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Executive Summary 
This document details the methods and data sources for the COVID-19 transmission model 
developed as part of a collaborative effort between the University of Minnesota (UMN) and the 
Minnesota Department of Health (MDH). It reflects updates through April 8, 2020 as part of 
developing version 2 of the model and associated output. The model structure, methods of 
calibration, and parameter values are informed by an exhaustive review of published data and 
other COVID-19 models in the literature.  

At this early stage of the COVID-19 pandemic, there is still substantial uncertainty in many key 
model parameters. Results of this model, not included in this methods documentation, must be 
interpreted in light of the uncertainty and limitations detailed at the end of this document. As 
such, updates to the model and revisions to the accompanying documentation should be 
expected in the coming weeks as more research is published on COVID-19 cases in the United 
States.  

Background 
Eight days after the first case of SARS-CoV-2 infection was reported in Minnesota, MDH 
confirmed “community spread” of the novel virus on March 15, 2020. Since then progressively 
expansive social distancing orders have been issued by Governor Walz, required Minnesotans 
to avoid social contact outside the home where at all possible. In the absence of effective 
therapies or a vaccine, non-pharmaceutical interventions including case isolation and social 
distancing measures has been demonstrated to mitigate the impact of the COVID-19 pandemic. 
In response to the statewide epidemic, Minnesota also instituted school closures on March 13, 
20201 followed by a statewide stay-at-home order on March 26, 2020.2 To inform these and 
future decisions by the administration, businesses, and individuals, MDH partnered with UMN 
to conduct a modeling study. In this document, we provide an overview of the model, including 
model structure, assumptions, parameters and validation.  

Methods 
Model structure 
We used an extended version of the susceptible-exposed-infected-recovered (SEIR) model that 
accounts for the age and comorbidity distribution of the population of Minnesota to assess the 
potential impact of specific non-pharmaceutical interventions (Figure 1). The model tracks the 
number of susceptible, exposed, infectious, and recovered persons in the state of Minnesota 
each day. Infection is assumed to result from contact between individuals in the susceptible 
(“S”) and infectious (“I”) states. Infected individuals initially enter an exposed (“E”) state prior 
to becoming infectious. A proportion of infectious individuals are assumed to progress clinically 
to the point of requiring either hospitalization (the “H” state) or an ICU bed (the “ICU” state); at 
this point, the model does not provide for hospitalized individuals to transition to the ICU.  All 
infected individuals are able to recover regardless of their clinical state by progressing to the 
recovered “R” state, though they are assumed to do so at different rates depending on their 
clinical severity, their age, and comorbidity status (dichotomized as either having no 
comorbidities or having at least one). We assume that only those who reach the ICU state may 
die as a result of COVID-19 (by progressing to the dead “D” state) at rates conditional on their 
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age, comorbidity status, and whether the state’s ICU capacity has been exceeded. Lastly, our 
model structure currently assumes complete immunity among those who recover for the 
duration of the modeled time period. The difference equations describing the flow of 
individuals through each compartment are presented in the Appendix.  

Analysis 
The difference equations presented in the Appendix (Equations 1-9) are discrete 
approximations of ordinary differential equations.  Each difference equation contains 
parameters on the natural history of COVID-19 disease and other parameters. Because of the 
uncertainty in many model parameters, we conducted simple and probabilistic sensitivity 
analyses.  For simple sensitivity analyses, we specified alternative plausible values for model 
parameters and re-ran the model. For probabilistic bias analysis, we repeatedly sampled model 
parameters from distributions representing our uncertainty in those parameters and re-ran the 
difference models with the sampled parameter values.  

We describe model parameters in detail below, giving the value most supported by the 
literature as well as a range of values used in sensitivity analyses.  We used the model to predict 
epidemiological outcomes from March 23, 2020 through March 22, 2021 to capture both the 
short and long term effects of different mitigation strategies. Epidemiologic outcomes include 
the cumulative number of SARS-CoV-2 infections, the cumulative number of COVID-19 deaths, 
the number of ICU beds needed at peak demand and time to reach intensive care unit (ICU) 
capacity.  All analyses were run in R v3.5.3, a programming language and software environment 
used widely for statistical computation and development of data visualization. 

Figure 1. Extended SEIR model for the COVID-19 epidemic in Minnesota, 2020 
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Key Model Parameters 
Model parameters are summarized in Appendix Table S1. 

Population Initial conditions 
The age distribution of the population of Minnesota was based on data from the United States 
Census Bureau3 and the distribution of comorbidities was estimated from the Minnesota All 
Payer Claims Database (Table S2).4 The initial number of infections in the model were estimated 
from the number of confirmed cases, by age, reported by MDH as of March 22, 2020. We 
multiplied the number of confirmed cases by a factor to reflect the probability that an infected 
individual would be detected at that time given testing policies and availability. This generated 
an estimate of the total number of infected individuals in Minnesota on March 22, 2020. This 
parameter was calibrated to match the trend in number of deaths (see Model Calibration). 

Natural History 
We assumed a mean incubation period (time in the “E” state) of 5 days (range from 2 to 12.5 
days6–10), and that individuals remain infectious (time in the “I” state) for a mean of 8 days 
before requiring hospitalization, ICU care or recovering  (range, 1 to 24 days).6,11–14 Both “E” 
and “I” states were modeled using gamma distributions, rather than standard exponential ones, 
for greater fidelity to observed data. This was accomplished by having 4 “E” states and 7 “I” 
states (see details below). 

Contact and Transmission 
In light of evidence of substantial heterogeneity in COIVD-19 mortality by age and underlying 
comorbidities, we stratified our model population by nine 10-year age groups (0-9, …, 70-79, 
80+; indexed by α) and by comorbidity status (no comorbidities vs. ≥1 comorbidity; indexed by 
κ). An age-based contact matrix, CM[i,j], was constructed to indicate the relative frequency of 
effective daily contact between age groups i and j, and which was informed by data from the 
2008 POLYMOD study in Europe.5 We assumed the same contact patterns for those with and 
without underlying comorbidities and uniform contact behaviors across comorbidity status 
within members of the same age group. As newer data on US- and MN-specific social contact 
patterns become available, updating these inputs will provide insights more relevant to our 
local context. 

The number of new infections per time step was calculated as the product of β, the probability 
of transmission per effective contact, λi, the number of effective contacts made with each age 
subgroup, and the prevalence of infection in each age group. λi (where i represents the ith age 
group) is expressed as: 

 
Where 𝐼𝐼𝛼𝛼 is the number of infectious individuals in age group a, and Da is the number of 
individuals who have died from COVID-19 in that age group. The square matrix CM[i,α] is the 
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number of contacts that individuals in age group i have with age group α per time step.  New 
infections are driven by the age-specific contact patterns (CM[i,α]) and the age-specific 
proportions of the living population who are infectious in a given time step. 

Values for β  were calibrated to yield unmitigated R0 values that were consistent with the World 
Health Organization, an analysis from China,6 and COVID-19 models of the epidemic for the 
UK,15 and for 11 European countries16 (unmitigated R0 of 3.87; range, 2.5 – 6.0). Due to the 
inclusion of population stratification, age-specific mixing patterns, and gamma-distributed 
incubation and infectious periods, the analytical calculation of R0 is complex. We therefore used 
empirical methods to estimate R0 using doubling times in the first 20 days of our simulation 
(without mitigation). We varied β to be consistent with a plausible range of R0 values from 2.5 - 
4.7, which resulted in β values ranging from 0.025 to 0.045, with a β of 0.035 yielding an R0 of 
3.87.  

Disease Progression and Mortality 
We assumed a duration of 13.3 days (range, 7-23 days) from hospitalization to recovery12,17 and 
a duration of 10.3 days (range, 4-17) from ICU admission to recovery.12,17  Average lengths of 
hospital and ICU stay used in the model do not currently depend on age or comorbidity status. 
Age-specific proportions of infectious individuals requiring hospitalization or ICU care, as well as 
age-specific COVID-19 mortality rates, were informed by the Report of the WHO-China Joint 
Mission on Coronavirus Disease8 and have been utilized by other models.15,18 Hospitalization 
risks were reported per confirmed case in China. However, the proportion of infections that 
were detected in China is uncertain. In our initial model runs, we assumed that all infections 
were detected by the stringent symptom-based screening criteria in place in China at the time 
of these estimates. However, a recent estimate cited by the US CDC director Dr. Robert R. 
Redfield that 25% of all infections are asymptomatic.21 Therefore, in the base case we multiply 
hospitalization risks by 75% to reflect the 25% of infections that would not have been detected. 
We vary this parameter between 50-90% based on data from China and a recent model of the 
COVID-19 epidemic in Europe.16,18 

Age-specific COVID-19 mortality rates were obtained from a study of over 74,000 patients in 
China,19 which has informed other peer models.15,18 Although data on age-specific COVID-19 
mortality is available from the US, we believe these may overestimate true mortality due to 
official advice from the US CDC that people with milder symptoms undergo home-based self-
care20 (which could deflate the denominator). For model simplicity, we estimated mortality risk 
among those with at least one comorbidity as a factor by which mortality risk is amplified, and 
which was informed by pooled estimates of comorbidity associated mortality. This factor was 
estimated by pooling data from three studies from China to calculate the relative risk of death 
(7.5) in those with at least one  comorbidity versus those without pooled across three 
studies.8,19,20 In the absence of any data to inform the relative risk of excess mortality for those 
in the “ICU” state who would be denied life support in to critical cases who would not be 
provided life support in the event that hospitals reach ICU bed capacity, we multiplied the age-
specific ICU mortality rate by 100, which results in an increase in mortality of between 1.5x and 
16.5x, depending on age and comorbidity status.  
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The number of available ICU beds in the state of Minnesota was obtained through 
communication with MDH (as of April 4, 2020, the number is 2200; the original number was 
235). The excess number of individuals in the “ICU” state who would be without a bed in each 
time step is calculated as the excess of such cases beyond the number of beds:  

 

Non-pharmaceutical intervention strategies 
We examined the impact of various interventions that were implemented at different times 
and for varying durations. The interventions were to do nothing, have social distancing, or 
shelter in place. The model described above implements the “do nothing” intervention. Other 
interventions were assumed to have their effect by altering the contact matrix CM[I,j]. Social 
distancing was assumed to reduce contacts by half (50%) while shelter in place was assumed to 
reduce contacts by 80%.  

Additional information about model parameters and model equations, estimates values, and 
corresponding references are provided in the Appendix. 

Model Calibration 
The model was calibrated to reproduce the number of daily deaths observed in MN. The 
parameter that was calibrated in this step was the probability of an infection being detected in 
MN prior to March 22, 2020. A very low probability of detection (0.01) allowed good fit with 
observed data. After calibration, the model is able to reproduce the observed number of deaths 
in MN (through April 5, 2020) and depicts the predicted deaths over the coming weeks. 
However, these predicted deaths should be interpreted with caution since some of the 
observed deaths may be due to clustering of infections in nursing homes which the model does 
not currently capture. 

Limitations  
 A large number of parameter values continue to be informed by studies from China. Given 

the suboptimal testing for SARS-CoV-2 in many settings, reports from China provide the 
most complete and detailed data available, as active monitoring systems were implemented 
throughout the entire country relatively early in the outbreak. However, wherever possible 
our model parameters are informed directly by data from Minnesota, in particular 
demographic information including distribution of comorbidities across age groups as well 
as data on COVID-19 cases and deaths. 

 Published estimates of the basic reproductive number (R0) are highly variable. Probability 
of transmission per effective contact is currently estimated by calibrating the model to 
published values of the R0 for SARS-CoV-2. It is important to note that R0 is a dynamic value 
that can vary by geography and temporally. We anticipate continual updates to published R0 
values, particularly as more data from the US become available; results of this model will 
also change accordingly.  
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 Death outside of ICU care settings is still poorly understood. Currently, our model applies 
mortality only from the ICU. We recognize that this is not the only realistically viable option. 
As data become available for alternative paths in particular infection or hospitalization, we 
will expand our model and update the results accordingly. 

 There is still great uncertainty around proportions of infections that remain undetected or 
are asymptomatic. Testing availability for SARS-CoV-2 is suboptimal across the US; more 
challenging for model-based predictions, however, is the heterogeneity in testing policies 
across states and over time. In addition, new information is continually emerging regarding 
infections acquired from presumably asymptomatic cases. Updates on these epidemiologic 
features will also necessarily alter estimates generated by this model. 

 The role of asymptomatic infection in contributing to the spread of SARS-CoV-2 is 
uncertain. The role of asymptomatic infections and whether and how they contribute to the 
spread of SARS-CoV-2 is still being determined. More robust data that supports a role in the 
spread will necessitate revisions to the model structure, which will also alter the estimates 
generated by this model. 

 Observed versus predicted reductions in contacts based on different mitigation strategies. 
The modeled reductions in contacts and the subsequent impact on ICU capacity and deaths 
are based on reductions in contact patterns that broadly correspond to closing of schools, 
universities, places of work etc. The extent to which contacts are reduced in reality and for 
how long will affect model predictions.  

Next Steps  
In the service of informing decision-making and public interest into the pandemic and its 
response, the research partnership between the University of Minnesota School of Public 
Health and MDH is committed to continuing to refine and expand this disease model. 

This will consist of reviewing the literature and updating parameter estimates on an ongoing 
basis, which is particularly important as robust U.S. or MN data (where applicable) become 
available. In addition, the model structure and underlying assumptions will continue to be 
subject to revisions as we learn more about the epidemiology of SARS-CoV-2. Finally, the 
research team is exploring ways to make the model useful to a broader set of application, 
including by bringing in new information on contact patterns, exploring ways to incorporate 
geographic differences in disease spread and impact, and considering ways to model mitigation 
strategies that turn on and off. 

Both teams are committed to make new information available as it materializes. We are also 
working towards posting a user interface and programming code. 
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Appendix 
Equations E1-9 
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Table S1. Parameter definitions, values, and sources 

Name Definition Estimate (range) Data source 
setting 

β Probability that contact with 
an infectious person results in 
an infection 

Calculated using estimates or 
R0: 3.87 (range 2.5-
6.0)6,15,16,22 (details of β 
calculations in methods 
section)  

China, UK, 
multiple European 
countries 

λ Number of contacts per time 
step that one age group has 
with infected individuals 

See methods section for 
calculation 

8 European 
countries 

prob(case 
detection) 

The percentage of cases 
which had been detected on 
March 22, 2020 

0.01 (0.005-0.05) Calibrated to 
COVID-19 death 
counts 
in Minnesota 

prob(τE) Probability of transitioning 
through an exposed state at 
each time step 

Calculated from estimated 
incubation period: 5 days 
(range from 2 to 12.5 days)6–

10  

China, national  

prob(τI) Probability of transitioning 
through an infected state at 
each time step 

Calculated using estimated 
time from symptom onset to 
hospital or ICU: 8 days 
(range, 1 to 24 days).6,11–14 

China (Wuhan) 

prob(τICU,b ) Probability of transitioning 
out of the ICU at each time 
step when a bed is accessible 

Calculated using estimated 
time from ICU admission to 
recovery: 7 days (range, 3-
10)17 

China (Wuhan) 

prob(τICU,n) Probability of transitioning 
out of the ICU at each time 
step when a bed is not 
accessible 

Calculated from estimated 
time from ICU admission to 
recovery; 8 days (range, 6-
12)17 

China (Wuhan) 

frachosp Fraction of individualswho 
were hospitalized with a 
detected infection 

Age specific (range from 
0.001 to 0.273 per 10 person 
days)15,18 See table S3 

China (national; 
adjusted for 
UK/US settings) 
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Name Definition Estimate (range) Data source 
setting 

fracICU Fraction of hospitalized 
individuals who need ICU 
care 

Age specific (range from 
0.050 to 0.709 per 10 person 
days)15,18  See table S3 

China (national, 
adjusted for 
UK/US settings) 

prob(recH ) Probability of recovery for 
hospitalized individuals (per 
time step) 

Calculated from estimated 
duration of hospitalization: 

13.3 days (range, 7-23) 12,17  

US (Seattle); 
China (Wuhan) 

prob(recICU,b) Probability of recovering at 
each time step when in the 
ICU when a bed is accessible 

Calculated from estimated 
duration of time in ICU and 
age-specific mortality 
rates19,23,24 for those in the 
ICU state:  

10.3 days (range, 4-17) 12,17 
See table S3 

US (Seattle); 
China (Wuhan); 
Italy (national) 

prob(recICU,n) Probability of recovering at 
each time step when in the 
ICU when a bed is not 
accessible 

Calculated from estimated 
duration of time in ICU and 
age-specific mortality 
rates19,23,24 for those in the 
ICU state:  

10.3 days (range, 4-17) 12,17 
See table S3 

US (Seattle); 
China (Wuhan); 
Italy (national) 

δ Probability of being detected 
given an infection after 
March 22, 2020? 

0.75 (range, 0.5-0.9)21 US (national)  

ICUoverflow Proportion of individuals who 
are in the ICU but do not 
have a bed, when the ICU is 
not exceeding capacity this 
will be 0 

Calculated, see methods 
section 
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Table S2. Proportion of Minnesotans with one or more underlying 
conditions by age group estimated from the MN all payer claims data 

Age group (years) >=1 underlying condition 

0 to 9 0.023 

10 to 19 0.051 

20 to 29 0.063 

30 to 39 0.118 

40 to 49 0.222 

50 to 59 0.367 

60 to 69 0.500 

70 to 79 0.663 

80+ 0.777 
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Table S3. Age-specific hospitalization parameter estimates 

Age group (years) Percentage of 
detected cases 
needed 
hospitalization 

Percentage of 
hospitalized cases 
requiring ICU 

ICU mortality rate 
(per 10 person-
days) 

0 to 9 0.1% 5.0% 0.000 

10 to 19 0.3% 5.0% 0.002 

20 to 29 1.2% 5.0% 0.001 

30 to 39 3.2% 5.0% 0.002 

40 to 49 4.9% 6.3% 0.003 

50 to 59 10.2% 12.2% 0.009 

60 to 69 16.6% 27.4% 0.024 

70 to 79 24.3% 43.2% 0.056 

80+ 27.3% 70.9% 0.111 
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