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National Service as a Solution to Addressing Critical Social Needs 
The AmeriCorps programs in the state of Minnesota illustrate the power of aligning human capital with a clear and 

focused plan for addressing areas of critical need. Without AmeriCorps, our communities would be drastically and 

negatively affected. In 2016, over 2,100 AmeriCorps members devoted a year of service with one of 13 programs in the 

state. The existing AmeriCorps programs are diverse. Members might deliver academic interventions, help keep at-risk 

students on track to obtain a high school diploma, assist low-income adults in developing key employment skills, build or 

repair homes, or improve our state’s ability to adapt to environmental change. Those targets are both meaningful and an 

excellent fit for service programs.  

Although the nature of the work that members engage in is vastly different, there are common threads that tie successful 

programs together. As is the case across many disciplines and geographic areas, it is increasingly clear that effective 

programs are (1) designed with an explicit connection to existing evidence, (2) intentional about the collection and use of 

data to guide implementation and program decisions, and (3) monitored in real-time to ensure the program is implemented 

as designed. Those features facilitate continuous improvement and lay the foundation for summative evidence of program 

impact.  

Minnesota Math Corps (MMC) is an AmeriCorps program in Minnesota serving students at risk for math problems. MMC 

is a strategic initiative of ServeMinnesota, which is the state commission for AmeriCorps state programs in Minnesota. 

ServeMinnesota partners with MMC to ensure the program is an effective and efficient application of national service to 

solve a critical social issue. This focus is inherent in ServeMinnesota’s mission to promote innovation as well as the 

organization’s investment strategy. That is, ServeMinnesota seeks to support and hold programs accountable to key 

questions from stakeholders. Those questions are directly aligned with the four characteristics outlined in the preceding 

paragraph and are outlined in Table 1.  

Table 1. Key Program Questions and Required Evidence for Math Corps 

Key Program Questions Required Evidence 

Why do you focus on that 

problem? 

Compelling empirical data to illustrate the problem and the need (e.g., lack of capacity to 

adequately address the problem without the program).  

Why do members do what 

they do? 

A clear operational definition of member activities and research-based rationale for those 

activities.   

How do you know 

activities are occurring? 

Clear and efficient systems (e.g., program oversight, documentation) to monitor members 

during the program year and procedures in place to address situations when members 

deviate from the outlined activities.  

How do you know if it’s 

working? 

Technically sound instruments that (1) are directly aligned with the program activities, (2) 

produce formative data that can be used in real-time to improve activities and (3) can be 

aggregated to inform annual programmatic decisions annually.  

What are you doing to get 

better? 

Operating under the assumption that there is no perfect program, what activities are you 

currently engaged in to improve the status quo? 

What is the evidence for 

your program? 

Designing an evidence-based program and being a program with evidence are two 

different things. What defensible data do you have to demonstrate program impact on key 

outcomes?  

The evaluation activities and results outlined in this report explicitly address MMC’s goal to demonstrate an impact on the 

trajectory of students’ math development (i.e., question 6 in Table 1). More specifically, the primary purpose of this 

impact evaluation was to determine the short-term impact of the program on students’ broad achievement in math from 

fall 2016 to winter 2017. This evaluation represents a critical first step in building the evidence-base for MMC.  
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About Minnesota Math Corps 
The following subsections provide detail on the extent to which Math Corps answers the key questions outlined in Table 

1. The major components of Math Corps are illustrated in the program’s logic model (Figure 1).

Historical Context 
MMC was started in 2007 in the St. Cloud School District in partnership with St. Cloud State University. Since its 

inception, MMC has expanded into new sites each year, with more than 116 tutors currently serving more than 104 

schools statewide. With its expansion in recent years, MMC has seen several changes to program implementation. Most 

notably, the program distanced itself from an “off the shelf” intervention curricula and moved toward an internally created 

intervention curriculum in 2013. There were three primary reasons for this shift: (1) content, (2) delivery, and (3) 

scalability.  

In regard to content, the publisher produced curriculum focused on concepts spanning across all grade-level math 

domains. For example, students received targeted support on Geometry concepts as well as those related to Operations 

and Data Analysis. While these concepts are all important for grade-level math proficiency, research is increasingly clear 

that students who struggle with math tend to need explicit and ongoing support with skills in working with whole and 

rational numbers. This is largely because those skills serve as the foundation for increasingly complex material. Thus, 

MMC sought to develop an intervention curriculum that focused explicitly on an understanding of whole and rational 

numbers. 

In regard to delivery, the methods for instruction adopted by the publisher produced curriculum were not fully aligned 

with the existing evidence-base for supplemental intervention. Thus, MMC sought to develop an intervention curriculum 

that included scripts for delivery that generally corresponded to strategies with existing evidence for improving students’ 

skills in the area of whole and rational number understanding. In addition, the use of data to guide decision-making was 

not present in the previous curriculum. MMC currently uses student performance data to select students and ensure 

students are ready to progress to the next skill in the curricular sequence.  

In regard to scalability, the publisher-produced curriculum was associated with a per student cost that would have been 

prohibitive of ongoing expansion efforts. In addition to the expansion occurring in the state of Minnesota, ServeMinnesota 

held long-term plans for expanding the program to other states in the country (similar to Minnesota Reading Corps). The 

use of internally created intervention materials allowed more flexibility for MMC to expand the program to new students 

and schools at a relatively low cost.  
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Figure 1: Minnesota Math Corps logic model 
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Program Rationale 

Math Corps aims to improve the core math skills of at-risk students because this endeavor holds immense value for the 

individuals served as well as the society at large. Students with strong fundamental math skills are better prepared to 

succeed in advanced math courses and thus more likely to graduate from high school, attend college, and experience 

success in their careers relative to students who need to take remedial math courses (Adelmann, 2006; Long, Conger, & 

Latarola, 2012; Spielhagen, 2006). Those benefits extend beyond individual students insofar as there are significant 

monetary benefits to society when students stay on track to graduate for high school, attend college, and successfully 

enter the workforce (Levin & Belfield, 2007).  

Given the strong relationship between academic skills and future success, it stands to reason that improving the math 

skills of at risk students is a critical issue for a variety of stakeholders. Yet, schools across the nation struggle to meet the 

needs of those students. In the most recent National Assessment of Educational Progress test, no more than 40% of 

students at any grade level demonstrated proficient skills in math (NAEP, 2016). In an effort to prevent ongoing academic 

deficits, many schools have adopted a tiered model of support in which additional school-based resources are provided on 

a continuum of student need (e.g., Response to Intervention [RtI]).  

Nevertheless, the promise of that approach to school-based support is hindered by critical implementation obstacles. In 

most conceptualizations of prevention models, approximately 15% to 20% of students will require early intervention 

supports (Fuchs & Vaughn, 2012). In a typical school with approximately 400 students, even the best case scenario in 

which only 60-80 students require additional support would result in substantial logistical strain on the school system. 

Moreover, many schools are located in communities where considerably more than 15% to 20% of the students will need 

supplemental intervention.  For example, providing 60-80 students with 90 min of intervention per week—as per the 

existing evidence-base for elementary literacy interventions (Gersten et al., 2009; Slavin et al., 2011)—translates to 30 to 

54 hours of weekly support if those students are in groups of three. The demand on resources increases substantially if 

supplemental support is delivered in a 1:1 format (see Figure 1). It follows that most schools simply do not have the 

resources to meet the needs of students at risk for math problems. As a consequence, these students are often left behind. 

As outlined above, this has a substantial and negative impact on individual students and may result in financial burden for 

society. MMC was designed to directly address this critical need by merging the science of math intervention with the 

people power of AmeriCorps.   

Figure 2. Representation of the assumed impact of student need on the demand for intervention 

resources. 
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Activities  
Prior to any service in the schools, all MMC interventionists receive training in the program during an intensive training 

in August. Once in the school, interventionists receive oversight and support from a professional within the school 

(Internal Coach) and a content expert associated with MMC (Master Coach; A in Figure 2).  

MMC AmeriCorps members (“interventionists”) provide math support for students in grades four through eight. 

Interventionists identify students for the program from the entire pool of fourth through eighth grade students using a 

tiered screening process (B in Figure 2). Specifically, the first tier of students consists of all students who were not 

proficient on the state test from the previous school year. Those students are then tested using a broad-based measure of 

math achievement (STAR Math). If students score below the grade-level benchmark on STAR Math, they qualify for 

MMC.  

The content focus of MMC is directly aligned with expert and research-based recommendations for math intervention. 

Specifically, MMC is built around research that suggests skills with whole and rational numbers in late elementary and 

middle school are foundational for future math development (Torbeyns, Schnieder, Xin, & Siegler, 2015; Wang & 

Goldschmidt, 2003). Thus, MMC interventions focus on skills in the broad area of whole and rational number 

understanding (C in Figure 2). In regard to intervention delivery, each instructional target within the MMC curriculum is 

addressed via scripted protocols for conceptual understanding, computational proficiency, and word problem solving. For 

example, students in fifth grade working on multi-digit multiplication (one curricular content area) receive intervention on 

the conceptual basis for multi-digit multiplication, practice to develop procedural proficiency in multi-digit computation, 

and direct support to better solve word problems that include multi-digit multiplication. Finally, in addition to the standard 

curricular sequence, all interventionists provide short (~ 5 min) practice sessions on basic math facts. In this case, basic 

math facts are defined as 1 or 2 digit addition and subtraction problems and single digit multiplication/division problems.  

Within the MMC curricular sequence, students are required to demonstrate mastery on brief, formative assessments (e.g., 

students must demonstrate mastery on conceptual understanding before moving to procedural practice). After receiving 

intervention via all subskills within a given unit, students complete a mastery assessment covering each of the subskills. If 

any subskills are not mastered, a remedial lesson is provided to facilitate mastery.  

Outcomes 
There are a variety of short- and long-term goals for MMC. The outcomes most aligned with the intervention are those 

related to basic math fact fluency, skills in the area of whole and rational number understanding, and students’ sense of 

self-efficacy. That is, the most pronounced effects might be expected in those outcomes because they are closely aligned 

with the actual activities of the intervention. However, the logic underlying MMC holds that if changes are observed in 

whole and rational number understanding, those changes should be observable in broad-based assessments of math 

achievement (e.g. STAR Math). Those changes might be expected to increase the number of students who meet 

proficiency criteria on the state test, which in turn might increase the number of students enrolling in advanced math 

courses, graduating from high school, and enrolling in college. This logical progression is outlined in area D of Figure 1. 
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Impact Evaluation 
Research Question 
The present evaluation was primarily concerned with the impact of MMC on broad based math achievement. Although 

fact fluency data were examined in the evaluation, students’ performance on STAR Math was the primary outcome 

variable. Thus, the following research question guided the study: 

What is the impact of the Minnesota Math Corps program on a broad-based test of students’ math achievement? 

To answer this research question, the evaluation team analyzed Minnesota Math Corps as typically implemented. The 

only exception was that the initial pool of eligible students at participating schools was randomly assigned to either a 

treatment group that received Math Corps interventions for the first semester of the school year or to a control group that 

did not receive the program until after the winter posttest data collection period. Thus, the study examined the impact of 

the program after students had participated in the program for one semester (see Figure 3).  

Figure 3. Overview of evaluation design. 

Outcome Measures 
Student fact fluency scores were obtained using tests that included basic addition, subtraction, multiplication, and division 

problems. Previous research with the fact fluency tests provided sufficient evidence for technical quality (e.g., Foegen et 

al., 2007). The impact on student math outcomes was measured using STAR Math (Renaissance Learning, 2015), a broad 

computer-adaptive assessment of math performance that can be used with students in grades one through twelve. Scaled 

scores on STAR Math range from 0-1400. Depending on the age and skill level of a student, a single administration 

typically requires 20-30 min and may include items related to numeration, computation, word problems, geometry, 

measurement, algebra, estimation, and data analysis and statistics. Reliability estimates across grades range from .94 to 

.95. The median concurrent validity estimate with the Minnesota Comprehensive Assessment (MCA), Minnesota’s state 

math accountability assessment, across grades is reported to be .74 and the median predictive validity from fall STAR 

Math to spring state test scores is reported to be .71 across three state samples. 

School and Student Selection 
Twelve schools serving students in grades four through eight participated in the study. To be eligible for participation, 

schools were required to serve a student population in which at least 50% of the students were eligible for free or reduced 

price lunch. Each school was provided a small compensatory stipend for their participation. Across the twelve 

participating schools, a total of 17 Math Corps tutors delivered interventions. The average age of Math Corps tutors was 

35 (SD = 16), and approximately 83% were White, 5% were multi-racial, 6% were Black, and 6% were Asian. All tutors 

had graduated high school, and 67% had completed a college degree. On average, 61% of the students at participating 

schools were eligible for free or reduced-price lunch.  
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Students were selected for the study according to typical Math Corps selection criteria (described on page 7). According 

to those criteria, students with a state math assessment score below proficiency standards from the previous year were 

screened using STAR Math during the first few weeks of the fall semester; no students with proficient (or higher) scores 

from the previous year were screened with STAR Math. Students who were screened with STAR Math and had scores 

below the STAR Math fall benchmark were eligible for the program and thus eligible for randomization. In total, 550 

eligible students were randomly assigned into treatment or control group conditions, using an approximately 60:40 

probability for treatment assignment. Students assigned to the treatment group were put into pairs to receive Math Corps 

interventions according to typical procedures in the program.  

Students assigned to the control group were not allowed to receive Math Corps interventions until after winter post-test, 

but were allowed to receive other school-based services. Surveys sent to school staff to determine the frequency and type 

of other math supports indicated that both treatment and control group students received supports other than Math Corps, 

although control group students received other supports more often. Approximately 42% of control group students and 

25% of treatment students received 60 min of other weekly support for at least one month of the study duration. Other 

support typically consisted of semi-structured math activities provided by a school staff member; no evidence-based math 

interventions were reported.  

The final analytic sample consisted of 490 students, including 311 treatment and 179 control students. Demographic 

characteristics for each group are shown in Table 2. The study had approximately 11% attrition, due primarily to students 

not having posttest scores. Missing data was not associated with assignment to treatment, and with the exception of 

ethnicity (Asian and Hispanic), there was no relationship between missing data and demographic or pre-test data.  

Table 2: Demographic Distribution across Groups 

Demographics Control (n = 179 ) Treatment (n =311) 

Gender 

Male 49.3% 52.0% 

Female 50.2% 48.0% 

Ethnicity 

White 32.0% 33.6% 

Black 31.5% 31.0% 

Asian 17.7% 20.7% 

Hispanic 11.3% 7.5% 

American Indian/Alaskan Native 5.9% 6.0% 

Native Hawaiian or Other Pacific Islander 0.0% 0.3% 

Multi-Racial 1.5% 0.0% 

Grade 

Four 20.2% 19.8% 

Five 10.8% 14.4% 

Six 26.1% 24.4% 

Seven 20.2% 18.4% 

Eight 22.7% 23.0% 

Analysis Plan 
To evaluate the extent to which students assigned to the math intervention program demonstrated higher STAR Math 

scores than those assigned to the control group, the evaluation team fit two models to the data: an intent-to-treat (ITT) 

model and an Optimal Dosage (OD) model. The ITT model included all students assigned to receive intervention whereas 

the OD model only included students who received the intervention at an optimal dosage level as defined by MMC. More 

specifically, students were included in the OD group if they had at least 12 weeks of intervention, at least 60 minutes of 

support per week, and an interventionist with an average level of fidelity at or above 90%. In both models, students’ post-

test STAR Math scores were regressed on treatment assignment. Prior to selecting the final model, we evaluated the 

extent to which the treatment effect differed by grade, ethnicity, and school. In the ITT model, no substantive impact on 

the treatment effect was found for more complex models that incorporated demographic and school factors. Thus, in the 
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final ITT model, only pre-test score was included as a covariate. Slopes from the student level covariates were treated as 

fixed across schools.  

The ITT analysis was used to obtain an estimate of the intervention program’s effectiveness in typical conditions at 

schools that reflect the characteristics of those sampled. Nevertheless, the evaluation team was interested in understanding 

whether students with an optimal level of exposure to the program would demonstrate additional growth. The model for 

the OD analysis differed somewhat from the ITT model. After applying the inclusion criteria for the OD group, the 

treatment effect estimate differed as a function of whether the model controlled for school (with the treatment effect 

increasing when school was excluded). The evaluation team hypothesized that this bias in treatment effect estimation was 

related to differences across schools in terms of tendency to provide optimal dosage. To address this potential confound, a 

propensity score for students in the OD model was obtained by regressing OD assignment on demographic variables, the 

pre-test score, and school. Results from the propensity scoring suggested that school was in fact a significant predictor of 

treatment assignment. Thus, in the final OD model, students in the OD group were matched with a control student using 

nearest neighbor matching on the estimated propensity scores. The resulting matched sample was then used to estimate 

the treatment effect for the OD group.  

Results 
STAR Math Scores 
Pre- and post-test descriptive results are displayed across grades and groups in Table 3. Average STAR Math scores 

tended to increase across grades, which is generally consistent with the scaling of the assessment. The one exception to 

this occurred among seventh and eighth grade students in the control group, with eighth grade students scoring slightly 

lower on average relative to seventh grade students. Across groups, students tended to score within the same range on the 

pre-test. With the exception of seventh grade students, the average pre-test scores were within nine points. Average scores 

in both grades also tended to reflect growth from pre- to post-test. This is generally expected as all students received 

typical instruction in math from their regular teachers. The average difference between pre- and post-test STAR Math 

scores was approximately 31 scaled score points for students assigned to the control group and 48 scaled score points for 

students assigned to MMC. Thus, the average score for students in the treatment group was approximately 17 scaled score 

points higher than the average score for control students.  

Table 3. STAR Math Performance across Groups and Occasions 

Control Experimental 

Pre-Test STAR Math Post-Test STAR Math Pre-Test STAR Math Post-Test STAR Math 

Grade N M SD N M SD N M SD N M SD 

4 41 532.37 48.31 41 575.44 54.62 69 527.80 66.03 68 599.21 70.67 

5 22 602.14 65.73 21 666.76 68.29 50 611.94 67.01 48 670.85 87.84 

6 53 665.00 56.41 40 695.93 88.41 85 661.05 53.78 71 702.94 74.59 

7 41 708.73 68.35 36 741.08 83.92 64 690.28 68.30 61 739.57 71.14 

8 46 698.87 81.55 42 717.19 81.39 80 706.79 88.20 73 757.42 75.07 

To evaluate the impact of group assignment on students’ post-test scores inferentially, two regression models were fit to 

the data (described above). Results from the ITT model indicated that assignment to MMC was associated with a 
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statistically significant and positive effect on students’ post-test STAR Math scores, controlling for pre-test scores (R2 = 

.44, F(2,487) = 2.23, p < .01). More specifically, assignment to the experimental group in the ITT model was associated 

with a STAR Math post-test score that was approximately 15.5 scaled score points larger than the control group. The 

standardized effect size (Cohen’s d) for group assignment was equal to 0.15. When restricting the sample to include only 

students who received optimal intervention dosage, the effect of treatment remained significant (R2 = .58, F(2, 307) = 

3.14, p < .01). In the OD model, assignment to the experimental group was associated with a post-test score that was 

approximately 21 scaled score points larger than the control group; however, the Cohen’s d effect size estimate increased 

only slightly (d = .18).  

Fact Fluency 
Similar methods were adopted to evaluate the impact of MMC on students’ fact fluency scores; however, to be included in 

the analysis, students must have had a pre-test fact fluency score and a post-test fact fluency score. This restriction 

resulted in a sizeable loss in data as two fact fluency data points were not available for many students. More specifically, 

the number of students in the control group was equal to 85 (down from 179) and the number of students in the 

experimental group was equal to 239 (down from 311). Nevertheless, the fact fluency analysis is reported here as it 

provides preliminary insight into the impact of MMC on students’ fact fluency skills. As noted, the fact fluency analytic 

models mirrored those adopted for STAR Math insofar as post-test scores were regressed on group assignment, 

controlling for pre-test scores.  

Results from the ITT model indicated that assignment to MMC was associated with a statistically significant and positive 

effect on students’ post-test fact fluency scores, controlling for pre-test scores (R2 = .55). Assignment to the experimental 

group in the ITT model was associated with a fact fluency post-test score that was approximately 2.75 problems greater 

than the control group. The standardized effect size (Cohen’s d) for group assignment was equal to 0.13. When restricting 

the sample to include only students who received optimal intervention dosage, the effect of treatment increased. 

Assignment to the experimental group was associated with a post-test score that was approximately 3.6 problems greater 

than the control group and the Cohen’s d effect size estimate increased only slightly (d = .19). Thus, similar to the 

observed impact of MMC on overall math achievement, students who received the intervention also outperformed their 

peers assigned to the control group on a measure of math fact fluency.  

Contextualizing the Impact of MMC on Math Achievement 
The previous subsections provide rigorous empirical evidence for the impact of the program—students assigned to MMC 

clearly outperformed their peers who did not have access to the intervention. Nevertheless, it is also useful to further 

contextualize the results.  

To help illustrate the impact of MMC on students’ math achievement, it is helpful to visually compare the performance of 

students in the control and experimental group on metrics of interest. For example, the difference in weekly growth (i.e., 

the change in students’ STAR Math scores smoothed across weeks of service) is a helpful reference for interpreting 

impact. In Figure 4, students’ weekly growth scores are displayed across groups. From that figure, the magnitude of 

differences between groups is clearer. For example the average weekly growth for students in the ITT group was about 1.5 

times as fast as students in the control group. When comparing the OD group to the control group, only students in the 

schools with tutors who met OD criteria were included. This was done in an effort to control for school-related effects on 

student achievement (e.g., it is possible that students in schools where tutors had low fidelity were all generally low 

performers). After making that adjustment, the impact of Math Corps was similar to that observed for the ITT group. 
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* Control group in Panel B was restricted to include students at schools who had tutors meeting OD criteria.

Figure 4. Weekly growth for typical students and students assigned to the control group compared to students in the ITT 

Math Corps group (A) and students in the Math Corps group who received an optimal amount of dosage (OD).   

The consideration of students’ weekly growth rate is particularly useful as it allows for a comparison of student growth to 

a rate typically expected of students (STAR Math produces normative rates by students’ initial level of performance). In 

effect, a comparison of the growth rates for students assigned to receive Math Corps with the rates of growth observed for 

typical students allows for the estimation of the added benefit in terms of instructional time. For example, the expected 

rate of growth for students in the sample (based on STAR Math norms) can be multiplied by the number of weeks 

students were served to get an estimate of an expected post-test score. The average magnitude of the difference between 

the expected post-test scores and the observed post-test scores for individual students can then be divided by the typical 

rate of growth to estimate the added benefit of the intervention in terms of time. This concept is illustrated below and the 

corresponding results are presented in Figure 5.   

Figure 5. The added value of MMC expressed as instructional time, based on typical student growth and the average 

magnitude of the difference between expected post-test scores and observed post-test scores.    
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As might be inferred from Figure 4, the rate of weekly growth observed for students in the control group was roughly 

equivalent to the average expected rate of improvement for students included in the study sample. This is also reflected in 

Figure 5 insofar as the number of weeks associated with student growth in the control group was essentially equal to the 

number of weeks of support. That is, student growth was equivalent to about 17 weeks of typical instruction. However, as 

evident in Figure 4, students assigned to MMC demonstrated accelerated growth rates. In Figure 5, the impact of those 

growth rates is estimated in terms of added instructional time. On average, students assigned to MMC ended the study 

with a STAR Math post-test score equal to approximately 8 weeks of additional growth (based on STAR Math normative 

growth rates). That is, students assigned to receive Math Corps grew the equivalent of 26 weeks after 18 weeks of support. 

The impact of MMC was more pronounced among students who met criteria for the optimal dosage group (OD). More 

specifically, the average post-test score among students in the OD group was equal to approximately 17 weeks of 

additional growth (growth equivalent to 35 weeks after 18 weeks of support).   

Implications and Discussion of Effects 
These findings extend existing research regarding the potential for community-based volunteers to substantively 

contribute to schools’ support of at risk students. Previously, such research was limited exclusively to reading (Slavin et 

al., 2011), but the current study suggests community-based resources such as AmeriCorps can support schools’ efforts in 

math. Further, the nature of the intervention program, which included full-time interventionists trained as AmeriCorps 

members, suggests promise with respect to more integrated school-community partnerships.  

Schools dedicated a staff member to be trained in the program, assist in determining eligibility (by accessing and 

interpreting student state proficiency data), and allocate time for coaching sessions. Although substantive, these activities 

were relatively modest in comparison to the contribution of time and effort of the full-time interventionist. Further, other 

human and intellectual resources (e.g., coaches, data-driven decision-making support) were provided by the intervention 

program. The result was an integrated partnership that aligned community resources and expertise with school needs and 

structures (Gutkin, 2012). Although similar partnerships have documented success at the individual level (e.g., Sheridan, 

Bovaird, Glover, Garbacz, & Witte, 2012), efforts to support systems level needs like implementing comprehensive 

intervention programs are rare in general (e.g., Jacob et al., 2016) and nonexistent in math.   

If tiered prevention frameworks like response to intervention—which presume comprehensive intervention programs are 

in place for academic and behavioral needs—are to be successful, an ecological perspective to integrate community-

supported efforts is likely necessary (Burns, 2013). To illustrate from a strictly logistical perspective, the fourth grade 

math proficiency rate in Minnesota was 69% the year of the study, which means the average need in any given school was 

31% instead of the 15%-20% assumed in tiered prevention framework literature (Tilly, 2008). Providing each of those 

students 80-120 minutes of weekly intervention, even in pairs, is a herculean challenge for schools, and adding the time 

and resources to develop capacity and systems for data-driven decision-making and implementation (e.g., coaching) 

protocols further exacerbates the problem. As demonstrated in this study, there is promise for schools to augment their 

internal capacity with both personnel and knowledge resources from AmeriCorps programs such as MMC. Much of the 

work involved in implementing prevention frameworks lends itself to structured protocols for implementation (Noell & 

Gansle, 2016), and well-organized community organizations such as MMC might be able to support schools in 

establishing and executing those protocols, which could potentially free schools to focus more intently on core 

instructional practices that offer even greater potential to reduce proportions of at-risk students (Jitendra & Dupuis, 2016). 

Findings from the present study also have implications for math intervention in general. The current results suggest that 

comprehensive math intervention programs can produce meaningful outcomes for struggling students on distal math 

measures. This is important because a more comprehensive and replicable approach for supporting struggling students is 

consistent with the goal of prevention models to improve the overall academic health of school systems. As discussed, the 

evidence-base is well-established for specific interventions targeting conceptual understanding (Witzel et al., 2003), 

computational proficiency (Woodward, 2006), and word problem solving interventions (Montague et al., 1993). To date, 
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however, no study has examined the combined use of those approaches within a single intervention program spanning 

across multiple instructional targets. By using a broad construct measure, the present research captured distal program 

impact, whereas previous research focusing on the effects of a single intervention approach had used relatively proximal 

measures more likely to observe an effect (Montague, Krawec, Enders, & Dietz, 2014).  

The use of randomization and a relatively large participant sample also advances methodological limitations of existing 

studies of math interventions for skills related to whole and rational number understanding. For instance, existing studies 

that support the use of explicit modeling with concrete and semi-concrete representations had small sample sizes (Butler 

et al., 2003; Flores, 2010; Witzel et al., 2003), and other notable limitations such as randomizing class sections of the 

same teacher and analyzing outcomes at the student level. Studies in support of interventions to build computational 

proficiency have relied heavily on single-case designs (e.g., Flores, 2010; Poncy, Skinner, & Jaspers, 2007; Woodward, 

2006), which support internal validity but require systematic replications to establish external validity (Horner et al., 

2005). The current findings do not isolate the direct benefit of subcomponents of MMC, but they do suggest the inclusion 

of these interventions contributes to effectiveness as part of a comprehensive intervention program, and the ultimate goal 

of math intervention programs should be to increase broad-based mathematical competence (NMAP, 2008). 

Limitations 
Although this study used a rigorous design and a large sample to produce evidence that MMC improves student math 

outcomes, there are several limitations to the findings. Characteristics of the school sample limit the degree to which 

conclusions are applicable to other settings. The study occurred in schools with a relatively high proportion of students 

eligible for free or reduced price lunch, and thus findings cannot be extended to schools with relatively low 

socioeconomic need even though those schools are not devoid of students requiring supplemental support. Likewise, 

results from the present study do not represent the full impact of MMC—which is typically implemented for a whole year. 

Future research is underway to evaluate the impact of MMC on end-of-year benchmarks.   

A separate limitation is that the comprehensive nature of the intervention program—inclusive of multiple evidence-based 

interventions, data-driven decision-making, and implementation support—prevents understanding of the degree to which 

any single component, or subcomponent, contributed to student outcomes. It is unlikely that one component could be 

omitted from the program and still produce positive effects, but that possibility cannot be ruled out with the current 

methodology. Better understanding of the unique value of each approach could inform optimal allocation of time during 

instruction and intervention. Thus, future research adopting novel methodologies designed to evaluate the value of 

modular interventions (e.g., Baker et al., 2016) may prove useful in the area of math. A final set of limitations pertains to 

methodological characteristics of the study. There was a relatively high level of missing data (11%), which is known to 

potentially bias outcomes. Differential attrition within the conditions was minimal and few demographic characteristics 

were related to missingness. Under such conditions, even relatively high overall attrition minimally biases estimates 

(What Works Clearinghouse, 2017), but biased estimates remain possible. It is also relevant to note that a large proportion 

(40%) of the missing data were the result of one school missing all study data—that particular school was unable to begin 

the study because no interventionist was placed at the school.  

Conclusion 
In education, conventionally small effect sizes can have meaningful implications when interpreted in a broader context of 

student age, study rigor, and outcome measure (Hill, Bloom, Black, & Lipsey, 2008). Such effects were found in the 

current study, suggesting that community-supported comprehensive math intervention programs hold promise in late 

elementary and middle school. Given the challenges schools face in implementing intervention programs (Vujnovic et al., 

2014), combined with the need of their students (NAEP, 2015), effective support from communities may be a valuable 

asset to reverse longstanding trends in student performance. Ongoing research that strengthens the understanding and 

impact of such an approach appears warranted. 



    14 

References 
Adelman, C. (2006). The toolbox revisited: Paths to degree completion from high school through college. Washington, DC: U.S. 

Department of Education. Retrieved from: http://www.ed.gov/rschstat/research/pubs/toolboxrevisit/toolbox.pdf 

Baker, S., Gersten, R., & Lee, D. S. (2002). A synthesis of empirical research on teaching mathematics to low-achieving students. The 

Elementary School Journal, 103(1), 51-73. 

Ball, D., Ferrini-Mundy, J., Kilpatrick, J., Milgram, J., Schmid, W., & Schaar, R. (2005). Reaching for common ground in K-12 

mathematics education. Notices of the American Mathematical Society, 52(9), 1055-1058. 

Balu, R., Zhu, P., Doolittle, F., Schiller, E., Jenkins, J., & Gersten, R. (2015). Evaluation of Response to Intervention Practices for 

Elementary School Reading. NCEE 2016-4000. National Center for Education Evaluation and Regional Assistance. 

Bradley, R. H., Corwyn, R. F., McAdoo, H. P., & García Coll, C. (2001). The home environments of children in the United States part 

I: Variations by age, ethnicity, and poverty status. Child development, 72(6), 1844-1867. 

Brown-Jeffy, S. (2009). School effects: Examining the race gap in mathematics achievement. Journal of African American Studies, 

13, 388-405. DOI:10.1007/s12111-008-9056-3 

Burns, M. K. (2011). School psychology research: Combining ecological theory and prevention science. School Psychology 

Review, 40, 132-139. 

Burns, M. K., Senesac, B. J., & Silberglitt, B. (2008). Longitudinal effect of a volunteer tutoring program on reading skills of students 

identified as at-risk for reading failure: A two-year follow-up study. Literacy Research and Instruction, 47(1), 27-37. 

Butler, F. M., Miller, S. P., Crehan, K., Babbitt, B., & Pierce, T. (2003). Fraction instruction for students with mathematics 

disabilities: Comparing two teaching sequences. Learning Disabilities Research & Practice, 18(2), 99 –111. 

doi:10.1111/1540-5826.00066 

Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete 

manipulatives. Journal of Educational Psychology, 105(2), 380-400. 

Castro-Villarreal, F., Rodriguez, B. J., & Moore, S. (2014). Teachers' perceptions and attitudes about Response to Intervention (RTI) 

in their schools: A qualitative analysis. Teaching and Teacher Education, 40, 104-112. 

Codding, R. S., Shiyko, M., Russo, M., Birch, S., Fanning, E., & Jaspen, D. (2007). Comparing mathematics interventions: Does 

initial level of fluency predict intervention effectiveness? Journal of School Psychology, 45(6), 603-617. 

Crosnoe, R., Leventhal, T., Wirth, R. J., Pierce, K. M., & Pianta, R. C. (2010). Family socioeconomic status and consistent 

environmental stimulation in early childhood. Child development, 81(3), 972-987. 

Digest of Education Statistics (2016). National Center for Education Statistics. Retrieved 22 April 2017 from 

http://nces.ed.gov/programs/digest/d13/tables/dt13_216.60.asp?current=yes.  

Dobbie, W., Fryer, R. G., & Fryer Jr, G. (2011). Are high-quality schools enough to increase achievement among the poor? Evidence 

from the Harlem Children's Zone. American Economic Journal: Applied Economics, 3(3), 158-187. 

Flores, M. M., Hinton, V. M., Strozier, S. D., & Terry, S. L. (2014). Using the concrete-representational-abstract sequence and the 

strategic instruction model to teach computation to students with autism spectrum disorders and developmental 

disabilities. Education and Training in Autism and Developmental Disabilities, 547-554. 

Forman, S. G., Shapiro, E. S., Codding, R. S., Gonzales, J. E., Reddy, L. A., Rosenfield, S. A., ... & Stoiber, K. C. (2013).  

Implementation science and school psychology. School Psychology Quarterly, 28(2), 77-100. 

Fuchs, L. S., Powell, S. R., Cirino, P. T., Schumacher, R. F., Marrin, S., Hamlett, C. L., ... & Changas, P. C. (2014). Does calculation 

or word-problem instruction provide a stronger route to prealgebraic knowledge?. Journal of educational psychology, 106(4), 

990-1006.   

Fuchs, L. S., & Vaughn, S. (2012). Responsiveness-to-intervention: A decade later. Journal of Learning Disabilities, 45, 195-203. 

Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., & Witzel, B. (2009). Assisting students struggling with 

mathematics: Response to Intervention (RtI) for elementary and middle schools (NCEE 2009-4060). Washington, DC: 

National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of 

Education. Retrieved from http://ies.ed.gov/ncee/wwc/publications/practiceguides/.  

Gutkin, T. B. (2012). Ecological psychology: Replacing the medical model paradigm for school-based psychological and 

psychoeducational services. Journal of Educational and Psychological Consultation, 22(1-2), 1-20. 

Hamre, B. K., & Pianta, R. C. (2005). Can instructional and emotional support in the first‐grade classroom make a difference for 

children at risk of school failure?. Child development, 76(5), 949-967. 

 Hansen, N., Jordan, N. C., Siegler, R. S., Fernandez, E., Gersten, R., Fuchs, L., & Micklos, D. (2015). General and math-specific 

predictors of sixth-graders’  knowledge of fractions. Cognitive Development, 35, 34-49.  

Hill, C. J., Bloom, H. S., Black, A. R., & Lipsey, M. W. (2008). Empirical benchmarks for interpreting effect sizes in research. Child 

Development Perspectives, 2(3), 172-177. 

Hollands, F. M., Kieffer, M. J., Shand, R., Pan, Y., Cheng, H., & Levin, H. M. (2016). Cost-Effectiveness Analysis of Early Reading 

Programs: A Demonstration With Recommendations for Future Research. Journal of Research on Educational 

Effectiveness, 9(1), 30-53.  

Horner, R. H., Carr, E. G., Halle, J., McGee, G., Odom, S., & Wolery, M. (2005). The use of single-subject research to identify 

evidence-based practice in special education. Exceptional Children, 71(2), 165-179. 

Jacob, R., Armstrong, C., Bowden, A. B., & Pan, Y. (2016). Leveraging volunteers: An experimental evaluation of a tutoring program 

for struggling readers. Journal of Research on Educational Effectiveness, 9(1), 67-92. 

http://www.ed.gov/rschstat/research/pubs/toolboxrevisit/toolbox.pdf
http://nces.ed.gov/programs/digest/d13/tables/dt13_216.60.asp?current=yes


    15 

Jimerson, S. R., Burns, M. K., & VanDerHeyden, A. M. (2016). The handbook of response to intervention: Science and practice of 

assessment and intervention (2nd ed.). New York, NY: Springer Science. http://dx.doi.org/10.1007/978-0- 387-49053-3. 

Jitendra, A., & Dupuis, D. (2016). The role of tier I mathematics instruction in elementary and middle schools: Promoting 

mathematics success. In S. R. Jimerson, M. K. Burns, & A. M. VanDerHeyden (Eds.), Handbook of response to intervention: 

The science and practice of multi-tiered systems of support (2nd ed.; pp. 215-233). New York, NY: Springer. 

Joseph, L. M., Konrad, M., Cates, G., Vajcner, T., Eveleigh, E., & Fishley, K. M. (2012). A meta‐analytic review of the cover‐copy‐

compare and variations of this self‐management procedure. Psychology in the Schools, 49(2), 122-136. 

Kratochwill, T. R., & Shernoff, E. S. (2004). Evidence-based practice: Promoting evidence-based interventions in school 

psychology. School Psychology Review, 33(1), 34-48. 

Kroesbergen, E. H., & Van Luit, J. E. (2003). Mathematics interventions for children with special educational needs: A meta-

analysis. Remedial and special education, 24(2), 97-114. 

Lembke, E. S., Hampton, D., & Beyers, S. J. (2012). Response to intervention in mathematics: Critical elements. Psychology in the 

Schools, 49(3), 257-272. 

Long, M. C., Conger, D., & Iatarola, P. (2012). Effects of high school course-taking on secondary and postsecondary 

success. American Educational Research Journal, 49(2), 285-322. 

Magnuson, K. A., Meyers, M. K., Ruhm, C. J., & Waldfogel, J. (2004). Inequality in preschool education and school 

readiness. American educational research journal, 41(1), 115-157. 

Markovitz, C.; Hernandez, M.; Hedberg, E.; Silberglitt, B. (2014). Impact Evaluation of the Minnesota Reading Corps K-3 Program. 

NORC at the University of Chicago: Chicago, IL.  

Montague, M. (1997). Cognitive strategy instruction in mathematics for students with learning disabilities. Journal of learning 

disabilities, 30(2), 164-177. 

Montague, M., Krawec, J., Enders, C., & Dietz, S. (2014). The effects of cognitive strategy instruction on math problem solving of 

middle-school students of varying ability. Journal of Educational Psychology, 106(2), 469-481. 

Morgan, P. L., Farkas, G., Hillemeier, M. M., & Maczuga, S. (2016). Who is at risk for persistent mathematics difficulties in the 

United States? Journal of Learning Disabilities, 49(3), 305-319. DOI:10.1177/0022219414553849 

National Center for Education Statistics. (2016). 2016 mathematics and reading national achievement levels, National Assessment of 

Educational Progress. Retrieved from http://www.nationsreportcard.gov/reading_math_2016 

National Mathematics Advisory Panel (2008). Foundations for Success: The Final Report of the National Math Advisory Panel. U.S. 

Department of Education: Washington, DC. 

Nelson, P. M., Parker, D. C., & Zaslofsky, A. (2016). The relative value of growth in math fact skills across late elementary and 

middle school.  Assessment for Effective Intervention, 41, 184-192. 

Noell, G. H., & Gansle, K. A. (2016). Assuring the response to intervention process has substance: Assessing and supporting 

intervention implementation. In S. R. Jimerson, M. K. Burns, & A. M. VanDerHeyden (Eds.), Handbook of response to 

intervention: The science and practice of multi-tiered systems of support (2nd ed.; pp. 407-420). New York, NY: Springer. 

Perry, L. B., & McConney, A. (2010). Does the SES of the school matter? An examination of socioeconomic status and student 

achievement using PISA 2003. Teachers College Record, 112(4), 1137-1162. 

Prewett, S., Mellard, D. F., Deshler, D. D., Allen, J., Alexander, R., & Stern, A. (2012). Response to intervention in middle schools: 

Practices and outcomes. Learning Disabilities Research & Practice, 27(3), 136-147.  

Regan, K. S., Berkeley, S. L., Hughes, M., & Brady, K. K. (2015). Understanding practitioner perceptions of responsiveness to 

intervention. Learning Disability Quarterly, 38, 234-247. 

Renaissance Learning (2013). STAR Math: Technical manual. Wisconsin Rapids, WI: Author.   

Reschly, A. L., & Christenson, S. L. (2012). Moving from ‘context matters’ to engaged partnerships with families. Journal of 

Educational and Psychological Consultation, 22, 62-78.  

Schulte, A. C., & Stevens, J. J. (2015). Once, sometimes, or always in special education: Mathematics growth and achievement gaps. 

Exceptional Children, 81(3), 370-387. DOI:10.1177/0014402914563695 

Schmidt, W. H., Wang, H. C., & McKnight, C. C. (2005). Curriculum coherence: An examination of US mathematics and science 

content standards from an international perspective. Journal of Curriculum Studies, 37(5), 525-559. 

Sheridan, S. M., Bovaird, J. A., Glover, T. A., Garbacz, S. A., & Witte, A. (2012). A randomized trial examining the effects of 

conjoint behavioral consultation and the mediating role of the parent-teacher relationship. School Psychology Review, 41(1), 

23-46. 

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., ... & Chen, M. (2012). Early predictors of 

high school mathematics achievement. Psychological science, 23(7), 691-697. 

Singh, M. (2015). Influence of socioeconomic disadvantages on mathematics achievement: A multilevel cohort analysis. The Journal 

of Educational Research, 108, 347-357. DOI:10.1080/00220671.2014.899956 

Skinner, C. H., McLaughlin, T. F., & Logan, P. (1997). Cover, copy, and compare: A self-managed academic intervention effective 

across skills, students, and settings. Journal of Behavioral Education, 7(3), 295-306. 

Slavin, R. E., Lake, C., Davis, S., & Madden, N. A. (2011). Effective programs for struggling readers: A best-evidence 

synthesis. Educational Research Review, 6(1), 1-26. 

Sparks, S. D. (2016, December). Can Michigan sustain its multitiered supports? Education Week, 31(13), 1-23. 

Spielhagen, F. R. (2006). Closing the achievement gap in math: The long-term effects of eighth- grade algebra. Journal of Advanced 

Academics, 18(1), 34-59. doi.org/10.4219/jaa-2006-344 

https://doi.org/10.4219/jaa-2006-344


    16 

Stein M., Kinder D., Silbert J. & Carnine D. W. (2005) Designing Effective Mathematics Instruction: A Direct Instruction Approach. 

(4th ed.) Pearson Education, Inc: Upper Saddle River, New Jersey. 

Tate, W. F. (1997). Race-ethnicity, SES, gender, and language proficiency trends in mathematics achievement: An update. Journal for 

Research in Mathematics Education, 28, 652-679. 

Tilly, W. D., III (2008). The evolution of school psychology to science-based practice: Problem solving and the three-tiered model. In 

A. Thomas & J. Grimes (Eds.), Best practices in school psychology V (pp. 17–36). Bethesda, MD: National Association of 

School Psychologists. 

Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics 

achievement in students from three different continents. Learning and Instruction, 37, 5-13. 

U.S. Department of Education (n.d.). National Assessment of Educational Progress (NAEP), 2015 Mathematics Assessment. U.S. 

Department of Education, Institute of Education Sciences, National Center for Education Statistics. Retrieved from 

https://nces.ed.gov/nationsreportcard/naepdata/  

Vujnovic, R. K., Fabiano, G. A., Morris, K. L., Norman, K., Hallmark, C., & Hartley, C. (2014). Examining school psychologists' and 

teachers' application of approaches within a response to intervention framework. Exceptionality, 22, 129-140. 

Wang, J., & Goldschmidt, P. (2003). Importance of middle school mathematics on high school students’ mathematics achievement. 

Journal of Educational Research, 97(1), 3-19. doi.org/10.1080/00220670309596624  

Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What’s past is prologue: Relations between early mathematics 

achievement and high school achievement. Educational Researcher, 43(7), 352-260. DOI:10.31-2/0013189X14553660. 

What Works Clearninghouse (2017). Find what works. Retrieved April 22nd 2017 from 

https://ies.ed.gov/ncee/wwc/FWW/Results?filters=,Math.   

Witzel, B. S., Mercer, C. D., & Miller, M. D. (2003). Teaching algebra to students with learning difficulties: An investigation of an 

explicit instruction model. Learning Disabilities Research & Practice, 18(2), 121-131. 

Woodward, J. (2006). Developing automaticity in multiplication facts: Integrating strategy instruction with timed practice drills. 

Learning Disability Quarterly, 29, 269-289. doi: 10.2307/30035554 

https://nces.ed.gov/nationsreportcard/naepdata/
https://doi.org/10.1080/00220670309596624
https://ies.ed.gov/ncee/wwc/FWW/Results?filters=,Math



