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Summary

As a part of a larger effort by the MN DNR to understand the role of sulfate in methyl mercury production
and transport in the St. Louis River watershed, a wetland complex (Long Lake Creek) downstream from a
mine pit discharge on the Mesabi Iron range was studied intensively during the summer of 2012. The
~1.25 km long wetland complex typically receives a relatively small upstream discharge of mining-
influenced water (elevated sulfate and magnesium) which flows mostly through the open-water portion of
the wetland and is diluted by additions of water along its length. During 2012, the peat surface was
inundated in response to large spring (June) rainfall events. During the fall of 2011 and 2012, the peat
surface was also inundated with water elevated in sulfate as a result of active discharging from a mine pit
to supplement flow in the St. Louis River main stem. Water samples were collected at the inlet and
outlets of the wetland complex and analyzed for total- and methyl- mercury as well as a host of
geochemically related parameters. Additionally, solid phase and pore water samples were collected
throughout the summer of 2012 at two locations in the wetland peat (near shore and upland) with the goal
of ascertaining the mechanisms leading to methyl mercury production and release in the wetland
complex. Samples were also collected from the pore water and solid phase of a wetland with similar
vegetation that receives far lower sulfate loads. The purpose of this report is to present and share data and
provide preliminary interpretations to other MWRAP groups, with the intent of initiating a larger

coordinated analysis which will produce final interpretations.

Data from both wetlands showed that the net methylation potential was highest in July compared to May
and October. However, the instantaneous rate of MeHg production quantified with isotope tracers was
not always closely mirrored by the fraction of the total mercury pool present as MeHg in either the pore
water or solid phase. At lower sulfide concentrations, the fraction of mercury present as MeHg in the
solid phase appeared to be positively related to sulfide in both the pore water and solid phase. At higher
sulfide concentrations, MeHg was unrelated or even inversely related to sulfide. Though some seasonal

variability was observed, solid phase sulfides in surficial peat were generally higher in locations nearer to



the open water where peat retained more moisture. Despite having sulfur concentrations 10-100x lower
than Long Lake Creek wetland (and comparable total mercury concentrations), the West Two River peat
had MeHg concentrations in both the dissolved and solid phases similar to those observed at Long Lake

Creek.

Inlet and outlet samples showed considerable additions of MeHg and dissolved organic carbon (DOC) to
the stream as it passed through the Long Lake Creek wetland immediately following the Spring 2012
(natural) flooding event. This was consistent with elevated concentrations of MeHg and DOC in the peat
pore fluids during this time. Dissolved concentrations of MeHg were strongly correlated with DOC at the
wetland outlet and generally related in locations farther from the open water (upland), which suggests that
DOC is playing an important role in transporting MeHg in these locations. At locations near the open
water of both wetlands DOC and MeHg were not obviously related, and active methylation and
demethylation processes may have been more important to defining dissolved MeHg than DOC-
facilitated transport. During the pumping event which inundated the peat at Long Lake Creek in fall
2012, concentrations of DOC and MeHg in peat pore fluids were uniformly low and in-stream DOC and

MeHg concentrations at the wetland outlet mirrored those at the inlet.

The seasonal sampling suggests that a vast majority of the MeHg and DOC export from the Long Lake
Creek wetland occurred in the month following the large, natural hydrologic event in June 2012 an that
relatively little MeHg was exported from the wetland during the flooding event as a result of fall pumping
of mine water. A distinct difference in chemical signatures of the water entering the wetland during the
fall pumping event and the normal summertime discharge allows for an evaluation of the fate of the water
that flooded the wetland in the fall. Evidence suggests that some of the fall-flooding water (from 2011)
was still making its way out of the wetland up to a year later (late summer, 2012), highlighting the fact
that the residence time of the peat portions of the wetland complex can be hugely different from the

residence time of the open-water portions.



1. Introduction

The accumulation of methylmercury (MeHg) in edible fish tissue has led to fish consumption advisories
for thousands of lakes in Minnesota and across the US (US EPA 1997, Fitzgerald et al. 1998). The
quantity of MeHg present in an aquatic ecosystem is a result of chemical and biological processes that
produce, break down, and transport MeHg (Morel et al. 1998). The production of MeHg from the more
prevalent inorganic mercury is primarily a biologically-driven process, while both biotic and abiotic
processes can break down MeHg. Though other bacteria have shown capabilities to produce MeHg
(Kerin et al. 2006, Parks et al. 2013), sulfate reducing bacteria (SRB) have been consistently shown to be
the most efficient producers of MeHg (Compeau and Bartha 1985, Gilmour et al. 1992, Harmon et al.
2004). A wide variety of bacteria, including aerobic and SRB, have shown the capacity to breakdown, or

demethylate, MeHg (Compeau and Bartha 1984).

Due to their dynamic hydrologic and geochemical nature, wetlands have been identified as net producers
of MeHg and exporters to downstream ecosystems (St. Louis et al. 1994, Branfireun et al. 1996). Recent
research has sought to ascertain the specific factors limiting MeHg production and export from wetlands.
Experimental additions of sulfate from the atmosphere and of labile carbon to low-sulfur wetlands have
shown a relatively quick response in stimulating MeHg production (Jeremiasson et al. 2006, Coleman-
Wasik et al. 2012, Mitchell et al. 2008a). Other research has identified both micro- and local- scale
topography (Branfireun 2004, Mitchell et al. 2009, Mitchell and Branfireun 2005, Mitchell et al. 2007,
Mitchell et al. 2008b), as an important factor for defining the mercury-related nutrient loads and redox
conditions in peatlands. The study described herein was designed to investigate MeHg production and
transport in a wetland downstream from an active mining operation discharging seasonally varying

quantities of circumneutral pH water with elevated sulfate, calcium, and magnesium.

While sulfate clearly stimulates the activity of SRB in low sulfate aquatic ecosystems, leading to greater
net MeHg production, its role in systems with higher amounts of sulfate is more difficult to ascertain. In

the Florida Everglades, samples collected from sediments exposed to a range of sulfate and nutrient loads
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showed lower net MeHg production in sites with high sulfate and nutrient loads (Gilmour et al. 1998).
The buildup of sulfide in porewaters of anoxic sediments exposed to high sulfur loads is thought to
change the form of dissolved inorganic mercury in ways that alter its availability to methylating microbes

due either to thermodynamic or kinetic limitations (Benoit et al. 1999, Hsu-Kim et al. 2013).

Beyond the production of MeHg, transport from the anoxic environments where it is produced may be
largely controlled by binding to dissolved organic matter. Observations on many spatial scales have
suggested that mercury binding to dissolved organic matter is important for defining the form of both
inorganic- and methyl- mercury in environmental systems (Khwaia et al. 2006, Miller et al. 2007, Hurley
et al. 1995, Berndt and Bavin 2012). Thiol groups on organic matter have shown strong interactions with
mercury (Skyllberg et al. 2006) and evidence in the region of the present study has suggested that high
and low- molecular weight DOC may transport mercury with different capacities (Berndt and Bavin
2012), especially in the context of high ionic strength mine water. Previous studies in the region of the
present study have showed strong relationships between both inorganic- and methyl- mercury and DOC
(Berndt and Bavin 2011) but deviations from the trend were observed from some systems immediately

following large hydrologic events and possibly in presence of dissolved H,S in anoxic waters.

Despite receiving far larger loads of sulfate, tributary streams impacted by mining in the St. Louis River
watershed carry similar concentrations of MeHg as their non-sulfate impacted counterparts (Berndt and
Bavin 2012) and showed no relation to stream sulfate concentration. The present study took place in the
context of a larger study conducted by the Minnesota Department of Natural Resources (MN DNR) to
help understand the role of sulfate in the production and transport of MeHg from aquatic systems
downstream from mines in Northeastern Minnesota. The purpose of this report is to provide preliminary
interpretations of the data collected in wetlands and share them with project partners. A more holistic
assessment of the data will follow once reports from all project partners have been reviewed and

incorporated with one another.



2. Methods

Site Description

Two wetland sites having a contrast in upstream mining impacts were selected for the study. The Long
Lake Creek (LLC) wetland (N 47.42°, W 92.56°) is a boreal peatland of ~1.25 km length which receives
sulfur loads from an upstream discharge from a mining pit and typically has surface water sulfate
concentrations in excess of 200 mg/L (Berndt and Bavin 2011). The LLC periphery contains typical
fen/bog vegetation and grades into a margin dominated by cattails up to an approximately 0.14 km” open-
water pool. The West Two River (WTR) wetland (N 47.465°, W 92.77°) lies in the small subwatershed
of a tributary to the west branch of the West Two River. WTR is a large sedge peatland comprised of
organic-rich sediment and peat on the north side of a small pond with surface water sulfate concentrations
typically less than 5 mg/L. Samples were collected in May 2012 from the West Swan River (WSR), a
riparian wetland with a thin peat layer over inorganic sediment that receives moderate sulfate loads. After
the first sapling event, WTR was substituted for WSR in an attempt to find a wetland with similar
geomorphology and vegetation similar to LLC without large upstream sulfate loads or the periodic mine-

induced flooding events.

The summer of 2012 was characterized by very large hydrologic events in June that inundated both
wetlands which slowly dried out over the rest of the mostly dry summer. The water table ranged from 10-
20 cm above the peat surface in late June and early July to approximately 5-10 cm below the peat surface
later in the summer. In mid-September 2012, the LLC wetland was subject to a flooding event in
response to pumping from upstream mine water. The company reported that the flow in the Long Lake
Creek watershed increased from near zero to 4000-6000 GPM during the week following September 15,
2013 (Cliffs Natural Resources Inc., 2013). The pumping lasted through November and resulted in an
inundation of the entire wetland area with 30 — 50 cm of water. This same type of pumping occurred
during the year of 2011 and possibly in years prior as well, meaning the LLC wetland complex was

inundated by high sulfate water during the fall prior to the results reported here for summer 2012.



~ ST. LOUIS

Fig 1 Study site locations downstream from mining features on the Mesabi Iron Ragne in Northeastern
MN, USA.

Sampling methods

Samples were collected from two sampling plots at each site along a transect from the open water area
upland. Plot 2 represented the near shore (5-10 m from open water) sampling location and plot 3
represents the upland sampling location (20-25 m from open water) in each wetland. The sediment at the
bottom of the open water area (plot 1) was also characterized and results are included in a separate report
(Bailey et al. 2013a). Solid phase samples were collected from wetland peat material in May, July, and
October 2012 at Long Lake Creek and in July and October 2012 at West Two River. Triplicate peat
blocks from each sampling plot were cut in the field, wrapped in plastic wrap to preserve moisture, and
transported to a local lab for sample sectioning and preservation. Peat blocks were sliced into 0-2, 2-4,
and 4-8 cm sections and immediately placed into an oxygen-free atmosphere where individual samples
were homogenized and allocated for different analyses. Peat material for methylation and demethylation

assays was collected in the field using 3cm diameter polycarbonate tubing with silicone-sealed injection



ports drilled spaced at 1 cm intervals. Triplicate cores were collected at each sampling location in the
peatlands, capped on the bottom and top with rubber stoppers, and stored upright in coolers during

transport to the lab for injection of enriched mercury isotopes.

Fig 2 Sampling plots in wetlands along a transect form open water to upland. One set of replicate
samples was collected from each plot at wetland sites seasonally over the summer of 2012.

Filtered porewater samples were collected in triplicate from each sampling plot in May 2012 and then
approximately biweekly during July, August, and September using three replicate 10 cm Rhizon filters
installed in situ and connected to acid-washed, evacuated serum bottles with PTFE tubing and a stainless
steel hypodermic needles. In the case of a water table at or above the peat surface, porewater was
collected from the surfacial 10 cm of peat pore fluids. When the water table was below the peat surface,
porewater was collected from the first 10 cm of saturated peat material. Rhizons were typically installed
in the afternoon and retrieved the following morning, allowing time for the in-situ filtration of four bottles
totaling approximately 325 mL. One bottle was pre-loaded with ZnAc for the preservation of sulfide
while other bottles containing no preservative were opened in the lab, allocated, and preserved for redox-

sensitive analyses.

In an effort to avoid sampling of disturbed areas, an approximately 15 meter diameter area was staked out
at each plot at the beginning of the season and samples were collected from different areas within the plot
during each sampling event. Since previous research has shown that microtopographic characteristics of
peatlands can have significant influence on mercury and related geochemistry (Branfireun 2004), an effort
was made to consistently collect both solid and porewater samples from representative hollows between

hummocks that appeared similarly moist or inundated compared to other hollows in the immediate area.
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Analytical methods

Solid phase and pore water samples were analyzed using methods identical to those described in Bailey et
al. 2013a. Briefly, solid phase methyl mercury was analyzed via isotope dilution ICP-MS, solid phase
total mercury was quantified via CVAFS, AVS was analyzed with the automated methylene blue method,
and solid phase carbon and nitrogen were analyzed on an elemental analyzer. All solid phase samples
were accompanied by a measurement of water content and are reported on a dry mass basis. In peat
porewaters, methyl mercury was analyzed on an ICP-MS and total mercury via CVAFS. Rates of
mercury methylation and methyl mercury demethylation were assessed using enriched stable isotope
techniques as outlined in Hintelmann et al. (2000) and Mitchel and Gilmour (2008). Methylation
potentials are reported in units of per day, while demethylation potentials are reported in per hour. Net
methylation potentials are the ratio of these two (methylation divided by demethylation) and do not have
dimensionally consistent units. As such, net methylation potential should not be thought of as an absolute
rate, but a net capacity that is characteristic of a system’s ability to produce MeHg under the present
conditions. While the absolute value of this ratio is not objectively meaningful, qualitative comparisons

among sites and seasons are possible.

Dissolved sulfide was measured using the automated methylene blue method, ferrous iron was measured
using the phenanthroline method, anions were quantified using ion chromatography, and total nitrogen,
phosphorus, and ammonia were quantified on a Lachat Autoanalyzer. Dissolved organic carbon was
quantified using a carbon analyzer and also by ultraviolet absorbance at 254 and 440 nm for SUVA and
slope ratio (Sg) characterization (Helms et al. 2008). pH and ORP were measured in-situ using a field pH
electrode with automated temperature correction and a platinum electrode with Ag/AgCl reference

calibrated in the field against quinhydrone-pH buffer standards.
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3. Results & Discussion

MeHg production in peat

Measurements of instantaneous net methylation potential (Fig 3, ratio of methylation to demethylation)
made with stable isotopes in the top 4 cm of peat samples were not highly correlated with % MeHg in the
wetland solid phase or pore water. Since the accumulation of MeHg on the solid phase is believed to be a
good indicator of a medium- or long- term methylation potential of a site, the lack of correlation between
kmeth and % MeHg in the peat suggests that the instantaneous methylation rate does not accurately
reflect the long term accumulation in the solid phase in these systems. The transient hydrologic setting of
wetlands create varying redox conditions in surficial sediment and could explain why instantaneous rates
do not reflect longer-term rates of accumulation. Methylation potentials and MeHg in the solid phase
were closely related in lake sediments which experience much slower redox changes and are subject to

little advective water movement (Bailey et al. 2014b).

At all sites, net methylation potentials were highest in July and substantially lower in October (Fig 4a). It
is important to note that the May samples in the unimpacted wetland took place in a different system
(West Swan River) than the July and October sampling (West Two River). The methylation (and net
methylation potential) was particularly low for the LLC sites in October at a time when the pore fluids
had been inundated with cold, well oxygenated, high-sulfate water pumped from a mine. Temperatures
were warmest during July, likely leading to the most active time for biological processes which drive
MeHg production. Additionally, the water table was lowest during July at LLC and, though not apparent
from the pore water sulfate measurements, the oxidation of sulfides in surficial peat could have led to

increased availability of sulfate to drive methylation by sulfate reducing bacteria.

At LLC, a strong depth dependence was evident in both kmeth and % MeHg at the nearshore site (Fig
4c,e) with the highest % MeHg in the 0-2 cm interval. At the upland site, kmeth did not consistently

decrease with depth (Fig 4d) though % MeHg was still elevated near the surface (Fig 4f) during all
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seasons. Observations at the near-shore unimpacted wetlands (WTR/WSR) were similar, although neither

kmeth nor % MeHg showed any consistent depth dependence at the upland site (Appendix A).
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Solid phase sulfides and MeHg

Samples collected from the unimpacted West Swan River wetland in May showed % MeHg in the solid
phase substantially lower than all other samples. Visual observations during sample collection suggested
that both the near-shore and upland areas were very dissimilar to typical peat, and carbon concentrations
(<40 % for WSR) were approximately half of that observed at the other two wetlands (75-85 % at LLC,
and 85-90 % at WTR). For these reasons, it is expected that the May observations at WSR do not

represent those typical of sub-boreal peat.

Dissolved sulfide concentrations were higher in the sulfate impacted wetland pore fluids (LLC), but were
not consistently higher in the near shore site and never exceeded 100 uM (Fig 5). When the WSR
samples are excluded from the data, a trend between % MeHg in the solid phase and sulfide in the pore
waters for peat samples is similar to that observed in the sediment underlying open water sites in the
region (Fig5 a,c, Bailey et al. 2014a). At dissolved sulfide concentrations below ~20 uM in porewater,
there is an increase in % MeHg in the solid with increasing dissolved sulfide (from ~8 % to 12 %). At
higher dissolved sulfide concentrations (LLC), no trend is apparent (range from 4 % to 16 %). A similar

trend in % MeHg in pore fluids is not present (Fig 5 b,d).

Solid phase sulfides (AVS) were consistently higher in the nearshore peat at both impacted and
unimpacted wetlands (Fib 6a). At LLC, % MeHg in the solids showed an inverse relationship with AVS,
while at WTR, a positive correlation was present between % MeHg in solids and AVS (Fig 6a,c). AVS
showed no apparent relation with % MeHg in peat pore waters (Fig 6b,d). While solid-phase sulfides
increased consistently throughout the summer in sediment samples from open water locations (Bailey et
al. 2014a), no consistent seasonal trend was apparent in AVS in peat samples (Fig 7). This could be due
to the relative inhomogeneity of the peat material or due to the variable redox conditions observed in

surficial peat over the summer season.
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At the sulfate-impacted lake (Lake Manganika) presented in Bailey et al. (2014), the location of sulfate
reduction was far removed in space from the oxic-anoxic transition zone for most of the summer. The
low MeHg observed in this high sulfate system was interpreted to be a result of the inhibition of
methylation due to shifts in inorganic mercury bioavailability related to dissolved sulfide concentrations
(Bailey et al. 2014a). In the sulfate-impacted wetland site, dissolved sulfide remained below 100 uM,
because the location of the transition zone between oxic and anoxic conditions is much more transient and
closer to the location of active sulfate reduction. Sulfur is most likely cycling seasonally between sulfide
and sulfate in surficial peat material. Therefore, the inverse relationship observed in sulfate-impacted
peat between solid phase MeHg and solid phase sulfides (Fig 6 a, ¢) is not likely a result of sulfide
inhibition of methylation, but could be a result of transient changes in the redox environment providing
sulfate to drive sulfate reduction following oxidation events (Gustin et al. 2006, Jeremiason et al. 2006,
Coleman-Wasik et al. 2012). When peat dries out (a more frequent phenomena at the upland location),
AVS is oxidized, providing sulfate to stimulate the activity of sulfate reducers after anoxic conditions are

restored.

DOC and MeHg in pore fluids

MeHg in peat pore fluids appeared to be related to DOC at the upland location at both LLC and WTR (not
including WSR); however, no clear relationship was observed in the near shore sites (Fig 8). The pore
fluids at LLC were significantly influenced by the overlying water after flooding began in September, and
the pore water samples collected during pumping-induced flooding event are indicated in Fig. 8a. All
samples during this time were characterized by low DOC and MeHg and were excluded from the

regression.
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At the outlet of the LLC wetland, consistent with observations made by Berndt and Bavin (2011), a trend
was observed between MeHg and DOC that appeared similar to that of the upland porewaters (Fig 9a).
This relationship is presumably due to the capacity for DOC to bind MeHg and transport it in open
streams (Berndt and Bavin 2012) but may be affected by the type of DOC present in high-ionic strength
waters. Inorganic mercury at the outlet of the wetland was closely related to DOC and had a slope
considerably steeper than that for MeHg. Inorganic mercury at the inlet of the wetland showed

considerable variability but was unrelated to DOC (Fig 9b).
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Fig 9 (a) MeHg and (b) Hg-inorg at the inlets and outlets of LLC wetland. Samples during
September/October pumping at LLC are excluded from the trend analysis.
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Mitchell et al. (2009) suggested that labile DOC transported from upland mineral soils drives MeHg
production at the upland-peatland interface, but observed no significant correlation between MeHg and
DOC. The upland sampling location in this study was not immediately adjacent to the upland-peatland
interface and, contrary to the dilution of high DOC waters observed by Mitchell et al. (2009), typically
had higher DOC than the nearshore location. The similarity between the MeHg-DOC trends observed in
upland porewater and wetland outlets (Fig 9) suggests that MeHg transport via DOC is an important
mechanism for mobilizing and moving MeHg from the wetland’s upland margins. Active methylation
and demethylation processes in the typically saturated and reduced pore fluids of the near shore peat may
be more important to defining porewater concentrations than DOC-dominated transport and therefore

mute the relationship between MeHg and DOC.

Seasonal trends in Hg & geochemistry of peat pore fluids

A large increase (4-8 times) in both dissolved total- and dissolved methyl- mercury concentrations in peat
pore fluids was observed at LLC, the sulfate-impacted wetland, between late May and early July after
which a relatively steady decrease was observed for the remainder of the summer. Peak total- and methyl-
mercury concentrations occurred at both sites in early July and were both higher at the upland sampling
location. This seasonal distribution of total- and methyl- mercury in the peat pore fluids appeared related
to the major hydrologic event in late June 2012. DOC in pore fluids also increased during late May
through early July from 20-40 mg/L to 50-100 mg/L. The increase in porewater DOC was less
exaggerated than the increase in MeHg, but the observed peaks in DOC occurred at the same sampling

times as peaks in total- and methyl- mercury at each wetland plot.

Porewater concentrations of mercury-related redox-active constituents also changed over the course of the
summer. Both sites contained some evidence of the prior year’s sulfate loading during the first sampling
in May as porewater sulfate concentrations in surficial (0-10 cm) peat were in excess of 130 mg/L. By

late June, porewater sulfate had fallen to <20 mg/L suggesting that sulfate was either flushed out of the

20



surficial peat during the deluge or reduced to sulfide. AVS concentrations in the 0-2 and 2-4 cm depth
interval of the upland peat were significantly elevated in May compared to July and October (Fig 7),
suggesting reduction of sulfate from the prior year’s inundation was occurring in surficial peat during the
winter and spring. Iron concentrations at both the nearshore and upland plots rose quickly on the receding
limb of the hydrograph, peaked in mid-late July, and then fell to less than 30 umol/L by mid-August.
Sulfide remained very low compared to sulfate-impacted lake sediments (Bailey et al. 2014), rising to a
maximum of 60 umol/L and 35 umol/L in the upland and nearshore sites, respectively, in early August.
pH of the pore fluids ranged from between 6.4 and 7.1 until the October inundation when it rose to over

7.5 to match that of the stream water.

Though porewater total mercury concentrations were very similar between the upland and near shore sites
from late July through August, MeHg concentrations rose in porewater of the nearshore site but continued
to fall in porewater of the upland site. DOC remained constant or even decreased slightly during this
time. Sulfate concentration in surficial peat was between 3 and 10 mg/L, and a rise in sulfide suggests
that active sulfate reduction could have been occurring and may explain the slight rise in MeHg at the

nearshore site where the water table remained near the peat surface during August.
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Fig 10 Pore water concentrations at upland (LLC3) and nearshore (LLC2) wetland sampling locations
during summer 2012. (a) dissolved total mercury, (b) dissolved methylmercury, (c) dissolved organic
carbon, (d) % MeHg-PW (MeHg / THg) (e) dissolved sulfide, (f) dissolved iron, (g) sulfate, (h) SUVA.

At WTR, the unimpacted wetland which had similar total mercury concentrations on the solid phase,

porewater concentrations were not collected in May or June. However, the observed range of porewater
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total- and methyl- mercury was remarkably similar to that of LLC, despite having 1-2 orders of
magnitude less sulfur in the solid phase (Fig 11). DOC and total mercury in porewater at the upland site
remained high (>60 mg/L, >4 ng/L, respectively) through August which was similar to observations at
LLC prior to the fall flooding. MeHg at both WTR plots fell to below 2 ng/L in late July and remained

mostly below 1.5 ng/L for the remainder of the fall.
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Fig 11 Pore water concentrations at upland (WTR3) and nearshore (WTR2) wetland sampling locations
during summer 2012. (a) dissolved total mercury, (b) dissolved methylmercury, (c) dissolved organic
carbon, (d) sulfate, (e) dissolved sulfide, (f) dissolved iron

pH and dissolved sulfide were significantly lower in porewaters of WTR relative to LLC, while dissolved

iron concentration were similar. The ion activity product for iron sulfide in porewaters at WTR averaged
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-4.9 and -6.4 for the nearshore and upland plots, respectively, while at LLC (-2.5 and -2.9 for nearshore
and upland, respectively) it was much closer to the solubility of amorphous iron sulfide (-2.7 to -3.0,
Stumm and Morgan, 1996). This suggests that porewater sulfide concentrations at LLC were controlled

by iron, but that iron was not limiting the solubility of sulfide at the WTR wetland.

The coincidence of the regional hydrograph and peat porewater DOC and total- and methyl- mercury (Fig
10) and the relationship between porewater DOC and MeHg (Fig 8) suggests that DOC-facilitated

transport plays a major role in defining the amount of mercury in peat pore fluids at these wetlands.
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Net export from Long Lake Creek
Observations from the inlets and outlets of the LLC wetland clearly showed that DOC and MeHg were

added to the stream as it passed through the wetland complex (Fig 12b,f). Conversely, Mg and SO4 were
lower in the outlet than the inlet (Fig 12¢,e). Since porewater was elevated in DOC and MeHg and
depleted in SO4 (Mg was not measured), the diffuse input of water lower in Mg and SO4 from the
wetland to the stream over the course of the summer is a likely explanation for the sustained differences
between inlet and outlet stream chemistry. The inlet and outlet concentrations measured in 2012 are

consistent with those observed by Berndt and Bavin (2011) at LLC during the summer of 2010.

During the pumping event beginning in mid-September, sulfate concentrations in pore fluids (Fig 10g)
rose dramatically and DOC and MeHg in pore fluids dropped considerably (Fig 10c,d). This suggests a
reversal of the hydrologic gradient from the overlying water to the pore fluids and, consequently, a

relatively lower proportion of outlet flow from diffuse wetland contributions.
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If a bulk of the water entering the wetland between the inlet and outlet sampling locations is a result of
rainwater inputs low in sulfate and magnesium that pick up wetland-derived DOC similar in concentration
to that measured in pore fluids, a simple two component dilution model can be used to explain the
differences between upstream and downstream concentrations. Consistent with expectation of flow fed
by shallow groundwater driven by precipitation, the estimated fraction of water contributed to the stream
from the wetland (high DOC, low Mg water) was relatively high (50-70 %) in June and July following

major hydrologic events, but only 30-40 % during August prior to the flooding due pumped mine water in
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September. This dilution is consistent with that estimated by Berndt and Bavin (2011) based on observed

sulfate decreases and shifts in sulfate stable isotopes.

If diffuse inputs have concentrations similar to that of the wetland pore fluids and little in-stream reaction
is assumed, the simple two component mixing model suggests that 85 — 97 % of DOC and 88 — 99 % of
MeHg exiting the wetland was transported to the stream via diffuse flow other than the upstream inputs.
Although in-stream reactions may influence DOC and MeHg between the wetland inlet and outlet —
especially later in summer under more stagnant conditions with longer residence times — the data clearly
point to the wetland as a major source of both MeHg and DOC to the stream, particularly following the

major late June hydrologic event.

Fate of flood water at Long Lake Creek

While the simple two component mixing model is useful for considering how water carrying MeHg and
DOC may enter the open-water portion of the stream from the wetland, it cannot, by itself, help to
elucidate the fate of the high sulfate/magnesium/chloride water that flooded the wetland the previous fall.
Additionally, it does not explain the slowly increasing outlet chloride concentrations over July and
August, nor the significant shift in 8**Ss04 and 8'%0g04 observed in stream water between the wetland inlet
and outlet (Kelley and Berndt, 2013). A slow rinsing out of high chloride water originating from the
pumping-associated flooding in fall 2011 provides a plausible explanation for the increasing chloride
concentrations at the wetland outlet. Though inlet magnesium shifted only marginally during the fall
pumping, sulfate concentrations doubled and chloride concentrations increased by an order of magnitude.
This stark difference in geochemistry allows for the introduction of a third component to the mixing
model incorporating the fall pumping and focused on the origin of water rather than the most recent flow

path to the stream outlet (Table 1).
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Table 1 Components of water exiting the wetland by upstream origin.

Magnesium  Sulfate  Chloride

Component mgl]  [mgl] [mgL]
Drain (inlet-no flood) 176 280 2.6
Flood (inlet-during flood) 150 530 39.5
Runoff (rainwater inputs) 0 0 0

This three component mixing model (Table 1, Fig 13) attributes a similar or even greater fraction of the
outlet flow to diffuse inputs during June and July (55-80 %) and August (45-55 %) than the two
component model since some of the diffuse input has high magnesium water leftover from the previous
year’s fall pumping flood. It is somewhat surprising that the water from the previous year’s fall pumping
flood remained in the wetland complex after the extremely large hydrologic event of June 2012, but the
slow increase in chloride and the distinct shift in §**SO, provide compelling evidence. The 5**SOy,
predicted by the 3 component mixing model is consistent with observations at the inlet and outlet reported
by Kelly and Berndt (2013) and a net reduction of approximately 20 % of the sulfate during transport

through the wetland.
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Fig 13 Predicted origin of water exiting the LLC wetland during summer 2012. Components are defined
in Table 1.

The implications of the evidence for pumped flood waters from the previous fall continuing to make their
way out of the wetland up to a year later have not been fully incorporated into interpretations at LLC.
While it is not clear whether this framework will prove useful for quantifying the transport and

transformation of sulfate and mercury within the wetland, it does suggest that the residence time of the
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entire wetland complex needs to be considered separately from the residence time of the open channel

portion of the wetland.

4. Conclusions

MeHg concentrations in peatland solid phase and pore fluids at the unimpacted WTR wetland were
similar to those observed in the heavily sulfate-impacted LLC wetland. Sulfur concentrations in peat
were positively correlated with % MeHg in the solid phase at the unimpacted site, but negatively
correlated at the sulfate-impacted site. The wetting and drying of peat, especially at the upland site,
appeared to play a role in cycling sulfur between AVS and sulfate and may have affected MeHg
concentrations even in the sulfate-impacted wetland. The seasonal trends in porewater MeHg appeared to
be closely related to the major early-summer hydrologic event and were similar to those observed at the
outlet of the sulfate-impacted LLC wetland. Strong correlations between MeHg and DOC were observed
in the upland wetland pore fluids and the wetland stream outlet. However, the nearshore site showed little
correlation between DOC and MeHg. This suggests that DOC-facilitated transport is important at the
upland margin of the wetlands, but that the balance between methylation and demethylation may be

important in defining porewater MeHg in the near-shore pore fluids.

Despite an unprecedented precipitation events in the region during early summer 2012, some of the high-
sulfate water pumped into LLC wetland in Fall 2011 appeared to remain in the wetland complex through
the following summer. Although the sulfate added directly to the peatland at LLC during the Fall 2011
inundation was reduced to sulfide or flushed out of the system by early summer, MeHg concentrations in
the solid phase and pore fluids was in the range of that observed in a nearby, geomorphically similar
peatland. A vast majority of the MeHg and DOC exiting the wetland complex appeared to originate

within the complex and be released primary in the 2-3 weeks following the very large hydrologic event.
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West Swan River - Plot 2 (nearshore) Sediment Porewater (1 of 1)

SUMMARY STATISTICS

5/15/2012 Average
Parameter Units A B C 5/15/2012
pH (]
Temp [°c]
LDO [mg/L]
Conductivity [mS/cm]
ORP [mV]
Water Table* [ft]
Analytes
Sulfate [mg/L]
Nitrate [mg/L]
Phosphate [mg/L]
Chloride [mg/L]
Ferrous Iron [mM]
Sulfide [mmol] 5.5 4.7 5.8 5.3
Ammonium [mg/L] 0.5 3.2 4.8
DIC [mg/L] 59.7 219.4 117.1 132.1
DOC [mg/L] 36.2 31.0 47.0 38.0
SUVA [Lm™*mg™] 9.3 22.7 12.3 14.8
Mercury Analysis
MeHg [ng/L] 0.26 0.38 0.30 0.31
THg [ng/L] 1.91 2.79 2.58 2.43
% MeHg [ 13.65 13.54 11.76 12.99

54



West Swan River - Plot 3 (upland) Sediment Porewater (1 of 1)

5/15/2012 Average
Parameter Units A B C 5/15/2012
pH (]
Temp [°c]
LDO [mg/L]
Conductivity [mS/cm]
ORP [mV]
Water Table* [ft]
Analytes
Sulfate [mg/L]
Nitrate [mg/L]
Phosphate [mg/L]
Chloride [mg/L]
Ferrous Iron [mM]
Sulfide [mmol] 8.0 6.9 7.6 7.5
Ammonium [mg/L] 0.1 0.1 0.2
DIC [mg/L] 23.9 11.6 31.3 22.3
DOC [mg/L] 20.6 15.2 17.6 17.8
SUVA Lm™mg?]| 13.1 10.3 9.3 10.9
Mercury Analysis
MeHg [ng/L] 0.29 0.04 0.01 0.11
THg [ng/L] 2.94 2.31 1.55 2.26
% MeHg [ 9.92 1.81 0.65 4.13

55





