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Overall Project Outcome and Results 
Forest disturbance (arising from harvesting, fire, land conversion, etc.) has a fundamental impact on the 
health and resilience of multiple forest resources including water quality, wildlife habitat, and wood 
resources, among others. Recently the United States Geological Survey made a revolutionary decision by 
allowing open access to a historic archive of Landsat satellite data dating back to 1972, providing a new 
opportunity to assess historic forest disturbance (type, timing, and patterns). The objective of this 
project was to utilize the historical satellite images to characterize >40 years of Minnesota forest trends 
and disturbance patterns, and provide spatial mapping resources for a variety of local forest 
management and research applications. After the necessary processing to compile the Landsat imagery 
in a way that would allow the data to be comparable through time, we created models to produce 
annual (1973-2015) state-wide maps of canopy cover. These maps allow for the characterization of 
forest resources at a given point in time, as well as the monitoring of forest change and recovery trends, 
providing a valuable and versatile dataset for a variety of Minnesota users. For the second part of this 
project, we focused on the Laurentian Mixed Forest Province, which contains much of the public and 
forested lands of Minnesota, where we utilized additional Landsat data to map the most recent abrupt 
disturbance events over time. We further enhanced the disturbance map by classifying the disturbance 
agent (harvest, land conversion, fire, wind, flooding), as well as providing information about the year, 
duration, and magnitude of each event. Currently we are working with several collaborators to input our 
mapping products to address a variety of forest management, wildlife habitat, and water quality 
assessment applications.  
 
Project Results Use and Dissemination 
Our initial publication from this project, entitled “Extracting the full value of the Landsat archive: Inter-
sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015)” was published in 
Remote Sensing and Environment in March 2018, and is already providing a valuable resource for fellow 
researchers through our approach for incorporating rarely integrated early Landsat MSS imagery to time 
series analyses for the creation of >40 years of annual forest attribute mapping. While only recently 
published, the paper has already received 4 citations in peer reviewed publications and boasts 423 reads 
on research focused social media platform. We were invited to present this work through a webinar for 
the USDA Forest Service’s Forest Inventory and Analyses National Research Techniques Band (recording 



available at: https://usfs.adobeconnect.com/prjhzov1f5fi/ ), and continue to utilize the valuable state-
wide data set presented in this publication for our disturbance mapping efforts and various forest, 
wildlife, and water resources applications.  

We have worked with, and continue to work with, several collaborators to provide our canopy cover and 
disturbance mapping products for a variety of forest management, wildlife habitat, and water quality 
assessment applications. In addition to providing mapping resources to UMN moose biologists to assess 
habitat use and movement, we are also currently working with wildlife researchers from UMN-Duluth to 
incorporate our canopy cover and disturbance mapping products in a project assessing the impacts of 
harvest intensities and the quantity and spatial arrangement of retained tree canopy on avian and small 
mammal communities across a chrono-sequence of harvest ages. We have also provided initial harvest 
maps to contractors working with the MN PCA, to incorporate into a watershed planning tool for 
assessing forestry best management practices and impacts on water quality. 
 
We have presented our work to a variety of research groups, local managers, and state and federal 
agencies throughout the project time period, and we continue to disseminate our results and mapping 
products to a variety of audiences to ensure that our products can provide vital additions to existing 
projects and management planning needs. We also continue to explore additional applications of the 
data and are working to compile manuscripts related to utilizing the disturbance products to assess 
various forest ecology and resource management questions and issues. 

https://usfs.adobeconnect.com/prjhzov1f5fi/
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I.  PROJECT TITLE:  
A foundational dataset characterizing historic forest disturbance patterns 
 
II. PROJECT STATEMENT: 

Forest disturbance dynamics (arising from harvesting, fire, land conversion, etc.) have a fundamental control on 
the health and resilience of multiple forest resources including water quality, wildlife habitat, and wood 
resources, among others. Disturbance impacts on forest resources can persist across a landscape for decades 
and ultimately impact the sustainability of resources, positively or negatively. Understanding disturbance 
dynamics and associated impacts is readily recognized as being critically important to developing forest 
management responses that improve and sustain forest resources. Despite this recognition, until recently it has 
been nearly impossible to quantify and interpret disturbance configurations (type, timing, and pattern) that 
have persistent impacts on forest resources. Recently the United States Geological Survey made a revolutionary 
decision by allowing open access to a 40-year historic archive of Landsat satellite data, providing a new 
opportunity to assess historic forest disturbance dynamics. These satellite-derived disturbance observations can 
be used to (i) determine the fundamental drivers of past disturbance and (ii) assess the impacts of disturbances 
on current forest resources.  

The overarching objective of this project is to leverage historical satellite images in the archive to develop a 
foundational dataset that characterizes trends and patterns in historic forest disturbances Across Minnesota’s 
arrowhead region. As a secondary objective we will demonstrate the utility of foundational disturbance dataset 
to sustainable resource management in two key areas: wildlife habitat and wood resource management.    

We will develop the foundational dataset characterizing trends and patterns in forest disturbance by processing 
and analyzing Landsat satellite images (1974-present) from the aforementioned archive. This step will involve: (i) 
acquiring cloud free imagery across each growing season from 1974-present, (ii) preprocessing the imagery to 
ensure intra-seasonal and inter-annual comparability of the images, and (iii) running semi-automated image 
classification procedures that characterize disturbance type (e.g., fire, insect outbreak, blow-down, etc.) and 
duration of impacts and ecosystem recovery (e.g., how long did the disturbance last and how long did it take the 
ecosystem to return to its pre-disturbance state). The utility of this dataset to resource management will be 
demonstrated in specific applied examples. For the case of wildlife habitat we will integrate disturbance data 
with historic demographic data characterizing moose populations across Minnesota’s Arrowhead region to 
understand how disturbance can enhance or degrade moose habitat quality and ultimately population 
sustainability. For the wood resource example we will link information from the disturbance dataset with 
repeated forest inventory data (e.g., data from the US forest service FIA (Forest Inventory and Analysis) 
program) to understand the impacts of different disturbance types on wood resources across Minnesota’s 
Arrowhead region. In this example we will specifically develop an understanding how disturbances impact the 
amount (e.g., biomass, volume, etc.) and quality (e.g., species composition, age, etc.) of the forest resource 
landscape, which ultimately impact long term resource sustainability.  

The foundational dataset will be a powerful tool for identifying threshold disturbance patterns that positively or 
negatively impact multiple forest resources across Minnesota. This foundational dataset will allow end users to 
evaluate how the type, timing, duration, and configuration of disturbances influence forest resources over the 
last forty years, and will ultimately help in the identification of management responses that improve and sustain 
forest resources into the future. 
 
III. OVERALL PROJECT STATUS UPDATES:  
 
Project Status as of February 2016:  

The project is moving forward successfully. All appropriate Landsat growing season images have been selected, 
requested, and downloaded for the time period of 1972-2015 and much of the pre-processing completed. 
Methods were developed and implemented for the initial pre-processing steps, and the next steps have been 
outlined and in some cases tested with small subsets of data (including the next immediate step of calibrating 
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the disturbance trend algorithm, LandTrendr). Pre-processing work is well underway for all scenes including the 
unpacking of data and initial quality assessments of images, geo-referencing of images where needed, 
calculation of spectral indices, calibration between Landsat sensors (MSS, TM, and OLI), and compositing of 
images into annual composites of growing season spectral indices used for later disturbance/recovery 
algorithms and classification. Initial contact has been made with potential Minnesota wildlife research 
collaborators (including Jerry Niemi’s lab group and MN DNR Wildlife Habitat team), to solicit input on their 
specific needs for disturbance products and initiate collaborative project planning.  
 
Project Status as of September 2016:    
 
After substantial work in the pre-processing of Landsat images to produce corrected, calibrated, and comparable 
annual stacks of spectral information, we now have usable annual growing season composites for the entire 
Arrowhead region from 1972-2015. We have continued forward with these image stacks, completing the first 
step of the change detection algorithm, LandTrendr, which segments the spectral trends through time and 
assigns smoothed values important in identifying disturbance and recovery patches and providing information 
on the timing, duration, and magnitude of change. To provide initial insight into historic forest cover and change 
and to provide information about an important wildlife habitat component through time, we are currently 
creating models for canopy cover which will be mapped across the 44 year image stack. Forest Inventory and 
Analysis data and plot locations along with two years of NAIP imagery has been obtained for the study area in 
preparation for building training and validation data sets of known disturbance agents vital to the future steps of 
the project where we will classify and map disturbance agent and characteristics of recovery trends.  

Project Status as of February 2017:  
 
As initial products important to a variety of applications including wildlife habitat modeling, forest monitoring, 
and to aid in the next steps of identifying and interpreting forest change and recovery, we have finish the 
creation of forest mask and continuous canopy cover models for the Arrowhead region. This involved NAIP 
photo interpretation of canopy cover at >1000 FIA plot locations for consistent estimates of cover across all land 
cover types, and exploration into several statistical modeling approaches in order to determine the most 
appropriate method for minimizing canopy cover prediction error. In addition to the model for continuous 
canopy cover, we also developed a forest mask model which can differentiate forest from all other land cover 
types, a vital tool for next steps of the project, as well as for monitoring trends of forest area change over the 
last 4 decades. This forest mask and canopy cover models are in the final stage of creating predictive maps using 
the 44 years of Landsat imagery, which will result in stacks of annual forest masks and continuous canopy cover 
maps for the entire Arrowhead Region across all land cover types from 1972-2015. We plan on submitting the 
manuscript pertaining to this work for peer review in the coming months. We are also actively planning for 
immediate incorporation of these products in a variety of applications once complete.  
 
Project Status as of September 2017:    
 
Following completion of the annual canopy cover and forest mask maps (1973-2015) described above, we have 
prepared the associated manuscript and submitted to Remote Sensing of Environment. The manuscript also 
includes many of the preprocessing steps for our larger change detections work, including the compiling of the 
Landsat stacks into annual harmonized composites of the spectral indices utilizing a new R package called 
LandsatLinkr which we beta-tested in this project. Initial reviews of the manuscript were favorable and we are 
currently addressing revisions. Successful publication of this work will serve as an important introduction of 
methods for our subsequent change detection manuscripts as well as providing insight into Minnesota forest 
trends across the last four decades. In addition to our canopy cover mapping manuscript work, we have 
completed initial runs of LandTrendr change detection although we continue to tweak parameters to best match 
the disturbance patterns in the Arrowhead Regions and are working to compile the agent classification training 
data base. Preliminary exploration into post-processing of the change products for the mapping of true change 
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polygons of fast and slow disturbances and classifications of agent of change are currently underway. We have 
also conducted field visits to various locations around the Arrowhead region which included meetings with 
foresters within the Chippewa National Forest, Superior National Forest, and the UMN Cloquet Forestry Center 
to discuss local disturbance patterns, future applications of mapping products, and the needs of the on-the-
ground forest managers. 
 
Project Status as of February 2018: 
 
Our manuscript presenting our initial methods for producing harmonized spectral indices for the Landsat Time 
Series, and the application of the data for the creation of annual canopy cover and forest mask maps from 1973-
2015 for the state of Minnesota, has been accepted for publication within Remote Sensing of Environment. On 
the disturbance mapping front, we continue to do quality assessments of the initial change detection products 
to finalize the parameters utilized in the identification of disturbance patches across the Arrowhead Region. 
Change mapping is a multi-iterative process, where we model and map change patches and create classification 
of agents using training data, assess the maps, and evaluate where additional training data, predictive metrics, 
and/or calibration of parameters may be needed for the next iteration of the process. With initial models and 
maps complete, we are currently working to improve the quality of the data sets to work towards finalized 
disturbance products and validation assessments. We were able to present our initial findings and our overall 
project methods and products at multiple meetings within the twin cities and Cloquet in January 2018. These 
meetings included presenting an invited webinar to members of MN DNR, forest service, and UMN affiliates; 
participating in, and presenting at the 2018 SFEC Forestry and Wildlife Research Review meeting at the Cloquet 
Forestry Center; and multiple smaller meetings with various forest service, MN DNR, and UMN researchers to 
discuss potential collaborations and applications of our data products. All of these meetings displayed a wide 
breadth of interest from a variety of research and management agencies in the use of our forest attribute and 
change detection products for a range of forest, wildlife, water quality, and monitoring applications.  
 
Overall Project Outcomes and Results: 

Forest disturbance (arising from harvesting, fire, land conversion, etc.) has a fundamental impact on the health 
and resilience of multiple forest resources including water quality, wildlife habitat, and wood resources, among 
others. Recently the United States Geological Survey made a revolutionary decision by allowing open access to a 
historic archive of Landsat satellite data dating back to 1972, providing a new opportunity to assess historic 
forest disturbance (type, timing, and patterns). The objective of this project was to utilize the historical satellite 
images to characterize >40 years of Minnesota forest trends and disturbance patterns, and provide spatial 
mapping resources for a variety of local forest management and research applications. After the necessary 
processing to compile the Landsat imagery in a way that would allow the data to be comparable through time, 
we created models to produce annual (1973-2015) state-wide maps of canopy cover. These maps allow for the 
characterization of forest resources at a given point in time, as well as the monitoring of forest change and 
recovery trends, providing a valuable and versatile dataset for a variety of Minnesota users. For the second part 
of this project, we focused on the Laurentian Mixed Forest Province, which contains much of the public and 
forested lands of Minnesota, where we utilized additional Landsat data to map the most recent abrupt 
disturbance events over time. We further enhanced the disturbance map by classifying the disturbance agent 
(harvest, land conversion, fire, wind, flooding), as well as providing information about the year, duration, and 
magnitude of each event. Currently we are working with several collaborators to input our mapping products to 
address a variety of forest management, wildlife habitat, and water quality assessment applications.  

Project Results Use and Dissemination:  

Our initial publication from this project, entitled “Extracting the full value of the Landsat archive: Inter-sensor 
harmonization for the mapping of Minnesota forest canopy cover (1973–2015)” was published in Remote 
Sensing and Environment in March 2018, and is already providing a valuable resource for fellow researchers 
through our approach for incorporating rarely integrated early Landsat MSS imagery to time series analyses for 
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the creation of >40 years of annual forest attribute mapping. While only recently published, the paper has 
already received 4 citations in peer reviewed publications and boasts 423 reads on research focused social 
media platform. We were invited to present this work through a webinar for the USDA Forest Service’s Forest 
Inventory and Analyses National Research Techniques Band (recording available at: 
https://usfs.adobeconnect.com/prjhzov1f5fi/ ), and continue to utilize the valuable state-wide data set 
presented in this publication for our disturbance mapping efforts and various forest, wildlife, and water 
resources applications.  
 
We have worked with, and continue to work with, several collaborators to provide our canopy cover and 
disturbance mapping products for a variety of forest management, wildlife habitat, and water quality 
assessment applications. In addition to providing mapping resources to UMN moose biologists to assess habitat 
use and movement, we are also currently working with wildlife researchers from UMN-Duluth to incorporate 
our canopy cover and disturbance mapping products in a project assessing the impacts of harvest intensities and 
the quantity and spatial arrangement of retained tree canopy on avian and small mammal communities across a 
chrono-sequence of harvest ages. We have also provided initial harvest maps to contractors working with the 
MN PCA, to incorporate into a watershed planning tool for assessing forestry best management practices and 
impacts on water quality. 
 
We have presented our work to a variety of research groups, local managers, and state and federal agencies 
throughout the project time period, and we continue to disseminate our results and mapping products to a 
variety of audiences to ensure that our products can provide vital additions to existing projects and 
management planning needs. We also continue to explore additional applications of the data and are working to 
compile manuscripts related to utilizing the disturbance products to assess various forest ecology and resource 
management questions and issues.  
 
IV. PROJECT ACTIVITIES AND OUTCOMES:   
 
ACTIVITY 1:  Process Landsat satellite imagery into a useable format 
Description:  
Although Landsat satellite data are now available free of charge from the USGS archive, processing is required to 
convert them into a useable format. We will acquire and process archived Landsat imagery that encompasses 
the Arrowhead region of Minnesota (~4.5 million acres). Specifically, this imagery will be obtained on a bi-
monthly basis during all growing seasons over the last 40 years (1974-Present). The raw imagery will be 
processed to correct for atmospheric and geometric related errors to ensure image comparability. In total we 
will acquire and process approximately 500 images across the Arrowhead region. The total number of images 
acquired and processed will depend upon availability of suitable, cloud-free imagery. Our original plan was to 
process and analyze imagery for the entire forested region of Minnesota. However, due to the reduced level of 
funding recommended for this project we have decided to constrain the total area considered in this project. 
The reduction in acres processed is not directly proportional to the reduction in funding due to economies of 
scale. Specifically, the cost per acre of processing imagery decreases with an increase in total area. This is due to 
the fact that a baseline processing capacity (e.g., creating processing protocols and computer programming of 
processing algorithms) needs to be built regardless of the total area processed, and the cost associated with 
developing this baseline capacity is the same regardless of the total area of imagery processed.     
 

Summary Budget Information for Activity 1: ENRTF Budget: $ 43,817 
 Amount Spent: $ 43,817 
 Balance: $ 0 

 
Outcome Completion Date 
1. Complete Acquisition and Local Storage of Landsat Imagery October 2015 
2. Complete Pre-processing of Landsat Imagery January 2016 

https://usfs.adobeconnect.com/prjhzov1f5fi/
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Project Status as of February 2016:  
 
After determining the appropriate time windows for growing season images using averaged NDVI curves 
(indicative of vegetation productivity) for each Landsat scene and assessing the quality of images for cloud cover 
and other initial sensor/data issues, we compiled lists of the large number of images within the required Landsat 
scenes needed to cover our study area and submitted the requested image lists to USGS. All images were 
downloaded, organized, and processed through an initial unpacking and quality assessment step. Although we 
attempted to choose images with low amounts of cloud cover, conditions in the Arrowhead region required us 
to include some images with clouds which had to be masked from the images during the atmospheric correction 
phase of pre-processing. Varying amounts of atmospheric correction were required depending on the Landsat 
sensor and the product available from USGS (data from more recent sensors are sometimes available as surface 
reflectance products processed by USGS, although this is not the case for earlier sensors which require 
additional pre-processing steps). Images from earlier sensors (the MSS series) also required additional geo-
referencing efforts to ensure all images were properly aligned and resampled to match the spatial resolution of 
the TM and OLI images (30m x 30m pixels). We then calculated tasseled cap (brightness, greenness, and 
wetness) spectral indices for all images. As the Landsat sensors have some variation in the spectral bands and 
sensitivity through time, we calibrated the indices between sensors so that they are comparable through time 
and space, an important step in the pre-processing. Our final step will now be to create annual composites of 
the study area by averaging the inter-annual growing season indices for all scenes (thus producing annual stacks 
for the area representing the spectral trends though time to use in our next step of identifying 
disturbance/recovery trends using change algorithms, such as LandTrendr).  
 
There has been a slight delay in the final composite step due to some additional work needed to complete the 
annual coverage of all areas. During initial processing, we discovered gaps in our yearly coverage of some areas 
during the early Landsat MSS sensors years (1972-1984). Adding these additional 12 years of historical 
information for our disturbance/recovery mapping efforts is extremely valuable for multiple applications. The 
problem is that some of the images we requested were only available from USGS in a less georeferenced form 
(L1G products), which makes them more difficult to directly include in the mostly automated steps appropriate 
for the other MSS images (L1T products). We have developed a solution for this issue using a semi-automated 
approach in which we first go through an initial geo-referencing step using manually detected tie points with a 
reference image in ArcGIS which does an initial correction on the image. The image is then ready to be entered 
back into the automated approach for final geo-referencing, tasseled cap calculations, calibrations, and 
ultimately, annual composites. The addition of this manual step has increased the expected processing time, but 
we expect to be finished with all pre-processing by the end of March. 
 
Project Status as of September 2016:    
 
After completing the pre-processing steps and exploring several available methods for compositing the image 
stacks into annual growing season spectral values, we created annual tasseled cap maps using the median of the 
input images per year. This compositing method further minimized undesirable noise and the appearance of 
seamlines between scenes within the annual maps. Activity 1 is now complete for the Arrowhead region for the 
years of 1972-2015.  
 
Project Status as of February 2017: 
 
Activity 1 is complete. 
 
Project Status as of September 2017:    
 
Activity 1 is complete. 
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Project Status as of February 2018: 
 
Activity 1 is complete. 
 
Final Report Summary:   
 
The acquisition, pre-processing of all Landsat imagery, and ultimately the creation of harmonized annual 
composites of spectral indices, were the critical first products of our project which were integrated into all forest 
attribute modeling, disturbance mapping efforts, and assessments of forest trends. Our methodology for the 
harmonization of imagery from the different Landsat sensors, and the creation of our fitted annual composites, 
are published in our manuscript entitled “Extracting the full value of the Landsat archive: Inter-sensor 
harmonization for the mapping of Minnesota forest canopy cover (1973–2015)” (Vogeler et al. 2018). Our 
current goal is to secure future support to update these products beyond 2015 and develop semi-automated 
methods to facilitate annual additions to all mapping products in the future, leveraging recent developments in 
Google Earth Engine, a cloud computing platform. Our project is extremely unique in our inclusion of the more 
difficult to process MSS imagery, allowing for an additional decade of forest attribute and disturbance 
information to our time series analyses. This is significant for policy and management applications as we are 
now able to conduct more in-depth analyses of historic forest cover and its implications for future decision 
making. Any semi-automated methods developed through Google Earth Engine will be unable to replicate the 
inclusion of MSS data (which is still unavailable through that platform), but we hope to be able to add future 
years to our valuable dataset to ensure up to date forest maps so that the immense value of the products from 
this project can continue to stay current and relevant.  
 
ACTIVITY 2:  Disturbance database development and classification 
Description:  

We will employ a Landsat time series image analysis algorithm to detect forest disturbances from 1974-present. 
The basic approach involves using change detection to identify where disturbances occurred on the landscape as 
well as their severity and duration. In addition to detecting the disturbance, we will use semi-automated 
procedures to classify the type (i.e., cause) of each disturbance identified. At a minimum, disturbance type will 
be classified into the following categories (and subcategories): Harvesting (clear-cut, partial harvest, land use 
conversion) and Natural Disturbance (Insect Outbreak, Fire, and Blow Down). The semi-automated disturbance 
classification procedure attributes disturbance type to areas where disturbance has occurred based upon spatial 
and temporal patterns in the satellite image time series. An abrupt disturbance (e.g., clear-cut or high severity 
fire), for example, would likely be characterized by a sharp decline in the time series that is also spatially 
contiguous. Conversely, a more gradual or subtle disturbance (e.g., defoliating insect or low severity fire) will 
likely be characterized by a gradual decline in in the time series that is spatially variable (i.e., not spatially 
contiguous). Forest recovery rates, which are indicative of disturbance severity, will also be readily available for 
the time-series. Following disturbance identification and classification, historical information (e.g., FIA data, 
aerial photography, forest health surveys) and field data collected specifically for this project will be used to 
validate and assess the accuracy of the disturbance products. 

 
Summary Budget Information for Activity 2: ENRTF Budget: $ 73,994 
 Amount Spent: $ 73,994 
 Balance: $ 0 

 
Outcome Completion Date 
1. Disturbance patterns from 1974-2015 Identified June 2016 
2. Disturbances classified into primary categories October 2016 
3. Database with validated disturbance patterns over time completed January 2017 
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Project Status as of February 2016:  
 
No progress has been made on this Activity at this time due to the delay in image processing described above.  
We anticipate that outcome 1 will be completed on schedule or shortly thereafter, and all other outcomes will 
occur on schedule. 
 
Project Status as of September 2016:    
 
Although the initial calibration and other pre-processing steps of the project took longer than expected, we are 
close to being back on track for other scheduled outcomes. We have completed the first steps of the change 
algorithm, LandTrendr, which fits the annual composites with trend lines summarizing the spectral trajectories 
of each 30m x 30m image pixel. The process is called “segmentation” and the outputs are new annual spectral 
indices maps with the values smoothed to fit onto these trajectory lines. These new smoothed maps help to 
further reduce annual noise and serve as the input for the next tier of LandTrendr. The next step, referred to as 
“change labeling”, uses these fitted images to: 1) identify segments of disturbance/recovery and vertices 
between different segments; 2) group patches of pixels that may have experienced the same disturbance event; 
and 3) characterizes the disturbance/recovery events by their timing, magnitude of change (i.e. high severity vs. 
low severity), and duration (i.e. abrupt vs. slow). Characteristics of the disturbance and recovery events within 
patches aid in the classification of disturbance agent (i.e. harvest vs. insect infestation). We have begun to test 
the change labeling LandTrendr algorithm on a subset of the Arrowhead region, although there is much 
calibration of parameters still needed before we are able to apply the algorithm to the whole region.  
 
In addition to serving as inputs to the change labeling portion of LandTrendr, we also incorporated the 
smoothed annual spectral images from the segmentation procedure into historical canopy cover mapping 
efforts. We estimated canopy cover at a subset of FIA plots locations using 4-band NAIP imagery, then extracted 
tasseled cap predictors from the corresponding year of segmentation images to create statistical models of 
forest cover. We are currently working on selecting the best model and preparing the other years of imagery, for 
which we will then apply the model to create maps of annual estimated canopy cover from 1972-2015. These 
historical canopy cover maps may help identify conversion of land to/from forest cover types through time, 
estimate trends of canopy cover change due to disturbance/recovery, and characterize an important habitat 
component for wildlife habitat monitoring efforts through time.  
 
Project Status as of February 2017: 
 
After creating an extensive training canopy cover dataset from NAIP imagery across all land cover types, testing 
multiple statistical modeling approaches and Landsat time series along with static predictors to find the best 
model for minimizing prediction error, we have selected our final models for delineating forest vs non-forest and 
for predicting continuous canopy cover across the entire Arrowhead region. We are currently applying these 
models to the stacks of smoothed/fitted tasseled cap outputs from LandTrendr time series stacks to create 
annual forest mask and canopy cover models across all land cover types from 1972-2015. Predictive mapping 
across large spatial areas as well as across 44 years of imagery is computer intensive and thus takes a significant 
amount of time, although these products should be complete by the end of February. Immediate applications of 
the products are already being outlined in addition to their use as valuable inputs for the identification and 
interpretation of change and recovery within our forest disturbance mapping and classifications.  
 
As we finish these forest attribute maps which will also aid in the disturbance mapping and classification, we 
continue to test the LandTrendr change algorithm across the Arrowhead region. There are multiple parameters 
within LandTrendr which must be calibrated for specific study areas as well as setting thresholds within the 
outputs for designating patches as true change. While we are behind in the timeline for Activity 2, we feel 
strongly that these additional products and calibration steps will be vital in creating quality change detection 
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products as well as providing important canopy cover information for wildlife habitat modeling, forest stand 
characterization, and monitoring trends in overall forest area across the last 44 years. Incorporating the early 
Landsat sensors into time series stacks to add an additional 12 years of forest information, such as we are doing 
here, is rarely done and thus timelines for spectral and spatial calibrations throughout the process were difficult 
to predict.  
 
We have begun to turn our attention to creating our forest disturbance agent database for training and 
validation of change agent classifications. We have developed methods for delineating harvest boundaries 
within Google Earth historic imagery, we have compiled the FIA plot data for our study region and are exploring 
attributes which may be extracted from this extensive data base, and we continue to explore new avenues for 
acquiring accurate spatial information for forest disturbance agents and recovery characteristics.  
 
Project Status as of September 2017:    
 
We have completed the annual forest mask and canopy cover maps including analyzing forest cover trends 
across the >40 year study period, and the associated manuscript has been prepared and submitted to Remote 
Sensing of Environment. Initial reviews were favorable and we are currently addressing manuscript revisions. 
We are now exploring the change detection products from initial runs of the second step of the LandTrendr 
algorithm. We have focused our efforts on the “fast” disturbance patches to begin with, which are disturbances 
that have durations of 4 years or less (i.e. harvest, fire, and wind blow). Change patch predictors have been 
extracted for these initial patches including LandTrendr derived pre- and post- disturbance spectral values, 
magnitudes of change, along with additional spatial predictors. We are working to compile the “fast” agent 
training data base and have begun to explore classification modeling using preliminary training data, although 
we continue to explore additional predictors and training data sources. We have identified preliminary versions 
of “slow” disturbance patch maps (i.e. those resulting from insects and other agents of forest decline), although 
change parameters for defining the final patches are still being calibrated for the Arrowhead region’s 
disturbance patterns and agents. We are primarily utilizing historic photos in google earth and the annual forest 
health aerial surveys for the extraction of fast and slow agent classification training data. In August, we 
conducted field visits to various forest and disturbance types in the study region as well as meeting with 
foresters from the Chippewa National Forest, Superior National Forest, and UMN Cloquet Forestry Center to 
discuss local disturbance patterns, future applications of mapping products, and the needs of the on-the-ground 
forest managers.  
 
Project Status as of February 2018: 
 
While initial change detection products and models classifying the agents of change for fast disturbances (i.e. 
harvest, fire, wind, and land conversions) have been created, we continue to work to improve the quality of 
these products through a multi-iterative approach common for Landsat time series studies. In this multi-iterative 
approach, initial change patches are identified, agent training data is collected, predictive metrics from the time 
series spectral indices as well as other ancillary data are created, classification models are selected, and 
classified change maps are produced. Within Landsat time series analysis methodologies, after such a “run” is 
finished, the products are thoroughly assessed for quality and accuracy, potential areas for improvement are 
identified, and steps are taken to either add needed training data or expand predictors to then proceed with a 
new “run” of the data and mapping process. These steps are repeated until a level of quality is achieved that 
meets projects goals, at which time finalized change maps undergo independent validation efforts which are 
presented with the mapping products and within publications so that the strengths and limitations of the data 
are well understood by all future users. We have currently undergone several of these “runs” of our classified 
change maps, and we are working towards finalizing our models and maps of fast disturbances to proceed with 
validation efforts. Coding and workflows have also been created for analyzing the trends from the classified 
change maps so that when finalized products are created, the framework is in place to conduct further trends 
analyses to include in planned publications.  
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Final Report Summary:   
 
Among the foundational mapping products created through this project were 43 years of annual forest mask 
and percent canopy cover maps for the entire state of Minnesota. The canopy cover products have been 
integrated into several application projects as well as serving as the basis for assessing forest trends in 
Minnesota across 4 decades within the publication in Remote Sensing of Environment (Vogeler et al. 2018). The 
canopy cover maps have also played an important role as model inputs for classifying the agent of change in our 
disturbance mapping efforts.  
 
We have now also completed the mapping of the most recent fast disturbances dating back to 1974 across the 
Laurentian Mixed Forest Province, classified by the agent of change, also an unprecedented temporal and spatial 
data set for Minnesota. We expanded beyond the Arrowhead region to better match the focal region of many of 
the proposed application collaborations. After exploring several mapping approaches, we decided to focus on 
fast disturbance events (durations of 4 years or less) in our change mapping methods. We believe that these 
abrupt change events include the majority of the natural and anthropogenic disturbance agents in this region, 
and are able to be identified through aerial photos and existing spatial data for the creation of training and 
validation data sets. We used a minimum mapping size of 11 pixels, as the focus of this project was on events 
that impact at least a large portion of a forest stand. This size limit also increased our confidence in our change 
detection by excluding smaller events that may have been captured in error as a product of spectral noise. Out 
of the spectral indices created in this project, tasseled cap wetness (TCW) has been identified as the most 
indicative of forest canopy structure by previous studies. Therefore, we utilized thresholds of TCW change 
representative of moderate- to high- intensity changes to identify our disturbance patches. We converted initial 
raster based change information to polygons for the next steps in map creation and disturbance agent 
classifications.  
 
Agents included in the classification represent the common moderate- to high-intensity natural and 
anthropogenic disturbance agents characteristic of the study region, including: harvest, land conversion, fire, 
wind/weather, flooding, and an “other natural” category for rare natural events not represented by the other 
classes. Training data of known disturbance events for a sample of the change polygons was opportunistically 
compiled using a combination of google earth historic imagery, the national Monitoring Trends in Burn Severity 
fire perimeter maps, online historical records of large natural disturbance events often reported by county 
which could be used in conjunction with photos for identifying change areas, and personal communications with 
local land managers for more recent large-scale natural events. Using a sample of known events as our training 
data set, we employed a random forest classification approach to predict the agent for all disturbance polygons 
across the study area. We mapped these classified agents to create a map of the most recent fast disturbances 
across the study area dating back to 1974.  
 
To validate the accuracies of the initial change/no-change maps, we created a random sample of points within 
forests across the study area with buffers of 3x3 pixels. We assessed if changes had occurred within the 
validation buffers, and whether those events were captured by our change detection methodologies. This also 
allowed us to evaluate potential limitations and/or biases in our maps to later relay to map users. Within the 
validation efforts, we utilized historical imagery within google earth and the Minnesota Historical Aerial Photos 
Online database (https://www.lib.umn.edu/apps/mhapo/), as well as any additional spatial information we had 
compiled for the disturbance agent modeling work. We choose to focus on stand replacing events that we could 
validate with some confidence and which were the major focus of our project. We therefore excluded flooding 
(which was often the result of change in moisture in overlapping forest and riparian non-forest areas and did not 
always result in stand mortality), and the “other natural” polygons (which were associated with more rare within 
stand natural events such as tent caterpillar outbreaks, which did not always result in large changes in canopy 
and which were difficult to confidently validate in older black and while historic photos). While we were able to 
identify polygons for training purposes within the flooding and “other natural” categories, we did so 

https://www.lib.umn.edu/apps/mhapo/
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opportunistically for areas with known events. Identifying these events with confidence across larger areas and 
back in time within black and white historical photos proved to be more difficult. Our validation efforts thus 
focused on a reduced map of change polygons classified as harvest, land conversion, fire, or wind/weather. 
Within the reduced map, if we were not able to confidently assign a change or no-change classification (for 
instance, historical photos were not available for a given point), we excluded this validation plot from our data.  
 
Our final maps of the most recent fast disturbances had an overall change/no-change classification accuracy of 
92%, with a TPR (sensitivity) of 0.859, and a TNR (specificity) of 0.960 for moderate- to high-intensity stand 
replacing events.  Our final random forest classification model for the agent of change also had an overall 
classification accuracy of 92% (as calculated from out-of-bag error rates), with class accuracies ranging from 78% 
to 96%, where the harvest class had the highest accuracies and fire had the lowest classification success.  
 
ACTIVITY 3:  Development of spatial descriptors and application of findings 
Description:  
Statistical descriptors of the disturbance patterns will be derived from the disturbance database. These 
statistical descriptors will be integrated into models assessing disturbance impacts on the current status of two 
critical resources: wildlife habitat (specifically moose) and wood resources (specifically the amount, type, and 
quality). In these example applications, we will compare existing moose population demography data and forest 
inventory data with disturbance descriptors in a modeling framework. This modeling framework will provide a 
quantitative assessment of how the temporal and spatial configurations of specific disturbance types can either 
enhance or degrade the sustainability of the resources (Figure 1). Through this process we will identify 
management responses that will sustain and or improve forest resources under future disturbances. Results 
quantifying the impacts of disturbance dynamics on the health and resilience of forest resources will be 
summarized in public project reports and conveyed to forest managers through outreach activities. 
 

Summary Budget Information for Activity 3: ENRTF Budget: $ 82,189 
 Amount Spent: $ 82,189 
 Balance: $ 0 

 
Outcome Completion Date 
1. Develop statistical descriptors of disturbance patterns August 2017 
2. Model impacts of disturbance dynamics on forest resources January 2018 
3. Publish project summaries and conduct outreach activities June 2018 

 
Project Status as of February 2016:  
 
Work on this activity will commence after completion of Activity 2. 
 
Project Status as of September 2016:    
 
Work on this activity will commence after completion of Activity 2.  
 
Project Status as of February 2017: 
 
Work on this activity will commence after completion of Activity 2.  
 
Project Status as of September 2017:    
 
Work on this activity will commence after completion of Activity 2.  
 
Project Status as of February 2018: 
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Our first manuscript from this project, titled “Extracting the full value of the Landsat archive: Inter-sensor 
harmonization for the mapping of Minnesota forest canopy cover (1973-2015)”, has been accepted for 
publication within Remote Sensing of Environment. This manuscript presents many of the initial methods of our 
project for the harmonization of the Landsat time series stacks, creation of spectral indices, and the modeling 
and mapping of annual statewide canopy cover and trends through time. As we work to finalize our change 
detection products classified by agent and associated validation efforts, we are outlining additional forest trend 
analyses and associated manuscripts to publish findings of this project.  
 
In January 2018, we presented our project methods, forest attribute products, and initial forest disturbance 
trend results at several MN meetings, including an invited webinar to members of MN DNR, forest service, and 
UMN affiliates, and presenting at the 2018 SFEC Forestry and Wildlife Research Review meeting at the Cloquet 
Forestry Center. We also conducted smaller meetings with members of MN DNR, forest service, and UMN, to 
discuss potential collaborations and applications of our mapping products and project results. All of these 
meetings displayed a wide breadth of interest from a variety of research and management agencies in the use of 
our forest attribute and change detection products for a range of forest, wildlife, water quality, and monitoring 
applications. Several collaborations are also now underway for the use of these products in the assessment of 
wildlife habitat and the impacts of management and other drivers of landscape changes through time.   
 
Final Report Summary:   
 
Through our annual mapping of forest/non-forest masks and percent canopy cover, we were able to evaluate 
forest trends across the state of Minnesota dating back to 1973. These trends were presented in our Remote 
Sensing of Environment publication (Vogeler et al. 2018). Generally, we observed a significant, although slight, 
positive trend in forest area across the state throughout the time period of the study (1973-2015). It should be 
noted that this trend does not account for changes in forest types or stages of structural development, and may 
include some areas not commonly classified as forests (e.g., shrub-scrub wetlands). Trends were also evaluated 
within specific Minnesota ecological provinces, where the significant positive trend in forest area was 
maintained across all provinces. We also assessed temporal trends of forest area within five canopy cover 
classes estimated using our percent canopy cover maps. Across the 43 years of the study, all provinces 
experienced significant growth in the land area within the two highest cover classes (50-74% and 75-100%), with 
the exception of a non-significant trend for the 50-74% class within the Tallgrass Aspen Parkland. The greatest 
growth in the two highest cover classes occurred within the Laurentian Mixed Forest province. 
 
The base spectral composites utilized within all mapping products within this project, as well as the forest 
attribute and disturbance mapping products themselves, have been (or are currently being) incorporated into 
several wildlife, forest resources, and water quality assessment application projects, although we continue to 
establish additional collaborations and explore new applications for the data. Some notable examples include: 
 

• Early in the project, we utilized our fitted Landsat-derived spectral indices to create bi-annual land cover 
maps for the Arrowhead region (1999-2015) as requested by University of Minnesota moose biologist, 
James Forester, to facilitate the assessment of moose habitat use and movements as impacted by land 
cover types and changes through time. This data is being used to develop predictive models of moose 
population dynamics to address ongoing questions related to long-term moose viability in Minnesota.  

• We are also collaborating with wildlife researchers at the University of Minnesota-Duluth and the 
Natural Resources Research Institute to assess the impacts of harvest characteristics (e.g. quantity and 
spatial arrangement of retained canopy during harvest activities) on avian and small mammal 
communities through the incorporation of our canopy cover products and disturbance map. The study 
includes an array of aspen dominated stands across the Arrowhead region representing a chrono-
sequence of harvest years. We are utilizing our disturbance products to assign the initial year of harvest 
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activity, as well as assessing change intensities.  Our annual canopy cover products are facilitating the 
characterization of stands prior to harvest, changes in canopy after timber removal, and the recovery of 
canopy at the time of wildlife surveys.  Ultimately, this data is being used to determine the suitability of 
Minnesota’s forest management guidelines at maintaining wildlife populations following forest 
harvesting.  

• Recently, we provided initial harvest disturbance maps to the Minnesota consulting firm, RESPEC, for 
incorporation into a tool for assessing best management practices and impacts on water quality. Below 
is a write-up pertaining to the utilization of our disturbance mapping products provided by our RESPEC 
liaison, Paul Marston: 
 
“RESPEC Consulting was hired by the Minnesota Pollution Control Agency (MPCA) to add forestry best 
management practices (BMPs) to the existing Scenario Application Manager (SAM) user interface for the 
Hydrologic Simulation Program-Fortran (HSPF) models.  The MPCA has invested in HSPF to model the 
entire state of Minnesota at the HUC-8 watershed level.  SAM was developed to allow watershed 
professionals a tool to access the data from the HSPF models as well as run scenarios using the model 
information.  SAM allows users to apply BMPs to certain land use classes and rerun the model to 
determine the water quality implications.  To incorporate forestry BMPs into SAM, a key data need was 
quantifying the area of harvest on a year to year basis.  The harvest area data was the foundation for 
determining what areas within the model framework could have forestry BMPs applied. The disturbance 
product provided by Dr. Falkowski and his team was critical as it was the only data available that 
identified specific agents of forest canopy disturbance.  Using Dr. Falkowski et al.’s work gave the project 
team strong confidence that a critical data requirement for our methodology was met.  Other forest 
disturbance data available grouped all agents of forest canopy change together, providing a dataset with 
areas not specific to harvesting areas.  This data was used in areas of the state that Dr. Falkowski et al.’s 
data did not cover.  Our hope in the future, would be to have statewide versions of Dr. Falkowski et al.’s 
disturbance products to quantify the harvest area for the entire state of Minnesota, which would ensure 
we are using the most accurate data available for a critical component of our project.” 

 Paul Marston 
 Watershed Scientist 

 RESPEC 
 Paul.Marston@respec.com 

 651-305-2278 
 

Among the proposed outcomes of Activity 3, was the publishing of project summaries and conducting outreach 
activities. In addition to the already published manuscript entitled “Extracting the full value of the Landsat 
archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015)” (Vogeler et 
al. 2018), we are currently working towards the submission of a manuscript summarizing our most recent fast 
disturbance mapping work and associated applications. We hope to continue to publish work related to the data 
products from this project as existing collaborations pertaining to the applications of the mapping products 
move forward.  
 
Project team members have also been active in the presentation of project methods and preliminary results to a 
variety of audiences and potential users of the data over the last few years. These included two invited 
webinars, one to the MN Department of Natural Resources and UMN affiliates, the other to the USDA Forest 
Service’s Forest Inventory and Analysis (FIA) Research and Techniques Band (recording available at: 
https://usfs.adobeconnect.com/prjhzov1f5fi/ ), as well as a department seminar within the Department of 

mailto:Paul.Marston@respec.com
https://usfs.adobeconnect.com/prjhzov1f5fi/
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Ecosystem Science and Sustainability at Colorado State University in Fort Collins, CO. We also participated in the 
2018 Annual Forestry and Wildlife Research Review at the Cloquet Forestry Center, with our presentation titled 
“A foundational data set characterizing historic forest attributes and disturbance patterns”. Our work has even 
reached the international forest remote sensing community through our presentation of early project 
methodologies at the bi-annual ForestSAT conference in Santiago, Chile in 2016 (attended using non-ENRTF 
funds). We will once again present to this international community at this year’s ForestSAT held in College Park, 
MD in October 2018. In addition to the many official presentations, our team has also met with countless 
researchers and managers around Minnesota, representative of a number of state and federal agencies as well 
as UMN affiliates, including site visits with local managers at the Chippewa National Forest, Superior National 
Forest, and the Cloquet Forestry Center.  
 
PROJECT PUBLICATIONS: 
 
Vogeler, J.C., J.D. Braaten, R.A. Slesak, M.J. Falkowski. 2018. Extracting the full value of the Landsat archive: 

Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973 -2015). Remote 
Sensing of Environment, 209, 363-374. 

 
PROJECT PRESENTATIONS: 
 
Vogeler, J. C., R. A. Slesak, and M. J. Falkowski. 2018. Characterizing forest change dynamics in Minnesota for 

forest and wildlife science applications (1975-2015). USDA Forest Service Forest Inventory and Analysis 
Research Techniques Band, Invited Webinar, 26 April 2018. Recording available at: 
https://usfs.adobeconnect.com/prjhzov1f5fi/  

 
Vogeler, J. C., R. A. Slesak, and M. J. Falkowski. 2018. Characterizing Forty Years of Forest Change: Applications in 

Forest and Wildlife Science. Department of Ecosystem Science and Sustainability Seminar, Colorado 
State University, Fort Collins, CO, 18 April 2018.  

 
Vogeler, J. C., J. Braaten, R. A. Slesak, and M. J. Falkowski. 2018. A foundational data set for >40 years of forest 

characterization and change detection. Minnesota Department of Natural Resources Webinar, St. Paul, 
MN, 9 January 2018. 

 
Vogeler, J. C., J. Braaten, R. A. Slesak, and M. J. Falkowski. 2018. A foundational data set characterizing historic 

forest attributes and disturbance patterns. Forestry and Wildlife Research Review, Cloquet, MN, 11 
January 2018. 

 
Vogeler, J. C., J. Braaten, R. A. Slesak, and M. J. Falkowski. 2016. Mapping historical canopy cover change and 

recovery using Landsat time series imagery (1972-2015). ForestSAT, Santiago, Chile, 16 November 2016. 
 
V. DISSEMINATION: 
Description: 
The final product of this project will be a digital geospatial database characterizing disturbance trends and types 
across the forested regions of Minnesota. In addition we will prepare an interpretative report detailing case 
studies that demonstrate how the geospatial disturbance database can be used to assess the impacts of historic 
disturbances on the resilience of three key forest resources: water quality, wildlife habitat, and wood fiber 
We will work in conjunction with the Minnesota Department of Natural Resources to make the geospatial 
database publically available for download from the GIS Data Deli website (http://deli.dnr.state.mn.us). The 
interpretative report will be made available on the Internet as a Department of Forest Resources Staff Paper 
Report.  In addition, several manuscripts will be written based on this research and submitted for publication in 
peer-reviewed journals.  A fact sheet summarizing principal findings of this project will be distributed to LCCMR 
members and legislators at the state and federal level.  Results will be presented at state and national forest 

https://usfs.adobeconnect.com/prjhzov1f5fi/
http://deli.dnr.state.mn.us/
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management and forest health conferences, and notably to agency and individual participants in the Sustainable 
Forests Education Cooperative.  All reports and publications from this project will be made available via the 
Department of Forest Resources web site (www.forestry.umn.edu). 
 
Project Status as of February 2016:  
 
Work on this activity will commence after completion of Activity 3 
 
Project Status as of September 2016:    
 
Work on this activity will commence after completion of Activity 3. 
 
Project Status as of February 2017: 
 
Work on this activity will commence after completion of Activity 3. 
 
Project Status as of September 2017:    
 
Work on this activity will commence after completion of Activity 3. 
 
Project Status as of February 2018: 
 
Work on this activity will commence after completion of Activity 3 (although see above section for current 
publication work and recent presentations/meetings). 
 
Final Report Summary:  
 
As we finish packaging our mapping products, we are compiling the necessary metadata for posting our annual 
canopy cover and most recent fast disturbance maps to the MN DNR GIS Data Deli website, which we anticipate 
will be completed in the next few months. We will also work to post all publications and project reports to UMN 
Department of Forest Resources web site as they become available. A fact sheet summarizing principal findings 
of this project is included in the supplementary materials, along with several visuals related to our work and 
results, and our publication. In addition to the publication and presentations listed above, we are working on an 
additional manuscript summarizing the most recent fast disturbance mapping work and associated applications 
and continue to present our project results and mapping products to various research and management 
audiences and other potential future users of the data.  In addition, project partner Dr. Robert Slesak is actively 
exploring additional applications of this dataset through his work at the MN Forest Resources Council and 
related activities.  
 
VI. PROJECT BUDGET SUMMARY:   
A. ENRTF Budget Overview: 

Budget Category $ Amount Overview Explanation 
Personnel: $ 193,500 -Salary and fringe (0.336) for three years for 

Falkowski - PI; 0.083 FTE each year (0.25 FTE 
over entire project) 
-Salary and fringe (0.336) for a post-doctoral 
researcher; 1.0 FTE for 2.5 project years (2.5 
FTE over entire project) 
-Salary and fringe (0.336) for a technician; 0.083 
FTE for 2 years (0.16 FTE over entire project).   
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Equipment/Tools/Supplies: $ 1,500 Equipment and supplies include $1,500 for data 
hard drives for storing the satellite data and 
archiving the final geospatial disturbance 
database. 

Travel Expenses in MN: $ 5,000 This money will be used to pay for mileage 
($3,750) and lodging ($1,250) for researchers 
when performing validation of the disturbance 
dataset. 

TOTAL ENRTF BUDGET: $ 200,000  
 
Explanation of Use of Classified Staff: N/A 
 
Explanation of Capital Expenditures Greater Than $5,000:  N/A  
 
Number of Full-time Equivalents (FTE) Directly Funded with this ENRTF Appropriation: 2.91 
 
Number of Full-time Equivalents (FTE) Estimated to Be Funded through Contracts with this ENRTF 
Appropriation: N/A 
 
B. Other Funds: N/A  
 
VII. PROJECT STRATEGY:  
A. Project Partners:    

In addition to the project leader, Michael Falkowski other project partners are included below. 

Dr. Alan Ek, Department of Forest Resources – University of Minnesota (not receiving funding). Role:  Dr. Ek will 
serve as a liaison to several county forestry departments in the State of Minnesota who will be able to assist 
with database validation by providing disturbance datasets, and will ultimately be end users of the final 
disturbance database.   

Dr. Joe Knight, Department of Forest Resources – University of Minnesota (not receiving funding). Role: Dr. 
Knight will assist with some remote sensing aspects of this project primarily by providing feedback to the post-
doctoral researcher.   

Dr. Matthew Russell, Department of Forest Resources & and Extension– University of Minnesota (not receiving 
funding). Role: Dr. Russell will assist with characterizing insect and disease related disturbances in the final 
database. In addition he will assist in project dissemination via his role in the University Extension program. 

Dr. Linda Nagel, Department of Forest Resources – University of Minnesota (not receiving funding). Role: Dr. 
Nagel will assist with characterizing harvest related disturbances in the final database 

Dr. Robert Slesak, Minnesota Forest Resources Council. Role: Dr. Slesak will assist with the water quality related 
applications of the disturbance database. Dr. Slesak will also serve as a liaison to Forest Resource Council 
members who will ultimately be end users of the final disturbance database. In addition he will integrate efforts 
of this project with other projects he’s currently working on in conjunction with the Minnesota Department of 
Natural Resources Resource Assessment and Wildlife groups.  

Collaborators will include the Minnesota Department of Natural Resources Resource Wildlife and Assessment 
groups, the Superior National Forest, University of Minnesota Extension, and several counties in northern 
Minnesota. 
 
B. Project Impact and Long-term Strategy:  
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Due to the multiple disturbance threats (e.g., insect outbreaks, fire, conversion to agriculture, and climate 
related stress) facing Minnesota’s forest resources, as well as the fact the these threats will only increase under 
projected climate change, there is a critical need for datasets that can be used to assess the impacts of 
disturbance on the long term sustainability of Minnesota’s forest resources. In addition, understanding how past 
disturbances have influenced current forest resources is essential to improving and sustaining future resource 
conditions under existing and eminent threats. This 3 year project will develop a foundational dataset 
characterizing historic forest disturbance dynamics -and related resource impacts- which will be a powerful tool 
for identifying threshold disturbance patterns that impact multiple forest resources across Minnesota. This 
foundational dataset will allow us to evaluate how disturbance and landuse configuration over the past 40 years 
have influenced the current status of forest resources and help to identify management responses that improve 
and sustain forest resources into the future, and will ultimately guide forest management response aimed at 
avoiding or mitigating persistent detrimental impacts of forest disturbance on forest resources. For example, 
forest managers will be better equipped to strategically plan disturbance mitigation practices where risks to 
forest resources are high, or manipulate disturbed areas to enhance forest response in a manner beneficial to 
multiple resources. Given the long-term nature of forest disturbance dynamics and associated management, we 
will link our work with on-going work in the MNDNR resource assessment office that is focused on using similar 
technology to understand future disturbance impacts. We also plan to explore additional funding opportunities 
from federal sources such as NASA, the National Science Foundation, and the US Forest Service to build upon 
and extend this work into the future. 
 
C. Funding History: N/A 
 
VIII. FEE TITLE ACQUISITION/CONSERVATION EASEMENT/RESTORATION REQUIREMENTS: N/A 
 
IX. VISUAL COMPONENT or MAP(S): 
 
See attached Figure 1 
 
X. RESEARCH ADDENDUM: N/A 
 
XI. REPORTING REQUIREMENTS: 
Periodic work plan status update reports will be submitted no later than September 2015, February 2016,  
 September 2016, February 2017, September 2017, February 2018. A final report and associated products will 
be submitted between June 30 and August 15, 2018. 
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Supplementary Material 1. Project Summary Fact Sheet 
 

• We were able to combine data from all Landsat sensors, allowing for the mapping of >40 years of forest 
attributes and forest change detection in Minnesota. 

• Use of smoothed time series composites highlighted the value of using a time series context (as opposed 
to 2 date methodologies) and a segmentation fitting approach for more stabilized land cover and forest 
attribute mapping through time, as well as improved change detection. 

• Our annual forest mask and canopy cover mapping products provided the opportunity to observe forest 
area and cover trends across the state from 1973-2015. We observed a significant, although slight, 
positive trend in forest area across the state throughout the time period of the study, although we 
should note that this trend does not account for changes in forest types or stages of structural 
development, and may include some areas not commonly classified as forests (e.g., shrub-scrub 
wetlands).  

• All ecological provinces experienced significant growth in land area within the two highest cover classes 
(50-74% and 75-100%), with the exception of a non-significant trend for the 50-74% class within the 
Tallgrass Aspen Parkland. The greatest growth in the two highest cover classes occurred within the 
Laurentian Mixed Forest province. 

• Our change detection approach captured moderate- to high-intensity stand events with overall accuracy 
of 92% for differentiating areas of change vs. no-change across Laurentian Mixed Forest Province. 

• We were able to further classify the most recent fast disturbance patches into 6 change classes 
representative of the fast anthropogenic and natural disturbance agents common to the study area 
(e.g., forest harvest, fire, wind disturbance, etc.), with class accuracies ranging from 78-96% with an 
overall accuracy of 92%.  

• Forest attribute and disturbance products from this project provide unprecedented spatial and temporal 
information for a variety of Minnesota forest resources applications. 

• We utilized our fitted Landsat-derived spectral indices to create bi-annual land cover maps for the 
Arrowhead region (1999-2015) as requested by University of Minnesota moose biologists to facilitate 
the assessment of moose habitat use and movements as impacted by land cover types and changes 
through time. This data is being used to develop predictive models of moose population dynamics to 
address ongoing questions related to long-term moose viability in Minnesota. 

• We are currently collaborating with wildlife researchers at the University of Minnesota-Duluth and 
Natural Resources Research Institute to assess the impacts of harvest characteristics (e.g. quantity and 
spatial arrangement of retained canopy during harvest activities) on avian and small mammal 
communities through the incorporation of our canopy cover products and disturbance map.  

• We have provided harvest disturbance maps to the Minnesota consulting firm RESPEC, under contract 
to the MN PCA, for incorporation into a watershed planning tool for assessing best management 
practices and impacts on water quality. 



  
 
Supplementary Material 2. Visual comparing two date change detection with our Landsat time series approach for forest mapping and change detection. 
 



  
 
Supplementary Material 3. Project mapping product extents. Annual maps of canopy cover were created at 
the Minnesota state extent (1973-2015), while disturbance mapping and change agent classification efforts 
were focused on the Laurentian Mixed Forest Province (with an additional 15km buffer).  
 



  
 
Supplementary Material 4. Most Recent Fast Disturbance Map for the Laurentian Mixed Forest Province with 3 example inset areas. Inset A is part of the 
Chippewa National Forest, inset B represents a mixed ownership landscape, and inset 3 falls within the Boundary Waters Canoe Wilderness Area.  
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Supplementary Material 5. Visual example of a wildlife application of our data products where we utilized our disturbance map toidentify- the initial year 
of harvest activities for study stands and characterized the amount and spatial arrangement of retained canopy and vegetation regrowth following 
harvest from our canopy cover data sets. This project is a collaboration with wildlife researchers from UMN-Duluth and Natural Resources Research 
Institute. 
 

 



  
 
Supplementary Material 6. Publication entitled “Extracting the full value of the Landsat archive: Inter-sensor 
harmonization for the mapping of Minnesota forest canopy cover (1973–2015)”. Published in Remote Sensing 
of Environment (Vogeler et al. 2018). Delivered as pdf with this report.  
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A B S T R A C T

Remote sensing estimates of forest canopy cover have frequently been used to support a variety of applications
including wildlife habitat modeling, monitoring of watershed health, change detection, and are also correlated to
various aspects of forest structure and ecosystem function. Although data from the long running Landsat earth
observation program (1972–present) have been previously utilized to characterize forest canopy cover, the
variability in spatial and spectral resolutions between the Landsat sensors has generally limited analyses to
readily comparable imagery from the TM and ETM+ sensors, which omits large portions of the full temporal
record. In this study, we present an R package, LandsatLinkr, which automates the processes for harmonizing
Landsat MSS and OLI imagery to the spatial and spectral qualities of TM and ETM+ imagery, allowing for the
generation of annual cloud-free composites of tasseled cap spectral indices across the entire Landsat archive. We
demonstrate the utility of LandsatLinkr products, further enhanced through the LandTrendr segmentation al-
gorithm, for characterizing forest attributes through time by developing annual forest masks and maps of esti-
mated canopy cover for the state of Minnesota from 1973 to 2015. The forest mask model had an overall
accuracy of 87%, with omission and commission errors for the forest class of 17% and 10%, respectively, and 9%
and 16% for non-forest classification. Our resulting maps depicted a significant positive trend in forest cover
across all ecological provinces of Minnesota during the study period. A random forest model used to predict
continuous canopy cover had a pseudo R2 of 0.75, with a cross validation RMSE of 5%. Our results are com-
parable to previous Landsat-based canopy cover mapping efforts, but expand the evaluation time period as we
were able to utilize the entire Landsat archive for assessment.

1. Introduction

Remote sensing of forest attributes continues to advance the field of
forest ecology and management by expanding our spatial and temporal
records, ultimately leading to a deeper understanding of forest eco-
system pattern and processes. High (< 10m) and medium spatial re-
solution remote sensing data (10–100m) provide detailed depictions of
within-stand forest characteristics, while also providing synoptic views
of the complex dynamics and interactions of patches across large spatial
extents (Cohen and Goward, 2004). Long running satellite programs,
such as Landsat, are expanding opportunities to monitor forest trends
through time (Huang et al., 2010; Kennedy et al., 2010), improving our
understanding of forest disturbance and recovery patterns (Masek et al.,
2013; Kennedy et al., 2015).

Remote sensing estimates of within-stand forest structural

attributes, such as canopy cover, have frequently been used to support a
variety of applications related to research and management (Hansen
et al., 2013; Koy et al., 2005). When viewing the forest from above,
canopy cover is defined as the proportion of the forest floor in a given
unit of space that is obscured by the vertical projection of tree canopies
(Jennings et al., 1999). Canopy cover often correlates with additional
forest structural attributes, such as stand basal area and volume
(Jennings et al., 1999), and serves as an important input into fire be-
havior models (Pierce et al., 2012). Further, as an identified driver of
wildlife habitat use, canopy cover may directly provide hiding cover
(Schwab and Pitt, 1991) and nesting substrates (Swanson et al., 2008)
for certain species, and also governs the amount of available light for
understory growth and associated nesting and foraging resources for
wildlife (Jennings et al., 1999). The health and functioning of water-
sheds may also be correlated with canopy cover through thermal
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regulation of streams (Moore et al., 2005), the introduction of woody
debris (Crook and Robertson, 1999), buffering of nutrient loading
(Jones et al., 2001), and erosion control (Hartanto et al., 2003).

Annual maps of historic canopy cover allow for the characterization
of forest resources at a given point in time, as well as the monitoring of
forest change and recovery trends which aid in the prediction of biotic
and abiotic stressors on forest systems into the future. Indeed, the
patterns of insects and pathogens are of great interest to many forest
managers, which can be identified through slow declines in canopy
cover (often represented by vegetation indices) that result from mor-
tality or defoliation through time (Neigh et al., 2014). In addition to
monitoring a variety of slow or abrupt forest disturbances, annual maps
of canopy cover may aid in the tracking of recovery following dis-
turbance events (Pickell et al., 2016). A variety of methods have been
devised by foresters to measure canopy cover (Jennings et al., 1999),
although variations in data collection efforts across space and time can
make it difficult to assemble a contiguous data set. One useful alter-
native is leveraging Landsat data, which provide a consistent data
source with a temporally rich archive of imagery at spatial resolutions
appropriate for characterizing forest canopy cover (Ahmed et al., 2015;
Pierce et al., 2012) and is available free to the public as of 2008
(Woodcock et al., 2008). Until recently, however, utilizing Landsat for
estimates of canopy cover through time has been constrained by the
different spatial, spectral, and/or radiometric properties of the varying
Landsat sensors.

New approaches for the harmonization of multi-sensor imagery and
creation of comparable vegetation indices are expanding the utility of
the Landsat archive for historic forest mapping purposes (Braaten et al.,
2017; Pflugmacher et al., 2012; Roy et al., 2016). Although many al-
gorithms for analyzing Landsat time series image stacks have emerged
in recent years (Brooks et al., 2014; Huang et al., 2010; Hughes et al.,
2017; Jin et al., 2013; Kennedy et al., 2010; Vogelmann et al., 2012;
Zhu et al., 2015; Zhu and Woodcock, 2014), most of the applications
have been limited to leveraging data from the Thematic Mapper (TM)
(1984–2012) and the Enhanced Thematic Mapper Plus (ETM+)
(1999–present) sensors. Exclusion of data from the earliest sensor, the
Multispectral Scanner (MSS) (1972–1999), and the latest sensor, the
Operational Land Imager (OLI) (2013–present), are likely due to dif-
ferences in the spatial, spectral, and/or radiometric resolutions of these
sensors, which require much additional processing to incorporate them
harmoniously into a time series with TM and ETM+ data. However, the
additional twelve years (1972–1984) of imagery available through MSS
sensors may improve the value of the Landsat record for characterizing
forest ecosystems dynamics, as the cumulative time series approaches a
more ecologically significant amount of time (Pflugmacher et al.,
2012), and inclusion of OLI ensures continuation past ETM+.

In addition to harmonization between sensors, pixel level char-
acterizations of forest attributes through time may benefit from the
removal of year-to-year noise inherent to spectral imagery to better
depict realistic patterns of forest recovery and change. Although
Landsat time series change detection often utilizes such a segmentation
or fitting procedure as an initial step in the identification of disturbance
patches, such as that used in the LandTrendr algorithm (Kennedy et al.,
2010), few studies have focused on the value of such fitted and
smoothed annual products for the mapping of more specific forest at-
tributes (Moisen et al., 2016).

In this study, we present an automated system for normalizing
Landsat MSS and OLI imagery to the spatial and spectral qualities of TM
and ETM+ imagery, allowing for the generation of annual cloud-free
composites of spectral indices across the Landsat archive. This system,
termed LandsatLinkr, is implemented as a code library for the R pro-
gramming environment (R Development Core Team, 2016). We de-
monstrate the utility of LandsatLinkr and subsequent LandTrendr
(Kennedy et al., 2010) fitted products for characterizing forest attri-
butes through time by developing annual forest masks and maps of
estimated canopy cover for the state of Minnesota from 1973 to 2015.

We focus on Minnesota where forests are not only vital for sustaining
one of the largest state industries, timber, but are also important
components of wetland systems that cover a large portion of the state,
and as critical habitat for many wildlife species of conservation interest.
Therefore, maps of canopy cover across the state and through time may
provide valuable resources to a variety of Minnesota land management,
monitoring, and research efforts.

2. Methods

2.1. Study area

The area of study is the entire state of Minnesota, USA, which en-
compasses the Laurentian Mixed Forest, Eastern Broadleaf Forest,
Prairie Parkland, and Tallgrass Aspen Parklands ecological provinces
(MN DNR, 1999; Fig. 1). Statewide, agricultural and forest land com-
prise approximately 50% and 30%, respectively, of total area. Surface
waters cover approximately 10% of the total area, with the remaining
10% including managed grasslands, developed urban, and mining land
uses (Rampi et al., 2016). There is a strong agricultural to forest land
cover gradient extending from the southwest to northeast portions of
the state. The regional climate is continental, with mean annual pre-
cipitation ranging from 500 to 800mm and a mean growing season
(May-Oct.) temperature of 11–16 °C. Annual precipitation is roughly
comprised of about one-third snow and two-thirds rainfall. A variety of
forest types occur in the region, but dominant forest types include the
aspen-birch and spruce-fir types, and to a lesser extent oak-hickory and
pine (Miles and VanderSchaaf, 2015). Wetlands, including forested
bogs, peatlands, and swamps, are found extensively throughout the
state (MPCA, 2015).

2.2. Landsat imagery

The Landsat earth observation program has been collecting satellite
image data from 1972 to present. This archive represents the longest
global earth observation record from remote sensing. Landsat sensors
include MSS, TM, ETM+, and OLI, which have been deployed on eight
different satellites (only seven of which attained orbit). Satellites 1–3
only carried the MSS sensor, 4–5 carried both MSS and TM sensors
(coincident image pairs), 6 carried the ETM sensor (was lost on launch),
7 carries the ETM+ sensor, and 8 carries the OLI and Thermal Infrared
(TIRS) sensors. Satellites 1–3 had a higher altitude orbit as compared to
satellites 4–8, so image data exists according to two different World
Reference System (WRS) grids, the former being in WRS-1 and the latter
being WRS-2. To fully include the area of the state of Minnesota in our
analysis, we utilized Landsat imagery from 28 WRS-1 (MSS) and 28
WRS-2 (MSS, TM, ETM+, and OLI) scenes to create annual growing

Fig. 1. The Minnesota, USA, study area divided by ecological provinces.
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season composites of tasseled cap spectral indices (Crist and Cicone,
1984). We viewed mean NDVI curves by day-of-year for all scenes to
determine an ideal range of peak growing season dates from which to
select our imagery (early July–early September). A total of 5945 images
across all scenes and years were downloaded from the USGS Earth
Explorer website (http://earthexplorer.usgs.gov/) and incorporated
into our inter-sensor harmonization and creation of annual composites.
After initial assessments, we found that there was insufficient image
coverage of our study area during the first year of Landsat MSS, 1972,
thus we removed this year from our study. We requested and down-
loaded the Surface Reflectance High Level Data Product available for
TM and ETM+ (LEDAPS algorithm; Masek et al., 2006), and OLI (L8SR
algorithm; Vermote et al., 2016) images, and Level 1 Product Genera-
tion System (LPGS) images for MSS. TM and ETM+ surface reflectance
images were considered the spatial and spectral standard for the time
series and remained unaltered. MSS and OLI data, however, went
through a normalization process to harmonize them with the TM/ETM
+ data.

The work flow for harmonizing the MSS and OLI data to TM/ETM+
and generating annual cloud-free composites was handled by the
LandsatLinkr (LLR) system (Braaten et al., 2017). LLR is an R package
designed to automate much of the pre-processing and harmonization
required to create annual cloud-free composites of tasseled cap indices
across a user-defined study area throughout the Landsat archive. Using
previously established methodologies, LLR spectrally and spatially
aligns images from multiple sensors through additional georegistration,
resampling of coarser resolution MSS images, and the modeling and
harmonization of tasseled cap indices. The six LLR steps include: 1) MSS
unpacking; 2) TM/ETM+ unpacking; 3) OLI unpacking; 4) MSS to TM
harmonization; 5) OLI to ETM+ harmonization; and 6) annual com-
posite creation (Fig. 2). Steps 1–5 are completed at the scene level and
step 6 incorporates all scenes required to cover a user-defined study
area.

In the first step, MSS images are unpacked (decompressed, stacked,
re-projected) and georegistration accuracy is assessed. For those images
with an a total positional RMSE ≥0.5, the georegistration is enhanced
using an image-to-image tie point search and warp procedure
(MSSwarper), which is based on the methods presented in Kennedy and
Cohen (2003). Unfortunately, in our case there were a large number of
MSS images for some of our scenes that were not available as desired
USGS L1T products (i.e., orthorectified) for which LLR is set up to
handle. They were instead only available as L1G products (systematic
geocorrection based on spacecraft ephemeris data) which left gaps in
our time series stacks. To improve the initial georegistration of L1G
images, we did a shift and rotation procedure in ArcGIS by manually
selecting three tie points from an additional 96 images. Following this
step, we then continued with MSSwarper on the manually corrected
L1G images, further fine-tuning the georegistration and filling in the
gaps in our annual stacks. LLR then further radiometrically corrects the
MSS images to top-of-atmosphere and surface reflectance. Surface re-
flectance is calculated using the COST method (Chavez, 1996), with the
Lhaze parameter or “dark object value” estimated from an automated
implementation of the histogram method (Chavez, 1988). Finally, cloud
masks are created following the MSScvm procedure (Braaten et al.,
2015), which along with surface reflectance are resampled to 30m to
match the spatial resolution of the later Landsat sensors.

In the next LLR steps TM, ETM+, and OLI image data are auto-
matically decompressed, stacked, re-projected, and a cloud mask is
derived from the product-included Fmask (Zhu and Woodcock, 2012)
cloud and cloud shadow mask. Fmask reclassification is performed to
match the MSS cloud mask classes produced above to allow efficient
mask application during the compositing process. For the TM and ETM
+ data, tasseled cap spectral transformations brightness, greenness,
and wetness (Crist, 1985) are produced, as well as a derivation of
greenness and brightness called the tasseled cap angle (Powell et al.,
2010).

LLR steps 4 and 5 involve the inter-sensor harmonization of MSS to
TM and OLI to ETM+ indices. MSS images are normalized to the TM
images through the modeling of TM tasseled cap indices from the 4 MSS
bands using samples from offsets of coincident images and multiple
linear regression; a similar approach presented by Roy et al. (2016) is
utilized to transform OLI data to TM. This is done separately for each
tasseled capped index to create index specific models. Since the models
incorporate variance introduced by multiple individual MSS/TM re-
lationships from the samples within the sets of coincident images
(which occurred during the period of overlap between MSS and TM
with Landsat 4 and 5), the final models represent mean or aggregate
models which are then applied to all MSS images from a given scene.
Since aggregate models were created using MSS Landsat 4 and 5 which
are on the WRS-2 grid, and MSS Landsat 1–3 are WRS-1, the model
from the WRS-2 scene that most overlaps each WRS-1 scene is used for
harmonization. OLI images are harmonized to ETM+ images in the
same way as MSS to TM, except that only 6 of the 7 OLI reflectance
bands are included as predictors (band 1 – ultra blue is excluded), and
near-date images are used since there are not coincident image pairs
available for ETM+/OLI. We evaluated the performance of the LLR
harmonization between sensors by calculating the difference between
annual summer image composites produced for each sensor for the
same year during sensor overlaps, which are intermediate products
available from LLR.

The final step of LLR is to create annual composites of the tasseled
cap indices. All of the previous LLR steps are completed on an in-
dividual scene basis, while the compositing step is applied to a user
defined area which can encompass multiple WRS-1 and WRS-2 scenes.
Images from a given year are compiled using one of several summary
metric options within the compositing function, ignoring clouds, sha-
dows, or no data pixels such as those from the ETM+ SLC-off lines. We
chose to utilize the median summary statistic as we found this method
best removed any remaining pixel noise from the composites and was
the most suited for our purposes.

After creating annual composite stacks using LLR, we then applied
the LandTrendr temporal segmentation algorithm presented in Kennedy
et al. (2010). While LandTrendr is mostly used as a change detection
algorithm, the first step involves a segmentation procedure that fits
vertices to the spectral trends for each pixel. Among the outputs are
revised annual pixel values interpolated from lines between the ver-
tices. We used this approach to smooth the annual trends to minimize
year to year noise, providing a better representation of true forest dy-
namics, which do not usually exhibit abnormal growth spikes or dips
for a single year (Fig. 3). In addition to the annual spectral indices from
Landsat, we also included topographic variables in our modeling ef-
forts. We downloaded the Minnesota 30m Digital Elevation Model
(DEM; MDNR, 2004) to represent elevation and to create maps of slope,
aspect, and several aspect transformations in ArcGIS 10.3 (Table 1).

2.3. Canopy cover estimates

To generate canopy cover estimates to use in model training and
validation, we randomly identified 1340 sample locations across the
state which we first evaluated to ensure that all forest and non-forest
classes in the 2011 National Land Cover Dataset were represented
(NLCD; Homer et al., 2015). Following similar methodologies as
Coulston et al. (2012), we created 3×3 Landsat pixel windows
(90m×90m) surrounding each sample location. Within each
90m×90m sample plot, we generated a 100 point dot grid using the
fishnet tool in ArcGIS 10.3. These dot grids were overlaid onto false
color composites from 2008 4-band National Agriculture Imagery
Program (NAIP) aerial imagery, and the proportion of dots within each
sample window that intersected tree crowns was used to estimate ca-
nopy cover for that plot. The observer used surrounding landscape in
addition to the plot view within the NAIP imagery to aid in differ-
entiating between forest and non-forest vegetation prior to designating
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canopy vs. non-canopy within the sample plots. When using aerial
imagery for estimating canopy cover, observers must decide how to
classify shadows within forest stands. In our study, we choose to classify
dark shadows within a forest stand as non-canopy cover. A single ob-
server conducted the photo interpretation to minimize any potential
bias between different observers (Frescino and Moisen, 2012).

2.4. Forest cover models

Landsat tasseled cap and topography predictors corresponding to
2008, the year of NAIP imagery acquisition, were extracted for each
90m square plot using zonal statistics in ArcGIS 10.3 (Table 1). We first
created a statistical model to differentiate between forest and non-forest
where plots with<10% canopy cover were considered as non-forest.
To create this forest mask model, we employed the random forest (RF)
statistical modeling approach (Breiman, 2001). The RF algorithm is a
classification and regression tree technique that has achieved excellent
results in the generation of classifications or continuous predictions

from remotely sensed data (e.g., Falkowski et al., 2009; Hudak et al.,
2008; Lawrence et al., 2006). Indeed, RF has rapidly been adopted by
the ecological modeling community as an attractive alternative to tra-
ditional statistical approaches because of its flexibility in handling data
with non-normal distributions, a large number of predictor variables,
and the use of averaged bootstrap training samples for improved pre-
dictions (Cutler et al., 2007). In the case of classification, the RF al-
gorithm develops classifications by growing numerous (100s to 1000s)
classification trees from a random subset of training data (approxi-
mately 63% random subset), while randomly permuting predictor
variables at each node. The RF algorithm then determines the final
classification by selecting the most common classification outcome at
each node within the group of multiple trees (Breiman, 2001; Lawrence
et al., 2006; Prasad et al., 2006). Bootstrap error estimates are calcu-
lated for each tree in the forest by classifying the response variable(s)
from each observation in the portion of training data not selected for
model development (approximately 37% of the training data). After all
the trees in the forest are grown, overall classification error is

Fig. 2. Work flow for LandsatLinkr, an R package which automates the pre-processing, harmonization, and compositing of imagery from all sensors throughout the Landsat archive
(1972–present).
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calculated by averaging errors across all trees in the forest; this is
analogous to cross-validated estimate of error and accuracy (Cutler
et al., 2007). The algorithm also calculates the influence each predictor
variable has upon model accuracy based on the ratio of improvement in
the mean squared error across bootstrap replicates, which can be used

to determine the relative importance of each variable used in the
classification. For this study, the RF algorithm was implemented as the
RandomForest package (Liaw and Wiener, 2002) in the R statistical
program (R Development Core Team, 2016).

Although collinearity between predictors has been reported as less

Fig. 3. Comparison of raw annual Landsat composite values from LandsatLinkr and fitted vertices from LandTrendr segmentation algorithm. Examples include tasseled cap wetness values
for four pixels in Minnesota.

Table 1
Descriptions and abbreviations for Landsat-derived tasseled cap predictors and DEM extracted topographic metrics included in the forest mask and canopy cover models. Model metrics
were summarized for the 90m×90m canopy cover training plots and the models were later mapped using 3× 3 focal grids of the predictors. “X” indicates the inclusion of a predictor in
the final random forest mask (RF Mask) and canopy cover (RF Cover) models.

Predictor Abbrev. Description Included in final models

Landsat RF Mask RF Cover
Tasseled cap brightness Soil reflectancea,b

Mean TCB_mn X X
Standard deviation TCB_sd X

Tasseled cap greenness Variations in green vegetationa,b

Mean TCG_mn X X
Standard deviation TCG_sd

Tasseled cap wetness Correlated with forest structurea,c

Mean TCW_mn X X
Standard deviation TCW_sd X X

Tasseled cap angle TCA= arctan(TCG/TCB)d

Mean TCA_mn X X
Standard deviation TCA_sd X

Topography
Elevation ELEV Elevation (meters)
Slope SLOPE Degree topographic slope X
Aspect transformed ASPECT ASPECT=COS ∗ [45− (aspect in degrees)]+ 1
ssina SSINA SSINA=percent slope ∗ SIN ∗ (aspect in degrees)
scosa SCOSA SCOSA=percent slope ∗ COS ∗ (aspect in degrees)

Prediction maps
Forest mask prediction MASK Forest vs. non-forest prediction included as a factor NA X

a Presented in Crist (1985).
b Crist and Cicone (1984).
c Cohen et al. (1995).
d Presented in Powell et al. (2010).

J.C. Vogeler et al. Remote Sensing of Environment 209 (2018) 363–374

367



of a concern with a RF approach, recent research has suggested
otherwise (Murphy et al., 2010). Thus, we employ a model selection
procedure to determine the optimal suite of predictor variables to use in
the classification of forest presence and absence. The model selection
procedure was implemented via the rfUtilities package in R (Evans and
Murphy, 2017) to develop the most parsimonious classification model,
while retaining the highest possible classification accuracy. In order to
reduce data redundancy and improve overall model interpretability,
multi-collinear predictor variables were identified and removed via a
multivariate variable screening process based upon Gram–Schmidt QR-
Decomposition (Evans and Murphy, 2017; Falkowski et al., 2009). The
final classification model is arrived at based on the criteria of smallest
total and within class errors, and fewest numbers of predictor variables.
In order to stabilize classification error, each RF model was run with
500 bootstrap replicates (i.e., individual classification trees), and then
evaluated for the point of MSE stabilization which occurred at 400 trees
for this model. After constructing our error matrix for the final forest
mask model, we followed the methods presented in Olofsson et al.
(2013) to calculate a poststratified estimator to translate the matrix into
terms of unbiased proportions of area in the forest and non-forest
classes. These sample-based estimates of area were incorporated into
classification accuracy measures and associated confidence intervals
(Olofsson et al., 2013).

We used a similar RF model selection procedure for canopy cover as
with our forest mask models with the exception of designating a re-
gression tree approach rather than a classification tree approach. In
addition to the spectral and topographic variables, we included pre-
dictions from our forest mask classification as a factor in the models to
aid in the continuous prediction of forest canopy cover across all land
cover types within one model. To avoid overfitting the model, we chose
the appropriate number of decision trees from our initial model run
which incorporated all predictors by determining the number of trees at
which the MSE had stabilized from the RF tree plot (300 trees). To
assess bootstrap prediction errors, we averaged 100 iterations where
70% of the data was used to train each model and 30% was retained for
validation. We calculated pseudo R2 values using the model mean
square error (MSE) and variance in the response variable (y) with the
equation:

= −R MSE
var y

1
( )

2
(1)

Relative importance of model predictors were assessed using vari-
able importance values reported by RF which represent the percent
increase in model MSE if a predictor was randomized.

2.5. Annual prediction mapping

To match the scale of the model variables, we created focal grids of
the annual Landsat tasseled cap indices and static topographic pre-
dictors in ArcGIS at the 30m Landsat resolution, where the center pixel
within a moving focal window is assigned a summary statistic for the
larger 3×3 pixel window. We applied the selected forest mask and
canopy cover models to the Landsat time series stacks for the state of
Minnesota using the focal grids within R to create annual maps of forest

masks and canopy cover from 1973 to 2015. While cover was modeled
as a proportion (0–1), during predictive mapping we multiplied by 100
to produce percent canopy cover products.

We used the stacks of predictive maps for a general assessment of
change in forest area and cover across the state through time. All trends
presented for the forest/non-forest classification maps reflect error-
adjusted estimations of area (Olofsson et al., 2013), although the un-
biased estimator was calculated from the single year (2008) utilized in
model creation and validation. While the ultimate objective of this
study was to create maps of continuous cover through time, we derived
five classes from our continuous cover products to aid in the visuali-
zation of temporal trends: (1)< 10% (from here on referred to as non-
forest); (2) 10–24%; (3) 25–49%; (4) 50–74%; (5) ≥75%. We also di-
vided the maps by ecological provinces (Fig. 1) to evaluate differences
in trends across Minnesota ecoregions. The summaries of forest cover
and cover classes through time were fit with linear coefficients and
evaluated for significance of general trends across the full span of the
time series using t-tests.

3. Results

3.1. Forest cover models

Through the use of Landsat-derived spectral indices and topographic
information, we were able to create models of forest cover for the state
of Minnesota. After the model selection procedure, our final random
forest classification model of forest vs. non-forest included TCB_mn,
TCB_sd, TCG_mn, TCW_mn, TCW_sd, TCA_mn, TCA_sd and SLOPE pre-
dictor variables (Table 1). After incorporating the error-adjusted esti-
mator of area, the forest mask model had an overall accuracy of 87%
(Table 2), with omission and commission errors for the forest class of
17% and 10%, respectively, and 9% and 16% for non-forest classifi-
cation. The selected random forest model for canopy cover had a
pseudo R2 of 0.75 while minimizing prediction errors with a cross va-
lidation RMSE of 5%. The importance of predictors was ranked as fol-
lows according to the RF algorithm (with values of relative im-
portance): forest mask prediction (37.24); TCW_mn (26.76); TCA_mn
(26.04); TCB_mn (20.01); TCW_sd (9.94); and TCG_mn (9.61).

3.2. Landsat time series stacks

Landsat spectral indices harmonized across sensors and fitted to
temporal trend lines facilitated the annual mapping of the forest mask
and continuous canopy cover models across the state of Minnesota from
1973 to 2015 (Fig. 4). The R package presented here, LandsatLinkr
(LLR), efficiently executed all necessary steps for the creation of the
spatially and spectrally comparable annual tasseled cap composites
(Fig. 5). These composites spanned the entire Landsat archive and
successfully minimized seam lines between scenes, maximized data
coverage on an annual basis, and adequately removed clouds and cloud
shadows from the images. Evaluation of the distribution of differences
between image data from two different sensors from the same annual
composite period for a sample of points (n=5964 for each year, dis-
tributed randomly throughout MN) show medians near zero and tight
variance (Fig. 5), providing support for the successful inter-sensor
harmonization by LLR.

3.3. Forest cover mapping and time series trends

Annual values of forest area (> 10% forest cover) from the mask
maps depict a significant, although slight, positive trend across the state
throughout the time period of the study (1973–2015; Fig. 5). Note that
this estimate does not account for changes in forest types or stages of
structural development, and may include some areas not commonly
considered forests (e.g., shrub-scrub wetlands). Forest area accounted
for 43.9% (± 2%) of Minnesota land area in 1973, expanding to 52.5%

Table 2
Estimated non-forest and forest classification error matrix with cells representative of the
error-adjusted proportions of area. Observed classes are the columns, while predicted
classes are the rows. Reported users', producer's, and overall accuracy measures include
95% confidence intervals.

Class Non-
forest

Forest Total User's Producer's Overall

Non-forest 0.46 0.09 0.55 0.85 ± 0.02 0.91 ± 0.02 0.87 ± 0.02
Forest 0.05 0.41 0.45 0.90 ± 0.02 0.83 ± 0.02
Total 0.51 0.49 1
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(± 2%) by 2015 (water bodies were removed from this analysis). This
significant positive trend was consistent across all Minnesota provinces
(Fig. 6), where the Eastern Broadleaf and Laurentian Mixed Forest
provinces experienced the greatest growth. While most of the provinces
exhibited a constant positive trend across the 43-year study, the Tall-
grass Aspen Parkland province began with 10 years of decline followed
by an increase in forest for the remainder of the time series (Fig. 6).
Examinations of the prediction maps revealed a slight overestimation of
forest area within agricultural dominated areas on the western edge of
Minnesota, primarily within the Prairie Parkland province.

The five cover classes including a non-forest class derived from the
continuous canopy cover values facilitated further evaluation of the
canopy cover mapping products and temporal trends for additional
context and utility (Fig. 7). The histogram of cover values from the
photo interpretation plots used in model creation were well represented
by those of the corresponding 2008 cover map, with the exception of a
slight under representation of the highest cover class in the map (≥75%
cover). Across the time-period of the study, all ecological provinces
with the exception of the Tallgrass Aspen Parkland exhibited significant
decreases in the non-forest cover class, corresponding to the significant
increase in overall forest cover observed through our forest mask maps
(Fig. 8). Trends within the moderate cover classes (10–24% and
25–49%) varied across the provinces (Fig. 8). All regions of the state
experienced significant growth in the land area within the two highest

cover classes with the exception of a non-significant trend for the
50–74% class within the Tallgrass Aspen Parkland (Fig. 8). The greatest
growth in these two high cover classes occurred in the Laurentian
Mixed Forest province.

4. Discussion

Through the use of the freely available Landsat archive, we created
forest masks and maps of canopy cover for the state of Minnesota from
1973 to 2015, a valuable data set for a variety of research and man-
agement applications. This was in large part facilitated by the auto-
mation of processing steps by LandsatLinkr for the creation of spatially
and spectrally harmonized image data from all Landsat sensors and
multiple scenes. The harmonized spectral index predictors were further
enhanced with the use of the LandTrendr segmentation algorithm for
the smoothing of year-to-year spectral variations not associated with
forest change dynamics. Many of the previous studies utilizing Landsat
time series products for the mapping of forest attributes are temporally
restricted to the post-MSS years (> 1984; Potapov et al., 2015; Powell
et al., 2010). The harmonization of MSS imagery to the later sensors
allowed us to add an additional 11 years to our stacks of mask and cover
maps, adding over a decade of identified patches of forest cover change
and expanding the records of general forest area and cover class trends.

The accuracy of our canopy cover model is comparable to those

Fig. 4. Representation of the annual stacks of forest canopy cover maps created for 1973–2015 including summary maps of canopy cover change within the Minnesota ecological
provinces over the 43 year study period. Subsets are provided for example sources of canopy cover gain and loss observed during the study period (note that we make no claim that these
examples represent dominant agents of change for Minnesota as this is beyond the scope of this study). Each example includes a local view of the change event from cover change
(1973–2015) maps, a google earth photo corresponding to the post change condition, and pre- and post-change percent canopy cover for years directly prior and following each specific
change event.
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from previous Landsat studies (Ahmed et al., 2015; Pierce et al., 2012),
although utilizing predictor data available for the entire Landsat time
series and encompassing a larger spatial extent and species composition
gradient compared to many of the previous studies. With a few ex-
ceptions (Sexton et al., 2013; Hansen et al., 2011) including the NLCD
tree cover products (Homer et al., 2015), many of the previous Landsat
based canopy cover modeling efforts have been conducted within re-
stricted forest types and/or small geographic areas (Ahmed et al., 2015;
Carreiras et al., 2006). Pierce et al. (2012) utilized Landsat TM data for
modeling aspects of canopy structure including cover for inclusion in
fire behavior models within the coniferous dominated forests of Lassen
Volcanic National Park, CA (42,900 ha). The study incorporated band
reflectance and additional spectral indices to a similar set of tasseled
cap and topographic metrics as our study with moderate model per-
formance (R2=0.66; Pierce et al., 2012). Through the incorporation of

Landsat-derived disturbance information, Ahmed et al. (2015) were
able to stratify the forests in their 2600 ha study area on Vancouver
Island, BC Canada, into mature and young classes prior to canopy cover
modeling efforts. The initial stratification improved model performance
for mature forests (R2= 0.72) over the combined data set (R2= 0.67),
although resulting in weaker model performance for the young forest
class with an R2 of 0.59; RMSE remained constant at 7% for the divided
and combined cover models (Ahmed et al., 2015). In our study, we were
able to create a single canopy cover model for the entire state of Min-
nesota (> 22million ha; R2= 0.75, RMSE=5%) which includes 15
NLCD land cover classes, distinguishing forest from non-forest and es-
timating cover for forest types representing a range of composition from
deciduous to coniferous and wetland to upland stands. Tasseled cap
wetness was the strongest spectral predictor in our canopy cover
models, consistent with findings of previous studies (Hadi et al., 2016;

Fig. 5. Distributions of pair-wise difference between LandsatLinkr (LLR)-produced Tasseled Cap Wetness (TCW) annual image composites for years when two sensors concurrently
acquired data. Differences between sensor data is cast as a percent of the range between two standard deviations surrounding the mean of TCW for Minnesota. Positive differences
indicate that MSS and OLI TCW values are greater than TM and ETM+, respectively, and less, when negative.

Fig. 6. Temporal trends (1973–2015) in the proportion of land statewide and within ecological provinces with forest cover derived from annual forest mask maps.
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Healey et al., 2006).
Several continental to global scale tree cover products incorporating

Landsat data do exist, although restricted in their ability to be applied
to the Landsat archive due to the predictors utilized in their approach
(Sexton et al., 2013; Coulston et al., 2012). The national tree cover
models from the 2011 NLCD project achieved a range of predictive
strengths when models were tested in the five focal areas across the
country (R2 values from 0.65–0.87; Coulston et al., 2012); our results
fall within this range. In addition to the NDVI and tasseled cap pre-
dictors, the 2011 NLCD cover models also incorporated the previously
created 2001 tree cover maps and land cover data (Coulston et al.,
2012). The NLCD tree cover product provides an extremely useful
spatial data set for a large suite of applications across the continuous
United States, although the need for land cover classifications as model
inputs complicate the repeatability on an annual basis. Our approach
may be an alternative for monitoring change at local or regional extents
in the interim of more spatially continuous decadal projects such as
NLCD. On a global scale, Sexton et al. (2013) utilized Landsat TM and
ETM+ surface reflectance with additional axillary data at two time
steps (2000 and 2005) to model the global MODerate-resolution Ima-
ging Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF)
Tree Cover product, rescaling the 250m tree product to the 30m
Landsat scale. When results were summarized across four validation

areas where the study utilized lidar canopy products as reference data,
the Landsat-based model had an R2 of 0.811 and an RMSE of 14.637
(Sexton et al., 2013). Our utilization of spectral indices, which can be
created for the entire Landsat archive, provides the opportunity to
create annual historic records of forest cover for over four decades into
the past and that are repeatable into the future. Through the harmo-
nization of MSS and OLI imagery to TM/ETM+, our study assumes that
the model created for a single time will be applicable to other years in
the time series. We acknowledge that the accuracies presented here are
for the single year model and the change products derived from the
time series application of this model may have reduced accuracies.

Annual canopy cover maps may serve as model inputs for wildlife
habitat relationships and additional forest attributes at single points in
time, as well as providing the opportunity to monitor and interpret
trends through time. Vogeler and Cohen (2016) reported that almost
80% of the US Fish and Wildlife Service habitat suitability models for
forest inhabitants included some measure of canopy cover, highlighting
the value of this metric for predicting and monitoring wildlife habitat
for many species. In an effort to identify potential habitat for Myan-
mar's endangered Eld's deer (Cervus eldi), Koy et al. (2005) found sig-
nificant relationships between their Landsat-derived canopy cover maps
and deer distributions. There is increasing interest in leveraging historic
datasets such as Landsat to map forest disturbance patches through

Fig. 7. Temporal trends (1973–2015) of proportion of land within forest canopy cover classes statewide and within Minnesota ecological provinces. Water bodies have been masked out
and are not reflected in proportions. Note that the y-axis ranges vary to better depict the trends for each canopy cover class by province.
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change algorithms such as LandTrendr (Kennedy et al., 2010). In-
formation about changes in canopy cover within a disturbance patch
may aid in classifying the agent of change which is of great interest to
forest managers. The few studies that have incorporated imagery from
the full time span of the archive have tended to focus on quantifying
disturbance history to estimate current forest structure (Pflugmacher
et al., 2012). Our stack of Landsat imagery was spatially and spectrally
harmonized and cover models created for one time step should be ap-
plicable to additional years, but further research is needed to assess the
accuracy of these models for application in future years.

During the four decades of our forest mask and cover products, we
observed a significant increase in overall forest cover across the state of
Minnesota, although this trend was not consistent across all cover
classes. In a USDA Forest Service resource bulletin based on Forest
Inventory and Analysis (FIA) data for Minnesota, live trees were re-
ported to have increased during 1977–2003, as well as an increase of
5.6% in live tree biomass on timberlands within the same time-period
(Miles et al., 2007), supporting the results of this study. Within the
shorter time-period of 1990–2003, the study reported an overall de-
crease in Minnesota forest land of 4% (Miles et al., 2007). When we
tested the forest area trend within our data for this truncated time-
period, the significant increase in forest cover remained as found within
the greater 1973–2015 study period. These contrasting results could be
due to differences in the definitions of forest cover by FIA compared to
this study, as well as a sampling-based vs. our spatially continuous

predictive mapping assessments. In our forest delineation, we take a
snap-shot approach where there must be current forest cover to be
classified as forest at a specific time period. FIA considers forest land as
more of a land cover classification where even recently cleared areas
with the absence of current cover will still be considered forest as long
as the potential treed area is> 1 acre or at least 36.6m (120 ft) wide for
roadside, riparian, and shelterbelt strips. Updated Minnesota USDA
forest resources reports for all years following the 1990–2003 time
period found increases in overall forest area (e.g. Miles and Heinzen,
2008; Miles and VanderSchaaf, 2012, 2015), consistent with our find-
ings. Miles et al. (2007) reported that during 1990–2003, there was
greater timber growth than removal rates suggesting an increase in
growing-stock volume. This may support our observation of the greatest
increases occurring within the two higher forest cover classes.

While there were a variety of sources of forest cover loss and gain
during our study, one example of forest gain was the encroachment of
forest cover in land previously used for agriculture and pasture. We
mostly observed this agriculture to forest conversion within the Eastern
Broadleaf Forest province, which, along with the Laurentian Mixed
Forest province, experienced the greatest gain in overall forest area.
Marshlands reverting back to forest cover are an additional potential
source of forest gain within Minnesota reported by Miles et al. (2007).
This, along with forest regeneration within harvest patches may have
contributed to the greatest increases we observed within the Laurentian
Mixed Forest province for the two highest cover classes. That said, the

Fig. 8. Linear time series trend line coefficients with 95% confidence intervals for error-adjusted forest area from the forest mask maps, in addition to the proportion of the state
represented by the 5 canopy cover classes derived from continuous canopy cover products (1973–2015). Non-significant coefficients shown in gray.
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highest cover class (≥75%) also appeared to be under represented
when histograms of data from the photo interpretation samples were
compared to that of the corresponding 2008 predictive map (visual
comparison, data not shown). The under representation of the highest
cover class could potentially be a bias of photo interpretation methods
for underestimating cover values (Greenfield et al., 2009) or an un-
derestimation of higher cover values within the model.

5. Conclusions

In this study, we utilized the Landsat archive to create annual spa-
tial records of canopy cover across the state of Minnesota from 1973 to
2015, a valuable resource for a multitude of research and management
applications. We demonstrate the utility of the R package LandsatLinkr
for expanding the temporal record of comparable Landsat spectral in-
dices through the harmonization of Landsat MSS and OLI imagery to the
spatial and/or spectral qualities of TM and ETM+. We found value in
the further enhancement of the LandsatLinkr products with the use of
the LandTrendr segmentation algorithm for the smoothing of year-to-
year spectral variations not associated with forest change dynamics.
While the accuracy of our canopy cover models were comparable to
previous Landsat studies, and our temporal trends suggest that the
forest area in Minnesota is expanding and moving towards more closed
canopy conditions, all temporal trends presented here should be ob-
served with caution as our study did not include a multi-year validation
procedure. While the statewide and within province trends discussed
here are a way to immediately assess our products, we believe the full
value of our maps will be extracted when used in conjunction with
additional datasets for applications such as evaluating habitat drivers
for Minnesota wildlife species of conservation interest, as well as aiding
in interpreting and classifying agents of change across the state, a
project currently underway. Future studies should also assess the utility
of these image stacks for characterizing local scale dynamics within
specific disturbance events and associated recovery patterns. Within
more specific applications of the mapping products for change, addi-
tional validation should be considered if reference data sets are avail-
able. Future studies should continue to assess the range of forest attri-
butes able to be modeled and mapped using LandsatLinkr spectral
products.
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