-III for each of the recommended benchmarks. During the benchmark extension writing sessions, the groups were instructed to review the content limits for the general assessment. If those content limits were sufficient, no other content limits were noted. However, if the groups' consensus was that only certain components of a benchmark should be assessed in this student population, they added this information to the content limits.

The next step for Minnesota educators who served on the benchmark extension panel was to determine the critical learner outcome represented by each prioritized benchmark in mathematics, reading, and science. The critical outcome is referred to as the essence of a benchmark and can be defined as the most basic skill inherent in the expected performance. These critical outcomes are called essence statements. Panel members wrote sample instructional activities to show how students with the most significant cognitive disabilities might access the general education curriculum represented by the essence statement. Once panel members had a clear picture of how a skill might be taught, they wrote benchmark extensions. Three extensions were written for each benchmark to show how students who represent the diversity within this population could demonstrate proficiency on the benchmark.

MDE recognizes that the students who take the MTAS-III are a heterogeneous group. To help ensure that every student in this group has access to the test items, student communication modalities were considered and accommodations made. Six teacher groups, composed of curriculum experts and both special and general educators, were convened to write these entry points for three grade bands in mathematics and reading and each grade-level assessment in science. After approximately one half-day of training, the teacher groups wrote entry points for each of the selected benchmarks included on the MTAS-III. The process included the following steps:

1. A curriculum specialist described the intent or underlying essence of the benchmark.
2. A general educator described a classroom activity or activities in which the benchmark could be taught.
3. A special educator described how the activity or activities could be adapted to include a student with significant cognitive disabilities.

At each step, the group verified that the benchmark was still being addressed, the general education activity was still appropriate, and the student could still access the content in a meaningful way. The groups then developed an assessment activity for each type of learner, including the different types of supports that might be used. After writing each assessment activity, the group reviewed the activity to check that it maintained the integrity of the original instructional activity and the essence of the benchmark.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

The original specifications were published on the MDE website in December 2006. Since that date, specifications have been updated in coordination with revisions to academic standards and specifications for the general assessments in mathematics, reading, and science. The complete MTAS-III test specification documents are available on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Test Specifications).

English Language Proficiency Accountability Assessments

ACCESS for ELLs and Alternate ACCESS for ELLs

The ACCESS for ELLs is based on the 2012 Amplification of the English Language Development Standards, Kindergarten-Grade 12 or the WIDA ELD standards (social and instructional language, language of language arts, mathematics, science, and social studies) and WIDA performance definitions, which describe the linguistic complexity, language forms and conventions, and vocabulary used by students at six proficiency levels. The Alternate ACCESS for ELLs forms are based on four of the WIDA English language development standards (social and instructional language, language of language arts, mathematics, science, and social studies) and alternate performance definitions at six proficiency levels. Documents describing these standards and performance definitions are available in the 2012 Standards Resources in the Teaching with Standards section of the WIDA website (https://wida.wisc.edu/teach/standards/eld).

WIDA does not publish test blueprints or specifications on its website, but district staff who have logins to the secure portal of the WIDA website can access the Test Administration Manuals. These manuals contain limited information about the organization of the tests. The Test Administration Manuals are available in the Download Library under the "ACCESS for ELLs" heading in the secure portal on the WIDA website.

Item Development

This section describes the item writing process used during the development of test items (including stimuli) and, in the case of the MTAS-III, performance tasks. Minnesota's testing contractor has the primary role for item and task development; however, MDE personnel and state review committees also participate in the item development process. Item and task development is a complex multistage process.

Items and tasks are written and internally reviewed by the testing contractor before submission to MDE. For each subject and grade, MDE receives an item tally sheet displaying the number of test items by benchmark and target. Item tallies are examined throughout the review process. Additional items are written by the testing contractor, if necessary, to complete the requisite number of items per benchmark.

Content Limits and Item Specifications

Content limits and item specifications identified in the test specifications are strictly followed by item writers to ensure accurate measurement of the intended knowledge and skills. These limits were set using committee feedback, MDE input, and use of the standards, as mandated by federal and state law.

Standards-Based Accountability Assessments

Minnesota Comprehensive Assessments-Series III

Item specifications are provided for each assessed benchmark for the MCA-III. The item specifications provide restrictions of numbers, notation, scales, context, and item limitations/requirements. The item specifications also

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

list symbols and vocabulary that may be used in items. This list is cumulative in nature. For example, symbols and vocabulary listed at grade 3 are eligible for use in all grades that follow (grades 4-8).

Minnesota Test of Academic Skills

The content limits of the MTAS-III provide clarification of the manner in which the depth, breadth, and complexity of the academic standards have been reduced. In mathematics, this might concern the number of steps required of a student to solve a problem. In reading, this could involve a restriction in the number of literary terms assessed within a benchmark. In science, this might be addressed by requiring knowledge of only major aspects of the water cycle.

English Language Proficiency Accountability Assessments

ACCESS for ELLs

The complexity of tasks that are called for by the ACCESS for ELLs is limited by the WIDA performance definitions, which describe the linguistic complexity, language forms and conventions, and vocabulary used by students at five proficiency levels. The sixth proficiency level represents the end of the proficiency scale continuum and is characterized by performance that meets all criteria through level five. The tasks for the Alternate ACCESS for ELLs are based on WIDA's alternate model performance indicators, which describe the linguistic complexity, language forms and conventions, and vocabulary usage in the performance of ELs with significant cognitive disabilities. Performance for the six levels of proficiency is described in the Alternate ACCESS for ELLs Performance Definitions. Documents describing the performance definitions for both assessments are available in the 2012 Standards Resources under the "Teaching with Standards" heading (https://wida.wisc.edu/teach/standards/eld).

Item Writers

In reading and mathematics, Minnesota's testing contractor uses item writers who have extensive experience developing items for standardized achievement tests. The contractor selects item writers for their knowledge of the specific content area and for their experience in teaching or developing curricula for the relevant grades.

In science, Minnesota's testing contractor hires Minnesota science educators who are trained in writer workshops facilitated by the vendor with input from the MDE science staff. All item writers are approved by the department and follow the same rigorous training process.

Standards-Based Accountability Assessments

Minnesota Comprehensive Assessments-Series III

Minnesota's testing contractor employs item writers who are accomplished and successful in meeting the high standards required for large-scale assessment items. Most item writers are former teachers who have substantial knowledge of curriculum and instruction for their content area and grade levels. Item writers must go through rigorous training and are retained only after demonstrating competency during this training.

Minnesota Test of Academic Skills

In addition to meeting the standards described above, item writers must have experience with and a clear understanding of the unique needs of students with significant cognitive disabilities with respect to their ability to provide responses to the performance tasks.

MTAS-III item writers comprise both general and special education teachers. Item writing assignments for each grade level and subject area are divided between both general and special education teachers to ensure coverage of the content breadth as well as ensuring maximum accessibility for students with significant cognitive disabilities. Item writer training includes an overview of the requirements for alternate assessments based on alternate achievement standards, characteristics of students with significant cognitive disabilities, descriptions of performance-based tasks, principles of universal design, the MTAS-III Test Specifications, and the MTAS-III Essence Statements. Throughout the item writing process, evaluative feedback is provided to item writers by contractor content and alternate assessment specialists to ensure submission of performance tasks that meet the grade level, content, and cognitive requirements.

English Language Proficiency Accountability Assessments

ACCESS for ELLS

CAL is contracted by WIDA to develop items and construct test forms for the ACCESS for ELLs and the Alternate ACCESS for ELLs. CAL has extensive experience in language proficiency test development and has item writers on staff dedicated to the WIDA consortium and its assessments.

Item Writer Training

Minnesota's testing contractor and MDE provide extensive training for writers prior to item or task development. During training, the content benchmarks and their measurement specifications are reviewed in detail. In addition, Minnesota's testing contractor discusses the scope of the testing program, security issues, adherence to the measurement specifications, and avoidance of economic, regional, cultural, and ethnic bias. Item writers are instructed to follow commonly accepted guidelines for good item writing.

Standards-Based Accountability Assessments

Minnesota Comprehensive Assessments-Series III

Minnesota's testing contractor conducts comprehensive item writer training for all persons selected to submit items for the MCA-III. Training includes an overview of the test-development cycle and specific training in the creation of high quality, culturally affirming MC and TE items. Experienced contractor staff members lead the trainings and provide specific and evaluative feedback to participants.

Minnesota Test of Academic Skills

Minnesota's testing contractor conducts item writer training for the MTAS-III that focuses on including students with significant cognitive disabilities in large-scale assessments. Item writers are specifically trained in

- task elements;
- vocabulary appropriateness;
- bias and sensitivity considerations; and
- significant cognitive disability considerations.

Minnesota's testing contractor recruits item writers who have specific experience with special populations, and the focus of the training is on the creation of performance tasks and reading passages.

Performance tasks must

- match the expected student outcomes specified in the Benchmark Extensions document;
- follow the format of the template provided by the testing contractor;
- clearly link to the essence statement and be unique;
- represent freedom from bias and sensitivity;
- represent high yet attainable expectations for students with the most significant cognitive disabilities;
- include clearly defined teacher instructions and student outcomes; and
- lend themselves to use with assistive technology and other accommodations.

Item, Passage, and Scenario Review

Contractor Review

Experienced testing contractor staff members, as well as content experts in the grades and subject areas for which the items (including stimuli such as passages and scenarios) or performance tasks (for MTAS-III) were developed, participate in the review of each set of newly developed items. This annual review for each new or ongoing test checks for the fairness of the items and tasks in their depiction of minority, gender, and other demographic groups. In addition, Minnesota's testing contractor instructs the reviewers to consider other issues, including the appropriateness of the items and tasks to the objectives of the test, difficulty range, clarity, correctness of answer choices, and plausibility of the distractors. Minnesota's testing contractor asks the reviewers to consider the more global issues of passage appropriateness, passage difficulty, and interactions between items within and between passages, as well as artwork, graphs, or figures. The items are then submitted to MDE for review.

Standards-Based Accountability Assessments

Minnesota Comprehensive Assessments-Series III

Before an item may be field-tested for the MCA-III, it must be reviewed and approved by the content committee and the bias and sensitivity committee. The content committee's task is to review item content and scoring rubric to assure that each item

- is an appropriate measure of the intended content (strand, substrand, standard, and benchmark);
- is appropriate in difficulty for the grade level of the examinees;
- has only one correct or best answer (for MC items); and
- has an appropriate and complete scoring guideline (for TE items).

The content committees can make one of three decisions about each item: approve the item and scoring rubric with recommended changes or item edits to improve the fit to the strand, substrand, standard, and benchmark; or reject the item and thus remove it from consideration for field-testing.

Each test item is coded by content area and item type (for example, MC, TE) and presented to MDE assessment specialists for final review and approval before field-testing. The final review encompasses graphics, artwork, and layout.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

The bias and sensitivity committee reviews each item to identify language or content that might be inappropriate or offensive to students, parents, or community members or that contain stereotypical or biased references to gender, ethnicity, or culture. The bias and sensitivity committee accepts, edits, or rejects each item for use in fieldtests.

Minnesota Test of Academic Skills

The MTAS-III has been aligned with the academic content standards (i.e., Minnesota Academic Standards) established for all students.

Assessments have been developed in grades 3-8 and high school for both mathematics and reading; assessments in science have been developed for grades 5 and 8 and high school. The mathematics and science tests consist of a series of discrete items. In Reading, the tasks are designed to assess comprehension of the MTAS-III passages. Reading passages for the MTAS-III differ from those appearing on the MCA-IIIs. The MTAS-III passages are shorter (approximately 200 words or less), and the overall difficulty level is reduced. The content of the passages is less complex. Passages are written to include simple sentence structures, high frequency words, decodable words, and repeated words and phrases. MTAS-III passages feature clear, concise language. In general, passages mirror high-interest/low-level materials that are accessible for instruction for this population.

The Reading MTAS-III includes both fiction and nonfiction passages. Passage topics are age appropriate and generally familiar to the population assessed. Concepts presented in the passages are literal.

Before a passage or item may be field-tested, it must be reviewed and approved by the content committee and the bias and sensitivity committee. The content committee's task is to review the item content and scoring rubric to assure that each item

- is an appropriate measure of the intended content;
- is appropriate in difficulty for the grade level of the examinees; and
- has only one correct or best answer for each MC item.

The content committees can make one of three decisions about each item: (1) approve the item and scoring rubric as presented; (2) conditionally approve the item and scoring rubric with recommended changes or item edits to improve the fit to the strand, substrand, standard, and benchmark; or (3) eliminate the item from further consideration.

The bias and sensitivity committee reviews each passage and item to identify language or content that might be inappropriate or offensive to students, parents, or community members or that contain stereotypical or biased references to gender, ethnicity, or culture. The bias and sensitivity committee accepts, edits, or rejects each item for use in field-tests.

Each test item is coded by content area and presented to MDE alternate assessment specialists for final review and approval before field-testing. The final review encompasses graphics, artwork, and page layout.

English Language Proficiency Accountability Assessments

ACCESS for ELLs and Alternate ACCESS for ELLs

CAL contacts WIDA member state education agencies (SEAs) to recruit educators from across the consortium to participate in item and bias reviews. Following field-testing of new items, CAL also asks SEAs to recommend educators to serve on data review panels.

MDE Review

Staff at MDE and Minnesota's testing contractor review all newly developed items and tasks prior to educator committee review. During this review, content assessment staff scrutinizes each item for content-to-specification match, difficulty, cognitive demand, and plausibility of the distractors, rubrics, and sample answers and for any ethnic, gender, economic, or cultural bias.

Standards-Based Accountability Assessments

Minnesota Comprehensive Assessments-Series III

Content assessment staff from MDE and Minnesota's testing contractor discusses each item, addressing any concerns during this review. Edits are made accordingly, prior to item review with teachers.

Minnesota Test of Academic Skills

Assessment staff with both content and students-with-disabilities expertise from MDE and Minnesota's testing contractor discuss each item, addressing any concerns during this review. Edits are made accordingly, prior to item review with teachers.

English Language Proficiency Accountability Assessments

ACCESS for ELLs and Alternate ACCESS for ELLs

All development and review for the ACCESS for ELLs and Alternate ACCESS for ELLs is performed by CAL and WIDA. Consortium member states do not review items as a matter of course, although they may send SEA staff to participate in item, bias, and data reviews.

Item Committee Review

During each school year, MDE convenes committees composed of $\mathrm{K}-12$ and higher-education teachers, curriculum directors, and administrators from across Minnesota to work with MDE staff in reviewing test items (including stimuli) and performance tasks developed for use in the assessment program.

MDE seeks recommendations for item review committee members from best practice networks, district administrators, district curriculum specialists, and subject-area specialists in MDE's Curriculum Division and other agency divisions. MDE selects teachers to be committee members based on their expertise in a particular subject. The selection of committee members represents the regions of the state and major ethnic groups in Minnesota, as well as various types of school districts (such as urban, rural, large, and small districts).

Each school year, Minnesota educator committees review all newly developed test items and tasks and all new field-test data. Approximately 40 committee meetings are convened, involving Minnesota educators who represent school districts statewide.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

MDE Research and Assessment staff, along with measurement and content staff from Minnesota's testing contractor, trains committee members on the proper procedures and the criteria for reviewing newly developed items. Reviewers judge each item for its appropriateness, adequacy of student preparation, and any potential bias. Prior to field-testing, committee members discuss each test item and recommend whether the item should approve the item and scoring rubric, approve the item and scoring rubric with recommended changes, or reject the item and thus remove from consideration from field-testing. During this review, if committee members judge an item questionable for any reason, they may recommend the item be rejected and thus removed from consideration for field-testing. During their reviews, all committee members consider the potential effect of each item on various student populations and work toward eliminating bias against any groups.

Standards-Based Accountability Assessments

Minnesota Comprehensive Assessments-Series III

Item review committees are composed of content teachers in English language arts (ELA), mathematics, and science. Within a given content area, teachers are invited so that the committee appropriately represents the state in terms of geography, ethnicity, and gender. Teachers are also selected to represent ELs and special education licensures. Content area educators serving on these committees are familiar with the Minnesota Academic Standards, which they use to ensure item alignment based on subject-specific item review checklists for mathematics, reading, and science. MDE and its testing contractor facilitate teachers' discussion of the test items.

Mathematics Item Review Checklist

1. Is the intent of the item readily apparent and understandable as stated without having to read the answer options or re-read the question multiple times?
2. Is the item straightforward and direct with no unnecessary wordiness?
3. Is the item grammatically correct and in complete sentences whenever possible?
4. Are there any clues or clang words used within the item that may influence the student's response?
5. Is the context of the item factually correct or plausible?
6. Does each item function independently of other items?
7. Does the item clearly align to the intended benchmark?
8. Is the cognitive level (DOK) appropriate for the level of thinking required?
9. Does each MC item have only one correct answer?
10. For MC items, are all distractors plausible yet incorrect?
11. Do TE items address content in a meaningful way?
12. For $T E$ items, are the rationales aligned to the questions asked?

Reading Item Review Checklist

1. Is the intent of the item readily apparent and understandable as stated?
2. Is the item clearly written, and is it grammatically correct?
3. Are there any clues or clang words used which may influence the student's responses?
4. Does each MC item have only one correct answer and three plausible yet incorrect answers that are passage-based?
5. Do TE items address content in a meaningful way?
6. For $T E$ items, are the rationales aligned to the questions being asked?
7. Does the item clearly align to the intended benchmark and/or standard?
8. Is the DOK appropriate for the level of thinking required?
9. Do items address a range of standards and benchmarks for each passage set?

Science Item Review Checklist

1. Does the item clearly align to the intended benchmark?
2. Is the content accurate and factually correct?
3. Is the DOK appropriate for the level of thinking required?
4. Is the item straightforward and direct with no unnecessary wordiness?
5. Are there any clues or clang words used which may influence the student's responses to other items?
6. Are all items grammatically correct and in complete sentences whenever possible?
7. Do all items function independently across scenes?
8. Does each MC item have only one correct answer?
9. Is the intent of the MC question apparent and understandable to the student without having to read the answer options?
10. For MC items, are all answer options homogenous?
11. For MC items, are all distractors plausible yet incorrect?
12. For TE items, are the rubrics aligned to the questions being asked?

Minnesota Test of Academic Skills

Item review committees are composed of special education and content teachers in ELA, mathematics, and science. Within a given content area, these two areas of expertise are equally represented, to the extent possible, and MDE makes a special effort to invite teachers who are licensed in both areas. Many content area educators serving on these committees have also served on item review panels for the MCA-III and are therefore very familiar with the Minnesota Academic Standards. The collaboration between special education and content area teachers ensures that MTAS-III assesses grade-level standards that have been appropriately reduced in breadth, depth, and complexity for students with the most significant cognitive disabilities.

English Language Proficiency Accountability Assessments

ACCESS for ELLs and Alternate ACCESS for ELLs

Item review committees are convened by CAL and WIDA. These organizations follow industry standards when conducting item review committee meetings.

Bias and Sensitivity Review

All items placed on Minnesota assessments are evaluated by a panel of teachers and community experts familiar with the diversity of cultures represented in Minnesota. This panel evaluates the fairness of passages, storyboards, test items, and stimuli for Minnesota students by considering issues of gender, cultural diversity, language, religion, socioeconomic status, and various disabilities.

Field-Testing

Before an item can be used on a live test form or be added to the operational item pool, it must be field-tested. MDE uses two approaches to administer field-test items to large, representative samples of students: embedded field-test items in an operational administration and a stand-alone field-test administration.

Embedded Field-Testing

MDE embeds field-test items in multiple forms of operational tests or, in the case of the MCA-III adaptive test, the field-test items are randomly assigned to students across the state during administration. This ensures that a large representative sample of responses is gathered under operational conditions for each item. Currently, responses to most field-test items are obtained from approximately 3,000-6,500 students. Past experience has shown that these procedures yield sufficient data for precise statistical evaluation of a large number of field-test items in an authentic testing situation. Enough field-test items are administered annually to replenish and improve the item pools.

Responses on field-test items do not contribute to a student's scores on the operational tests. The specific locations of the embedded items within the assessment are not disclosed. These data are free from the effects of differential student motivation that may characterize stand-alone field-test designs because the items are answered by students taking operational tests under standard administration procedures.

Stand-Alone Field-Testing

When MDE implements testing at new grade levels, for new subject areas, or for revised academic standards, it is necessary to conduct a separate stand-alone field-test in order to obtain performance data. When stand-alone field-testing is required, MDE requests volunteer participation from the school districts. MDE has been successful in obtaining volunteer samples that are representative of the state population.

To make certain that adequate data are available to appropriately examine each item for potential ethnic bias, MDE designs the sample selection in such a manner that the proportions of minority students in the samples are representative of the total student populations in Minnesota. School districts are notified in advance about which schools and classes are chosen for the administration of each test form so that any problems related to sampling or to the distribution of materials can be resolved before the test materials arrive.

Data Review

Data Review Committees

MDE convenes data review committees composed of qualified teachers. Significant effort goes into ensuring that these committees of Minnesota educators represent the state demographically with respect to ethnicity, gender, school district size, and geographical region. These committees receive training on interpreting the psychometric data compiled for each field-test item from psychometricians (typically people with an advanced degree in the
application of statistical analyses to measurement), content experts (usually former teachers and item writers), and group facilitators for the data review committee meetings.

Data provided to the data review committee include:

- numbers of students by ethnicity, gender, and English learner status in each sample;
- percentage of all students choosing each response for multiple-response items and percentage of students choosing correct, top-five incorrect, and other incorrect responses for TE items;
- low, median, and high ability distributions based on performance on the overall test and that group of students' distribution choosing responses;
- the item mean (p-value) and item-total correlation (point-biserial correlations) summarizing the relationship between each response on a particular test item and the score obtained on the total subject area test; and
- IRT statistical indices to describe the relative difficulty, discrimination, and guessing of each test item and Mantel-Haenszel (MH) statistical indices to identify greater-than-expected differences in performance on an item associated with gender, ethnicity, and English learner status. MH statistical indices are only included in the committee materials if the subgroup sample size is at least 100 .

Specific directions are provided on the use of the statistical information and review booklets. An outline is given to each committee member describing the field-test data they will review and use to determine the quality of each item. Committee members evaluate each test item with regard to benchmark and instructional target match, appropriateness, level of Depth of Knowledge (DOK), level of difficulty, and bias (cultural, ethnic, gender, geographic, and economic) and then recommend that the item either be accepted or rejected. Items that pass all stages of development-item review before field-testing, field-testing, and data review-are placed in an "item bank" and become eligible for use on future tests. Rejected items are noted and precluded from use on any future tests.

Statistics Used

A number of statistical analyses, based on classical test theory (CTT) and IRT, are performed and documented to a facilitate the evaluation of the field-test items during data review.

Classical Test Theory Statistics

Several pieces of summary statistical information are provided to the data review committee. The item mean and item-total correlation are general indicators of item difficulty and quality. The response distribution for all students is used by the data review committee to evaluate the attractiveness of multiple-choice distractors and the most common incorrect answers for TE and fill-in-the-blank items.

Item Response Theory Statistics

The IRT item parameters and fit indices are provided to the data review committee. IRT, more completely described in Chapter 6, comprises a number of related models, including Rasch-model measurement (Wright, 1977; Masters, 1982), the two-parameter and three-parameter logistic models (Lord \& Novick, 1968), and the generalized partial credit model (Muraki, 1992). The IRT model must fit student responses for the scaling and equating procedures to be valid. The item's relative difficulty (b-parameter), the item's capability of separating low performers from high performers (a-parameter), and the IRT guessing parameter (c-parameter) are provided

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

to the committee. The IRT guessing parameter represents the probability of a correct response for the extremely low performers. The review committee uses these values to identify items that might be undesirable for inclusion in the item pool.

Mantel-Haenszel Procedure

Differential item functioning (DIF) analyses, i.e., item bias data, are presented during data review committees through the use of the MH statistic and its associated chi-square significance test. The MH statistic is a log-odds ratio that investigates whether the odds of answering an item correctly is greater for one demographic group than another after matching groups by their total test scores (Holland \& Thayer, 1988). When one group is much more likely to answer a particular item correctly than another across the ability strata, the item is flagged for further examination. Even though every attempt is made to write unbiased items, Minnesota conducts DIF analyses on field-test items for several subgroups to identify and evaluate items that are not functioning as expected. The MH test is conducted for all field-test items for Mathematics, Reading, and Science MCA-III assessments. Because there were no field-test items on the current MTAS-III assessment, DIF analyses were not conducted for the MTASIII items, which are polytomously scored.

Evaluating items for DIF provides an additional piece of evidence whether the items on the Minnesota assessments are displaying construct-irrelevant factors. If items show DIF, and then are subsequently determined to be biased according to a committee, this would lessen the validity of the assessments for any particular group of individuals. The three broad categories of groups that are evaluated for DIF are gender, race/ethnicity, and English learner status. The comparison groups for the Minnesota tests can be found in Table 2.1.

Table 2.1. DIF Comparison Groups

Group Type	Reference Group	Focal Group
Gender	Male	Female
Race/Ethnicity	White	American Indian or Alaska Native
	White	Asian
	White	Black or African American
	White	Native Hawaiian or other Pacific Islander
	White	Hispanic or Latino
English Learner (EL)	Non-EL	EL

In the above table, the gender analysis investigates whether males have greater, the same, or lower odds of a correct response in relation to females, after matching males and females on total test score. Similarly, the race/ethnicity comparison between white and black investigates whether white students have greater, the same, or lower odds of a correct response in relation to black students, after matching white and black students on total test score. Lastly, the EL analysis investigates whether non-EL students have greater, the same, or lower odds of a correct response in relation to EL students, after matching non-EL and EL students on total test score.

The MH statistic used to flag DIF is based on the widely adopted ETS system for DIF classification; the ETS system for DIF classification classifies DIF as either A (negligible or nonsignificant DIF), B (slight to moderate DIF), or C (moderate to large DIF; Zieky, 1993). The data review cards only contain information for items flagged with C DIF;

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

however, B DIF is also indicated but does not have an explicit flag. Items that contain C-DIF are flagged for any potential bias by the data review committee and, if a cause for such DIF is identified, the item will be removed from the item bank prior to operational administration.

The MH procedure used by Minnesota requires that there be at least 100 students from the focal group in order to conduct a DIF analysis.

The steps used to calculate the MH DIF statistic for dichotomous items are outlined below.

1) Using the operational items on the assessment, the total raw (for science) or scale (for math and reading) score for each student is calculated. These scores are used to create 10 equally sized intervals, or strata, between the minimum and maximum total raw scores for the students who responded to that item.

Table 2.2 provides an example $2 \times 2 \times j$ frequency table that matches the reference group and focal group based on their total raw score on the MCA-III assessment, and where j is the number of strata used for the analysis,

Table 2.2. MH Contingency Table for Dichotomous Items

Correct

Reference

Focal

Total $\quad m_{1_{j}}$
A_{j}
C_{j}
C_{j}
D_{j}
$m_{0_{j}}$
B_{j}
$n_{R_{j}}$
$n_{F_{j}}$
A_{j} is the number of reference students in stratum j who answered correctly,
B_{j} is the number of reference students in stratum j who answered incorrectly,
C_{j} is the number of focal students in stratum j who answered correctly,
D_{j} is the number of focal students in stratum j who answered incorrectly,
$m_{1_{j}}$ is the total number of students in stratum j who answered correctly.
$m_{0_{j}}$ is the total number of students in stratum j who answered incorrectly.
$n_{R_{j}}$ is the total number of reference students in stratum j,
$n_{F_{j}}$ is the total number of focal students in stratum j,
T_{j} is the total number of students in stratum j.
2) If no DIF is present, the odds ratio, calculated as $\left(A_{j} / B_{j}\right) /\left(C_{j} / D_{j}\right)$, would be equal to 1 for all strata. This would indicate the odds of answering correctly would be the same for both reference and focal groups. The actual MH test estimates a common odds ratio and tests whether it is significantly different from 1.0. This equation is:

$$
\alpha_{M H}=\left[\Sigma_{j} A_{j} D_{j} / T_{j}\right] /\left[\Sigma_{j} C_{j} B_{j} / T_{j}\right],
$$

where all terms have been defined earlier. The test statistic $\left(\alpha_{M H}\right)$, as well as the lower $\left(\alpha_{M H, l o w e r}\right)$ and upper ($\alpha_{\text {MH,upper }}$) limits of the 95 percent confidence interval, are recorded.

In order to improve the ease of interpretation, the test statistic $\left(\alpha_{M H}\right)$, as well as the $\left(\alpha_{M H, l o w e r}\right)$ and upper ($\alpha_{\text {MH, upper }}$) limits of the 95 percent confidence interval, are transformed to the delta metric through the three formulas shown below.

$$
\begin{aligned}
\text { MH D }- \text { DIF } & =-2.35 \ln \alpha_{M H} \\
M H D-D I F_{\text {lower }} & =-2.35 \ln \alpha_{M H, \text { lower }} \\
M H D-D I F_{\text {upper }} & =-2.35 \ln \alpha_{M H, \text { upper }}
\end{aligned}
$$

A positive value for MH D - DIF indicates that an individual item is differentially more difficult for the focal group while a negative value indicates the item is differentially more difficult for the reference group.
3) Based on the transformation of the test statistic and the lower and upper limits of the confidence interval, DIF is classified into one of three categories. The statistical test for MH D-DIF for each classification category is as follows.

A-DIF exists when:

- $|M H D-D I F|<1$, or
- MHD - DIF $_{\text {lower }}<0>M H D-$ DIF $_{\text {upper }}$, or
- MH D - DIF upper $^{<}<0>M H D-D I F_{\text {lower }}$

B-DIF exists when:

- $|M H D-D I F| \geq 1$ and $M H D-D I F_{\text {lower }}<0<M H D-D I F_{\text {upper }}$, or
- MH D-DIF lower $>0>M H D-D I F_{\text {upper }}$

C-DIF exists when:

- $|M H D-D I F| \geq 1.5$ and $M H D-D I F_{\text {lower }}<1<M H D-D I F_{\text {upper }}$, or
- MHD-DIF $F_{\text {lower }}>1>M H D-D I F_{\text {upper }}$

The categories for DIF are then:
Table 2.3. DIF Classification Categories

DIF Classification Category	Criteria
A-DIF (negligible)	$\|M H D-D I F\|$ is not significantly greater than zero or is less than one.
B-DIF (slight to moderate)	$\|M H D-D I F\|$ is significantly greater than 0.0 (but not 1.0) and is at least 1.0. OR $\|M H D-D I F\|$ is significantly greater than 1.0, but is less than 1.5.
C-DIF (moderate to large)	$\|M H D-D I F\|$ is significantly greater than 1.0 and is at least 1.5.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Summaries of the DIF results of the current administration of MCA Mathematics, Reading, and Science are provided in the Yearbook under the section "Differential Item Functioning Summary." These summaries provide the total number items taken to data review, the number of items taken to data review flagged with C-DIF, the number with C-DIF in each subgroup category, and the number of items rejected by the data review committee where the presence of C-DIF contributed to the committee's decision to reject the item.

Standards-Based Accountability Assessments

Minnesota Comprehensive Assessments-Series III

The first data review meetings for the grades 3-8 Mathematics MCA-III were held in March 2010. Items reviewed at these meetings were field-tested in a stand-alone online field-test conducted in fall 2009 and data review meetings have since been held annually. MCA-III data reviews use the procedures described previously. Panelists are invited to the workshops according to procedures established by MDE that attempt to provide broad representation of expertise, ethnicity, school size, and geography.

Minnesota Test of Academic Skills

The MTAS-III data reviews use the procedures described previously. Emphasis is placed on inviting panelists who have content and/or special education expertise. In addition to the data displays common to all Minnesota assessments, the MTAS-III data review panels also consider disaggregated information about performance of students most likely to participate in the MTAS-III. This disaggregation includes additional score level analysis for students in three categories of disabilities:

1. Developmentally Cognitively Disabled-Mild
2. Developmentally Cognitively Disabled—Severe
3. Autism Spectrum Disorder

English Language Proficiency Accountability Assessments

ACCESS for ELLs and Alternate ACCESS for ELLs

Data review committees are convened by CAL and WIDA. These organizations follow industry standards when conducting data review committee meetings.

Item Bank

Minnesota's testing contractor maintains an item bank for all tests in the Minnesota assessment program and stores each test item and its accompanying multimedia assets in an item banking system. Additionally, MDE maintains paper copies of each test item.

In addition, Minnesota's testing contractor maintains a statistical item bank that stores item data, such as a unique item number, grade level, subject, benchmark or instructional target measured, depth of knowledge, dates the item has been field-tested, and item statistics. The statistical item bank also warehouses information obtained during the data review committee meetings indicating whether a test item is acceptable for use, acceptable with reservations, or not acceptable at all. MDE and Minnesota's testing contractor use the item statistics during the test construction process, or simulation study for the computer adaptive tests, to calculate and adjust for differential test difficulty and to check and adjust the test for content coverage and balance.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

The move to computer adaptive tests for grades 3-8 and 11 MCA III Mathematics and grades 3-8 and 10 MCA-III Reading has required that a sizable item bank be maintained for each of these subjects and grades. All operational items within the item bank are available in the item pool for the mathematics assessments. The reading assessments contain predefined testlets in which each testlet contains one passage or passages and three testlets are administered for each test administration. Testlets are constructed each year using items from the item bank. The CAT engine relies on algorithms that select items for the mathematics assessments or testlets for the reading assessments from these banks.

Test Construction

MDE and Minnesota's testing contractor construct test forms from the pool of items or performance tasks deemed eligible for use by the educators who participated in the field-test data review committee meetings. Minnesota's testing contractor uses operational and field-test data to place the item parameters on a common IRT scale (see Chapter 6, "Scaling"). This scaling allows for the comparison of items, in terms of item parameters, to all other items in the pool. Hence, Minnesota's testing contractor selects items within a content benchmark not only to meet sound content and test construction practices but also to maintain comparable item parameters from year to year.

The fixed form assessments include all MCA-III paper accommodated forms, grades 5, 8, and high school MCA-III Science, as well as all MTAS-III assessments for mathematics, reading, and science. To construct these tests, MDE and Minnesota's testing contractor apply the specifications for the number of test items included for each test benchmark as defined on the test specifications. The Minnesota Academic Standards are arranged in a hierarchical manner where the strand is the main organizational element (e.g., number sense or patterns, functions, and algebra) for mathematics. The substrand is the main organizational element for reading (e.g., Informational Text or Literature). Each strand for mathematics and substrand for reading contains one or more standards. Each standard contains one or more benchmarks. Each year's assessment assesses items in each strand and standard but not necessarily every benchmark. The tests are constructed to measure the knowledge and skills as outlined in the specifications and the standards, and they are representative of the range of content eligible for each assessed benchmark. The complete test specification documents are available on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Test Specifications).

In the case of the CATs, which include the MCA-III Mathematics and Reading tests, Minnesota's testing contractor does not directly construct the test forms. Rather, the testing contractor performs simulation studies to determine the best parameters for the CAT algorithm to administer the test. When the simulations are completed and approved, the CAT algorithms select mathematics items or reading testlets for the student to answer that will best measure their proficiency as well as satisfy the test specifications on the respective tests.

In the cases of Braille and large-print accommodations administered as paper accommodated forms, MDE's goal is to keep all items on an operational form. Items are replaced if they cannot be placed into Braille translation or large-print mode appropriately. To date, Minnesota has met this goal in all assessments since the current program began in 1997.

Chapter 3: Test Administration

Eligibility for Assessments

As a result of ESSA, all public school students enrolled in grades 3-8 and at least once in grades 9 through 12 must be annually assessed with a mathematics and reading or language arts assessment while students in grades 5,8 , and high school must be annually assessed with a science assessment. This requirement includes students who receive special education services. In addition, public school ELs in grades K-12 are annually assessed with language proficiency tests.

Standards-Based Accountability Assessments

Mathematics

Minnesota Comprehensive Assessments-Series III

General education students and students in special populations-i.e., ELs and students with disabilities (SWDs) who are able to do so-take the Mathematics MCA-III to fulfill their mathematics requirement.

Minnesota Test of Academic Skills

Students with IEPs who meet the eligibility criteria of the MTAS-III as defined in the annually published Procedures Manual for Minnesota Assessments are eligible to participate in the Mathematics MTAS-III to fulfill their mathematics requirement.

Reading

Minnesota Comprehensive Assessments-Series III

General education students—and SWDs who are able to do so—take the Reading MCA-III to fulfill their reading requirement.

Minnesota Test of Academic Skills

Students with IEPs who meet the eligibility criteria of the MTAS-III are eligible to participate in the Reading MTASIII to fulfill their reading requirement.

Science

Minnesota Comprehensive Assessments-Series III

General education students—and SWDs who are able to do so—take the Science MCA-III to fulfill their science requirement.

Minnesota Test of Academic Skills

Students with IEPs who meet the eligibility criteria of the MTAS-III are eligible to participate in the Science MTASIII to fulfill their science requirement.

English Language Proficiency Accountability Assessments

ACCESS for ELLs and Alternate ACCESS for ELLs

English learners in grades K-12 must participate in the WIDA English language proficiency assessments. Most ELs take the ACCESS for ELLs. ELs in grades $1-12$ who have significant cognitive disabilities may instead take the Alternate ACCESS for ELLs.

Administration to Students

Standards-Based Accountability Assessments

Mathematics

Minnesota Comprehensive Assessments-Series III

The grades 3-8 and 11 Mathematics MCA-III are administered online, with paper accommodated or Braille forms available for students requiring an accommodated form. For grades 3-8 and 11, the paper accommodated versions are divided into four segments, allowing districts to administer the paper version over two or more days. For grade 11 paper accommodated books, students may use a calculator on the entire test, and handheld calculators may be used; for grades 3-8 paper accommodated books, calculators are allowed for segments two, three, and four. For the online assessment students in grades 3-8, calculators are allowed except for a noncalculator section, while grade 11 students are allowed calculators for the duration of the assessment. Students testing online have the ability to exit at the end of a section, which allows the student to return to the test to complete the remaining sections later, allowing administration over multiple class periods or days. Additionally, for the online assessment students are allowed to review and change their responses to items within their current section of the test, but they cannot go back to review their responses to items on previous sections of the test.

MDE allows district staff to determine how many test segments will be administered during each testing session. The multiple segments can be administered in a number of ways: all segments at one time, one segment per day, two segments per day, etc. Some segments of the Mathematics MCA-III do not allow calculators to be used in answering questions.

The grades 3-8 and 11 Mathematics MCA-III online and paper accommodated versions are administered any time within the eight-week online testing window.

Minnesota Test of Academic Skills

Any district employee who has received MTAS-III test administration training may administer the MTAS-III. However, the test administrator should be a person who is familiar with the student's response mode and with whom the student is comfortable. All MTAS-III test administrators must be trained annually prior to each test administration. Training can be completed by viewing training materials online in the Training Management System. Their district will let test administrators know which trainings they are required to complete. The Mathematics MTAS-III is administered to students in a one-on-one setting and scored by the test administrator. Therefore, test administrators must schedule times to administer the tasks.

Although the MTAS-III is administered in a one-on-one setting, the administration of the assessment is still considered standardized. The design of the assessment and its administration are specified in the MTAS-III Task Administration Manual to provide standardization of the content and to maintain the representation of the construct to examinees.

Reading

Minnesota Comprehensive Assessments-Series III

The grades 3-8 and 10 Reading MCA-III is administered online, with paper accommodated or Braille forms available for students requiring an accommodated form. The online exam is divided into sections by testlet and each testlet's associated items; the paper accommodated exam is administered in four or five separate segments allowing districts to administer the paper version over two or more days. Students testing online may exit at the end of a section, which allows the student to return to the test to complete the remaining sections later, allowing administration over multiple class periods or days. Additionally, for the online assessment students are allowed to review and change their responses to items within their current section of the test, but they cannot go back to review their responses to items on previous sections of the test. For the paper accommodated tests, students must complete all items in a segment before exiting. For the paper version, MDE allows district staff to determine how many test segments will be administered during each testing session. Administration of the multiple segments can be done in a number of ways: all segments at one time, one segment per day, two segments per day, etc.

The grades 3-8 and 10 Reading MCA-III online and paper accommodated versions are administered any time within the eight-week online testing window.

Minnesota Test of Academic Skills

Any district employee who has received MTAS-III test administration training may administer the MTAS-III. However, the test administrator should be a person who is familiar with the student's response mode and with whom the student is comfortable. All MTAS-III Test Administrators must be trained annually prior to each test administration. Training can be completed by viewing training materials online in the Training Management System. Their district will let test administrators know which trainings they are required to complete. The Reading MTAS-III is administered to students in a one-on-one setting and scored by the test administrator. Therefore, test administrators must schedule times to administer the tasks.

For the Reading MTAS-III, students may interact with the passage text in one of several presentations: the passage text, a picture-supported passage, a symbolated image representation, or other accommodations appropriate for students' needs. When using one of these presentations, students may read the passage independently, read along as the test administrator reads the passage, or have the passage read to them. As a part of the datacollection process, teachers identify what support, if any, students had with the passage. This passage support was used to create the alternate achievement level descriptors (ALDs) and determine performance levels in spring 2008. This level of passage support is also reported on the student report presented to parents.

Prior to allowing students to have these levels of passage support on the Reading MTAS-III, MDE consulted with national experts on alternate assessments-including staff from the National Alternate Assessment Center as well as the National Center on Educational Outcomes-about the appropriateness of those accommodations. These assessment experts supported MDE's desire to allow for appropriate passage support on the Reading MTAS-III.

Although the Reading MCA-III does not allow for a read-aloud accommodation, the Reading MTAS-III is used to assess a very different population. Disallowing an MTAS-III read-aloud accommodation would make assessment difficult, particularly owing to the intended population that includes students who are communicating at preemerging and emerging levels of symbolic language use. Facilitating students' progress toward symbolic language use is essential to reading and literacy. Language development is essential for reading, and the MTAS-III is designed to assess language development using age- and/or grade-appropriate language passages as documented in the
communication literature. Recent research supports this decision. A study by Towles-Reeves, Kearns, Kleinert, and Kleinert (2009) suggests that this reading passage support is appropriate:

For each of the five options under reading and math, teachers were asked to select the option that best described their students' present performance in those areas. In States 1 and 3, teachers noted that over 2 percent of the population read fluently with critical understanding in print or Braille. This option was not provided on the inventory in State 2 . Almost 14 percent of the students in State 1, 12 percent in State 2, and 33 percent in State 3 were rated as being able to read fluently, with basic (literal) understanding from paragraphs or short passages with narrative or informational texts in print or Braille. The largest groups from all three states (50 percent, 47 percent, and 33 percent in States 1, 2, and 3, respectively) were rated as being able to read basic sight words, simple sentences, directions, bullets, and/or lists in print or Braille, but not fluently from text with understanding. Smaller percentages of students (17 percent, 14 percent, and 18 percent) were rated as not yet having sight word vocabularies but being aware of text or Braille, following directionality, making letter distinctions, or telling stories from pictures. Finally, teachers noted that 15 percent of students in State 1, 25 percent of students in State 2, and 13 percent of students in State 3 had no observable awareness of print or Braille. (p. 245)

Towles-Reeves et al. (2009) go on to cite other research that supports their findings:
Our results appear consistent with those of Almond and Bechard (2005), who also found a broad range of communication skills in the students in their study (i.e., 10 percent of the students in their sample did not use words to communicate, but almost 40 percent used 200 words or more in functional communication) and in their motor skills (students in their sample ranged from not being able to perform any components of the task because of severe motor deficits to being able to perform the task without any supports). Our findings, together with those of Almond and Bechard, highlight the extreme heterogeneity of the population of students in the AA-AAS, making the development of valid and reliable assessments for these students an even more formidable task. (p. 250)

Other research also supports Minnesota's decision to allow students to have the reading passages read to them for the MTAS-III. In an article for the journal Remedial and Special Education, Browder et al. (2009) propose a conceptual foundation for literacy instruction for students with significant cognitive disabilities. The conceptual foundation discussed includes accessing books through listening comprehension. As Browder et al. (2009) note, "To use literature that is grade and age appropriate, books will need to be adapted, including the use of text summaries and key vocabulary. Students who do not yet read independently will need either a technological or human reader" (p. 10).

Although the MTAS-III is administered in a one-on-one setting, the administration of the assessment is still considered standardized. The design of the assessment and its administration are specified in the MTAS-III Task Administration Manual to provide standardization of the content and to maintain the representation of the construct to examinees.

Science

Minnesota Comprehensive Assessments-Series III

The Science MCA-III is a computer-delivered assessment. Students testing online have the ability to exit at the end of a section, which allows the student to return to the test to complete the remaining sections later, allowing administration over multiple class periods or days.

Minnesota Test of Academic Skills

Any district employee who has received MTAS-III test administration training may administer the MTAS-III. However, the test administrator should be a person who is familiar with the student's response mode and with whom the student is comfortable. All MTAS-III test administrators must be trained annually prior to each test administration. Training can be completed by viewing training materials online in the Training Management System. Their district will let test administrators know which trainings they are required to complete. The Science MTAS-III is administered to students in a one-on-one setting and scored by the test administrator. Therefore, test administrators must schedule times to administer the tasks.

English Language Proficiency Accountability Assessments

ACCESS for ELLs and Alternate ACCESS for ELLs

The ACCESS for ELLs (ACCESS) includes English language proficiency tests in reading, writing, listening and speaking. In grades 1-12, each of these domains is assessed individually, and the four online tests may be groupadministered over multiple days. Paper accommodated forms are available, and may be group-administered in all domains but speaking; the paper speaking test is a one-on-one administration scored by the test administrator. The Kindergarten ACCESS is administered entirely one-on-one, and all four domains are intended to be assessed in one 45-minute session. For ELs in grades 1-12 who have significant cognitive disabilities, the Alternate ACCESS for ELLs may be selected by IEP teams as the more appropriate assessment of students' developing language proficiency. The Alternate ACCESS for ELLs includes reading, writing, listening and speaking tests, which are entirely scripted and administered one-on-one.

Secure Testing Materials

The recovery of testing materials after each administration is critical. All secure materials, including test booklets, must be returned in order to preserve the security and confidential integrity of items that will be used on future tests.

Minnesota's testing contractor assigns secure test booklets to school districts by unique barcoded security numbers. School districts complete packing lists to assist Minnesota's testing contractor in determining whether secure materials are missing. Minnesota's testing contractor scans incoming barcodes to determine whether all secure materials have been returned from each school and district. School districts are responsible for ensuring the confidentiality of all testing materials and their secure return. Minnesota's testing contractor contacts any district with unreturned secure materials.

MDE's internal security procedures are documented in the Policy and Procedures appendix of the Procedures Manual for the Minnesota Assessments.

Standards-Based Accountability Assessments

Mathematics

Minnesota Comprehensive Assessments-Series III

The grades 3-8 and 11 Mathematics MCA-III are delivered online, with paper accommodated or Braille forms available for students requiring an accommodated form. For the computer-delivered assessments, there are no secure materials to return. For students taking paper-based accommodated forms, secure materials include largeprint (12-, 18- and 24-point) test books, Braille test books and scripts, and CDs. Districts enter student responses into the corresponding Data Entry form in TestNav. All used and unused test books and accommodated materials must be returned to Minnesota's testing contractor.

Minnesota Test of Academic Skills

Secure test materials for the Mathematics MTAS-III include the Task Administration Manuals, Presentation Pages, and Response Option Cards shipped to the district. Following administration all used and unused Task Administration Manuals and Presentation Pages must be returned to Minnesota's testing contractor. All Response Option Cards must be securely destroyed at the district.

Reading

Minnesota Comprehensive Assessments-Series III

The grades 3-8 Reading MCA-III are delivered online, with paper accommodated or Braille forms available for students requiring an accommodated form. For the computer-delivered assessments, there are no secure materials to return. For students taking paper-based accommodated forms, secure materials include large-print (12-, 18- and 24-point) test books and answer books and Braille test books. Districts enter student responses into the corresponding Data Entry form in TestNav. All used and unused test books and accommodated materials must be returned to Minnesota's testing contractor.

Minnesota Test of Academic Skills

Secure test materials for the Reading MTAS-III include the Task Administration Manuals, Presentation Pages, and Response Option Cards shipped to the district. Following administration all used and unused Task Administration Manuals and Presentation Pages must be returned to Minnesota's testing contractor. All Response Option Cards must be securely destroyed at the district.

Science

Minnesota Comprehensive Assessments-Series III

Since the Science MCA-III is a computer-delivered assessment, the only secure test materials for the Science MCAIII are accommodated materials, including large-print (18-and 24-point) test books and answer books, Braille test books and scripts and CDs. All used and unused accommodated materials must be returned to Minnesota's testing contractor.

Minnesota Test of Academic Skills

Secure test materials for the Science MTAS-III include the Task Administration Manuals, Presentation Pages, and Response Option Cards shipped to the district. Following administration all used and unused Task Administration

Manuals and Presentation Pages must be returned to Minnesota's testing contractor. All Response Option Cards must be securely destroyed at the district.

English Language Proficiency Accountability Assessments

ACCESS for ELLs and Alternate ACCESS for ELLs

Secure test materials for the English language proficiency assessments include:

- Online tests
- Online test tickets with student login information
- Paper test books and all paper test ancillary materials for accommodations
- Test Administrator's script for paper accommodations, Online Grades 1 and 2-3, Kindergarten, and Alternate ACCESS
- Large-print and Braille test books, if ordered
- Test administration manuals

In addition to the above materials, the ACCESS for ELLs shipment includes:

- Kindergarten ancillary kit
- Alternate ACCESS test books

Districts return all secure test materials—used and unused-to Data Recognition Corporation

Supports and Accommodations

Some students use supports or accommodations in order to fully demonstrate their knowledge and skills on statewide tests. Such supports and accommodations allow students to participate in the testing program without being disadvantaged by a disability or lack of English language proficiency. The available supports and accommodations are documented in chapters 5 and 6 of the Procedures Manual for the Minnesota Assessments, which is updated annually and available on the PearsonAccess Next website (PearsonAccess Next >Resource \& Training).

Supports are features or practices that allow all students to tailor aspects of the testing experience to their needs or preferences. Supports include accessibility tools available in online assessments and general test-taking practices. The use of a support may remove the need for an accommodation, depending on the student's disability.

Accommodations are changes in the way that a test is administered which reduce or eliminate the effects of a disability. Accommodations are only available to students with an IEP or 504 plan. Districts are responsible for ensuring that accommodations do not compromise test security, difficulty, reliability, or validity and are consistent with a student's IEP or 504 plan. All needed accommodations are documented annually in the IEP or 504 plan prior to testing.

Students who are identified as English learners may use linguistic supports. A limited number of accommodations may also be considered linguistic supports for students who are English learners.
The decision to use a particular support or accommodation with a student should be made on an individual basis. This decision should take into consideration the needs of the student as well as whether the student

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

routinely receives the accommodation during classroom instruction. Not every support or accommodation is appropriate or permitted for every subject area.

For the MTAS, any accommodation listed on a student's IEP may be used as long as it does not invalidate the test. Some administration activities that are allowed for the MTAS include:

- Familiarizing the student with the format of the MTAS prior to administration using the item samplers found on the MDE website
- Adapting the materials presented to meet student need, which includes enlarging materials or incorporating texture
- Using manipulatives unless otherwise specified in the task script
- Reading passages aloud to the student
- Using assistive technology devices, including calculators
- Refocusing and repeating as needed

Research Base for Supports and Accommodations

In February 2013, the Smarter Balanced Assessment Consortium (SBAC) published a review of research related to supports and accommodations provided by the consortium on its accountability assessments. In their report, Jamal Abedi and Nancy Ewers of the University of California, Davis, shared results of a compilation of expert judgments and their literature review on the key questions of whether the use of an accommodation or support by students with disabilities and/or English language learners is effective and whether its use alters the focal construct of the assessment. MDE reviewed its allowed accommodations and supports against Abedi and Ewers' findings, and a summary is provided below. School districts may contact MDE if an IEP or 504 team wants to use an accommodation that is not on the approved list. MDE will consider allowing that accommodation for the current administration and in future administrations pending literature and research reviews.

Support/Accommodation
Assistive technology
The category of assistive technology includes
devices that range from very commonplace
supports to sophisticated technologies.
Supports available to all students include
materials commonly used during instruction
such as pencil grips, place markers, line
guides, color and masking overlays,
highlighters, low-vision aids (e.g., magnifiers,
large monitor screen sizes), whisper phones,
and audio amplification devices. Many of
these supports are provided as tools in the
online testing interface.
Assistive technologies identified as
accommodations for SWDs include talking
calculators and devices such as computer
tablets that serve as calculators or for note
taking. Generally, internet access must be
disabled and students' computer use must be
monitored. This accommodation generally
requires an individual or small group test
administration.

ASL and signed English interpretation Test content
IEP teams may indicate sign language interpretation of the mathematics and science scripts (see human read-aloud) for students who are deaf or hard-of-hearing. Interpreters may access the script up to 48 hours prior to test administration and are required to review it in order to prevent cueing test answers.

Test directions

Sign language interpretation of the scripted test monitor and student directions may be provided to students who are deaf or hard-ofhearing.

Research \& Recommendations
According to Blaskey, Scheiman, Parisi, Ciner, Gallaway, \& Selznick
(1990), Cormier, Altman, Shyyan, and Thurlow (2010), Iovino, Fletcher, Breitmeyer, and Foorman (1996), Johnson, Kimball, Brown, and Anderson (2001b), Robinson and Conway (1990), Salend (2009), and Scarpati, Wells, Lewis, and Jirka (2011):

Although most assistive technologies have not undergone experimental research, there is no evidence these accommodations unfairly advantage students. In addition, official studies confirm that the use of assistive technologies either greatly benefits or has little to no negative impact on students. Therefore, their use is supported.

In the case of audio amplification and magnifying equipment, all students benefit.

Research supports the effectiveness of the accommodation and recommends its use. The risk of the accommodation giving students an unfair advantage is low.

According to Johnson, Kimball, and Brown (2001a), and Russell, Kavanaugh, Masters, Higgins, and Hoffmann (2009):

Research calls into question the capabilities and qualifications of onsite sign language interpreters, especially when interpreters are unfamiliar with the tested subject and its technical terms; the inability for interpreters to gain access to and prepare for the assessment prior to testing further complicates the issue.

According to Russell, Kavanaugh, Masters, Higgins, and Hoffmann (2009):

The obstacles and limitations presented by televised recordings of a signed test may be overcome by computer programs.

According to Johnson, Kimball, and Brown (2001a):
It is difficult to assess if students gain an unfair advantage, as the signing of a test is "an accommodation of an accommodation."

According to Ray (1982), Sullivan (1982), and Thurlow and Bolt (2001):

Experts agree that sign language interpretation of test directions, which is used in most states, levels the playing field for deaf and hearing impaired students. Signed test directions give these students the same opportunity to participate in and score as well on the assessments as general education students.

Research supports the effectiveness of the accommodation and recommends its use, although there are concerns about its implementation. The risk of the accommodation giving students an unfair advantage is low.

Support/Accommodation
Audio presentation of mathematics and
science assessments
Text-to-speech

Minnesota provides two types of text-tospeech support for online math and science assessments. Text-to-speech and other read aloud methods are not allowed on the reading assessments.

General text-to-speech is available to all students who choose to use it. Only text in the stem and answer options is read aloud. Tables, graphs, labels, etc. generally are not read, but exceptions are made if they contain a relatively large amount of text.

Accommodated text to speech is available as an accommodation for SWDs and as a linguistic support for ELs. All text in stems, answer options, tables, charts, graphs, labels, etc. are read aloud and positional descriptions are provided, if appropriate.

Human read-aloud

Mathematics and science scripts are available as a read-aloud accommodation for SWDs and as a linguistic support for ELs. All text in stems, answer options, tables, charts, graphs, labels, etc. are read aloud and positional descriptions are provided, if appropriate.

Braille

IEP teams may select contracted or uncontracted Braille test booklets for students who are blind or partially sighted and are competent Braille readers. As of 2016-17, Braille materials are provided in Unified English Braille (UEB) format.

Extended testing time

Minnesota's accountability tests are sectioned and untimed. Testing may be split over multiple days with one or more sections completed on a given day. Taking a single test section over multiple days or sessions is allowable as an accommodation for SWDs and as an indirect linguistic support for ELs.

Research \& Recommendations

According to: Acosta, Rivera, and Shaver (2008), Barton (2002), Bolt
an Thurlow (2004), Brown (2007), Burch (2002), Castellon-Wellington
(2000), Calhoon, Fuchs, and Hamlett (2000), Christensen, Braam, Scullin, and Thurlow (2011), Cormier, Altman, Shyyan, and Thurlow (2010), Dolan, Hall, Banerjee, Chun, and Strangman (2005), Elbaum (2007), Fuchs, Fuchs, Eaton, Hamlett, and Karns (2000), Helwig, Rozek-Tedesco, and Tindal (2002), Johnson, Kimball, Brown, and Anderson (2001b), Kopriva, Emick, Hipolito-Delgato, and Cameron (2007),Pennock-Roman and Rivera (2011), Pennock-Roman and Rivera (2012), Sato, Rabinowitz, Worth, Gallagher, Lagunoff, and McKeag (2007), Tindal, Heath, Hollenbeck, Almond, and Harniss (1998), and Wolf, Kim, Kao, and Rivera (2009):

Collective research provides varied conclusions as to the effectiveness of this accommodation. Although results vary across grades, subjects, disability type, and level of proficiency in a subject or skill, the overall consensus confirms students with disabilities benefit from this accommodation.

According to Wolf, Kim, Kao, and Rivera (2009):
On a math test, ELs who are unfamiliar with read-aloud on assessments do not benefit, but ELs familiar with read-aloud support on assessments greatly benefit.

Research supports the effectiveness of the accommodation and recommends its use. The risk of the accommodation giving students an unfair advantage is low.

According to Bennett, Rock and Kaplan (1987), Bennett, Rock and Novatkoski (1989), Bolt and Thurlow (2004), Coleman (1990), Thurlow and Bolt (2001), and Thurlow, House, Boys, Scott, and Ysseldyke (2000):

Although Braille tests require more time to complete and may make certain types of test questions more difficult, research recommends the use of the accommodation. Most, but not all, states use Braille tests.

Research supports the effectiveness of the accommodation and recommends its use. The risk of the accommodation giving students an unfair advantage is low.
According to Crawford and Tindal (2004), DiCerbo, Stanley, Roberts, and Blanchard (2001), Fletcher, O'Malley, Copeland, Mehta, Caldwell, \ldots and Vaughn (2009), Thurlow and Bolt (2001), and Walz, Albus, Thompson, and Thurlow (2000):

Research is divided on whether extending testing time over multiple days is effective. Some studies revealed that SWDs in lower grades and students with low level reading abilities benefited. In other studies, SWDs benefited little or did not benefit at all and general education students benefited. Experts recommend the accommodation, which is used in most states, be used thoughtfully and carefully, only when absolutely needed.

Support/Accommodation	Research \& Recommendations
	Research supports the effectiveness of the accommodation and recommends its use. The risk of the accommodation giving students an unfair advantage is low.
Handheld calculator for mathematics Minnesota's online math tests have built-in calculators. SWDs who need to use a handheld calculator test using paper materials.	According to Bouck and Bouck (2008), Fuchs, Fuchs, Eaton, Hamlett, and Karns (2000), Russell (2006), and Shaftel, Belton-Kocher, Glasnapp, and Poggio (2006): Calculators, which often are automatically included for math tests, are widely used by all students. Although research is divided on whether the accommodation provides a significant benefit to students, the use of the accommodation is strongly supported. Research supports the effectiveness of the accommodation and recommends its use. There is no risk the accommodation gives students an unfair advantage. For all students.
Large print test book IEP or 504 plan teams may select 18 or 24 point font test booklets for students with low vision or for SWDs who need to take a paper test and a standard font test booklet is not available.	According to Beattie, Grise, and Algozzine (1983), Bennett, Rock and Jirele (1987), Brown (2007), Burk (1998), Grise, Beattie, and Algozzine (1982), Perez (1980), Thurlow and Bolt (2001), and Wright and Wendler (1994): Much of the research concludes that large print tests, which are used in most states, offer little benefit. However, select studies strongly indicate that students with visual impairments and specific learning disabilities significantly benefit from this accommodation. Research supports the effectiveness of the accommodation and recommends its use. There is no risk the accommodation gives students an unfair advantage.
Mathematics manipulatives; abacus SWDs who use manipulatives or an abacus for mathematics take the test using paper materials.	According to Elliott, Kratochwill, McKevitt, and Malecki (2009): Experts are uncertain of the effectiveness and fairness of mathematics manipulatives but support the accommodation's use. Despite uncertainties, research supports the use of the accommodation. The risk of the accommodation giving students an unfair advantage is moderate.
Recording a reading test Students may record themselves reading aloud the reading test and then play it back while they take the test. This is an accommodation for SWDs and an indirect linguistic support for ELs.	Research findings differ with regard to SWD and EL. According to Crawford and Tindal (2004), Fletcher, Francis, Boudousquie, Copeland, Young, Kalinowski, and Vaughn (2006), McKevitt and Elliott (2003), and Meloy, Deville, and Fribie (2000): SWD: Studies involving SWDs and general education students reveal that the accommodation is effective in supporting all students, but especially SWDs. One study, however, indicated the accommodation may unfairly advantage some students. Research supports the effectiveness of the accommodation and recommends its use. The risk of the accommodation giving students an unfair advantage is low. According to and Acosta, Rivera, and Shafer (2008), Kopriva, Emick Hipolito-Delgago, and Cameron (2007):

Support/Accommodation	Research \& Recommendations
	EL: Experts are uncertain of the accommodation's effectiveness and conclude that reading a passage aloud gives ELs an unfair advantage; however, reading aloud only the test questions may be suitable. Despite uncertainties, research supports the use of the accommodation. The risk of the accommodation giving ELs an unfair advantage is high.
Scribe SWDs may dictate to a scribe who enters student responses into an online or paper test form. It is also possible for students to record their responses for later transcription by a scribe.	According to Thurlow and Bolt (2001): Experts recommend that SWDs, including students who use ASL, submit answers via computer, whenever possible, rather than relay answers to a scribe.
	According to Fuchs, Fuchs, Eaton, Hamlett, and Karns (2000), Koretz and Barton (2003-2004), Koretz and Hamilton (2000), MacArthur and Graham (1987), and Tippets and Michaels (1997). SWD research is limited, especially in regards to the impact a disability has on test taking. A body of research suggests, however, that SWDs benefit from the use of scribes. Certain factors, such as type and difficulty of test and whether other accommodations are in place, should also be considered.
Research supports the effectiveness of the accommodation and	
recommends its use. The risk of the accommodation giving students an	
unfair advantage is low.	

Accommodations Use Monitoring

Minnesota uses a data audit system—as well as selected field audits-to monitor the use of accommodations on its assessments. At a state level, data are reviewed for all accommodations for students who are (1) receiving special education or identified as disabled under Section 504 of the Rehabilitation Act of 1973 and (2) ELs.

Data Audit

The data collection is intended to provide MDE with the information about districts' use of accommodations on state assessments. This information allows MDE to analyze the accommodation data to draw conclusions about the use and overuse of accommodations and will inform future policy decisions and training needs regarding the use of accommodations.

The Yearbook provides an annual review of percentages of accommodations used against the number of assessments scored without accommodations. MDE continually reviews these numbers both in overall percentage and in percentage expected in specific disability categories based on past data.

Chapter 4: Reports

During and after each test administration, a number of reports are provided. During testing, preliminary results are available online as On-Demand Reports (ODRs), Student Detail Reports (SDRs), individual student reports (ISRs) and student results labels (if requested), District Student Results (DSR) files, and School Student Results (SSR) files from Minnesota's test contractor and MDE. These reports and files contain individual student assessment scores with demographics. Summary reports are also created that provide test results aggregated at school, district, and state levels. The reports focus on three types of scores: scale scores, raw scores, and achievement levels. This chapter provides an overview of the types of scores reported and a brief description of each type of report. Also provided in this chapter are guidelines for proper use of scores and cautions about misuse.

As with any large-scale assessment, the Minnesota assessments provide a point-in-time snapshot of information regarding student achievement. For that reason, scores must be used carefully and appropriately if they are to permit valid inferences to be made about student achievement. Because all tests measure a finite set of skills with a limited set of item types, placement decisions and decisions concerning student promotion or retention should be based on multiple sources of information, including but not limited to, test scores.

Information about student performance is provided on ISRs and summary reports for schools, districts and the state. This information may be used in a variety of ways. Interpretation guidelines were developed and published as a component of the release of public data; this document, the Interpretive Guide for Minnesota Assessment Reports, is available on the Individual Student Reports (ISRs) Resources page under Reporting Resources on PearsonAccess Next.

Description of Scores

Scores are the end product of the testing process. They provide information about how each student performed on the tests. Three different types of scores are used on the Minnesota assessment reports: scale scores, raw scores, and achievement levels. These three scores are related to each other. The following section briefly describes each type of score.

For reporting purposes, MDE classifies students' MCA-III or MTAS-III scores into one of several categories. These categories are Absent (ABS), Invalid-Student (INV-S), Invalid-Device (INV-D), Invalid-Other (INV-O), Medical Excuse (ME), Not Enrolled (NE), Not Attempted (NA), Not Complete (NC), Refused by Parent (REF-P), Refused by Student (REF-S), Valid (VS), and Wrong Grade (WG). Valid student cases are used for reporting purposes. The VS score code represents MCA-III students who responded to at least 90 percent of the accountability portion of the assessment, while students responding to no items receive a NA score code and students responding to one or more items but fewer than 90% of the accountability portion of the assessment receive a NC score code. For the MTAS-III, the VS score represents students for whom the test administrator had entered a score for every task, while students without an entered score for any task receive a NA score code. The INV-S score code is given when a student engages in an inappropriate activity or behavior before, during, or after testing that affects the validity of the test. The INV-D score code is given when a student accesses a cell phone or other device at any point during a test administration, or where test security is breached while using a device such as capturing test content or looking up answers. The INV-O score code is selected for misadministration's or other situations, including staff actions that compromise the validity of the test. The ME score code can be used when a student has a medical excuse for

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

not taking the test; the student must not have taken any of the test to use this code. The NE score code can be used when the test was administered in a district where a student as not enrolled.

If a student has started or completed the assessment at the time of the parent refusal, the test will be submitted as is for scoring. The district cannot invalidate the test because the portion the student completed is still valid. If a student has started an assessment and then refuses to finish it, the test will be submitted as is for scoring since the student did participate in part of the test.

For the ACCESS and Alternative ACCESS, four codes are available. Absent (ABS), Invalid (INV), Declined (DEC), and Special Education Deferred (SPD). The DEC score code is used for both student and parent refusal. For posttest editing, NE, ME, and other Minnesota-specific codes can be indicated.

Raw Score

The raw score is the sum of points earned across items on a subject-area test. In addition to total raw scores, raw scores for items that constitute a specific strand or substrand may be reported. By themselves, these raw scores have limited utility. They can be interpreted only in reference to the total number of items on a subject-area test or within a stand or substrand. They cannot be compared across tests or administrations. Several values derived from raw scores are included to assist in interpreting the raw scores: maximum points possible and aggregate averages (for school-, district-, and state-level reports). Note that for the Mathematics and Reading MCA-III, total and strand scores are computed using measurement model-based pattern scoring (i.e., scores depend on the pattern of correct/incorrect responses for the particular items taken by the student). Thus, the sum of points earned is not used to determine scale scores. Therefore, raw number-correct scores are not reported for Mathematics and Reading MCA-III.

Scale Score

Scale scores are statistical conversions of raw scores or model-based scores that maintain a consistent metric across test forms and permit comparison of scores across all test administrations within a particular grade and subject. Because scale scores adjust for different form difficulties, they can be used to determine whether a student met the standard or achievement level in a manner that is fair across forms and administrations. Schools can also use scale scores to compare the knowledge and skills of groups of students within a grade and subject across years. These comparisons can be used in assessing the impact of changes or differences in instruction or curriculum.

The scale scores for a given MCA-III subject and grade range from $G 01$ to $G 99$, where G is the grade tested. For each MCA-III assessment, scale score G50 is the cut score for Meets the Standards, and G40 is the cut score for Partially Meets the Standards. The MCA-III cut score for Exceeds the Standards can vary by grade and subject. The scale score metric for each grade and subject is determined independently of those for other grades and subjects; comparisons should not be made across grades or subjects. In the case of the Science MCA-III assessments, scale scores are transformations of raw number-correct scores. More than one raw score point may be assigned the same scale score, except at cut scores for each achievement level or at the maximum possible scale score. Pattern scoring is used to determine scale scores for Mathematics and Reading MCA-III.

The range of observed scale scores for the MTAS-III varies from year to year. The scale metric for the MTAS-III was originally set in 2007, with the cut scores for Partially Meets and Meets set at 195 and 200, respectively, for each grade and subject. In 2008, additional items were added to the MTAS-III to increase its reliability, and the scale metric and cut scores were adjusted. On the 2008 MTAS-III metric, 190 became the cut score for Partially Meets,

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

while 200 remained the scale cut for Meets. Because of the adjustments to the scale metric, 2007 MTAS-III scores cannot be compared directly to MTAS-III scores from subsequent years. As with the MCA-III, MTAS-III scale scores from different grades and subjects are not directly comparable.

The meaning of scale scores is tied to the content and achievement levels associated with a given set of Minnesota Academic Standards. Thus, MCA-II scores are not directly comparable to MCA-III scores, because those scores reflect different content and achievement standards. Similarly, when MTAS-III assessments change the academic standards to which they aligned (concomitant with the MCA-III in the same grade and subject), the scores from assessments based on different academic standards are not directly comparable.

Details about how scale scores are computed are given in Chapter 6, "Scaling."

Achievement Levels

To help parents and schools interpret scale scores, achievement levels are reported. The student's scale or raw score determines each achievement level, also sometimes referred to as performance levels. The range for an achievement level is set during the standard setting process. Each time a new test is implemented, panels of Minnesota educators set the achievement levels. For each test, certain achievement levels are designated as proficient. Table 4.1 provides a summary of the achievement levels for the Minnesota Assessment System.

Table 4.1. Achievement Levels for Minnesota Assessment System

Test	Subject	Name of Achievement Level	Proficient
MCA-III, MTAS-III	Mathematics, Reading, Science	Does Not Meet the Standards	No
		Partially Meets the Standards	No
		Meets the Standards	Yes
		Exceeds the Standards	Yes
ACCESS for ELLs	Listening, Speaking, Reading, Writing, Composite	Level 1: Entering	*
		Level 2: Emerging	*
		Level 3: Developing	*
		Level 4: Expanding	*
		Level 5: Bridging	*
		Level 6: Reaching	*
Alternate ACCESS for ELLs	Listening, Speaking, Reading, Writing, Composite	Level A1: Initiating	**
		Level A2: Exploring	**
		Level A3: Engaging	**
		Level P1: Entering	**
		Level P2: Emerging	**
		Level P3: Developing (writing test only)	**

* Proficiency requires an overall composite ≥ 4.5 with at least three of the four domains ≥ 3.5.
** No proficiency cut scores have been set.

Description of Reports

Reports resulting from administrations of the Minnesota assessments fall into two general categories, student and summary level reports. Student-level reports provide score information for individual students. Summary
reports provide information about test performance aggregated across groups of students (e.g., students in a school). The available student reports are listed in Table 4.2. Sample student reports can be found in MDE's Interpretive Guide.

Secure online reports of student and summary data are available to authorized district personnel from Minnesota's test contractor and from MDE. The secure summary reports available to schools and districts are not for public release because all student data are reported. MDE also releases extensive summary data for public users (subject to filtering when cell sizes fall below 10 students) through the MDE Data Center website at (MDE > Data Center).

Table 4.2. Student Test Reports

File or Report Name	Report Format	Applies to MCA-III and MTAS-III	Applies to ACCESS for ELLs, Alternate ACCESS for ELLs
ISR (Home Copy)	Paper	X	X
ISR (School Copy)	Online as Adobe PDF	X	X
Student Result Labels (Optional)	Paper	On request	Not available
DSR and SSR	Excel document	X	X

Student Reports

Minnesota assessment student reports provide information on a student's overall performance in each subject measured as well as a comparison of his or her performance relative to other students in the school, district, and state. For many assessments, including the MCA-III, these reports provide scale scores as well as achievementlevel designations associated with the student's performance level. Performance within the strand or substrand level is also reported for each student. The information presented in these reports can be used by parents to help them understand their child's achievement.

Individual Student Reports

The ISR is the official and final record of individual student results provided for student, parent, and teacher use. For each MCA-III subject, the ISR contains a summary page with a graphic indicating the location of a student score in relation to the four performance levels as well as summary text indicating the student's performance related to the grade-level standards, their grade-specific percentile rank, and student growth compared to the previous year. The percentile rank score is defined as the percentage of scores for the grade and subject in that year equal to or lower than the student's score. For example, a student scoring at the $75^{\text {th }}$ percentile scored as well or better than 75% of other students taking the test for the specific subject and grade in that year. For each MTAS-III subject, the ISR contains the same summary page as MCA-III, excluding the grade specific percentile rank and student growth compared to the prior year.

An individual student's earned scale score for each subject is presented in a graphical representation along with a description of the assigned achievement level next to the graphic. School, district, and/or state average scale scores are presented on the same graphic for comparison. The MCA-III ISRs provide all three averages; the MTASIII ISRs provide the state average only, appearing below the graphic. The number of students generally included
in the average drives decisions about which average scale scores are reported for a given test. For example, the number of students included in the MTAS-III Reading school-level average scale score is small for most schools; this results in large standard errors of the mean. MDE has a policy to filter information for public release if the number of students is fewer than 10. For the MTAS-III tests, the number of students is frequently quite small for school or district populations.

For each subject, the MCA-III ISR also presents descriptions for each strand for mathematics and substrand for reading as well as student performance among the categories: Below Expectations, At or Near Expectations, and Above Expectations. The MTAS-III provides the same descriptions for each strand (mathematics) or substrand (reading); however, student raw scores, maximum possible scores, and state mean raw scores for the strands and substrands as well as the total score are provided instead of the performance categories. The testing contractor for each subject provides a Learning Locator code for the MCA-III. This code can be used to select resources mapped specifically to the student's test results. The testing contractor provides a Lexile ${ }^{\circledR}$ score range for MCA-III Reading and a Quantile ${ }^{\circledR}$ score range for MCA-III Mathematics. More specifically, the upper and lower range of the predicted Lexile ${ }^{\circledR}$ measure is provided, which helps match the student with literature appropriate for his or her reading skills, and the upper and lower range of the predicted Quantile ${ }^{\circledR}$ measure is provided, which helps match the student with mathematical concepts appropriate for his or her mathematics skills. These allow the student's parents/guardians to actively participate in their student's educational process.

The ISRs for grades 3-8 Mathematics and Reading MCA-III include a table and graphic with the student performance history. Student progress scores (bars on graph) and goal progress scores (lines on graph) demonstrate progress towards career and college readiness (CCR). A student progress score at or above the goal progress score is expected to be on track to meet grade-level expectations in the next grade's coursework and is on track to demonstrate career and college readiness on a college entrance exam at the end of grade 11. The progress score is explained in more detail in Chapter 6, "Scaling."

The ISRs for grade 11 Mathematics and grade 10 Reading MCA-III include a section describing the student's MCAIII score in context of the CCR goal score for that subject. The MCA-III score and CCR goal scores are on the same scale, and a student MCA-III score at or above the goal score is considered on track to demonstrate career and college readiness in the corresponding subject on a college entrance exam at the end of grade 11.

The ISRs are provided as the final and official results to the district in two formats: one paper copy for sending home to parents and as an Adobe PDF version on DVD for school or district use. Authorized district personnel can also access the Adobe PDF version online in PearsonAccess Next. To retrieve the online Adobe PDF version of a student's ISR goes to Reporting > Published Reports in PearsonAccess Next. In On-Demand Reports in PearsonAccess Next, a preliminary version of immediate student results is present as a Student Detail Report (SDR). The results in the SDR in On-Demand Reports are considered preliminary, subject to verification by MDE. The ISRs provided to districts reflect final official accountability results for students.

Student Results Label

Student results labels include the test name, test date, student information, scale scores, and achievement level for each subject tested for a single test. The individual student labels are stickers that can be attached to a student's permanent paper file, if the district maintains one. The purpose of the student label is to provide a compact form of individual student information for recording in student files. Districts select whether they want to receive the labels in Test Administration Information in Test WES during Pretest Editing (per procedures manual).

Summary Reports

Summary reports provide information to schools and districts that may be used for evaluating programs, curriculum, and instruction of students. For example, districts may use the MCA-III school summary reports of test results by subject as one example of evidence to consider in evaluating how well their curriculum and instruction are aligned with the Minnesota Academic Standards. Summary reports are available online to authorized district personnel from MDE's Data Center. Public summary reports are also available from the Data Center.

Online Reporting System

Minnesota's test contractor's online reporting system provides performance data to authorized district personnel that are aggregated at the district, school, teacher, and roster levels, as well as for individual students. In 201718, the online reporting system is PearsonAccess Next and contains four major reporting applications: On-Demand Reports, Longitudinal Reports, Historical Student Data, and Published Reports.

1. On-Demand Reports are preliminary and provide the student's scale score and proficient level in PearsonAccess Next within 60 minutes after testing is completed for MCA-III. Information on strand or substrand strengths and weaknesses by reporting category, Learning Locators and Lexile ${ }^{\circledR}$ scores for reading are also available within the report. Authorized users can sign in to PearsonAccess Next to view the student's score and access printable student reports. These reports reflect the latest results available. These are preliminary results and once ISRs are posted, On-Demand results are unavailable.
2. Longitudinal Reports are available for authorized users in PearsonAccess Next to create reports using tools to disaggregate data over multiple years by school and student groups for MCA-III and MTAS-III. The longitudinal system allowed users to disaggregate data by subject, grade, and specific demographics. Reports are generated for score and performance level using aggregation criteria selected by user. Comparison reports are also available to compare state/district/school strand performance and achievement levels from year to year.
3. Historical Student Data includes the assessment history for students who have previously tested at the district. Historical Student Data includes a student's achievement level, scale score, performance details by strand, and test details.
4. Published Reports in PearsonAccess Next includes Benchmark Reports, which compare school- or districtlevel aggregate performance on items or benchmarks from each benchmark with those expected given overall student scores. PDF copies of the ISRs and district and school rosters are available after final test results are available to distribute. A detailed description of the procedure to calculate Benchmark Reports is given in Appendix A: Benchmark Report Calculation Resource.

Online reporting in PearsonAccess Next and Pearson Access provide dynamic data that can be used to gauge students' achievement on the Minnesota assessments. However, the data and reports in this system are not to be used for official accountability purposes. MDE provides official accountability data.

MDE Data Center

1. Secure online reports include a wide variety of reports summarizing test results at the student, school, district, and state levels and are used to provide information to authorized school and district educators and administrators. The data are reported for all students tested. For example, a different perspective on the school or district performance is provided by a disaggregated report showing average scale scores and the percentage of students proficient at each achievement level by the subgroups used for ESSA. Downloadable data files containing individual student results (DSR/SSR files) are also available to authorized district personnel.
2. Public reports. Although individual student scores are confidential by law, reports of group (aggregated) scores are considered public information and are available for general use from the MDE Data Center (MDE > Data Center). These public data include interactive reports that users can query to summarize data at the school, district, or statewide level with customizable demographic breakdowns, as well as downloadable summary data files. Student confidentiality on public documents is maintained by filtering; if any specific group (for example, English learners) consists of fewer than 10 students, mean scores and the percentage of students who are proficient are not included in reports or data files posted to the MDE website.

Appropriate Score Uses

The tests in the Minnesota Assessment System are designed primarily to determine school and district accountability related to the implementation of the Minnesota Academic Standards. They are summative measures of a student's performance in a subject at one point in time. They provide a snapshot of the student's overall achievement, not a detailed accounting of the student's understanding of specific content areas defined by the standards. Test scores from Minnesota Assessment System, when used appropriately, can provide a basis for making valid inferences about student performance. The following list outlines some of the ways the student scores can be used.

- Reporting results to parents of individual students

The information can help parents begin to understand their child's academic performance as related to the Minnesota Academic Standards.

- Evaluating student scores for placement decisions

The information can be used to suggest areas needing further evaluation of student performance. Results can also be used to focus resources and staff on a particular group of students who appear to be struggling with the Minnesota Academic Standards. Students may also exhibit strengths or deficits in strands or substrands measured on these tests. Because the strand and substrand scores are based on small numbers of items, the scores must be used in conjunction with other performance indicators to assist schools in making placement decisions, such as whether a student should take an improvement course or be placed in a gifted or talented program.

- Evaluating programs, resources, and staffing patterns

Test scores can be a valuable tool for evaluating programs. For example, a school may use its scores to help evaluate the strengths and weaknesses of a particular academic program or curriculum in their school or district as it relates to the Minnesota Academic Standards.

Individual Students

Scale scores determine whether a student's performance has met or fallen short of the proficiency criterion level. Test results can also be used to compare the performance of an individual student with the performance of a similar demographic group or to an entire school, district, or state group. For example, the score for a Hispanic student in a gifted program could be compared with the average scores of Hispanic students, gifted students, all the students on campus, or any combination of these aggregations.

Subscores provide information about student performance in more narrowly defined academic content areas. For example, individual scores on strands or substrands can provide information to help identify areas in which a student may be having difficulty as indicated by a particular test. When an area of possible weakness has been identified, supplementary data should be collected to further define the student's instructional needs.

Finally, individual student test scores must be used in conjunction with other performance indicators to assist in making placement decisions. All decisions regarding placement and educational planning for a student should incorporate as much student data as possible.

Groups of Students

Test results can be used to evaluate the performance of student groups. The data should be viewed from different perspectives and compared to district and state data to gain a more comprehensive understanding of group performance. For example, the average scale score of a group of students may show they are above the district and/or state average, yet the percentage of students who are proficient in the same group of students may be less than the district or state percentages. One perspective is never sufficient.

Test results can also be used to evaluate the performance of student groups over time. Average scale scores can be compared across test administrations within the same grade and subject area to provide insight into whether student performance is improving across years. For example, the average scale score for students taking the grade 8 Mathematics MCA-III in 2018 can be compared to any of the 2011-17 grade 8 MCA-III administrations. However, whenever drawing inferences from such comparisons, it is important to account for how changes in the testing program over the years may have influenced the testing population taking a specific test. For example, 2011 saw the introduction of the MCA-Modified exams, which meant that some students who otherwise would have taken the MCA-III now could take MCA-Modified instead. Most of those students returned to the MCA-III in 2015, when the MCA-Modified was discontinued. Consequently, when making comparisons with past administrations it is important to consider that the population taking the MCA-III changed in 2015.

Consideration must also be given to changes in test administration policies when interpreting year-to-year changes in test scores. For Mathematics MCA-III, students taking the test in online mode in 2012 were allowed up to three administrations of the assessment and could use the highest score for accountability purposes. By contrast, in 2011, 2013, and subsequent years, students were allowed only a single Mathematics MCA-III testing opportunity.

In making longitudinal comparisons, it is important to recognize that new testing programs cannot be compared to previous testing programs that assessed different academic standards. For example, results from the MCA-III cannot be directly compared to previous administrations of the MCA-II, because the MCA-III assesses different academic standards than its predecessor. The same holds true for grades 3-8 Mathematics MTAS-III, which assesses new standards beginning in 2011 and cannot be directly compared to the grades 3-8 Mathematics MTAS-

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

III from prior years, and for the Science MTAS-III, which was constructed to align to new academic standards in 2012. In 2013, all reading assessments (MCA-III, MCA-Modified, and MTAS-III) were revised to align to the 2010 Minnesota ELA Academic Standards; thus, 2013 results are not directly comparable to those of prior years' versions of those tests. In 2014, grade 11 mathematic assessments (MCA-III, MCA-Modified, and MTAS-III) were revised to align to the 2007 Minnesota Mathematics Academic Standards.

The percentages of students in each achievement level can also be compared across administrations within the same grade, subject area, and test to provide insight into whether student performance is improving across years. For example, the percentage of students in each achievement level for the grade 8 Mathematics MCA-III in 2018 can be compared to any of the 2011-17 populations, while keeping in mind changes to the testing program such as those noted above. Schools would expect the percentage of students to decrease in the Does Not Meet the Standards achievement level, while the percentages in the Meets the Standards and Exceeds the Standards achievement levels would be expected to increase; this was used to show the school or district was moving toward the previous NCLB goal of having 100 percent of students proficient by 2014; Minnesota's ESEA flexibility request waived this 2014 requirement of 100 percent proficiency for two years. Starting with the 2018 administration, the ESSA regulations apply. The caveats expressed in the previous paragraphs concerning testing program changes would also apply to achievement level comparisons across years, particularly because testing program changes in content alignment are accompanied by changes in the definition of achievement levels.

Test scores can also be used to compare the performance of different demographic or program groups (within the same subject and grade) on a single administration to determine which demographic or program group, for example, had the highest or lowest average performance, or the highest percentage of students considered proficient on the Minnesota Academic Standards. Other test scores can be used to help evaluate academic areas of relative strength or weakness. Average performance on a strand or substrand can help identify areas where further diagnosis may be warranted for a group of students.

Test results for groups of students may also be used when evaluating instructional programs; year-to-year comparisons of average scores or the percentage of students considered proficient in the program will provide useful information. Considering test results by subject area and by strand or substrand may be helpful when evaluating curriculum, instruction, and their alignment to standards because all the Minnesota assessments are designed to measure content areas within the required state standards.

Generalizations from test results may be made to the specific content domain represented by the strands or substrands being measured on the test. However, because the tests are measuring a finite set of skills with a limited set of items, any generalizations about student achievement derived solely from a particular test should be made cautiously and with full cognizance that the conclusions were based on only one test. All instruction and program evaluations should include as much information as possible to provide a more complete picture of performance.

Cautions for Score Use

Test results can be interpreted in many different ways and used to answer many different questions about a student, educational program, school, or district. As these interpretations are made, there are always cautions to consider.

Understanding Measurement Error

When interpreting test scores, it is important to remember that test scores always contain some amount of measurement error. That is, test scores are not infallible measures of student characteristics. Rather, for the fixedform tests, MCA-III Science, Data Entry forms of MCA-III Mathematics, Reading and Science, and MTAS-III Mathematics, Reading, and Science, some score variation would be expected if the same student tested across occasions using equivalent forms of the test. This effect is partly due to day-to-day fluctuations in a person's mood or energy level that can affect performance and partly a consequence of the specific items contained on a particular test form the student takes. Although all testing programs in Minnesota conduct a careful equating process (described in Chapter 7) to ensure that test scores from different forms can be compared, one form may result in a higher score for a particular student than another form. Similarly, measurement error is present for the MCA-III Mathematics and Reading tests, which are CAT based; however, because there are no fixed forms for these assessments, the measurement error for a given student depends also on the individual items that the student is administered during the assessment. Therefore, two students with the same number of items correct will likely have different scale scores and measurement errors because they are highly unlikely to have received the same items on the assessment. Similarly, starting in the 2016-17 testing year, measurement error is factored in when determining the strand performance levels. The strand performance levels will be discussed to a greater degree in Chapter 6. Because measurement error tends to behave in a fairly random fashion, when aggregating over students, these errors in the measurement of students tend to cancel out. Chapter 9, "Reliability," describes measures that provide evidence indicating that measurement error on Minnesota assessments is within a tolerable range. Nevertheless, measurement error must always be considered when making score interpretations.

Using Scores at Extreme Ends of the Distribution

As with any test, student scores at the extremes of the score range must be viewed cautiously. For example, if the maximum raw score for the grade 5 Science MCA-III is 41 and a student achieves this score, it cannot be determined whether the student would have achieved a higher score if a higher score were possible. In other words, if the test had 10 more items on it, it is difficult to know how many of those items the student would have correctly answered. This is known as a "ceiling effect." Conversely, a "floor effect" can occur when there are not enough items to measure the low range of ability. Thus, caution should be exercised when comparing students who score at the extreme ends of the distribution.

Another reason for caution in interpreting student scores at extreme ends of the distribution is the phenomenon known as regression toward the mean. Students who scored high on the test may achieve a lower score the next time they test because of regression toward the mean. (The magnitude of this regression effect is proportional to the distance of the student's score from the mean and bears an inverse relationship to reliability.) For example, if a student who scored 38 out of 40 on a test were to take the same test again, there would be 38 opportunities for him or her to incorrectly answer an item he or she answered correctly the first time, while there would only be two opportunities to correctly answer items missed the first time. If an item is answered differently, it is more likely to decrease the student's score than to increase it. The converse of this is also true for students with very low scores; the next time they test, they are more likely to achieve a higher score, and this higher score may be a result of regression toward the mean rather than an actual gain in achievement. It is more difficult for students with very high or very low scores to maintain their score than it is for students in the middle of the distribution.

Interpreting Score Means

The scale score mean (or average) is computed by summing each student's scale score and dividing by the total number of students. Although the mean provides a convenient and compact representation of where the center of a set of scores lies, it is not a complete representation of the observed score distribution. For example, very different scale-score distributions in two groups could yield similar mean scale scores. When a group's scale score mean falls above the scale score designated as the passing or proficient cut score, it does not necessarily follow that most students received scale scores higher than the cut score. It can be the case that a majority of students received scores lower than the cut score, while a small number of students got very high scores. Only when more than half of the students score at or above the particular scale cut score can one conclude that most students pass or are proficient on the test. Therefore, both the scale score mean and percentage at or above a particular scale cut score should be examined when comparing results from one administration to another.

Using Objective/Strand Level Information

Strand or substrand level information can be useful as a preliminary survey to help identify skill areas in which further diagnosis is warranted. The standard error of measurement associated with these generally brief scales makes drawing inferences from them at the individual level very suspect; more confidence in inferences is gained when analyzing group averages. When considering data at the strand or substrand level, the error of measurement increases because the number of possible items is small. In order to provide comprehensive diagnostic data for each strand or substrand, the tests would have to be prohibitively lengthened. When an area of possible weakness has been identified, supplementary data should be gathered to understand strengths and deficits.

In addition, because the tests are equated only at the total subject-area test scale score level, year-to-year comparisons of strand and/or substrand level performance should be made cautiously. Significant effort is made to approximate the overall difficulty of the strands or substrands from year to year during the test construction process, but fluctuations in difficulty can occur across administrations. Observing trends in strand and/or substrand level performance over time, identifying patterns of performance in clusters of benchmarks testing similar skills, and comparing school or district performance to district or state performance are more appropriate uses of group strand/substrand information.

Furthermore, for tests in development with new content standards, changes to the test content and the percentage of score points allotted to each standard, strand, substrand, and/or benchmark may change. Some of these changes may be significant. When changes in test content occur, comparing student performance across years is particularly difficult, and under these circumstances the advice from measurement professionals is likely to discourage making such comparisons.

Program Evaluation Implications

Test scores can be a valuable tool for evaluating programs, but any achievement test can give only one part of the picture. As addressed in Standard 13.9 in the Standards for Educational and Psychological Testing, "In evaluation or accountability settings, test results should be used in conjunction with information from other sources when the use of the additional information contributes to the validity of the overall interpretation." The Minnesota statewide tests are not all-encompassing assessments measuring every factor that contributes to the success or failure of a program. Although more accurate evaluation decisions can be made by considering all the data the test provides, users should consider test scores to be only one component of a comprehensive evaluation system.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Chapter 5: Performance Standards

Performance standards are provided to assist in the interpretation of test scores. When changes in test content occur, development of new performance standards may be required. The discussion below provides an introduction to the procedures used to establish performance standards for the Minnesota Assessment System.

Introduction

Test scores do not solely imply student competence. Rather, the interpretation of test scores permits inferences about student competence. In order to make valid interpretations, a process of evaluating expected and actual student performance on assessments must be completed. This process is typically referred to as standard setting (Jaeger, 1989). Standards are set to determine the level of performance students must demonstrate to be classified into defined achievement levels. There are four levels of achievement for the MCA-III: Does Not Meet the Standards, Partially Meets the Standards, Meets the Standards and Exceeds the Standards. Student achievement on the MTAS-III is reported using the same names for the achievement levels as those used for the MCA-III; however, for the MTAS-III, this performance is related to the Alternate Achievement Standards. The ACCESS for ELLs has six performance levels that range from one (Entering) to six (Reaching). The Alternate ACCESS for ELLs has five performance levels for the reading, listening and speaking tests and six performance levels for the writing test. The levels range from A1 (Initiating) to P2 (Emerging) or P3 (Developing).

The standard settings for the MCA-III and MTAS-III assessments were performed in accordance with specific Minnesota standards on the dates noted below.

- Grades 3-8 Mathematics MCA-III (2010 Minnesota Academic Standards in Mathematics), performed June 2011
- Grades 3-8 Mathematics MTAS-III (2007 Minnesota Alternate Achievement Standards), performed June 2011
- Science MCA-III and MTAS-III (2010 Minnesota Academic Standards in Science and Alternate Achievement Standards, respectively), performed June 2012
- Reading MCA-III and MTAS-III (2010 Minnesota Academic Standards in English Language Arts and Alternate Achievement Standards, respectively), performed June 2013
- Grade 11 Mathematics MCA-III and Grade 11 MTAS-III (2007 Minnesota Academic Standards in Mathematics and Alternate Achievement Standards, respectively), performed June 2014

An overview of the process for establishing the achievement levels for these tests is described in the following pages of this chapter. More detailed explanations of the standard setting activities can be found in the technical reports of these workshops, which may be found on the MDE website (MDE>Districts, Schools and Educators>Statewide Testing> Technical Reports).

Achievement Level Setting Activity Background

There are a variety of achievement-level setting methods, all of which require the judgment of education experts and possibly other stakeholders. These experts are often referred to as judges, participants, or panelists (the term panelist will be used here). The key differences among the various achievement-level setting methods can be conceptualized in terms of exemplar dichotomies. The most cited dichotomy is test-centered versus studentcentered (Jaeger, 1989). Test-centered methods focus panelists' attention on the test or items in the test. Panelists make decisions about how important and/or difficult test content is and set cut scores based on those decisions. Student-centered methods focus panelists' attention on the actual and expected performance of examinees or groups of examinees. Cut scores are set based on student exemplars of different levels of competency.

Another useful dichotomy is compensatory versus conjunctive (Hambleton \& Plake, 1997). Compensatory methods allow examinees who perform less well on some content to "make up for it" by performing better on other important content. Conjunctive methods require that students perform at specified levels within each area of content. There are many advantages and disadvantages to methods in each of these dichotomies, and some methods do not fall neatly into any classification.

Many achievement-level setting methods perform best under specific conditions and with certain item types. For example, the popular Modified Angoff method is often favored with selected-response (SR) items (Cizek, 2001; Hambleton \& Plake, 1997), whereas the policy-capturing method was designed specifically for complex performance assessments (Jaeger, 1995). Empirical research has repeatedly shown that different methods do not produce identical results; it is important to consider that many measurement experts no longer believe "true" cut scores exist (Zieky, 2001). Therefore, it is crucial that the method chosen meets the needs of the testing program and that subsequent achievement-level setting efforts follow similar procedures.

Descriptions of most standard setting methods detail how cut scores are produced from panelist input, but they often do not describe how the entire process is carried out. However, the defensibility of the resulting standards is determined by the description of the complete process, not just the "kernel" methodology (Reckase, 2001). There is no clear reason to choose one method or one set of procedures over others. Because of this, test developers often design the process and adapt a method to meet their specific needs.

Process Components

Selecting a Method

Different methodologies rely on different types of expertise for the facilitators and the panelists. A major consideration is the knowledge, skills, and abilities (KSA) of prospective panelists. If the panel includes people who are not familiar with instruction or the range of the student population, it may be wise to avoid methods requiring a keen understanding of what students can actually do. Selection of the method should include consideration of past efforts in the same testing program and the feasibility of carrying out the chosen method.

Selecting and Training Panelists

Panelists should be subject-matter experts, understand the examinee population, be able to estimate item difficulty, have knowledge of the instructional environment, have an appreciation of the consequences of the standards, and be representative of all the stakeholder groups (Raymond \& Reid, 2001). This is a demanding cluster of KSA, and it may be difficult to gather a panel where every member is completely qualified. It may be useful to aim for the panel as a whole to meet KSA qualifications, while allowing individual panelists to have a

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

varied set of qualities. Training should include upgrading the KSA of panelists where needed, as well as methodspecific instruction. Training should also imbue panelists with a deep, fundamental understanding of the purposes of the test, test specifications, item development specifications, and standards used to develop the items and the test.

Carrying Out the Methodology

As stated earlier, the methods are often adapted to meet the specific needs of the program. The KSA of the panel should be considered in the adaptations.

Feedback

Certain methodologies explicitly present feedback to panelists. For example, some procedures provide examinee performance data to panelists for decision-making. Other types of feedback include consequential (impact data), rater location (panelist comparisons), process feedback, and hybrid feedback (Reckase, 2001). Experts do not agree on the amount or timing of feedback, but any feedback can have influence on the panelists' ratings. Reckase (2001) suggests that feedback be spread out over rounds in order to have an effect on the panelists. Care should be taken not to use feedback to pressure panelists into decisions.

Standard Setting for Grade 11 Mathematics Minnesota Comprehensive AssessmentsSeries III and Mathematics Minnesota Test of Academic Skills

The Bookmark Standard Setting Procedure (BSSP; Lewis, Mitzel \& Green, 1996) was implemented for the MCA-III standard setting held in Saint Paul, Minnesota, on June 18-19, 2014. Achievement-level cut scores were established for Mathematics MCA-III in grade 11.

The ID Matching procedure (Ferrara, Perie, \& Johnson, 2002) was used to recommend performance standards for the Mathematics MTAS-III assessments held in Saint Paul, Minnesota, on June 18-19, 2014. Although similar to the widely implemented Bookmark method, the ID Matching procedure asks panelists to indicate which of the achievement-level descriptors is best matched by the knowledge and skill requirements necessary to respond successfully to each test item. Achievement-level cut scores were established for Mathematics MTAS-III in grade 11.

The activities of the meeting are recorded in a document titled Minnesota Assessments Summer 2014 Standard Setting: Recommended Performance Standards for Series III Mathematics Assessments. The report can be found under the heading "Standard Setting Technical Report: Grade 11 Mathematics (2014)" on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Technical Reports).

This section provides a summary of outcomes from the meeting. Minnesota's testing contractor, MDE, and MDE's National TAC worked together to design the standard setting activities in order to follow the same general procedures as the standard setting meeting for mathematics, reading, and science for MCA-III and MTAS-III. Minnesota's testing contractor facilitated the standard setting under the supervision of MDE.

Participants

MDE convened separate educator panels to recommend performance standards for the Series III Mathematics MCA-III and MTAS-III assessments. Each panel had its own facilitator and was physically separate from the other panels.

MDE invited approximately 12 participants from across Minnesota to set cut scores for each assessment. The details of the credentials and demographics of the participants can be found in the document Minnesota Assessments Summer 2014 Standard Setting: Recommended Performance Standards for Series III Mathematics Assessments.

Table Leaders

During the standard setting, participants are divided into groups, often called "tables." Each table had one table leader who had been previously selected by MDE. Table leaders were expected to keep track of the table-level discussion and represent their committee's point of view during the vertical articulation meeting. Table leaders were trained about their roles and responsibilities on Day 1 of the standard setting.

Ordered Item Booklets

Central to both the Bookmarking and ID Matching procedures is the production of an ordered item booklet (OIB). As noted previously, while the OIB is often produced from only those items in the first operational test, it is rarely the case that a single operational test administration provides a comprehensive sampling of items across the range of content standards and difficulty. While recommending standards on the entire item bank in some respects is ideal in some respects, including too many items makes review of the OIB overly burdensome. For the Mathematics MCA-III OIB, operational items common to the 2014 online and paper accommodated test form administration modes served as the base. This OIB was augmented with 21 additional operational items selected from other operational forms. These additional items were selected to complement the content distribution of the selected operational form, in terms of standards and benchmarks assessed and the item types, and to fill item difficulty gaps in the OIB. This led to an OIB that included 77 items for Mathematics MCA-III.

For the MTAS-III, Minnesota's testing contractor produced an OIB using both operational and field-test items to more fully represent the range of academic achievement encompassed within the MTAS-III item bank. The details of the OIB construction can be found in the Minnesota Assessments Summer 2014 Standard Setting: Recommended Performance Standards for Series III Mathematics Assessments.

The Standard Setting Meeting

Before beginning the standard setting activities, MDE and Minnesota's testing contractor staff briefed the committees on the purpose of the panel meeting and use of the outcomes. Specifically, panelists were advised that the principal outcome was a set of cut-score recommendations. The panelists were informed that the educator committees were one of many components in the complete policy-making process of standard setting, and their final cut-score recommendations might not be the final cut scores adopted by the Commissioner of Education. The participants were given an overview of standard setting and were introduced to the standard setting procedure they would be using (BSSP or ID Matching). Panelists then broke into their different assessment groups. Next, panelists used the previously developed achievement-level descriptors to help them generate threshold descriptors as a group. After creating the threshold descriptors and completing standard setting training and practice activities, the committee began the process of setting standards.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

The MCA-III standard setting meetings were conducted in a series of three rounds of setting bookmarks. After the Round 1 cuts were made, psychometricians evaluated results and produced feedback forms for each table and for the room as a whole. The feedback forms for each table contained summary statistics showing the median, lowest, and highest cut scores for that table, as well as all individual bookmark placements. The room feedback form contained summary statistics showing the median, lowest, and highest cut scores for each table. After completing discussions on the Round 1 feedback, panelists again worked through the OIB, placing their cut scores for Meets the Standards, followed by Partially Meets, and Exceeds. After the second round, in addition to the room form an impact data sheet containing OIB pages and the percentage of students at or above the level for each possible cut score was provided to the facilitator for reference and discussion. After completing discussions on the Round 2 feedback, panelists again worked through the OIB, placing their cut scores for Meets the Standards, followed by Partially Meets, and Exceeds.

The MTAS-III standard- setting meeting was also conducted in a series of three rounds but instead used the ID Matching method. Panelists began the standard setting process by identifying the threshold region between Partially Meets the Standards and Meets the Standards achievement levels. This entailed indicating the first item in the OIB that clearly matched the Meets the Standards ALD and the last page that clearly matched the Partially Meets ALD. The pages in between defined the threshold region in which panelists placed their cut scores. After identifying the threshold region, panelists were instructed to examine each item in the threshold region to determine the "first item that more closely matches the ALD for Meets the Standards than it matches the ALD for Partially Meets." Panelists marked that item as their cut score. Panelists were instructed to use the same process to determine the threshold region and cut scores for Partially Meets and Exceeds. The same feedback was given to the MTAS-III participants as was given to the MCA-III panelists.

A description of the activities of each of the three rounds is given below.

Round 1

After completion of the practice activities, panelists were provided with the OIB associated with their assessment. For security purposes, all books were numbered so that distributed materials could be easily monitored and accounted for. After a brief review of the format of the OIB, panelists were instructed to begin their independent review of the items. Specifically, panelists were instructed to do the following:

- Read each item in the OIB thinking about the knowledge, skills, and abilities required to answer the item correctly.
- Record comments or notes about competencies required to address a given item in the OIB.
- Think about how students of different achievement levels should perform on each item.
- MTAS-III panelists were also asked to identify the threshold region between Partially Meets the Standards and Meets the Standards achievement levels.

After the panelists completed their review, they were given a readiness survey and made their first round of recommendations. MCA-III panelists did this by placing their bookmarks for Partially Meets the Standards, Meets the Standards, and Exceeds the Standards, while keeping in mind their descriptions of the target students, the ALDs, and the Minnesota Academic Standards. MTAS-III panelists identified their threshold region, and were instructed to examine each item in the threshold region to determine the "first item that more closely matches the ALD for Meets the Standards than it matches the ALD for Partially Meets." Panelists marked that item as their cut score.

Round 2

During Round 2, participants discussed their recommendations in small groups at their tables. Panelists were provided with table-level feedback on their Round 1 recommendations, including the minimum, maximum, mean, and median recommendation associated with each level. Each table was instructed to discuss their Round 1 recommendations with the goal of identifying major sources of variation among panelists. Understanding, rather than consensus, was the ultimate goal of the discussion.

After the discussion, participants again placed their bookmarks or identified their cut scores. Participants were reminded that this is an individual activity.

Round 3

During Round 3, participants discussed their recommendations in small groups at their tables. Panelists were provided with table-level feedback on their Round 2 recommendations as well as impact data that was given to the facilitator. Each table was instructed to discuss their Round 2 recommendations with the goal of identifying major sources of variation among panelists. Understanding, rather than consensus, was the ultimate goal of the discussion.

After the discussion, participants placed their final bookmarks or identified their final cut scores. Participants were reminded that this is an individual activity.

Table 5.1. Summary of Feedback by Round

Workshop	Round	Data Presented: Anchor Grades	Data Presented: Grades With Interpolated Cuts
MCA-III	Round 2	- R1 Panelist feedback data	- R1 Panelist feedback data
	Round 3	- R2 Panelist feedback data - Series-II MCA historical impact data - Series-III MCA-III operational impact data - College and career-ready benchmark data (grade 10 MCA-III panel only)	- R2 Panelist feedback data - Series-II MCA historical impact data - Series-III MCA-III operational impact data
MTAS-III	Round 2	- R1 Panelist feedback data	- R1 Panelist feedback data
	Round 3	- R2 Panelist feedback data - Series-II MTAS historical impact data - Series-III MTAS-III operational impact data	- R2 Panelist feedback data - Series-II MTAS historical impact data - Series-III MTAS-III operational impact data

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability

 AssessmentsTable 5.2 shows the participant-recommended cut scores for MCA-III Mathematics after Round 3 . Table 5.4 shows the participant-recommended cut scores for MTAS-III Mathematics after Round 3. Cut scores are shown on the theta metric. For the MTAS-III assessments, final cut scores were identified by selecting the observed theta score nearest to the theta value associated with the panelists' recommended page number in the OIB. The nearest observed theta in the operational test form raw score to theta table is the final recommended cut. Table 5.3 and Table 5.5 show the impact data and the percentage of students in each of the four performance categories, based on the cut scores after Round 3.

Table 5.2. Participant-Recommended Cut Scores for Mathematics MCA-III

Content Area	Grade	Cut Scores (Theta Metric): Partially Meets	Cut Scores (Theta Metric): Meets	Cut Scores (Theta Metric): Exceeds
Mathematics	11	-0.5371	0.1034	0.9989

Table 5.3. Impact Data Associated with Participant-Recommended Cut Scores for MCA-III

Content Area	Grade	Does Not Meet $(\%)$	Partially Meets $\mathbf{(\%)}$	Meets $\mathbf{(\%)}$	Exceeds $\mathbf{(\%)}$
Mathematics	11	28	22	31	19

Table 5.4. Participant-Recommended Cut Scores for Mathematics MTAS-III

Content Area	Grade	Cut Scores (Theta Metric) Partially Meets	Cut Scores (Theta Metric) Meets	Cut Scores (Theta Metric) Exceeds
Mathematics	11	1.0260	1.6731	2.8329

Table 5.5. Impact Data Associated with Participant-Recommended Cut Scores for MTAS-III

Content Area	Grade	Does Not Meet $(\%)$	Partially Meets $\mathbf{(\%)}$	Meets $\mathbf{(\%)}$	Exceeds $(\%)$
Mathematics	11	30	21	39	10

Commissioner-Approved Results

After the standard setting meeting, the Minnesota Commissioner of Education reviewed the recommended cut scores for overall consistency and continuity. The commissioner for the 2014 MCA-III administration approved all of the panelist-recommended cut scores.

Standard Setting for Reading Minnesota Comprehensive Assessments-Series III and Reading Minnesota Test of Academic Skills

The Bookmark Standard Setting Procedure (BSSP; Lewis, Mitzel \& Green, 1996) was implemented for the MCA-III standard setting held in Roseville, Minnesota, on June 24-26, 2013. Achievement-level cut scores were established for MCA-III Reading in grades 3-8 and 10.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

The ID Matching procedure (Ferrara, Perie, \& Johnson, 2002) was used to recommend performance standards for the Reading MTAS-III assessments held in Roseville, Minnesota, on June 27-28, 2013. Although similar to the widely implemented Bookmark method, the ID Matching procedure asks panelists to indicate which of the ALDs is best matched by the knowledge and skill requirements necessary to respond successfully to each test item. Achievement-level cut scores were established for Reading in grades 3-8 and 10.

The activities of the meeting are documented in a paper titled Minnesota Assessments Summer 2013 Standard Setting: Recommending Performance Standards for Series-III Reading Assessments. The report can be found under the heading "Standard Setting Technical Report: Reading (2013)" on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing> Technical Reports).

This section provides a summary of outcomes from the meeting. Minnesota's testing contractor, MDE, and MDE's National TAC worked together to design the standard setting activities in order to follow the same general procedures as the standard setting meeting for mathematics, reading and science for MCA-II and MTAS. Minnesota's testing contractor facilitated the standard setting under the supervision of MDE.

Participants

MDE convened separate educator panels to recommend performance standards for the Series III Reading MCA-III and MTAS-III assessments. Each panel was further divided into subpanels by grade band (3-4, 5-6, 7-8 and 10). Each subpanel had its own facilitator and was physically separate from the other subpanels.

MDE invited approximately 10 participants from across Minnesota to set cut scores in each grade band. Each grade band had a lower grade and an upper grade for which panelists set standards. The details of the credentials and demographics of the participants can be found in the Minnesota Assessments Summer 2013 Standard Setting: Recommending Performance Standards for Series-III Reading Assessments.

Table Leaders

During the standard setting, participants are divided into groups, often called "tables." Each table had one table leader who had been previously selected by MDE. Table leaders were expected to keep track of the table-level discussion and represent their committee's point of view during the vertical articulation meeting. Table leaders were trained about their roles and responsibilities on Day 1 of the standard setting.

Ordered Item Booklets

Central to both the Bookmarking and ID Matching procedures is the production of an OIB. As noted previously, while the OIB is often produced from only those items in the first operational test, it is rarely the case that a single operational test administration provides a comprehensive sampling of items across the range of content standards and difficulty. While recommending standards on the entire item bank may in some respects be ideal, including too many items makes review of the OIB overly burdensome. For the MCA-III Reading OIB, operational items from one of the 2013 test administration online fixed forms served as the base. For grades $3-8$, the OIB was augmented with two additional operational passages and corresponding items selected from other operational forms. MDE selected additional passages for inclusion in the OIB that complemented the content distribution of the selected operational form, in terms of standards and benchmarks assessed and the item types, and that targeted test
information gaps in the OIB. This led to OIBs that included 59-70 items across grades 3-8. At grade 10, performance standards were recommended based on the single paper form, so that the core of the OIB comprised the operational items contained in that form. The grade 10 paper OIB was augmented using one field-test passage and associated items from that form, which led to a total of 57 items. For the grades 5-8 an OIB was created based on one of the two forms and additional field-test questions that had been administered on the 2013 tests. This led to OIBs with 47-53 items across the grades. For the MTAS-III, Minnesota's testing contractor similarly produced an OIB using both operational and field-test items to more fully represent the range of academic achievement encompassed within the MTAS-III item bank. The details of the OIB construction can be found in the Minnesota Assessments Summer 2013 Standard Setting: Recommending Performance Standards for Series-III Reading Assessments.

The Standard Setting Meeting

Before beginning the standard setting activities, MDE and Minnesota's testing contractor staff briefed the committees on the purpose of the panel meeting and use of the outcomes. Specifically, panelists were advised that the principal outcome was a set of cut-score recommendations. The panelists were informed that the educator committees were one of many components in the complete policy-making process of standard setting, and their final cut-score recommendations might not be the final cut scores adopted by the Commissioner of Education. The participants were given an overview of standard setting and were introduced to the standard setting procedure they would be using (BSSP or ID Matching). Panelists then broke into their grade-level groups. Next, panelists used the previously developed ALDs to help them generate threshold descriptors as a group. After coming up with the threshold descriptors and completing standard setting training and practice activities, the committee began the process of setting standards.

The MCA-III standard setting meetings were conducted in a series of three rounds of setting bookmarks. After the Round 1 cuts were made, psychometricians evaluated results and produced feedback forms for each table and for the room as a whole. The forms for each table contained summary statistics showing the median, lowest, and highest cut scores for that table, as well as all individual bookmark placements. The room form contained summary statistics showing the median, lowest, and highest cut scores for each table. After completing discussions on the Round 1 feedback, panelists again worked through the OIB, placing their cut scores for Meets the Standards, followed by Partially Meets, and Exceeds. After the second round, in addition to the room form an impact data sheet containing OIB pages and the percentage of students at or above the level for each possible cut score was provided to the facilitator for reference and discussion. After completing discussions on the Round 2 feedback, panelists again worked through the OIB, placing their cut scores for Meets the Standards, followed by Partially Meets, and Exceeds.

The MTAS-III standard setting meeting was also conducted in a series of three rounds but alternatively used the ID Matching method. Panelists began the standard setting process by identifying the threshold region between Partially Meets the Standards and Meets the Standards achievement levels. This entailed indicating the first item in the OIB that clearly matched the Meets the Standards ALD and the last page that clearly matched the Partially Meets ALD. The pages in between defined the threshold region in which panelists placed their cut scores. After identifying the threshold region, panelists were instructed to examine each item in the threshold region to determine the "first item that more closely matches the ALD for Meets the Standards than it matches the ALD for Partially Meets." Panelists marked that item as their cut score. Panelists were instructed to use the same process to determine the threshold region and cut scores for Partially Meets and Exceeds. The same feedback was given to the MTAS-III participants as was given to the MCA-III panelists.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

A description of the activities of each of the three rounds is given below.

Round 1

After completion of the practice activities, panelists were provided with the OIB associated with their grade. For security purposes, all books were numbered so that distributed materials could be easily monitored and accounted for. After a brief review of the format of the OIB, panelists were instructed to begin their independent review of the items. Specifically, panelists were instructed to do the following:

1. Read each item in the OIB thinking about the knowledge, skills, and abilities required to answer the item correctly.
2. Record comments or notes about competencies required to address a given item in the OIB.
3. Think about how students of different achievement levels should perform on each item.
4. MTAS-III panelists were also asked to identify the threshold region between Partially Meets the Standards and Meets the Standards achievement levels.

After the panelists completed their review, they were given a readiness survey and proceeded to make their first round of recommendations. MCA-III panelists did this by placing their bookmarks for Partially Meets the Standards, Meets the Standards, and Exceeds the Standards, while keeping in mind their descriptions of the target students, the ALDs, and the Minnesota Academic Standards. MTAS-III panelists identified their threshold region and were instructed to examine each item in the threshold region to determine the "first item that more closely matches the ALD for Meets the Standards than it matches the ALD for Partially Meets." Panelists marked that item as their cut score.

Round 2

During Round 2, participants discussed their recommendations in small groups at their tables. Panelists were provided with table-level feedback on their Round 1 recommendations, including the minimum, maximum, mean, and median recommendation associated with each level. Each table was instructed to discuss their Round 1 recommendations with the goal of identifying major sources of variance among panelists. Understanding, rather than consensus, was the ultimate goal of the discussion.

After the discussion, participants again placed their bookmarks or identified their cut scores. Participants were reminded that this is an individual activity.

Round 3

During Round 3, participants discussed their recommendations in small groups at their tables. Panelists were provided with table-level feedback on their Round 2 recommendations as well as impact data that was given to the facilitator. Each table was instructed to discuss their Round 2 recommendations with the goal of identifying major sources of variance among panelists. Understanding, rather than consensus, was the ultimate goal of the discussion.

After the discussion, participants placed their final bookmarks or identified their final cut scores. Participants were reminded that this is an individual activity. Table 5.6 summarizes feedback by round.

Table 5.6. Summary of Feedback by Round

Workshop	Round	Data Presented: Anchor Grades	Data Presented: Grades With Interpolated Cuts
MCA-III	Round 2	- R1 Panelist feedback data	- R1 Panelist feedback data
	Round 3	- R2 Panelist feedback data - Series-II MCA historical impact data - Series-III MCA-III operational impact data - College and career-ready benchmark data (grade 10 MCA-III panel only)	- R2 Panelist feedback data - Series-II MCA historical impact data - Series-III operational impact data
MTAS-III	Round 2	- R1 Panelist feedback data	- R1 Panelist feedback data
	Round 3	- R2 Panelist feedback data - Series-II MTAS historical impact data - Series-III MTAS-III operational impact data	- R2 Panelist feedback data - Series-II MTAS historical impact data - Series-III MTAS-III operational impact data

Table 5.7 shows the participant-recommended cut scores for MCA-III Reading after final moderation. Table 5.8 shows the participant-recommended cut scores for MTAS-III Reading after final moderation. Cut scores are shown on the theta metric. For the MTAS-III assessments, final cut scores were identified by selecting the nearest observable theta to the theta value associated with the panelists' recommended page number in the OIB. The nearest observable theta in the operational test form raw score to theta table is the final recommended cut.

Table 5.7. Participant-Recommended Cut Scores (Final Moderation) for Reading MCA-III

Content Area	Grade	Cut Scores (Theta Metric): Partially Meets	Cut Scores Theta Metric): Meets	Cut Scores Theta Metric): Exceeds
	3	-0.6589	-0.1085	1.1921
	4	-0.8084	-0.0495	1.1556
	5	-1.1292	-0.3252	1.0237
	6	-0.8162	-0.1754	0.9008
	7	-0.6654	-0.0325	1.0741
	8	-0.6514	-0.0261	1.0228
		-0.9714	-0.2318	0.8172

Table 5.8. Participant-Recommended Cut Scores (Final Moderation) for Reading MTAS-III

Content Area	Grade	Cut Scores (Theta Metric) Partially Meets	Cut Scores (Theta Metric) Meets	Cut Scores (Theta Metric) Exceeds
	Reading	3	0.6611	1.1660
	4	1.1928	1.6441	2.6145
	5	0.8677	1.5322	3.6884
	6	0.9286	1.7583	3.5801
	7	1.1819	2.3916	3.0936
	8	1.1021	1.9319	3.7007
	10	0.8784	1.6991	2.9514

Table 5.9 and 5.10 show the impact data, or the percentage of students in each of the four performance categories, based on the cut scores after final moderation, for MCA-III and MTAS-III Reading, respectively.

Table 5.9. Impact Data Associated with Participant-Recommended Cut Scores (Final Moderation) for MCA-III

Content Area	Grade	Does Not Meet $\mathbf{(\%)}$	Partially Meets $(\%)$	Meets $(\%)$	Exceeds $(\%)$
	3	25	18	44	13
	4	21	25	40	14
	5	15	22	46	18
	6	21	21	37	21
	7	26	22	37	16
	8	26	21	35	18

Table 5.10. Impact Data Associated with Participant-Recommended Cut Scores (Final Moderation) for MTAS-III

Content Area	Grade	Does Not Meet $\mathbf{(\%)}$	Partially Meets $\mathbf{(\%)}$	Meets $\mathbf{(\%)}$	Exceeds $\mathbf{(\%)}$
Reading	3	17	12	47	24
	4	20	12	24	44
	5	16	15	52	17
	6	17	14	39	30
	7	11	24	26	39
	8	17	18	36	29
	10	18	17	28	38

Vertical Articulation and Moderation

Following Round 3 bookmarking for the initial grades, a vertical moderation session was conducted to allow table leaders to evaluate recommended cut scores in the context of a system of standards across grade levels. Following evaluation of recommended cut scores across the initial grade levels (grades 3, 5, 7, and 10 for MCA-III and MTASIII), table leaders from each of the panels could elect to modify the recommended cut scores to better articulate performance standards across grades. Following Round 3 for the remaining grades (grades 4, 6, and 8 for MCA-III and MTAS-III), a final moderation session was held to allow table leaders to evaluate the entire system of performance standards and make any final revisions.

Commissioner-Approved Results

After the standard setting meeting, the Minnesota Commissioner of Education reviewed the recommended cut scores for overall consistency and continuity. The Commissioner for the 2013 MCA-III administration approved all of the panelist-recommended cut scores.

Standard Setting for Science Minnesota Comprehensive Assessments-Series III and Minnesota Test of Academic Skills

The Bookmark Standard Setting Procedure (BSSP; Lewis et al., 1996) was implemented for the MCA-III standard setting held in Roseville, Minnesota, on June 25-26, 2012. Achievement-level cut scores were established for science in grades 5, 8 and high school.

The ID Matching procedure (Ferrara, Perie, \& Johnson, 2002) was used to recommend performance standards for the Science MTAS-III assessments held in Roseville, Minnesota, on June 27-28, 2012. Although similar to the widely implemented Bookmark method, the ID Matching procedure asks panelists to indicate which of the ALDs is best matched by the knowledge and skill requirements necessary to respond successfully to each test item. Achievement-level cut scores were established for science in grades 5,8 and high school.

The activities of the meeting are documented in a paper titled Minnesota Assessments Summer 2012 Standard Setting: Recommending Performance Standards in Grades 5, 8, and High School Science. The report can be found under the heading "Standard Setting Technical Report: Science MCA-III and MTAS" on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Technical Reports).

This section provides a summary of outcomes from the meeting. Minnesota's testing contractor, MDE, and MDE's National TAC worked together to design the standard setting activities in order to follow the same general

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

procedures as the standard setting meeting for Mathematics, Reading, and Science MCA-II and MTAS-III. Minnesota's testing contractor facilitated the standard setting under the supervision of MDE.

Participants

MDE convened one panel for the Science MCA-III standard setting workshop and a second panel to recommend performance standards for the Science MTAS-III assessment. Each panel was further divided into subpanels by grade (5,8 and high school). Each subpanel had its own facilitator and was physically separate from the other subpanels.

MDE invited approximately 30 participants from across Minnesota to set cut scores in each test. The details of the credentials and demographics of the participants can be found in the report Minnesota Assessments Summer 2012 Standard Setting: Recommending Performance Standards in Grades 5, 8, and High School Science.

Table Leaders

During the standard setting, participants are divided into groups, often called "tables." Each table had one table leader who had been previously selected by MDE. Table leaders were expected to keep track of the table-level discussion and represent their committee's point of view during the vertical articulation meeting. Table leaders were trained about their roles and responsibilities on Day 1 of the standard setting.

Ordered Item Booklets

Central to both the Bookmarking and ID Matching procedures is the production of an OIB. As noted previously, while the OIB is often produced from only those items in the first operational test, it is rarely the case that a single operational test administration provides a comprehensive sampling of items across the range of content standards and difficulty. And while recommending standards on the entire item bank may in some respects be ideal, including too many items makes review of the OIB overly burdensome. For the grades 5 and 8 Science MCA-III assessments, Minnesota's testing contractor developed an augmented OIB that was built on a proportional test blueprint that included 70 items. The high school Science MCA-III assessment contained sufficient items so it was not necessary to augment the OIB. For the MTAS-III, the test contractor similarly produced an OIB using both operational and field-test items to more fully represent the range of academic achievement encompassed within the MTAS-III item bank. The details of the OIB construction can be found in the report Minnesota Assessments Summer 2012 Standard Setting: Recommending Performance Standards in Grades 5, 8, and High School Science.

The Standard Setting Meeting

Before beginning the standard setting activities, MDE and Minnesota's testing contractor staff briefed the committees on the purpose of the panel meeting and use of the outcomes. Specifically, panelists were advised that the principal outcome was a set of cut-score recommendations. The panelists were informed that the educator committees were one of many components in the complete policy-making process of standard setting, and their final cut-score recommendations might not be the final cut scores adopted by the Commissioner of Education. The participants were given an overview of standard setting and were introduced to the standard setting procedure they would be using (BSSP or ID Matching). Panelists then broke into their grade-level groups. Next, panelists used the previously developed ALDs to help them generate threshold descriptors as a group. After

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

coming up with the threshold descriptors and completing standard setting training and practice activities, the committee began the process of setting standards.

The MCA-III standard setting meeting was conducted in a series of two rounds of setting bookmarks. After the Round 1 cuts were made, psychometricians evaluated results and produced feedback forms for each table and for the room as a whole. The forms for each table contained summary statistics showing the median, lowest, and highest cut scores for that table, as well as all individual bookmark placements. The room form contained summary statistics showing the median, lowest, and highest cut scores for each table. In addition, an impact data sheet containing OIB pages and the percentage of students at or above the level for each possible cut score was provided to panelists for reference and discussion. After completing discussions on the Round 1 feedback, panelists again worked through the OIB, placing their cut scores for Meets the Standards, followed by Partially Meets and Exceeds.

The MTAS-III standard setting meeting was also conducted in a series of two rounds but alternatively used the ID Matching method. Panelists began the standard setting process by identifying the threshold region between Partially Meets the Standards and Meets the Standards achievement levels. This entailed indicating the first item in the OIB that clearly matched the Meets the Standards ALD and the last page that clearly matched the Partially Meets ALD. The pages in between defined the threshold region in which panelists placed their cut scores. After identifying the threshold region, panelists were instructed to examine each item in the threshold region to determine the "first item that more closely matches the ALD for Meets the Standards than it matches the ALD for Partially Meets." Panelists marked that item as their cut score. Panelists were instructed to use the same process to determine the threshold region and cut scores for Partially Meets and Exceeds. The same feedback was given to the MTAS-III participants as was given to the MCA-III panelists. After completing discussions of the Round 1 feedback, panelists again worked through the OIB, placing their cut scores for Meets the Standard, followed by Partially Meets and Exceeds.

A description of the activities of each of the three rounds is given below.

Round 1

After completion of the practice activities, panelists were provided with the OIB associated with their grade. For security purposes, all books were numbered so that distributed materials could be easily monitored and accounted for. After a brief review of the format of the OIB, panelists were instructed to begin their independent review of the items. Specifically, panelists were instructed to do the following:

1. Read each item in the OIB thinking about the knowledge, skills, and abilities required to answer the item correctly.
2. Record comments or notes about competencies required to address a given item in the OIB.
3. Think about how students of different achievement levels should perform on each item.
4. MTAS-III panelists were also asked to identify the threshold region between Partially Meets the Standards and Meets the Standards achievement levels.

After the panelists completed their review, they were given a readiness survey and proceeded to make their first round of recommendations. MCA-III panelists did this by placing their bookmarks for Partially Meets the Standards, Meets the Standards, and Exceeds the Standards, while keeping in mind their descriptions of the target students, the ALDs and the Minnesota Academic Standards. MTAS-III panelists identified their threshold region and were

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments
instructed to examine each item in the threshold region to determine the "first item that more closely matches the ALD for Meets the Standard than it matches the ALD for Partially Meets." Panelists marked that item as their cut score.

Round 2

During Round 2, participants discussed their recommendations in small groups at their tables. Panelists were provided with table-level feedback on their Round 1 recommendations, including the minimum, maximum, mean, and median recommendation associated with each level. Each table was instructed to discuss their Round 1 recommendations with the goal of identifying major sources of variance among panelists. Understanding, rather than consensus, was the ultimate goal of the discussion.

After the discussion, participants again placed their bookmarks or identified their cut scores. Participants were reminded that this is an individual activity.

Table 5.11 shows the participant-recommended cut scores for MCA-III Science, as taken from Round 2. Table 5.13 shows the participant-recommended cut scores for MTAS-III Science, as taken from Round 2. Table 5.12 and Table 5.14 show the impact data associated with the cut scores shown in in their respective tables (Table 5.11 and Table 5.13). Cut scores are shown on the theta metric.

Table 5.11. Participant-Recommended Cut Scores (Round 2) for Science MCA-III

Content Area	Grade	Cut Scores (Theta Metric): Partially Meets	Cut Scores (Theta Metric): Meets	Cut Scores (Theta Metric): Exceeds
	5	-0.81	-0.44	0.53
	8	-0.59	0.32	1.51
	HS	-0.69	0.07	1.04

Table 5.12. Impact Data Associated with Participant-Recommended Cut Scores for Science MCA-III

Content Area	Grade	Does Not Meet $(\%)$	Partially Meets $\mathbf{(\%)}$	Meets $(\%)$	Exceeds $(\%)$
Science	5	19.2	13.7	33.4	33.7
	8	27.2	29.5	33.5	9.9
	HS	23.2	25.3	34.3	17.3

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Table 5.13. Participant-Recommended Cut Scores (Round 2) for Science MTAS-III

Content Area	Grade	Cut Scores (Theta Metric): Partially Meets	Cut Scores (Theta Metric): Meets	Cut Scores (Theta Metric): Exceeds
Science	5	0.82	1.64	3.68
	8	0.61	1.12	2.87
	HS	0.33	1.33	1.86

Table 5.14. Impact Data Associated with Participant-Recommended Cut Scores for Science MTAS-III

Content Area	Grade	Does Not Meet $(\%)$	Partially Meets $\mathbf{(\%)}$	Meets $\mathbf{(\%)}$	Exceeds $(\%)$
Science	5	13.7	15.4	50.0	21.0
	8	13.0	9.3	49.2	28.5
	HS	13.4	21.2	20.7	44.7

Commissioner-Approved Results

After the standard setting meeting, the Minnesota Commissioner of Education reviewed the recommended cut scores for overall consistency and continuity. The final cut scores approved by the commissioner for the 2012 Science MCA-III administration are given in Table 5.15 below. Impact data associated with the final cut scores are reported in Table 5.16.

Table 5.15. Commissioner-Approved Science MCA-III Cut Scores

Content Area	Grade	Cut Scores (Theta Metric): Partially Meets	Cut Scores (Theta Metric): Meets	Cut Scores (Theta Metric): Exceeds
Science	5	-0.81	-0.09	1.35
	8	-0.59	0.32	1.51
	HS	-0.69	0.07	1.04

Table 5.16. Impact Data Associated with Commissioner-Approved Science MCA-III Cut Scores

		Percentage of Students in Achievement Level: Does Not Meet $(\%)$	Percentage of Students in Achievement Level:	Percentage of Students in Achievement Level: Meets Contially Meets $\mathbf{(\%)}$	Percentage of Students in Achievement Level: Exceeds $(\%)$
Science	Grade	(\%)			
	5	20.1	23.1	44.9	11.9
	8	27.2	29.5	33.5	9.9
	HS	23.2	25.3	34.3	17.3

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

The final cut scores approved by the commissioner for the 2012 Science MTAS-III administration are given in Table 5.17. Impact data associated with the final cut scores are reported in Table 5.18.

Table 5.17. Commissioner-Approved Science MTAS-III Cut Scores

Content Area	Grade	Cut Scores (Theta Metric): Partially Meets	Cut Scores (Theta Metric): Meets	Cut Scores (Theta Metric): Exceeds
	5	0.82	1.64	3.68
	8	0.61	1.12	2.87
	HS	0.33	1.33	2.36

Table 5.18. Impact Data Associated with Commissioner-Approved Science MTAS-III Cut Scores

Content Area	Grade	Percentage of Students in Achievement Level: Does Not Meet (\%)	Percentage of Students in Achievement Level: Partially Meets (\%)	Percentage of Students in Achievement Level: Meets (\%)	Percentage of Students in Achievement Level: Exceeds (\%)
Science	5	13.7	15.4	50.0	21.0
	8	13.0	9.3	49.2	28.5
	HS	13.4	21.2	31.2	34.2

Standard Setting for Grades 3-8 Mathematics Minnesota Comprehensive Assessments-

 Series IIIThe Bookmark Standard Setting Procedure (BSSP; Lewis et al., 1996) was implemented for the MCA-III standard setting held in Roseville, Minnesota, on June 27-29, 2011. Achievement-level cut scores were established for Mathematics in grades 3-8. The activities of the meeting are documented in a paper titled Standard Setting Technical Report for Minnesota Assessments: Mathematics MCA-III, Mathematics MCA-Modified, Mathematics MTAS, Reading MCA-Modified. The report can be found under the heading "Standard Setting Technical Report (2011)" on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Technical Reports).

This section provides a summary of outcomes from the meeting. Minnesota's testing contractor, MDE, and MDE's National TAC worked together to design the standard setting activities in order to follow the same general procedures as the standard setting meeting for Mathematics and Reading MCA-II. Minnesota's testing contractor facilitated the standard setting under the supervision of MDE.

Participants

MDE invited approximately 14-15 participants from across Minnesota to set cut scores in each grade band. Each grade band had a lower grade and an upper grade for which panelists set standards. The details of the credentials and demographics of the participants can be found in the Standard Setting Technical Report for Minnesota Assessments: Mathematics MCA-III, Mathematics MCA-Modified, Mathematics MTAS, Reading MCA-Modified.

Table Leaders

During the standard setting, participants are divided into groups, often called "tables." Each table had one table leader who had been previously selected by MDE. Table leaders were expected to keep track of the table-level discussion and represent their committee's point of view during the vertical articulation meeting. Table leaders were trained about their roles and responsibilities on Day 1 of the standard setting.

Ordered Item Booklets

The OIB contained 60 operational items from the 2011 MCA-III exams that spanned the range of content, item types, and difficulty represented on a typical test. The details of the OIB construction can be found in the Standard Setting Technical Report for Minnesota Assessments: Mathematics MCA-III, Mathematics MCA-Modified, Mathematics MTAS, Reading MCA-Modified.

The Standard Setting Meeting

Before beginning the standard setting activities, MDE and Minnesota's testing contractor staff briefed the committees on the purpose of the panel meeting and use of the outcomes. Specifically, panelists were advised that the principal outcome was a set of cut-score recommendations. The panelists were informed that the educator committees were one of many components in the complete policy-making process of standard setting, and their final cut-score recommendations might not be the final cut scores adopted by the Commissioner of Education. The participants were given an overview of standard setting and were introduced to the BSSP. Panelists then broke into their grade-level groups. Next, panelists used the previously developed ALDs to help them generate threshold descriptors as a group. After coming up with the threshold descriptors and completing standard setting training and practice activities, the committee began the process of setting standards. The standard setting meeting was conducted in a series of three rounds of setting bookmarks. Rounds 1 and 2 recommendations were first completed for the lower grade followed by Rounds 1 and 2 for the upper grade. Round 3 recommendations were made for both grades concurrently after the review of Round 2 impact across grades. A description of the activities of each of the three rounds is given below.

Round 1

After completion of the practice activities, panelists were provided with the OIB associated with the lower grade in their grade band. For security purposes, all books were numbered so that distributed materials could be easily monitored and accounted for. After a brief review of the format of the OIB, panelists were instructed to begin their independent review of the items. Specifically, panelists were instructed to do the following:

1. Read each item in the OIB thinking about the knowledge, skills, and abilities required to answer the item correctly.
2. Record comments or notes about competencies required to address a given item in the OIB.
3. Think about how students of different achievement levels should perform on each item.

After the panelists completed their review for the lower grade they completed a readiness survey and proceeded to make their first round of recommendations by placing their bookmarks for Partially Meets the Standards, Meets the Standards and Exceeds the Standards, while keeping in mind their descriptions of the target students, the ALDs, and the Minnesota Academic Standards.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Round 2

During Round 2, participants discussed their bookmark placements in small groups at their tables. Panelists were provided with table-level feedback on their Round 1 recommendations, including the minimum, maximum, mean, and median recommendation associated with each level. Each table was instructed to discuss their Round 1 recommendations with the goal of identifying major sources of variance among panelists. Understanding, rather than consensus, was the ultimate goal of the discussion.

After the discussion, participants again placed their bookmarks. Participants were reminded that bookmark placement is an individual activity.

Following placing bookmarks for Round 2 of the lower grade, Round 1 and Round 2 were repeated for the upper grade.

Round 3

At the beginning of Round 3, historical impact or relevant impact data were presented to the panelists as external reference. For MCA-III, 2006-10 MCA-II impact data were presented. Then, results based on Round 2 recommendations were provided for both the lower and upper grade levels. First, table and group level summary data were distributed for the lower grade. Next, the impact data associated with the panelists' median recommendations for the lower-grade band were presented for discussion. As a group, panelists were given the opportunity to discuss and react to the recommendations and impact associated with the lower-grade level. They were then presented with this same information and data for the upper-grade level. After the results for each grade were reviewed separately, the facilitator presented the total group impact data for the two grades side by side. Panelists were asked to think about whether the observed impact made sense in light of the ALDs, the test taking population, and the requirements of the assessment.

Table leaders were reminded to take notes throughout the impact discussions so that they could accurately represent the impressions of their committee at the vertical articulation meeting. After group discussion panelists were asked to make their final, Round 3 recommendations. Panelists were reminded that they must be able to defend any changes from a content perspective and should not arbitrarily change their rating hoping to affect impact. After Round 3, panelists were asked to check in their materials and complete the meeting evaluation. This was the end of the regular by grade-level standard setting activities. Complete details on the standard setting process followed can be found in the Standard Setting Technical Report for Minnesota Assessments: Mathematics MCA-III, Mathematics MCA-Modified, Mathematics MTAS, Reading MCA-Modified.

Table 5.19 shows the participant-recommended cut scores, as taken from participants' Round 3 bookmark placements. Cut scores are shown on the theta metric. Table 5.20 shows the impact data associated with the cut scores shown in Table 5.19.

Table 5.19. Participant-Recommended Cut Scores (Round 3) for Mathematics MCA-III

Content Area	Grade	Cut Scores (Theta Metric): Partially Meets	Cut Scores (Theta Metric): Meets	Cut Scores (Theta Metric): Exceeds
	3	-1.21	-0.51	0.61
	4	-1.05	-0.43	0.42
	5	-0.86	-0.03	1.04
	6	-0.72	0.06	0.95
	7	-1.19	0.08	0.95
	8	-0.82	-0.03	0.84

Table 5.20. Impact Data Associated with Participant-Recommended Cut Scores

Content Area	Grade	Does Not Meet (\%)	Partially Meets $\mathbf{(\%)}$	Meets (\%)	Exceeds $\mathbf{(\%)}$
Mathematics	3	14	17	41	28
	4	17	17	32	34
	5	21	27	36	15
	6	25	27	30	17
	7	14	38	30	18
	8	22	26	31	21

Vertical Articulation

Articulation panelists are stakeholders in the results of the assessment system from a broad range of perspectives. Members of an articulation panel include representatives from teacher and administrator professional education organizations, business, higher education, the Minnesota state legislature, parent organizations and the community at large. The role of the articulation panel is to review the recommendations of the content experts and make further recommendations based on the effect that the results would have on the educational system and its members. A subset of the panelists, who participated in standard setting, as well as other stakeholders, participated in the vertical articulation.

Minnesota's testing contractor staff provided an orientation for the stakeholders who did not participate in the grade-level standard setting activities. Standard setting methods, processes, and relevant materials were provided so that stakeholders could get an overview of the work that had been completed. Next, stakeholders joined the table leaders in the respective committees for the vertical articulation process.

The steps in the vertical articulation process were as follows:

1. Panelists reviewed the ALDs associated with all grades.
2. Panelists reviewed historical or relevant impact for the assessment.
3. As a group, the panelists discussed their expectations for impact across the grade levels in light of the ALDs and content assessed in each grade.
4. The group reviewed the impact associated with the Round 3 recommended cut scores across all grades and then discussed the extent to which the data mirrored their expectations.
5. As a group the committee discussed how/if the cut scores should be adjusted to provide for impact more consistent with their expectations.
6. Panelists were instructed that, after the meeting, their percentages recommendations would be compared to the content recommendations to make sure that the vertical articulation recommendations are within the range of variability from the content recommendations.
7. Panelists made independent recommendations as to the percentage of students testing in 2011 that they believed should fall in each level for each grade. Panelists were reminded that the goal was to make a recommendation that considered both the content-based ratings (from Round 3) and their expectations.
8. Impact recommendations were entered and the median recommended impact percentages associated with each achievement level in a grade were provided for review and discussion.
9. The panelists were asked to discuss whether the median impact percentages appropriately represented expected impact for the test taking population. The result was a final set of impact recommendations for each assessment.
10. Panelists completed evaluations.

After the completion of vertical articulation, the final recommended impact for each grade within an assessment was mapped back to the obtained 2011 frequency distribution to identify the raw scores or IRT theta values that would provide for impact as similar to that recommended as possible.

Table 5.21 below shows the cut scores from the vertical articulation. Table 5.22 on the next page shows the impact data associated with the cut scores shown in Table 5.21.

Table 5.21. Vertical Articulation Panel's Smoothed Cut Scores for Mathematics MCA-III

Content Area	Grade	Cut Scores (Theta Metric): Partially Meets	Cut Scores (Theta Metric): Meets	Cut Scores (Theta Metric): Exceeds
Mathematics	3	-1.22	-0.52	0.60
	4	-1.06	-0.44	0.57
	5	-0.88	-0.04	1.01
	6	-0.75	0.03	0.96
	7	-0.91	0.03	0.94
	8	-0.83	-0.03	0.83

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Table 5.22. Impact Data Associated with Articulation Panel's Smoothed Cut Scores

Content Area	Grade	Does Not Meet (\%)	Partially Meets $\mathbf{(\%)}$	Meets (\%)	Exceeds (\%)
Mathematics	3	14	17	41	28
	4	17	17	37	29
	5	21	27	36	16
	6	24	27	32	17
	7	20	30	32	18
	8	22	26	31	21

Commissioner-Approved Results

After the standard setting meeting, the Minnesota Commissioner of Education reviewed the recommended cut scores for overall consistency and continuity. The final cut scores approved by the commissioner for the 2011 MCA-III administration are given in Table 5.23 below. Impact data associated with the final cut scores are reported in Table 5.24.

Table 5.23. Commissioner-Approved Cut Scores for Mathematics MCA-III

Content Area	Grade	Cut Scores (Theta Metric): Partially Meets	Cut Scores (Theta Metric): Meets	Cut Scores (Theta Metric): Exceeds
Mathematics	3	-1.22	-0.52	0.60
	4	-1.06	-0.44	0.57
	5	-0.88	-0.04	1.01
	6	-0.75	0.03	0.96
	7	-0.91	0.03	0.94
	8	-0.83	-0.03	0.83

Table 5.24. Impact Data Associated with Commissioner-Approved Cut Scores
$\left.\begin{array}{|c|c|c|c|c|c|}\hline & & \begin{array}{c}\text { 2006 Percentage } \\ \text { of Students in } \\ \text { Achievement } \\ \text { Level: }\end{array} & \begin{array}{c}\text { 2006 Percentage } \\ \text { of Students in } \\ \text { Achievement } \\ \text { Level: } \\ \text { Does Not Meet } \\ \text { (\%) }\end{array} & \begin{array}{c}\text { 2006 Percentage } \\ \text { (\%) Students in } \\ \text { Achievement } \\ \text { Level: } \\ \text { (\%) }\end{array} & \begin{array}{c}\text { 2006 Percentage } \\ \text { of Students in } \\ \text { Achievement } \\ \text { Level: }\end{array} \\ \text { Content Area } & \text { Grade }\end{array} \begin{array}{c}\text { Exceeds } \\ \text { (\%) }\end{array}\right]$

Standard Setting for Grades 3-8 Mathematics Minnesota Test of Academic Skills

Because the MTAS-III is composed of a small number of observations of student achievement, the test design is not ideal for the use of the Bookmark Standard Setting Procedure, which was used for the Mathematics MCA-III. Instead, the Modified Angoff, a test-centered standard setting method (Jaeger, 1989) that has been used successfully in many states and by many publishers, along with some features of the Reasoned Judgment method (Kingston, Kahl, Sweeney, \& Bay, 2001), was used. The standard setting meeting was held in Roseville, Minnesota, on June 29-30, 2011. Achievement-level cut scores were established for Mathematics in grades 3-8. The activities of the meeting are documented in a paper titled Standard Setting Technical Report for Minnesota Assessments: Mathematics MCA-III, Mathematics MCA-Modified, Mathematics MTAS, Reading MCA-Modified. The report can be found at the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Technical Reports),or is available from MDE upon request.

This section provides a summary of outcomes from the meeting. Minnesota's testing contractor, MDE, and MDE's National TAC worked together to design the standard setting activities. Minnesota's testing contractor facilitated the standard setting under the supervision of MDE.

Participants

MDE invited approximately 12-14 participants from across Minnesota to set cut scores in each grade band. Each grade band had a lower grade and an upper grade for which panelists set standards. The invitation approach differed from that of the Mathematics MCA-III because approximately half of the invited participants were educators involved in special education either through academic specialty or classroom experience. The details of the credentials and demographics of the participants can be found in the Standard Setting Technical Report for Minnesota Assessments: Mathematics MCA-III, Mathematics MCA-Modified, Mathematics MTAS, Reading MCAModified.

Table Leaders

During the standard setting, participants were divided into groups, called "tables." Each table had one table leader that had been previously selected by MDE. Table leaders were expected to keep track of the table-level discussion and represent their committee's point of view during the vertical articulation meeting. Table leaders were trained about their roles and responsibilities on Day 1 of the standard setting.

Task Book

The task book contained all of the operational tasks from the 2011 MTAS-III. The tasks were ordered in the same sequence as they appeared on the test.

The Standard Setting Meeting

Before beginning the standard setting activities, MDE and Minnesota's testing contractor staff briefed the committees on the purpose of the panel meeting and use of the outcomes. Specifically, panelists were advised that the principal outcome was a set of cut score recommendations. The panelists were informed that the educator committees were one of many components in the complete policy-making process of standard setting, and their final cut-score recommendations might not be the final cut scores adopted by the Commissioner of Education. The participants were given an overview of standard setting and were introduced to the Modified Angoff standard setting methodology. Panelists then broke into their grade-level groups. Next, panelists used the previously developed ALDs to help them generate threshold descriptors as a group. After coming up with the

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

threshold descriptors and completing standard setting training and practice activities, the committee began the process of setting standards. The standard setting meeting was conducted in a series of three rounds, with the first two rounds using Modified Angoff and the third round using Reasoned Judgment. Rounds 1 and 2 recommendations were first completed for the lower grade, followed by Rounds 1 and 2 for the upper grade. Round 3 recommendations were made for both grades concurrently after the review of Round 2 impact across grades. A description of the activities of each of the three rounds is given below.

Round 1

After completion of the practice activities, panelists were provided with the task book associated with the lower grade in their grade band. For security purposes, all books were numbered so that distributed materials could be easily monitored and accounted for. After a brief review of the format of the task book, panelists were instructed to begin their independent review of the tasks. Specifically, panelists were instructed to do the following:

1. Read each task in the book thinking about the knowledge, skills, and abilities required to answer the item correctly.
2. Record comments or notes about competencies required to address a given task in the book.
3. Think about how students of different achievement levels should perform on each item.

After the panelists completed their review for the lower grade they completed a readiness survey and proceeded to make their first round of recommendations using Modified Angoff for Partially Meets the Standards, Meets the Standards and Exceeds the Standards, while keeping in mind their descriptions of the target students, the ALDs and the Minnesota Academic Standards.

Round 2

During Round 2, participants discussed their Round 1 recommendations in small groups at their tables. Panelists were provided with table-level feedback on their Round 1 recommendations, including the minimum, maximum, mean, and median recommendation associated with each level. Each table was instructed to discuss their Round 1 recommendations with the goal of identifying major sources of variance among panelists. Understanding, rather than consensus, was the ultimate goal of the discussion.

After the discussion, participants made their Round 2 recommendations. Participants were reminded that making their recommendations is an individual activity.

Following making recommendations for Round 2 of the lower grade, Round 1 and Round 2 were repeated for the upper grade.

Round 3

At the beginning of Round 3, historical impact or relevant impact data were presented to the panelists as external reference. For MTAS-III, 2006-10 MCA-II impact data were presented as well as preliminary impact data from Mathematics MCA-III. Then, results based on Round 2 recommendations were provided for both the lower and upper grade levels. First, table- and group-level summary data were distributed for the lower grade. Next, the impact data associated with the panelists' median recommendations for the lower-grade were presented for discussion. As a group, panelists were given the opportunity to discuss and react to the recommendations and impact associated with the lower grade level. They were then presented with this same information and data for
the upper grade level. After the results for each grade were reviewed separately, the facilitator presented the total group impact data for the two grades side by side. Panelists were asked to think about whether the observed impact made sense in light of the ALDs, the test taking population, and the requirements of the assessment.

Table leaders were reminded to take notes throughout the impact discussions so that they could accurately represent the impressions of their committee at the vertical articulation meeting. After group discussion panelists were asked to make their final, Round 3 recommendations using the Reasoned Judgment methodology. Panelists were reminded that they must be able to defend any changes from a content perspective and should not arbitrarily change their rating in the hope to affect impact. After Round 3 panelists were asked to check in their materials and complete the meeting evaluation. This was the end of the regular by grade-level standard setting activities. Complete details on the standard setting process followed can be found in the Standard Setting Technical Report for Minnesota Assessments: Mathematics MCA-III, Mathematics MCA-Modified, Mathematics MTAS, Reading MCA-Modified. Table 5.25 shows the participant-recommended cut scores, as taken from participants' Round 3 judgment. Cut scores are shown on the raw score metric. Table 5.26 shows the impact data associated with the cut scores shown in Table 5.25.

Table 5.25. Participant-Recommended Cut Scores (Round 3) for Mathematics MTAS-III

Content Area	Grade	Cut Scores: Partially Meets	Cut Scores: Meets	Cut Scores: Exceeds
Mathematics	3	13	17	24
	4	14	17	24
	5	12	19	25
	6	11	17	24
	7	12	18	21
	8	12	16	21

Table 5.26. Impact Data Associated with Participant-Recommended Cut Scores

Content Area	Grade	Does Not Meet $\mathbf{(\%)}$	Partially Meets $\mathbf{(\%)}$	Meets $\mathbf{(\%)}$	Exceeds $(\%)$
Mathematics	3	15	13	38	34
	4	14	8	52	26
	5	12	31	45	12
	6	15	24	51	11
	7	15	30	28	27
	8	18	12	37	33

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Vertical Articulation

Articulation panelists are stakeholders in the results of the assessment system from a broad range of perspectives. Members of an articulation panel include representatives from teacher and administrator professional education organizations, business, higher education, the Minnesota state legislature, parent organizations, and the community at large. The role of the articulation panel is to review the recommendations of the content experts and make further recommendations based on the effect that the results would have on the educational system and its members. A subset of the panelists, who participated in standard setting, as well as other stakeholders, participated in the vertical articulation.

Minnesota's testing contractor staff provided an orientation for the stakeholders who did not participate in the grade-level standard setting activities. Standard setting methods, processes, and relevant materials were provided so that stakeholders could get an overview of the work that had been completed. Next, stakeholders joined the table leaders in the respective committees for the vertical articulation process.

The steps in the vertical articulation process were as follows:

1. Panelists reviewed the ALDs associated with all grades.
2. Panelists reviewed historical or relevant impact for the assessment.
3. As a group, the panelists discussed their expectations for impact across the grade levels in light of the ALDs and content assessed in each grade.
4. The group reviewed the impact associated with the Round 3 recommended cut scores across all grades and then discussed the extent to which the data mirrored their expectations.
5. As a group, the committee discussed how/if the cut scores should be adjusted to provide for impact more consistent with their expectations.
6. Panelists were instructed that, after the meeting, their percentages recommendations would be compared to the content recommendations to make sure that the vertical articulation recommendations were within the range of variability from the content recommendations.
7. Panelists made independent recommendations as to the percentage of students testing in 2011 that they believed should fall in each level for each grade. Panelists were reminded that the goal was to make a recommendation that considered both the content-based ratings (from Round 3) and their expectations.
8. Impact recommendations were entered and the median recommended impact percentages associated with each achievement level in a grade were provided for review and discussion.
9. The panelists were asked to discuss whether the median impact percentages appropriately represented expected impact for the test taking population. The result was a final set of impact recommendations for each assessment.
10. Panelists completed evaluations.

After the completion of vertical articulation, the final recommended impact for each grade within an assessment was mapped back to the obtained 2011 frequency distribution to identify the raw scores or IRT theta values that would provide for impact as similar to that recommended as possible. Table 5.27 shows the cut scores from the vertical articulation. Table 5.28 shows the impact data associated with the cut scores shown in Table 5.27.

Table 5.27. Vertical Articulation Panel's Smoothed Mathematics MTAS-III Cut Scores

Content Area	Grade	Cut Scores: Partially Meets	Cut Scores: Meets	Cut Scores: Exceeds
Mathematics	3	13	17	24
	4	14	18	24
	5	12	19	25
	6	11	17	23
	7	12	18	21
	8	12	17	21

Table 5.28. Impact Data Associated with Articulation Panel's Smoothed Cut Scores

Content Area	Grade	Does Not Meet $\mathbf{(\%)}$	Partially Meets $(\%)$	Meets $(\%)$	Exceeds $(\%)$
	3	15	13	38	34
	4	14	13	47	26
	5	12	31	45	12
	6	15	24	45	17
	7	15	30	28	27
	8	18	18	32	33

Commissioner-Approved Results

After the standard setting meeting, the Minnesota Commissioner of Education reviewed the recommended cut scores for overall consistency and continuity. The final cut scores approved by the commissioner for the 2011 grades 3-8 Mathematics MTAS-III administration are given in Table 5.29 below. Impact data associated with the final cut scores are reported in Table 5.30 on the next page.

Table 5.29. Commissioner-Approved Mathematics MTAS-III Cut Scores

Content Area	Grade	Cut Scores Partially Meets Raw Score	Cut Scores Partially Meets Theta	Cut Scores Meets Raw Score	Cut Scores Meets Theta	Cut Scores Exceeds Raw Score	Cut Scores Exceeds Theta
Mathematics	3	13	0.2223	17	0.9200	24	2.3096
	4	14	0.5616	18	1.2686	24	2.6098
	5	12	0.1670	19	1.5449	25	3.1260
	6	11	0.1852	17	1.6021	23	2.7431
	7	12	0.5059	18	1.6167	21	2.1074
	8	12	0.4167	17	1.4165	21	2.1020

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Table 5.30. Impact Data Associated with Commissioner-Approved Cut Scores

		2011 Percentage of Students in Achievement Level:	2011 Percentage of Students in Achievement Level: Does Not Meet (\%)	2011 Percentage of Students in Achievement Level: Meets (\%)	2011 Percentage of Students in Achievement Level:
Content Area	Grade	Exceeds (\%)			
Mathematics	3	15	13	38	34
	4	14	13	47	26
	5	12	31	45	12
	6	15	24	45	17
	7	15	30	28	27
	8	18	18	32	33

Chapter 6: Scaling

The Minnesota assessments, such as the MCA-III and the MTAS-III, may be referred to as standards-based accountability assessments. The tests are constructed to adhere rigorously to content standards defined by MDE and Minnesota educators. For each subject and grade level, the content standards specify the subject matter the students should know and the skills they should be able to perform. In addition, as described in Chapter 5, performance standards are defined to specify how much of the content standards students must demonstrate mastery of in order to achieve proficiency. Constructing tests to content standards ensures the tests assess the same constructs from one year to the next. However, although test forms across years may all measure the same content standards, it is inevitable the forms will vary slightly in overall difficulty or in other psychometric properties. Similarly, in the case of the adaptive MCA-III Mathematics and Reading assessments, there are no forms so the items selected by the CAT algorithm all meet content requirements. Additional procedures are necessary to guarantee the equity of performance standards from one year to the next. These procedures create derived scores through the process of scaling (which is addressed in this chapter) and the equating of test forms (Chapter 7, "Equating and Linking").

Rationale

Scaling is the process in which student performance is associated with some ordered value, typically a number. The most common and straightforward way to score a test is to simply use the student's total number of correct answers. This initial score is called the raw score. Although the raw number-correct score is conceptually simple, it can be interpreted only in terms of a particular set of items. When new test forms are administered in subsequent administrations, other types of derived scores must be used to compensate for any differences in the difficulty of the items and to allow direct comparisons of student performance between administrations. Consequently, the raw score is typically mathematically transformed (that is, scaled) to another metric on which test forms from different years are equated. Some tests, like the MCA-III Mathematics assessment, do not use the raw score but instead use a model-based score as the initial score. However, tests like the MCA-III also tend to report on a scale-score metric for ease of interpretation. Because the Minnesota assessments are standards-based accountability assessments, the end result of the scaling process should be an achievement level that represents the degree to which students meet the performance standards. For accountability assessments, such as the MCA-III and the MTAS-III, the final scaling results are a designation of Does Not Meet the Standards, Partially Meets the Standards, Meets the Standards, or Exceeds the Standards.

Measurement Models

IRT is used to derive the scale scores for all of the Minnesota tests. IRT is a general theoretical framework that models test responses resulting from an interaction between students and test items. The advantage of using IRT models in scaling is that all of the items measuring performance in a particular content area can be placed on the same scale of difficulty. Placing items on the same scale across years facilitates the creation of equivalent forms each year.

IRT encompasses a number of related measurement models. Models under the IRT umbrella include the Rasch Partial Credit (RPC; Masters, 1982), the two-parameter logistic model (2PL; Lord \& Novick, 1968), and the threeparameter logistic model (3PL; Lord \& Novick, 1968), as well as many others. A good reference text that describes commonly used IRT models is van der Linden and Hambleton (1997). These models differ in the types of items they can describe. Models designed for use with test items scored as right or wrong are called dichotomous models. These models are used with MC, gridded-response, and technology-enhance items. Models designed for

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

use with items that allow multiple scores are called polytomous models. Both dichotomous and polytomous models are used for Minnesota assessments.

The models used on the Minnesota assessments can be grouped into two families. One family is the Rasch models, which include the dichotomous Rasch model for MC items and the RPC model for constructed-response items. Although the dichotomous Rasch model is mathematically a special case of the RPC model, for expository purposes the models are treated separately below. The second family of models is labeled 2PL/3PL and includes the 3PL model for MC items, and the 2PL model for gridded-response items. Each model is described in the following sections.

Rasch Models

The dichotomous Rasch model can be written as the following mathematical equation, where the probability ${ }_{\left(P_{i j}\right)}$ of a correct response for person i taking item j is given by:

$$
\begin{equation*}
P_{i j}=\frac{\exp \left(\theta_{i}-b_{j}\right)}{1+\exp \left(\theta_{i}-b_{j}\right)}=\frac{1}{1+\exp \left[-\left(\theta_{i}-b_{j}\right)\right]} \tag{6.1}
\end{equation*}
$$

Student ability is represented by the variable θ (theta) and item difficulty by the model parameter b. Both θ and b are expressed on the same metric, ranging over the real number line, with greater values representing either greater ability or greater item difficulty. This metric is called the θ metric or θ scale. Typically, in Rasch scaling the θ metric is centered with respect to the particular item pool so that a value of zero represents average item difficulty. Often, but not always, the variable θ is assumed to follow a normal distribution in the testing population of interest.

The easiest way to depict the way item response data are represented by the Rasch model is graphically. Figure 6.1 displays the item response functions for two example items. The x-axis is the θ scale and the y-axis is the probability of a correct answer for the item. The solid curve on the left represents an item with a b-value of -1.0 , and the dotted curve represents an item with a b-value of 0.0 . A b-value of 0.0 signifies that a student of ability (that is, θ) $=0.0$ has a 50 percent probability of correctly answering the question. The item with a b-value of -1.0 is an easier item, as a student with an ability (i.e., θ) of -1.0 has a 50 percent probability of making a correct answer. Students with abilities two or more theta units above the b-value for an item have a high probability of getting the answer correct, whereas students with abilities two or more theta units below the b-value for an item have a low probability of getting the answer correct.

Figure 6.1. Rasch Item Response Functions for Two Example Dichotomous Items

The RPC model is a polytomous generalization of the dichotomous Rasch model. The RPC model is defined via the following mathematical measurement model where, for a given item involving m score categories, the probability of person i scoring x on item j (where k is an index across categories) is given by:

$$
\begin{equation*}
P_{i j x}=\frac{\exp \sum_{k=0}^{x}\left(\theta_{i}-b_{j k}\right)}{\sum_{v=0}^{m_{j}^{-1}} \exp \sum_{k=0}^{v}\left(\theta_{i}-b_{j k}\right)} \tag{6.2}
\end{equation*}
$$

where $x=0,1,2, \ldots, m_{j}-1$, and

$$
\begin{equation*}
\sum_{k=0}^{0}\left(\boldsymbol{\theta}_{i}-\boldsymbol{b}_{j k}\right)=\mathbf{0} \tag{6.3}
\end{equation*}
$$

The RPC model provides the probability of a student scoring x on task j as a function of the student's ability (θ) and the category boundaries $\left(b_{j k}\right)$ of the $m_{j}-1$ steps in task j.

The RPC model essentially employs a dichotomous Rasch model for each pair of adjacent score categories. This gives rise to several b-parameters (called category boundary parameters) instead of a single b-parameter (item difficulty or location) in the dichotomous case. The item difficulty parameter in the dichotomous Rasch model gives a measure of overall item difficulty. In the polytomous model, the category boundary parameters provide a measure of the relationship between the response functions of adjacent score categories.

Figure 6.2 provides an example for a sample four-point polytomous item. The figure graphs the probability that a student at a given ability obtains a score in each of the five score categories. The "zero" curve, for example, plots the probability a student receives a score point zero on the ability scale. The category boundary parameter b_{1} (= -1.5) is the value of θ at the crossing point of the "zero" response function and the " 1 " response function. Similarly, $\mathrm{b}_{2}(=-0.3)$ is the value of θ at the crossing point of the response functions for score points " 1 " and " 2, " $\mathrm{b}_{3}(=0.5$) is the value of θ at the crossing point of the response functions for score points " 2 " and " 3 " and $b_{4}(=2)$ is the value of θ at the crossing point of the response functions for score points " 3 " and " 4 ." The sample item has a fair spread of category boundary parameters, which is an indication of a well-constructed item. Category boundaries that are too close together may indicate the score categories are not distinguishing students in an effective manner.

Figure 6.2. Rasch Partial Credit Model Category Response Functions for Example Polytomous Item with $b_{1}=-$

$$
1.5, b_{2}=-0.3, b_{3}=0.5 \text { and } b_{4}=2
$$

Figure 6.3 displays the average score for every ability value for the sample item given in Figure 6.2. The figure shows that students with ability $\theta=0$ should, on average, receive a score of " 2 " on the item, whereas students with ability at about 1 should average about 2.5 points on the item.

Figure 6.3. Rasch Partial Credit Model Item Expected Score Function for an Example Four-Point Item

Calibration of items for the Rasch models is achieved using the computer program WINSTEPS (Linacre, 2006). The program estimates item difficulty for MC items and category boundary parameters for polytomously scored (for example, constructed-response) items.

2PL/3PL Models

This section discusses three IRT measurement models: the 3PL model and the 2PL model. The 3PL and 2PL models are used with dichotomous items and are each generalizations of the dichotomous Rasch model.

The 2PL/3PL models differ from the Rasch models in that the former permits variation in the ability of items to distinguish low-performing and high-performing students. This capability is quantified through a model parameter, usually referred to as the a-parameter. Traditionally, a measure of an item's ability to separate high-performing from low-performing students has been labeled the "discrimination index" of the item, so the a-parameter in IRT models is sometime called the discrimination parameter. Items correlating highly with the total test score best separate the low- and high-performing students.

In addition to the discrimination parameter, the $3 P \mathrm{PL}$ model also includes a lower asymptote (c-parameter) for each item. The lower asymptote represents the minimum expected probability an examinee has of correctly answering a MC item. For items scored right/wrong that are not MC, such as gridded-response items, the 2PL model is appropriate. The 2PL model is equivalent to fixing the lower asymptote of the 3PL model to zero.

The 3PL model is mathematically defined as the probability of person i correctly answering item j :

$$
\begin{equation*}
P_{i j}=c_{j}+\frac{1-c_{j}}{1+\exp \left(-1.7 a_{j}\left(\theta_{i}-b_{j}\right)\right)} \tag{6.4}
\end{equation*}
$$

where a_{j}, b_{j}, c_{j} are the item's slope (discrimination), location (difficulty), and lower asymptote parameters, and θ i is the ability parameter for the person (Lord, 1980). The difficulty and ability parameters carry the same general meaning as in the dichotomous Rasch model. As stated before, the 2PL model can be defined by setting the c parameter to zero. The 1.7 term in the expression is an arbitrary scaling factor that has historically been employed because inclusion of this term results in probabilities closely matching another dichotomous IRT model called the normal-ogive model. Equation 6.4 can be reduced to the standard Rasch equation (6.1) by setting $c=0, a=1$, and removing the 1.7 scaling constant.

Examples of 3PL model item-response functions are presented in Figure 6.4. Several differences from the Figure 6.1 Rasch model curves can be observed. First, a distinguishing characteristic of IRT models for which discrimination parameters allow the slopes of the curves to vary is that the item-response functions of two items may cross. The crossing of item-response functions cannot occur under the Rasch model because it requires that all items in a test have the same slope. Figure 6.4 shows the effect of crossing curves. For students in the central portion of the θ distribution, sample item 2 is expected to be more difficult than sample item 1 . However, students with $\theta>1.0$ or $\theta<-3.0$ have a higher expected probability of getting item 2 correct.

The figure also shows item 2 clearly has a non-zero asymptote ($c=0.25$). Item 1 also has a non-zero asymptote (c $=0.15)$. However, due to the relatively mild slope of the curve, the asymptote is only reached for extreme negative θ values that are outside the graphed range. Finally, and in contrast to the Rasch or 2PL models, in the 3PL model the b-parameter does not indicate the point on the θ scale where the expected probability of a correct response is 0.50 . However, in all three models the b-parameter specifies the inflection point of the curve and can serve as an overall indicator of item difficulty.

Figure 6.4. 3PL Item Response Functions for Two Sample Dichotomous Items

Calibration of MCA-III items for the 2PL/3PL models is achieved using the computer program IRTPRO 3 (Cai, Thissen, \& du Toit, 2015). IRTPRO estimates parameters simultaneously for dichotomous and polytomous items via a statistical procedure known as marginal maximum likelihood. Simultaneous calibration of these items automatically puts their parameter estimates on the same scale. That scale is created on the assumption that test takers have a mean ability of approximately zero and a standard deviation of approximately one.

Model Selection

Regardless of the particular IRT models used for the items on the test, the relationship between expected performance and student ability is described by a key IRT concept called the test response function. Figure 6.5 displays what a test response function might look like for a reading test on the MCA-III. For each level of ability in the range of -4.0 to +4.0 , the curve for the overall test score indicates expected performance on the numbercorrect scale. The graph shows that average ability students ($\theta=0.0$) can be expected to get a score of around 25 points. For a particular ability, the expected score is called the true score. The use of the test response function is an integral part of the scaling process for all of the Minnesota tests, as will be described in the next section. In addition to the overall test score function, response functions for the two subscores are also graphed in Figure 6.5.

Figure 6.5. Sample Test Response Function for Reading MCA-III

In deciding how to model responses for a particular test, measurement specialists choose from among the developed IRT models based on a number of considerations. Some considerations include the number and type or format of items that comprise the test, expected calibration sample size, and other general measurement theory concerns. The RPC model is well suited to model the performance task-based MTAS-III. The strengths of the Rasch models include their simplicity and flexibility. The Rasch model was specified for these tests because they are administered to relatively few students. The Rasch model generally performs better than more complex models when sample sizes are small.

Historically, the MCA tests were scaled using the Rasch model. With the advent of the MCA-II, the timing was right to consider using a different measurement model. The planned additional psychometric activities that included creating a vertical scale and linking the scales between the MCA-II and MTELL suggested a more complex model
should be considered. After seeking the advice of the National TAC, MDE determined the 3PL and Generalized Partial Credit models would be used for the MCA-II. The 2PL and 3PL model has been continued with the move to MCA-III tests.

Scale Scores

The purpose of the scaled score system is to convey accurate information about student performance from year to year. The scaled score system used for the Minnesota assessments is derived from either the number-correct score or a measurement model-based score. These two initial scores are described below.

Number-Correct Scoring

The number-correct score is calculated by summing the number of points the student is awarded for each item. Basing scores on number correct is easy to understand and to explain. However, test forms will undoubtedly vary slightly in difficulty across years, thus a statistical equating process is used to ensure the forms yield scores that are comparable. Because IRT is used in the equating process, in order for scores to be comparable across years, IRT must also play a role in assigning scores. The student's number-correct score is transformed to an equated ability scale score through true score equating (Kolen \& Brennan, 2004, Chapter 6). The true score equating procedure used is described in Chapter 7, "Equating and Linking" (in the "Latent-Trait Estimation" section). The spring 2012 administration is the base year for MCA-III and MTAS-III Science assessments. In administrations after 2012, the ability score metric is equated back to the spring 2012 base administration. In the case of assessments based on the Rasch measurement model (MTAS-III), the number right and model-based scoring approaches are mathematically equivalent. The base year for Mathematics MTAS-III grades $3-8$ was 2011. The base year for Reading MTAS-III was 2013. The base year for Mathematics MTAS-III grade 11 is 2014.

Measurement Model-Based Scoring

The measurement model used for Minnesota's assessments-IRT—permits the use of a statistically sophisticated method that is commonly referred to as pattern scoring because the scoring procedure takes the pattern of correct and incorrect responses into account. The Mathematics and Reading MCA-III assessments make use of pattern scoring to determine student scores. Unlike number-correct scoring, where students who get the same number of dichotomously scored questions correct receive the same score, pattern scoring of tests based on the 2 PL or 3 PL model rarely results in students receiving the same scale score even though they have the same number-correct score, because typically they differ in the particular items they answered correctly. Additionally, a student that gets more difficult items correct will get a higher score than a student that gets the same number of easy items correct. Because pattern scoring utilizes information from the entire student response pattern and gives greater weight to more discriminating items, this scoring method theoretically provides greater precision than number-correct scoring. The pattern scoring procedure used is described below in the "Latent-Trait Estimation" section.

Latent-Trait Estimation

For the Minnesota assessments, a measurement model-based score is obtained that represents student proficiency. This is called the latent-trait estimate or the theta score. Different Minnesota assessments obtain the theta score in different ways. The MCA-III Mathematics and Reading assessments use a pattern scoring procedure, described below, to directly obtain the theta score from student responses of individual items. For other Minnesota assessments, a transformation from the raw total correct score to the theta scale is made. After the theta score is obtained, it is then transformed to the reported scale score. The theta-to-reported score
transformation is described earlier in this chapter. Pattern scoring and the raw-to-theta transformation are described in this section.

Pattern Scoring

In pattern scoring the entire pattern of correct and incorrect student responses is taken into account. Unlike number-correct scoring, where students who get the same number of dichotomously scored questions correct receive the same score, in pattern scoring such students rarely receive the same score, as even students getting the same number correct typically differ in the particular items they got correct or incorrect. Because pattern scoring uses information from the entire student response pattern, this type of scoring produces more reliable scores than does number-correct scoring.

Students taking the MCA-III Mathematics and Reading assessments are assigned maximum likelihood scores, which are based on the items the student answers correctly and the difficulty of those items. The Minnesota assessments include multiple item types, much as MC and TE items. We can write the likelihood for scoring based on a generalized IRT model based on a mixture of items types as:

$$
L(\theta)=L(\theta)^{M C} L(\theta)^{C R}
$$

where

$$
\begin{gather*}
L(\theta)^{M C}=\prod_{i=1}^{N}\left[c_{i}+\frac{1-c_{i}}{1+\exp \left[-D a_{i}\left(\theta-b_{i}\right)\right]}\right]^{x_{i}}\left[1-c_{i}+\frac{1-c_{i}}{1+\exp \left[-D a_{i}\left(\theta-b_{i}\right)\right]}\right]^{1-x_{i}} \tag{6.5}\\
L(\theta)^{C R}=\prod_{i=1}^{N} \frac{\exp \sum_{k=0}^{x_{i}}\left(\theta_{i}-b_{j k}\right)}{\sum_{v=0}^{m_{j}-1} \exp \sum_{k=0}^{v}\left(\theta_{i}-b_{j k}\right)} \tag{6.6}
\end{gather*}
$$

where N is the number of items and all other terms have been previously mentioned.
By treating the item parameters as fixed, we subsequently find $\arg \max \theta L(\theta)$ as the student's theta (i.e., maximum likelihood estimator [MLE]) given the set of items administered to the student.

Raw-to-Theta Transformation

The raw-to-theta transformation can be described as a reverse table lookup on the test characteristic function. The test characteristic function can be defined as

$$
\begin{equation*}
\operatorname{TCF}(\theta)=\sum_{j=1}^{N} \sum_{K=0}^{m-1} k P_{i k}(\theta) \tag{6.7}
\end{equation*}
$$

where j is an index of the N items on the test, k is an index of the m score categories for an item and $P_{i k}(\theta)$ is the item response model probability correct for the item. The test characteristic function is the expected raw score given the person proficiency value θ and the item-parameter values of the IRT model.

Figure 6.6 presents the test characteristic function for a hypothetical 40 -item MC test. For example, based on Figure 6.7 , people with θ proficiency equal to 2.0 would, on average, have a raw score of 33 . Consequently, using reverse table lookup, a raw score of 33 would be assigned an estimated theta score of 1.0.

A variety of estimation procedures can be used to find the theta value that corresponds to a particular raw score. The Newton-Raphson method is a popular choice. For the Minnesota Assessment System, computer software packages such as WINSTEPS (Linacre, 2006) or POLYEQUATE (Kolen, 2004) are used to find the transformations.

Figure 6.6. Example Test Characteristic Function for 40 -Item Test

Minnesota Comprehensive Assessments-Series III Scaling

In order to simplify comparison of student scores across years, the equated student ability estimates are transformed mathematically to a more convenient metric. For the MCA-III, the scaled metric ranges from 1 to 99 and is prefixed by the student's grade. For example, grade 5 test scores range from 501 to 599, and grade 8 test scores range from 801 to 899 . The passing score to achieve Meets the Standards is set to g 50 , where g is the grade prefix. The cut score to achieve Partially Meets the Standards is set to g40. At grade 3, for example, students scoring below 340 are designated Does Not Meet the Standards, students with scores from 340 to 349 are designated Partially Meets the Standards, and a score of 350 to the next cut score is necessary to achieve Meets the Standards. The Exceeds the Standards achievement level score is not set to the same value across grades, but it generally ranges from g60 to g65.

Minnesota Comprehensive Assessments-Series III Transformation

The general transformation formula used to obtain scale scores for the MCA-III is the following:

$$
\begin{equation*}
\text { Scale Score }=\left(\theta-\theta_{\text {Std } 2}\right) * \text { Spread }+ \text { Center }+ \text { Grade } * 100 \tag{6.8}
\end{equation*}
$$

Where θ is the post-equated ability estimate, $\theta_{\text {Std } 2}$ is the ability cut score between Partially Meets the Standards and Meets the Standards, Center is set to be 50, Grade is the grade of the administered test, and Spread is a numerical constant unique for each subject-grade combination.

For MCA-III, the transformation formula uses cut scores on the θ scale (see Chapter 5, "Performance Standards"). For Mathematics and Reading MCA-III, the Commissioner of Education approved cut scores that were already on the θ scale. For Science MCA-III, the cut scores on the proficiency scale were obtained by using the test response function to find the θ values that corresponded to the approved raw score cuts.

One goal for the scale transformation was to make the proficiency level scale score cuts as consistent as possible across grades. Using a linear transformation-like equation (6.8) allows two of the three scale cut scores to be fixed. As stated above, the cut score for Meets the Standards was desired to be g50, where gis the grade prefix. This was accomplished by setting Center $=50$. The cut score between Does Not Meet the Standards and Partially Meets the Standards was desired to equal g40. The Spread constant for each grade per subject combination was selected so as to force the first scale cut score to be equal to g40. The formula used to find the Spread is

$$
\begin{equation*}
\text { Spread }=\frac{10}{\left(\theta_{S t d 2}-\theta_{S t d 1}\right)} \tag{6.9}
\end{equation*}
$$

where $\theta_{\text {Std1 }}$ is the theta ability cut score between Does Not Meet the Standards and Partially Meets the Standards, and $\theta_{\text {Std } 2}$ is the theta ability cut score between Partially Meets the Standards and Meets the Standards. The Spread value varies for each grade and subject combination. Because only two of the three scale cut scores can be predetermined using a linear transformation, the scale cut score between Meets the Standards and Exceeds the Standards was allowed to vary across grades and subjects.

The lowest observable scale score (LOSS) is set to g01 and the highest observable scale score (HOSS) is set to g99, where g is the grade. On grade 4 tests, for example, LOSS $=401$ and HOSS $=499$. The LOSS and HOSS prevent extreme student scores from being transformed outside the desired range of the scale. Because Science MCA-III uses raw to scale score conversion, some additional scoring rules are necessary. For Science MCA-III, restrictions are placed on the transformation for very high and very low scores. A score of all correct is always assigned the HOSS, regardless of the result of the transformation equation. A score of zero correct is awarded the LOSS. Further restrictions on the transformation are sometimes necessary for very high and very low scores on the Science MCAIII.

For high scores, it is desired that number-correct scores less than all correct are given scale scores less than the HOSS. It is possible, however, that the transformation equation could scale number-correct scores less than all correct to a value equal to or greater than the HOSS value. For these cases, adjustments are made so non-perfect number-correct scores are assigned a scale score below the HOSS. Usually, this adjusted scale score would be one less than the HOSS. For example, on a grade 5 test the transformation equation could scale the scores of students who get all but one MC item correct to a scale score equal to or greater than 599 (the HOSS). Because only students who score all correct are awarded a 599, students who get all but one correct would be assigned a score of 598.

For Mathematics and Reading MCA-III, all students are assigned a θ score by the scoring algorithm, so no further manipulation of the score is necessary. However, Science MCA-III scoring is based on raw scores and, when using

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

IRT, special consideration is also necessary for scaling very low number-correct scores. For a test containing MC items, the expected number-correct score will always be greater than zero, because even a student who is guessing at random is expected to get some questions correct. As a consequence, in IRT expected (true) scores do not exist for raw scores below the chance level raw score; thus, the transformation between the ability metric and number-correct scores below the chance level is not defined.

For MCA-III, non-integer scale values are rounded to the nearest integer value. Because Mathematics and Reading MCA-III θ score estimates are constrained to fall within the range -3 to 3 , in some grades the scores of g01 or g99 may not be attainable.

Minnesota Comprehensive Assessments-Series III Progress Score

Prior to 2016

Prior to 2016 a vertical, or growth scale, linked tests in the same subject area across grade levels. With a vertical scale, the gain in knowledge from one year to the next could be measured for each student. An accurate measure of student growth is valuable information for users of test scores. It was assumed that one year's grade 3 form and the following year's grade 3 form measure the same constructs, as long as the tests are constructed to adhere strictly to formally stated test specifications. On the other hand, it may not be reasonable to assume the grade 3 form and the grade 8 form measure the same constructs. Although both tests measure student knowledge of the subject matter, the constructs taught at those two grade levels might be quite different. This problem can be mitigated to some degree by using common items in adjacent grades and linking grades in a step-wise fashion.

From 2012 to 2015, a vertical scale was reported for Mathematics MCA-III in grades 3-8. Beginning in 2014, a vertical scale was reported for the Reading MCA-III in grades 3-8. This scale is called the progress score. Linking across grades using common items in adjacent grades formed the progress score scale. Underlying the progress score scale is an IRT vertical scale. The IRT vertical scale allows a student's scores across time to be compared on the same scale and allows student performance on the MCA-III to be tracked as the student progresses from grade to grade. The actual linking process used to form the IRT vertical scale is described in Chapter 7, "Equating and Linking."

2016 and Later

Beginning with the spring 2016 operational administration, a direct theta-to-progress score transformation was used for obtaining progress scores. Information regarding the scoring process for progress scores can be found in the separate document "2017-18 Minnesota Career and College Readiness (CCR) Summary Report" found on the MDE website.

Minnesota Test of Academic Skills Scaling

The general transformation formula used to obtain scale scores for the Minnesota Test of Academic Skills (MTASIII) is as follows:

$$
\begin{equation*}
\text { Scale Score }=\left(\theta-\theta_{\text {Std } 2}\right) * \text { Spread }+ \text { Center } \tag{6.10}
\end{equation*}
$$

where θ is the post-equated ability estimate, $\theta_{\text {Std } 2}$ is the ability cut score between Partially Meets the Standards and Meets the Standards, Center is set to be 200, and Spread is a numerical constant unique to each test by subject by grade combination. All grades and subjects of the MTAS-III use the same transformation equation.

Chapter 5, "Performance Standards," describes the process of setting the standards for the MTAS-III, a procedure culminating in the Commissioner of Education approving the cut scores. The ability cut scores corresponding to the Commissioner of Education-approved raw score cuts were used to set the MTAS-III scales.

As with the MCA-III, it was desired to make the proficiency level scale score cuts as consistent as possible across grades. Using a linear transformation-like equation (6.10) allows two of the three scale cut scores to be fixed. For all grades and subjects of the MTAS-III, the cut score for Meets the Standards was set to 200 by setting Center = 200. The cut score between Does Not Meet the Standards and Partially Meets the Standards was desired to be equal to 190. Note that the 2007 MTAS-III value was 195, but beginning in 2008, the cut was changed to 190 . The increase in score points for the revised MTAS-III justified a corresponding increase in scale score values between the Partially Meets and the Meets scale score cuts. The Spread constant for each grade and subject combination of the MTAS-III was selected to force the first scale cut score to be equal to 190 . The formula used to find the Spread is:

$$
\begin{equation*}
\text { Spread }=\frac{10}{\left(\theta_{S t d 2}-\theta_{S t d 1}\right)} \tag{6.11}
\end{equation*}
$$

where $\theta_{\text {Std1 }}$ is the theta ability cut score between Does Not Meet the Standards and Partially Meets the Standards, and $\theta_{S t d 2}$ is the theta ability cut score between Partially Meets the Standards and Meets the Standards. The Spread value varies for each grade per subject combination. Because only two of the three scale cut scores can be predetermined using a linear transformation, the scale cut score between Meets the Standards and Exceeds the Standards was allowed to vary across grades and subjects.

Subscores

The primary goal of each assessment is to provide an indicator of student progress in each subject area. Subject area achievement is reported as the total scale score and achievement level classification. Subject area test scores represent a sample of academic achievement from across a number of content strands. For example, the mathematics assessments include indicators of achievement in geometry, algebra, number sense, measurement, and probability. It can therefore be useful to break out subject area test scores by content strand to provide more fine-grained analysis of student achievement. This is accomplished through subscale reporting.

The MTAS-III assessments report subscores as raw score (i.e., number correct) points. As with subject area scores, subscale scores reported as number-correct scores are not as meaningful because number correct ignores information about both the number and difficulty of test items. For example, scoring 15 out of 20 might indicate superior performance on a very difficult test but reflect poor performance on a very easy test. This difficulty is compounded when interpreting performance across subscales, because some subscales may include more easy items, while other subscales comprise more difficult items. For example, if items measuring number sense are

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

easier than items measuring algebra, a higher number-correct score on number sense than algebra might appear to suggest greater achievement in number sense but in reality might indicate greater mastery of algebra than number sense.

To provide subscale scores that can be more meaningfully interpreted, MCA-III assessments report strand level performance on a common scale that reflects relative achievement across the student population. Scale scores are reported for the strands, based on a linear transformation of the estimated strand ability on the theta metric that places scores on a one-to-nine scale. The linear transformation from the theta ability estimate to scale score for each subscale is:

$$
\begin{equation*}
\text { Subscale Score }=5+\operatorname{Round}(2 \theta) \tag{6.12}
\end{equation*}
$$

with scores ranging from 1-9. The standard error of the subscale score is calculated as:

$$
\begin{equation*}
\text { Subscale SEM = Round }\left(2^{*} \operatorname{SEM}(\theta)\right) \tag{6.13}
\end{equation*}
$$

with values truncated to a minimum of 1 and a maximum of 2 . In 2011 and 2012, Mathematics MCA-III strand theta score estimates were obtained using MLE scoring. Beginning in 2013 for Mathematics and Reading MCA-III assessments, expected a posteriori (EAP) scoring is used to obtain theta estimates for strands. For Science MCAIII assessments, EAP sum scoring is used to estimate strand theta values.

Caution is always required when interpreting subscale scores. Because some subscale scores are based on few items, individual subscale scores may not be stable or consistent. As a consequence, differences in student performance across subscales may not be of practical importance. Thus, caution is required when interpreting differences between subscale scores for a student.

Minnesota Comprehensive Assessments-Series III Strand and Substrand Performance Levels

Beginning in 2016, MDE reports strand level performance level descriptors (PLDs) for MCA-III Mathematics grades $3-8$, and 11 , Reading grades $3-8$, and 10, and Science grades 5,8 , and high school be reported in the individual student reports. Strand or substrand performance for mathematics, reading, and science are reported as either "Below Expectations," "At or Near Expectations," or "Above Expectations." Because there is measurement error in any student score estimate there must be bounds placed around the student score estimate to assign a given student to a performance level. Both the student strand or substrand ability estimate $\hat{\theta}$ and conditional standard error of measurement (CSEM) are used to calculate this range. Both $\hat{\theta}$ and $\operatorname{CSEM}(\hat{\theta})$ are described in greater detail in Chapter 9, "Reliability." The computation of the lower and upper limit are made to the $4{ }^{\text {th }}$ decimal place as follows:

$$
\begin{align*}
& \text { Lower Limit }=\hat{\theta}-\operatorname{CSEM}(\hat{\theta}) \tag{6.14}\\
& \text { UpperLimit }=\hat{\theta}+\operatorname{CSEM}(\hat{\theta}) . \tag{6.15}
\end{align*}
$$

The lower and upper limit are then applied to the following formulas to assign a student performance level:

$$
\begin{equation*}
\text { Below Expectations (B): Upper Limit }<\text { Score Target } \tag{6.16}
\end{equation*}
$$

$$
\begin{equation*}
\text { Above Expectations }(A): \text { Lower Limit }>\text { Score Target } \tag{6.17}
\end{equation*}
$$

At or Near Expectations (N): Lower Limit \leq Score Target \leq Upper Limit.

Tables 6.1, 6.2, and 6.3 report the score targets of strand and substrand performance levels for mathematics, reading, and science, respectively, which are used in the previous formulas.

Table 6.1. Score Targets of Strand Performance Levels for MCA-III Mathematics

Grade	Strand	Score Target
03	NOPS	-0.5200
	ALGS	-0.5200
	GMS	-0.5200
	DANS	-0.5200
04	NOPS	-0.4400
	ALGS	-0.4400
	GMS	-0.4400
	DANS	-0.4400
05	NOPS	-0.0400
	ALGS	-0.0400
	GMS	-0.0400
	DANS	-0.0400
06	NOPS	0.0300
	ALGS	0.0300
	GMS	0.0300
	DAPS	0.0300
07	NOPS	0.0300
	ALGS	0.0300
	GMS	0.0300
	DAPS	0.0300
08	NOPS	-0.0300
	ALGS	-0.0300
	GMS	-0.0300
	DAPS	-0.0300
11	ALGS	0.1034
	GMS	0.1034
	DAPS	0.1034

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Table 6.2. Score Targets of Strand Performance Levels for MCA-III Reading

Grade	Strand	Score Target
03	LSS	-0.1085
	INFS	-0.1085
04	LSS	-0.0495
	INFS	-0.0495
05	LSS	-0.3252
	INFS	-0.3252
06	LSS	-0.1754
	INFS	-0.1754
07	LSS	-0.0325
	INFS	-0.0325
08	LSS	-0.0261
	INFS	-0.0261
	LSS	-0.2318
	INFS	-0.2318

Table 6.3. Score Targets of Strand and Substrand Performance Levels for MCA-III Science

Grade	Strand/Substrand	Score Target
05	NSE	-0.0900
	PSCS	-0.0900
	ESS	-0.0900
	LIFS	-0.0900
	NSE	0.3200
	PSCS	0.3200
	ESS	0.3200
	HS	LIFS
$0.3 S E$	0.3200	
	NSE	0.07
	POSS	0.07
	POES	0.07
	INTS	0.07
	SFLS	0.07
	IALS	0.07
	EILS	0.07
	HILS	0.07

As can be seen from the computations above of the lower and upper limits, two students can differ in their performance level even if they have the same student estimate. The upper and lower limits for a student depend on both the estimate and the CSEM from the items administered. Since students in mathematics and reading are administered different items, their CSEMs may differ, thus leading to different student performance levels.

ACCESS for ELLs Scaling

Scaling information about the ACCESS for ELLs is contained in the annual technical reports available on the WIDA website in the WIDA Secure Portal.

Scale Score Interpretations and Limitations

Minnesota Comprehensive Assessments-Series II and Series III

Because the on-grade scale scores associated with the MCA-III are not on a vertical scale, great caution must be exercised in any interpretation of between-grade scale score differences within a subject area. Similar caution should be used in interpreting scale score differences between subject areas within a grade. Even though scale score ranges (g1-g99) and positions of two of the cut scores (g 40 and g 50) are consistent across grades and subjects, the scale score metrics cannot be presumed equivalent across subject or grade. As indicated by equations (6.8) and (6.11), the scale score difference associated with a theta score difference of 1.0 will depend upon the Spread parameter. As a consequence, scale score differences between two students of, for example, 10 points seen on tests from two subjects or grades can reflect theta score differences of varying size. In general,

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

achievement levels are the best indicators for comparison across grade or subject. The scale scores can be used to direct students who need remediation (that is, students falling below Meets the Standards), but scale score gain comparisons between individual students are not appropriate. Progress scores and the MCA-III vertical scale score, which are based on vertical scales, are intended to provide an appropriate basis for making comparisons across years within a subject area.

For assessments that use raw-to-scale score conversions to determine scale scores (i.e., MTAS-III and Science MCA-III), users should be cautioned against over-interpreting differences in scale scores in raw score terms because scale scores and number-correct scores are on two distinct score metrics that have a decidedly nonlinear relationship. As a hypothetical example, students near the middle of the scale score distribution might change their scale score values by only four points (for example, from 548 to 552) by answering five additional MC questions correctly. However, students near the top of the scale score distribution may increase their scale score by 20 points with five additional questions answered correctly (for example, from 570 to 590). A similar phenomenon may be observed near the bottom of the score scale. In the case of Mathematics and Reading MCAIII, which use pattern scoring and have multiple fixed forms or are administered adaptively, attempts to interpret scale scores in raw score terms are generally inappropriate.

The primary function of the scale score is to be able to determine how far students are from the various proficiency levels without depending upon the changing raw scores. Across years scale scores do not change in their representation of proficiency, whereas raw scores do not generally maintain their proficiency level meaning across years. Additionally, schools may use the scale scores in summary fashion for purposes of program evaluation across the years. For example, it is appropriate to compare the average grade 5 scale score in reading for this year to the grade 5 average for last year (if the test series has not changed). Explanations for why the differences exist will depend on factors specific to individual schools.

Beyond the information provided by the overall test scores, the strand and substrand level scores and descriptors provide additional information about student proficiency in various content areas within each subject. Strand scores are given in a range of 1 to 9 , based on a transformation of the underlying measurement (theta) scale. It is important to keep in mind that the 1 to 9 strand scores are not the same as Stanine scores and cannot be interpreted in the same way. Also, because these scores are transformations of interval-level theta scores, users are justified in treating these scores as having close to interval-level scale properties, and thus the practice of carrying out arithmetic operations on strand scores when calculating averages or summary scores is defensible.

However, users should employ extreme caution when making interpretations based on scale scores and descriptors at the strand or substrand level. These scores and descriptors are based on subsets of items administered to the students, with as few as six or seven items depending on strand or substrand, grade, and subject area. Further, these scores are distilled down into a compressed scale score range of 1-9. The strand-level PLDs, taking into account both the overall subject level performance expectations as well as the measurement error present in the strand score as they do, are probably the best basis for making limited instructional decisions for individual students.

Aggregations of the strand scale scores across schools or districts can serve as a guidance tool to identify possible gaps in instructional content that staff may find relevant and important. These gaps should confirm what is already being seen in classroom evidence of student learning. Different strands or substrands have different numbers of items and the range for the number of items is defined in the testing specifications. For strands based on relatively

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

few items, small fluctuations in the performance of relatively few students within the school or district may have disproportionately large effects on their aggregated (i.e., mean or median) scale scores. For strands based on comparatively many items, much larger changes in a greater number of students' performances would be required for an effect of equivalent magnitude to be observed. For this reason, strand to strand comparisons within or (especially) across grades and/or subjects are usually not appropriate and may lead to incorrect conclusions.

Finally, it must be emphasized that there are substantial differences in test content and scoring metrics between the MCA-III and the MCA-II. These differences should discourage attempts to draw inferences based on score comparisons between students now taking the MCA-III tests in a subject from those who took the MCA-II in past years. Thus, for example, it is not appropriate to compare the grade 5 Reading MCA-III score from 2013 to the grade 5 Reading MCA-II score average from previous years. However, limited and focused linking procedures or prediction analyses may still serve useful purposes.

Conversion Tables, Frequency Distributions, and Descriptive Statistics

The Yearbook provides tables for converting raw scores to derived scale scores for the fixed form assessments (MCA-III Science and all MTAS-III assessments) as well as tables of frequency distributions and summary statistics for scale scores by grade and subject under the section "Frequency Distribution Reports."

Chapter 7: Equating and Linking

Equating and linking are procedures that allow test scores to be compared across years. The procedures are generally thought of as statistical processes applied to the results of a test. However, successful equating and linking require attention to comparability throughout the test construction process. This chapter provides some insight into these procedures as they are applied to the Minnesota Assessment System.

Rationale

In order to maintain the same performance standards across different administrations of a particular test for linear, fixed-form tests, it is necessary for every administration of the test to be of comparable difficulty. Comparable difficulty should be maintained from administration to administration at the total test level and, as much as possible, at the subscore level. Maintaining test form difficulty across administrations is achieved through a statistical procedure called equating. Equating is used to transform the scores of a second administration of a test to the same scale as the scores of the first administration of the test. Although equating is often thought of as a purely statistical process, a prerequisite for successful equating of test forms is that the forms are built to the same content and psychometric specifications. Without strict adherence to test specifications, the constructs measured by different forms of a test may not be the same, thus compromising comparisons of scores across test administrations.

Historically, a two-stage statistical process with pre- and post-equating stages was used to maintain comparable difficulty across administrations for the MCA-II assessments and with the large-scale paper form administrations of the Mathematics and Reading MCA-III. Both pre-equated and the two-stage pre- and post-equating designs are commonly used in state testing. In the pre-equating stage of a pre- and post-equating design, item-parameter estimates from prior administrations (either field-test or operational) are used to construct a form with a difficulty level similar to that of previous administrations. This is possible because of the embedded field-test design that allows for linking field-test items to the operational form. In the post-equating stage, all items are recalibrated, and the test is equated to prior forms through embedded linking items. Linking items are items that have previously been operational test items and for which parameters have been equated to the base-year operational test metric. The performance of the linking items is examined for inconsistency with their previous results. If some linking items are found to behave differently, appropriate adjustments are made in the equating process before scale scores are computed.

MDE now uses a pre-equating design for the entire Minnesota Assessment System. One of the benefits of online testing is on-demand reporting. When moving to online assessments, MDE decided to use a pre-equating design to allow for immediate score results reporting. In a pre-equated design, all items are placed on the base scale prior to an operational administration and the banked item parameters are used for scoring. The pre-equating design is fully described in the sections that follow.

Pre-Equating

The intent of pre-equating is to produce a test that is psychometrically equivalent to those used in prior years. The pre-equating process calibrates all new field-test items to the base scale, which results in a bank of items used for scoring student responses, which are all on the same base scale. In this way, each item is placed on the same

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

metric as the prior years so the metric is maintained across years. For the MCA-III, each new assessment is constructed from a pool of items for which parameters have been equated to the base scale. The base scales were established in 2011 for grades 3-8 mathematics, in 2012 for science, in 2013 for reading, and in 2014 for grade 11 mathematics. New items are equated to the base scale during field-test analyses (a full description of field-test analyses is provided below).

Test Construction and Review for Fixed-Form Assessments

Test construction for MCA-III Science fixed-form assessments begins by selecting the operational items for an administration. Using the items available in the item pool, psychometricians, and content specialists from Minnesota's testing contractor and MDE construct new forms by selecting items that meet the content specifications of the subject tested and targeted psychometric properties. Psychometric properties targeted include test difficulty, precision, and reliability. The construction process is an iterative one, involving Minnesota's testing contractor and MDE staff. Because the IRT item parameters for each item in the item bank are maintained on the same scale, direct comparisons of test characteristic functions and test information functions can be made to ascertain whether the test has similar psychometric properties (e.g., difficulty) to those of other years. Having all items on the same scale allows the psychometricians to create raw score-to-scale score lookup tables to be used for scoring purposes.

Psychometricians review the newly constructed test and content staff to ensure specifications and difficulty levels has been maintained. Although every item on the test has been previously scrutinized by Minnesota educators and curriculum experts for alignment to benchmarks-a match to test specifications' content limits, grade-level appropriateness, developmental appropriateness, and bias-MDE re-examines these factors for each item on the new test. The difficulty level of the new test form-for the entire test and for each objective-is also evaluated, and items are further examined for their statistical quality, range of difficulties, and spread of information. Staff members also review forms to ensure a wide variety of content and situations are represented in the test items, to verify that the test measures a broad sampling of student skills within the content standards, and to minimize "cueing" of an answer based on the content of another item appearing in the test. Additional reviews are designed to verify that keyed answer choices are the only correct answer to an item and that the order of answer choices on the test form varies appropriately.

If any of these procedures uncovers an unsatisfactory item, the item is replaced with an item in the item bank and the review process begins again. This process for reviewing each newly constructed test form helps ensure each test will be of the highest possible quality.

Simulations for Adaptive Assessments

The nature of an adaptive test is to construct a test form unique to each student and targeted to the student's level of ability. As a consequence, the test forms will not be statistically parallel-nor should they be. However, scores from the assessment should be comparable, and each test form should measure the same content, albeit with a different set of items with varied difficulty levels.

The adaptive algorithm and a complex blueprint have many adjustable parameters. Examples include balancing the weight given to one strand versus other strands or item type constraints. More specific details regarding the WPM and CRM algorithms used for the simulation can be found in Chapter 1. The optimal values for the algorithm

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability

Assessments

parameters vary depending on the item pool, specifics of the blueprints, and their interaction. Some of the most important variables, which are fine-tuned during the simulation stage prior to administration, are the (a) weights assigned to the strand for mathematics (substrand for reading), (b) weights assigned to the standard, (c) starting theta, (d) weights assigned to the item information relative to the test specifications, (e) theta range, and (f) number of items selected per range. Prior to each operational testing window, the testing contractor conducts simulations for each grade separately for each subject to evaluate the quality of the adaptive item-selection for mathematics, and testlet-selection for reading algorithm. Simulations enable key blueprint and configuration parameters to be manipulated to match the blueprint, minimize measurement error, and control item exposure.

Simulations begin by generating a sample of simulated examinees (simulees) from a Normal (μ, σ) ability (theta) distribution for each grade. The parameters for the normal distribution are taken from the previous year's operational administration. Each simulee is then administered a test under the adaptive algorithm. The number of simulees in the final approved simulations is approximately equal to the number of examinees in the population for each grade and subject. When simulations are complete, a variety of statistical measures are then examined. First, the percentage of simulated test forms that have met test specifications is calculated. When all students are administered a test that meets the blueprint specifications, the content can be considered equivalent across students. Second, the bias and average standard error of the estimated ability, the correlation between simulated (true) and estimated ability, as well as the distribution of errors across the true score theta range are scrutinized. When the true test scores are adequately recovered, the mean of the bias will be low. If summaries show a failure to meet blueprint specifications or unacceptable levels of error in student ability estimation, algorithm parameters are revised and simulations are rerun. This process continues until requirements are met.

Reading simulations and mathematics simulations differ because, unlike the mathematics assessment, the reading assessments are given in "stages," each of which is a testlet with one passage or passages and their associated items depending on the grade. Students will encounter three operational testlets during the course of the test. The item order within each testlet is fixed, and the items will always appear in the same order. The testlets are built to stage specific blueprints such that any combination of a stage 1 , stage 2 , and stage 3 testlet will always meet the overall test blueprint, and constraints are imposed so that each student will always be administered exactly one testlet from each of the three stages. In this way, all students will receive a test that complies with the overall reading test blueprint. The assessment contains between four and seven passages for grades 3-8 and between four and eight passages for grade 10.

Field-Test Items

When a newly constructed item has survived committee reviews (passage review for reading, scenario review for science, and new item review and bias and sensitivity review for mathematics, reading, and science), the item is ready for field-testing. For the Mathematics MCA-III, field-test items are randomly placed in the test at preselected positions where for grades $3-8$ the calculator items and non-calculator items are placed within their respective sections. The field-test items are arranged in blocks and each student is administered only one set of items. For the reading test, the items appear in testlets along with their respective passages, which are placed at pre-selected positions within the test. For science, the field-test items are embedded in a test form among the operational test items. For example, in a particular grade's Science MCA-III administration, there may be 15 different forms containing the same operational test items; however, each form would also contain one or more unique field-test scenarios and corresponding unique field-test items. The field-test items do not count toward an individual student's score.

In online administrations of fixed forms, forms are assigned randomly to students. For example, for grade 5 science, with a statewide enrollment of approximately 63,000, approximately 3,700 students would respond to each of 17 field-test forms. In online adaptive tests, field-test items are assigned at random to students in

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

designated slots during the administration. This design provides a diverse sample of student performance on each field-test item. In addition, because students do not know which items are field-test items, no differential motivation effects are expected. To control for fatigue and start-up effects, all field-test items are placed in similar positions on each test form. For the paper accommodated forms of MCA-III and MTAS-III data-entry forms, there is one operational form that does not contain new field-test items.

Student Sampling for Equating

Because almost all the population for a grade and subject is used for the operational test equating, no sampling procedures are required. Some student data, however, are excluded from the pre-equating calibration of items. In addition, the responses of home-schooled and private school students are excluded from the calibration data set. Home-schooled and private school students are not required to take the MCA-III and are not included in statewide summary statistics or in ESSA calculations. Their test scores are reported to students, parents, and schools, similar to students at public schools. If the number of items a student attempts does not meet the minimum attemptedness criterion, then data from that student are excluded from the calibration data set. For the MCA-III and other online assessments, students must respond to at least 90 percent of the questions on the entire test in order to be classified as "attempted."

Pre-equating Quality Checks

When the statewide data file has been edited for exclusions, a statistical review of all operational items is conducted before beginning IRT calibration. Items are evaluated for printing or processing problems. A key check analysis is conducted for the MC items, which entails an evaluation of the mean score, percentage of students who gave each possible response, and the item-total correlation. Items where an unusually attractive incorrect option appears on any one form, which differs substantially from all other forms or items with a low mean score or low point-biserial, are flagged for review. An adjudication analysis is conducted for all non-MC items, which involves the content specialists analyzing for correctness every response string not checked in a previous administration. The key check and adjudication process occurs at least three times during the testing window for operational items (once near the beginning of testing, once toward the middle of testing, and once following the end of testing). The key check and adjudication are only conducted at the end of the testing window for field-test items. Minnesota's testing contractor and MDE content staff reviews each flagged item, as administered, to ensure that the item was correctly printed (for paper accommodated forms) or displayed (for online forms) and to certify the key is the correct answer.

Field-Test Item Equating Procedures

For all MCA-III assessments, the commercial software IRTPRO is used for item calibrations. For reading, all MC items are calibrated as three parameter items, and non-MC (TE) items are calibrated as two parameter items. For mathematics, all "Fill in the Blank" (FIB) items are calibrated as two parameter items; all other types of items (including all TE items) are calibrated as three parameter items. For science all items are calibrated as three parameter items. These models are described in the "Scaling" section in Chapter 6.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Field-test items are brought onto the same scale as the operational test items through fixed-item equating. Before calibrating the field-test items, operational items are evaluated for item parameter drift. All operational items that did not show item parameter drift are used as anchor items.

Evaluation of Operational Item Parameter Drift

In IRT, item parameter drift is a change in the item parameters over time, of which particular concern is placed on the change in the difficulty of an item over time. To determine the final set of anchor items, drift analysis is conducted to flag items that may have moved from their bank parameters (on the base scale). The purpose of the drift analyses is to identify items that may have shifted in difficulty relative to the bank as a whole. This might occur because of changing emphases in instruction throughout the state from year to year, exposure of the item, or for many other reasons. Because sample sizes are too small on the paper accommodated forms for these analyses to be effective, they are only conducted on the online forms.

When assessments are scored using pre-equated item parameters, there is no post-administration calibration and equating of operational items. However, items must still be examined for signs of misfit or drift. Beginning with the spring 2014 administration of the MCA-III Mathematics grades $3-8$ online, the MCA-III Reading grades 3-8 and 10 online, and MCA-III Science assessments, items are evaluated for parameter drift. The general approach to evaluating goodness-of-fit involves the comparison between observed and model-predicted frequencies for various ability (theta) subgroups using d-square and robust z based on chi-square fit statistics methods. The itemfit statistics employ a pseudo-observed theta distribution as proposed in Stone (2000). MDE, the test contractor, and Minnesota's quality assurance contractor conduct the initial drift analyses, and items with large (i.e., exceeding predefined critical values) fit statistics are flagged. For math, flagged items are evaluated by content staff for possible release and are removed from the operational item bank. For reading, items flagged in a single year are identified as "potentially flagged" and are monitored for drift again in the next following administration; items flagged in two consecutive years are either recalibrated or removed from the bank.

Items that are identified as having drifted in the operational pools of the computer adaptive mathematics and reading tests will either be recalibrated or removed from future administration. To be eligible for recalibration, items must meet certain n-count requirements and must have a distribution that is reasonably similar to that of field test items. Items not meeting these requirements must be removed from the operational pools because such items' parameters would be estimated based on a sample of students from a restricted range of ability and would not yield an accurate estimate of the item parameters. Such items in the mathematics and reading adaptive assessments must be removed from the item bank or be re-field tested. However, science items are administered operationally on fixed forms to students of all ability levels, so items identified as drifted can be recalibrated. Therefore, for science when an item has been identified as drifted the item is recalibrated and that updated set of item parameters are used operationally thereafter.

Field-Test Calibration

Historically, when the MCA-III was only administered on paper accommodated forms, the Stocking-Lord procedure was used to equate the field-test items for the non-accommodated paper forms; however, because there were no field-test items on the paper accommodated forms of the MCA-III, no equating is conducted. For the computer-adaptive Mathematics MCA-III in grades 3-8 and 11 as well as Reading MCA-III grades 3-8 and 10,

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

non-drifted operational items and field-test items are calibrated together in IRTPRO with the non-drifted operational items being fixed to their bank parameters and field-test items being freely estimated. By anchoring the non-drifted operational items to their bank value, the field-test items are automatically placed on the base scale (Stocking \& Lord, 1983). For fixed-form online MCA-III assessments in Science, field-test item calibration has alternated between using the Stocking-Lord and fixed operational-item parameter approaches, depending on test contractor, with the Stocking-Lord approach currently being applied.

MTAS-III Equating

The commercial software package WINSTEPS (Linacre, 2006) is used for the Minnesota Test of Academic Skills (MTAS-III) performance tasks. As described in Chapter 6, "Scaling," the IRT model used for calibration is the Rasch Partial Credit model (Masters, 1982). For prior year MTAS-III administrations, a combined operational and fieldtest design was employed. After item or task calibration, MDE staff selected the nine tasks at each grade level to be designated as operational. The base year for grade 11 mathematics is 2014. The base year for MTAS-III Science is 2012. For grades 3-8 of Mathematics MTAS-III, the base year is 2011. For grades 3-8 and 10 of Reading MTASIII, the base year is 2013 .

No new field-test items were administered in the current operational year for MTAS-III, so no equating was done. Historically, equating to the base year was accomplished using conceptually similar procedures to those used with the MCA-III. For MTAS-III, a simultaneous calibration of operational and field-test tasks was performed by grade and subject. The fit of field-test tasks to the model was scrutinized in order to ensure that a poor fitting field-test task did not compromise the calibration of the operational tasks. In addition, linearity was checked by plotting linking task IRT difficulty values against those from the base year. Linking tasks were then equated back to the base scale by subtracting the mean of the new IRT difficulty values from the mean of the base-year difficulty values (mean/mean equating). The difference of means was then added to the IRT difficulty values of the linking tasks. The equated IRT parameters were then compared with the base-year values. Differences between equated and base-year values are called displacement values. Displacement values were scrutinized, and tasks with displacements greater than 0.3 were considered for removal from the equating. After dropping any linking task that failed the stability check, another WINSTEPS calibration was performed for all tasks with linking task parameters fixed to their base-year values. The task parameter values from the second calibration were considered the final parameter values for purposes of scale score calculation and item banking.

Item Pool Maintenance

The next step is to update the item pool with the new statistical information. Item statistics and parameter estimates for the field-test and recalibrated items are added to the item pool database. Since pre-equating has been used, new parameter estimates are not obtained for operational items.

Linking

When scores are compared between tests that have not been built to the same test specifications, the process of finding the score transformation is called linking. Whereas equating can be used to maintain comparable difficulty and performance standards across administrations of the MCA-III, linking has been used for two purposes: (1) scaling across grades with the progress score (mathematics and reading) prior to 2016, and (2) linking the Reading

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

MCA-III to the Lexile ${ }^{\circledR}$ Reading scale and the Mathematics MCA-III scale to the Quantile ${ }^{\circledR}$ Mathematics scale. For example, one may want to compare the reading scores of a group of grade 4 students to their scores on the previous year's grade 3 reading test. The tests at each grade are designed to measure the specific content expected to be mastered in that grade; consequently, the tests measure different constructs and are built to different specifications. A transformation can be made to place two different forms or tests on the same scale, but when the forms or tests in question are built to different specifications, the process is called linking. The term linking is used in place of equating to emphasize the more tenuous relationship created between scores on different tests. Although equating and linking create a relationship between different forms or tests, the strength or quality of the relationship depends on the degree to which the forms or tests measure the same constructs. Discussions on linking are given in Mislevy (1992), Linn (1993), and Kolen and Brennan (2004).

Linking Grades 3-8 with the Progress Score (Prior to 2016)

Prior to 2016, the Mathematics and Reading MCA-III each used a vertical scale called the progress score, which contained linking items. These items were MC items from an adjacent grade's test that were used to link grades on the progress score. The grades 10 and 11 tests did not use vertical linking items because no progress score was reported for these grades. Vertical scales, such as the progress score prior to 2016, were designed to help evaluate how much students improved from one year to the next. Linking for the progress score was accomplished by using common items on adjacent grades on the 2011 Mathematics MCA-III administration and the 2013 Reading MCAIII administration. The linking off-grade items did not count toward a student's final score. The linking design was such that no student responded to both upper-grade items and lower-grade items. For example, some fourthgrade students responded to a linking set of third-grade items, and some fourth graders responded to a linking set of fifth-grade items. The determination of which students responded to the linking sets was done by random assignment.

More specifically, after calibration of the operational items was complete, a separate calibration that included the off-grade items was conducted for each grade. The operational items served as linking items to scale the off-grade items to the 2011 operational scale for the Mathematics MCA-III or the 2013 operational scale for the Reading MCA-III. After off-grade items were scaled for each grade, another scaling process was conducted to place the items of grades $3-8$ on the fifth-grade scale, which served as the reference scale for the vertical scale. IRT linking was conducted sequentially, moving away from the fifth-grade scale. That is, to place the third-grade items on the vertical scale, first the fourth grade items were linked to the fifth-grade scale, and then the third-grade items were linked to the rescaled fourth-grade scale. Likewise, for the upper grades, the sixth-grade items were linked to the fifth-grade items, and then the seventh-grade items were linked to the rescaled sixth-grade items, and finally, the eighth-grade items were linked to the rescaled seventh-grade items.

Starting in 2016, the vertical scale was replaced with a progress score interpreted in relation to the grade one belongs to. This was accomplished by using a direct theta estimate to progress score transformation where offgrade items were linked to the current grade metric through the previously derived vertical equating relationships. Vertical scaling transformation constants (slope and intercept) were used to derive the discrimination and difficulty parameters in order to place the off-grade items on each grade's respective scale. The transformed item parameters were used for item selection during the MCA-III adaptive assessments; however, off-grade items were post-equated following administration and new parameters estimated for these parameters. The post-equated parameters were used for student scoring purposes in 2016, but after review of the results from the post-equating, it was decided that they would not be used in subsequent administrations (the original transformed item parameters will instead be used for both item selection and scoring in future administrations).

Linking Reading MCA-III to the Lexile ${ }^{\circledR}$ Scale

MetaMetrics typically uses a common-person design to develop linkages between statewide assessments and their proprietary Lexile ${ }^{\circledR}$ scale. For example, to link the previous MCA-II Reading scale to the Lexile ${ }^{\circledR}$ scale, MetaMetrics administered a stand-alone test to students in a sample of districts following regular administration of the MCA-II Reading assessment in 2010. There were, however, significant disadvantages to the common-person design used to establish the initial linkage. The independent assessment, although administered nearly concurrently with the accountability assessment, was entirely voluntary and carried no stakes for students or schools. Consequently, motivation for high performance may be been diminished. Motivation effects may have been more pronounced for older students, especially grade 10 students. Younger students may not have readily made distinctions between high-stakes and low-stakes testing situations, and treat the assessments in the same manner. Perhaps more important, this testing design placed a substantial additional assessment burden on participating schools and students (as well as increased burden on MDE for recruiting sampled schools), requiring approximately the same amount of testing time used for the MCA Reading assessment.

For the MCA-III Reading assessments, MetaMetrics agreed to allow MDE to embed Lexile ${ }^{\circledR}$ items in field-test slots of the spring 2013 accountability test administration. Embedding Lexile ${ }^{\mathbb{B}}$ items in the initial administration of the MCA-III Reading assessment allowed MDE to administer Lexile ${ }^{\circledR}$ items under operational testing conditions and confine the burden of field-testing to the standard administration of the accountability assessment, eliminating much of the cost and burden of a stand-alone field-test.

Embedded field-test blocks in the reading assessment were designed to accommodate a reading passage and associated test items. Lexile ${ }^{\circledR}$ items were, by contrast, discrete items that were not passage based. To embed the Lexile ${ }^{\circledR}$ items within the MCA-III Reading assessments, the test contractor defined a set of Lexile ${ }^{\circledR}$ item blocks for administration in field-test slots, based on the linking sets provided by MetaMetrics. Lexile ${ }^{\circledR}$ item blocks were constructed so that test administration times are similar to those required to read a passage and answer associated test items for a typical passage-based set of items. This resulted in Lexile ${ }^{\circledR}$ blocks comprising 12 items each. MetaMetrics provided a linking set of 36 items at each grade level that were required to link the MCA-III Reading scale to the Lexile ${ }^{\circledR}$ scale, which resulted in administration of three Lexile ${ }^{\circledR}$ blocks at each grade level. With Lexile ${ }^{\circledR}$ items administered alongside MCA-III Reading passages and items, the items were calibrated concurrently, allowing all items to be placed on a common scale.

Although there was a sufficient number of linking items to place the MCA-III Reading items on the Lexile ${ }^{\circledR}$ scale, individual students were not administered a sufficient number of Lexile ${ }^{\circledR}$ items to produce a reliable, independent assessment of reading ability based solely on those items. MetaMetrics used the embedded Lexile ${ }^{\circledR}$ items to identify Rasch parameter estimates for MCA-III items linked to the Lexile ${ }^{\circledR}$ scale. The result of this Lexile ${ }^{\circledR}$ linking was two sets of parameter estimates for each item: a set of 3PL parameter estimates on the MCA-III scale and a set of Rasch parameter estimates on the Lexile ${ }^{\circledR}$ scale. The two sets of parameter estimates were used to produce two ability estimates for each student, one on the MCA-III scale and a second on the Lexile ${ }^{\circledR}$ scale. Note that both ability estimates were based on the same set of MCA-III operational test items. With the two ability estimates in hand, a mean-sigma linking was employed in order to place MCA-III scores on the Lexile ${ }^{\circledR}$ scale. Because item-parameter estimates for the MCA-III Reading assessments are based on the 3PL IRT model, while the Lexile ${ }^{\circledR}$ items parameters are estimated using the Rasch model, linking the MCA-III Reading and Lexile ${ }^{\circledR}$ scales was accomplished via student ability estimates obtained from the respective models.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Before any linking was performed, an initial analysis was completed with MetaMetrics on only the Lexile ${ }^{\circledR}$ items in order to analyze their performance. It was determined that one item administered in grades 8 and 10 was not performing consistently with past experience, and MetaMetrics recommended that it be dropped from further analyses. Thus, at grades 8 and 10, 35 Lexile ${ }^{\circledR}$ items were used for calibration. Lexile ${ }^{\circledR}$ items were then anchored to their reference scale values, and MCA-III bank items were calibrated using the 1PL model. Student ability estimates were found using the resulting Lexile ${ }^{\mathbb{B}}$-scale MCA-III item parameters. Using the same set of items and responses, student ability estimates were found using the MCA-III scale item parameters.

After examining the ability distributions, a single mean-sigma transformation in each grade was used to put the MCA-III scale ability estimates on the Lexile ${ }^{\circledR}$ scale. The Lexile ${ }^{\circledR}$-scale ability estimates were then multiplied by the Lexile ${ }^{\circledR}$ measure reporting constant in order to obtain the Lexile ${ }^{\circledR}$ research measure. Because Lexile ${ }^{\circledR}$ scores are reported in values ending in zero or five, the Lexile ${ }^{\circledR}$ research measures were then rounded to their reported Lexile ${ }^{\circledR}$ Measure. Student Lexile ${ }^{\mathbb{B}}$ measures were reported with a $+/-100$ Lexile ${ }^{\circledR}$ measure upper and lower bounds.

Linking Mathematics MCA-III to the Quantile ${ }^{\circledR}$ Scale

For the MCA-III Mathematics assessments, MetaMetrics agreed to allow MDE to embed Quantile ${ }^{\mathbb{®}}$ items in fieldtest slots of the spring 2018 accountability test administration. Embedding Quantile ${ }^{\circledR}$ items on the MCA-III Mathematics assessment allowed MDE to administer Quantile ${ }^{\circledR}$ items under operational testing conditions and confine the burden of field-testing to the standard administration of the accountability assessment, eliminating much of the cost and burden of a stand-alone field-test.

Subject matter experts selected pools of Quantile ${ }^{\circledR}$ linking items that best aligned to the grade level Minnesota K12 Academic Standards in Mathematics based on both content and difficulty. To achieve this, the percentage of Minnesota Academic Standards represented on each grade level of the Mathematics MCA-III assessment were reviewed and aligned with the content strands of MetaMetrics Quantile ${ }^{\sqrt{B}}$ Framework. The Quantile ${ }^{\mathbb{®}}$ linking item pool contained 31 items in each of grades 3 through 8 and 36 items in grade 11. Each grade-level set included items from an adjacent grade to provide connectivity for the linking analysis. One or two items were administered to each student during the Mathematics MCA-III administration. Each linking item was evaluated for use in the linking study based on potential alternate answer choices being more attractive than the correct answer choice (i.e. low point-measure correlation). A total of 21 items across all grades were removed because they had low point-measures or misfit criteria outside the acceptable range. With Quantile ${ }^{\circledR}$ items administered alongside MCAIII Mathematics items, the items were calibrated concurrently, allowing all items to be placed on a common scale.

Three steps were performed prior to the linking analysis. First, a concurrent calibration of all Mathematics MCAIII assessment items and Quantile ${ }^{\mathbb{®}}$ linking items was conducted to evaluate the appropriateness of scaling both Quantile ${ }^{\mathbb{B}}$ and MCA-III items on the same scale. Second, a concurrent calibration of the Mathematics MCA-III items with the Quantile ${ }^{\circledR}$ linking items anchored to their theoretical Quantile ${ }^{\circledR}$ values was conducted to place the Mathematics MCA-III items on the Quantile ${ }^{\circledR}$ scale. Finally, a scoring run using only the Mathematics MCA-III items on the Quantile ${ }^{\circledR}$ scale was conducted to express student results from the Mathematics MCA-III assessment in the Quantile ${ }^{\circledR}$ metric. These three steps were performed separately for each grade.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

During the initial concurrent calibration for each grade, all students were submitted to a Winsteps (Linacre, 2006) analysis using a logit convergence criterion of 0.0001 . Student records were removed from further analysis if the data did not fit the Rasch model, indicated by an infit statistic greater than 1.5 and outfit statistic greater than 2.0. Approximately 96.54% of the initial sample remained in the final sample for the Mathematics MCA-III link.

The LEGS software program used for calculating equivalent scores using equipercentile methods was employed to conduct an equipercentile linking of the Mathematics MCA-III assessment unrounded scale scores and the Mathematics MCA-III calibrated Quantile ${ }^{\mathbb{®}}$ measures for Grades 3 through 8 and 11 (Kolen \& Brennan, 2004). Equipercentile linking functions were constructed relating the Mathematics MCA-III scale scores and Mathematics MCA-III calibrated Quantile ${ }^{\circledR}$ measures for all examinees in the sample, by grade level. Conversion tables were developed for all grade levels in order to express the Mathematics MCA-III scale scores in the Quantile ${ }^{\circledR}$ metric. Student Quantile ${ }^{\mathbb{B}}$ measures were reported with a $+/-100$ Quantile ${ }^{\mathbb{}}$ measure upper and lower bounds.

Chapter 8: Validity

The term validity refers to "the degree to which evidence and theory support the interpretations of test scores for proposed uses of tests" (American Educational Research Association, American Psychological Association, and National Council on Measurement in Education, 2014). Validation can be described as the process of collecting evidence to support inferences from assessment results. A primary consideration in validating test scores is determining whether the test measures what it purports to measure: the construct. When a particular individual characteristic is inferred from an assessment result, a generalization, or interpretation in terms of a construct, is being made. For example, problem solving can be an example of a construct. An inference that students who master the mathematical reasoning portion of an assessment are "good problem solvers" implies an interpretation of the results of the assessment in terms of a construct. To make such an inference, it is important to demonstrate this is a reasonable and valid use of the scores. During the process of evaluating whether the test measures the construct of interest, a number of threats to validity must be considered. For example, the test may be differentially more or less difficult for a particular demographic group relative to another group, test scores may have lower than desirable levels of reliability, students may not be properly motivated to perform on the test, or the test content may not span the entire range of the construct to be measured. Any of these threats to validity could compromise the interpretation of test scores.

Beyond ensuring the test is measuring what it is supposed to measure, it is also important that the interpretations made by users of the test's results are limited to those that can be legitimately supported by the test. The topic of appropriate score use is discussed in Chapter 4, "Reports" (in the "Cautions for Score Use" section), and Chapter 6, "Scaling" (in the "Scale Score Interpretations and Limitations" section).

Demonstrating that a test measures what it is intended to measure and that interpretations of the test's results are appropriate requires an accumulation of evidence from several sources. These sources generally include expert opinion, logical reasoning, and empirical justification. What constitutes a sufficient collection of evidence in the demonstration of test validity has been the subject of considerable research, thought, and debate in the educational measurement community over the years. Several different conceptions of validity and approaches to test validation have been proposed, and as a result, the ways in which test validity and validation are defined has evolved. This chapter summarizes validity evidence for MCA-III assessments and is based on the Standards for Educational and Psychological Testing (American Educational Research Association, American Psychological Association, and the National Council on Measurement in Education, 2014).

Evidence of Test Validity

The Standards for Educational and Psychological Testing (American Educational Research Association, American Psychological Association, and the National Council on Measurement in Education, 1999, 2014) refers to "types of validity evidence, rather than distinct types of validity." The four broad categories of validity evidence mentioned in the Standards that are relevant to the Minnesota assessments are: evidence based on test content, evidence based on response processes, evidence based on internal structure, and evidence based on relationships with other variables. Taken together, a combination of these types of validity evidence can be used to create a validity argument (Cronbach, 1988). It is important to note that the types of validity evidence selected for a given assessment must be relevant to the selected measure, so not every form of validity evidence applies to every assessment.

Evidence Based on Test Content

Content validity evidence addresses whether the test adequately samples the relevant domain of material it purports to measure. If a test is made up of a series of tasks that form a representative sample of a particular domain of tasks, then the test is said to have high content validity. For example, a content-valid test of mathematical ability should be composed of items that allow students to demonstrate their mathematical ability. One way to evaluate the content validity of an assessment such as the MCA-III is to evaluate the alignment of the standards with test content.

Generally, achievement tests such as the Minnesota assessments are constructed in a way to ensure they have strong content validity. As documented by this manual, MDE, the contractors, and educator committees expend tremendous effort to ensure Minnesota assessments are content-valid. Although content validity evidence has limitations and cannot serve as the only evidence for validation, it is an important piece of evidence for the validation of Minnesota assessments.

Evaluating content validity is a subjective process that is based on rational arguments. Generally, experts make judgments about agreement between the parts of the test and construct. This process often involves experts assigning test items to one of the major content areas being measured in the assessment. Even when conducted by content experts, the subjectivity of the method remains a weakness. Also, content validity speaks only to the validity of the test itself, not to decisions made based on the test scores. For example, a poor score on a highly content-valid mathematics test indicates that the student did not demonstrate mathematical ability. But from this alone, one cannot conclusively conclude the student has low mathematical ability. This conclusion can only be reached if it can be shown or argued that the student put forth his or her best effort, the student was not distracted during the test, and the test did not include content-irrelevant elements that prevented the student from scoring well.

In order to ensure the content is aligned with the construct, the development of the items is based on test specifications for each subject and grade that is being assessed. Rigorous processes have been put in place to align items and test forms with the standards while developing items for Minnesota assessments. As a result, each Minnesota assessment is developed with content-related validity evidence in mind.

Panels consisting of members of the Minnesota Academic Standards Committee and classroom teachers were convened to develop the test specifications for each test, subject, and grade. Many of the classroom teachers were recommended to the MDE by various education organizations, school districts, and other stakeholder groups. The starting point for development of the test specifications was revision of the Minnesota Academic Standards for the relevant subject and grade (for mathematics, the 2007 version, and for reading, the 2010 version of the language arts standards). These panels developed the test specifications, and their decisions regarding the specific subject matter that was to be assessed were made with reference to these standards. Therefore, the administered test is based on the Minnesota Academic Standards (which detail what should be taught from each subject at each grade level), informed by the expertise of selected Minnesota educators.

The test specifications identify eligible test content and provide item count targets for various item properties such as content strands or substrands, standards, domains, item types, and depth of knowledge levels. These targets are codified into a test blueprint, which provides direction to item writers, psychometricians, content specialists from Minnesota's testing contractor, and MDE so that all relevant content is sufficiently covered by the assessment. This coverage is one piece of evidence for the content validity of the test.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Both the testing contractor and MDE are involved in item development. The items are developed based on the test specifications. The items are rigorously scrutinized during the content review, which involves all members of the assessment team. This review checks for the appropriateness of test items, difficulty, clarity, correctness of answer choices, plausibility of the distractors, and fairness of the items and tasks. Then the items must be reviewed and approved by the content review committees, which assure that each item appropriately measures the intended content, is appropriate in difficult, contains only one correct (or best) answer for MC questions, and has an appropriate and complete scoring guideline for TE items. Next, a bias and sensitivity committee must approve the items, which review the item for language, or content, that may be inappropriate or offensive to students, parents, or community members, or that contain stereotypical or biased references to gender, ethnicity, or culture.

A set of separate alignment studies for each subject was conducted for the MCA-III and MTAS-III tests. An external independent contractor conducted these studies to provide evidence that a given assessment was aligned with its respective set of test specifications. Specific areas of interest included both how much and what type of content is covered by the assessment, as well as whether students are asked to demonstrate knowledge at the same level of rigor as expected in the content standards. Each of these alignment studies identified weaknesses in the assessments and provided recommendations to strengthen the alignment between the assessments and the Minnesota Academic Standards, as codified within the test specifications in future assessment years. Information from these studies was used to modify the pool to account for areas that are lacking.

Following the first administration of new assessments aligning with revised academic standards, MDE also develops ALDs, which provide a description of typical grade-level performance for the achievement levels. The ALDs are descriptions of the knowledge and skills demonstrated by students in each performance category. Higher scores translate to a greater level of knowledge and skills demonstrated. There is a link between the ALDs and the knowledge and skills required to meet proficiency according to the standards. To ensure the ALDs have high validity, the ALDs are developed by content area experts and stakeholders.

Content experts and stakeholders participate in a standard setting, a process setting the levels of performance on the assessment that are reported to students, parents, and schools. This committee sets the cut scores that delineate the four levels of achievement reported in Minnesota (Exceeds the Achievement Standards, Meets the Achievement Standards, Partially Meets the Achievement Standards, and Does Not Meet the Achievement Standards). The ALDs define the grade-level student performance in each level of achievement based on the assessment results, and can be found on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Achievement Level Descriptors).

Also important for content validity is the control of random measurement error. Evidence that measurement error is controlled comes largely from reliability and other psychometric measures. Reliability and the standard error of measurement (SEM) are discussed in Chapter 9, "Reliability." The Yearbook has tables reporting the SEM (for fixed form tests) and the coefficient alpha reliabilities for raw scores for fixed form tests, broken down by demographic groups. As discussed in Chapter 9, these measures show Minnesota Assessment System to be reliable.

Evidence Based on Response Processes

Validity evidence based on response processes involves explicit assumptions about the cognitive processes engaged in by the test takers. Analyses of the response processes of test takers provides evidence concerning

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

the fit between the construct and the nature of the performance or response required of the test takers (American Educational Research Association, American Psychological Association, and the National Council on Measurement in Education, 2014). Put another way, if an assessment is designed to measure mathematical reasoning, then the assessment should be evaluated to determine if students are actually evaluating the mathematical questions as planned. Generally, this type of evidence is inferred through analysis of individual responses to determine the methods and strategies that students employ when answering a given item. This evidence is most frequently obtained through a response process study in which test takers from different groups are monitored to determine the process they go through to answer a given item.

The test specifications discussed previously include number of items targets for each of first three "depth of knowledge" (DOK) levels for mathematics and reading. DOK, or cognitive complexity, refers to the cognitive demand associated with an item. The level of cognitive demand focuses on the type and level of thinking and reasoning required of the student when interacting with a particular item. Levels of cognitive complexity for MCAIII are based on Norman L. Webb's (Webb, 1999) DOK levels.

A Level 1 (recall) item requires the recall of information such as a fact, definition, term, or simple procedure, as well as performing a simple algorithm or applying a formula. A well-defined and straight algorithmic procedure is considered to be at this level. A Level 1 item specifies the operation or method of solution and the student is required to carry it out.

A Level 2 (skill/concept) item calls for the engagement of some mental processing beyond a habitual response, with students required to make some decisions as to how to approach a problem or activity. Interpreting information from a simple graph and requiring reading information from the graph is a Level 2 . An item that requires students to choose the operation or method of solution and then solve the problem is a Level 2 . Level 2 items are often similar to examples used in textbooks.

Level 3 (strategic thinking) items require students to reason, plan, or use evidence to solve the problem. In most instances, requiring students to explain their thinking is a Level 3. A Level 3 item may be solved using routine skills, but the student is not cued or prompted as to which skills to use.

Level 4 (extended thinking) items require complex reasoning, planning, developing, and thinking, most likely over an extended period of time. Level 4 items are best assessed in the classroom, where the constraints of standardized testing are not a factor.

Response process validity evidence is most frequently provided through conducting cognitive interviews with students while interacting with an item. Cognitive interviews are not conducted for the Minnesota tests. Instead, each item is developed to strictly adhere to one of the first three DOK levels and is reviewed internally by both the content teams of the test contractor and MDE. Qualified teachers and community members, who interact with students in the classroom, review and verify the DOK levels of each field-test item. These committees act as a proxy for the students by giving consideration to the process that students follow while responding to a given item. Of particular concern during item development is the development of items that contain no irrelevant information that may interfere with how the item is interpreted or scored. The test specification review committees, who have experience working with students and their cognitive processes on a daily basis, determine what proportions of the test that should be devoted to items at each of the first three levels of DOK.

Evidence Based on Internal Structure

Internal structure validity evidence shows the degree to which items and test components conform to the construct on which the proposed test score interpretations are based (American Educational Research Association, American Psychological Association, and the National Council on Measurement in Education, 2014). For instance, a mathematics test may be broken into several strands such as data analysis, algebra, geometry and measurement, and number and operation. Internal structure validity evidence identifies the degree to which the item relationships conform to the individual subscales and overall mathematics scale.

One type of evidence for internal structure that is provided for the fixed form MCA-III Mathematics, Reading, and Science, and all MTAS-III assessments is dimensionality analysis, which is often referred to as factor analysis. The dimensionality analysis identifies a number of components that best explain the relationships among the items. It is common for educational assessments to measure more than one dimension, but generally these tests measure a strong major dimension and a number of minor less important factors. Each of the MCA-III and MTASIII assessments is designed to measure a multifaceted composite of knowledge and skills appropriate for the subject and grade. This composite of knowledge and skills is expected to be composed of separate, but highly correlated, components such that the measured composite can be considered as a unidimensional construct, thus permitting the use of unidimensional IRT models.

A Principal Component Analysis (PCA) is annually conducted on the Minnesota assessments and results for all grades and subjects of the MCA-III and MTAS-III can be found in the Yearbook under the section heading "Dimensionality Reports," located on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Technical Reports). Dimensionality results reported in the Yearbook include the ratio of the first to the second eigenvalue and the proportion of variance accounted for by the first eigenvalue. Various rules of thumb have been proposed in the research literature to help interpret these measures. Various authors (e.g., Gorsuch, 1983; Morizot, Ainswrorth, and Reise, 2007) give the rule that if the ratio of the first to second eigenvalue exceeds a value of three unidimensionality is indicated. As shown in analyses reported in the Yearbook, MCA-III and MTASIII eigenvalue ratios generally always exceed this criterion, implying the tests are unidimensional. Regarding the percent of variance accounted for by the first factor, since the first principal component explains the maximum variance, then the percentage of total variance explained by the first principle component is often regarded as an index of essential unidimensionality. The higher percentage of total variance the first principle component accounts for, the closer the test is to essential unidimensionality. Reckase (1979) found that good unidimensional ability estimates could be obtained even if the first factor accounts for less than 10% of the variance. However, the rule of thumb he gave for essential unidimensionality was for the first factor to exceed 20% of the total variance, because in his study he found that item calibration results could be unstable when the variance accounted for was less than 20\%. MCA-III tests generally show the first eigenvalue accounting for 10% to 20% of the total variance, while MTAS-III tests generally show much higher values for percent of total variance accounted for (greater than 30\%). Although the MCA-III tests do not always meet the Reckase's 20\% rule of thumb, they do show that the first factor accounts for a substantial proportion of the variance, and the IRT item drift analyses conducted every year show that MCA-III item calibration results to be stable. Therefore, both the ratio of eigenvalues and the proportion of variance accounted for analyses reported in the Yearbook provide support that MCA tests measure an essentially unidimensional composite.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

In addition to the Principal Component Analysis, the unidimensional composite for the fixed form assessments can be investigated at the item level through the point-biserial correlation. The content measured by each item on the test should have a strong relationship with the content measured by the other items. An item-total correlation (also called point-biserial correlation) is the correlation between an item and the total test score. Conceptually, if an item has a high item-total correlation (i.e., 0.30 or above), it indicates that students who performed well on the test tended to answer the item correctly and students who performed poorly on the test tended to answer the item incorrectly, that is, the item discriminated well between high-ability and low-ability students. Assuming the total test score represents the extent to which a student possesses the skills or knowledge being measured by the test, high item-total correlations indicate the items on the test require proficiency in these skills or knowledge to be answered correctly. The Yearbook presents item-total correlations in tables under the section heading "Item Statistics Reports," located on the MDE website. For Minnesota assessments, mean itemtotal correlations are generally high.

Additionally, to provide further evidence of the internal structure of the test, correlations among the total test score and subscales are provided. These correlations quantify the relationships among strands (for mathematics and science) and substrands (for reading) and the overall test score. The overall test score is represented by the total scale score for the MCA-III assessment and the total raw score for the MTAS-III assessment. These correlations demonstrate that the factors (strands and substrands) composing the overall test are highly related (as demonstrated through high correlations) to the overall test while also distinct in the factors they are measuring. Put another way, high correlations are indicative that the assessment is measuring one underlying construct. As can be referenced in the correlation tables in the Yearbook, there are high correlations between the scale score, or the raw score for fixed form tests, and the strand scores (substrand for reading) for each of the grades, while there are moderate-to-high correlations among the strand (or substrand) scores. The correlation tables are provided in the Yearbook for MCA-III Mathematics, Reading, and Science, and MTAS-III Mathematics, Reading, and Science assessments under the section heading "Internal Consistency Reports," located on the MDE website.

The dimensionality analysis examines the number of factors measured by the items, the item-total correlations investigate the consistency of students' performance on an item to their overall test scores, and the correlations among the total scale score (or raw score for fixed-form tests) and the strand (substrand for reading) provide evidence that the strand (or substrand for reading) scores are highly related to the total test score, but less related to each other. Together, these three pieces of evidence collectively demonstrate the structure of the test can be measured using a unidimensional composite.

Validity Evidence for Different Student Populations

In addition, internal structure evidence should show that individual items are functioning similarly for different demographic subgroups within the population being measured. Minnesota assessments measure the statewide content standards that are taught to all students. In other words, the tests have the same content validity for all students because what is taught to all students is measured for all students. In addition, all the tests are given under standardized conditions. Great care has been taken to ensure the items in the Minnesota assessments are fair and representative of the content domain expressed in the content standards. Special attention is given to find evidence that construct-irrelevant content has not been inadvertently included in the test, as such content could result in an unfair advantage for one group versus another. For instance, a test item could contain language or address topics that are more familiar to male students compared to female students. Both judgmental and

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

statistical methods are used to identify and remove such items from use, so as to mitigate their impact on any of the demographic subgroups that make up the population of the state of Minnesota.

As described in Chapter 2, "Test Development," this begins with item writers trained on how to avoid economic, regional, cultural, and ethnic bias when writing items. After items have been written, they are reviewed by a bias and sensitivity committee, which evaluates each item to identify language or content that might be inappropriate or offensive to students, parents, or other community members or that contain stereotypical or biased references to gender, ethnic, or cultural groups. The bias and sensitivity committee accepts, edits, or rejects each item for use prior to the items' initial (field-test) administration.

DIF analyses are conducted for the purpose of identifying items that are differentially difficult for different subpopulations of individuals. Refer to Chapter 2, "Test Construction," for more details about DIF and the method used to flag items that function differently. Though DIF analyses flag items as being differentially difficult for one group as compared to another, it does not solely provide sufficient evidence for removing the item from use. Flagged items are examined during "Data Review" meetings that take place after the initial (field-test) administration of each item. Items are removed from use only when the data review committee identifies a concrete reason for the DIF, such as bias or sensitive content.

These multiple reviews are a critical component of the item and test development process. They support the validity of the test for all the diverse populations that make up the state of Minnesota.

Evidence Based on Relations to Other Variables

The Standards of Educational and Psychological Measurement (American Educational Research Association, American Psychological Association, and the National Council on Measurement in Education, 2014) highlight that often, the interpretation or use of a particular measure can be validated by comparison to other measures of the same or a related construct. Because the Minnesota tests have been developed with a specific set of standards to be assessed, it is challenging to identify tests that measure the same construct with the same content.

Both convergent and divergent evidence fall under this category. Convergent validity evidence provides validity evidence through high correlations between test scores on the measure of interest and other measures that measure the same, or similar, constructs. Divergent validity provides validity evidence by showing lower correlations between the test score and different constructs.

In order to provide convergent validity evidence, Minnesota MTAS-III tests are administered by test administrators. These tests are given concurrently with the Learner Classification Inventory for Alternate Assessments on Alternate Achievement Standards (LCI), which collects student LCI data and assistive technology information for entry into the data-entry interface (Kearns, Kleinert, Kleinert, and Towles-Reeves; 2006). The collection of this data allows for a correlation to be calculated between student factors and their scores on the MTAS-III assessment. If the relationships are convergent, the performance of students on two measures should be highly correlated if they measure a similar construct. In particular, the raw scores of the MTAS-III Mathematics, Reading, and Science assessments were correlated with the LCI Mathematics and LCI Reading variables, which are items on the inventory that summarize the degree to which students are able to apply mathematical and reading skills. More specifically, the LCI Reading variable measures the degree to which a student is aware of text, is able to use text, to read text, and also the degree to which the student understands text. The LCI Mathematics variable measures

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability

 Assessmentsthe degree to which students have an awareness of numbers, can use those numbers, and conduct and apply computations with those numbers. High positive correlations between the LCI Mathematics and LCI Reading represent the congruence between the skills measured by the MTAS-III and the observed skills the test administrator observed. These correlations can be found in the Yearbook under the section "Correlation of LCl Variables with MTAS-III Scale Scores."

Also, correlations between MTAS-III student scores and the two LCI variables expressive communication and receptive language are calculated. Expressive communication, as measured by the LCl , represents the degree to which symbolic language and expression are used in communication, while receptive language, as measured by the LCl , represents the degree to which students are able to follow directions and are alert to sensory stimuli from others. Correlations between the MTAS-III Mathematics, Reading, and Science scores and the LCI variables expressive communication and receptive language provide one further piece of evidence that the scores from the students who take the MTAS-III are correlated to the skills of those students. These correlations can be found in the Yearbook under the section "Correlation of LCI Variables with MTAS-III Scale Scores."

In additional support of the validity of the MTAS-III, the relationships among the MTAS-III content areas (mathematics, reading, and science) were investigated. The validity evidence provided by this analysis is derived by comparing the observed relationships to the expected relationships. For instance, validity evidence can be provided if the observed relationships between Mathematics MTAS-III and Reading MTAS-III or Science MTAS-III are consistent with expectations. Results from these analyses are provided in the Yearbook under the section "Correlation of LCI Variables with MTAS-III Scale Scores."

Criterion Validity

Criterion validity relies upon the demonstration of a relationship between the test and an external criterion measure. If the test is intended to measure mathematical ability, for example, then scores from the test should correlate substantially with measures that require mathematical ability to achieve a high score. Criterion validity addresses how accurately criterion performance can be predicted from test scores. The key to criterion-related evidence is the degree of relationship between the assessment and the external criterion. In order for the observed relationship between the assessment and the criterion to show a strong relationship, the criterion should measure the same or a similar construct of the assessment. Criterion validity evidence is typically expressed in terms of the product-moment correlation between the test and criterion scores.

There are two types of criterion-related evidence: concurrent and predictive. The difference between these types relates to the procedures used for collecting validity evidence. Concurrent evidence is collected from both the assessment and the criterion at the same time. An example might be the relationship between scores from a district-wide assessment (the measure being validated) to those from a nationally recognized college entrance exam (the criterion). In this example, if the results from the district-wide assessment and the nationally recognized college entrance exam were collected in the same semester of the school year and were highly correlated, this would provide concurrent criterion-related evidence of the validity of the district-wide assessment. On the other hand, predictive evidence is collected at different times; typically, the criterion information is obtained subsequent to the administration of the measure being validated. For example, if results from a nationally recognized college entrance exam were being used to predict success in the first year of college, the nationally recognized college entrance exam results would be obtained in the junior or senior year of high school, whereas the criterion-college grade point average (GPA) - would not be available until a year or two later. The correlation of the two would then be a measure of the validity of the exam with respect to its use in predicting first-year college success.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

In ideal situations, the criterion-validity approach can provide convincing evidence of a test's validity. However, there are two important obstacles to implementing the approach. First, a suitable criterion must be found. A standards-based test such as the MCA-III is designed to measure the degree to which students have achieved proficiency on the Minnesota Academic Standards. Finding a criterion representing proficiency on the Minnesota Academic Standards may be hard to do without creating yet another test. It would possible to correlate performance on the MCA-III with other types of assessments, such as a nationally recognized college entrance exam or school assessments, but even though strong correlations with a variety of other assessments would provide some evidence of validity for the MCA-III, the evidence is less compelling if the criterion measures are only indirectly related to the standards. The same can be said of the MTAS-III. Finding a criterion representing proficiency on this assessment is difficult because the sample of students who take this assessment do not typically do take other large-scale assessments that measure ability.

A second obstacle to the demonstration of criterion validity is that the criterion may require validation as well. In some cases, it may be more difficult to demonstrate the validity of the criterion than to validate the test itself. Further, unreliability of the criterion can substantially attenuate the correlation observed between a valid measure and the criterion.

Correlational analyses were conducted to investigate the relationship between the MCA-III for high school students and a nationally recognized college entrance examination. Results indicated that there is a strong positive relationship between the MCA-III Mathematics assessment for those in high school and a nationally recognized college entrance examination ($r=0.86$); similarly, there was a strong positive relationship between the MCA-III Reading assessment for those in high school and the nationally recognized college entrance examination ($r=0.76$). In addition, there was a strong and positive correlation ($r=0.78$) between grade 8 MCA-III Mathematics scale scores and the nationally recognized "pre-college" entrance examination; similar findings were observed for reading, where the correlation between the grade 8 MCA-III Reading scale scores and nationally recognized "precollege" entrance exam was positive and strong ($r=0.70$). Additional criterion-related validity evidence on the Minnesota assessments will be collected and reported on an ongoing basis. These data are most likely to come from districts conducting program evaluation research, university researchers, and special interest groups researching topics of local interest, as well as the data-collection efforts of MDE.

Additional Validity Evidence

Scoring-Validity Evidence

Scoring-validity evidence can be divided into two sections: (1) the evidence for the scoring of performance items and (2) the evidence for the fit of items to the model.

Scoring of MTAS-III Items

The auditing of the Minnesota Test of Academic Skills (MTAS-III) administrations and task ratings supplies validity evidence for the scoring of these performance tasks. The auditing procedure is described in Chapter 9, "Reliability," and results of the audits are provided in the Yearbook.

Model Fit and Scaling

IRT models provide a basis for the Minnesota assessments. IRT models are used for the selection of items to go on the test, the equating procedures, and the scaling procedures. A failure of model fit would make the validity of these procedures suspect. Item fit is examined during test construction. Any item displaying misfit is carefully

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

scrutinized before a decision is made to put it on the test. However, the vast majority of items show adequate item fit.

Justification for the scaling procedures used for Minnesota assessments is found in Chapter 6, "Scaling."
While it is important to validate the fit of IRT models and the scaling procedures used for each specific Minnesota assessment, it is also critical to examine factors specific to the administration of the test questions that could invalidate scores. One such factor relevant for the MCA-III assessments is the mode of administration. Prior to 2015, the MCA-III was administered either online or on paper, depending upon the choice made by the school district. Thus, it was important to evaluate whether mode effects between the two versions of the test could raise validity concerns for the test scores. Since the 2014-15 testing year, the MCA-III has moved to online testing for all mathematics, reading, and science tests; however, students who are eligible can still be administered the paper accommodated version of the test. In spring 2011, a mode-comparability study was conducted using a matched group study design to compare the results of students taking one of the online operational test forms with the results of student taking a similar form given on paper for the MCA-III Mathematics grades 3-8. The results of the comparability study suggested that, although testing mode was found to affect certain items in common between the online and paper versions, this effect could be mitigated by essentially treating the online and paper versions of the items as distinct items with mode-specific item parameters. The online and paper parameters were scaled to a common metric by using a set of linking items. Because the online and paper administrations are pre-equated and the paper form has been fixed over time, the mode specific parameter estimates are still applicable for the current assessment. The complete MCA-III Mathematics grades $3-8$ comparability report can be found on the MDE website (MDE > Districts, Schools and Educators > Statewide Testing > Technical Reports).

In spring 2013, a mode-comparability study was conducted using matched samples to compare student performance on the MCA-III Reading online and paper assessment modes. The results of the comparability study suggested that there was a mode effect but that it could be resolved by applying the results of a Stocking-Lord equating to place the scores on the same scale. The complete MCA-III Reading comparability report is available upon request from MDE.

In addition, in spring 2014, a mode-comparability study was conducted using matched samples to compare student performance on the MCA-III Mathematics grade 11 online and paper assessment modes. The results of the comparability study suggested that there was a mode effect, but that it could be resolved by applying the results of a Stocking-Lord equating to place the scores on the same scale. The complete MCA-III Mathematics grade 11 comparability report is available upon request from MDE.

Chapter 9: Reliability

The Standards for Educational and Psychological Testing (American Educational Research Association, American Psychological Association, and National Council on Measurement in Education, 2014) note that the term reliability is typically used in one of two different ways within the field of measurement. The first is within the term reliability coefficient, which refers to the "reliability coefficients of classical test theory, defined as the correlation between scores on two equivalent forms of the test, presuming that taking one form has no effect on performance on the second form." The second term refers to reliability/precision and refers to the "more general notion of consistency of the scores across instances of the testing procedures." The Standards mention that reliability can be quantified as standard errors, reliability coefficients, generalizability coefficients, error/tolerance ratios, IRT information functions, and various indices of classification consistency as appropriate to the assessment for which the reliability is being measured. When a score is reported for a student, there is an expectation that if the student had taken a different but equivalent version of the test, a similar score would have been achieved. A test that does not meet this expectation (that is, a test that does not measure student ability and knowledge consistently) has little or no value. Furthermore, the ability to measure consistently is a prerequisite to making appropriate interpretations of scores on the measure (i.e., showing evidence of valid use of the results). However, a reliable test is not necessarily a valid test and a reliable and valid test is not valid for every purpose. A measure can be consistent and support certain score interpretations but still not support all the inferences a user of the test wishes to make. Therefore, reliability is a necessary, but not sufficient, condition for validity. The concept of test validity was discussed earlier in this document in Chapter 8, "Validity."

A Mathematical Definition of Reliability

The basis for developing a mathematical definition of reliability can be found by examining the fundamental principle at the heart of classical test theory: all measures consist of an accurate or "true" part and some inaccurate or "error" component. This axiom is commonly written as:

$$
\begin{equation*}
\text { Observed Score }=\text { True Score }+ \text { Error } \tag{9.1}
\end{equation*}
$$

Errors occur as a natural part of the measurement process and can never be eliminated entirely. For example, uncontrollable factors such as differences in the physical world and changes in examinee disposition may work to increase error and decrease reliability. In classical test theory, error is typically assumed to be the result of random, unsystematic influences. If there are systematic influences contributing to the error term, then derived reliability indices are likely to be compromised. For example, if a test is administered under very poor lighting conditions, the test scores are likely to be systematically lower for the entire group of students taking the test than they would have been had the lighting been at adequate levels.

Reliability can be quantified in many ways. One common representation is as the proportion of true score variance relative to observed score variance, that is, the variance of the students' true scores divided by the variance of their observed scores (see equation 9.2).

$$
\begin{equation*}
\text { Reliability }=\frac{\sigma_{T}^{2}}{\sigma_{\partial}^{2}}=\frac{\sigma_{T}^{2}}{\sigma_{T}^{2}+\sigma_{E}^{2}}=1-\frac{\sigma_{E}^{2}}{\sigma_{\delta}^{2}} \tag{9.2}
\end{equation*}
$$

where σ_{T}^{2} is the true score variance, σ_{o}^{2} is the variance of the observed score and σ_{E}^{2} is the error variance. When there is no error, the reliability is the true score variance divided by true score variance, which is unity. However, as more error influences the measure, the error variance component in the denominator of the ratio increases and the reliability decreases.

Using assumptions from classical test theory (Equation 9.1 and random error assumptions), an alternative formulation can be derived. This formulation is more closely aligned to the reliability coefficient discussed earlier. Reliability, the ratio of true variance to observed variance, can be shown to equal the correlation coefficient between observed scores on two parallel tests. The term parallel has a specific meaning: the two tests meet the standard classical test theory assumptions, as well as yield equivalent true scores and error variances. The proportion of true variance formulation and the parallel test correlation formulation can be used to derive sample reliability estimates.

Estimating Reliability

There are three broad categories of reliability coefficients in classical test theory: (a) test-retest, (b) alternate forms, and (c) internal consistency methods. The test-retest and alternate forms methods both rely on testing students multiple times while internal consistency reliability assesses the degree of reliability through a single administration of a test.

Reliability can vary from one sample to another. As discussed in the validity chapter (Chapter 8), Minnesota has taken a multifaceted approach to providing validity evidence of their assessments to ensure that the assessments are equally valid for different samples of students. This is conducted through DIF analysis, expert knowledge from a committee of individuals representing a diverse cultural knowledge base, as well as content committees and bias and sensitivity committees who are familiar with the diversity of cultures within Minnesota. Because different samples can vary in their reliability/precision, separate estimates of reliability are provided for several subgroups of students to which Minnesota administers assessments. Therefore, separate estimates of reliability are provided for the total (overall) group of students, Female, Male, Asian, Black/African American, Hispanic, American Indian/Alaska native, Multi-Race, Native Hawaiian/Pacific Islander, and White groups for the current year.

Test-Retest Reliability Estimation

Reliability can be estimated by calculating the correlation coefficient between scores from a test administered on one occasion with scores from the same test administered on another occasion to the same students. Essentially, the test is acting as its own parallel form and the reliability estimate is representing the consistency over replications of the testing procedure. Using the test-retest reliability method has potential pitfalls. A long interval between testing sessions likely will result in student growth in knowledge of the subject matter, while a short interval increases the chance students will remember and repeat answers from the first session. In addition, the test-retest approach requires the same students to take a test twice. For these reasons, test-retest reliability estimation is not used on Minnesota assessments.

Alternate Forms Reliability Estimation

Alternate forms reliability is similar to test-retest, except that instead of repeating the identical test, two presumably equivalent forms of the test are administered to the same students. The accuracy of the alternate forms coefficient greatly depends upon the degree to which the two forms are equivalent in terms of the general distribution of content, item formats, administrative procedures, and population score means and standard

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

deviations. For Minnesota assessments, alternate forms reliability estimation is not possible because no student takes more than one form of the test during any test administration. Reducing the frequency of testing students provides more time for the students in the classroom as well as limits the item pool usage per grade, meaning fewer items must be developed and maintained.

Internal Consistency Reliability Estimation

Internal consistency methods use a single administration to estimate test score reliability. As stated in the Standards for Educational and Psychological Testing (2014) "it should not be inferred, however, that alternateform or test-retest coefficients based on test administrations several days or weeks apart are always preferable to internal-consistency coefficients." The reason for this is that invariance over occasions is a reasonable assumption if there is a strong theoretically argument for this to be true. Specifically, the Minnesota assessments are developed to control many of the factors that can influence students test scores. Therefore, internal consistency is the primary reliability estimate used for the fixed form assessments administered in Minnesota. In addition, for state assessments where student testing time is at a premium, internal consistency procedures have a practical advantage over reliability estimation procedures requiring multiple tests. The most frequently used internal consistency reliability estimate is coefficient alpha (Cronbach, 1951). Coefficient alpha is based on the essentially tau-equivalent measurement model and the formula is:

$$
\begin{equation*}
\alpha=\left(\frac{N}{N-1}\right)\left(1-\frac{\sum_{i=1}^{N} S_{Y_{i}}^{2}}{S_{X}^{2}}\right) \tag{9.3}
\end{equation*}
$$

where N is the number of items on the test, $S_{\mathrm{X}_{\mathrm{i}}}^{2}$ is the sample variance of the $i^{\text {th }}$ item (or component) and S_{X}^{2} is the observed score sample variance for the test. Coefficient alpha is a point estimate of score reliability, and it may be important to consider the precision of that estimate, particularly when it is based on a small number of data points and/or restriction of range.

Coefficient alpha is calculated for all paper accommodated form assessments, including the Mathematics and Reading MCA-III, as well as the MTAS-III data-entry assessments for mathematics, reading, and science, which are all data-entry forms. Coefficient alpha is appropriate for use when the items on the test are reasonably homogenous. Evidence for the homogeneity of Minnesota tests is obtained through a dimensionality analysis. Results from the dimensionality analysis are discussed in Chapter 8, "Validity." Dimensionally analysis results are provided in the Yearbook under the section "Dimensionality Reports" for both MCA-III and MTAS-III assessments.

Given the results of the dimensionality analysis, it was assumed reasonable that the tests were homogeneous and that it was appropriate to compute coefficient alpha. Alpha is based on the total sample of test takers that take the same set of items. Because not all students see the same set of items during the administration of the MCAIII Mathematics and Reading online adaptive assessments, standard measures of reliability are not appropriate; therefore, coefficient alpha is used as reliability evidence for only the fixed-form assessments, including the MTASIII assessments, as well as, the data-entry forms for the MCA-III Mathematics and Reading. The MCA-III Science assessment, similar to the MCA-III Mathematics and Reading assessments, calculated marginal reliability in lieu of coefficient alpha. Marginal reliability is discussed later in this chapter.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

The data-entry forms calculate coefficient alpha for two primary reasons. First, prior to year 2014-15, districts could choose between online or paper forms assessments. Year 2014-15 was the first operational year where all students were required to take the MCA-III assessment online except for those who were eligible to take the dataentry accommodated forms. Because of this change in policy, students taking the data-entry forms for MCA-III tend to have lower scale scores than students taking the online test. Also, the number of students taking the dataentry form version of the MCA-III tends to be quite low in relation to the online test. Because of these reasons, coefficient alpha is an appropriate index to calculate the reliability for the data-entry forms of Mathematics and Reading MCA-III. Second, coefficient alpha tends to be higher for assessments with more items in general, given they are well-written items. In contrast, the coefficient alpha for a single strand level may not be as high as the overall assessment because there are a limited number of items measuring a given strand. The distributional information for the MCA-III online and data-entry forms, as well as the coefficient alpha for the data-entry forms, can be referenced in the Yearbook under the section "Summary Statistic Reports." Similarly, for MTAS-III, coefficient alpha is calculated because of the limited number of students in relation to the MCA-III online. Similar to the MCA-III, the coefficient alpha statistics for each grade and subject can be found in the Yearbook under the section "Summary Statistics Reports."

Additionally, item-total correlations are computed. A reliable measure should contain items that correlate with the sum of the other items on the measure. An item-total correlation is simply the correlation between each item and the total-raw score after removing the item of interest. The item-total correlations are calculated for the paper accommodated form of the MCA-III Mathematics grades $3-8$ and 11, MCA-III Reading grades $3-8$ and 10, as well as all fixed form assessments which include MCA-III Science grades 5,8 , and high school as well as all MTASIII assessments for mathematics, reading, and science. Item-total correlations for each grade and subject are provided in the Yearbook under the section "Item Statistics Reports" for both MCA-III and MTAS-III assessments. Item-total correlations are also calculated during key-check processes where item-total correlations are calculated for all MC items for all CAT and linear form assessments. Here the item-total correlation for CAT tests represents the correlation between the item and the total raw score with that item removed (subtracted from the total score); however, for the CAT test the items composing the total raw score will vary by student. This statistic represents the relationship between how someone does on the overall test and how they performed on an individual item. By scrutinizing the relationship between individual items on student's performance on the test, the items included on the test will be more likely to function similarly.

Item Response Theory (IRT) Based Reliability

Instead of reporting coefficient alpha for the MCA-III online assessments for mathematics, reading, and science, estimates of reliability based on IRT are given. IRT provides a means of estimating reliability that operates on both the individual pattern of responses to items given by examinees and statistical characteristics associated with those items. The IRT analogue to classical reliability is called marginal reliability and is calculated using the variance of the theta (ability) scores and the average of the expected error variance. Similar to the decomposition of an observed score in classical test theory, one can decompose the estimated IRT ability into the true ability plus error,

$$
\begin{equation*}
\hat{\theta}=\theta+\epsilon, \tag{9.4}
\end{equation*}
$$

where $\hat{\theta}$ is the estimated ability, θ is the true ability, and $\boldsymbol{\epsilon}$ is the error associated with the estimate. The reliability can then be expressed as

$$
\begin{equation*}
R_{\theta}=\frac{\operatorname{var}(\theta)}{\operatorname{var}(\widehat{\theta})}=\frac{\operatorname{var}(\widehat{\theta})-\operatorname{var}(\epsilon)}{\operatorname{var}(\widehat{\theta})} \tag{9.5}
\end{equation*}
$$

The marginal reliability (Green, Bock, Humphreys, Linn, \& Reckase, 1984; Thissen \& Wainer, 2001) of the reported scale score can then be expressed as

$$
\begin{equation*}
\text { Marginal Reliability }=\frac{\sigma_{\text {theta }}^{2}-\overline{\mathrm{SE}_{\text {theta }_{\mathrm{i}}}{ }^{2}}}{\sigma_{\text {theta }}^{2}} \tag{9.6}
\end{equation*}
$$

where $\sigma_{\text {theta }}^{2}$ is the variance of ability scores for the population of interest and $\mathrm{SE}_{\text {theta }}$ is the standard error of the ability estimate of student i. Marginal reliability can be calculated by subtracting the average of the squared CSEM (error variance) for each student from the estimated variance of IRT ability scores and dividing by the estimated variance of IRT ability scores. In the case of MCA-III online strand and substrand scores for mathematics, reading, and science, where expected a posteriori (EAP) methods are used to estimate scores, an alternative formula, described by Bock and Mislevy (1982) is used to estimate score reliability that is based on the assumption the ability distribution is distributed normally, $N(0,1)$.

$$
\begin{equation*}
\text { EAP Marginal Reliability }=1-\overline{P S D^{2}} \tag{9.7}
\end{equation*}
$$

where PSD is the posterior standard deviation of the EAP estimate and

$$
\begin{equation*}
\operatorname{PSD}=\operatorname{Var}(\theta \mid \mathbf{u})=\frac{\sum_{k=1}^{q}\left(\mathrm{X}_{\mathrm{k}}-\theta\right)^{2} L\left(\mathrm{X}_{\mathrm{k}}\right) W\left(\mathrm{X}_{\mathrm{k}}\right)}{L\left(\mathrm{X}_{\mathrm{k}}\right) W\left(\mathrm{X}_{\mathrm{k}}\right)} \tag{9.8}
\end{equation*}
$$

where X_{k} is one of q quadrature points, $W\left(\mathrm{X}_{\mathrm{k}}\right)$ is a weight associated with the quadrature point, and $L\left(\mathrm{X}_{\mathrm{k}}\right)$ is the likelihood function conditioned at that quadrature point. PSD is equal to the standard error of the EAP estimate for each student in the student data file.

For the MCA-III online assessments in mathematics, reading, and science, the marginal reliability is given for the overall scale score. For these assessments, standardized integer scale scores are reported for the strands, based on a linear transformation of the estimated strand theta ($=5.0+2 \theta_{\text {est }}$), in place of raw scores. For MCA-III online strand scores for mathematics, reading, and science, the marginal reliability is calculated for the estimated theta score. This result is multiplied by the square of the correlation between strand theta estimate and the reported standardized scale score in order to reflect the impact resulting from transformation of the theta score to integer scale score values constrained to a one-to-nine range. The modified EAP Marginal Reliability used for reporting purposes is:

$$
\begin{equation*}
\text { EAP Marginal Reliability }=\left(1-\overline{P S D^{2}}\right) *\left(r_{(\theta * \text { ScaleScore })}^{2}\right) \tag{9.9}
\end{equation*}
$$

where $r_{(\theta * s c a l e s c o r e)}^{2}$ is the squared correlation between the student theta estimates and student scale score estimates. Subscore reliability will generally be lower than total score reliability because reliability is influenced

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

by the number of items (as well as their covariation). In some cases, the number of items associated with a subscore is small (10 or fewer). Results involving subscores (and subscore differences in particular) must be interpreted carefully, because these measures have lower reliability associated with them compared to total scores. Marginal reliabilities are provided in the Yearbook for the MCA-III online assessments in mathematics, reading, and science under the section "Summary Statistics Reports." Marginal reliabilities provided in the Yearbook for the online assessments include reliabilities for the overall population, as well as reliabilities broken down by gender, ethnicity, and accommodated/non-accommodated status. For the purposes of reliability and summary statistic calculations, students taking an online accommodation are grouped together regardless of which accommodation they took because most accommodation types have very small sample sizes.

Standard Error of Measurement

A reliability coefficient expresses test score consistency in terms of variance ratios. In contrast, the standard error of measurement (SEM) expresses score inconsistency (unreliability) in terms of the reported score metric. Because Minnesota students are only tested at one point during the testing window each academic year, it is not possible to estimate the standard error through multiple measures. Instead the standard error of measurement can represent a lack of score consistency for the sample of students. The SEM is an estimate of how much error there is likely to be in an individual's observed score, or alternately, how much score variation would be expected if the individual were tested multiple times with equivalent forms of the test. The standard error of measurement is calculated using the following formula:

$$
\begin{equation*}
S E M=s_{x} \sqrt{1-\rho_{x x}}, \tag{9.10}
\end{equation*}
$$

where S_{x} is the standard deviation of observed scores for the total test, and $\rho_{x x}$ is the reliability estimate for the set of test scores.

Use of the Standard Error of Measurement

The standard error of measurement (SEM) is used to quantify the precision of a test in the metric on which scores will be reported. The SEM can be helpful for quantifying the extent of errors occurring on a test. A standard error of measurement band placed around the student's scale score would result in a range of values most likely to contain a student's observed score upon replication. For example, if a student has an observed scale score of 350 on a test having score reliability of 0.84 and a standard deviation of the observed score of 10.0 , the SEM would be

$$
\begin{equation*}
S E M=10.00 \sqrt{(1.00-0.84)}=4.00 \tag{9.11}
\end{equation*}
$$

Placing a one-SEM band around this scale score would result in a score range of 346 to 354 (that is, $350 \pm 1 \times 4.00$). It should be noted that scale scores are rounded to the nearest integer. Furthermore, in the case of unbiased scores and if measurement error is normally distributed, then the true scores for approximately 68 percent of test takers would fall in the interval band created by adding and subtracting one SEM from their reported score. Thus, 68 percent of students with an observed score of 350 and SEM $=4$ would have a true score within the interval $346-354$. This interval is called a confidence interval or confidence band. By increasing the range of the confidence interval, one improves the likelihood the confidence interval includes the observed score. For example, an interval of 1.96 times the SEMs around the scale score is referred to as a 95 percent confidence interval. It should be noted

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

that the above interpretations of the likelihood of having a score within a range is only approximate because the confidence interval is constructed around a point estimate and does not have an associated direct probability statement. While it is common practice to use a frequentist confidence band around the observed score and treat such as a probability statement, only Bayesian methods allow for such an interpretation because the score has a probability distribution because of the use of a prior distribution. Here, a score based on a Bayesian procedure (such as the process used with EAP-based strand scores) would have what is denoted as a posterior distribution (e.g., a set of plausible test scores) and credible intervals that represent direct probability statements about a score given the observed data.

The SEM for the subscales and total raw score is reported for the Mathematics, Reading, and Science MTAS-III in the Yearbook under the section "Summary Statistics Reports" for each respective grade and subject. The overall SEM for each MCA-III test can be calculated with data provided in the Yearbook. However, given the use of IRT for all Minnesota's assessments, the conditional SEM (discussed in the next section) is the primary reporting measure of precision associated with each scale score.

Conditional Standard Error of Measurement

Although the overall SEM is a useful summary indicator of a test's precision, the measurement error on most assessments varies across the score range. This means the measurement accuracy of a test is likely to differ for students depending on their score. To formalize this notion, classical test theory postulates that every student has a true score. This is the score the student would receive on the test if no error were present. Put another way, the true score can be conceptualized as the average of an infinite number of testing replications. Hypothetically, if a student was exposed to an infinite number of testing replications the error in measurement would be normally distributed with a mean equal to the true score and a variance equal to the standard error. Therefore, the standard error of measurement for a particular true score is defined as the standard deviation of the observed scores of students with that true score. This standard deviation of the observed score is called the conditional standard error of measurement (CSEM). The reasoning behind the CSEM is as follows: if a group of students all have the same true score, then a measure without error would assign these students the same score (the true score). Any differences in the scores of these students must be because of measurement error. The conditional standard deviation defines that amount of error. True scores are not observable. Therefore, the CSEM cannot be calculated simply by grouping students by their true score and computing the conditional standard deviation. However, the IRT model allows for the CSEM to be estimated for any test where the IRT model holds.

For assessments scored by a transformation of raw score-to-scale score table, such as Science MCA-III or Mathematics, Reading, and Science MTAS-III, the equation of CSEM for the test level scale score is:

$$
\begin{equation*}
\operatorname{CSEM}\left(O_{X} \mid \theta\right)=\sqrt{\left[\sum_{X=0}^{\operatorname{Max} X} O_{X}^{2} p(X \mid \theta)\right]-\left[\sum_{X=0}^{\operatorname{Max} X} O_{X} p(X \mid \theta)\right]^{2}} \tag{9.12}
\end{equation*}
$$

where O_{X} is the observed (scaled) score for a particular number-correct score x, θ is the IRT ability scale value conditioned on and $p(\cdot)$ is the probability function. $p(X \mid \theta)$ is computed using a recursive algorithm given by Thissen, Pommerich, Billeaud \& Williams (1995). Their algorithm is a polytomous generalization of the algorithm for dichotomous items given by Lord and Wingersky (1984). The values of θ used are the values corresponding to each raw score point using a reverse table lookup on the test characteristic function (TCF). The table reverse
lookup of the TCF is explained in Chapter 7, "Equating and Linking." For each raw score and score scale pair, the procedure results in a CSEM on the scale score metric.

For the MCA-III for Science, the strand level CSEM in the theta scale is calculated as:

$$
\begin{equation*}
\operatorname{CSEM}(\theta \mid x)=\sqrt{\frac{\sum(Q-E A P(\theta \mid x))^{2} L_{x}(Q) \phi(Q)}{\sum L_{x}(Q) \phi(Q)}} \tag{9.13}
\end{equation*}
$$

where Q is a quadrature distribution, $E A P(\theta \mid x)$ is the EAP strand theta for which the CSEM is being estimated, x is the summed score, $L_{x}(Q)$ is the likelihood for summed score x (via the Lord-Wingersky [1984] recursion) for quadrature point Q, and $\phi(Q)$ is the standard normal distribution for the quadrature distribution Q, normalized to sum to one. For this application, the quadrature distribution Q ranges from -5.0 to 5.0 , with intervals of 0.1 . The CSEM that results from this calculation is in the theta metric, and thus should be multiplied by two to place it in the strand scale score metric as shown below:

$$
\begin{equation*}
\operatorname{CSEM}\left(\operatorname{Scale}_{i}\right)=2 * \operatorname{CSEM}(\theta \mid x) \tag{9.14}
\end{equation*}
$$

MTAS-III scale scores are reported in their raw score metric and no CSEMs are reported.
For the Mathematics and Reading MCA-III, which employ pattern scoring based on the 3PL measurement model, the CSEM of student i 's scale score for the CSEMs of the on-grade test-level scale score, strand/substrand scale score, and progress score, is calculated from the CSEM of the obtained θ_{i} estimate:

$$
\begin{equation*}
\operatorname{CSEM}\left(\text { Scale }_{i}\right)=\text { Spread } * \operatorname{CSEM}\left(\theta_{i}\right) \tag{9.15}
\end{equation*}
$$

Under the IRT model, $\operatorname{CSEM}\left(\theta_{i}\right)$ is equal to the inverse of the square root of the test information function at θ_{i},

$$
\begin{equation*}
\operatorname{CSEM}\left(\theta_{i}\right)=\frac{1}{\sqrt{I\left(\theta_{i}\right)}} \tag{9.16}
\end{equation*}
$$

where $I\left(\theta_{i}\right)$ is the test information, calculated as:

$$
\begin{equation*}
I\left(\theta_{i}\right)=\sum_{j=1}^{N} \frac{P_{i j}^{\prime}\left(\theta_{i}\right)^{2}}{P_{i j}\left(\theta_{i}\right)\left(1-P_{i j}\left(\theta_{i}\right)\right.} \tag{9.17}
\end{equation*}
$$

where N is the number of items on the assessment, $P_{i j}$ is the probability of student i answering question j correctly, and $P_{i j}^{\prime}(\theta)$ is the first derivative of $P_{i j}$ with respect to θ. Note that the calculation depends both upon the unique set of items each student answers and his or her estimated ability level (θ). Therefore, different students will likely have different CSEM values even if they have the same raw score and/or theta estimate. Each item contains a unique amount of information for a given θ, which depends on each item's discrimination, difficulty, and pseudoguessing parameters. Therefore, the IRT estimate of CSEM depends on the specific set of items administered during the assessment. The more information across items for a given θ, the lower the conditional standard error of measurement will be.

Additional details on calculation of item and test information functions under the 3PL model can be found in Hambleton and Swaminathan (1985).

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Mean CSEMs are provided in the Yearbook for each subject and grade under the section "Frequency Distribution Reports." These values are reported for each scale score for MCA-III Mathematics and Reading and are reported by each raw score and scale score for MCA-III Science as well as MTAS-III Mathematics, Reading, and Science. The conditional standard error values can be used in the same way to form confidence bands as described for the traditional test-level SEM values. Additionally, under the section "Measurement Precision Comparison with Previous Administration", the Yearbook provides a comparison of the measurement precision of MCA assessments from the current administration to that of the previous administration. To make this comparison, are CSEM values are averaged within each decile of proficiency level, with the distribution of proficiency based on the student population. The comparison with the previous administration allows one to gauge how well the measurement precision across the scale is maintained across years. MCA assessments generally show similar measurement precision levels across the proficiency scale, or slight improvements due to item pools becoming larger and more robust across time. The measurement precision comparisons across administrations is provided for MCA-III Mathematics, Reading, and Science. In the case of MCA-III Mathematics and Reading, an additional comparison is presented showing CSEM values from when the main operational test was administered as fixed-form. The Yearbook CSEM comparisons show that transitioning the MCA-III Mathematics and Reading assessments to computer adaptive testing resulting in improved measurement precision.

Measurement Error for Groups of Students

As is the case with individual student scores, district, school, and classroom averages of scores are also influenced by measurement error. Averages, however, tend to be less affected by error than individual scores. Much of the error owing to systematic factors (i.e., bias) can be avoided with a well-designed assessment instrument that is administered under appropriate and standardized conditions. The remaining random error present in any assessment cannot be fully eliminated, but for groups of students random error is apt to cancel out (i.e., average to zero). Some students score a little higher than their true score, while others score a little lower. The larger the number in the group, the more the canceling of errors tends to occur. The degree of confidence in the average score of a group is generally greater than for an individual score.

Standard Error of the Mean

Confidence bands can be created for group averages in much the same manner as for individual scores, but in this case the width of the confidence band varies because of the amount of sampling error. Sampling error results from using a sample to infer characteristics of a population, such as the mean. Sampling error will be greater to the degree the sample does not accurately represent the population as a whole. When samples are taken from the population at random, the mean of a larger sample will generally have less sampling error than the mean of a smaller sample.

A confidence band for group averages is formed using the standard error of the mean. This statistic, s_{e}, is defined as

$$
\begin{equation*}
s_{e}=\frac{s_{x}}{\sqrt{N}}, \tag{9.18}
\end{equation*}
$$

where ${ }^{S_{x}}$ is the standard deviation of the group's observed scores and N is the number of students in the group.

As an example of how the standard error of the mean might be used, suppose that a particular class of 20 students had an average scale score of 455 with a standard deviation equal to 10 . The standard error would equal

$$
\begin{equation*}
s_{e}=\frac{10}{\sqrt{20}}=2.2 \tag{9.19}
\end{equation*}
$$

A confidence bound around the class average would indicate that one could be 68 percent confident that the true class average on the test was in the interval 455 ± 2.2 (452.8 to 457.2).

Auditing of MTAS-III Administrations and Task Ratings

Reliability evidence primarily focuses on the amount of error involved in measurement. In an assessment such as the MTAS-III where the test administrator scores performance tasks, an additional source of measurement error can come from the test administrator. In order to minimize the measurement error in the MTAS-III, Minnesota test administrators strictly adhere to the procedures for administering and scoring the assessment. Because many students taking the MTAS-III have unique communication styles that require significant familiarity with the student in order to understand their intended communication, the MTAS-III performance tasks are prepared, administered, and scored by educators familiar with the student. In order to show that the test administrators are correctly following the standardized guidelines for test administration and scoring, rater agreement can be used as one form of reliability evidence. Minnesota conducts rater audits on test administrators for the MTAS-III. The MDE recruited Minnesota educators and administrators (current or retired) to serve as scoring auditors. These auditors were trained in the administration and scoring of the MTAS-III and visited several randomly selected schools to observe the test administration and scoring of actual assessments. The auditors also interviewed the local teachers to get their opinions on the ease of preparing and administering the test. The auditor's agreement percentages between their own ratings and those of the test administrator as well as counts of the number of audits are provided in the Yearbook under the section "Field Auditor Results."

Classification Consistency

Every test administration will result in some error in classifying examinees. The Standards for Educational and Psychological Testing (American Educational Research Association, American Psychological Association, and the National Council on Measurement in Education, 1985) recommends reporting Decision Accuracy, or the "extent to which observed classification of examinees based on the results of a single replication would agree with their true classification status." The concept of the standard error of measurement (SEM) provides a mechanism for explaining how measurement error can lead to classification errors when cut scores are used to classify students into different achievement levels. For example, some students may have a true achievement level greater than a cut score. However, because of random variations (measurement error), their observed test score may be below the cut score. As a result, the students may be classified as having a lower achievement level. As discussed in the section on the SEM, a student's observed score is most likely to fall into a standard error band around his or her true score. Thus, the classification of students into different achievement levels can be imperfect, especially for the borderline students whose true scores lie close to achievement level cut scores.

For the MCA-III and the MTAS-III assessments, the levels of achievement are Does Not Meet the Standards, Partially Meets the Standards, Meets the Standards and Exceeds the Standards. The analysis of classification consistency is described below.

True level of achievement, which is based on the student's true score, cannot be observed; therefore, classification accuracy cannot be directly determined. It is possible, however, to estimate classification accuracy based on predictions from the IRT model. The accuracy of the estimate depends upon the degree to which the data are fit by the IRT model.

The method followed is based on the work of Rudner (2005). An assumption is made that for a given (true) ability score θ, the observed score $\hat{\theta}$ is normally distributed with a mean of θ and a standard deviation of $\operatorname{SE}(\theta)$ (i.e., the CSEM at θ). Using this information, the expected proportion of students with true scores in any particular achievement level (bounded by cut scores cand d) who are classified into an achievement level category (bounded by cut scores a and b) can be obtained by:

$$
\begin{equation*}
P\left(\text { Level }_{k}\right)=\sum_{\theta=c}^{d}\left(\phi\left(\frac{b-\theta}{S E(\theta)}\right)-\phi\left(\frac{a-\theta}{S E(\theta)}\right)\right) f(\theta) \tag{9.20}
\end{equation*}
$$

where a and b are theta scale points representing the score boundaries for the observed level, d and c are the theta scale points representing score boundaries for the true level, ϕ is the normal cumulative distribution function and ${ }^{\mathrm{f}}(\theta)$ is the density function associated with the true score. Because $\mathrm{f}(\theta)$ is unknown, the observed probability distribution of student theta estimates is used to estimate $\mathrm{f}(\theta)$ in our calculations.

More concretely, the observed distribution of theta estimates (and observed achievement levels) is used to represent the true theta score (and achievement level) distribution. Based on that distribution, Equation 9.20 is used to estimate the proportion of students at each achievement level that are expected to be assigned to each possible achievement level. To compute classification consistency, the percentages are computed for all cells of a True vs. Expected achievement level cross-classification table. The diagonal entries within the table represent agreement between true and expected classifications of examinees. The sum of the diagonal entries represents the decision consistency of classification for the test.

Table 9.1 is an example classification table. The columns represent the true student achievement level, and the rows represent the test-based achievement level assignments expected to be observed, given Equation 9.20. In this example, total decision consistency is 81.0 percent (sum of diagonal elements), while the cell showing 9.9 percent shows the percentage of students who were correctly classified as Does Not Meet the Standards. Similarly, 1.3 percent of students were incorrectly classified as Does Not Meet the Standards, when their true score indicates Partially Meets the Standards.

Table 9.1. Example Classification Table

Achievement Level	True Category \mathbf{D}	True Category \mathbf{P}	True Category \mathbf{M}	True Category \mathbf{E}	Exp $\mathbf{\%}$
Expected Category D	9.9	1.3	0.0	0.0	11.2
Expected Category P	2.2	8.7	2.3	0.0	13.2
Expected Category M	0.1	5.4	36.7	3.5	45.6
Expected Category E	0.0	0.0	4.2	25.7	29.9
True \%	12.1	15.4	43.3	29.2	

Note: $D=$ Does Not Meet the Standards, $P=$ Partially Meets the Standards, $M=$ Meets the Standards and $E=$ Exceeds the Standards.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

It is useful to consider decision consistency based on a dichotomous classification of Does Not Meet the Standards or Partially Meets the Standards versus Meets the Standards or Exceeds the Standards because Minnesota uses Meets the Standards and above as proficiency for the accountability purposes. To compute decision consistency in this case, the table is dichotomized by combining cells associated with Does Not Meet the Standards with Partially Meets the Standards and combining Meets the Standards with Exceeds the Standards. For the example table above, this results in a classification accuracy of 92.2 percent. The percentage of examinees incorrectly classified as Partially Meets the Standards or lower, when their true score indicates Meets the Standards or above, is 2.3 percent.

The Yearbook contains tables with the overall classification accuracy for each grade and subject of MCA-III and MTAS-III under the section "Classification Accuracy Reports."

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Chapter 10: Quality-Control Procedures

The Minnesota assessment program and its associated data play an important role in the state accountability system as well as in many local evaluation plans. Therefore, it is vital that quality-control procedures are implemented to ensure the accuracy of student-, school- and district-level data and reports. Minnesota's testing contractor has developed and refined a set of quality procedures to help ensure that all MDE's testing requirements are met or exceeded. These quality-control procedures are detailed in the paragraphs that follow. In general, Minnesota's testing contractor's commitment to quality is evidenced by initiatives in two major areas:

1. Task-specific quality standards integrated into individual processing functions and services
2. A network of systems and procedures that coordinates quality across processing functions and services

Quality Control for Test Construction

Test construction for the Minnesota assessments follows the legally sanctioned test-development process used by Minnesota's testing contractor as described in Chapter 2, "Test Development," of this document (Smisko, Twing, \& Denny, 2000). Following this process, items are selected and placed on a particular pre-equated test form in order to provide a strictly parallel form across years both in terms of content and statistics. Item and form statistical characteristics from the baseline test are used as targets when constructing the current test form. Once a set of items has been selected, MDE reviews and may suggest replacement items (for a variety of reasons). Successive changes are made and the process iterates until both Minnesota's testing contractor and MDE agree to a final pre-equated form. Similarly, the baseline raw score-to-scaled score tables are used as the target tables that the pre-equated test form (under construction) should match. This form is provided to Minnesota's testing contractor for form construction and typesetting, as outlined in a subsequent section of this chapter.

Quality Control Non-Scannable Documents

Minnesota's testing contractor follows a meticulous set of internal quality standards to ensure high-quality printed products. Specific areas of responsibility for staff involved in materials production include monitoring all materialsproduction schedules to meet contract commitments, overseeing the production of test materials, coordinating detailed printing and post-printing specifications, outlining specific quality control requirements for all materials, and conducting print reviews and quality checks. The quality production and printing processes follow printers' reviews and quality checks. Project Management and Print Procurement staff works closely with the printers during the print production phase. Press proofs are checked to ensure high-quality printing and to verify adherence to printing specifications. The printing staff randomly pulls documents throughout the print run for quality control inspections.

Quality Control for Online Test Delivery Components

Each release of every Online Test Delivery goes through a complete testing cycle, including regression and performance testing. The system goes through User Acceptance Testing (UAT). During UAT, Minnesota tests that will be administered on that particular release will be used.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

In addition to the UAT, Minnesota also conducts Production Validation (PV) testing. The testing contractor publishes the Minnesota tests in production environment and recommends test scenarios. The tests are completed and scoring deliverables are generated during the PV period. These include preliminary student detail reports and the student data files. The validation process includes confirmation of the tests published and the scoring deliverables. Approvals are required at the close of the PV period prior to the opening of the testing window.

For changes required during the testing window, a patch build is implemented. The release notes will be provided that include the fixes made and/or system upgrades. The patch will be tested and approved before it is scheduled to be deployed to the field.

Only patch builds that are relevant to Minnesota will applied to its pipeline. The deployments are scheduled outside of the regular testing window timeframes.

Quality Control for Test-Form Equating

Test-form equating is the process that enables fair and equitable comparisons both across test forms within a single year and between test administrations across years. Minnesota's testing contractor, Minnesota's quality control vendor and MDE's Division of Statewide Testing uses several quality-control procedures to ensure this equating is accurate.

1. Minnesota's testing contractor and MDE performs a "key check" analysis for the MC item type to ensure the appropriate scoring key is being used. The content staff at the two parties review the flagged items. If there are any miskeys for the OP and FT items, the correct keys and students score will be updated.
2. Minnesota's testing contractorperforms an "adjudication" analysis for the TE item types. The adjudication process includes a check of all responses given by students in the current administration to ensure all possible responses are scores appropriately and functionalities of the TE items performs correctly.
3. For all assessments, a drift analysis is conducted by Minnesota's testing contractor, Minnesota's quality control vendor and MDE's Division of Statewide Testing in order to determine whether the IRT item parameters have shifted over time. Math and Reading items which have shifted are investigated and a resolution whether to keep or remove an item is made, whereas the drifted Science items are recalibrated.
4. The field test analyses is conducted by Minnesota's testing contractor, Minnesota's quality control vendor and MDE's Division of Statewide Testing to bring the field test items onto the MCA-III measurement scale.

Glossary of Terms

The following glossary of terms as used in this document is provided to assist the reader regarding language that may not be familiar.

Achievement Level Descriptors (ALDs)

ALDs provide descriptive information of what typical students at each achievement level are expected to know of the Minnesota Academic Standards. NOTE: ALDs appear as Performance Level Descriptors on the ISRs.

Achievement Levels

For MCA-III: There are four achievement levels: Exceeds the Standards (proficient), Meets the Standards (proficient), Partially Meets the Standards (not proficient), and Does Not Meet the Standards (not proficient). Students are assigned an achievement level based on their scale score.

For MTAS-III: There are four achievement levels: Exceeds the Alternate Achievement Standards (proficient), Meets the Alternate Achievement Standards (proficient), Partially Meets the Alternate Achievement Standards (not proficient), and Does Not Meet the Alternate Achievement Standards (not proficient).

Adequate Yearly Progress (AYP)

The amount of progress required by schools each year to meet established federal Standards Based Accountability goals. The specific progress required is negotiated by the state.

Assessment

The process of collecting information in order to support decisions about students, teachers, programs, and curricula.

Career and College Readiness (CCR)

For high school Reading and Mathematics MCA-III, a graphical representation of a student's "progress" score compared to the CCR Goal Score. CCR Goal Scores are identified by directly linking scale scores on these tests to scores on the corresponding subject-level subtests from a nationally recognized college entrance exam. At each grade, CCR Goal Scores are indicators that performance is on track to demonstrate career and college readiness on a college entrance exam at the end of grade 11. A high school student's MCA-III scale score for a subject is on the same scale as the CCR Goal Score for that subject and can be interpreted for performance comparison. If a student's MCA-III scale score is at or above the CCR Goal Score, he or she is expected to be able to successfully complete credit-bearing coursework at a two- or four-year college or university or other credit-bearing postsecondary program without any need for remediation. Student scores below the CCR Goal Score may indicate that the student's performance is not on track to meet career and college readiness, and the student may benefit from remediation. CCR Goal Scores are not reported for science.

Classification Accuracy

The degree to which the assessment accurately classifies examinees into the various levels of achievement. Also referred to as decision consistency.

Coefficient Alpha

An internal consistency reliability estimate that is appropriate for items scored dichotomously or polytomously. Estimates are based on individual item and total score variances.

Computer Adaptive Testing (CAT)

A mode of test delivery where each item (or testlet) is adaptively selected for administration on a test based on a test takers currently estimated ability level estimated from the prior items in the test.

Consequential Validity

Evidence that using a test for a particular purpose leads to desirable social outcomes.

Construct Validity

Evidence that performance on the assessment tasks and the individual student behavior that is inferred from the assessment shows strong agreement and that this agreement is not attributable to other aspects of the individual or assessment.

Content Standards

Content standards describe the goals for individual student achievement, specify what students should know, and specify what students should be able to do in identified disciplines or subject areas.

Content Validity

Evidence that the test items represent the content domain of interest.

Differential Item Functioning (DIF)

A term applied to investigations of test fairness. Explicitly defined as difference in performance on an item or task between a designated minority and majority group, usually after controlling for differences in group achievement or ability level.

Elementary and Secondary Education Act (ESEA)

Originally, an act of 1965, which was amended by the No Child Left Behind Act (NCLB) in 2002 which increased accountability and statewide assessment requirements. Recently, ESEA has granted flexibility to some of the specific requirements of this act to Minnesota in exchange for a comprehensive plan detailing a commitment to implementing higher standards, a plan for improved state and district accountability and support for all students, and a plan to support effective instruction and leadership.

Every Student Succeeds Act (ESSA)

In December 2015, the Every Student Succeeds Act (ESSA) was signed into law, which replaced No Child Left Behind (NCLB) and changed many portions of Elementary and Secondary Education Act (ESEA). MDE will work closely with the U.S. Department of Education to ensure Minnesota's students, educators, schools, and districts experience a clear and orderly transition to the new law. The 2018-19 school year is the first full year of ESSA implementation.

Internal Consistency Reliability Estimate

An estimate of test-score reliability derived from the observed covariation among component parts of the test (for example, individual items or split halves) on a single administration of the test. Cronbach's coefficient alpha and split-half reliability are commonly used examples of the internal consistency approach to reliability estimation.

Lexile ${ }^{\circledR}$ Measure

The predicted Lexile measure of the student's reading ability, and the upper and lower range that helps match the student with literature appropriate for his or her reading skills. Available for Reading MCA-III only.

Limited English Proficiency (LEP)

A designation applied to an individual whose primary language is a language other than English.

Longitudinal Reports

Longitudinal reports allow districts to analyze trends and patterns over time and provide an analysis of results from a specific administration, from multiple administrations within a year, or from year to year. Longitudinal reports are available only in PearsonAccess until fall 2016. After fall 2016, longitudinal reports will be available only in PearsonAccess Next.

Modifications

Changes made to the content and performance expectations for students.

MTAS-III Scoring Rubric

The $0-3$ rubric used by the test administrator administering the test to score MTAS-III tasks.

No Child Left Behind (NCLB)

Federal law enacted in 2001 that requires school districts to be held accountable in order to receive federal funding. Every state is required to create a plan that involves setting performance targets so that all students are academically proficient by the year 2013-14.

On-Demand Reports

On-demand reports are preliminary test results that are available within 60 minutes after testing is completed. On-demand reports are available for all online assessments and student responses from paper accommodated test materials entered into Data Entry forms in TestNav for MCA-III, but they are not available for MTAS-III. On-demand reports are available in PearsonAccess Next.

Parallel Forms

Two tests constructed to measure the same thing from the same table of specifications with the same psychometric and statistical properties. True parallel test forms are not likely to ever be found. Most attempts to construct parallel forms result in alternate test forms.

Pattern Scoring

In pattern scoring the entire pattern of correct and incorrect student responses is taken into account. Unlike number-correct scoring, where students who get the same number of dichotomously scored questions correct receive the same score, in pattern scoring students rarely receive the same score, as even students getting the same number correct typically differ in the particular items they got correct or incorrect. Because pattern scoring uses information from the entire student response pattern, this type of scoring produces more reliable scores than does number-correct scoring.

Percentile Rank (PR)

The percentile rank score is defined as the percentage of scores equal to or lower than the student's score for the grade and subject in that year. For example, a student scoring at the $75^{\text {th }}$ percentile scored as well or better than 75% of other students taking the test for the specific subject and grade in that year.

P-Value

A classic item-difficulty index that indicates the proportion of all students who answered a question correctly.

Quantile ${ }^{\circledR}$ Measure

The predicted Quantile measure of the student's mathematical ability, and the upper and lower range that helps match the student with mathematical concepts appropriate for his or her mathematics skills. Available for Mathematics MCA-III only.

Reliability

The consistency of the results obtained from a measurement.

Reliability Coefficient

A mathematical index of consistency of results between two measures, expressed as a ratio of truescore variance to observed-score variance. As reliability increases, this coefficient approaches unity.

Scale Score

For MCA-III: A score that takes the student's item response pattern (Reading and Mathematics MCA-III) or raw score (Science MCA-III) and adjusts it for possible differences in test difficulty from one year to the next.

For MTAS-III: A score that takes the student's raw score and adjusts it for possible differences in test difficulty from one year to the next.

Standards

The MCA-III and MTAS-III are based on the most recent academic content standards in Mathematics, Reading, and Science. The MCA-III and MTAS-III assessments are the statewide tests that help districts measure student progress toward Minnesota's academic standards. The academic standards are revised according to a schedule set forth by statute. Two or three years after standards are revised and adopted, a new series of assessments is ready for operational administration.

Standard Error of Measurement

Statistic that expresses the unreliability of a particular measure in terms of the reporting metric. Often used incorrectly (Dudek, 1979) to place score bands or error bands around individual student scores.

Student Progress Score

A student scale score is converted to a student progress score that translates across grade levels.

Test-Centered Standard Setting Methods

A type of process used to establish performance standards that focus on the content of the test itself. A more general classification of some judgmental standard setting procedures.

Testlet

On the online MCA-III Reading assessment, a testlet is defined as a group of one passage or passages and associated items. Each testlet is an adaptive stage in the test, where the adaptive algorithm selects the next testlet to administer based on how the student performed on the item from previous testlets.

Test-Retest Reliability Estimate

A statistic that represents the correlation between scores obtained from one measure when compared with scores obtained from the same measure on another occasion.

Test Specifications

Specific rules and characteristics guide the development of a test's content and format. They indicate which strands, sub-strands, standards, and benchmarks will be assessed on the test and in what proportions. The test specifications are a helpful tool for developing tests and documenting content-related validity evidence.

True Score

The piece of an observed student score that is not influenced by error of measurement. The true score is used for convenience in explaining the concept of reliability and is unknown in practice.

Validity

A psychometric concept associated with the use of assessment results and the appropriateness or soundness of the interpretations regarding those results.

Annotated Table of Contents

The Minnesota Department of Education (MDE) is committed to responsibly following generally accepted professional standards when creating, administering, scoring, and reporting test scores. The Standards for Educational and Psychological Testing (American Educational Research Association, American Psychological Association, and National Council on Measurement in Education, 2014) is one source of professional standards. As evidence of our dedication to fair testing practices, the table of contents for this manual is annotated below for the Standards.

TABLE OF CONTENTS PURPOSE

CHAPTER 1: BACKGROUND

MINNESOTA ASSESSMENT SYSTEM HISTORY
A Brief History of the Program
ORGANIZATIONS AND GROUPS INVOLVED (Standards: 1.9, 4.2, 4.6)
MINNESOTA ASSESSMENT SYSTEM (Standards: 1.2, 1.9, 1.11, 3.4, 3.16, 4.1, 8.1)
Standards-Based Accountability Assessments (Standards: 1.2, 1.9, 1.11, 3.16, 4.1)
English Language Proficiency Accountability Assessments
Graduation Assessment Requirements (Standards: 1.2, 1.11, 3.16, 4.1)
MODES OF ASSESSMENT
Online Adaptive Assessments (Standards:2.5, 4.3, 5.16)
Online Fixed-Form Assessments
Data-Entry Fixed-Form Assessments
CHAPTER 2: TEST DEVELOPMENT
TEST-DEVELOPMENT PROCEDURES
TEST SPECIFICATIONS (Standards: 1.11, 4.0, 4.2, 4.7, 4.12)
Standards-Based Accountability Assessments
MCA-Series III (Standards: 1.11, 4.0, 4.7, 4.12)
MTAS-III (Standards: 1.11, Chapter 3, 4.0, 4.7, 4.12)
English Language Proficiency Accountability Assessments
ACCESS for ELLs 2.0 and Alternate ACCESS for ELLs (Standards: 1.11, 4.0, 4.2, 4.7, 4.12)
ITEM DEVELOPMENT (Standards: 1.9, 3.2, 3.3, 4.2, 4.7, 6.8)
Content Limits and Item Specifications
Item Writers (Standards: 1.9)
Item Writer Training (Standards: 3.2, 3.3)
ITEM PASSAGE, AND SCENARIO REVIEW (Standards: 1.9, 3.3, 4.2)
Contractor Review (Standards: 3.3)
MDE Review (Standards: 1.9)
Item Committee Review (Standards: 1.9)
Bias and Sensitivity Review
FIELD-TESTING (Standards: 1.8, 1.9, 3.2, 3.3, 3,6, 4.2, 4.9)
Embedded Field-Testing (Standards: 1.9, 3.16, 4.2)
Stand-Alone Field-Testing (Standards: 1.8, 4.9)
DATA REVIEW
Data Review Committees (Standards: 1.9, 4.2)
Statistics Used (Standards: 3.6, 3.16)
ITEM BANK
TEST CONSTRUCTION (Standards: 4.0, 5.13)
CHAPTER 3: TEST ADMINISTRATION
ELIGIBILITY FOR ASSESSMENTS
ADMINISTRATION TO STUDENTS

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

SECURE TESTING MATERIALS (Standards: 6.7)
SUPPORTS AND ACCOMMODATIONS (Standards: 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 6.1, 6.2, 6.4, 6.5, 6.6)
Research Base for Supports and Accommodations (Standards: 3.9, 3.10, 3.11, 6.1, 6.2)
Accommodations Use Monitoring
Accommodations Eligibility
Accommodations Use Monitoring
Data Audit
Field Audit (Standards: 10.8)

CHAPTER 4: REPORTS

DESCRIPTION OF SCORES
Raw Score (Standards: 5.1, 5.3)
Scale Score (Standards: 5.1)
Achievement Levels (Standards: 5.5)
DESCRIPTION OF REPORTS (Standards: 1.1, 5.1, 5.3, 6.10, 6.16)
Student Reports (Standards: 6.10, 6.16)
SUMMARY REPORTS (Standards: 6.10)
APPROPRIATE SCORE USES (Standards: 1.1, 1.2, 3.17, 5.1, 5.3)
Individual Students (Standards: 1.1, 3.17, 5.1, 5.3)
Groups of Students (Standards: 1.1, 3.17, 5.1, 5.3)
CAUTIONS FOR SCORE USE (Standards: 1.13, 5.1, 5.3)
Understanding Measurement Error
Using Scores at Extreme Ends of the Distribution (Standards: 1.13, 5.3)
Interpreting Score Means (Standards: 5.1, 5.3)
Using Objective/Strand-Level Information (Standards: 5.1, 5.3, 5.4)
Program Evaluation Implications (Standards: 5.3)
CHAPTER 5: PERFORMANCE STANDARDS
INTRODUCTION (Standards: 1.1, 1.2)
Achievement-Level Setting Activity Background
Process Components
STANDARD SETTING FOR GRADE 11 MATHEMATICS MCA-SERIES III AND MTAS-III (Standards: 1.1, 1.2, 1.9, 2.16, 5.5, 5.21,
5.22, 5.23)

Participants (Standards: 1.9, 5.22)
Table Leaders
Ordered Item Booklets
The Standard Setting Meeting (Standards: 2.16, 5.5, 5.21, 5.22, 5.23)
Commissioner-Approved Results (Standards: 5.23)
STANDARD SETTING FOR READING MCA-SERIES III AND MTAS-III (Standards: 1.1, 1.2, 1.9, 2.16, 5.5, 5.21, 5.22, 5.23)
Participants (Standards: 1.9, 5.22)
Table Leaders
Ordered Item Booklets
The Standard Setting Meeting (Standards: 2.16, 5.5, 5.21, 5.22, 5.23)
Vertical Articulation and Moderation
Commissioner-Approved Results (Standards: 5.23)
STANDARD SETTING FOR SCIENCE MCA-SERIES III AND MTAS-III (Standards: 1.1, 1.2, 1.9, 2.16, 5.5, 5.21, 5.22, 5.23)
Participants (Standards: 1.9, 5.22)
Table Leaders
Ordered Item Booklets
The Standard Setting Meeting (Standards: 2.16, 5.5, 5.21, 5.22, 5.23)
Commissioner-Approved Results (Standards: 5.23)
STANDARD SETTING FOR GRADES 3-8 MATHEMATICS MCA-SERIES III (Standards: 1.1, 1.2, 1.9, 2.16, 5.5, 5.21, 5.22, 5.23)
Participants (Standards: 1.9, 5.22)
Table Leaders

Ordered Item Booklets
The Standard Setting Meeting (Standards: 2.16, 5.5, 5.21, 5.22, 5.23)
Vertical Articulation
Commissioner-Approved Results (Standards: 5.23)
STANDARD SETTING FOR GRADES 3-8 MATHEMATICS MTAS-III (Standards: 1.1, 1.2, 1.9, 2.16, 5.5, 5.21, 5.22, 5.23)
Participants (Standards: 1.9, 5.22)
Table Leaders
Task Book
The Standard Setting Meeting (Standards: 2.16, 5.5, 5.21, 5.22, 5.23)
Vertical Articulation (Standards: 1.9, 5.5, 5.20, 5.23)
Commissioner-Approved Results (Standards: 5.23)
CHAPTER 6: SCALING
RATIONALE (Standards: 1.1, 1.2, 5.2)
MEASUREMENT MODELS (Standards: 1.1, 1.2, 5.2, 5.12)
Rasch Models
2PL/3PL
Model Selection (Standards: 1.1, 1.2, 5.2)
SCALE SCORES (Standards: 1.13, 1.14, 5.2)
Number-Correct Scoring
Measurement Model-Based Scoring
LATENT-TRAIT ESTIMATION (Standards: 5.2)
Pattern Scoring
Raw-to-Theta Transformation
MCA-Series III Scaling
MCA-Series III Transformation
MCA-Series III Strand and Substrand Performance Levels (Standards: 2.3, 2.5, 2.13)
MCA-Series III Progress Score
MTAS-III Scaling
ACCESS for ELLs Scaling
Scale Score Interpretations and Limitations (Standards: 1.1, 1.2, 1.14)
Conversion Tables, Frequency Distributions, and Descriptive Statistics
CHAPTER 7: EQUATING AND LINKING (Standards: 1.8, 4.9, and Chapter 5)
RATIONALE (Standards: 5.12)
PRE-EQUATING (Standards: 5.13, 5.14)
Test Construction and Review for Fixed-Form Assessments (Standards: 5.6)
Simulations for Adaptive Assessments
Field-Test Items (Standards: 5.15)
Student Sampling for Equating (Standards: 1.8, 4.9)
Pre-equating Quality Checks (Standards: 4.10)
Field-Test Item Equating Procedures (Standards: 5.15)
MTAS-III Equating (Standards: 5.13, 5.14)
Item Pool Maintenance (Standards: 5.6)
LINKING (Standards: 5.7)
Linking Grades 3-8 with the Progress Score (Prior to 2016)
Linking Reading MCA-III to the Lexile ${ }^{\circledR}$ Scale

CHAPTER 8: VALIDITY

EVIDENCE OF TEST VALIDITY (Standards: 1.1, 1.3)
Evidence Based on Test Content (Standards: 1.8, 1.11)
Evidence Based on Response Processes (Standards: 1.12)
Evidence Based on Internal Structure (Standards: 1.2, 1.8, 1.13, 1.14, 3.6)
Evidence Based on Relations to Other Variables (Standards: 1.2, 1.3, 1.10, 1.16, 1.17, 1.19)
ADDITIONAL VALIDITY EVIDENCE
Scoring-Validity Evidence (Standards: 1.9)

```
CHAPTER 9: RELIABILITY (Standards: 1.1, 1.2, and Chapter 2)
    A MATHEMATICAL DEFINITION OF RELIABILITY
    ESTIMATING RELIABILITY (Standards: 2.3, 2.6, 2.19)
        Test-Retest Reliability Estimation (Standards: 2.3, 2.6., 2.19)
        Alternate Forms Reliability Estimation (Standards: 2.3, 2.6., 2.19)
        Internal Consistency Reliability Estimation (Standards: 2.5, 2.11, 2.12, 2.20)
        Item Response Theory (IRT) Based Reliability (Standards: 4.10)
    STANDARD ERROR OF MEASUREMENT (Standards: 2.4, 2.6, 2.13, 2.19)
        Use of the Standard Error of Measurement (Standards: 2.11, 2.13)
        Conditional Standard Error of Measurement (Standards: 2.14)
        Measurement Error for Groups of Students
        Standard Error of the Mean (Standards: 2.17)
    AUDITING OF MTAS-III ADMINISTRATIONS AND TASK RATINGSCLASSIFICATION CONSISTENCY (Standards: 2.3, 2.14, 2.16,
    2.19)
    CLASSIFICATION CONSISTENCY (Standards: 2.16)
CHAPTER 10: QUALITY-CONTROL PROCEDURES
    QUALITY CONTROL FOR TEST CONSTRUCTION (Standards: 4.0)
    QUALITY CONTROL FOR NON-SCANNABLE DOCUMENTS
    QUALITY CONTROL FOR ONLINE TEST DELIVERY COMPONENTS (Standards: 12.6)
    QUALITY CONTROL FOR TEST-FORM EQUATING
GLOSSARY OF TERMS
ANNOTATED TABLE OF CONTENTS
REFERENCES
APPDENDIX A: BENCHMARK REPORT CALCULATIONS RESOURCE
```


References

Abedi, J. \& Ewers, N. (2013). Smarter Balanced Assessment Consortium: Accommodations for English language learners and students with disabilities: A research-based decision algorithm. Prepared for SBAC by the University of California, Davis.

Acosta, B. D., Rivera, C., \& Shafer Willner, L. (2008). Best practices in state assessment policies for accommodating English language learners: A Delphi Study. Arlington, VA: The George Washington University Center for Equity and Excellence in Education.

American Educational Research Association, American Psychological Association, \& National Council on Measurement in Education. Joint Technical Committee. (1999). Standards for educational and psychological testing. Washington, DC: Author.

American Educational Research Association, American Psychological Association, \& National Council on Measurement in Education. Joint Technical Committee. (2014). Standards for educational and psychological testing. Washington, DC: Author.

Barton, K. (2002). Stability of constructs across groups of students with different disabilities on a reading assessment under standard and accommodated administrations (Doctoral dissertation, University of South Carolina, 2001). Dissertation Abstracts International, 62/12, 4136.

Beattie, S., Grise, P., \& Algozzine, B. (1983). Test modifications and minimum competency test performance of learning disabled students. Learning Disability Quarterly, 6, 75-77.

Bennett, R., Rock, D., \& Jirele, T. (1987). GRE score level, test completion, and reliability for visually impaired, physically handicapped, and non-handicapped groups. The Journal of Special Education, 21(3), 9-21.

Bennett, R. E., Rock, D. A., \& Kaplan, B. A. (1987). SAT differential item performance for nine handicapped groups. Journal of Educational Measurement, 24(1), 41-55.

Bennett, R. E., Rock, D. A., \& Novatkoski, I. (1989). Differential item functioning on the SAT-M Braille Edition. Journal of Educational Measurement, 26(1), 67-79.

Blaskey, P., Scheiman, M., Parisi, M., Ciner, E., Gallaway, M., \& Selznick R., (1990). The effectiveness of Irlen filters for improving reading performance: A pilot study. Journal of Learning Disability, 23(10), 604-612.

Bock, R. D., \& Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcomputer environment. Applied Psychological Measurement, 6, 431-444.

Bolt, S. K. \& Thurlow, M. (2004). Five of the most frequently allowed testing accommodations in state policy: Synthesis of research. Remedial and Special Education, 25(3), 141-154.

Bouck, E. \& Bouck, M. (2008). Does it add up? Calculators as accommodations for sixth grade students with disabilities. Journal of Special Education Technology, 23(2), 17-32.

Browder, D. M., Gibbs, S., Ahlgrim-Delzell, L., Courtade, G., Mraz, M., \& Flowers, C. (2009). Literacy for students with significant cognitive disabilities: What should we teach and what should we hope to achieve? Remedial and Special Education, 30, 269-282.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Brown, D. W. (2007). The role of reading in science: Validating graphics in large-scale science assessment. Unpublished dissertation.

Burch, M. (2002). Effects of computer-based test accommodations on the math problem-solving performance of students with and without disabilities (Doctoral dissertation, Vanderbilt University, 2002). Dissertation Abstracts International, 63/03, 902.

Burk, M. (1998). Computerized test accommodations: A new approach for inclusion and success for students with disabilities. Paper presented at Office of Special Education Program Cross Project Meeting "Technology and the Education of Children with Disabilities: Steppingstones to the 21st Century."

Cai, L., Thissen, D., \& du Toit, S. H. C. (2011). IRTPRO for Windows. Lincolnwood, IL: Scientific Software International.

Castellon-Wellington, M. (2000). The impact of preference for accommodations: The performance of English language learners on large-scale academic achievement tests. (CSE Technical Report No. 524). Los Angeles: National Center for Research on Evaluation, Standards, and Student Testing (CRESST).

Calhoon, M., Fuchs, L., \& Hamlett, C. (2000). Effects of computer-based test accommodations on mathematics performance assessments for secondary students with learning disabilities. Learning Disability Quarterly, 23, 271-282.

Christensen, L. L., Braam, M., Scullin, S., \& Thurlow, M. L. (2011). 2009 state policies on assessment participation and accommodations for students with disabilities (Synthesis Report 83). Minneapolis, MN: University of Minnesota, National Center on Educational Outcomes.

Cizek, G. (2001). Conjectures on the rise and call of standard setting: An introduction to context and practice. In G. Cizek (Ed.), Setting performance standards: Concepts, methods, and perspectives (pp. 3-17). Mahwah, NJ: Erlbaum.

Coleman, P. J. (1990). Exploring visually handicapped children's understanding of length (math concepts). (Doctoral dissertation, The Florida State University, 1990). Dissertation Abstracts International, 51, 0071.

Cormier, D. C., Altman, J. R., Shyyan, V., \& Thurlow, M. L. (2010). A summary of the research on the effects of test accommodations: 2007-2008 (Technical Report 56). Minneapolis, MN: University of Minnesota, National Center on Educational Outcomes.

Crawford, L. \& Tindal, G. (2004). Effects of a student read-aloud accommodation on the performance of students with and without learning disabilities on a test of reading comprehension. Exceptionality, 12(2), 71-88.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334.
Cronbach, L. J. (1988). Five perspectives on validity argument. In H. Wainer \& H. Braun (Eds.), Test validity (pp. 317). Hillsdale, NJ: Lawrence Erlbaum.

DiCerbo, K., Stanley, E., Roberts, M., \& Blanchard, J. (2001). Attention and standardized reading test performance: Implications for accommodation. Paper presented at the annual meeting of the National Association of School Psychologists, Washington, DC.

Dolan, R., Hall, T., Banerjee, M., Chun, E., \& Strangman, N. (2005). Universal design to test delivery: The effect of computer-based read-aloud on test performance of high school students with learning disabilities. The Journal of Technology, Learning, and Assessment, 3(7). Retrieved from http://napoleon.bc.edu/ojs/index.php/jtla/article/view/1660

Dudek, F. J. (1979). The continuing misinterpretation of the standard error of measurement. Psychological Bulletin, 86, 335-337.

Elbaum, B. (2007). Effects of an oral testing accommodation on the mathematics performance of secondary students with and without learning disabilities. The Journal of Special Education, 40, 218-229.

Elliot, S., Kratochwill, T., McKevitt, B., \& Malecki, C. (2009). The effects and perceived consequences of testing accommodations on math and science performance assessments. School Psychology Quarterly, 24(4), 224239.

Ferrara, S., Perie, M., \& Johnson, E. (2002). Matching the judgmental task with standard setting panelist expertise: The Item-Descriptor (ID) Matching procedure. Invited colloquium for the Board on Testing and Assessment of the National Research Council, Washington, DC.

Fletcher, J., Francis, D. J., Boudousquie, A., Copeland, K., Young, V., Kalinowski, S., \& Vaughn, S. (2006). Effect of accommodations on high-stakes testing for students with reading disabilities. Council for Exceptional Children, 72(2), 136-150.

Fletcher, J., Francis, D., O’Malley, K., Copeland, K., Mehta, P., Caldwell, C., ... Vaughn, S. (2009). Effects of a Bundled Accommodations package on high-stakes testing for middle school students with reading disabilities. Exceptional Children, 75(4), 447-463.

Fuchs, L., Fuchs, D., Eaton, S., Hamlett, C., \& Karns, K. (2000). Supplementing teacher judgments of mathematics test accommodations with objective data sources. School Psychology Review, 29(1), 65-85.

Gorsuch, R. L. (1983). Factor Analysis (2nd Ed.). Hillsdale, NJ: Erlbaum.
Green, B. F., Bock, R. D., Humphreys, L. G., Linn, R. L., \& Reckase, M. D. (1984). Technical guidelines for assessing computerized adaptive tests. Journal of Educational Measurement, 21, 347-360.

Grise, P., Beattie, S., \& Algozzine, B. (1982). Assessment of minimum competency in fifth grade learning disabled students: Test modifications make a difference. Journal of Educational Research, 76(1), 35-40.

Hambleton, R., \& Plake, B. (1997). An anchor-based procedure for setting standards on performance assessments. Paper presented at the annual meeting of the American Educational Research Association, Chicago, IL.

Helwig, R., Rozek-Tedesco, M. A., \& Tindal, G. (2002). An oral versus a standard administration of a large-scale mathematics test. Journal of Special Education, 36(1), 39-47.

Hambleton, R. K., \& Swaminathan, H. (1985). Item response theory: Principles and applications. Boston: KluwerNijhoff.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Holland, P. W., \& Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel procedure. In H. Wainer, and H. I. Brown (Eds.), Test Validity (pp. 129-145). Hillsdale, NJ: Lawrence Erlbaum Associates.

Iovino, I., Fletcher, J., Breitmeyer, B., \& Foorman, B. (1996). Colored overlays for visual perceptual deficits in children with reading disability and attention deficit/hyperactivity disorder: Are they differentially effective? Journal of Clinical and Experimental Neuropsychology, 20(6), 791-806.Jaeger, R. M., (1989). Certification of student competence. In R. L. Linn (Ed.), Educational measurement (3rd ed., pp. 485-514). New York: American Council on Education/Macmillan.

Jaeger, R. M. (1995). Setting standards for complex performances: An iterative, judgmental policy-capturing strategy. Educational Measurement: Issues and Practice, Winter, 16-20.

Johnson, E. S., Kimball, K., \& Brown, S. (2001a). American Sign Language as an accommodation during standardsbased assessments. Assessment for Effective Intervention, 26(2), 39-47.

Johnson, E., Kimball, K., Brown, S., \& Anderson, D. (2001b). A statewide review of the use of accommodations in large-scale, high-stakes assessments. Exceptional Children, 67(2), 251-264.

Kearns, J., Kleinert, H., Kleinert, J., and Towles-Reeves, E. (2006). Learner Characteristics Inventory. Lexington, Kentucky: University of Kentucky, National Alternate Assessment Center.

Kingston, N. M., Kahl, S. R., Sweeney, K. P., \& Bay, L. (2001). Setting performance standards using the body of work method. In G. J. Cizek (Ed.), Setting performance standards: Concepts, methods, and perspectives (pp. 219-248). Mahwah, NJ: Lawrence Erlbaum Associates.

Kolen, M. J. (2004). POLYEQUATE [Computer Software]. Iowa City, IA: The University of Iowa.
Kolen, M. J., \& Brennan, R. L. (2004). Test equating, scaling, and linking: Methods and practices (2nd ed.). New York: Springer-Verlag.

Kopriva, R., Emick, J., Hipolito-Delgado, C., \& Cameron, C. (2007). Do proper accommodation assignments make a difference? Examining the impact of improvised decision making on scores for English language learners. Educational Measurement: Issues and Practice, 26(3), 11-20.

Koretz, D., \& Barton, K. (2003-2004). Assessing students with disabilities: Issues and evidence. Educational Assessment, 9(1\&2), 29-60.

Koretz, D., \& Hamilton, L. (2000). Assessment of Students with Disabilities in Kentucky: Inclusion, Student Performance, and Validity. Educational Evaluation and Policy Analysis, 22(3), 255-272.

Lewis, D. M., Mitzel, H. C., \& Green, D. R. (1996). Standard setting: A bookmark approach. In D. R. Green (Chair), IRT-based standard setting procedures utilizing behavioral anchoring. Symposium presented at the Council of Chief State School Officers National Conference on Large-Scale Assessment, Phoenix, AZ.

Linacre, J. M. (2006). A user's guide to WINSTEPS. Chicago, IL: MESA Press.
Linn, R. L. (1993). Linking results in distinct assessments. Applied Measurement in Education, 6(1), 83-102.

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.

Technical Manual for Minnesota Standards-Based and English Language Proficiency Accountability Assessments

Lord, F. M., \& Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.
Lord, F. M., \& Wingersky, M. S. (1984). Comparison of IRT true-score and equipercentile observed-score "equatings." Applied Psychological Measurement, 8, 453-461.

MacArthur, C. A., \& Graham, S. (1987). Learning disabled students' composing under three methods of text production: Handwriting, word processing, and dictation. The Journal of Special Education, 21(3), 22-42.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174.
McKevitt, B. C., \& Elliott, S. N. (2003). Effects and perceived consequences of using read-aloud and teacherrecommended testing accommodations on a reading achievement test. School Psychology Review, 32(4), 583-600.

Meloy, Deville, \& Frisbie (April, 2000). The effects of a reading accommodation on standardized test scores of learning disabled and non learning disabled students. A paper presented for the National Council on Measurement in Education Annual Meeting. New Orleans, LA.

Mislevy, R. J. (1992). Linking educational assessments: Concepts, issues, methods, and prospects. Princeton, NJ: Educational Testing Service, Policy Information Center.

Morizot, J., Ainsworth, A. T., \& Reise, S. P. (2007), Toward modern psychometrics: Application of item response theory models in personality research. In R. W. Robins, R. C. Fraley, \& R. F. Krueger (Eds.), Handbook of research methods in personality psychology (pp. 407-423). New York, NY: Guilford Press.

Muraki, E. (1992). A generalized partial credit model: Applications of an EM algorithm. Applied Psychological Measurement, 16(2), 159-176.

Pennock-Roman, M. \& Rivera, C. (2011). Mean effects of test accommodations for ELLs and non-ELLs: A metaanalysis of experimental studies. Educational Measurement: Issues and Practice, 30(3), 10-28.

Pennock-Roman, M. \& Rivera, C. (2012). Smarter Balance Assessment Consortium: Summary of literature on empirical studies of the validity and effectiveness of test accommodations for ELLs: 2005-2012. Prepared for Measured Progress by The George Washington University Center for Equity and Excellence in Education.

Perez, J. V. (1980). Procedural adaptations and format modifications in minimum competency testing of learning disabled students: A clinical investigation (Doctoral dissertation, University of South Florida, 1980). Dissertation Abstracts International, 41, 0206.

Ray, S. R. (1982). Adapting the WISC-R for deaf children. Diagnostique, 7, 147-157.

Raymond, M., \& Reid, J. (2001). Who made thee a judge? Selecting and training participants for standard setting. In G. Cizek (Ed.), Setting performance standards: Concepts, methods, and perspectives (pp. 119-158). Mahwah, NJ: Erlbaum.

Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results and implications. Journal of Educational Statistics, 4, 207-230.

Reckase, M. (2001). Innovative methods for helping standard-setting participants to perform their task: The role of feedback regarding consistency, accuracy, and impact. In G. Cizek (Ed.), Setting performance standards: Concepts, methods, and perspectives (pp. 159-174). Mahwah, NJ: Erlbaum.

Robinson, G. \& Conway, R. (1990). The effects of Irlen colored lenses on students' specific reading skills and their perception of ability: A 12-month validity study. Journal of Learning Disabilities, 23, 621-626.

Rudner, L. M. (2005). Expected classification accuracy. Practical Assessment, Research \& Evaluation, 10(13). Retrieved from http://pareonline.net/pdf/v10n13.pdf.

Russell, M. (2006). Technology and Assessment: The Tale of Two Interpretations. Greenwich, CT: Information Age Publishing.

Russell, M., Kavanaugh, M., Masters, J., Higgins, J., \& Hoffmann, T. (2009). Computer based signing accommodations: Comparing a recorded human with an avatar. Journal of Applied Testing Technology, 10(3). Retrieved from http://www.testpublishers.org/Documents/090727Russelletal.pdf

Salend, S. (2009). Using technology to create and administer tests. Teaching Exceptional Children, 41(3), 40-51.
Sato, E., Rabinowitz, S., Worth, P., Gallagher, C., Lagunoff, R., \& McKeag, H. (2007). Guidelines for ensuring the technical quality of assessments affecting English language learners and students with disabilities: Development and implementation of regulations. (Assessment and Accountability Comprehensive Center Report). San Francisco, CA: WestEd.

Scarpati, S., Wells, C., Lewis, C., Jirka, S. (2011). Accommodations and item-level analyses using mixture differential item functioning models. Journal of Special Education, 45(1), 54-62.

Shaftel, J., Belton-Kocher, E., Glasnapp, D., \& Poggio, J. (2006). The impact of language characteristics in mathematics test items on the performance of English language learners and students with disabilities. Educational Assessment, 11(2), 105-126.

Shin, C. D. \& Chien, Y. (2017). Conditional randomesque method for item exposure control in CAT. International Journal of Intelligent Technologies and Applied Statistics, 10(3).

Shin, C. D., Chien, Y., Way, W. D., \& Swanson, L. (2009). Weighted penalty model for content balancing in CATS, Pearson Papers, 1-17.

Sireci, S. G., Li, S., \& Scarpati, S. (2003). The effects of test accommodation on test performance: A review of the literature. (Center for Educational Assessment Research Report No. 485). Amherst, MA: School of Education, University of Massachusetts, Amherst.

Smisko, A., Twing, J. S., \& Denny, P. L. (2000). The Texas model for content and curricular validity. Applied Measurement in Education, 13(4), 333-342.

Stocking, M. L., \& Lord, F. M. (1983). Developing a common metric in item response theory. Applied Psychological Measurement, 7(2), 201-210.

Stone, C. A. (2000). Monte Carlo based null distribution for an alternative goodness-of-fit test statistic in IRT models. Journal of Educational Measurement, 37, 58-75.

Sullivan, P. M. (1982). Administration modifications on the WISC-R Performance Scale with different categories of deaf children. American Annals of the Deaf, 127(6), 780-788.

Thissen, D., Pommerich, M., Billeaud, K., \& Williams, V. S. L. (1995). Item response theory for scores on tests including polytomous items with ordered responses. Applied Psychological Measurement, 19, 39-49.

Thissen, D., \& Wainer, H. (Eds.). (2001). Test scoring. Mahwah, NJ: Lawrence Erlbaum.
Thurlow, M. \& Bolt, S. (2001). Empirical support for accommodations most often allowed in state policy (Synthesis Report 41). Minneapolis, MN: National Center on Educational Outcomes, University of Minnesota.

Thurlow, M., House, A., Boys, C., Scott, D., \& Ysseldyke, J. (2000). State participation and accommodation policies for students with disabilities: 1999 Update (Synthesis Report 33). Minneapolis, MN: National Center on Educational Outcomes, University of Minnesota.

Tindal, G., Heath, B., Hollenbeck, K., Almond, P., \& Harniss, M. (1998). Accommodating students with disabilities on large-scale tests: An empirical study of student response and test administration demands. Exceptional Children, 64(4), 439-450.

Tippets, E., \& Michaels, H. (1997, April). Factor structure invariance of accommodated and non-accommodated performance assessments. Paper presented at the annual meeting of the National Council on Measurement in Education, Chicago.

Towles-Reeves, E., Kearns, J., Kleinert, H., \& Kleinert, J. (2009). An analysis of the learning characteristics of students taking alternate assessments based on alternate achievement standards. The Journal of Special Education, 42, 241-254.
U.S. Department of Education (http://www2.ed.gov/policy/elsec/guid/esea-flexibility/index.html).
van der Linden, W. J., \& Hambleton, R. K. (Eds.). (1997). Handbook of modern item response theory. New York: Springer-Verlag. Walz, L., Albus, D., Thompson, S., \& Thurlow, M. (2000). Effect of a multiple day test accommodation on the performance of special education students (Minnesota Report 34). Minneapolis: University of Minnesota, National Center on Educational Outcomes.

Webb, N. L. (1999) Alignment of science and mathematics standards and assessments in four states (Research Monograph No. 18). Madison, WI: University of Wisconsin - Madison, National Institute for Science Education.

Wolf, M. K., Kim, J., Kao, J. C., \& Rivera, N. M. (2009). Examining the effectiveness and validity of glossary and read-aloud accommodations for English language learners in a math assessment (CRESST Report 766). Los Angeles: University of California, National Center for Research on Evaluation, Standards, and Student Testing (CRESST).

Wright, B. D. (1977). Solving measurement problems with the Rasch model. Journal of Educational Measurement, 14, 97-116.

Wright, N., \& Wendler, C. (1994, April). Establishing timing limits for the new SAT for students with disabilities. Paper presented at the annual meeting of the National Council on Measurement in Education. New Orleans, LA.

Zieky, M. (1993). DIF statistics in test development. In P. W. Holland \& H. Wainer (Eds.), Differential item functioning (pp. 337-347). Hillsdale, NJ: Erlbaum.

Zieky, M. (2001). So much has changed: How the setting of cutscores has evolved since the 1980s. In G. Cizek (Ed.), Setting performance standards: Concepts, methods, and perspectives (pp. 19-52). Mahwah, NJ: Lawrence Erlbaum.

Appendix A: Benchmark Report Calculations Resource

Overview

This document serves as a supplement to the Benchmark Report Interpretation Guide, Benchmark Report "How To" Quick Guides (by subject), and the Understanding the Benchmark Report Video. The purpose is to provide detail about the benchmark performance calculation methods. Benchmark reports are provided for public schools and districts in the State for each measured benchmark on the Reading, Mathematics, and Science MCA assessments. Benchmark performance within a school or district is reported by comparing the average benchmark performance for students within the organization to the benchmark performance expected of students who perform at the "Meets" achievement level. Table A. 1 gives the indicator symbols used on the benchmark reports. Schools or districts with less than 20 student responses on a particular benchmark are not given a performance indicator for that benchmark due to the small sample size.

Table A.1. Performance Indicator Symbols Used on Benchmark Reports

Performance Indicator on a Benchmark	Symbol
Less than "Meets"	-
Similar to "Meets"	\approx
Greater than "Meets"	\oplus
There were less than 20 student responses for a benchmark and results are not available.	$*$

Note: Benchmark performance indicators and symbols do not correspond to overall achievement (i.e., Does Not Meet, Partially Meets, Meets, or Exceeds the Standards), and the color/shape of each marker does not reflect benchmark difficulty.

Performance Indicator Calculations

Calculations used to determine benchmark performance indicators are described below. All calculations are performed separately by grade, subject, and organization.

Student Data

Student test data from the current administration of Reading, Mathematics, and Science MCA assessments are included in benchmark indicator calculations. The calculations use data from public school students with valid test scores. Student data from both online and paper (data entry) tests are included in the calculations. Benchmark reports are provided to all schools and districts regardless of the number of students within the organization. However, the school/district must have at least 20 student responses for items in a particular benchmark to calculate the performance indicator on a benchmark. If there are less than 20 student responses to items within a benchmark, the school/district receives an asterisk (*) for their performance indicator on that benchmark (see Table A.1).

Observed Performance Measure

School or district benchmark performance is measured by finding the observed average probability correct (p value) for all students in organization o across all items measuring a particular benchmark b. The calculation to find the observed p-value (OBS) for organization o on benchmark b is made as follows,

$$
\begin{equation*}
O B S_{o b}=\frac{\sum_{i \in b} \sum_{s} u_{i s}}{\sum_{i \in b} N_{i o}} \tag{A.1}
\end{equation*}
$$

where $N_{i o}$ is the number of students administered item i in organization $o, u_{i s}$ is the item score $(0,1)$ for student s on item i, the summations in the numerator are across all students in organization oand across all items measuring b and the summation in the denominator is across all items measuring benchmark b.

Expected Performance Measure

The actual items administered to students may vary from school to school or district to district. This is particularly true for the online Reading and Mathematics MCA computer adaptive tests. Therefore, the observed performance measure of an organization needs to be compared to a level of performance that would be expected based on the actual items administered to that organization. A range, called the expected "Meets" range, is calculated based on the expectation of how students performing at the "Meets" achievement level would perform on the items that were administered to the school or district.

The first step in finding the expected range for given benchmark and organization is to find the lower bound (LB) and upper bound (UB) of the expected "Meets" range for each item i in the pool. These are found using the formulas below.

$$
\begin{align*}
\mathrm{LB}_{\mathrm{i}} & =c_{i}+\frac{1-c_{i}}{1+e^{-1.7 a_{i}\left(\theta_{M}-C S E M-b_{i}\right)}}, \tag{A.2}\\
\mathrm{UB}_{\mathrm{i}} & =c_{i}+\frac{1-c_{i}}{1+e^{-1.7 a_{i}\left(\theta_{M}+C S E M-b_{i}\right)}}, \tag{A.3}
\end{align*}
$$

where θ_{M} is the theta cut score for the "Meets" achievement level on the ability scale for that grade and subject, and a_{i}, b_{i}, and c_{i} are the item parameters from the 3PL model for item i, and e is the base of the natural logarithm ($e=2.71828 \ldots$...). The CSEM value for the grade and subject is calculated by averaging the empirical theta scale conditional standard error of measurement of all public school students with valid test scores from the current administration who scored exactly at the "Meets" scale score cut. This average value is rounded to four decimal places and multiplied by 2.0 to obtain the CSEM used for that grade and subject in the formulas above.

To find the expected "Meets" range for a given organization (school or district) o on benchmark b, the LB and UB bounds need to be summed and averaged based on the number of times each item from benchmark b was
administered to the students of organization o. The formulas below describe how the lower ($E L B_{o b}$) and upper $\left(E U B_{o b}\right)$ bounds of the expected "Meets" range is calculated for benchmark b and organization o.

$$
\begin{align*}
& E L B_{o b}=\frac{\sum_{i \in b} N_{i o} \times L B_{i}}{\sum_{i \in b} N_{i o}}, \tag{A.4}\\
& E U B_{o b}=\frac{\sum_{i \in b} N_{i o} \times U B_{i}}{\sum_{i \in b} N_{i o}}, \tag{A.5}
\end{align*}
$$

where $N_{i o}$ is the number of students administered item i in organization o, and the summations in the numerator and denominator are across all items measuring benchmark b.

Indicator Determination

Once the observed and expected performance measures for a benchmark are derived for an organization, the benchmark indicator is found by determining if the observed value is less than, within, or greater than the expected range. If $O B S_{o b}$ is less than $E L B_{o b}$ then the indicator reported is Less than "Meets". If $O B S_{o b}$ is greater than $E U B_{o b}$ then the indicator reported is Greater than "Meets". If $O B S_{o b}$ is greater than or equal to $E L B_{o b}$ and less than or equal to $E U B_{o b}$, the indicator reported is Similar to "Meets".

Resources

View the subject specific Benchmark Report "How To" Quick Guides for Reading, Mathematics, and Science for information about how you can use the reports in your district or school. (PearsonAccess Next > Reporting Resources > Additional Reporting Resources)

View the Benchmark Report Interpretive Guide for a comprehensive overview of the Reading, Mathematics, and Science MCA Benchmark Reports, along with information about understanding and using the data in your district or school. (PearsonAccess Next > Reporting Resources > Additional Reporting Resources)

View the Understanding the Benchmark Report Video for an overview of benchmarks within the Minnesota Academic Standards and a walk through of each section of the report. (PearsonAccess Next > Reporting Resources > Additional Reporting Resources).

[^0]: ${ }^{1}$ The high school Science MCA-III or MTAS-III is given to students in the year they complete their instruction in life science.

