M.L. 2014, Chp. 226, Sec. 2, Subd. 03h Project Abstract For the Period Ending June 30, 2017

PROJECT TITLE: Protecting the States Confined Drinking-Water Aquifers PROJECT MANAGER: Jared Trost AFFILIATION: USGS MAILING ADDRESS: 2280 Woodale Dr. CITY/STATE/ZIP: Mounds View, MN, 55112 PHONE: 763-783-3205 E-MAIL: jtrost@usgs.gov WEBSITE: <u>http://mn.water.usgs.gov/index.html</u> FUNDING SOURCE: Environment and Natural Resources Trust Fund LEGAL CITATION: M.L. 2014, Chp. 226, Sec. 2, Subd. 03h

APPROPRIATION AMOUNT: \$ 394,000 AMOUNT SPENT: \$ 393,600.21 AMOUNT REMAINING: \$ 399.79

Overall Project Outcomes and Results

Confined (or buried) aquifers overlain by till confining units provide drinking water to thousands of Minnesota residents. These till confining units are typically conceptualized as having very low potential for transmitting water. Thus, buried aquifers are thought to be less susceptible to surface contamination, but may recharge very slowly and may be prone to unsustainable groundwater withdrawals. This study was completed to give insight to the susceptibility and sustainability of the groundwater resources being withdrawn from confined aquifer systems in Minnesota. A combination of hydrologic field measurements, geochemical analyses, and modeling techniques were used to quantify the variability of hydrologic properties and flux of water through till confining units to buried aquifers at two representative sites in Minnesota. Glacial deposits of the Des Moines Lobe were characterized in Litchfield, Minnesota and glacial deposits of the Superior Lobe were characterized in Cromwell, Minnesota.

A conceptual understanding emerges from the field measurements at the two sites that till "layers" in the glacial deposits of the Des Moines and Superior Lobes in Minnesota are not really continuous layers, but rather a complex series of sediment mixtures with differing abilities to transmit water. The hydrologic field measurements and geochemical analysis demonstrated large variations in till confining unit properties over relatively small vertical and horizontal distances, underscoring the challenges of assessing the susceptibility and sustainability of groundwater resources in confined aquifer systems.

Many waters in Minnesota are under threat of nutrient contamination from anthropogenic activities such as row-crop agriculture. This study provided some evidence that till confining units may be effective at reducing the susceptibility of buried aquifers to nitrate contamination, but may be a source of phosphorus. Data from Litchfield show that chloride is present in elevated concentrations where nitrate is not, despite abundant agriculture in the surrounding area. This suggests that denitrification may be occurring within the till; previous studies have demonstrated denitrification in Des Moines lobe tills (Simpkins and Parkin, 1993; Parkin and Simpkins, 1995). Phosphorus, though present at depth, particularly in Cromwell, is likely geologic rather than anthropogenic in origin.

The conceptual modeling demonstrates the importance of having accurate information, about the hydrogeologic setting (particularly about the vertical hydraulic conductivity of overlying till, the areal extent of the buried aquifer, and the lateral connectivity of the buried aquifer to other aquifers) when evaluating the sustainability of pumping water from confined aquifer systems. Over long periods of time, pumping-induced hydraulic gradients can be established in buried aquifer systems and, even in low hydraulic conductivity tills, these gradients could induce flow that affects surface-water resources. The source of water entering a buried aquifer that is being pumped can be highly variable, depending on the overlying till vertical hydraulic conductivities and the lateral connectivity of buried aquifer to adjacent till and aquifers. A sensitivity analysis demonstrated that the simulation of the source of water to wells is most sensitive to the vertical hydraulic conductivity of the overlying till, the areal extent of the aquifer, and the connectivity of the horizontal hydraulic conductivity of geologic materials adjacent to the aquifer.

Project Results Use and Dissemination

As the result of this project, 4 publications were produced and 1 in preparation. A total of 9 presentations were given to audiences; 5 presentations at professional meetings and 4 public presentations.

Date of Report: August 11, 2017 Final Report Date of Work Plan Approval: June 4, 2014 Project Completion Date: June 30, 2017 Does this submission include an amendment request? No

PROJECT TITLE: Protection of State's Confined Drinking Water Aquifers

Project Manager: Jared Trost Organization: U. S. Geological Survey Mailing Address: 2280 Woodale Drive City/State/Zip Code: Mounds View, MN 55112 Telephone Number: (763) 783-3205 Email Address: jtrost@usgs.gov Web Address: http://mn.water.usgs.gov/index.html

Location: Statewide

Total ENRTF Project Budget:

ENRTF Appropriation:	\$394,000.00
Amount Spent:	\$393,600.21
Balance:	\$ 399.79

Legal Citation: M.L. 2014, Chp. 226, Sec. 2, Subd. 03h

Appropriation Language:

\$394,000 the second year is from the trust fund to the Commissioner of Natural Resources for an agreement with the United States Geological Survey to test methods of defining properties of confined drinking water aquifers in order to improve water management. This appropriation is available until June 30, 2017, by which time the project must be completed and final products delivered.

I. PROJECT TITLE: Protecting the State's Confined Drinking-Water Aquifers

II.PROJECT STATEMENT: Many glacial aquifers in Minnesota, used as sources of drinking water, are overlain by clayey glacial deposits (confining units, see figures). These confined aquifers are critical state resources because they provide the only sources of clean, reliable drinking water to tens of thousands of urban and outstate residents of Minnesota. The confining units overlaying confined aquifers are a vitally important part of aquifer systems because they form protective barriers for the confined aquifers, so replenishing water in confining units also, however, limit water flow (infiltration) to confined aquifers, so replenishing water in confining units to ensure sustainable use of water from these important drinking-water aquifers. This project will assess hydraulic properties of the state's two major regional glacial confining units. The overall project is a collaborative effort among the U. S. Geological Survey (USGS), the Minnesota Geological Survey (MGS), and the Minnesota Department of Natural Resources, and the Minnesota Department of Health (MDH). It augments work completed by the County Geologic Atlas Program. The effort will help to answer important questions about confining units and confined aquifers, including:

- What are the pathways for water and contaminant movement through glacial confining units?
- What is the source of water replenishing glacial confined aquifers?
- How long does it take water to move along the flow pathways?
- How much water infiltrates into and recharges glacial aquifers?
- What are best estimates of long-term sustainable pumping from confined glacial aquifers used as sources of drinking water?
- How do properties of glacial confining units vary across the state?

<u>Problem:</u> Confined glacial aquifers provide water to many residents in Minnesota. An important factor affecting the long-term sustainable availability of water from these aquifers is infiltration through overlying glacial till confining units. Few data exist, however, on the vertical hydraulic properties and infiltration rates through till. The lack of detailed infiltration and hydraulic data hinders the state's efforts to define the sustainability of confined aquifers. There is also a need to understand the regional variability of the properties of confining units by mapping existing and newly collected data across the state.

It is important to protect confined drinking-water aquifers from non-sustainable over-pumping. To accomplish the goal of long-term sustainability, the sources, rates and quality of water infiltrating into confined aquifers must be understood. An important factor defining sustainable water use from confined aquifers is the rate of water movement (infiltration) through overlying confining units that replenish confined drinking-water aquifers. We currently lack information about infiltration to confined aquifers because infiltration depends upon the hydraulic properties of the overlying confining units. Infiltration- rate information is needed to manage confined aquifers so that they are protected for the future. Although the MGS and MDNR have an active County Geologic Atlas Program, which maps the extent and thickness of protective confining units. Filling this gap in understanding is also required for the MDNR water appropriation-permit process to ensure long-term sustainability of water supply from confined aquifers. This project contributes toward filling that gap in information by providing detailed site-specific data about the confining units at two study sites that represent the state's most important confining units-the Des Moines and Superior lobe till deposits (see figures). Direct field measurements will provide information needed to estimate the water-bearing and water-transmitting characteristics of these aquifers.

It also is important to protect confined drinking-water aquifers from contamination. The quality of water in confined aquifers is presumed to be protected by overlying confining beds. Confining units comprised of till are assumed to provide protection to confined groundwater supplies because infiltration water passes more slowly through these confining units than through surficial sand-and-gravel aquifers. Because of the increased transport time and reduced infiltration through till, however, water that was contaminated, say 20 years ago, may not have

yet reached underlying confined drift aquifers. Thus, there may be a delayed adverse response from human activities on groundwater quality Scattered and isolated information suggests that groundwater and contaminants can flow from land surface through confining units to confined aquifers at varying rates and there is a critical need to understand how confining units protect the water quality of confined aquifers. These concerns identify our need to better understand the state's two important confining units.

<u>Benefits:</u> Information on the spatial variability of hydraulic properties and groundwater infiltration rates through till is necessary to plan for long-term water sustainability. In addition, this information to accurately evaluate contributing areas for wells completed in confined-drift aquifers are essential for the MDH's wellhead protection program because delineating and protection of these contributing areas is more complex for confined aquifers than for unconfined aquifers. Accurate simulation of infiltration through glacial till also is a critical component for calibration of groundwater flow models. Because accurate estimates of infiltration rates are lacking, model analyses must largely rely on inferred data or results of laboratory tests.

The proposed study will increase the Minnesota Department of Natural Resources understanding of the role of till confining units in water supply and the hydrologic cycle, resulting in more appropriate management decisions in glacial drift areas. Results from the specific data-collection sites will be regionalized such that results will be beneficial in other areas of this state where data are lacking. The Minnesota Pollution Control Agency will benefit from the study by gaining a better understanding of the vulnerability and susceptibility of confined drift aquifers to contamination. By obtaining a better understanding of infiltration through glacial till, the Twin Cities Metropolitan Council, Minnesota Pollution Control Agency (MPCA), and environmental consultant firms will be able to more accurately simulate groundwater movement in confined aquifers. Study results will provide the MGS, colleges, and universities with basic knowledge important to educating the public on basic science. Local water utilities, where the individual hydraulic tests will be conducted, will benefit directly from results of this study. By comparing various methods of estimating groundwater leakage, study results will be beneficial to future USGS studies of recharge and infiltration through confining units in other areas of the state and the country.

<u>Scope and Objectives:</u> This project will estimate the hydraulic properties and map the continuity of the state's most important confining units--the Des Moines and Superior lobe confining units. The approach involves conducting two detailed field studies in areas representing each of these confining unit types. Study sites will be selected in areas with existing high-capacity pumping wells (likely municipal-supply wells) to understand how pumping stress affects water movement. Scientific bore holes will be completed in the confining units and into the underlying confined aquifers. Field analyses will include hydraulic, geophysical and chemical tests. These tests may include multi-well aquifer tests, single-well pump tests, geophysical logging (e.g. gamma, temperature, fluid resistivity measurements) and measures of water chemistry.

The location of the two sites has yet to be determined. Site selection and access permission will be a significant part of this study and will take place when the study begins. Study- site selection will be a collaborative effort with the Minnesota Department of Natural Resources, the Minnesota Geological Survey, and the Minnesota Department of Health. Study sites will be located near appropriate municipal production wells in areas with approved wellhead protection plans.

The objectives of the study are as follows:

- 1. Explore available information to select appropriate study sites representing the primary glacial confining units in the state
- 2. Quantify the variability of hydrologic properties and infiltration through glacial confining units at two representative sites in Minnesota

III. PROJECT STATUS UPDATES:

Project Status as of December 31, 2014:

A detailed project work plan and budget were prepared and approved by the LCCMR. A USGS technical project proposal was prepared, reviewed and approved. A contract for technical assistance from the Minnesota Geological Survey was prepared. A Joint Funding Agreement was prepared and reviewed by USGS Headquarters and by the Minnesota Department of Natural Resources. A decision was made to contract with the USGS drilling group for test drilling and well installation. Meetings were held with staff from the Minnesota Geological Survey, the Minnesota Department of Health and the Minnesota Department of Natural Resources to discuss selection criteria for test sites. Limited costs were incurred during this period. The funding agreement with the Minnesota Department of Natural Resources was not signed until on November 4, 2014. Considerable, off-budget, time was spent in assessing potential study sites, sites based on information in well-head protection documents provided by the Minnesota Department of Health. Minnesota Department of Natural Resources staff assisted in technical evaluation of potential sites.

Amendment Request (12/31/2014)

This request includes a reduction in the budgets intended as contract-project support to the Minnesota Geological Survey (MGS). The MGS is unable to provide the level of support originally requested. Some of the work intended to be provided by the MGS will need to be accomplished by staff from the USGS. The changes include:

- Budget reduction from \$60,000 to \$30,000 for MGS contract staff support and a corresponding increase in USGS staff salary support.
- Change in contract support for the MGS for in-state travel, from \$5000 to \$2,500 and a corresponding increase for in-state travel for USGS staff.
- Change contract support for the MGS for supplies and analytical costs from \$1,000 to zero and a corresponding increase for equipment and supplies for the USGS.

Request approved by the LCCMR January 5, 2015

Project Status as of June 30, 2015:

A contract was awarded to the Minnesota Geological Survey (MGS) for technical assistance and for geological interpretation. A Joint Funding Agreement was approved by USGS Headquarters and by the Minnesota Department of Natural Resources. An agreement was completed to contract with the USGS drilling group (California Water Science Center) for test drilling and well installation because of the specialized nature of the drilling required. Study sites were selected in Litchfield and Cromwell, Minnesota and site permissions were obtained for access. Meetings were held with staff from the MGS, the Minnesota Department of Health and the Minnesota Department of Natural Resources to plan for data collection at each of the sites. Drilling and field instrumentation began in early June. However, limited cost have been billed to the project as of the date of this report.

A second-phase proposal was submitted as part of the 2016 LCCMR proposal process. The second phase would add to additional sites to the overall study. A total of four sites has been considered adequate to cover the variability of hydrologic conditions across the state. This was noted in the 2014 proposal. The second phase study would be similar to the current study but at 2 different site locations.

Amendment Request (6/30/2015)

This request eliminates objective 3 of the study. The objective is being eliminated because the Minnesota Department of Natural Resources (MDNR) was unable to fund the effort. There were no Trust Funds included in the work outlined under objective 3. This objective was to be completed with funding the MDNR and the USGS. Objective 3 was as follows:

• Develop a database of hydraulic information for till confining units throughout Minnesota.

Project Status as of December 31, 2015:

Well and piezometer installations were completed by the USGS Western Drilling Program crew. Wells and piezometers have been developed and finished. The sites are located near Litchfield and near Cromwell. In all, 19 well or piezometers, were completed. The Litchfield site is in a part of the state where Des Moines lobe glacial till is the principal glacial confining unit. The Cromwell site is located where the Superior lobe glacial till is the principal confining unit. Small-diameter observation well clusters, or piezometers, were installed in the confined-drift aquifers, the confining units overlying the confined aquifers, and in the surficial unconfined-drift aquifers. One well cluster, at each study site, is located in close proximity to the municipal water-supply well. The second of the well-cluster locations, at each study site, is located at some distance from the municipal-supply wells. Pressure transducers were installed in selected observation wells and piezometers to continuously measure water levels and hydraulic heads. Hydraulic, geochemical and hydraulic testing of soils and soil water is completed. These tests are being analyzed to determine geologic and hydraulic properties of the aquifers and confining beds.

Amendment Request (12/30/15)

- 1. This request further reduces the budget intended as contract support from the Minnesota Geological Survey (MGS). It includes reductions in both staff time and travel expense for MGS staff. This request reduces the amount of financial support planned to be provided by MGS staff and increases the budget for USGS travel and for analysis of groundwater samples at USGS contract labs. The change is requested because MGS staff were unable to schedule staff during some field activities due to the changing schedules of contract drill crews. USGS staff completed field work planned to have been done by MGS staff. These conflicts could not be avoided and were worked out successfully among MGS and USGS staff. The remaining tasks assigned to MGS for this project can be completed under the current contract with the University of Minnesota (MGS) and within this amended request. These changes result in a budget reduction from \$30,000 for MGS contract staff support to \$14,985. The funds were used to increase the travel budget by \$6,815, and \$8,200 was allocated for lab analytical expenses. The MGS travel contract for \$2,500 was also reduced to \$0; these funds were re-allocated for supplies.
- 2. Under activity 2, we stated that "Time of travel tests will be determined by conducting a tracer test. A conservative tracer such as potassium bromide will be applied within boreholes and monitored in underlying observation wells to evaluate infiltration rates." A tracer test will not be done for two reasons: (1) Preliminary analyses of slug test and groundwater chemistry data indicate that the travel times for an added tracer across the confining beds will be years longer than the project period and (2) we are already employing multiple methods to estimate the infiltration rates across the confining beds (modeling, analytical techniques, environmental tracers) and the tracer test would not not yield new information substantially different from what we will obtain from our other methods. This change does not require a change in the budget.
- 3. Personnel FTE and costs have been updated in the budget summary and workplan budget spreadsheet.

Amendment approved by LCCMR 1-25-2016

Amendment Request (5/24/16)

- 1. This request reduces the budget for contract support from the Minnesota Geological Survey (MGS) by \$1,472.85 for a new total of \$13,512.15. The MGS completed their data analysis and provided a report summarizing the results. They have issued their final invoice and completed their tasks for less than the budget established in the last amendment request. These funds were re-allocated to supplies.
- 2. Under activity 2, we state "A USGS Scientific Investigations Report will be published." In support of this publication effort, a budget of \$9,000 was allocated for contract printing (expenses related to the production of the publication through USGS contract publishers). We are now confident that phase 2 of

this project will be funded and it will be more cost effective to publish just one report that summarizes the results from the phase 1 and phase 2 projects. The field methods and project design is the same for phase 1 and phase 2. As part of phase 1, we will still produce a draft report that summarizes the phase 1 results, but we will not incur the \$9,000 publishing cost. The phase 2 project workplan has budget to cover the publication production expenses. Most of the \$9,000 will be re-allocated for hiring a contractor to abandon the wells and piezometers installed during activity 1 (\$8,000). The expenses for well installation took the entire contract drilling budget and so additional funds are necessary to abandon the wells and piezometers according to Minnesota Department of Health code. The remaining \$1,000 will be used for supplies.

- 3. The cost of the transducers required for Activity 1 will be more than anticipated and the expense is incorrectly budgeted in Activity 2 rather than Activity 1. The following changes are requested: Increase the activity 1 Equipment/Tools/Supplies budget to \$24,311.42, decrease the activity 2 Equipment/Tools/Supplies budget to \$2,118.56.
- 4. The cost of consumable supplies and shipping was less than anticipated for activity 1 and can be reduced to \$742.53. The cost of consumable supplies and shipping in support of water quality sampling for activity 2 will require more funds than are budgeted now; it is requested that this budget be increased to \$1,500.
- 5. The laboratory costs for water quality analyses as part of phase 2 will be lower than originally budgeted; it is requested that the budget be reduced from \$8,200 to \$4,500. The Minnesota Department of Health and Iowa State University will be paying for some analyses from their own funds and the planned analyte list has changed from when the budget was developed. The new analytes are better suited to fulfill the objectives of this project. The funds will be re-allocated to supplies.
- 6. The timeline of several tasks have been adjusted to reflect the current deadlines.

Amendment approved by LCCMR 5-26-2016

Project Status as of June 30, 2016

The Minnesota Geological Survey completed their analysis and interpretation of the geologic samples collected during the drilling at the Litchfield and Cromwell sites. They have summarized their results in a report titled "Core Descriptions and Borehole Geophysics in Support of USGS Hydrologic Properties of Till Investigation, Litchfield and Cromwell, Minnesota". The report is available here:

ftp://mgsftp2.mngs.umn.edu/pub4/outgoing/MGS_report_in_support_of_USGS_till_study_Phase_I.pdf. Continuous and discrete water level data were collected throughout the last reporting period. Groundwater samples were collected from 19 of the newly installed wells and piezometers in May 2016. These samples are presently being analyzed at the USGS National Water Quality Laboratory and the University of Waterloo Isotope Laboratory. Slug tests were completed in all 19 wells and piezometers. Aquifer hydrologic properties were quantified with analyses of slug test data. A draft report of the slug test analyses is complete and is in the USGS review process.

Project Status as of December 30, 2016

All water quality data from the sampling in May has been reviewed and approved.

Progress has been made on several of the final report products that will result from this project. The slug test report, which summarizes the hydrologic properties surrounding each of the 19 wells installed as part of this project, is still in the USGS review process. Alyssa Witt has written substantial portions of her thesis. This thesis summarizes the field drilling and sampling methods, the lab analytical methods, the properties of the geological materials determined from slug tests, pore-water chemistry, and groundwater chemistry. These data are being used to get point estimates of recharge rates through till and the susceptibility of the confined aquifers to human activities at the land surface. The thesis will comprise part of the final report from this project. The final report will also compare the point field observations with a MODFLOW groundwater flow model of each site. The model serves to test hypotheses about the variability of till properties. The models for the Litchfield and

Cromwell sites have been constructed based on the best available hydrologeologic information. They are now in the process of being refined and calibrated to reproduce observed field data.

Amendment Request (6/30/17)

- This amendment is to increase the budget for well abandonment and activity 2 salary and decrease budgets for all other categories with remaining funds. The well abandonment cost is more than anticipated and the budget needs to be increased from \$8,000 to \$12,269.25 to seal the wells according to Minnesota well codes. Well abandonment is part of the activity 2 contract drilling, so we request that the activity 2 contract drilling budget be increased from \$24,000 to \$24,269.25.
- All purchases of equipment, tools, and supplies have been completed and no more funds are needed for these expenses. We request that the activity 1 equipment budget be reduced from \$24,311.76 to \$24,163.09 and the activity 2 equipment budget be reduced from \$2,118.56 to \$0.00
- 3. All lab analyses have been completed and no more funds are needed for these expenses. We request that the activity 2 lab analysis budget be reduced from \$4,500 to \$3,813.62.
- 4. All travel is completed for activity 2 and the budgeted amount is more than the expenditures since the last billing period. We request that the activity 2 travel budget be reduced from \$10,315 to \$8,899.65.
- 5. Activity 2 USGS miscellaneous expenses were lower than estimated. We request that the activity 2 miscellaneous budget be reduced from \$1,500 to \$1,199.92.
- 6. After all of these budget adjustments, an additional \$399.79 remained to be re-allocated. We request that these funds be allocated to salary for hydrologic technicians.

Amendment approved by LCCMR 7-12-2017. Item 6 was not approved.

Project Status as of June 30, 2017

Alyssa Witt successfully defended her thesis, which is now in the process of being converted to a USGS Scientific Investigations Report. The Litchfield and Cromwell models are still undergoing calibration to reproduce field data. The review of the slug test report is on hold until field data from phase 2 is added.

Overall Project Outcomes and Results

Confined (or buried) aquifers overlain by till confining units provide drinking water to thousands of Minnesota residents. These till confining units are typically conceptualized as having very low potential for transmitting water. Thus, buried aquifers are thought to be less susceptible to surface contamination, but may recharge very slowly and may be prone to unsustainable groundwater withdrawals. This study was completed to give insight to the susceptibility and sustainability of the groundwater resources being withdrawn from confined aquifer systems in Minnesota. A combination of hydrologic field measurements, geochemical analyses, and modeling techniques were used to quantify the variability of hydrologic properties and flux of water through till confining units to buried aquifers at two representative sites in Minnesota. Glacial deposits of the Des Moines Lobe were characterized in Litchfield, Minnesota and glacial deposits of the Superior Lobe were characterized in Cromwell, Minnesota.

A conceptual understanding emerges from the field measurements at the two sites that till "layers" in the glacial deposits of the Des Moines and Superior Lobes in Minnesota are not really continuous layers, but rather a complex series of sediment mixtures with differing abilities to transmit water. The hydrologic field measurements and geochemical analysis demonstrated large variations in till confining unit properties over relatively small vertical and horizontal distances, underscoring the challenges of assessing the susceptibility and sustainability of groundwater resources in confined aquifer systems. The observations at the Litchfield site indicate that only limited portions of tills are aquitards that limit water flow and susceptibility to contamination for long periods of time. The till sequence at well nest LFO2 contained a zone of very low hydraulic conductivity whereas the till sequence at well nest LFO1, only about a 0.5 mi away from LFO2, lacked a such a feature. The estimated vertical travel time between the two sites differs by three orders of magnitude, from about 2 years to over 1,000 years. The LFO1 site had evidence of recent anthropogenic inputs to the buried aquifer whereas no evidence of anthropogenic inputs was observed at LFO2. The aquifer test, which measured hydrologic conductivity of a much larger volume than the slug tests, demonstrates that the average ability of the till to transmit water lies between the two extremes observed at LFO1 and LFO2.

Observations at Cromwell also demonstrated a complex sequence of variable till material. An overall upward gradient existed at this site, but gradient directions were variable within the till. The hydraulic gradient data and the ³H data suggest that recharge to the buried aquifer enters the system somewhere up-gradient in the same buried aquifer system or perhaps through a window through the overlying till confining unit where the hydraulic gradient in the till is downward. This suggests that the till sequence we observed near the water supply well may have little direct influence on the quality and quantity of water at Cromwell. Rather, the anthropogenic activities and geologic materials at a distal recharge area (yet to be defined) may affect the water observed in the buried aquifer at the Cromwell site. The relatively high hydraulic conductivity estimates of the till and the similarity in water-level patterns observed throughout the Cromwell profile suggest there is no aquitard layer present like that at LFO2.

Many waters in Minnesota are under threat of nutrient contamination from anthropogenic activities such as row-crop agriculture. This study provided some evidence that till confining units may be effective at reducing the susceptibility of buried aquifers to nitrate contamination, but may be a source of phosphorus. Data from Litchfield show that chloride is present in elevated concentrations where nitrate is not, despite abundant agriculture in the surrounding area. This suggests that denitrification may be occurring within the till; previous studies have demonstrated denitrification in Des Moines lobe tills (Simpkins and Parkin, 1993; Parkin and Simpkins, 1995). Phosphorus, though present at depth, particularly in Cromwell, is likely geologic rather than anthropogenic in origin.

The conceptual modeling demonstrates the importance of having accurate information, about the hydrogeologic setting (particularly about the vertical hydraulic conductivity of overlying till, the areal extent of the buried aquifer, and the lateral connectivity of the buried aquifer to other aquifers) when evaluating the sustainability of pumping water from confined aquifer systems. Over long periods of time, pumping-induced hydraulic gradients can be established in buried aquifer systems and, even in low hydraulic conductivity tills, these gradients could induce flow that affects surface-water resources. The source of water entering a buried aquifer that is being pumped can be highly variable, depending on the overlying till vertical hydraulic conductivities and the lateral connectivity of buried aquifer to adjacent till and aquifers. A sensitivity analysis demonstrated that the simulation of the source of water to wells is most sensitive to the vertical hydraulic conductivity of the overlying till, the areal extent of the aquifer, and the connectivity of the horizontal hydraulic conductivity of geologic materials adjacent to the aquifer.

IV. PROJECT ACTIVITIES AND OUTCOMES:

ACTIVITY 1: Select sites for detailed study that represent the primary glacial confining units in the state. Construct scientific boreholes and testing

Description: Two field study sites will be selected for detailed hydrologic investigation. One site will be located in a part of the state where Des Moines lobe glacial till is the principal glacial confining unit. The second site will be located where the Superior lobe glacial till is the principal confining unit. Study sites will be identified and selected in consultation with staff from the Minnesota Departments of Health and Natural Resources and the Minnesota Geological Survey. Study sites will be located near municipal water-supply wells that pump from confined glacial-drift aquifers where well-head protection plans have been approved by the Minnesota Department of Health. At both study sites small-diameter observation well clusters, or piezometers, will be installed in the confined-drift aquifer, the confining unit overlying the confined aquifer, and in the surficial unconfined-drift aquifer. Two well- nest installations will be located at each of the two study sites. One well cluster, at each study site, will be located in close proximity to the municipal water-supply well. The second of the well-cluster location, at each study site, will be located at some distance from the municipal-supply wells. The exact locations of the well nests will be determined, after the study sites are selected, based on local site and access conditions and on results of preliminary groundwater modeling simulation of local groundwater pumping and hydrologic settings. Observation wells (completed in aquifers) and piezometers (completed in confining units) will be planned and sited during the first six months of the study. They will be installed in the spring of 2015. Observation wells and piezometers will be installed in scientific boreholes after geophysical testing of the boreholes is completed. Pressure transducers will be installed in each of the observation wells and piezometers to continuously measure water levels and hydraulic head over the duration of the study. The identification and siting of study sites and well-nest locations will involve a considerable amount of time and effort to ensure that the sites represent conditions typical for the primary confining units of the state.

(As of December 30, 2016) Summary Budget Information for Activity 1:

ENRTF Budget:	\$240,398.62
Amount Spent:	\$240,398.62
Balance:	\$ 0.00

Activity Completion Date: September 2015

Outcome	Completion Date	Budget
1. Locate appropriate test sites near existing high-capacity municipal	October 2014	\$7,553
pumping wells. Sites will be selected based on input from the MGS,		
MDNR and MDH. Selection will be from municipal wells with well-		
head protection plans in place and based on evaluation of local		
geological conditions.		
2. Obtain site access and site-use permission. Obtain drilling permits	December 2014	\$ 5,000
and well variances if needed. Meet with city officials. Travel and		
reconnaissance of potential sites.		
3. Install boreholes and instrument sites for hydraulic, geophysical	June 2016	\$227 <i>,</i> 845.33
and chemical tests to define hydraulic properties of confining units.		
Locate observation well sites. Install wells and using contract driller.		
Conduct geophysical surveys of boreholes. Install pressure		
transducers and water level recording equipment. Much of these		
expenses are associated with contract drilling.		

Activity Status as of December 31, 2014 (Activity 1):

The proposal was selected by the Legislative and Citizens Commission on Minnesota Resources (LCCMR) and recommended for inclusion in a funding bill which passed the Minnesota House and Senate and was signed by Governor Dayton. Detailed project work plans and budgets were prepared and approved by the LCCMR. The USGS technical project proposal was prepared, reviewed by staff from the Minnesota Water Science Center, and reviewed and approved by the USGS Water Science Field Team and the Midwest Region. Project information was documented in the USGS Information Data System. A sole-source justification was prepared for technical assistance from the Minnesota Geological Survey. The funding allocated for the MGS had to be reduced at the request of MGS staff. A Joint Funding Agreement was prepared for review by Headquarters and by the Minnesota Department of Natural Resources. There have been delays in the review and completion of the Joint Funding Agreement and in approval of the sole-source contract.

A decision was made to use the USGS drilling contract group for test drilling and well installation. Meetings were held with staff from the Minnesota Geological Survey, the Minnesota Department of Health and the Minnesota Department of Natural Resources to discuss selection criteria for test sites. A decision was made to locate test sites around existing municipal wells that have prepared wellhead protection plans and in counties that have completed geologic atlases. Based on input from the Minnesota Department of Health, wellhead protection plans were reviewed for 30 municipalities. These were for municipalities having their public supply wells completed in confined-drift aquifers underlying confining units that are comprised of glacial tills having origins from the Superior or Des Moines Glacial lobes. Site information was reviewed that considered the thickness and hydrologic properties of confining units, site conditions and supply-well characteristics. The list was narrowed to 12 municipalities. Jim Berg (MNDNR) assisted with additional analyses that considered the degree of confinement of the aquifers in which the municipal wells were completed, based on stratigraphic analysis and water chemistry (tritium). At this time four sites remain in consideration. These include Buckman, Winsted, Litchfield, and Watertown. This list is being narrowed to two sites based on local site conditions and on information provided by the public water utilities. One site will be located in a part of the state where Des Moines lobe glacial till are the principal glacial confining unit. A second site will be located where the Superior lobe glacial till is the principal confining unit. At both study sites small-diameter observation well clusters, or piezometers, will be installed in the confined aquifer, the confining unit overlying the confined aquifer, and in the surficial unconfined aquifer. Two well- nest installations will be located at each of the two study sites. One well cluster, at each study site, will be located in proximity to the municipal water-supply well. The second wellcluster location, at each study site, will be located at some distance from the municipal-supply wells. The exact locations of the well nests will be determined, after the study sites are selected, based on local site and access conditions and on results of preliminary groundwater modeling simulation of local groundwater pumping and hydrologic settings. Observation wells (completed in aquifers) and piezometers (completed in confining units) will be planned and sited during the next three-month period of the study. They will be installed in the spring of 2015. Observation wells and piezometers will be installed in scientific boreholes after geophysical testing of the boreholes is completed. Pressure transducers will be installed in each of the observation wells and piezometers to continuously measure water levels and hydraulic head over the duration of the study

Limited costs were incurred during this period. The funding agreement, with the Minnesota Department of Natural Resources, was not signed until November 4, 2014. Considerable, off-budget, time was spent is assessing potential sites based on information in well-head protection documents provided by the Minnesota Department of Health. Minnesota Department of Natural Resources staff assisted in technical evaluation of potential sites.

Activity Status as of June 30, 2015 (Activity 1):

The USGS technical project proposal was approved by the USGS Water Science Field Team and the USGS Midwest Region. Project information was documented in the USGS Information Data System. A contract for technical assistance from the Minnesota Geological Survey was awarded. A Joint Funding Agreement was approved but USGS Headquarters and by the Minnesota Department of Natural Resources.

A decision was made to use the USGS drilling contract group from the California Water Science Center because of the technical nature of drilling services required for this project. Meetings continued to be held with staff from the Minnesota Geological Survey, the Minnesota Department of Health and the Minnesota Department of Natural Resources to complete selection of test-site locations. Based on input from the Minnesota Department of Health, wellhead protection plans were reviewed for 30 municipalities. These were for municipalities having their public supply wells completed in confined-drift aquifers underlying confining units that are comprised of glacial tills having origins from the Superior or Des Moines Glacial lobes. Site information was reviewed that considered the thickness and hydrologic properties of confining units, site conditions and supply-well characteristics.

Two field study sites were selected for detailed hydrologic investigation. One site is located in a part of the state where Des Moines lobe glacial till is the principal glacial confining unit (Litchfield). The second site (Cromwell) is located where the Superior lobe glacial till is the principal confining unit. At both study sites small-diameter observation well clusters, or piezometers, are being installed in the confined-drift aquifer, the confining unit overlying the confined aquifer, and in the surficial unconfined-drift aquifer. Two well-nest installations are located at each of the two study sites if funding allows. One well cluster, at each study site, will be located in close proximity to the municipal water-supply well. The second of the well-cluster location, at each study site, will be located at some distance from the municipal-supply wells. The exact locations and numbers of well nests is being determined, based on local site and access conditions, drilling costs, and on analysis of local groundwater pumping and hydrologic settings. Observation wells (completed in aquifers) and piezometers (completed in confining units) are being installed at this time. Work at Litchfield is completed. Wells and piezometers to continuously measure transducers will be installed in each of the observation wells and piezometers to continuously measure water levels and hydraulic head over the duration of the study. The identification and siting of study sites and well-nest locations involved a considerable amount of time and effort to ensure that the sites represent conditions typical for the primary confining units of the state.

Proposal submitted for phase two: A second-phase proposal was submitted as part of the 2016 LCCMR proposal process. The second phase would add two additional sites to the overall study. A total of four sites is considered adequate to cover the variability of hydrologic conditions across the state. The second phase also allowed our staff to demonstrate that the study approach was feasible during the first phase of the project. This was noted in the 2014 proposal. The second phase study would be similar to the current study but at 2 different site locations. The following test is extracted from the 2014 work plan: "Project Impact and Long-term Strategy: C. Long-Term Strategy and Future Funding Needs: Based on successful completion of this project, additional funding may be requested to supplement and to enhance data and information from this project."

Activity Status as of December 31, 2015

Well and piezometer installations were completed by the USGS Western Drilling Program crew. Wells and piezometers have been developed and completed. In all, 19 well or piezometers, were completed. The Litchfield site is in a part of the state where Des Moines lobe glacial till is the principal glacial confining unit. The Cromwell site is located where the Superior lobe glacial till is the principal confining unit. Small-diameter observation well clusters, or piezometers, were installed in the confined-drift aquifers, the confining units overlying the confined aquifers, and in the surficial unconfined-drift aquifers. One well cluster, at each study site, is located in close proximity to the municipal water-supply well. The second of the well-cluster locations, at each study site, is located at some distance from the municipal-supply wells. Pressure transducers were installed in selected observation wells and piezometers to continuously measure water levels and hydraulic heads.

Activity Status as of June 30, 2016

The necessary data documentation and data processing routines were established within USGS databases and related software. These tasks enable continuous water level data storage, quality assurance, and public availability according to USGS policies. The transducer sites were visited in January and April to download data stored on transducers and to field calibrate transducers. Water level data for the Litchfield site are available here: <u>http://groundwaterwatch.usgs.gov/countymap.asp?sa=MN&cc=093</u> Water level data for the Cromwell site are available here: <u>http://groundwaterwatch.usgs.gov/countymap.asp?sa=MN&cc=017</u> Several wells at the Cromwell site had to be re-surveyed because its protective casing heaved due to frost. Survey showed actual well measuring points had moved very little. Phase 1 tasks are complete.

Activity Status as of December 30, 2016

The transducer sites were visited in October to download data stored on transducers and to field calibrate transducers. Water level data for the Litchfield site are available here: <u>http://groundwaterwatch.usgs.gov/countymap.asp?sa=MN&cc=093</u> Water level data for the Cromwell site are available here: <u>http://groundwaterwatch.usgs.gov/countymap.asp?sa=MN&cc=017</u>

Activity Status as of June 30, 2017

The transducer sites were visited in April to download data stored on transducers and to remove the transducers from the wells. Water level data for the Litchfield site are available here: <u>http://groundwaterwatch.usgs.gov/countymap.asp?sa=MN&cc=093</u> Water level data for the Cromwell site are available here: <u>http://groundwaterwatch.usgs.gov/countymap.asp?sa=MN&cc=017</u>

Final Report Summary for Activity 1:

The information within this report has been finalized but remains subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of this information. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Abbreviations used in this report

Br	Bromide
Cl	Chloride
CH ₃ CO ₂	Acetate
F	Fluoride
Fe	Iron
ft	feet
ft/d	Feet per day
gpm	Gallons per minute
³ H	Tritium
HCO ₃	Bicarbonate
K	Hydraulic conductivity or potassium
Kh	Horizontal hydraulic conductivity
Kv	Vertical hydraulic conductivity
m	meter
Mg	Magnesium
MGY	Million gallons per year
mg/L	Milligrams per liter
mi	Mile
Mn	Manganese

Sodium
Ammonia
Nitrite
Nitrate
Nitrogen gas
Phosphorus
Phosphate
Sulfate
Thiosulfate
Tritium units
United States Geological Survey
Delta O-18, a measure of the ratio of stable isotopes oxygen-18 and oxygen-16
Delta H-2, a measure of the ratio of stable isotopes hydrogen-2 and hydrogen-1

Introduction

Confined (or buried) aquifers overlain by till confining units provide drinking water to thousands of Minnesota residents. These till confining units are typically conceptualized as having very low potential for transmitting water. Thus, buried aquifers are thought to be less susceptible to surface contamination, but may recharge very slowly and may be prone to unsustainable groundwater withdrawals. Quantification of the recharge (leakage) rate through till is essential to understanding the long-term sustainability of groundwater pumping from buried aquifers. Buried glacial aquifers are used extensively for water supply in Minnesota. The primary objective of this study was to quantify the variability of hydrologic properties and flux of water through till confining units to buried aquifers at two representative sites in Minnesota using a combination of hydrologic field measurements, geochemical analyses, and modeling techniques. The results of this study give insight to the susceptibility and sustainability of the groundwater resources being withdrawn from confined aquifer systems in Minnesota.

Study Site Selection

In this study, glacial deposits of the Des Moines Lobe and Superior Lobe were characterized in detail at two sites in Minnesota (fig. 1). The Litchfield site lies on Des Moines Lobe deposits in central Minnesota and the Cromwell site lies on Superior Lobe deposits in northeastern Minnesota (fig. 1). These sites were selected to be representative of each major lobe. Several criteria were used to identify potential study locations. To be considered for the study, the sites had to have: (1) a small number of high-capacity pumping wells withdrawing water from a Quaternary buried artesian aquifer (Minnesota Geological Survey aquifer code QBAA); (2) the buried aquifer within 300 feet of land surface; (3) a completed wellhead protection plan (or comparable form of local site hydrogeological characterization); (4) a completed county geologic atlas; and (5) information on the integrity of the high-capacity well construction. Sites meeting these minimum criteria were identified and then municipalities were contacted to gage their willingness in partnering with the USGS in the study. Litchfield and Cromwell met the selection criteria and were willing partners on the study.

Field Study Design and Piezometer Installation

Piezometer "nests" were installed to assess the vertical flux of water and transport of chemicals from land surface to the underlying confined aquifer system. A piezometer nest is a series of

piezometers installed near one another and screened at separate short intervals below land surface. The nest design enables vertically discrete observations throughout the geologic profile from near land surface through the till into the buried aquifer. The nest design has been commonly used to investigate hydrologic properties of tills (for example, Shaw and Hendry, 1998; Simpkins and Parkin, 1993). Two nests were installed at each site, one of which was "near" a municipal pumping center and one which was "far" from a municipal pumping center. However, as described below, the two Cromwell nests were merged into a single nest. The near and far nest design was intended to facilitate aquifer test analyses.

Two piezometer nests were established at the Litchfield site, LFO1 and LFO2. LFO1 consisted of five piezometers and was located approximately 1,500 feet from the nearest municipal pumping well. LFO2 consisted of six piezometers and was located within the city municipal well field and was approximately 500 feet from the nearest municipal well (fig. 2). Two piezometer nests were established at the Cromwell site, CWO1 and CWO2. CWO1 consisted of five piezometers and was located approximately 50 feet from the nearest municipal pumping well. CWO2 consisted of three piezometers and was located approximately 150 feet from CWO1 and the nearest municipal pumping well (fig. 3). CWO1 and CWO2 contain piezometers that are sequential in depth and are within 150 feet (ft) of each other so they will be referred to as one nest, CWO1/2, when discussing results. A total of 19 piezometers were installed between the three nests.

A hollow-stem auger rig was used for sediment core collection and installation of piezometers at nests LFO1, LFO2, and CWO2. Hollow stem methods are commonly used for till investigations because sediment core samples can be collected during drilling and drilling fluids, which could contaminant the till formation, are not required (Shaw and Hendry, 1998; Simpkins and Bradbury, 1992). Sediment core samples were collected into acetate liners with a cutter head and split core barrel assembly. Rocks in the till greatly slowed down the installation of piezometers at site CWO2, so a mud rotary rig was used to install the three piezometers at CWO1. Completion diagrams for each piezometer nest are shown in figure 4 and construction specifics are given in table 1. All 19 piezometers were developed by pumping to establish a good connection between the well screen and the surrounding geologic materials.

Screened intervals were determined with consideration of the site geology, the vertical distribution of sample points, and the driller's confidence in successful piezometer completion. Lithologic changes and oxidation state were documented from the sediment core samples that were collected during drilling operations. Where lithologic boundaries were encountered, piezometer screens were generally placed directly above the boundary, as recommended by Hart and others (2008). Lithological changes selected for piezometer screen placement were spaced somewhat uniformly within the till units. In some cases, the screened interval was determined by where the drillers were confident that a piezometer completion would be successful.

Geologic Setting

The following is a summary of a detailed report produced during this study (Wagner and Tipping, 2016). Generalized lithologies are presented in figure 4.

Litchfield

At the Litchfield study site, till of the Villard Member of the New Ulm Formation overlies the buried-valley aquifer which is also part of the New Ulm Formation (Wagner and Tipping, 2016). The mean particle-size distribution of the till, determined from two continuous cores sampled typically at four foot intervals, was 49 percent sand, 33 percent silt and 18 percent clay (Wagner and Tipping, 2016). This distribution is very similar to the equivalent Alden Member till of the Dows Formation near Ames, Iowa (Helmke and others, 2005). The New Ulm Till at site LFO1 also had a proportionally greater sand

component in the greater than (>) 2 mm matrix fraction, averaged across all samples, than that which was analyzed from the same formation at LFO2 (Wagner and Tipping, 2016). Sediment of the New Ulm Formation is yellow-brown and oxidized in the upper 15 ft (2.4 meters [m]), and grey brown and unoxidized below this depth. Carbonate clasts and a calcareous matrix are present throughout except in the top 3 ft (0.9 m) of LFO1. Fractures were described in LFO1 and LFO2 cores to depths of approximately 60 and 90 ft (18 and 27 m), respectively. Most lacked iron staining common to fracture surfaces in the equivalent till in Iowa (Helmke and others, 2005). Many may be artifacts of the coring process and subsequent unloading; however, Helmke and others (2005) found that many till fractures that were active in the transport process lacked Fe staining.

Sediment sequences differ between the LFO1 and LFO2 sites. At the LFO1 site, 12 ft (4 m) of fine-grained, sandy and silty deltaic and glaciolacustrine sediment with some gravel occurs above the till. Wagner and Tipping (2016) interpreted this to be a deltaic deposit resulting from a series of meltwater plumes into Glacial Lake Litchfield (Meyer, 2015). The sand and gravel unit is not found at site LFO2, which lies at approximately 25 ft (8 m) higher elevation than LFO1 (Wagner and Tipping, 2016) – apparently too high to be influenced by the glacial lake. The sand and gravel aquifer unit begins at approximately 98 and 117 ft (30 and 36 m) below land surface at LFO1 and LFO2, respectively. Till thickness varies between the two piezometer nests. At nest LFO1 the till is approximately 60 ft (18 m) thick, and at LFO2 it is 115 ft (35 m) thick. The aquifer is approximately 44 ft (13 m) thick at site LFO2 and is underlain by Pre-Wisconsinan till of the Sauk Centre Member of the Lake Henry Formation (Meyer, 2015).

Cromwell

The stratigraphic sequence at the Cromwell study site is more complicated than that at the Litchfield study sites. Core samples were collected at piezometer nest CWO2; however, the high frequency of clasts greater than 2 inches (5 cm) in diameter interfered with the coring process and resulted in the collection of fewer core samples than expected. Core was not retrieved from nest CWO1, and the MGS reconstructed the geology through analysis of downhole gamma ray logs. Two glacigenic units were identified at the Cromwell site. Starting at the land surface, 6 ft (2 m) of silt loam till of the Alborn Member of the Aitkin Formation overlies 20 ft (6 m) of sand and gravel outwash of the Cromwell Formation deposited during the Automba Phase of the Superior Lobe. This unit is likely responsible for the hummocky topography at the site. Below the sand and gravel deposits lies 77 ft (23 m) of sandy loam to loam till with cross-stratified, fine to very coarse sand and gravel layers, which was also likely deposited during the Automba Phase. The buried-valley aquifer below this is a sand and gravel unit within the Cromwell Formation and it is underlain by Paleoproterozoic slate of the Thomson Formation (Boerboom, 2009).

Sediment of both the Cromwell Formation and the Aitkin Formation were both typically reddishbrown and a calcareous matrix was present in the core below 43.5 ft (13.3 m), suggesting a greater depth of leaching than till at the Litchfield study site and a lesser proportion of carbonate clasts. The Cromwell Formation till had a mean particle-size distribution of 57 percent sand, 31 percent silt, and 13 percent clay (Wagner and Tipping, 2016), which is about 8 percent more sand than the New Ulm till. The Aitkin Formation till was not analyzed for particle-size distribution.

ACTIVITY 2: Conduct hydraulic, physical, geophysical and chemical testing of aquifers and confining beds. Analyze data from tests at each of two sites to determine hydraulic and hydrogeological properties of confining beds and aquifers at each of two study locations. **Description:** Activity 2 will be conducted during the second and third years of the study. This activity is focused on defining hydraulic and hydrogeological properties of the state's most important confining units-- the Des Moines and Superior till confining units. The approach is to conduct two detailed field tests-- one each of two areas that represent the principal confining in the state. The field study sites are located adjacent to existing high-capacity municipal pumping wells to observe how pumping stress affects water movement based on properties of the confining units to collect the required data. Field analyses will include hydraulic, geophysical and chemical tests and conceptual groundwater modeling. These tests will include aquifer tests, geophysical logging (e.g. gamma, temperature, and fluid resistivity test for example and measures of water chemistry.

This activity is focused on testing and analyses of local hydraulic and hydrogeological properties to determine infiltration rates and physical properties of confining units and aquifers. Geophysical, geotechnical, isotopic, chemical and hydraulic testing at each site will be conducted. These properties of the confining beds will include infiltration and leakage rates, grain-size and soil texture, vertical and horizontal hydraulic conductivity, and hydrologic storage. Geologic, geophysical and water chemistry samples are being collected from boreholes and observation wells installed for the study. Hydraulic-head data from piezometers and observation wells completed in aquifers and confining beds will be analyzed based on the hydraulic responses to pumping. Water levels will be measured continuously in all observations wells using pressure transducers and data loggers. Vertical hydraulic conductivity and infiltration rates will be estimated for the confining units based on analytical techniques and on results from hydrologic models at each of the sites, under pumping conditions measured in underlying and overlying aquifers. Laboratory permeability tests also will be used to evaluate spatial variability in permeability. The rates of infiltration to confined aquifers also will be determined using environmental tracers such as chlorofluorocarbons, sulfur hexafluoride, or tritium by measuring vertical profiles of these environmental tracer concentrations through the confining units. The average rates of infiltration also will be computed based on the vertical gradient of water movement through the confining unit. Site-scale groundwater flow models will be used to simulate individual hydraulic tests and to test hypotheses regarding recharge through till. A draft USGS Scientific Investigations Report will be prepared and interim results will be presented in a final report to the LCCMR. The draft will go through the colleague and editorial review processes after the results from phase 2 of the project (project titled "Protection of State's Confined Drinking Water Aquifers -Phase II", funded in M. L. 2016) are available to be incorporated into the draft report. A USGS Scientific Investigations Report summarizing both phases of the project will be published in 2019.

Summary Budget Information for Activity 2: (December 30, 2016) ENRTF Budget: \$153,601.38
---	------------------------------

|--|

Balance: \$ 399.79

Activity Completion Date: September 2017

Outcome	Completion Date	Budget
1. Conduct hydraulic, geotechnical, geophysical and isotopic tests at	June 2016	\$ 70,332.42
each study site. Extensive field testing of geologic deposits. Water		
sampling. Hydraulic testing of aquifer responses to pumping. These		
tests are focused on determining hydraulic properties of geologic		
strata.		
2. Analyze and interpret tests, define hydraulic properties and	December 2016	\$ 30,000
infiltration rates at each study site		
3. Conduct conceptual groundwater modeling of pumping responses.	April 2017	\$ 25,000
This work will further quantify aquifer and confining bed properties.		
4 Report on results. Prepare draft report.	June 2017	\$ 16,000

May 2017

Activity Status as of December 31, 2014: No activity during this period.

Activity Status as of June 30, 2015

No activity during this period.

Activity Status as of December 31, 2015

Well and piezometer installations were completed by the USGS Western Drilling Program crew. Small-diameter observation well clusters, or piezometers, were installed in the confined-drift aquifers, the confining units overlying the confined aquifers, and in the surficial unconfined-drift aquifers. One well cluster, at each study site, is located in close proximity to the municipal water-supply well. The second of the well-cluster locations, at each study site, is located at some distance from the municipal-supply wells. Pressure transducers are being installed in selected observation wells and piezometers to continuously measure water levels and hydraulic heads. Hydraulic, geochemical and hydraulic testing of soils and soil water was completed. These tests will be used to determine geologic and hydraulic properties of the aquifers and confining beds.

Activity Status as of June 30, 2016

The Minnesota Geological Survey completed their analysis and interpretation of the geologic samples collected during the drilling at the Litchfield and Cromwell sites. They have summarized their results in a report titled "Core Descriptions and Borehole Geophysics in Support of USGS Hydrologic Properties of Till Investigation, Litchfield and Cromwell, Minnesota". The report is available here: ftp://mgsftp2.mngs.umn.edu/pub4/outgoing/MGS report in support of USGS till study Phase I.pdf.

Groundwater samples to be analyzed for major ions, nitrate, nitrite, ammonia, total phosphorus, and tritium content were collected from 14 wells and piezometers installed as part of this project; 8 at the Cromwell site and 8 at the Litchfield site. The 5 remaining wells and piezometers at the Litchfield site were also sampled, but will only be analyzed for tritium content. One duplicate sample and one blank sample were collected for quality assurance purposes.

Slug tests were completed in all 19 wells and piezometers installed as part of this project. During a slug test, an instantaneous change of water level is induced. As the water level returns back to the static condition, water levels are monitored through time to determine the near-well aquifer hydraulic conductivity. Field slug test data were analyzed using the Springer-Gelhar, KGS, or Butler methods. The AQTESOLV Program, version 4.5 was used to determine the best fit model to the water-level displacement versus time data for each well. A draft report of the slug test analyses is complete and is in the USGS review process.

Activity Status as of December 30, 2016

All water quality data from the sampling in May has been reviewed and approved.

Progress has been made on several of the final report products that will result from this project. The slug test report, which summarizes the hydrologic properties surrounding each of the 19 wells installed as part of this project, is still in the USGS review process. Alyssa Witt has written substantial portions of her thesis. This thesis summarizes the field drilling and sampling methods, the lab analytical methods, the properties of the geological materials determined from slug tests, pore-water chemistry, and groundwater chemistry. These data are being

used to get point estimates of recharge rates through till and the susceptibility of the confined aquifers to human activities at the land surface. The thesis will comprise part of the final report from this project. The final report will also compare the point field observations with a MODFLOW groundwater flow model of each site. The model serves to test hypotheses about the variability of till properties. The models for the Litchfield and Cromwell sites have been constructed based on the best available hydrogeologic information. They are now in the process of being refined and calibrated to reproduce observed field data.

A draft purchasing agreement has been developed that enables the USGS to use a contract driller, licensed in Minnesota, to seal the 19 wells installed during this project.

Activity Status as of June 30, 2017

The Minnesota Department of Health has deployed transducers in the piezometers in Litchfield and Cromwell and is currently working to conduct a pump test in each of their aquifers. Tests results will be analyzed and incorporated into the modeling efforts for each location. After the completion of the pump tests, all piezometers will be sealed according to Minnesota regulations.

Final Report Summary for Activity 2

Methods

Hydrology

A variety of techniques were used to assess the hydrologic properties and leakage through till confining units at the two study sites: long-term water-level monitoring, slug tests, aquifer tests, and Darcian analyses to estimate recharge rates and travel times. Different techniques were used to evaluate the scale-dependency of hydrologic measurements. Previous studies have demonstrated that hydraulic conductivity values increase with measurement scale, for example, laboratory measurements of hydraulic conductivity in till are significantly lower than field measurements of the same materials (Bradbury and Muldoon 1990, Grisak and Cherry 1975, Grisak et al. 1976).

Long-term monitoring of water-level responses to pumping and precipitation events can be used to qualitatively assess hydraulic connectivity between aquifers and till confining units (as was done for this study), but they can also be used to quantitatively estimate the vertical hydraulic conductivity (Kv) of till confining units (Cherry and others, 2006). Previous studies have used head variations in confined aquifers and aquitards induced by pumping over long-term time periods (years to decades) as evidence for extremely low aquitard Kv values (for example, Husain and others, 1998). Other studies have monitored hydraulic head in surficial aquifers and aquitard material to determine aquitard Kv values (for example, Keller and others, 1989).

Lab tests and slug tests are commonly used to assess the hydraulic properties of confining unit tills, but represent relatively small volumes of till. Vertical fractures or stratigraphic windows can be important transport features through till, but the results of laboratory measurements on core samples rarely reflect these features (Cherry and others, 2006). Slug tests, in combination with sediment core samples, can indicate the presence and nature of important transport features, such as fractures or high-permeability zones, in till confining units if the slug tests happen to intersect those features (Cherry and others, 2006). Beyond potential identification of important transport features, slug tests have limited usefulness for determining the vertical hydraulic conductivity (Kv) of the till matrix because, in vertical holes, the slug response primarily depends on the horizontal component of the hydraulic conductivity (Cherry and others, 2006).

Aquifer tests designed with the specific purpose of determining till confining unit properties are another, larger-scale approach to estimating the vertical hydraulic conductivity of tills. Aquifer tests

measure a much larger volume of till than slug tests and are more likely to capture the effects of features most important for transport through till (Cherry and others, 2006). The piezometers installed as part of this study were used during an aquifer test at each site to measure hydraulic head responses within the till aquitard and the pumped aquifer (Cherry and others, 2006). Several analytical methods, such as Neuman and Witherspoon (1972), exist to determine aquitard properties from properly executed aquifer tests.

Long-term water-level and precipitation monitoring

Water levels in the piezometers and municipal water supply wells were measured at discrete intervals by hand and logged hourly with pressure transducers in a subset of piezometers. These data were collected to determine how water levels and hydraulic gradients vary through time in surficial aquifers, till confining units, and buried aquifers. Manual water-level measurements were done with a Solinst or Keck electric tape or a steel tape between July 2015 and April 2017. Pressure transducers (OTT Orpheus Mini) recorded data in 12 piezometers between December 2015 and April 2017: LFO1-B, LFO1-D, LFO1-F, LFO2-A, LFO2-C, LFO2-D, LFO2-F, CWO1-A, CWO1-B, CWO1-C, CWO2-A, and CWO2-D. Precipitation was also monitored continuously with tipping bucket rain gages at LFO2-A and CWO2-A between December 2015 and April 2017. All discrete and continuous (hourly) water-level and precipitation data collected throughout this study were reviewed and approved according to various USGS groundwater technical policies, which are available at https://water.usgs.gov/nwis by searching for the USGS site identification numbers listed in table 1.

Slug tests

Rising and falling-head slug tests were conducted in each piezometer to estimate hydraulic conductivity (K). For each rising or falling head slug tests a solid PVC slug was rapidly added or removed from the piezometer and water level measurements were recorded either manually or with a pressure transducer. Slug tests results were analyzed with Aqtesolv using the most appropriate methods which included: KGS method, Butler method, and the Springer and Gelhar method.

Aquifer tests

Constant rate pumping tests were conducted at Litchfield and Cromwell to estimate the hydrologic properties of the aquifer and overlying till confining unit at both Litchfield and Cromwell sites. The Minnesota Department of Health Source Water Protection Unit carried out these tests. Detailed methods and documentation are available through the Minnesota Department of Health (Minnesota Department of Health, 2017a; Minnesota Department of Health, 2017b).

Recharge calculation

Potential recharge rates to the buried aquifer and the travel time through the till to the buried aquifer at each piezometer nest was calculated using the following equations:

Recharge to buried aquifer
$$= -KIA$$

$$Travel time = \frac{n_e x}{KI}$$

where:

K = hydraulic conductivity I = hydraulic gradient A = Area x = till thickness n_e = effective porosity

Geochemical data collection

Groundwater samples from each piezometer were collected in July 2015 and May 2016 and analyzed to identify evidence of anthropogenic input, to estimate groundwater age, and to determine redox state at various depths within the confining unit and in the aquifer. Groundwater samples were collected in July 2015 from all nineteen piezometers and analyzed for common anions (bromide [Br], chloride [Cl], acetate [CH₃CO₂], fluoride [F], sulfate [SO₄], thiosulfate [S₂O₃]), nutrients (nitrite [NO₂], nitrate [NO₃], phosphate [PO₄]), and stable isotopes delta oxygen-18 (δ^{18} O) and delta hydrogen-2 (δ^{2} H). Groundwater samples were collected in May 2016 from piezometers in nests LFO2, CWO1, and CWO2 and analyzed for major anions (Br, Cl, F, SO₄), major cations (potassium [K], calcium [Ca], magnesium [Mg], manganese [Mn], sulfur [S], iron [Fe], sodium [Na]), nutrients (ammonia [NH₃], total phosphorus [P], NO₂, NO₃+NO₂), pH, total dissolved solids, enriched tritium (³H), and stable isotopes (δ^{18} O and δ^2 H). Groundwater samples collected in May 2016 from piezometers in nest LFO1 were analyzed for enriched ³H and stable isotopes (δ^{18} O and δ^{2} H) only. During the May 2016 sampling, additional quality assurance samples were collected at the Litchfield and Cromwell sites. One field inorganic blank sample was collected to verify that contamination was not being introduced during sample collection or lab analysis. One field replicate sample was collected to verify the repeatability of sample collection and lab analysis. All groundwater sampling procedures and methods were completed according to the USGS National Field Manual for the Collection of Water-Quality Data (U.S. Geological Survey, variously dated).

Core samples collected during drilling in June and July 2015 were sent to the USGS California Water Science Center where a hydraulic press was used to extract pore fluid. The pore fluid from core samples was analyzed for pH, specific conductivity, common anions (F, bicarbonate [HCO₃], Cl, Br, SO₄, S₂O₃), nutrients (NO₂, NO₃, P), and stable isotopes (δ^{18} O and δ^{2} H).

Groundwater modeling

It is challenging to assess the sustainability of groundwater withdrawals from buried aquifers because their hydrogeologic settings at locally relevant scales are highly uncertain. The field investigations at Litchfield and Cromwell established that the hydrologic properties of till overlying buried aquifers can be highly variable over short distances. Furthermore, the extent of buried aquifer systems and their connections to other aquifer systems are not well understood because of the complex glacial geologic history of Minnesota. The Minnesota Geological Survey has mapped buried aquifers (sand bodies) using the best available data (well logs from well installations) through the County Geologic Atlas Program, but even so, there are large uncertainties about the connectivity and extent of buried aquifer systems. The field studies could not address questions about water movement with and without pumping because the sites were near municipal supply wells that consistently pumped groundwater. To better understand the source of water to wells in different hydrogeologic settings under varying groundwater withdrawal rates, a series of conceptual steady state groundwater-flow models were developed. The software package, Groundwater Vistas (Environmental Simulations Incorporated), was used to develop MODFLOW-2005 (Harbaugh, 2005) models for this analysis. The specific goals of the modeling exercise were to (1) develop a sense for the range of possible responses in surface-water and groundwater caused by pumping confined aquifers in a variety of hydrogeologic settings across Minnesota and (2) complete a sensitivity analysis to quantify the effects that variations in model parameter values have on the simulated source of water to buried aquifers.

The basic structure of the conceptual model is as follows (shown in figs. 5 and 6). The model domain was approximately 20 miles by 20 miles with a cell size of 500 ft by 500 ft (fig. 5). The model contained 7 layers: a surficial unit which contained several rivers and lakes, 3 layers of "upper" till which represented the confining unit, 2 layers that contained the buried sand aguifer and a "middle" unit. and a layer of "lower" till (fig. 6). The surficial unit was 40 ft thick, the three upper till layers were a total of 80 ft thick for all but one model run, the two layers comprising the buried aquifer and surrounding middle unit were 80 ft thick, and the lower unit was 200 ft thick (fig. 6). The buried aquifer was in the middle of the model domain to minimize the potential for boundary conditions to directly influence water fluxes in the aquifer. Three pumping wells were screened in the buried sand aquifer. The northern and southern model boundaries were specified head boundaries and the east and west model boundaries were no-flow boundaries. A regional north-to-south horizontal hydraulic gradient of 0.001 was specified. A vertical downward gradient of 0.15 was assigned to model boundary cells. A constant recharge rate of 4 inches/year was applied at the surface of the model, which is the statewide average from Smith and Westenbroek (2015). Lakes and streams were generally modelled as groundwater discharge features with head-dependent flux boundaries using the MODFLOW RIV and DRN packages, respectively (Harbaugh and others, 2000). Lakes and streams were assigned bed conductances of 1 ft/d and 5 ft/d, respectively.

Several model parameters were varied in the model scenarios (table 2). The range of model parameter values chosen for evaluation were informed by the observations made at the Litchfield and Cromwell sites and other applicable studies and data sets (table 2). The "base model" contained model parameter values that represented an approximate midpoint between observations at Litchfield and Cromwell. The upper and lower model parameter values are inclusive of Litchfield and Cromwell, typically extending slightly above and below observations at these sites.

Two response variables were extracted from model output and compared among the model runs: the source of water to buried aquifer and leakage of water from the surficial unit in layer 1 to the till in layer 2. For the source of water to the buried aquifer, the relative contributions of water entering the buried aquifer from above, lateral to, and below were compared among model runs. The leakage of water from the surficial unit in layer 1 to the till in layer 2 was quantified within a 5 mi by 5 mi "local area" (red outline in fig. 5) centered on the pumping wells and buried aquifer. The following equation was used to compute leakage as a percent of water fluxes in layer 1 within the 5 mi by 5 mi local area:

$$L_{D,PCT} = \frac{V_D}{(V_R + V_L + V_I)} \times 100$$

where,

 $L_{D,PCT}$ = percent downward leakage from layer 1 to layer 2;

 V_D = volume of water flowing downward from layer 1 to layer 2;

 V_R = volume of groundwater recharge within the local area (water reaching the water table from precipitation and percolation through soil);

 V_L = the net volume of lateral groundwater flow into and out of the local area; and

 V_1 = the volume of induced flow from local streams into layer 1 within the local area.

The recharge rate was fixed for all but one model run so increases in the percent of downward leakage indicates a reduction in lateral groundwater flow out of the local area and/or a reduction in the contribution of groundwater discharge to lakes and streams within the local area (fig. 5).

The percent change in the water entering the buried aquifer from the overlying till (downward flux) was compared to the percent change in the model parameter values listed in table 2. The relative percent sensitivity was calculated for each model parameter according to the following equation. All changes were relative to the base model.

 $Relative \ percent \ sensitivity = \frac{Percent \ change \ in \ downward \ flux}{|Percent \ change \ in \ model \ parameter \ value|} \times 100$

Hydrogeology

Water Level Responses to Pumping and Weather

Piezometer nests LFO1 and LFO2 showed decreasing hydraulic head values with depth, providing evidence for a downward gradient (fig. 4, table 3, table 4). The continuous water levels data at LFO1 and LFO2 show varying responses to the municipal supply well pumping (figs. 7 and 8). In the two aquifer piezometers, LFO1-F and LFO2-F, a clear daily to sub-daily oscillation in water levels from the high-capacity wells is evident (figs. 7 and 8). LFO2 is the "near" nest and, as expected, LFO2-F shows a much larger oscillation from pumping than LFO1-F. Both buried aquifer piezometers show three large decreases in water level in June, July, and August of 2016. These large drops occurred during dry periods, and ended at or just before precipitation events, suggesting that these water-level fluctuations are caused by a high-capacity irrigation system that withdrew water from the same buried aquifer system as the municipal wells.

Water-level changes from pumping stress are not apparent up through 30 ft of till at LFO2-D, suggesting there is an effective aquitard in the 30 feet of till between LFO2-F and LFO2-D (fig. 8). Water levels in LFO2-A (screened 17 to 20 ft below land surface and LFO2-C (screened 57 – 60 ft below land surface) responded very similarly to surficial inputs, suggesting good hydraulic connections through the till from 20 to 60 feet below land surface (fig. 8). Patterns in water levels at LFO2-D did not resemble those of LFO2-A, suggesting that LFO2-D is also reasonably hydraulically isolated from surficial processes. Taken together, this suggests that the most effective aquitard at LFO2 exists above and below LFO2-D and that at least the upper 60 feet of till are hydraulically connected.

A very different response exists at the far nest, LFO1 (fig. 7). LFO1-D is screened in till approximately 25 feet above the top of the buried aquifer and water level patterns in this piezometer closely resemble those observed in the buried aquifer. Even the daily oscillations from the cycling on and off of the Litchfield municipal wells are evident at LFO1-D, indicating a reasonable hydrologic connection from the aquifer through the bottom 25 feet of till. Water level patterns at LFO1-D bear a stronger resemblance to the buried aquifer than to the surficial aquifer, which is monitored by LFO1-B. Sharp water-level rises in LFO1-B are linked to rainfall events and (likely) rises in Jewett Creek, which

is approximately 230 ft southeast of LFO1-B (fig. 2). Further time-series analysis is needed to determine if the pumping signal is apparent in the LFO1-B well. The till at LFO1 is only approximately 58 feet thick, and nearly half of this sequence is hydraulically well-connected between the top of the aquifer and LFO1-D.

The CWO1/2 nest demonstrated an upward gradient (fig. 4), and all of the continuously monitored piezometers showed similar seasonal patterns in water levels (fig. 9). Throughout the entire profile, from the surficial aquifer (CWO2-A) down to the bedrock (CWO1-C) an increase in water levels occurred July 8 – 15, 2016. This water-level rise was likely caused by a large rainfall event totaling 4.67 inches that fell at the site during July 7-13, 2016. Following this rise, water levels in all piezometers slowly declined through August, 2016. Daily oscillations in water levels from the Cromwell municipal wells are evident in the bedrock (CWO1-C), the buried aquifer (CWO1-B), and 2 till piezometers (CWO1-A and CWO1-D), but not in the surficial aquifer (CWO2-A). The till at CWO1/2 is about 130 ft thick, but the continuous water levels demonstrate that there is a hydraulic connection from the buried aquifer through at least the bottom 70 feet of the till.

Hydraulic Conductivity (K)

Slug tests indicate that values of K differ among the two study sites, primarily due to differences in particle size between the sandier and stonier Cromwell Formation till and the New Ulm Formation till. Only two piezometers were used to estimate the K value of till at nest LFO1. LFO1-E, which was intended to be screened solely in till, shows K values similar to sand and gravel units. The K values from this piezometer were omitted from the geometric mean calculation because of the possible connection with the aquifer. Results for K from five piezometers screened in the till at nest LFO2 were used to estimate the geometric mean K of the till.

Overall at the Litchfield study site, the values of K from slug tests range from 175 ft/d (53 m/d) for sand and gravel to 1×10^{-5} ft/d (4×10^{-6} m/d) for till. The geometric mean K values of till at LFO1 and LFO2 are 7×10^{-2} and 2×10^{-4} ft/d (2×10^{-2} and 6×10^{-5} m/d), respectively (table 5, table 6, fig. 10). These values for K are within previously observed values for Des Moines lobe till, although the K values at LFO1 were slightly higher than expected (Simpkins and Parkin, 1993; Helmke et al., 2005). A Mann-Whitney U test was applied to the Litchfield till data and showed a significant difference in the geometric mean K values of till between LFO1 and LFO2 at the 95 percent confidence level. The large difference in mean K values between the two study sites in Litchfield was unexpected. Although the difference could be due to a slightly higher sand content at LFO1 than LFO2 or be ascribed to till variability, the large three order of magnitude difference is more likely due to differences in till deposition between the sites or a greater influence of till fractures at LFO1.

The higher sand percentage in the Cromwell Formation till predicts that the K values there would be higher than the New Ulm Formation till. The K values in the Cromwell study site range from 16 ft/d (5 m/d) for sand and gravel to 1×10^{-2} ft/d (4 x 10^{-3} m/d) for till (table 5, table 6, fig. 10). The geometric mean K value for till is 6×10^{-2} ft/d (2 x 10^{-2} m/d) which is significantly different at the 95 percent confidence level from K values till at LFO2, but not the K values till at LFO1.

The slug tests that were completed in till piezometers measured the horizontal hydrologic properties of a small area of the till surrounding the sandpack, on the order of cubic meters (Bradbury and Muldoon, 1990). In contrast, the aquifer tests measured the response of tills to pumping of a small area of the till, on the order of hundreds of cubic meters. The aquifer test results demonstrate the hydrologic properties of tills that drive the observed responses. Table 6 shows the geometric mean hydraulic conductivity from both the slug tests and aquifer test, K values from the aquifer tests are higher which is a result of the scale dependency of K. Typically, the larger scale the test is, the higher the hydraulic conductivity.

Recharge through tills

Estimation of vertical recharge (leakage) to the underlying aquifer is complicated by the upward gradient at the Cromwell site, which precludes this calculation; i.e., there can be no route from water entering the land surface to the underlying aquifer at the piezometer nest location. Instead, groundwater moving laterally to this location from up gradient could be recharging this aquifer. The results obtained from our investigations could be useful in the next Wellhead Protection Plan update. Overall, it is clear that more research will be needed to determine the source and volume of recharge to this aquifer.

Where recharge (leakage) estimates are possible at the Litchfield study site due to predominantly downward vertical gradients, the different hydraulic gradient and K values at the two sites and lack of data on the exact size and extent of the buried aquifer of interest complicate direct application of Darcy's Law to the problem. The following calculations assume isotropy between horizontal and vertical hydraulic conductivities. The potential specific discharge or recharge flux (q) based on K and gradient data in the till at LFO1 and LFO2 is 78 and 0.34 in/year (198 and 0.85 cm/yr), respectively. A flux value of 78 in/year is not a realistic value of what is moving through the till, but a potential flux value. The mean average annual precipitation at the Litchfield site is approximately 30 in/vear (Minnesota Department of Natural Resources, 2003); however, Smith and Westenbroek (2013) estimated recharge to the water table of between 4 and 8 inches per year in the vicinity of the site. Recharge to the aquifer in Litchfield was estimated from an aquifer extent of 3 mi^2 (7.8 km²) from the MGS Meeker County sand distribution model (Meyer, 2015). Using the hydraulic characteristics of LFO1 (a less steep gradient and higher K values than LFO2) and an estimated specific discharge of 8 in/yr (20 cm/yr) based on recharge estimates done by Smith and Westenbroek (2013), an estimated 417 MGY would recharge the aquifer. This value is higher than the current municipal pumping rate of 340 MGY and suggests that those rates are sustainable. It also suggests that more contaminants can reach depth at this site. Using the hydraulic characteristics of the till at site LFO2 (lower K values and nearly double the gradient), a much lower recharge (leakage) volume of 17 MGY is estimated, which is well below the municipal pumping rate. In contrast to LFO1, this suggests that very little recharge from the ground surface reaches the aquifer (table 7). Based on the variability of the till hydrogeology at the two sites, and that these are point estimates, it is difficult to determine the recharge to the aquifer from these calculations. The high variability in K values and hydraulic gradients and uncertainty in aquifer and size make it difficult to estimate total recharge to the aquifer and thus predict its future sustainability. More detailed modeling analysis of the Litchfield and Cromwell study sites will reduce the uncertainty and provide a better estimation of recharge.

Groundwater age and travel time may be calculated from these same values for hydraulic gradient and K. At the Litchfield study site, based on vertical groundwater velocities of 7×10^{-2} ft/d and 3×10^{-4} ft/d (2×10^{-2} and 1×10^{-4} m/d) in LFO1 and LFO2, respectively, and assuming downward vertical flow in the till, groundwater age in the buried-valley aquifer ranges from about three to 1,054 years at LFO1 and LFO2, respectively (table 7). Groundwater recharge and age at the Cromwell study site could not be calculated by this method due to the upward-directed vertical gradients.

Groundwater Geochemistry and Water Quality

Stable Isotopes

During the Wisconsinan glaciation, glacial ice locked up a large portion of the ¹⁶O and H from precipitation in the northern hemisphere, thus leaving most of the ¹⁸O and ²H in the oceans, where it became enriched in those isotopes. Till deposited by that ice under a very cold climate may retain some of that isotopic signature, manifested by δ^{18} O values approaching -30‰ (Remenda and others, 1994). Groundwater samples from each piezometer and pore water extracted from core samples were analyzed

for δ^{18} O and δ^{2} H to determine whether the sites showed modern input values or glacial age pore fluid as seen in sequences of thick glacial till elsewhere (Simpkins and Bradbury, 1992). Results from nests LFO1 and LFO2 showed relatively uniform isotope values with depth, with mean δ^{18} O and δ^{2} H values of -9.53‰ (standard deviation = 0.55) and -65.87‰ (standard deviation = 4.30), respectively (fig. 11). Isotope values at LFO2 were slightly lower than those at LFO1. Assuming that modern precipitation input has a δ^{2} H value closer to -9.0‰, the LFO2 sites shows an incursion of recent precipitation in the top in the shallowest well, whereas the LFO1 site shows consistent values from top to bottom. Neither site shows evidence of the lower stable isotope values typically associated with glacial-age pore water, so groundwater in the till and the aquifer are likely not late Wisconsinan in age. This conclusion is consistent with the groundwater ages calculated using Darcy's Law. Stable isotope values from pore water are very consistent with the groundwater samples from piezometers. These data suggest that the groundwater values mostly reflect what is in the till, and not an artifact left from the drilling process.

Stable isotope values at CWO1/2 are consistently lower than LFO1/O2 with mean δ^{18} O and δ^{2} H values of -11.06‰ (standard deviation = 0.26) and -77.28‰ (standard deviation = 2.15), respectively. This is to be expected because fractionation increases with distance from the Gulf of Mexico and lower δ^{18} O and δ^{2} H values would occur at Cromwell because it is further north than the Litchfield site. The δ^{18} O values also lack a trend to lower values at depth, suggesting that groundwater in the till is also not late Wisconsinan in age.

Enriched Tritium

Enriched tritium (³H) was released into the atmosphere during the hydrogen bomb testing in the 1950s and 1960s. Today it is used as an indicator of relative groundwater age. If there are detectable levels of ³H, then the water is considered "post-bomb" and likely recharged from the 1950's to the present. If there is no detectable tritium, then the water is considered "pre-bomb" and was likely recharged prior to the 1950's. ³H analysis showed very different distributions at the three piezometer nests. Nest LFO2 shows a typical pattern for ³H concentrations decline with depth in central Iowa (W.W. Simpkins, verbal communication, 2017), with a maximum value of 5.3 TU near the surface to below detection limit from about 60 ft (18 m) in depth down to the buried aquifer. Despite the classification scheme of Berg (2011), the ³H found in the top two piezometers is likely recent recharge (based on precipitation samples in Ames, Iowa) and which is backed up by the δ^{18} O trend to higher values at the same depth. The lack of measureable ³H below that suggests that groundwater is not only pre-bomb, but that the downward flux of water is quite small. Again, these data are consistent with the earlier Darcy's Law calculations.

Data from the LFO1 site suggests a different interpretation. At that piezometer nest, peak ³H concentrations occur in the deepest piezometer in the till. The uppermost piezometer, which is screened in a surficial deltaic and outwash unit, shows a tritium concentration of 4.2 TU, which is suggestive of modern ³H input. Tritium then increases with depth through the till to reach a peak of 16.1 TU in LFO1-E, then declining to 7.7 TU in LFO1-F, which is screened in the aquifer (fig. 11). The ³H data are consistent with the lack of a significant trend in δ^{18} O with depth (i.e, groundwater is more recent at depth than at LFO2) and with the groundwater age estimates.

The upward gradient at the Cromwell study site suggests yet a different ³H interpretation of the recharge (leakage) scenario for the buried-valley aquifer. Enriched ³H activity of 5.9 TU occurs near the surface, with values below detection limit through the till and a modern concentration of 5.9 TU in the aquifer (fig. 11). This distribution suggests that groundwater is not moving vertically upward very quickly, because all the groundwater in the Cromwell Formation till is pre-bomb and is likely very old groundwater. The closeness of the ³H activities in the buried-valley aquifer and the shallowest piezometer may be a coincidence, but may suggest that groundwater is recharged from a source area that is receiving recent recharge. Alternatively, Berg (2011) would suggest they are mixed-sources waters. It is also significant that the underlying slate aquifer shows a ³H value that is pre-bomb, which would not

be expected if the slate were actively recharging the buried aquifer above it. It is also noteworthy that the downward-directed hydraulic gradient between the slate and the buried valley aquifer is very slight, suggesting that flow could be horizontal along that boundary and thus suggest separate flow systems in the bedrock and the buried-valley aquifer. The hydraulic gradient data and the ³H data suggest that recharge to the buried-valley aquifer at this location enters the system somewhere up-gradient in the same buried aquifer system or perhaps through a window through the overlying till confining unit where the hydraulic gradient in the till is downward.

Chloride

Chloride concentrations in groundwater at the Litchfield study site ranged from 11 to 47 milligrams per liter (mg/L), which suggests loading of anthropogenic chloride into the aquifer. Background concentrations of Cl are generally in the range of 5 mg/L in till of the Des Moines lobe in Iowa, while anthropogenically affected concentrations range from 20 to > 100 mg/L (Simpkins, 2010). Background Cl levels in Quaternary sediments in Canada and Illinois are generally between 15-20 mg/L (Howard and Beck, 1993) and 1 to 15mg/L (Kelly et al., 2012). All three of the piezometer nests are next to roads where de-icing salts are applied and near agricultural areas where KCL fertilizer is likely applied. The groundwater flow system at each site determines the vertical penetration of contamination.

Groundwater at nest LFO2 showed a trend of decreasing Cl concentration with depth to values approaching background and near 11 mg/L, which would all be pre-bomb water and potentially the background concentration. The opposite trend is shown at piezometer nest LFO1 where Cl concentrations increase with depth (fig. 12). Both the Cl and ³H data indicate substantial vertical penetration of recharge at the LFO1 site versus the LFO2 site. Pore-water Cl values were slightly higher than groundwater samples in nest LFO1 and showed an increase with depth, while pore water was nearly the same as groundwater in the LFO2 nest. All but one pore water analysis fell between 24 and 85 mg/L Cl, with an outlier at site LFO1 showing a concentration of 294 mg/L. That value was likely a lab contamination problem, and has been excluded from figure 12. In general, the groundwater was a reliable predictor of Cl in pore water. Chloride/bromide mass ratios in groundwater and pore water samples and extracted pore water results ranged from 96 to 280 and 65 to 1360, respectively. These results also suggest anthropogenic influence on the groundwater from KCl fertilizers, de-icing road salts, and potentially sewage effluent at the LFO1 site due to its extremely large value (Katz et al., 2011).

The anthropogenic contamination results are quite different at the Cromwell study site. Piezometer nest CWO1/2, which has an upward-direct hydraulic gradient, shows that groundwater concentration of Cl and the Cl/Br mass ratio decreased with depth to near background values and ranged from 1.0 to 45.4 mg/L and 62.4 to 1845.1, respectively (fig. 12). These values indicated evidence of anthropogenic input near the surface in the shallow aquifer there, but not significantly in the underlying aquitard and aquifer. With the presumed water source containing little Cl coming upwards from below, the fact Cl or Cl/Br ratios are not large in the till confining unit section above it is consistent with ³H and hydraulic gradient data.

Nitrate

Nitrogen fertilizers are the primary cause of increasing NO₃ concentrations in groundwater throughout the U.S. (Spalding and Exner, 1993; Sebilo et. al. 2013). Highest NO₃ concentrations were detected in groundwater at shallow depths at all sites with extremely low or undetectable concentrations occurring in deeper piezometers. Results from groundwater samples collected from piezometers at sites LFO1 and LFO2 showed that NO₃ ranged from 0 to 0.36 mg/L. These values are low for NO₃ concentrations in groundwater in aquitards in agricultural areas (Rodvang and Simpkins, 2001), which are usually 10 mg/L NO₃ or greater (Eidem et al. 1999). Results of pore water collected at the LFO1 and

LFO2 nests range from 0.6 - 11.7 mg/L. Results from nest CWO1/2 show NO₃ concentrations at 2.05 mg/L in groundwater in uppermost piezometer and concentrations below detection limit up to 0.03 mg/L below that depth (fig. 12). Based on studies elsewhere in the Des Moines lobe (Simpkins and Parkin, 1993; Parkin and Simpkins, 1995), and data showing that Cl is present in large concentrations where NO₃ is not present, these relationships provide good evidence that denitrification is removing the NO₃ in the confining unit and the aquifer. Denitrification eventually converts NO₃ to N₂ gas. Simpkins and Parkin (1993) demonstrated the presence of the intermediate denitrification product, N₂O, as evidence of denitrification driven by organic carbon in till and loess in till of the Des Moines lobe. Groundwater with the highest concentration of NO₃ at the Litchfield and Cromwell sites also has the highest NO₂ concentration, which could indicate active denitrification and conversion of NO₃ to NO₂ as another intermediate step.

Phosphorus

Based on the vertical distribution of total P at the three sites and the groundwater flow systems and ages, there is little evidence of vertical penetration of total P from the surface into the subsurface. Phosphorus, derived from natural and anthropogenic sources, varies from 0.147 mg/L in groundwater at LFO2 to 0.123 mg/L in CWO1/2 (fig. 12). The median phosphorus concentration for buried Quaternary aquifers in Minnesota is 0.124 mg/L (Minnesota Pollution Control Agency, 1999). Concentrations of P increase with increasing residence time, which may be associated with elevated iron and manganese (Minnesota Pollution Control Agency, 1999). Groundwater with low redox potentials can result in the dissociation of Fe-P minerals, releasing adsorbed P (Burkart et al., 2004).

The lack of evidence for vertical penetration may suggest that much of the total P may be geologic in origin, particularly in the CWO1/2 nest. The concentration of total P in groundwater at site LFO1 was less than 0.020 mg/L through the entire vertical profile. The concentration in extracted pore water decreases with depth and ranges from less than 0.020 to 0.070 mg/L. Total P concentration increases with depth in groundwater at site LFO2, and ranges from less than 0.003 to 0.147 mg/L, with the highest concentration occurring unexpectedly midway through the till. The concentration of total P in extracted pore water from LFO2 was below 0.020 mg/L for each sample and did not show the high concentration shown in the groundwater. The concentration of total P in groundwater at site CWO1/2 increased with depth to the base of the till unit, and then decreased in the aquifer. The concentration ranged from 0.007 mg/L in the surficial sand and gravel to 0.123 mg/L at the base of the till. In short, the evidence for total P moving vertically in groundwater at these sites is lacking.

Field Study Summary

Observations at Litchfield suggest that only limited portions of tills at these sites are aquitards that limit water flow and susceptibility to contamination for long periods of time. The till sequence at well nest LFO2 contained a zone of very low hydraulic conductivity whereas the till sequence at well nest LFO1, only about a 0.5 mi away from LFO2, lacked a such a feature. The resulting differences in estimated recharge through the till and water quality are shown in figure 13. The estimated vertical travel time between the two sites differs by three orders of magnitude, from about 2 years to over 1,000 years. The LFO1 site had evidence of recent anthropogenic inputs to the buried aquifer whereas no evidence of anthropogenic inputs was observed at LFO2. The aquifer test, which measured hydrologic conductivity of a much larger volume than the slug tests, demonstrates that the average ability of the till to transmit water lies between the two extremes observed at LFO1 and LFO2.

Observations at Cromwell also demonstrated a complex sequence of variable till material. An overall upward gradient existed at this site, but gradient directions were variable within the till. The

hydraulic gradient data and the ³H data suggest that recharge to the buried aquifer enters the system somewhere up-gradient in the same buried aquifer system or perhaps through a window through the overlying till confining unit where the hydraulic gradient in the till is downward. This suggests that the till sequence we observed near the water supply well may have little direct influence on the quality and quantity of water at Cromwell (fig. 14). Rather, the anthropogenic activities and geologic materials at a distal recharge area (yet to be defined) may affect the water observed in the buried aquifer at the Cromwell site. The relatively high hydraulic conductivity estimates of the till and the similarity in water-level patterns observed throughout the Cromwell profile suggest and no aquitard layer present like that at LFO2.

Groundwater Modeling

Effects of Pumping from Confined Aquifers on Surface-Water and Groundwater Resources

A series of model scenarios demonstrated that pumping groundwater from buried aquifers can affect surface-water resources, and the size of the effect varies according to the hydrogeologic setting and pumping rates. All the scenarios used as the basis for this discussion were steady-state models representing long-term average conditions. Figures 15a and 16a show the amount of water that leaked from the surficial aquifer into the upper till, as a percent of water fluxes in layer 1, under different hydrogeologic settings with and without pumping within the 5 mi by 5 mi local area (fig. 5). In the conceptual model (fig. 5), there are streams and a lake overlying the buried aquifer pumping center within the local area, figures 15b and 16b show the percent reduction in groundwater discharge to these streams and lakes caused by pumping the buried aquifer.

The hydrogeologic setting and pumping caused large variations in the leakage from the surficial aquifer to the upper till unit. As vertical till hydraulic conductivity and middle unit horizontal hydraulic conductivity increased, the amount of leakage from the surficial aquifer to the upper till increased from two percent to 66 percent of water flux through the surficial unit (layer 1) even without pumping (gray bars in fig. 15a). With low vertical hydraulic conductivity of the till (layers 2 - 4) beneath the surficial unit (layer 1), lateral flow of groundwater through the surficial unit (layer 1) dominated the flow system, and only two percent of the groundwater leaked into the upper till unit (layer 2). With higher vertical conductivity of the till (layers 2 - 4) beneath the surficial unit (layer 1) leakage from layer 1 to layer 2 was a much more dominant flow path within the local area, accounting for 66 percent of layer 1 water flux prior to pumping stress.

Pumping at 900 gallons per minute (gpm) produced an increase in the leakage by variable amounts in the different hydrogeologic settings (fig. 15a). The largest pumping-induced change increased leakage from two percent to 31 percent with low vertical hydraulic conductivity of the overlying till (Kv = 0.001 ft/d) and low horizontal hydraulic conductivity (Kh) of the middle unit adjacent to the aquifer (Kh = 0.05 ft/d). The Kv of 0.001 ft/d and the 900 gpm pumping rate is comparable to the Litchfield site. In the more "leaky" system with higher vertical till hydraulic conductivities, pumping increased the leakage to till by only seven percent, from 66 to 73 percent of water flux through the surficial layer (fig. 15a).

Pumping induced a 28 percent reduction in groundwater discharge to lakes and streams for the three hydrogeologic settings in figure 15b. Despite the relative differences in the leakage as a percent of the overall flux through layer one (fig. 15a), the percent reduction in groundwater discharge to streams

and lakes is similar in all three scenarios. In these scenarios, the vertical hydraulic conductivity of the till was varied simultaneously with the horizontal hydraulic conductivity of the middle unit adjacent to the buried aquifer. In a separate model scenario (not shown) where the overlying till unit (layer 2 - 4) is assigned a low vertical K (0.001 ft/d) and the middle unit adjacent to the buried aquifer is assigned a high horizontal K (30 ft/d), the reduction in groundwater discharge to streams and lakes induced by pumping within the local area is only about 9 percent.

These hydrogeologic scenarios demonstrate that over long periods of time, pumping-induced hydraulic gradients can be established in buried aquifer systems and, even in low hydraulic conductivity tills, these gradients induce flow that affects overlying surface-water resources.

Variations in the pumping rate caused large changes in the leakage from the surficial aquifer to the upper till unit and in the amount of groundwater discharge to streams and lakes. Figure 16 shows the change in leakage and the reduction in groundwater discharge to streams and lakes within the local area in the base model at 300 gpm, 900 gpm (comparable rate to Litchfield), and 2.250 gpm. At the 300 gpm pumping rate, pumping only increased the leakage by about 4 percent above ambient, but at the 2,250 gpm pumping rate, the leakage increased to 72 percent of water fluxes through the surficial unit (layer 1). These increases in downward leakage induced by pumping correspond with reductions in groundwater discharge to lakes and streams within the local area (fig 16b). Pumping at 300 gpm reduced groundwater discharge to streams and lakes by about 9 percent compared to ambient, but pumping at 2,250 gpm reduced groundwater discharge to streams and lakes by about 65 percent compared to ambient. These results indicate that the introduction pumping into a confined aquifer system can have a local effect on surface-water resources, and the size of that effect depends on the pumping rate. The 900 gpm rate is representative of the pumping rates in Litchfield. The city of Litchfield pumps at an average rate of 630 gpm, or 340 million gallons per year, and there are other high capacity permits within the same buried aquifer, as is evident from the large summer drawdowns in the buried aquifer hydrographs (figs. 6 and 7) and from the aquifer test data (Minnesota Department of Health, 2017b). At the 900 gpm pumping rate, leakage into the upper till increased appreciably from 26 percent to 41 percent and the groundwater discharge to streams and lakes decreased by about 28 percent.

Source of Water to the Buried Aquifer

Figure 17 shows the range of responses from a series of model scenarios in which the vertical hydraulic conductivity of the overlying till and the horizontal hydraulic conductivity of the geologic material adjacent to the buried aquifer were varied. The relative amounts of water reaching a buried aquifer from above and laterally change drastically with variations in the hydrogeologic setting (fig. 17). Water entering the aquifer from the till below was less than 1 percent of the total flow in all three scenarios in (fig. 17). In one extreme case with low vertical hydraulic conductivity in the overlying till and high horizontal hydraulic conductivity in the materials adjacent to the buried aquifer from above 11 percent of water entered the top of the buried aquifer while 89 percent entered the buried aquifer laterally from the sides. At the other extreme, 79 percent of water entered the buried aquifer from above and only 21 percent entered the buried aquifer from the sides in a setting with high vertical hydraulic conductivity in the overlying till and low horizontal hydraulic conductivity between the values determined for Litchfield and Cromwell, most of the water (65 percent) entered through the top of the buried aquifer.

Changes to the pumping rate also have a moderate effect on the source of water reaching the buried aquifer. Figure 18 shows the changes in the source of water to a buried aquifer for the base model with pumping at 300, 900, and 2,250 gpm. At 300 and 900 gpm, the relative amounts of water entering the aquifer from above and laterally are very similar. At 2,250 gpm, there is an increase in the percent of water entering the aquifer from the sides and a corresponding decrease in percent of water entering from above. The total flux of water is higher under the 2,250 gpm pumping scenario, but where that water enters the buried aquifer is different compared to the lower pumping rates.

Sensitivity Analysis

A sensitivity analysis was completed to quantify the effects that variations in model parameter values have on the simulated source of water to buried aquifers. This sensitivity analysis provides insight about the relative value of different types of information. Highly sensitive parameters, those which, when changed, cause large changes in the simulated result, should be well informed by data collection efforts in order to maximize a model's ability to simulate observed conditions. The results of the sensitivity analysis can be used to guide data collection efforts in support of future site-specific models developed to evaluate the sustainability of groundwater withdrawals from buried aquifer systems. The relative sensitivities model of parameters to the downward flux of water are presented in table 8. The magnitude of the relative sensitivities are important. For example, a parameter with a relative sensitivity of -30 percent and one with 30 percent are equally sensitive; the -30 percent indicates a decrease in the simulated model result whereas the 30 percent indicates an increase in the simulated model result.

The most sensitive parameters were the vertical hydraulic conductivity (Kv) of the overlying till, the areal extent of the aquifer, and the horizontal hydraulic conductivity of the middle unit adjacent to the buried aquifer (table 8). Reducing the vertical hydraulic conductivity (Kv) of the overlying till from the base model value of 0.05 ft/d to 0.001 ft/d (representative of Litchfield till) caused a large reduction in the downward flux of water into the buried aquifer. For this range of Kv values, Kv was the most sensitive parameter. However, increasing the Kv from 0.05 to 2 ft/d (representative of Cromwell till) had little effect on the downward flux of water (table 8). The areal extent of the buried aquifer was a sensitive parameter both when increased and decreased. This is expected as the vertical thickness of the buried aquifer for percolating water to enter relative to the sides of the aquifer. The next most sensitive parameter was the horizontal hydraulic conductivity (Kh) of the middle unit. A decrease in Kh from 5.0 ft/d to 0.05 ft/d cause little change in the downward flux of water into the buried aquifer. However, an increase in the Kh to 30 ft/d cause little change in the downward flux of water into the buried aquifer.

The thickness of the upper till, the total pumping rate, and the buried aquifer's horizontal hydraulic conductivity were moderately sensitive parameters (table 8). The downward flux of water into the buried aquifer was inversely related to the thickness of the till; i.e. increasing the till thickness resulted in decreased amounts of water entering the aquifer from directly above. The downward flux of water into the buried aquifer was also inversely related to the buried aquifer's horizontal hydraulic conductivity, and decreasing it caused a larger change in simulated results than increasing it. Increasing the pump rate resulted in a decrease in the percent of total leakage downward and an increase in lateral leakage. The downward flux of water into the buried aquifer from the overlying till was not affected by changes to the well screen length and the penetration of the well screen within the aquifer (table 8).

Modeling summary

The conceptual modeling demonstrates the importance of having accurate information, about the hydrogeologic setting (particularly about the vertical hydraulic conductivity of overlying till, the areal extent of the buried aquifer, and the lateral connectivity of the buried aquifer to other aquifers) when evaluating the sustainability of pumping water from confined aquifer systems. Over long periods of time, pumping-induced hydraulic gradients can be established in buried aquifer systems and, even in low hydraulic conductivity tills, these gradients could induce flow that affects surface-water resources. The source of water entering a buried aquifer that is being pumped can be highly variable, depending on the overlying till vertical hydraulic conductivities and the lateral connectivity of buried aquifer to adjacent till and aquifers. A sensitivity analysis demonstrated that the simulation of the source of water to wells is most sensitive to the vertical hydraulic conductivity of the overlying till, the areal extent of the aquifer, and the connectivity of the horizontal hydraulic conductivity of geologic materials adjacent to the aquifer.

Summary and Conclusions

Confined (or buried) aquifers overlain by till confining units provide drinking water to thousands of Minnesota residents. These till confining units are typically conceptualized as having very low potential for transmitting water. Thus, buried aquifers are thought to be less susceptible to surface contamination, but may recharge very slowly and may be prone to unsustainable groundwater withdrawals. This study was completed to give insight to the susceptibility and sustainability of the groundwater resources being withdrawn from confined aquifer systems in Minnesota. A combination of hydrologic field measurements, geochemical analyses, and modeling techniques were used to quantify the variability of hydrologic properties and flux of water through till confining units to buried aquifers at two representative sites in Minnesota. Glacial deposits of the Des Moines Lobe were characterized in Litchfield, Minnesota and glacial deposits of the Superior Lobe were characterized in Cromwell, Minnesota.

A conceptual understanding emerges from the field measurements at the two sites that till "layers" in the glacial deposits of the Des Moines and Superior Lobes in Minnesota are not really continuous layers, but rather a complex series of sediment mixtures with differing abilities to transmit water. The hydrologic field measurements and geochemical analysis demonstrated large variations in till confining unit properties over relatively small vertical and horizontal distances, underscoring the challenges of assessing the susceptibility and sustainability of groundwater resources in confined aquifer systems.

The observations at the Litchfield site indicate that only limited portions of tills are aquitards that limit water flow and susceptibility to contamination for long periods of time. The till sequence at well nest LFO2 contained a zone of very low hydraulic conductivity whereas the till sequence at well nest LFO1, only about a 0.5 mi away from LFO2, lacked a such a feature. The estimated vertical travel time between the two sites differs by three orders of magnitude, from about 2 years to over 1,000 years. The LFO1 site had evidence of recent anthropogenic inputs to the buried aquifer whereas no evidence of anthropogenic inputs was observed at LFO2. The aquifer test, which measured hydrologic conductivity

of a much larger volume than the slug tests, demonstrates that the average ability of the till to transmit water lies between the two extremes observed at LFO1 and LFO2.

Observations at Cromwell also demonstrated a complex sequence of variable till material. An overall upward gradient existed at this site, but gradient directions were variable within the till. The hydraulic gradient data and the ³H data suggest that recharge to the buried aquifer enters the system somewhere up-gradient in the same buried aquifer system or perhaps through a window through the overlying till confining unit where the hydraulic gradient in the till is downward. This suggests that the till sequence we observed near the water supply well may have little direct influence on the quality and quantity of water at Cromwell. Rather, the anthropogenic activities and geologic materials at a distal recharge area (yet to be defined) may affect the water observed in the buried aquifer at the Cromwell site. The relatively high hydraulic conductivity estimates of the till and the similarity in water-level patterns observed throughout the Cromwell profile suggest there is no aquitard layer present like that at LFO2.

Many waters in Minnesota are under threat of nutrient contamination from anthropogenic activities such as row-crop agriculture. This study provided some evidence that till confining units may be effective at reducing the susceptibility of buried aquifers to nitrate contamination, but may be a source of phosphorus. Data from Litchfield show that chloride is present in elevated concentrations where nitrate is not, despite abundant agriculture in the surrounding area. This suggests that denitrification may be occurring within the till; previous studies have demonstrated denitrification in Des Moines lobe tills (Simpkins and Parkin, 1993; Parkin and Simpkins, 1995). Phosphorus, though present at depth, particularly in Cromwell, is likely geologic rather than anthropogenic in origin.

The conceptual modeling demonstrates the importance of having accurate information, about the hydrogeologic setting (particularly about the vertical hydraulic conductivity of overlying till, the areal extent of the buried aquifer, and the lateral connectivity of the buried aquifer to other aquifers) when evaluating the sustainability of pumping water from confined aquifer systems. Over long periods of time, pumping-induced hydraulic gradients can be established in buried aquifer systems and, even in low hydraulic conductivity tills, these gradients could induce flow that affects surface-water resources. The source of water entering a buried aquifer that is being pumped can be highly variable, depending on the overlying till vertical hydraulic conductivities and the lateral connectivity of buried aquifer to adjacent till and aquifers. A sensitivity analysis demonstrated that the simulation of the source of water to wells is most sensitive to the vertical hydraulic conductivity of the overlying till, the areal extent of the aquifer, and the connectivity of the horizontal hydraulic conductivity of geologic materials adjacent to the aquifer.

References

- Berg, J.A. 2011. Plate 8 Hydrogeologic cross sections. C-39 Geologic Atlas of Carlton County, Minnesota [Part B]. *Minnesota Department of Natural Resources, Ecological and Water Resources Division*. Retrieved from the MNDNR County Geologic Atlas Program, <u>http://www.dnr.state.mn.us/waters/programs/gw_section/mapping/platesum/carlcga.html</u>
- Boerboom, Terrence J.. (2009). C-19 Geologic atlas of Carlton County, Minnesota [Part A]. Minnesota Geological Survey.Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/58760.

- Bradbury, K.R., and M.A. Muldoon. 1990. Hydraulic conductivity determinations in unlithified glacial and fluvial materials. In *Ground water and vadose zone monitoring*. Edited by D.M. Nielsen and A.I. Johnson. Philadelphia, PA,: American Society for Testing and Materials:138-151
- Burkart, M. R., W.W. Simpkins, A.J. Morrow, and J.M. Gannon. 2004. Occurrence of total dissolved phosphorus in unconsolidated aquifers and aquitards in Iowa. *Journal of the American Water Resources Association*. 1319: 827–834.
- Cherry, J.A., Parker, B.L., Bradbury, K.R., Eaton, T.T., Gotkowitz M.B., Hart, D.J., and Borchardt, M.A., 2006. *Contaminant Transport Through Aquitards: a State-of-the-science Review*. AWWA Research Foundation. 126 p.
- Eidem, J.M., W.W. Simpkins, and M.R. Burkart, 1999. Geology, groundwater flow, and water quality in the Walnut Creek watershed. *Jour. Environ. Qual.* 28:60-68.
- Grisak, G.E., and J.A. Cherry. 1975. Hydrologic characteristics and response of fractured till and clay confining a shallow aquifer. *Canadian Geotechnical Journal*, 12:23-43.
- Grisak, G.E., J.A. Cherry, J.A. Vonhof, and J.P. Blumele. 1976. Hydrogeologic and hydrochemical properties of fractured till in the interior plains region. Edited by R. F. Legget, editor. Royal Society of Canada, Ottawa. 304-335.
- Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- User guide to modularization concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00-92, 121 p.
- Harbaugh, A.W., 2005, MODFLOW-2005, The U.S. Geological Survey modular ground-water model the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6- A16.
- Hart, D. J., K. R. Bradbury, and M. B. Gotkowitz, 2008, Is one an upper limit for natural hydraulic gradients? *Groundwater* 46, no. 4: 518-520.
- Helmke, M.F., W.W. Simpkins, and R. Horton. 2005. Fracture-controlled transport of nitrate and atrazine in four Iowa till units. *Jour. of Environ. Qual.* 34:227-236.
- Hobbs, H.C.; Goebel, J.E. (1982). S-01 Geologic map of Minnesota, Quaternary geology. Minnesota Geological Survey. Retrieved from the University of Minnesota Digital Conservancy, Accessed November 22, 2017 at <u>http://hdl.handle.net/11299/60085</u>.
- Howard, K.W.F. and Beck, P.J. 1993. Hydrogeochemical implications of groundwater contamination by road de-icing chemicals. J. Contam. Hydrol., 12: 245-268.
- Husain, M.M., Cherry, J.A., Fidler, S., and Frape, S.K. 1998. On the long-term hydraulic gradient in the thick clayey aquitard in the Sarnia region, Ontario. *Canadian Geotechnical Journal*, 35:986-1003.
- Katz, B. G., S. M. Eberts, and L.J Kauffman. 2011. Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States. *Journal of Hydrology*. 397:151–166.

- Keller, C.K., van der Kamp, G., and Cherry, J.A. 1989. Multiscale Study of the Permeability of a Thick Clayey Till. *Water Resources Research*, 25:2299-2317.
- Kelly, W. R., S. V. Panno, K. Hackley, and W.R. Kelly. 2012. The Sources, Distribution, and Trends of Chloride in the Waters of Illinois. Illinois State Water Survey, Prarie Research Institude, Champaign, Illinois, p. 67 (March, Report No. B-74).
- Meyer, Gary N., (2015). C-35, Geologic Atlas of Meeker County, Minnesota [Part A]. Minnesota Geological Survey. Retrieved from the University of Minnesota Digital Conservancy, <u>http://hdl.handle.net/11299/166576</u>.
- Minnesota Department of Health, 2017a, Analysis of the Cromwell, Minnesota Well 4 (593593) Aquifer Test. Accessed November 20, 2017 at <u>http://www.health.state.mn.us/divs/eh/water/swp/maps/testcromwell.pdf</u>.
- Minnesota Department of Health, 2017b, Analysis of the Litchfield, Minnesota Well 2 (607420) Aquifer Test. Accessed November 20, 2017 at <u>http://www.health.state.mn.us/divs/eh/water/swp/maps/testlitchfield.pdf</u>.
- Minnesota Department of Health, 2017c, Minnesota well index online. Access November 20, 2017 at <u>https://apps.health.state.mn.us/cwi/</u>.
- Minnesota Department of Natural Resources, 2003, 1981-2010 Normal Annual Precipitation. Retrieved from the Minnesota Climatology Working Group, DNR Division of Ecological and Water Resources, <u>http://climate.umn.edu/img/normals/precip/precip_norm_annual.htm</u>
- Minnesota Department of Natural Resources, 2017, Minnesota Water Use Data, ArcGIS Layer. Accessed November 20, 2017 at <u>http://files.dnr.state.mn.us/waters/watermgmt_section/appropriations/mpars_wa_permits_installation</u> <u>s_uses.zip</u>.
- Minnesota Pollution Control Agency, 1999, Phosphorous in Minnesotas Ground Water. Environmental Outcomes Division, Ground Water Monitoring & Assessment Program. <u>https://www.pca.state.mn.us/sites/default/files/phospho.pdf</u>
- Neuman, S.P., and P.A. Witherspoon. 1972. Field determination of the hydraulic parameters of leaky multiple aquifer systems. *Water Resources Research*, 8:1284-1298.
- Parkin, T.B. and W.W. Simpkins, 1995. Contemporary groundwater methane production from Pleistocene carbon. *Journal of Environmental Quality*. 24:367-372.
- Remenda, V.H., Cherry, J.A. and Edwards, T.W.D., 1994. Isotopic composition of old ground water from Lake Agassiz: implications for late Pleistocene climate. *Science*, *266* (5193), p.1975.
- Rodvang, S.J, and W.W. Simpkins. 2001. Agricultural contaminants in Quaternary aquitards: A review of occurrence and fate in North America. *Hydrogeology Journal*. 9:44-59.
- Sebilo, M., B. Mayer, B. Nicolardot, G. Pinay, and A. Mariotti. 2013. Long-term fate of nitrate fertilizer in agricultural soils. *Proceedings of the National Academy of Sciences, USA*. 110:18185-18189
- Shaw, R.J. and Hendry, M.J., 1998. Hydrogeology of a thick clay till and Cretaceous clay sequence, Saskatchewan, Canada. *Canadian Geotechnical Journal*, *35*(6), pp.1041-1052.
- Simpkins, W.W. and Bradbury, K.R., 1992. Groundwater flow, velocity, and age in a thick, fine-grained till unit in southeastern Wisconsin. *Journal of Hydrology*, *132*(1-4), pp.283-319.
- Simpkins, W.W. and Parkin, T.B., 1993. Hydrogeology and redox geochemistry of CH4 in a late Wisconsinan till and loess sequence in central Iowa. *Water Resources Research*, 29(11), pp.3643-3657.
- Simpkins, W.W. 2010. Nonpoint source contamination of a municipal water supply at the urbanagricultural interface. GSA Annual Meeting Abst. with Programs.
- Smith, E.A., and Westenbroek, S.M., 2015, Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996–2010: U.S. Geological Survey Scientific Investigations Report 2015–5038, 85 p., Also available at <u>http://dx.doi.org/10.3133/sir20155038</u>.
- Spalding, R. F., and M.E. Exner. 1993. Occurrence of nitrate in groundwater A Review. *Journal of Environmental Quality*. 22:392-402.
- U.S. Geological Survey, variously dated, National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chaps. A1–A9, accessed April 1, 2016, at <u>https://water.usgs.gov/owq/FieldManual/</u>.
- Wagner, K. and Tipping, R., 2016, Core Descriptions and Borehole Geophysics in Support of USGS Hydrologic Properties of Till Investigation, Litchfield and Cromwell, Minnesota. Accessed November 20, 2017 at <u>ftp://mgsftp2.mngs.umn.edu/pub4/outgoing/MGS_report_in_support_of_USGS_till_study_Phase_I.pdf</u>.
- Witt, A.N., 2017, Hydrogeological and geochemical investigation of recharge (leakage) through till aquitards to buried-valley aquifers in central and northeastern Minnesota. M.S. Thesis, Iowa State University, 168 p. Will be available here: <u>http://lib.dr.iastate.edu/etd/.</u>

FIGURES

Figure 1. Map showing the extent of the major glacial lobe deposits in Minnesota (from Hobbs and Goebel, 1982) and the location of the Litchfield and Cromwell study sites.

Figure 2. Map of the Litchfield study site.

Figure 3. Map of the Cromwell study site.

Figure 4. Piezometer construction and lithology diagrams for piezometer nests LFO1, LFO2, CWO1, and CWO2. Lithology summarized from Wagner and Tipping (2016).

Figure 5. Aerial view of the base conceptual groundwater-flow model.

Figure 6. Cross-section view of the base conceptual groundwater-flow model.

Figure 7. Lithology, screened intervals, and water level anomalies for piezometers containing transducers in Litchfield nest LFO1. Water-level anomalies are hourly measurement minus the long-term mean of each piezometer. Note that the scales differ by piezometer; this plot is intended to be used for visualizing patterns in water-level variations through time by depth but not for assessing the magnitude of those changes.

Figure 8. Lithology, screened intervals, and water level anomalies for piezometers containing transducers in Litchfield nest LFO2. Water-level anomalies are hourly measurement minus the long-term mean of each piezometer. Note that the scales differ by piezometer; this plot is intended to be used for visualizing patterns in water-level variations through time by depth but not for assessing the magnitude of those changes.

Figure 9. Lithology, screened intervals, and water level anomalies for piezometers containing transducers in Cromwell nest CWO1/2. Water-level anomalies are hourly measurement minus the long-term mean of each piezometer. Note that the scales differ by piezometer; this plot is intended to be used for visualizing patterns in water-level variations through time by depth but not for assessing the magnitude of those changes.

Figure 10. Generalized lithology, hydraulic head, and hydraulic conductivity (K) with depth at (a) Litchfield piezometer nest LFO1, (b) Litchfield piezometer nest LFO2, and (c) Cromwell piezometer nest CWO1/2.

Figure 11. Generalized lithology and enriched tritium (³H) and oxygen isotope (¹⁸O) profiles determined from groundwater and pore-water samples at (a) Litchfield piezometer nest LFO1, (b) Litchfield piezometer nest LFO2, and (c) Cromwell piezometer nest CWO1/2.

Figure 12. Generalized lithology, chloride (Cl) concentrations, nitrate (NO3) concentrations, phosphorus (P) concentrations, and chloride to bromide (Cl/Br) mass ratios determined from groundwater and pore-water samples at (a) Litchfield piezometer nest LFO1, (b) Litchfield piezometer nest LFO2, and (c) Cromwell piezometer nest CWO1/2.

Figure 13. Graphical summary depicting the geologic, hydraulic, and geochemical results from piezometer nests LFO1 and LFO2 at the Litchfield, Minnesota study site. Chloride (Cl⁻) and tritium (³H) presence is indicated. [in/yr, inches per year]

Figure 14. Graphical summary depicting the geologic, hydraulic, and geochemical results from piezometer nest CWO1/2 at the Cromwell, Minnesota study site. Chloride (Cl⁻) and tritium (³H) presence is indicated. Young and old refer to the apparent age of the groundwater based on tritium and chloride concentrations; young water has been exposed to the atmosphere after the 1950s, old water reached groundwater prior to the 1950s

.

Figure 15. Bar graph of conceptual model output showing (a) the percent of groundwater recharge in the surficial aquifer (layer 1) that flows to the upper till unit (layer 2) under ambient and active pumping conditions. This graph shows the range of leakage with variations in aquifer size (sq. mi = square miles), vertical hydraulic conductivity (Kv) of overlying till, and horizontal hydraulic conductivity (Kh) of middle till unit adjacent to buried aquifer. This was determined within the 25-square mile local area shown in figure 5. (b) The percent reduction in groundwater discharge to lakes and streams from ambient to pumping conditions.

Figure 16. Bar graph of conceptual model output showing (a) the percent of groundwater recharge in the surficial aquifer (layer 1) that flows to the upper till unit (layer 2) under ambient and active pumping conditions. The leakage was determined within the 25-square mile local area shown in figure 5. All non-pumping model parameters were the base model values, as listed in table 2. (b) The percent reduction in groundwater discharge to lakes and streams from ambient to pumping conditions.

Figure 17. Bar graph of conceptual model output showing the percent of water entering the buried aquifer via downward flux from above, lateral flux from the sides, and upward flux from below. This graph shows the range of source water to wells due to variations in aquifer size (sq. mi = square miles), vertical hydraulic conductivity (Kv) of overlying till, and horizontal hydraulic conductivity (Kh) of middle till unit adjacent to buried aquifer.

Figure 18. Bar graph of conceptual model output showing the percent of water entering the buried aquifer via downward flux from above, lateral flux from the sides, and upward flux from below with different pumping rates. All non-pumping model parameters were the base model values, as listed in table 2.

TABLES

Table 1. Piezometer names, locations, and construction information.

[ft, feet; in, inches; ft BLS, feet below land surface; ft NAVD88, feet above North American Datum of 1988]

Piezometer Name	USGS Site ID	Latitude	Longitude	Land Surface Elevation (ft NAVD88)	Drill Depth (ft BLS)	Borehole Diameter (in)	Pressure Transducer
LFO1-B	450814094315001	45°08'14"	94°31'50"	1115.22	25.5	8.25	Y
LFO1-C	450814094315002	45°08'14"	94°31'50"	1115.45	53.1	8.25	Ν
LFO1-D	450814094315003	45°08'14"	94°31'50"	1115.34	75.5	8.25	Y
LFO1-E	450814094315004	45°08'14"	94°31'50"	1115.15	96	8.25	Ν
LFO1-F	450814094315006	45°08'14"	94°31'50"	1115.19	127.7	8.25	Y
LFO2-A	450832094321201	45°08'32"	94°32'12"	1139.45	20	8.25	Y
LFO2-B	450832094321202	45°08'32"	94°32'12"	1139.29	35.5	8.25	Ν
LFO2-C	450832094321203	45°08'32"	94°32'12"	1139.72	70	8.25	Y
LFO2-D	450832094321204	45°08'32"	94°32'12"	1139.18	86	8.25	Y
LFO2-E	450832094321205	45°08'32"	94°32'12"	1139.64	114	8.25	Ν
LFO2-F	450832094321206	45°08'32"	94°32'12"	1139.47	162.5	8.25	Y
CWO1-A	464110092531401	46°41'10"	92°53'14"	1326.28	150	6.75	Y
CWO1-B	464110092531402	46°41'10"	92°53'14"	1326.29	231	6.75	Y
CWO1-C	464110092531403	46°41'10"	92°53'14"	1326.25	340	6.75	Y
CWO2-A	464112092531401	46°41'12"	92°53'14"	1332.28	174	8.25	Y
CWO2-B	464112092531402	46°41'12"	92°53'14"	1332.59	60.5	8.25	Ν
CWO2-C	464112092531403	46°41'12"	92°53'14"	1332.33	82	8.25	Ν
CWO2-D	464112092531404	46°41'12"	92°53'14"	1332.13	107.5	8.25	Y
CWO2-E	464112092531405	46°41'12"	92°53'14"	1332.44	129.5	8.25	Ν

Piezometer Name	Casing Diameter (in)	Screen Diameter (in)	Screen Slot Size	Screen Openings (in)	Screen Length (ft)	Screened Interval (ft BLS)
LFO1-B	1.25	1.25	10	0.01	2.66	22.40 - 25.06
LFO1-C	1.25	1.25	10	0.01	2.66	50.23 - 52.89
LFO1-D	1.25	1.25	10	0.01	2.66	72.40 - 75.06
LFO1-E	1.25	1.25	10	0.01	2.66	92.41 - 95.07
LFO1-F	2.04	2.04	20	0.02	9.62	117.5 - 127.12
LFO2-A	1.25	1.25	10	0.01	2.66	17.12 - 19.78
LFO2-B	1.25	1.25	10	0.01	2.66	32.26 - 34.92
LFO2-C	1.25	1.25	10	0.01	2.66	56.97 - 59.63
LFO2-D	1.25	1.25	10	0.01	2.66	82.27 - 84.93
LFO2-E	1.25	1.25	10	0.01	2.66	110.95 - 113.61
LFO2-F	2.04	2.04	20	0.02	9.62	149.56 - 159.18
CWO1-A	2.04	2.04	10	0.01	2.8	144.56 - 147.36
CWO1-B	2.04	2.04	20	0.02	9.62	220.91 - 230.53
CWO1-C	2.04	2.04	20	0.02	9.62	329.63 - 339.25
CWO2-A	1.25	1.25	10	0.01	2.66	32.30 - 34.96
CWO2-B	1.25	1.25	10	0.01	2.66	56.75 - 59.41
CWO2-C	1.25	1.25	10	0.01	2.66	78.70 - 81.36
CWO2-D	1.25	1.25	10	0.01	2.66	103.58 - 106.24
CWO2-E	1.25	1.25	10	0.01	2.66	125.78 - 128.44

Table 1. continued.

Table 2. Model parameters that were varied in the conceptual groundwater model scenarios.

Model Parameter Value	Units	Low Parameter Value	Base Model Parameter Value	High Parameter Value	Source(s) that informed model property values
Vertical hydraulic conductivity (K _v) of upper till and lower unit	feet per day	0.001	0.05	2	Minnesota Department of Health, 2017a; Minnesota Department of Health, 2017b
Lateral connectivity of buried aquifer to adjacent till and aquifers (represented as horizontal hydraulic conductivity [K _h] of middle unit)	feet per day	0.05	5	30	Meyer, 2015; Minnesota Department of Health, 2017a; Minnesota Department of Health, 2017b
Buried sand body (aquifer) size	mile x mile	1.0 x 0.5	3.0 x 1.5	5.0 x 2.5	Meyer, 2015
Buried sand body (aquifer) horizontal hydraulic conductivity (K _h)	feet per day	30	100	400	Minnesota Department of Health, 2017a; Minnesota Department of Health, 2017b
Thickness of upper till	feet	40	80	160	Wagner and Tipping, 2016; Witt, 2017
Total pumping rate	gallons per minute	300	900	2250	Minnesota Department of Natural Resources, 2017
Screen length and penetration of pumping wells	screen length and location in aquifer	40 foot screen in lower aquifer layer	40 foot screen in upper aquifer layer	80 foot screen across both aquifer layers (full penetration)	Minnesota Department of Health, 2017c
Kh of top model layer; Kv of of top model layer; recharge rate	feet per day; feet per day; inches per year	5.0; 0.5; 2.0	70; 7.0; 0.4	400; 40; 8.0	Minnesota Department of Health, 2017a; Minnesota Department of Health, 2017b; Witt, 2017
Transmissivity of buried sand body (aquifer); upper till Kv	feet2 per day; feet per day	4400; 0.6769	8,000; 0.05	8,990; 0.0016	Minnesota Department of Health, 2017a; Minnesota Department of Health, 2017b; Witt, 2017

Table 3. Average water-level values in each piezometer.

[ft BLS, feet below land surface; ft NAVD88, t	feet above North American Datum of 1988]
--	--

Piezometer Name	Average Water Level (ft NAVD88)	Average Water Level (ft BLS)
LFO1-B	1103.94	11.28
LFO1-C	1102.99	12.46
LFO1-D	1091.30	24.04
LFO1-E	1079.50	35.65
LFO1-F	1081.83	33.36
LFO2-A	1128.00	11.45
LFO2-B	1126.36	12.93
LFO2-C	1123.98	15.74
LFO2-D	1106.12	33.06
LFO2-E	1077.43	62.21
LFO2-F	1079.28	60.19
CWO2-A	1304.66	27.62
CWO2-B	1305.40	27.19
CWO2-C	1306.54	25.79
CWO2-D	1309.87	22.26
CWO2-E	1309.46	22.98
CWO1-A	1307.49	18.79
CWO1-B	1311.53	14.76
CWO1-C	1311.51	14.74

Table 4. Mean vertical hydraulic gradients between the uppermost and lowermost screens at each piezometer nest.

Site Name	Overall Hydraulic Gradient	Direction	Upper Screen Midpoint (ft BLS)	Lower Screen Midpoint (ft BLS)	Upper Mean Water Level (ft NAVD88)	Lower Mean Water Level (ft NAVD88)
LFO1	0.22	Downward	1091.49	992.88	1103.94	1081.83
LFO2	0.36	Downward	1121.00	985.01	1128.00	1079.28
CWO1/2	0.02	Upward	1298.65	991.81	1304.66	1311.51

[ft BLS, feet below land surface; ft NAVD88, feet above North American Datum of 1988]

Piezometer	Mean K (ft/d)	Lithology	Formation Name
LFO1-B	4.30E+01	silty to coarse sand	New Ulm
LFO1-C	1.70E-02	till	New Ulm
LFO1-D	3.50E-01	till	New Ulm
LFO1-E	8.60E+01	till/sand and gravel	New Ulm
LFO1-F	1.70E+02	sand and gravel	New Ulm
LFO2-A	8.60E-05	till	New Ulm
LFO2-B	6.00E-04	till	New Ulm
LFO2-C	1.70E-03	till	New Ulm
LFO2-D	1.20E-05	till	New Ulm
LFO2-E	1.70E-04	till	New Ulm
LFO2-F	8.60E+01	sand and gravel	New Ulm
CWO1-A	2.60E-01	till	Cromwell
CWO1-B	1.70E+01	sand and gravel	Cromwell
CWO1-C	4.30E-01	slate	Thomson
CWO2-A	1.70E+00	sand and gravel	Cromwell
CWO2-B	6.90E-02	till	Cromwell
CWO2-C	8.60E-02	till	Cromwell
CWO2-D	8.60E-03	till	Cromwell
CWO2-E	3.50E-02	till	Cromwell

Table 5. Mean hydraulic conductivity (K) values from slug tests, lithology, and Formation for each piezometer. [ft/d, feet per day]

Table 6. Comparison of hydraulic conductivities determined with slug tests and aquifer tests at the Litchfield and Cromwell sites.

[<, less than]

		Till Hydraulic Conductivity in feet per day					
Site	Test Type	Minimum	Maximum	Geometric Mean			
	LFO1 slug test	0.02	0.4	0.08			
Litchfield	LFO2 slug test	0.00001	0.002	0.0002			
	Aquifer test	< 0.0001	0.02	0.001			
Cromwoll	CWO1/2 slug test	0.0086	0.26	0.054			
Cromwell	Aquifer test	0.8	4.1	1.1			

Table 7. Hydraulic characteristics at sites LFO1 and LFO2 and estimated age in years, specific discharge, and estimated vertical recharge through the till at each site.

 $[i, hydraulic gradient; ft/s, feet per second; ft, feet; n_e, effective porosity; mi², square miles; in/yr, inches per year; 10⁶ gallons/year, millions of gallons per year]$

Site Name	Overall i	Till Geometric Mean (K) ft/s	x (ft)	n _e	A (mi²)	Max Age (years)	q (in/yr)	Q (10 ⁶ gallons/year)
LFO1	0.22	8E-07	60	0.25	3	3	8*	417
LFO2	0.36	2E-09	115	0.25	3	1054	0.34	18

*Value based on average yearly precipitation in central Minnesota.

Relative Percent Base Sensitivity for Model Adjustment Adjusted Model the downward Property Units Parameter Туре Parameter Value flux of water into Value buried aquifer 0.001 -59.7 decrease Vertical hydraulic conductivity (Kv) of feet per day 0.05 upper till and lower unit 2 0.2 increase Lateral connectivity of buried aquifer to 0.05 decrease 29.4 adjacent till and aquifers (represented as 5 feet per day horizontal hydraulic increase 30 -5.4 conductivity [K_h] of middle unit) 0.5 -29.9 decrease Buried sand body square miles 4.5 (aquifer) size 12.5 14.6 increase decrease 30 13.9 Buried sand body (aquifer) horizontal feet per day 100 hydraulic conductivity (Kh) increase 400 -1.4 decrease 40 13.2 Thickness of upper till feet 80 increase 160 -8 decrease 300 3.5 Total pumping rate 900 gallons per minute (sum of 3 wells) increase 2250 -11 different location in 40 NA Screen length and aquifer penetration of pumping 40 feet wells 80 0 increase

Table 8. Relative percent sensitivity of downward flux into the buried aquifer for model parameters that were increased or decreased from the base model value.

Activity 3 has been canceled

This activity has been canceled because the Minnesota Department of Natural Resources staff decided that funds were not available. There are no direct implications on the overall project or on ENRTF funds

Final Report Summary: NA

V. DISSEMINATION:

Description: Project milestone results will be communicated to LCCMR staff and to project partners with semiannual written results. Final results from the project will be presented at a scientific conference and through the publication of a USGS Scientific Investigations Report. The final report will be delivered by December 31, 2017

Status as of December 31, 2014:

Details about project plans and planning data have been shared and discussed with staff from MNDNR, MDH and the MGS. Two quarterly progress reports have been prepared. The detailed progress proposal was approved by technical specialists from the USGS.

Status as of June 30, 2015

Details about project plans and planning data have been shared and discussed with staff from MNDNR, MDH and the MGS. Quarterly progress reports have been prepared.

Status as of December 31, 2015

Details about project plans and planning data have been shared and discussed with staff from MNDNR, MDH and the MGS. Quarterly progress reports have been prepared.

Status as of June 30, 2016

Details about project plans and planning data have been shared and discussed with staff from MNDNR, MDH and the MGS. Quarterly progress reports have been prepared. The following is a list of presentations made by project team member and graduate student, Alyssa Witt:

- March 7th, 2015: Presentation given at Iowa State University Graduate Student Seminar
- July 29th, 2015: Short presentation given at the Villa Vista care center in Cromwell. Villa Vista is a nursing home behind the study site.
- October 9th, 2015: Cromwell-Wright School Environmental Day: outdoor learning day for students ranging from grade 7-12. A 20-30 minute summary of the project was given to approximately 8 groups of students throughout the day.
- November 4, 2015: Poster presentation at Geological Society of America meeting in Baltimore, Maryland. Abstract available here: https://gsa.confex.com/gsa/2015AM/webprogram/Paper269887.html
- March 5, 2016: Presentation given at Iowa State University Graduate Student Seminar
- April 20, 2016: Poster presentation at spring meeting of the Minnesota Groundwater Association

An abstract about the project has been submitted for the upcoming Minnesota Water Resources Conference to be held in October 2016.

Status as of January 13, 2017

Details about project plans and planning data have been shared and discussed with staff from MNDNR, MDH and the MGS. Quarterly progress reports have been prepared. The following is a list of presentations made by project team member and graduate student, Alyssa Witt:

- October 18, 2016: Oral presentation titled "Estimating Groundwater Recharge to Buried Aquifers" was given at the Minnesota Water Resources Conference in St. Paul, Minnesota. Co-authors were Jared Trost and Jim Stark of the USGS.
- November 16, 2016: Poster presentation titled "Estimating Groundwater Recharge to Buried-Valley Aquifers Underlying the Des Moines and Superior Lobes in Minnesota" was given at the Minnesota Groundwater Resources Association meeting in St. Paul, Minnesota.

Final Report Summary for Dissemination:

Publications in prep or produced:

- Minnesota Department of Health, 2017a, Analysis of the Cromwell, Minnesota Well 4 (593593) Aquifer Test. Accessed November 20, 2017 at http://www.health.state.mn.us/divs/eh/water/swp/maps/testcromwell.pdf.
- Minnesota Department of Health, 2017b, Analysis of the Litchfield, Minnesota Well 2 (607420) Aquifer Test. Accessed November 20, 2017 at http://www.health.state.mn.us/divs/eh/water/swp/maps/testlitchfield.pdf.
- Trost, J.J., Witt, A.N., Simpkins, W., Maher, A., Stark, J., Robinson, S. Hydrologic Properties of and Infiltration Through Glacial Till Confining Units of Minnesota. U.S. Geological Survey Scientific Investigations Report. *In prep (will be published after the completion of phase 2)*
- Wagner, K. and Tipping, R., 2016, Core Descriptions and Borehole Geophysics in Support of USGS Hydrologic Properties of Till Investigation, Litchfield and Cromwell, Minnesota. Accessed November 20, 2017 at <u>ftp://mgsftp2.mngs.umn.edu/pub4/outgoing/MGS_report_in_support_of_USGS_till_study_Phas</u> <u>e_I.pdf</u>.
- Witt, A.N., 2017, Hydrogeological and geochemical investigation of recharge (leakage) through till aquitards to buried-valley aquifers in central and northeastern Minnesota. M.S. Thesis, Iowa State University, 168 p. Will be available online eventually here: <u>http://lib.dr.iastate.edu/etd/</u>

Presentations at professional meetings:

- Witt, A.N. and Simpkins, W.W., Investigating Groundwater Recharge to Buried Valley Aquifers in Minnesota using Pore Water Geochemistry in Till Aquitards. November 4, 2015, Geological Society of America fall meeting, Baltimore, Maryland. Abstract: <u>https://gsa.confex.com/gsa/2015AM/webprogram/Paper269887.html</u>
- Witt, A.N. and Simpkins, W.W., Estimating Groundwater Recharge to Buried Aquifers. April 20, 2016, Minnesota Groundwater Association spring meeting, St. Paul, Minnesota.

- Witt, A.N., Simpkins, W.W., Trost, J., Stark, J., Estimating Groundwater Recharge to Buried Aquifers. October 18, 2016. Minnesota Water Resources Conference, St. Paul, Minnesota
- Witt, A.N., Simpkins, W.W., Estimating Groundwater Recharge to Buried-Valley Aquifers Underlying the Des Moines and Superior Lobes in Minnesota. November 16, 2016, Minnesota Ground Water Association fall meeting, St. Paul, Minnesota.
- Witt, A.N., Protecting the State's Confined Drinking-Water Aquifers. July 13, 2017, Minnesota Pollution Control Agency Water Issues Talk, St. Paul, Minnesota.

Other public presentations:

- Witt, A.N, Estimating Groundwater Recharge to Buried Valley Aquifers Underlying the Des Moines and Superior Lobes in Minnesota. March 7, 2015, Iowa State University Department of Geological and Atmospheric Sciences Graduate Student Seminar, Ames, Iowa.
- Witt, A.N., Presentation. July 29, 2015, Villa Vista Care Center Cromwell, Minnesota.
- Witt, A.N, Presentation. October 9, 2015, Cromwell-Wright School Environmental Day, Cromwell, Minnesota.
- Witt, A.N, Estimating Groundwater Recharge to Buried Valley Aquifers Underlying the Des Moines and Superior Lobes in Minnesota. March 6, 2016, Iowa State University Department of Geological and Atmospheric Sciences Graduate Student Seminar, Ames, Iowa.

VI. PROJECT BUDGET SUMMARY:

A. ENRTF Budget Overview:

Budget Category	\$ Amount	Explanation
Personnel:	\$197,000	Studies Chief, GS13, (Project management,
		oversight supervision and technical review)
		(one person at 4%) (Benefits are 22%, Salary is
		78%)-\$21,100; USGS Project Chief (GS-11) (one
		person at 23 % FTE for 3 years, benefits are 27%
		salary is 73%)-\$65,300; Admin Support, (2
		people, each at 1.7 percent FTE for each of 3
		years) (benefits are 31 %, salary is 69 %) -
		\$9,900; USGS Hydrologic Technician (GS-11)
		(one person at 16% for each of 3 years)
		(benefits are 24%, salary is 76%)-\$40,300;
		additional technicians (1 at 5 % FTE for 3 years,
		2 at 1 % FTE for 3 years) (benefits are 24%,

		salary is 76%)-\$10,300; student employee (GS5) (benefits are 18%, salary is 82%)-\$20,100; USGS
		Groundwater Specialist: (1 person at 3% FTE for
		3 years) (benefits are 24%, salary is 76%)-
		\$15,600; USGS Water Quality Specialist (GS13)
		(1 person at .5 % FIE for three years), (benefits
		are 2/%, Salary is 73%)-\$1800, USGS spallar
		analysis and modeling specialist, (1 person at 0.4% ETE for 2 years) (bonoifte are 27%, calary is
		0.4% FTE IOF 5 years) (Denenits are 27%, satary is $72%$) 61 600. IT to choicings (2 poople at 0 E %
		73%)-\$1,000; II (ECIIIICalls (2 people at 0.5 /0
		FIE edition 3 years) (Denenits are 2270 , salary is 780%) 62 500, USCS database administrator (1
		78%- $33,500;$ USUS UdidUdSE duffillisticity (1
		person at 2 % FIE for 3 years) (benefits are 22% ,
Dura fara-ia na l/Ta ah nias l/Camilas Calatra atau		Salary IS 78%)-\$7,500
Professional/ rechnical/service contracts:	\$155,595.02	- Minnesota Geological Survey: support of
		gldCldl geologic interpretation; and wen string,
		well culling interpretation, analysis or nactures
		patterns in glacial till; stratigraphic analysis for
		Well completing; support or nyuraulic, chemical,
		and geophysical testing; and contributions to
		final report as co-authors (includes salaries,
		supplies, and travel)
		- Drilling contracts: drilling, wen installation,
		Well sealing, and abandonment.
		-Chemical analyses of water samples at USGS
		contract laboratories (\$4,500)
Equipment/Tools/Supplies:	\$24,562.88	Field supplies and data collection: pumps,
		pressure transducers, electronic recording
		devices, well packers, well casing, and shelters.
Travel Expenses in MN:	\$14,899.65	Travel and lodging while working at field sites
		and attending local meetings
Other: See detailed budget	\$1,942.45	Postage and shipping, expendable supplies and
		materials.
TOTAL ENRTF BUDGET:	\$ 394,000	

Add or remove rows as needed

Explanation of Use of Classified Staff: Not applicable

Explanation of Capital Expenditures Greater Than \$5,000: Not applicable

Number of Full-time Equivalents (FTE) Directly Funded with this ENRTF Appropriation: 2.4

Number of Full-time Equivalents (FTE) Estimated to Be Funded through contracts with this ENRTF Appropriation: 0.18

B. Other Funds:

	\$ Amount	\$ Amount	
Source of Funds	Proposed	Spent	Use of Other Funds
Non-state			
USGS cost-share funds	\$148,200	\$77,280	All activities—USGS administrative and indirect costs
Total	\$148,200	\$77,280	

VII. PROJECT STRATEGY:

A. Project Partners: U. S. Geological Survey, Minnesota Geological Survey, Minnesota Department of Natural Resources, Minnestoa Department of Health

Project Team/Partners

Name	Affiliation	Role		
James Walsh *	Minnesota Department of Health	Site selection—data support		
Steve Robertson *	Minnesota Department of Health	Site selection—data support		
Perry Jones	United States Geological Survey	Borehole testing; report, data base		
Michael Menheer	United States Geological Survey	Drilling support and data collection		
Lisa Syde-Hagen	United States Geological Survey	Administrative Support		
Angela Hughes	United States Geological Survey	Administrative Support		
John Bumgarner	United States Geological Survey	Site selection, hydraulic testing		
Tony Runkle	Minnesota Geological Survey	Glacial Stratigraphy-Hydraulic		
		testing, Reporting		
Bob Tipping	Minnesota Geological Survey	Glacial stratigraphy- Hydraulic		
		Testing, Reporting		
Jan Faltisek*	Minnesota Department of Natural Resources	Regional hydrogeological analyses		

* Participation as collaborator and advisor not receiving ENRTF funding

B. Project Impact and Long-Term Strategy:

This project provides critical information for sustainable management of Minnesota's groundwater resources. The project complements and augments work being done by the County Geologic Atlas Program (MGS and MDNR) and fits with MDNR's planned changes to MDNR water appropriation-permit program. The project fulfills strategic directions for understanding water budgets described in the University of Minnesota's Water Sustainability Framework. Finally, the LCCMR project meshes seamlessly with Activity 3 focused on compilation and mapping statewide variability in hydrogeological properties of the Des Moines and Superior Lobe confining unit using existing data. These two related efforts represent major steps toward defining the hydrogeological properties of the important protective Des Moines and Superior confining till units throughout the state. The project is similar to an ongoing LCCMR project focused on confining properties of the St. Lawrence bedrock confining unit. Based on successful completion of this project, additional funding may be requested to supplement and to enhance date and information from this project.

C. Spending History:

Funding Source	M.L. 2008	M.L. 2009	M.L. 2010	M.L. 2011	M.L. 2013
	or	or	or	or	or
	FY09	FY10	FY11	FY12-13	FY14
LCCMR-ENRTF	NA	NA	NA	NA	NA
USGS Cooperative Water	NA	NA	NA	NA	NA
Program					
MDNR Clean Water Fund	NA	NA	NA	NA	NA

VIII. ACQUISITION/RESTORATION LIST: NA

IX. VISUAL ELEMENT or MAP(S): Shown below

Extent of Major Glacial Confining Units (Till)

Conceptualized graphic showing extent of the Des Moines lobe glacial till (gray) and the Superior lobe glacial till (red).

Conceptual model of land surface, glacial unconfined aquifer, confining unit (brown) and confined aquifer with production well.

X. ACQUISITION/RESTORATION REQUIREMENTS WORKSHEET: NA

XI Research Addendum: This proposal is being completed in great details. The detailed proposal will be revised based on USGS peer review comments. The proposal will then be approved by the USGS and added to this document. The expected date of proposal approval is April 30, 2014.

XII. REPORTING REQUIREMENTS:

TimeLine Requirements: This project would run from July 2014 through June 2017. This timeline would include two field seasons (2015 and 2016). Quarterly written progress reports will be provided to project partners. Final reports and manuscripts will be submitted by June 30, 2017 with publication by January 1, 2018.

Period work plan status update reports will be submitted no later than 12/31/14, 06/15/15, 12/31/15, 06/30/16, and 12/31/16. A final report and associated products will be submitted between June 30 and August 15, 2017

Environment and Natural Resources Trust Fund								
M.L. 2014 Project Budget								
Project Title: Protection of State's Confined Drinking Water Aquifers								>)
Legal Citation: M.L. 2014, Chp. 226, Sec. 2, Subd. 03h							AND NATURAL RESOUR	CES
Project Manager: Jared Trost							TRUSTFUN	ID
Organization: U. S. Geological Survey.								
M.L. 2014 ENRTF Appropriation: \$ 394,000								
Project Length and Completion Date: 3 yearsJuly 2014 through June 2017								
Date of Report: June 30, 2017								
ENVIRONMENT AND NATURAL RESOURCES TRUST FUND BUDGET	Revised Activity 1 Budget 6/16/2017	Amount Spent as of 6/30/2017	Activity 1 Balance as of 6/30/2017	Revised Activity 2 Budget 6/16/2017	Amount Spent as of 6/30/2017	Activity 2 Balance as of 6/30/2017	TOTAL BUDGET REVISED as of 6/16/2017	TOTAL BALANCE as of 6/30/2017
BUDGET ITEM								
Personnel overall (wages and benefits)	\$ 92,000.00	\$ 92,000.00	\$-	\$ 105,000.00	\$ 105,000.00	\$-	\$ 197,000.00	\$-
Studies Chief, GS13, (Project management, oversight supervision and technical review) (one person at 4%) (Benefits are 22%, Salary is 78%)-\$21 100								
USGS Project Chief , (GS-11) (one person at 23 % FTE for 3 years, benefits are 27% salary is 73%)-\$65,300								
Admin Support, (2 people, each at 1.7 percent FTE for each of 3 years) (benefits are 31 %, salary is 69 %) - \$9,900								
USGS Hydrologic Technician (GS-11) (one person at 16% for each of 3 years) (benefits are 24%, salary is 76%)-\$40,300; additional technicians (1 at 5 % FTE for 3 years, 2 at 1 % FTE for 3 years) (benefits are 24%, salary is 76%)-\$10,300; student employee (GS5) (benefits are 18%, salary is 82%)-\$20,100								
USGS Groundwater Specialist (1 person at 3% FTE for 3 years) (benefits are 24%, salary is 76%)-\$15,600								
USGS Water Quality Specialist (GS13) (1 person at .5 % FTE for three years),(Benefits are 27%, salary is 73%)-\$1800								
USGS Spatial analysis and modeling specialist, (1 person at 0.4% FTE for 3 years) (beneifts are 27%, salary is 73%)-\$1,600								
IT technicians (2 people at 0.5 % FTE each for 3 years) (benefits are 22%, salary is 78%)- \$3,500								
USGS database administrator (1 person at 2 % FTE for 3 years) (benefits are 22%, salary is 78%)-\$7,500								
Professional/Technical/Service Contracts								
MGS (Minnesota Geological Survey) (staff supportDrs Runkle and Tipping). Support of glacial geologic interpretation and well siting. Well cutting interpretation. Analysis of fractures patterns in glacial till. Stratigraphic analysis for well completing. Support of hydraulic, chemical and geophysical testing. Contributions to final report as co-authors. Comment:The December 30,2015 ammendment request includes a reduction in the budget intended as contract support provided by the Minnesota Geological Survey (MGS). This request reduces the amount of support planned to be provided by MGS staff and increases staff funds for USGS staff. These conflicts could not be avoided and were work worked out successfully among MGS and USGS staff. In addition, remaining tasks assigned to MGS for this project can be completed under the current contract with the University of Minnesota.	\$7,493.00	\$7,493.00	\$-	\$6,019.15	\$6,019.15	\$-	\$ 13,512.15	\$ -

MGS (Minnesota Geological Survey travel, in-state) Vehicle mileage and lodging at field sites and for local meetings, compart (the December 30.2015 amendment request includes a reduction in the	\$0.00	\$0.00	\$-	\$0.00	\$0.00	\$	- \$ -	\$-
budget for travel by the Minnesota Geological Survey (MGS). This request reduces the amount of travel support planned to be provided to MGS staff and increases travel funds for USGS staff. These conflicts could not be avoided and were work worked out successfully among MGS and USGS staff. These changes result in a budget reduction for MGS contract staff and a corresponding increase in USGS staff salary support.)								
MGS (Minnesota Geological Survey) supplies for water sampling and hydraulic testing supplies and analytical costs -\$1,000	\$0.00	\$0.00	\$-	\$0	\$0	\$	- \$ -	\$-
Contract printing (contract fees for USGS reports: includes editing and preparation for electronic printing and distribution)- \$9,000.	\$0.00	\$0.00	\$-	\$0.00	\$0.00	\$	- \$ -	\$
Contract drillers: Drilling, well installation, well sealing and abandonment. This work will be done by a private drilling contrrator through a bidding process \$126,000.	\$110,000.00	\$110,000.00	\$-	\$28,269.25	\$28,269.25	\$	- \$ 138,269.25	\$0.00
USGS contract lab: chemical analyses of groundwater samples	\$0.00	\$0.00	\$-	\$3,813.62	\$3,813.62	\$	- \$ 3,813.62	\$-
Equipment/Tools/Supplies: USGS miscellaneous field equipment and supplies for data collection, Pumps, pressure transducers, electronic recording devices, well packers, well casing and shelters. None of these individually exceed \$5,000	\$24,163.09	\$24,163.09	\$-	\$399.79	\$0.00	\$ 399.79	9 \$ 24,562.88	\$399.79
Travel expenses in Minnesota: USGS travel and lodging expense in Minnesota include mileage charges for government vehicles, lodging and meal expenses while working at field sites. Lodging and mileage expenses while attending local meetings.	\$6,000.00	\$6,000.00	\$-	\$8,899.65	\$8,899.65	\$	• \$ 14,899.65	\$-
Other: USGS miscellaneous supplies, equipment and shipping. Miscellaneous required purchases, postage and FedEx shipping, expendable supplies and materials	\$742.53	\$742.53	\$-	\$1,199.92	\$1,199.92	\$	\$ 1,942.45	\$-
COLUMN TOTAL (partial)	\$240,398.62	\$240,398.62	\$0.0	0 \$153,601.38	\$153,201.59	\$399.79	\$394,000.00	\$399.79

Analysis of the Cromwell, Minnesota Well 4 (593593) Aquifer Test

CONDUCTED ON MAY 24, 2017 CONFINED QUATERNARY GLACIAL-FLUVIAL SAND AQUIFER

Analysis of the Cromwell, Minnesota Well 4 (593593) Aquifer Test Conducted on May 24, 2017

Minnesota Department of Health, Source Water Protection Program PO Box 64975 St. Paul, MN 55164-0975 651-201-4700 health.drinkingwater@state.mn.us www.health.state.mn.us/divs/eh/water/swp

To obtain this information in a different format, call: 651-201-4700.

Upon request, this material will be made available in an alternative format such as large print, Braille or audio recording. Printed on recycled paper.

Contents

Analysis of the Cromwell, Minnesota–Well 4 (593593) Aquifer Test1
Data Collection and Analysis7
Description
Purpose of Test7
Well Inventory7
Other Interfering Wells
Test Setup 8
Weather Conditions
Discharge Monitoring
Data Collection
Qualitative Aquifer Hydraulic Response9
Quantitative Analysis
Transient-Horizontal Flow11
Steady-State Horizontal Flow11
Steady-State Vertical Flow
Steady-State Leakage Caused by Pumping12
Simultaneous Solution for Horizontal and Vertical Flow13
Additional Analyses for Comparison to other Parts of the Dataset
Conclusion13
Acknowledgements14
References14
Tables and Figures

List of Tables

Table 1. Summary of Results for Leaky Confined - Radial Porous Media Flow	16
Table 2. Aquifer Test Information	17
Table 3. Well Information	18
Table 4. Data Collection	19
Table 5. Transient Analysis Results	20
Table 6. Steady-state Analysis Results	21

List of Figures

Figure 1. Solution of Aquifer Properties by Aqtesolv. Data from Cromwell 4 (593593) and USGS 1-B (773070)
Figure 2. Solution of Aquifer Properties by Aqtesolv. Showing Data from Cromwell 4 (593593), USGS 1-B (773070) and USGS 1-C (773071)
Figure 3. Solution of Aquifer Properties by Aqtesolv. Data from USGS 1-B (773070) only
Figure 4. Conventional Distance-drawdown Plot based on Cromwell 4 (593593) and USGS 1-B (773070)
Figure 5. Drawdown at Nest 2 after 1450 minutes of pumping, projected to 10,000 minutes 26
Figure 6. Groundwater Gradient at Nest 2 after 1450 Minutes of Pumping 27
Figure 7. Drawdown at Nest 1 after 1450 minutes of pumping, projected to 10,000 minutes 28
Figure 8. Groundwater Gradient at Nest 1 after 1450 Minutes of Pumping 29
Figure 9. Comparison of Drawdowns at 1450 Minutes of Pumping at Nests 1 and 2, at Nase of Till, to that in Aquifer
Figure 10. Comparison of Drawdowns at 10,000 Minutes of Pumping at Nests 1 and 2, at Base of Till, to that in Aquifer
Figure 11. Solution of Aquifer Properties by Aqtesolv. Data from USGS 2-B, 2-C, 2-D, and 2-E 32
Figure 12. Solution of Aquifer Properties by Aqtesolv. Data from USGS 2-B only
Figure 13. Solution of Aquifer Properties by Aqtesolv. Data from USGS 2-B only
Figure 14. Solution of Aquifer Properties by Aqtesolv. Data from USGS 2-C only
Figure 15. Solution of Aquifer Properties by Aqtesolv. Data from USGS 2-D only
Figure 16. Solution of Aquifer Properties by Aqtesolv. Data from USGS 2-B, 2-C, and 2-E only 37
Figure 17. Solution of Aquifer Properties by Aqtesolv. Recovery Phase Data from USGS 2-B, 2-C, 2-D, and 2-E

Figure 18. Solution of Aquifer Properties by Aqtesolv. Match to Data from USGS 1-A, Data from USGS 1-B, and Cromwell 4
Figure 19. Solution of Aquifer Properties by Aqtesolv. Match to Data from USGS 1-A and Modeled Drawdown at the Base of Till, Data from USGS 1-B, and Cromwell 4
Figure 20. Solution of Aquifer Properties by Aqtesolv. Match to Data from all USGS Observation Wells and Drawdown at the Base of Till at Nests 1 and 2
Figure 21. Solution of Aquifer Properties by Aqtesolv. Match to all data
Figure 22. Similarity in Slope of 1-A and 2-E43
Figure 23. Solution of Aquifer Properties by Aqtesolv. Match to Data from USGS 1-A and USGS 2-E
Figure 24. Agarwal Analysis 45
Figure 25. Solution of Aquifer Properties by Aqtesolv. Analysis of Recovery Data from Pumped Well
Figure 26. Well Identification
Figure 27. Distances between Wells and Well Nests
Figure 28. Schematic Section Across Site 49
Figure 29. Time-series of Groundwater Elevation Collected at Cromwell 4
Figure 30. Time-series of Groundwater Elevation Collected at USGS 1-A
Figure 31. Time-series of Groundwater Elevation Collected at USGS 1-B
Figure 32. Time-series of Groundwater Elevation Collected at USGS 1-C
Figure 33. Time-series of Groundwater Elevation Collected at USGS 2-A
Figure 34. Time-series of Groundwater Elevation Collected at USGS 2-B
Figure 35. Time-series of Groundwater Elevation Collected at USGS 2-C
Figure 36. Time-series of Groundwater Elevation Collected at USGS 2-D
Figure 37. Time-series of Groundwater Elevation Collected at USGS 2-E
Figure 38. Time-series of Groundwater Elevation Collected at all Wells
Figure 39. Time-series of Groundwater Elevation Collected at Cromwell 4 and Nest 1 60
Figure 40. Time-series of Groundwater Elevation Collected at Cromwell 4 and Nest 2 61
Figure 41. Time-series of Groundwater Elevation Collected at USGS 2-A and Barometric Pressure as Difference in Water Level
Figure 42. Aqtesolv plot of diagnostic slope for spherical flow and data from USGS 1-B and 1-C
Figure 43. Conventional log-log plot of drawdown and recovery at USGS 1-B with Walton (1960) leaky type-curve

Figure 44. Conventional log-log plot of drawdown and recovery at USGS 1-C with Walton (1 leaky type-curve	.960) 65
Figure 45. Well and Boring Report - Well 593593	66
Figure 46. Well and Boring Report - Well 519761	67
Figure 47. Well and Boring Report - Well 773071	68
Figure 48. Well and Boring Report - Well 773070	69
Figure 49. Well and Boring Report - Well 773069	70
Figure 50. Well and Boring Report - Well 773068	71
Figure 51. Well and Boring Report - Well 773067	72
Figure 52. Well and Boring Report - Well 773066	73
Figure 53. Well and Boring Report - Well 773065	74
Figure 54. Well and Boring Report - Well 773064	75

Data Collection and Analysis

The constant-rate aquifer test performed at Cromwell 4 (593593) was conducted as described below. The test results are summarized in Table 1. The specifics of test location, scope, and timing are presented in Table 2, Table 3, and Table 4. Data were analyzed using standard methods cited in references. Individual analyses are presented the Figures 1-25 and are summarized in Table 5 and Table 6. Figures 26-44 include maps, comparison of manual and electronic data, and any other test documentation. Records of well construction are contained in Figures 45-54.

Description

Purpose of Test

The test of Cromwell 4 was conducted by the Minnesota Department of Health (MDH) Source Water Protection Unit as a small part of a longer-term project led by the United States Geological Survey (USGS). The overall purpose of the study is to assess the rates of groundwater recharge through low-conductivity glacial sediments at various sites in Minnesota.

Specific to Cromwell, eight observation wells were installed by the USGS in 2015. Water elevations were recorded on a one-hour interval in five of these wells for approximately one-year. The USGS had completed its data collection and was preparing to seal the observation wells. Prior to sealing the wells, notification was provided to the partner agencies relative to the completion of the work. At that time, staff in the Source Water Protection Unit recognized that this configuration of observation wells is nearly ideal for conducting a short-term constant-rate aquifer test that is designed to estimate vertical groundwater flow induced by pumping. Therefore prior to sealing the wells, MDH proposed to conduct tests that would complement the USGS data collection efforts.

Well Inventory

The well records are presented in Figures 45-54 and the well construction is summarized in Table 2. Detailed site plans are shown in Figure 26 and Figure 27.

Hydrogeologic Setting

These records were used to assess the hydrogeologic setting and identify the appropriate conceptual model for data analysis. A schematic section through the test site is shown on Figure 28 to illustrate the three layers that comprise the flow system; water table, aquitard, aquifer, and the construction of wells within these layers.

Other Interfering Wells

No other high capacity wells exist in the area to cause interference.

Test Setup

The USGS provided the pressure transducers and data loggers used for long-term monitoring, re-programmed to a one-minute interval. MDH hydrologists, Tracy Lund and Justin Blum, traveled to Cromwell on May 18, 2017 to assess site conditions and re-install the transducers to collect background water level and barometric data. At that time, the flowmeter-totalizer had been removed for cleaning and calibration. Mr. Tom Johnson, the water operator, indicated that the flowmeter would be returned to service shortly and the test was tentatively scheduled to begin on May 23, 2017.

Access to Cromwell 3 (519761) is restricted and the only means to measure the water level is via a bubbler-line. A transducer could be placed in Cromwell 4 to monitor water levels. A prior test of Cromwell 3 was conducted by the MDH in 2001. The location of the obwell nests relative to the PWS wells is slightly closer to Cromwell 4 than 3. The obwells constructed in the till are within 60 feet of Well 4 and are therefore more likely to respond to pumping. Because of these factors; access to the wells, prior tests, and the relative distance of the well nests, caused Cromwell 4 to be preferred for testing.

After the flowmeter was reinstalled, MDH staff mobilized for the test on May 24, 2017, arriving on-site at 10:00. The flow monitoring equipment and pump controls were inspected with the operator. Discussions with the operator indicated that the system demand is much smaller than the capacity of the well and water will have to be wasted during the 24-hour pumping phase. He considered putting a discharge control on one of the hydrants to drain the excess but opted to let the tower fill and overflow to the established drain. This presented no flooding or erosion hazard and did not require monitoring for concerns of public safety.

An MDH pressure transducer was installed in Cromwell 4; programmed to a 20 second interval, and scheduled to begin data collection 5/24/2017 at 12:00. Static levels were collected from all accessible wells prior to beginning the test. A transducer (in-line with a compressor) was attached to the Cromwell Well 3 bubbler-line to attempt to collect water levels.

Weather Conditions

Conditions were cool and rainy during background data collection. No appreciable precipitation occurred during pumping and recovery.

Discharge Monitoring

The totalizing flow meter was read manually to document the pumping rate. The operator flushed hydrants between 12:30 and 15:00, early in the pumping phase, putting some of the excess water to productive use.

Data Collection

The pump was started at 12:10:04 on 5/24/2017 by hand control. The compressor/transducer setup on Well 3 did not collect usable data. Water levels were collected manually from the accessible wells and data were downloaded to check the operation of the transducers.

It was found that the transducer in well USGS 2-E (773064) was set too deep in the well and did not collect usable data during background and early pumping. The submergence of the transducer was adjusted and a static collected at 15:30. Data collected after about 280

minutes of pumping (~18:00 on 5/24/2017) are valid. The transducers in all other observation wells appeared to functioning properly.

In the morning of 5/25/2017 distances from the pumped well to the observation wells and other features visible on aerial photos were measured with fiberglass tape. Data were downloaded from the transducers prior to end of pumping/start of recovery. Recovery began at 12:25:00 5/25/2017.

During the recovery period, over the Memorial Day weekend, the water operator agreed to manipulate the pump controls is such a way that Well 4 would not be pumped and Well 3 would be used to meet demand. Normal operation is to alternate the wells, accomplished by an automatic switch in the pump controls. Bypass of the switch provided data from short-term pumping of Well 3 to compare to that from the test of Well 4, just completed, see test 2613.

Data were downloaded on 5/30/2017 and water levels measured. The recovery-phase data from USGS 1-A was lost during the download process. Also, inspection of the data from Well 4 showed that the hydrant flushing caused anomalous changes in water level in the early part of the pumping-phase. Because of these problems, it was decided to perform a second, short-term constant-rate test, of Well 4 to attempt to collect additional early-time data from the pumped well and USGS 1-A. This test was run the same way as the earlier constant-rate test but for an abbreviated pumping period (345 minutes) with an overnight recovery. The final water levels were measured on 5/31/2017 and the equipment removed from the wells. Results of this short-term test are described in a separate document, see test 2619.

Qualitative Aquifer Hydraulic Response

Detailed site plans are shown in Figure 26 and Figure 27, identifying the wells and distances between the wells. A schematic cross section is provided for visual context of the test conditions, Figure 28. Comparison of manual and transducer data are shown Figure 29 through Figure 37. All but one well showed a response to pumping. USGS 2-A, constructed in the water table aquifer showed no response, as expected. The groundwater gradient is upward under 'static conditions,' including typical pumping to meet the system demand, Figure 38. The ambient difference in water elevation across the till at the well site is approximately 8.4 feet. Comparisons of water elevations between wells at the nests are shown on Figure 39 and Figure 40. From these comparisons, the more intensive pumping of this constant-rate test temporarily reversed the gradient within a short distance from the pumped well (~10 feet) and generated a strong signal for analysis of hydraulic properties.

The water elevations appear to trend upward over the data collection period. No appreciable change in water level can be attributed to changes in barometric pressure, Figure 41. The trend of the increase in water level shown on Figure 37was removed prior to analysis.

The only truly anomalous hydraulic responses were seen in wells USGS 2-B and 2-C, Figure 34 and Figure 35, respectively. These wells showed consistent, transient, reverse water level variation with the start of pumping of either Cromwell 3 or 4; conditions under which elevations would be expected to decrease. The reverse water variation also occurred at the end of the Cromwell 4 pumping phase. The magnitude of the response was about 0.1 foot and dissipated within about twenty minutes of the change in conditions. This phenomenon has been described in the literature as a poro-elastic response, Wolf (1970). Reverse water level fluctuations are characteristic of wells constructed in materials with a low conductivity and high elasticity (clay) that are in contact with materials of high conductivity and high compressive strength (sand). This condition is rarely observed and is the first time that it has been encountered (that we are aware of) in Minnesota. Because of this poro-elastic

response, data from these wells are considered to be most representative of conditions within the till, relative to the response of other wells in this nest.

Within the aquifer itself, the simplifying assumptions of commonly used analysis techniques consider the movement of groundwater induced by pumping to be exclusively horizontal. In the case of this analysis, vertical head differences within the aquifer within 200 feet of the pumped well cannot be neglected. The pumping well is constructed with a twenty-foot screen, centered 55 feet below the top of the sand and gravel aquifer. The total thickness of the aquifer in this location is 145 feet. This type of well construction where the aquifer is screened over only a portion of the whole thickness is known as 'partially penetrating.' Because of this well construction, within small radial distances (tens of feet) from the pumped well, groundwater flow is spherical rather than horizontal; transitioning to horizontal with increasing radial distance. The rule of thumb (Hantush, 1964) for estimation of the radial distance at which this transition to horizontal flow is complete:

$$r_{h} = 1.5 * (aquifer thickness) * (\frac{horizontal conductivity}{vertical conductivity})^{0.5}$$

Given the geometry of aquifer materials and well construction at this site; and, if there is no difference between horizontal and vertical hydraulic conductivity, then the minimum distance to the transition to horizontal flow is 217 feet. [In fluvial sediments, the vertical conductivity is normally smaller than the horizontal conductivity – increasing differences between these conductivities will produce a progressively larger radial distance of transition.] Both well nests are within this minimum distance and therefore the effects of partial penetration should be expected to be present.

The partially penetrating condition was verified in Aqtesolv, Figure 42, as being the result of spherical flow by the similarity of the slope of data to the diagnostic curve. A non-Theisian response was also seen by the approximate unit-slope of early-time data USGS 1-B, on a log-log plot before 200 minutes, Figure 43. The portion of the transient response before 200 minutes, dominated by spherical flow, should not be used for analysis by methods that do not incorporate partial-penetration.

An additional consideration for the analysis of aquifer properties is the decrease in conductivity at the top of a layer resulting from fluvial depositional processes. This is typically described as the 'fining upward' distribution of gain-size when looking at layers of sediment in cross-section. Because of this tendency, it is expected that the conductivity of the material at the top of the aquifer would be smaller than that at the level of the pumpedwell screen or at the base of the aquifer.

This expectation is consistent with the remarkable similarity of the observed hydraulic response of USGS 1-B and 1-C, in the middle and at the base of the aquifer, Figure 43 and Figure 44. The similarity of response indicates a negligible contrast in horizontal and vertical conductivities for middle to lower parts of the aquifer. With regard to the response at the top of the aquifer, a smaller conductivity normally implies a larger drawdown. However, the drawdown at the top of the aquifer cannot be greater than that observed at USGS 1-B, at the level of the pumped-well screen within the aquifer. This represents a bounding condition on estimates of drawdown, useful to inform the analysis.

Quantitative Analysis

Typically, an aquifer test characterizes the hydraulic properties of aquifer materials and if additional information can be extracted relative to the bounding aquitards; it is generally considered a 'bonus.' However, the primary question for this project is the assessment of the vertical movement of water in the till. Therefore, the goals of this project require a different approach.

The difference in water pressure across the aquitard drives the leakage through the till. The pressure at the top of the aquitard is well documented (USGS 2-A); but, is unknown at the base of the aquitard/top of aquifer. The uncertainty is the result of the effects of the partially-penetrating pumping well. Consequently, uncertainty in the drawdown at the boundary between the aquifer and till causes uncertainty in the leakage rate. Because of these complications, the analysis must proceed in stages and must be checked at each stage for consistency with the conceptual model of a partially penetrating well in a leaky-layered system.

The analysis process is broken into parts or steps that use different groups of wells to focus on how the aquifer works (conceptual models). Steps 1 through 4 lead to an assessment of representative (bulk) properties of the aquifer and aquitard. Step 5 is the analysis by the Neuman-Witherspoon method that emphasizes the impact of lithological variation within the till on hydraulic response and estimated aquifer properties. These different views of the data and how the aquifer works must converge to a set of relatively consistent aquifer properties for there to be some confidence in the test results.

Transient-Horizontal Flow

The hydraulics of a partially-penetrating pumping well has been developed in the literature with several published solutions. Some of these solutions have been implemented in the commercial aquifer test analysis software, Aqtesolv, (Duffield, 2007). This tool was used to simulate the aquifer response by a method that includes partial-penetration and leakage, a solution referenced to Hantush-Jacob (1955).

The base data set for the simulation included data from the pumped well and USGS 1-B. The goal of these simulations was to solve for reasonable aquifer properties and predict the drawdowns at the nest locations at the base of the till/top of the aquifer. The drawdown was simulated as 'virtual piezometers' at these locations. The solutions from these analyses uniformly produced very large transmissivity, small storativity, and large leakage factor, Figure 1. Well USGS 1-C was included in the solution shown on Figure 2. These simulations were not judged to be realistic because drawdowns at the virtual piezometers were uniformly smaller than that predicted by the response of the USGS obwells. It was found that inclusion of data from the pumped well was forcing an inappropriate solution.

The analysis based on data from only USGS 1-B is considered to be most reasonable to begin this process, Figure 3. This analysis produced aquifer properties that are in the reasonable range for transmissivity and storativity; including a vertical/horizontal conductivity ratio of ~0.5 and a leakage factor of ~360 feet (1/B = 2.8e-3). As the focus of this analysis is the properties of the till, the conductivity ratio and leakage factor are useful to simulate the effects of pumping at the base of the till at Nests 1 and 2. The transmissivity at the base of the till is expected to be in the range of 2,200 ft²/day. And, based on this leakage factor, the X-axis intercept (semi-log plot of distance drawdown) is expected to be in the range of 400 feet (L * 1.12). Based on the aquifer properties from Figure 3, the drawdowns at the virtual piezometers are modeled to be in the range of 5 and 3 feet at Nests 2 and 1, respectively.

Steady-State Horizontal Flow

A distance-drawdown plot is used for the combined transient (Cooper-Jacob [1946]) and steady-state analysis (Hantush-Jacob [1955]), Figure 1 through Figure 4. This view of the aquifer response, based only on Cromwell 4 and USGS 1-B, produces a large transmissivity

and large leakage factor (very low rate of leakage). The quantities are incorrect because the conceptual model is incomplete (no partial-penetration or anisotropy). The utility of this plot is that the slope of this regression defines the maximum drawdown in the aquifer system at any radial distance. Therefore, the estimated drawdown at Nest 2 cannot be greater than \sim 5.3 feet.

Steady-State Vertical Flow

At Cromwell, the till is quite leaky and all observation wells constructed within the till clearly responded to pumping. The number of observation wells at Nest 2 provides the most direct estimate of water pressure at the base of the till/top of the aquifer. The configuration of the well nest is analogous to test column of granular material in the laboratory where observation wells act as individual pitot tubes.

A linear regression of the observed drawdowns from the Nest 2 observation wells, after 1450 minutes of pumping and projected to 10,000 minutes, Figure 5. These values were used to estimate the possible drawdown at the base of the till, ranging from 4.8 to 5.8 feet, Figure 6. Lithological differences between USGS 2-D and USGS 2-E are the cause for this large range. The regressions that followed the trend of wells USGS 2-B and 2-C were favored because of reasons discussed above. Additionally, there are physical limits on the drawdown at the base of the till, as discussed above. The range of drawdown at Nest 2 from this analysis is consistent with that from the steady-state horizontal flow of approximately 5.3 feet.

The drawdown at Nest 1 can only be roughly estimated because a single observation well was constructed in the till, USGS 1-A. A similar regression to that described above was performed to estimate the drawdown at the base of the till at this Nest. Figure 7 shows these regressions at, 2.0 and 2.95 feet at 1450 minutes and 10,000 minutes, respectively. This is also consistent with the constraints on drawdown from Figure 4.

Steady-State Leakage Caused by Pumping

The consistency of these estimates was checked on a semi-log plot of distance-drawdown by comparing the slopes and X-axis intercepts, Figure 8 and Figure 9. These possible solutions produce a similar point of zero drawdown at 400 to 500 feet and reasonable transmissivities for aquifer materials at the base of the till. The storativity from these solutions is not valid because of the effects of partial penetration; however, these large values for storativity are reasonable with respect to the time that it takes for the response to pumping to propagate to the base of the till.

The leakage factor is essential for calculating the vertical conductivity of the till in combination with other parameters: transmissivity and aquitard thickness. Here, the notation for leakage factor, 'L' from Kruseman and de Ridder (1991) is used. The leakage factor from the steady-state Hantush-Jacob analysis is calculated as, $L = X_0 / 1.12$. The equation for the vertical hydraulic resistance of the aquitard is, $c = L^2/T$ in units of days.

From these relationships, the vertical conductivity is calculated (in terms of L) as,

$$k_V = b' / (L)^2 / T]$$

As shown in Figure 9, the Hantush-Jacob analysis of distance-drawdown data produces, $k_V = 130 / [(437)^2 * 2200] = 1.5 \text{ ft/day}.$

Simultaneous Solution for Horizontal and Vertical Flow

The transient response of the observation wells constructed within the till can be analyzed by the Neuman-Witherspoon method. The responses at Nests 1 and 2 were analyzed separately and as a composite, Figure 11 through Figure 21.

The Nest 2 analyses, generally were consistent values for aquifer properties. The analysis of recovery data at Nest 2, Figure 17, produced the best match and results that most closely followed the analysis of USGS 1-B, Figure 3.

The Neuman-Witherspoon analyses from Nest 1, Figure 18 and Figure 19, produced a larger transmissivity and a larger vertical conductivity of the till. Figure 18 attempted to match the data from within the aquifer. The solution shown on Figure 19 was based on the single till observation well, USGS 1-A.

The composite analyses, matching all data from the obwells were lower quality matches and more variable results, Figure 20 and Figure 21.

Estimates of leakage factor from factor from the Neuman-Witherspoon analyses are reported as 1/B. This parameter is the same as the 'B' in 'r/B' from the steady-state Hantush-Jacob model, Walton (1960) normalized for radial distance. 1/B, is the inverse quantity, $L = (1/B)^{-1}$, and the vertical hydraulic resistance is expressed as, $1/c = (1/B)^2 * T$ in units of days⁻¹.

From these relationships, the vertical conductivity is calculated (in terms of 1/B) as,

$$k_V = b' * [(1/B)^2 * T]$$

As shown in Figure 17, the Neuman-Witherspoon analysis of data from Nest 2 produces,

 $k_V = 130 * [(0.0017)^2 * 2300] = 0.86 \text{ ft/day}.$

Heterogeneity in the properties of the till is indicated by the poor match of the response of USGS 1-E to the curves relative to the other wells in Nest 2, Figure 17. Examination of the slopes of the late-time data at the observation wells in the till shows that there is a marked similarity in the trends of USGS 1-A and USGS 2-E, Figure 22. Because of this similarity a separate Neuman-Witherspoon analysis was performed on only those wells, Figure 23. This analysis is a reasonable upper bound on the conductivity of the till, 4.1 ft/day.

Additional Analyses for Comparison to other Parts of the Dataset

Figure 24 and Figure 25 are recovery analyses for comparison to the short-term tests that were conducted after this test, see documents for tests 2613 and 2619.

Conclusion

The bulk aquifer and aquitard properties from this dataset are shown in Table 1, as derived from the analyses listed on Table 5 and Table 6. This test is a detailed examination of the properties of the till in a very small area. The large range of estimated aquifer properties result from both: the sub-set of the data to which an analysis method was applied, and natural lithological variation, particularly within the till.

The reported range of vertical conductivity of the till is from 0.85 to 4.1 ft/day. The low value, 0.85 ft/day, is from the response of wells at Nest 2, USGS 1-B, 1-C and 1-D.

However, the till contains significant heterogeneities and the vertical conductivity is significantly greater in some areas. Based on the responses at USGS 1-A and USGS 2-E, the largest credible value from this dataset is 4.1 ft/day. Because these wells are at both nests, it is likely that this analysis characterizes the till over a larger geographic extent than the analyses from the observation wells limited to Nest 2. Therefore, for modelling purposes it is unlikely that the low value is realistic and a more reasonable range of the bulk properties of the till is from 1.1 to 4.1 ft/day.

Acknowledgements

There have been few opportunities to collect this level of detailed hydraulic information for the analysis of rates of leakage through till. It is judged that this data collection effort and subsequent analysis was particularly successful, given the hydrogeologic setting and the normal challenges of adapting to field conditions. Credit for this success is due in large part to the active participation and support of Mr. Tom Johnson, water operator for the city of Cromwell. Thank you.

References

- Agarwal, R.G. 1980. A new method to account for producing time effects when drawdown type curves are used to analyze pressure buildup and other test data. SPE Paper 9289, presented at the 55th SPE Annual Technical Conference and Exhibition, Dallas, Texas, September 21–24, 1980.
- Blum, J. L. (2017a) Analysis of Four Short-term Pumping Tests Conducted at Cromwell 3 (519761), May 26 - May 30, 2017, Confined Quaternary Glacial-Fluvial Sand Aquifer. Technical Memorandum - Aquifer Test 2613. Minnesota Dept. of Health, pp. 34.
- Blum, J. L. (2017b) Analysis of Short-term Pumping Test of Cromwell 4 (593593), May 30, 2017, Confined Quaternary Glacial-Fluvial Sand Aquifer. Technical Memorandum Aquifer Test 2619. Minnesota Dept. of Health, pp. 22.
- Cooper, H.H. and Jacob, C.E. (1946) A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Wellfield History, Trans. American Geophysical Union, V. 27, pp. 526 – 534.
- Kruseman and De Ridder, (1991) Analysis and Evaluation of Pumping Test Data (2nd Edition), Publication 47, International Institute for Land Reclamation and Improvement, P.O. Box 45, 6700 AA Wageningen, The Netherlands, pp. 76-78.
- Duffield, G.M. (2007) AQTESOLV for Windows Version 4.5 User's Guide, HydroSOLVE, Inc., Reston, VA.
- Jacob, C.E. (1947) Drawdown Test to Determine the Effective Radius of Artesian Wells. Transactions of the American Society of Civil Engineers, 112, pp.1047–1170.
- Hantush, M. (1964) 'Hydraulics of Wells', in Chow, V. T. (ed.) Advances in Hydroscience. New York: Academic Press. Available at: http://www.ees.nmt.edu/hantush/213hantush-wellshydrolics.
- Hantush, M. S. and Jacob, C.E. (1955a) Non-steady Radial Flow in an Infinite Leaky Aquifer, Trans. American Geophysical Union, Vol. 35, pp. 95-100.

- Hantush, M. S. and Jacob, C.E. (1955b) Steady Three-dimensional Flow to a Well in a Twolayered Aquifer, Trans. American Geophysical Union, Vol. 36, pp. 286-292.
- Lund, T. and Blum, J.L. (2017) Analysis of the Cromwell 4 (593593) Pumping Test, May 24, 2017, Confined Quaternary Glacial-Fluvial Sand Aquifer. Technical Memorandum Aquifer Test 2612, Minnesota Dept. of Health, pp. 70.
- Neuman, S.P. and Witherspoon, P.A. (1969) Theory of flow in a confined two aquifer system, Water Resources Research, vol. 5, no. 4, pp. 803-816.
- Theis, C. V. (1935) The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground-Water Storage, Trans. American Geophysical Union, 16th Annual Meeting, April, 1935, pp. 519-24.
- Walton, W.C. (1960) Leaky Artesian Aquifer Conditions In Illinois, Illinois State Water Survey, Bulletin 39, pp. 27.
- Wolff, R. G. (1970) Relationship between horizontal strain near a well and reverse water level fluctuation, Water Resources Research, 6(6), pp. 1721–1728.

Tables and Figures

Table 1. Summary of Results for Leaky Confined - Radial Porous Media Flow

Parameter	Value	Unit	Range Minimum	Range Maximum	+/- % variation
Top Stratigraphic Elev.	1152	feet (MSL)			
Bottom Stratigraphic Elev.	1007	feet (MSL)			
Transmissivity (T)	4,400	ft²/day	1,000	5,700	
Aquifer Thickness (b)	145	feet	145	175	
Hydraulic Conductivity (k)	30	ft/day			
Ratio Vertical/Horizontal k ¹	0.5	0.00 %			
Primary Porosity (e _p)	0.25	0.00 %			
Storativity (S)	2.0e-4	dimensionless	1.0e-4	4.0e-4	
Characteristic Leakage (L)	500	feet	330	2610	
Hydraulic Resistance (c)	114	days	50	220	
Thickness of till (b')	130	feet			
Hydraulic Conductivity of till (k_{v})	1.1	ft/day	0.8	4.1	

¹ Conductivity decreases to ~15 ft/day at top of aquifer (transmissivity, ~2,200 ft2/day)

TEST 2612, CROMWELL 4 (593593) MAY 24, 2017

Information Type Information Recorded 2612 Aquifer Test Number Test Location Cromwell 4 (593593) Well Owner City of Cromwell Test Conducted By MDH - T. Lund and J. Blum Aquifer QBAA Confined / Unconfined Confined 05/18/2017 11:40 Date/Time Monitoring Start Date/Time Pump off Before Test 5/23/2017 4:31 Date/Time Pumping Start 5/24/2017 12:10:04 Date/Time Recovery Start 5/25/2017 12:25:00 Date/Time Test Finish 5/31/2017 11:00 Pumping time (minutes) 1454.93 Totalizer – end reading 106059750 105817400 Totalizer – start reading 242350 gallons Total volume (gallons) Nominal Flow Rate 167 (gallons per minute) Number of Observation Wells 8 (see Table 3)

Table 2. Aquifer Test Information

Well Name (Unique Number)	Easting Location, X ² (meter)	Northing Location, Y ² (meter)	Radial Distance (feet)	Ground Surface Elevation, GSE ³ (feet, MSL)	Measuring Point Description GSE+(stick-up) (feet, MSL)	Open Interval Top (feet, MSL)	Open Interval Bottom (feet, MSL)	Aquifer
Cromwell 4 (593593)	28.9	44.2	0.4	1328	~1329	1118	1098	QBAA
Cromwell 3 (519761)	62.5	45.3	112 ⁴	1328	~1330	1148	1138	QBAA
Nest 1								Till - QBAA - Bedrock
USGS C1-A (773071)	50.0	6.4	149.5	1326.3	1328.66+	1181.7	1178.9	Till – mid
USGS C1-B (773070)	48.8	6.3	147.8	1326.3	1328.62+	1105.4	1095.8	QBAA
USGS C1-C (773069)	47.3	6.4	145.6	1326.2	1328.78+	996.7	987.1	Thompson Fm.
Nest 2								Till - QWTA
USGS C2-A (773068)	40.6	54.0	53.9	1332.3	1334.67+	1300.0	1297.3	QWTA
USGS C2-B (773067)	40.6	56.1	58.8	1332.6	1334.98+	1275.9	1273.2	Till - top
USGS C2-C (773066)	42.2	54.0	57.7	1332.3	1334.71+	1253.6	1250.9	Till – mid top
USGS C2-D (773065)	39.1	54.0	50.9	1332.1	1334.58+	1228.5	1225.9	Till – mid
USGS C2-E (773064)	39.0	56.1	56.0	1332.4	1334.81+	1206.6	1204.0	Till - deep

Table 3. Well Information

² Local Datum

³ Vertical Datum: NAV88

⁴ Distance between well center, distance between outside of casing is 111 ft.

Data File Name: Well Name_Unique Number	Data Logger Type, SN:	Probe Id., Range (psi)	Install 1. Static WL ⁶	Install 2. XD ⁷ Setting	Remove 3. Static WL	Remove 4. XD Setting	Diff. Static WL (1-3)	Diff. XD Setting (4-2)
Cromwell- 4_593593	Troll 500 145815	17, 30 psi	15.86	12.55	15.39	13.30	0.47	0.75
Baro_data	Hermit 3000 45333	6, 15 psia						
1-A(773071)	OTT 382933		20.49	19.89	20.11	19.53	0.38	0.36
1-B(773070)	OTT 382932		16.12	15.34	15.31	14.60	0.81	0.74
1-C(773069)	OTT 382934		16.20	15.58	15.42	14.79	0.78	0.79
2-A(773068)	OTT 382929		29.69	29.04	29.48	28.70	0.21	0.34
2-В(773067)	OTT 382935		28.78	28.14	28.46	27.79	0.32	0.35
2-C(773066)	OTT 382936		26.95	26.46	26.52	26.07	0.43	0.39
2-D(773065)	OTT 382931		23.71	22.47	23.18	22.42	0.53	0.05
2-E(773064)	OTT 382937		25.15	37.16	23.65	35.60	1.5	1.56

Table 4. Data Collection⁵

⁵ Notes about data collection: USGS transducers/loggers installed 5/18/2017, before 12:00 on 1-minute interval. Barometer recording from 5/18/2017 11:40 on 10-minute interval. Inspected C-3 setup for logging, no access to well except by existing bubbler line. C-4 access through submersible cap, transducer installed 5/24/2017. Initial setting of transducer in USGS 2-E (773064) too deep, device did not record usable data of background and early pumping. Transducer reset on 5/24/2017 15:28. Data not recovered from USGS 1-A logger during late pumping and recovery.

⁶ WL = water level below measuring point, feet.

⁷ XD = pressure transducer depth below water surface, feet.

Hydraulic Conductivity of Aquitard, kV (ft/day) Transmissivity, ⁻ (ft2/day) (dimensionless) Storativity, S Leakage Well Name Plot No. Analysis Factor, L Method (Unique Well No.) Remarks (feet) C-4 (593593) 1. properties not credible 12,000 2.0e-5 150.000 7.0e-5 Hantush-Jacob 1-B (773070) for very leaky system C-4 (593593) 2. properties not credible Hantush-Jacob 1-B (773070) 17,000 3.5e-4 3,570 0.17 for very leaky system 1-C (773069) 3. kz/kr = 0.5, credible 1-B (773070) 4,380 7.7e-3 330 2.6 Hantush-Jacob properties 4. properties not C-4 (593593) 5,190 1.7e-4 Cooper-Jacob credible for very leaky 1-B (773070) system 11. credible properties, Nest 2, all till obwell Neuman-2,200 5.0e-4 590 0.83 consistent with plot 9, composite Witherspoon good match Neuman-2-B (770067) 2,300 3.0e-4 500 1.2 13. Witherspoon Neuman-5.0e-4 500 2-C (770066) 2,300 1.2 13. Witherspoon Neuman-2-D (770065) 1.800 1.9e-4 380 1.6 14. Witherspoon Neuman-2-E (770064) 2,300 5.0e-4 500 1.2 15. Witherspoon Nest 2, till obwell composite, Neuman-2-D (770065) 2700 3.0e-3 670 0.79 16. Witherspoon excluded from match Nest 2, till obwell Neuman-2,300 4.0e-4 590 0.86 17. best match Witherspoon composite recovery C-4 (593593) Neuman-3,730 8.0e-4 1520 2.1 18. 1-B (773070) Witherspoon 1-A (770071) Neuman-1-A (770071) 3.550 1.2e-3 1960 1.2 19. Witherspoon All till obwell Neuman-20. properties not 1,200 2.6e-3 145 7.4 composite Witherspoon credible, too leaky Neuman-All well composite 2,790 2.9e-3 370 2.7 21. Witherspoon 1-A (770071) and 2-E Neuman-1590 5.0e-2 224 4.1 23. large credible k_V (770064) Witherspoon

Table 5. Transient Analysis Results

Transmissivity, T (ft²/day)	Leakage Factor, L (feet)	Hydraulic Resistance, c (days)	Hydraulic Conductivity of Aquitard, kv (ft/day)	Analysis Method	Plot No. Remarks
5,190	7,470	10,800	0.012	Hantush- Jacob	4. properties not credible for very leaky system
2,200	370	61	2.1	Hantush- Jacob	9. credible properties, consistent with plot 3
2,200	440	88	1.5	Hantush- Jacob	10. credible properties, consistent with plots 3 and 9

Table 6. Steady-state Analysis Results

Figure 1. Solution of Aquifer Properties by Aqtesolv. Data from Cromwell 4 (593593) and USGS 1-B (773070)

L = 149,000 feet

kv = 130 * (6.7e-6)^2 * 12,000 = 7.0e-5 ft/day

Figure 2. Solution of Aquifer Properties by Aqtesolv. Showing Data from Cromwell 4 (593593), USGS 1-B (773070) and USGS 1-C (773071)

L = 10,800 feet

kv = 130 * (2.8e-4)^2 * 17,000 = 0.17 ft/day

Figure 3. Solution of Aquifer Properties by Aqtesolv. Data from USGS 1-B (773070) only

L = 333 Feet k_v = 130 * (0.423/141)^2 * (4380 * 0.5) = 2.6 ft/day

Figure 5. Drawdown at Nest 2 after 1450 minutes of pumping, projected to 10,000 minutes

TEST 2612, CROMWELL 4 (593593) MAY 24, 2017

Figure 6. Groundwater Gradient at Nest 2 after 1450 Minutes of Pumping

Figure 7. Drawdown at Nest 1 after 1450 minutes of pumping, projected to 10,000 minutes

TEST 2612, CROMWELL 4 (593593) MAY 24, 2017

Figure 8. Groundwater Gradient at Nest 1 after 1450 Minutes of Pumping

Figure 9. Comparison of Drawdowns at 1450 Minutes of Pumping at Nests 1 and 2, at Nase of Till, to that in Aquifer

Figure 10. Comparison of Drawdowns at 10,000 Minutes of Pumping at Nests 1 and 2, at Base of Till, to that in Aquifer

Figure 11. Solution of Aquifer Properties by Aqtesolv. Data from USGS 2-B, 2-C, 2-D, and 2-E

L = 590 feet

kv = 130 * (0.0017)^2 * 2200 = 0.83 ft/day

Figure 12. Solution of Aquifer Properties by Aqtesolv. Data from USGS 2-B only

kv = 130 * (0.002)^2 * 2300 = 1.2 ft/day

Figure 13. Solution of Aquifer Properties by Aqtesolv. Data from USGS 2-B only

L = 500 Feet

 $k_v = 130 * (0.002)^2 * 2300 = 1.2 \text{ ft/day}$

kv = 130 * (0.00259)^2 * 1800 = 1.6 ft/day

L = 500 feet

kv = 130 * (0.002)^2 * 2300 = 1.2 ft/day

Figure 16. Solution of Aquifer Properties by Aqtesolv. Data from USGS 2-B, 2-C, and 2-E only

L = 670 feet

kv = 130 * (0.0015)^2 * 2700 = 0.79 ft/day

Figure 17. Solution of Aquifer Properties by Aqtesolv. Recovery Phase Data from USGS 2-B, 2-C, 2-D, and 2-E

L = 590 feet

kv = 130 * (0.0017)^2 * 2300 = 0.86 ft/day

Figure 18. Solution of Aquifer Properties by Aqtesolv. Match to Data from USGS 1-A, Data from USGS 1-B, and Cromwell 4

L = 1520 feet

kv = 130 * (0.00066)^2 * 3730 = 0.21 ft/day

Figure 19. Solution of Aquifer Properties by Aqtesolv. Match to Data from USGS 1-A and Modeled Drawdown at the Base of Till, Data from USGS 1-B, and Cromwell 4

L = 1960 feet

kv = 130 * (0.00051)^2 * 3550 = 0.12 ft/day

Figure 20. Solution of Aquifer Properties by Aqtesolv. Match to Data from all USGS Observation Wells and Drawdown at the Base of Till at Nests 1 and 2

L = 145 feet

kv = 130 * (0.00689)^2 * 1200 = 7.4 ft/day

Figure 22. Similarity in Slope of 1-A and 2-E

Figure 23. Solution of Aquifer Properties by Aqtesolv. Match to Data from USGS 1-A and USGS 2-E

L = 224 feet

kv = 130 * (0.00447)^2 * 1590 = 4.1 ft/day

Figure 24. Agarwal Analysis

Figure 25. Solution of Aquifer Properties by Aqtesolv. Analysis of Recovery Data from Pumped Well

Figure 26. Well Identification

Figure 27. Distances between Wells and Well Nests

Figure 28. Schematic Section Across Site

Schematic Section

Figure 29. Time-series of Groundwater Elevation Collected at Cromwell 4.

Figure 30. Time-series of Groundwater Elevation Collected at USGS 1-A.

Figure 32. Time-series of Groundwater Elevation Collected at USGS 1-C

Figure 33. Time-series of Groundwater Elevation Collected at USGS 2-A

Date - Time of Reading

Figure 34. Time-series of Groundwater Elevation Collected at USGS 2-B

Figure 35. Time-series of Groundwater Elevation Collected at USGS 2-C

Figure 36. Time-series of Groundwater Elevation Collected at USGS 2-D

Figure 38. Time-series of Groundwater Elevation Collected at all Wells

Figure 39. Time-series of Groundwater Elevation Collected at Cromwell 4 and Nest 1

Figure 40. Time-series of Groundwater Elevation Collected at Cromwell 4 and Nest 2

Figure 41. Time-series of Groundwater Elevation Collected at USGS 2-A and Barometric Pressure as Difference in Water Level

Figure 42. Aqtesolv plot of diagnostic slope for spherical flow and data from USGS 1-B and 1-C

Figure 43. Conventional log-log plot of drawdown and recovery at USGS 1-B with Walton (1960) leaky type-curve

Figure 44. Conventional log-log plot of drawdown and recovery at USGS 1-C with Walton (1960) leaky type-curve

593593 Quad Cromwell WELL AN Quad ID 226B Minnesota				D BORING REPORT Statutes Chapter 1031 Entry Date 03/22/2000 Update Date 03/10/2014 Received Date
Well Name Townshij CROMWELL 4 49	p Range 20	Dir Section W 33	Subsection CABABA	Well Depth Depth Completed Date Well Completed 250 ft. 230 ft. 04/16/1999
Elevation 1329 Elev. M	fethod 7	5 minute topograp	hic map (+/- 5 feet)	Drill Method Cable Tool Drill Fluid Bentonite
Address				Use community supply(municipal) Status Active
Contact PO BOX	74 CROMWE	LL MN 55726		
CROMWE	LL MN 5572	5		Caring Type Single caring Inter Hold Woldsd
Stratigraphy Information		-		Drive Shoe? Yes K No Ahouw Below
Geological Material	From	To (ft.) Cold	r Hardness	Casina Diamater Weight Hale Diamater
CLAY	0	5 BRO	WN MEDIUM	8 in To 210 ft 28.5 lbs/ft 14 in To 230 ft
SAND	5	40 BRC	WN SOFT	
CLAY	40	80 BRO	WN MEDIUM	
CLAY	80	175 GR/	Y HARD	
SAND/GRAVEL	175	200 GR/	Y MEDIUM	Onen Hole T o -
SAND	200	240 GR/	Y SOFT	Servers? From ft. To ft. Servers? FD Type stajulass Make IOHNSON
SAND/GRAVEL	240	250 GR3	BLK MEDIUM	Diameter Slot/Gauge Length Set
				8 in. 50 22 ft. 210 ft. 230 ft.
				Static Water Level 21.2 ft. land surface Measure 04/16/1999
				Pumping Level (below land surface)
				23.5 ft. 5 hrs. Pumping at 310 g.p.m.
				Wellhead Completion Model
				X Casing Protection X 12 in shown grade
				At-grade (Environmental Wells and Borings ONLY)
				Grouting Information Well Grouted? X Yes No Not Specified
				Material Amount From To neat cement 70 Sacks 0 ft. 180 ft.
				Nearest Known Source of Contamination foot Direction Type Well disinfected upon completion? Yes No
				Pump Not Installed Date Installed 05/00/1999
				Madel Number 150575.4 HP 7.5 Volt 230
				Length of drop pipe 60 ft Capacity 150 g.p. Typ Submersible
				Abandoned
				Does property have any not in use and not sealed well(s)? Yes X No
				Variance
				Was a variance granted from the MDH for this well? Yes X No
				Miscellaneous
				First Bedrock Aquifer Quat. buried
				Lessions sand Tiarger Depin to Bedrock II
Remarks				Locate Method Digitization (Screen) - Man (1:24.000)
DRILLING METHOD: STAR DI	RILL.			System UTM - NAD83, Zone 15, Meters X 508617 Y 5170337
LOCATION: VILLA VISTA CIP	CLE			Unique Number Verification Input Date 08/09/2000
				Angled Drill Hole
				Well Contractor
				Renner E. H. Well 71015 PRAUGHT, V. Licensee Business Lic. or Reg. No. Name of Driller
				AU16U1

Figure 45. Well and Boring Report - Well 593593

County Carlton 519761 Quad Cromwell Quad ID 226B			WE	MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING REPORT Minnesota Statutes Chapter 1031					03/04/199 03/10/201	3 4	
Well Name CROMWFLL 3	Townsh 49	ip Range 20	Dir Sectio W 33	n Subse CAB/	AB	Well Depth		Depth Complete	d Date V 10/21/1	Vell Completed 992	
levation 1325	Elev.	Method (ale from DEM	USGS 7.	5 min or equiv.)	Drill Method	Non-speci	fied Rotary	Drill Fluid Ber	atimite	
ddress					• •	Use commu	nity sumbi	municinal)	Dim Find Di	Status	Active
		74 0203000		26							
outact .	P.O. BOJ	TTT NOT SEA	CC MIN 337	20		Well Hydrofrac	tured?	Yes N	o 🔄 From	To	
vell	CROMW	ELL MIN 3372	0			Casing Type Drive Shoa?	Single c	No 🗆	Joint	Welded	
Goological Materia	d	From	To (ft.)	Color	Hardness	Codes Disease	100 10		Above below	Water Discourse	
ANDY CLAY		0	12	BROWN	MEDIUM	8 in To 1	180 ft 2	agan 8.5 Ibs/ft		10 in To	190 R
AND WITH CLA	Y	12	30	BROWN	MEDIUM						
AND		30	55	BROWN	SOFT						
INE SAND		55	62	BROWN	SOFT						
INE SAND & RO	CKS	62	90	BROWN	HARD	Onen Web	-	-	-		
OARSE SAND		90	92	BROWN	SOFT	Screen?	From	ft. Type stainly	To Make	ft.	
EMENTED SAN	D&	92	112	BROWN	HARD	Diameter	Slot/Gauze	Length	Set		
EMENTED SAN	D&	112	132	BROWN	MEDIUM	8 in.	25	10 ft.	180 ft.	190 ft .	
EMENTED SAN	D&	132	172	BROWN	MED-HRD						
MIXED SAND		172	180	BROWN	SOFT	Static Water I	Level				
COARSE SAND		180	190	BROWN	SOFT	16 ft.	land surf	ace	Measure	10/20/1992	
						Dumping Law	d (below la	nd surface)			
						321 0	24 hrs	Domning at	290		
								rumping at	250	5.P.m.	
						Wellhead Con	npletion			(.) .)	
						Pittess adapter in	nanulacturer	X 12	in above grade	sogel	
						At-grade	(Environm	antal Wells and E	orings ONLY)		
						Grouting Info	rmation	Well Grouted?	X Yes 1	Not Sp	ecified
						Material		A	nount	From To	,
						bentonite		0		0 ft. 18	0 ft .
						Nearest Know	m Source o	f Contamination	1		
						100 fee	t South	eas Direction	Se	otic tank/drain fi	eld Type
						Well disinfect	ted upon co	mpletion?	Yes	No	
						Pump	Not Not	Installed	Date Installed		
						Model Number	nanc	HP	0 V	alt	
						Length of drop	pipe	ft Capacity	gp.	Тур	
						Abandoned					_
						Does property I Variance	have any not	in use and not scale	d well(s)?	Yes	X No
						Was a variance	granted from	the MDH for this	well?	Yes	No
						Miscellaneous					
						First Bedrock			Aquifer	Quat. buried	۵.
						Located by	sand-tro	en necota Donarteuro	Deput to B	CURRENT OF THE OWNER	п
Remarks						Locate Method	Digi	ization (Screen)	Map (1:24.000)		
						System	UTM - NA	D83, Zone 15, Mete	ns X 508	644 Y 517	0337
						Unique Number	r Verification	Informa	tion from 1	nput Date 10/	18/1999
						Angled Drill I	Hole				
						Well Contract	tor				
						Petersen We	11 Co.		69183	PETERSE	N, D.
						Licensee Bu	522055	Li	. or Rog. No.	Name of Dr	niler
					51	0761					
						- (N I					

Figure 46. Well and Boring Report - Well 519761

Figure 47. Well and Boring Report - Well 773071

Vell Name 7001-A 1levation 13 ddress contact Vell Rantigraphy In Scological Math Scological Ma	Townshi 49 325.9 Elev. 1 1189 VILI Information serial H SAND & the CLAY W/ AND WITH VEL WITH SILT & LAY	p Range 20 Method LA COURT I LA VISTA CI DDALE DR N From 0 8 11 22 43 101	Dir Secti W 33 LiDAR 1m D DR CROMWE I CROMWE MOUNDS V To (ft.) 8 11 22 43 101 150	ion Subsect CABAD DEM (MNDNR) VELL MN 5572 TEL MN 5572 Color BRN/RED RED/BRN GRAY GRAY	26 j 12 Hardness SOFT MEDIUM	Well Depth 150 ft. Drill Method Use environ. Well Hydrofract Casing Type Drive Shoe? Casing Diamete 2 in To 1	I le Non-specif bore hole ured? Single ca Yes r Wei	tepth Completed 47.97 ft. ied Rotary Yes No sing No X	Date W 07/21/20 Drill Fluid Bent X From Joint Above/Below	ell Completed 015 tonite Status To	Active
ddress Contact Contact Vall Contact Vall Contact Vall Contact Vall Contact Con	1220 VILI 1220 VILI 1189 VILI	Account in LA COURT II LA VISTA CI DDALE DR N From 0 8 11 22 43 101	W 35 LiDAR Im D OR CROMWE I CROMWE MOUNDS V To (ft.) 8 11 22 43 101 150	VELL MN 557 VELL MN 5572 VELL MN 5572 Color BRN/RED RED/BRN GRAY GRAY	26 5 12 Hardness SOFT MEDIUM	Drill Method Use anviron. Well Hydrofract Casing Type Drive Shoe? Casing Diamete 2 in To 1	Non-specif bore hole ured? Single ca Yes r Wei	Yes No sing No X	Drill Fluid Bent X From Joint Above/Below	tonite Status To	Active
ddress contact Vall instigraphy Is isological Mat iRAVEL WITI ILT, SAND & IRAVEL & SA AND & GRA' AND WITH S ILT SAND CI	1220 VILI 1189 VILI nfor2month() ternal H SAND & t CLAY W/ AND WITH VEL WITH SELT & LAY	LA COURT I LA VISTA CI DDALE DR N From 0 8 11 22 43 101	DR CROMWE I CROMWE MOUNDS V To (ft.) 8 11 22 43 101 150	VELL MN 557 ELL MN 55726 TEW MN 551 Color BRN/RED RED/BRN GRAY GRAY	26 5 Hardness SOFT MEDIUM	Use anviron. Well Hydrofract Casing Type Drive Shoe? Casing Diamete 2 in To 1	bore hole ured? Single ca Yes	Yes No sing No X	X From Joint Above/Below	Status To	Active
aares Contact Vall Contigraphy Liveological Mat GRAVEL WITI ILT, SAND & RAVEL & SA AND & GRA' AND & GRA' AND WITH S ILT SAND CI	1220 VILI 1189 VILI info716004000 karial H SAND & t CLAY W/ AND WITH VEL WITH SILT & LAY	A COURT I A VISTA CI DDALE DR N From 0 8 11 22 43 101	DR CROMW I CROMWE MOUNDS V To (ft.) 8 11 22 43 101 150	VELL MN 557 ELL MN 55726 TEW MN 551 Color BRN/RED RED/BRN GRAY GRAY	26 5 12 Hardness SOFT MEDIUM	Well Hydrofract Casing Type Drive Shoe? Casing Diamete 2 in To 1	ured? Single ca Yes r Wei	Yes No sing No X	X From Joint Above/Below	To	Active
iontact Vall iontagraphy In ionogical Math iRAVEL WITI ILT, SAND & IRAVEL & SA AND & GRA' AND & GRA' AND WITH S ILT SAND CI	1220 VILI 1189 VILI information informati	A COURT I A VISTA CI DDALE DR N From 0 8 11 22 43 101	DR CROMW I CROMWE MOUNDS V To (ft.) 8 11 22 43 101 150	VELL MN 557 ELL MN 55726 /TEW MN 551 Color BRN/RED RED/BRN GRAY GRAY	26 5 12 Hardness SOFT MEDIUM	Well Hydrofract Casing Type Drive Shoe? Casing Diamete 2 in To 1	ured? Single ca Yes	Yes No sing No X	X From Joint Above/Below	To	
Vell Roological Matt RAVEL WITH ILT, SAND & RAVEL & SA RAVEL & SA AND & GRA' AND WITH S ILT SAND CI	1189 VILI info?2300.3400 Sarial H SAND & t CLAY W/ AND WITH VEL WITH SILT & LAY	LA VISTA CI DDALE DR N From 0 8 11 22 43 101	I CROMWE MOUNDS V To (ft.) 8 11 22 43 101 150	ELL MN 55726 /TEW MN 551 Color BRN/RED RED/BRN GRAY GRAY	i 12 Hardness SOFT MEDIUM	Casing Type Drive Shoe? Casing Diamete 2 in To 1	Single ca Yes 🗌 r Wei	No X	Joint Above/Below		
annigraphy Is isological Mati RAVEL WITH ILT, SAND & RAVEL & SA AND & GRAV AND WITH S ILT SAND CI	info?996034400 varial H SAND & & CLAY W/ AND WITH VEL WITH SILT & LAY	DDALE DR N From 0 8 11 22 43 101	MOUNDS V To (ft.) 8 11 22 43 101 150	TEW MN 551 Color BRN/RED RED/BRN GRAY GRAY	12 Hardness SOFT MEDIUM	Drive Shoe? Casing Diamete 2 in To 1	Yes r Wei	No X	Above/Below		
ieological Math iRAVEL WITT ILT, SAND & iRAVEL & SA AND & GRA' AND WITH S ILT SAND CI	hanal H SAND & CLAY W/ AND WITH VEL WITH SILT & LAY	From. 0 8 11 22 43 101	To (ff.) 8 11 22 43 101 150	Color BRN/RED RED/BRN GRAY GRAY	Hardness SOFT MEDIUM	Casing Diamete 2 in To 1	r Wei	a hat			
RAVEL WIT ILT, SAND & RAVEL & SA AND & GRA' AND WITH S ILT SAND CI	H SAND & t CLAY W/ AND WITH VEL WITH SILT & LAY	0 8 11 22 43 101	8 11 22 43 101 150	BRN/RED RED/BRN GRAY GRAY	SOFT MEDIUM	2 in To 1		gue		Hole Diamet	er
RAVEL & SAND & RAVEL & SA AND & GRAY AND WITH S ILT SAND CI	AND WITH VEL WITH SELT & LAY	8 11 22 43 101	11 22 43 101 150	GRAY	MEDIUM		44. ft. 0.	58 Ibs./ft.		6.7 in. To	150 ft
AND & GRAV AND & GRAV AND WITH S ILT SAND CI	VEL WITH SILT & LAY	11 22 43 101	43 101 150	GRAY	ACCOUNT 13.4						
AND WITH S ILT SAND CI	SLT & LAY	43 101	45 101 150	575.75 T	MEDIUM						
ILT SAND CI	LAY	101	150	RED/REN	MEDIUM						
an anno ci		101		VARIED	MED-HRD	Open Hole	From	ft.	То	ft.	
				VARIED	MED-HKD	Screen? X		Type slotted	pipe Make	OHNSON	
						Diameter 2 2 in. 1	Slot/Gauze 10	Langth 2.8 ft.	Set 144.5 ft.	147.3 ft.	
						Static Water I	evel		Меаките	08/17/2015	
						Density Terr					
					ft.	6.0 hrs.	Pumping at	0.79 g	p.m.		
					Wellhead Con	pletion			-		
					Pitless adapter n	anufacturer otaction	X 12 in	M 1. above grade	lodel		
					At-grade	Environme	ital Wells and Bo	rings ONLY)			
				Grouting Into	manon	Well Grouted?	X Yes N	o 🗌 Not	specified		
				Material		Am 12	Carlo	From 1	10 44 A		
					concrete		3	Sacks	2 ff. 2	f.	
					Nearest Know	n Source of	Contamination				
						Well disinfect	ed upon con	pletion?	Yes	X No	131
						Pump Manufacturer's	Not 1	nstalled D	ate Installed		
						Model Number		HP	Vo	lt	
						Length of drop	pipe	ft Capacity	8.P.	Тур	
						Abandoned					
						Does property 1	ave any not is	use and not sealed	well(s)?	Yes	X No
						Variance			_		
						Was a variance	granted from	the MDH for this we	:117	Yes	X No
						Miscellaneous					
						First Bedrock		4/-11/-1	Aquifer	Quat. buried	۵
						Last Strat	peccity sat	avsitteiny stata Geological	Depth to Be	and sh	п
lemarks -						Locate Method	Digiti	zation (Screen) - 1	Map (1:24.000)		
SEE DRILLERS LOG FOR DETAILED INFORMATION.						System	UTM - NAD	83, Zone 15, Meter	X 5086	36 Y 51	70295
IAMMA & EM	INDUCTION L	.0GGED 8-13-	2015. LOGGE	ED FOR USGS.		Unique Number Angled Drill F	Verification Iole	Informati	on from In	put Date 00	/14/2015
						US Goologie	al Survey		1548	LENDY	FR R
						Licensee Bu	imess	Lic.	or Reg. No.	Name of I	riller
finnesota	Well Ind	ex Repor	t		773	071				Bristed	

Figure 48. Well and Boring Report - Well 773070

773070	Quad Cr	romwell	WEL	L AND BORI	NG REP	ORT	Entry Date Update Date	08/14/201 10/21/201	5
	Quad ID 22	6B	14	innesoia siailutes Ch	ipier 1031		Received Date		
Vell Name Tow	aship Range	Dir Sectio	u Subsecti	on Well Dep	6	Depth Completed	Date W	I Completed	
CWO1-B 49	20	W 33	CABAD	B 230.9 ft.	1	230.87 ft.	07/20/20	15	
levation 1325.8 E	ev. Method	LiDAR 1m DB	EM (MNDNR)	Drill Meth	d Non-speci	ified Rotary	Drill Fluid Bent	etite	
ddress				Use mo	nitor well			Status	Active
Contact 1220 T	ILLA COURT I	DRIVE CRO	MWELL MN	55726 Well Hyde	fractured?	Vet 🗌 No	Y From	π.	
Vall 11891	TLLA VISTA C	TCROMWE	LL MN 55726	Caring T	na Single c		A From	10	
Inthintrophy Info?0001	HOODALEDRI	MOUNDS VI	FW MN 5511	2 Drive Sho	e? Yes □	No X	Above/Below		
oological Material	From	To (ft.)	Color 1	Hardness Coster Di		alaba		Hale Discusto	
RAVEL WITH SAND	& 0	8	BRN/RED S	SOFT 2 in T	220 ft 0	ogni)68 Ibs/ft		6.7 in To	23.5 8
ILT, SAND & CLAY	8	11	RED/BRN 1	MEDIUM					-
RAVEL & SAND WIT	H 11	22	GRAY 1	MEDIUM					
AND & GRAVEL WIT	H 22	43	GRAY 1	MEDIUM					
AND WTH SILT AND	43	101	RED/BRN 1	MEDIUM					
ILT, SAND, CLAY	101	173	VARIED 1	MED-HRD Open Hol	From	ft.	To	fi.	
AND & GRAVEL	173	231	VARIED 1	MED-HRD Dispute	X Slot/Course	Langth	nge Alaise I Sat	INVIRONME!	THE
				2 in	20	9.6 #	220.9 #	230.5 🕈	
				Static We	ter Level				
				16.7 ft	land surf	ace	Measure	08/17/2015	
				Pumping	Level (below Is	ind surface)			
				£.	3.9 hrs.	Pumping at	1.35 g	p.m.	
				Wellhead	Completion				
				Pidess ads	ter manufacturer		M	odel	
				X Casi	g Protection	X 12 in	. above grade		
				At-g	ade (Environna	ental Wells and Bo	rings ONLY)		
				Grouting	information	Well Grouted?	X Yes N	Not S	pecified
				Material		Am	ount	From To	
				bentonite		12	Sacks	2 11.21)./ <u>н</u> .
				concrete		,	SACKS	п. 2	п.
				Nearest	norm Source o	of Contamination			
					foot	Direction			Type
				Well dis	ufected upon co	mpletion?	Yes [No	- 75-
				Pump	Not	Installed D	te Installed	-	
				Manufact	rer's name				
				Model No	mber	HP	Vol	t	
				Length of	drop pipe	ft Capacity	8-P-	Тур	
				Abandon	d				
				Does proj	erty have any not	in use and not scaled	well(s)?	Yes	X No
				Variance			_	-	_
				Was a va	ance granted from	n the MDH for this we	117	Yes	X No
				Miscellar	tous				
				First Body	ck		Aquifer	Quat. buried	-
				Last Strat	pobbly sa	and/silt/clay	Depth to Ber	Irock	ft
Remarks				Located b	Min bot Di-it	nesota Geological S	Survey		
EE DRILLERS LOG FOR	DETAILED INFO	RMATION.		System	UTM - NAU	D83, Zone 15, Meters	мар (1:24,000) Х 5086	35 ¥ 517	0295
JAMMA & EM INDUCTIO	IN LOGGED 8-13	-2015. LOGGE	D FOR USGS.	Unique N	mber Verification	Informatio	on from In	put Date 08	14/2015
				Angled D	rill Hole				
				Well Con	tractor				
				US Goo	ogical Survey	1	1548	LEINING	ER, R.
				Lacense	100300055	LSC.	or rong, reo.	Name or Di	
				1					
				773070					
Figure 49. Well and Boring Report - Well 773069

77	3069	Quad ID	Cromwell 226B	WEI	LL AND Minnesota St	BORINO atutes Chapt	F REP er 1031	ORT	Entry Date Update Dat Received D	08/ e 10/ ate	14/2015 21/2015	
Well Name	Townsh	ip Rang	e Dir Sect	ion Subsec	tion	Well Depth	1	Depth Complete	Date	Well Com	pleted	
CWO1-C	49	20	W 33	CABAI	DB	342 ft.	-	339.59 ft.	07/18	/2015		
levation	1325.8 Elev.	Method	LiDAR 1mI	DEM (MNDNR))	Drill Method	Non-speci	fied Rotary	Drill Fluid B	entonite		
ddress						Use environ	a, bore hole			Sta	utus J	Active
Contact	1220 VII.	LA COURT	DRIVE CRO	MWELL M	\$55726	Well Hydrofrae	tured?	Yes No	X From		To	
Well	1189 VIL	LA VISTA	CI CROMWI	ELL MN 5572	6	Casing Type	Single o	asing	Joint			
Stattigraph	y Infoitibilitie	ODALE DI	MOUNDS V	TEW MN 551	112	Drive Shoe?	Yes	No X	Above/Below	,		
Goological N	laterial	From	ı To(ft.)	Color	Hardness	Casing Diamet	er We	right		Hole D	iameter	
GRAVEL W	TTH SAND	0	8	BRN/RED	SOFT	2 in. To	330 ft. 0	.68 Ibs/ft.		6.7 in	. To 3	40 ft.
SILT, SANI	& CLAY	8	11	RED/BRN	MEDIUM							
GRAVEL &	SAND W	11	22	GRAY	MEDIUM							
AND & G	AVEL WITH	22	43	GRAY	MEDIUM							
SILT, SANI	CLAY	45	173	KED/BKN	HAKD WED	Open Hole	From	ft.	То	÷		
ADD & G	UNVEL .	220	340	RUNCRY	MED-RIAD	Screen?	1	Type slotted	pipe Make	ENVIRO	NMENT	AL
LAT WIL	ISLATE	520	342	BLUGKI	HAKD .	Diameter 2 in.	Slot/Gauze 20	Length 9.6 ft.	Set 329.9 ft.	339.5	£.	
						Static Water 16.7 ft.	Level land surfs	200	Measure	08/17	/2015	
						Pumping Lev	el (below la	nd surface)				
						ft.	3.9 hrs.	Pumping at	1.48	g.p.m.		
						Wellhead Co	mpletion			Madal		
						Casing P	nanufacturer	X 12	in above grade	NICOL		
						At-grade	(Environme	antal Wells and B	orings ONLY)			
						Grouting Info	rmation	Well Grouted?	X Yes	No	Not Spo	cified
						Material		An	sount	From	To	
						concrete		28 3	Sacks Sacks	2	ft. 324 ft. 2	ft. ft.
						Nearest Know	m Source o	f Contamination	I			T
						Well disinfec	n tad upon co	mpletion?	Yes	X No		- 72-
						Pump	Not Not	Installed I	Date Installed			
						Model Numbe		HP		Jolt		
						Length of drog	pipe	ft Capacity	g.p.	Тур		
						Abandoned						
						Does property	have any not	in use and not sealed	l well(s)?		Yes	No
						Was a variance	e granted from	the MDH for this w	ell?	Yes	X	No
						Miscellaneon	5			_		
						First Bedrock			Aquife	r Quat. b	uried	
						Last Strat	pebbly sa	nd/silt/clay-gray	Depth to	Bedrock		ft
Remarks						Located by	Min	nesota Geological	Survey			
SEE DRILLE	R LOG FOR DET	AILED INFO	RMATION.			Locate Method	Digit	ization (Screen) -	Map (1:24,000)	0633	Verse	
GAMMA & B	MINDUCTION	LOGGED 8-1	3-2015. LOGG	ED FOR USGS		Unique Nombo	UTM - NA	Taformat	a A.SO	Input Date	4 317/02	90 1/2015
						Angled Drill	Hole			input cau	0011	-2015
						Well Contrac	tor					
						US Geologi	cal Survey		1548	LEI	NINGER	R.
						Licensee Br	ISTRESS	Lic	. or Reg. No.	Nam	e of Drill	er
Minneso	ta Well Inc	lex Rep	ort		77	3069				1	rinted on	05/19/2017

Figure 50. Well and Boring Report - Well 773068

7	73068	Quad Cromwell Quad ID 226B	WE	LL AND Minnesota S	BORIN tatutes Chapt	G REP ter 1031	ORT	Entry Date Update Date Received Date	08/14/201 10/20/201	15
Well Name CWO2-A	Townshi	p Range Dir 20 W	Section Subsection Subsection	ABA	Well Depth		Depth Completed	Date W	ell Completed	
Elevation	1332 Elev.	Method LIDAR	In DEM (MOTON	P)	Drill Method	Auger (no	n-mecified)	Deal Florid		
Address		Librar	tin ben (minbit	N/	Use aming	n hore hole			Status	Active
	1100 100 1									
CAN	2280 WOX	DALE DE MOIDI	IWELL MIN 33	5112	Well Hydrofra	ctured?	Yes No	X From	To	
C/W Omtintani	Transmonth	TL MN 55726	JO VIEW MEN J	/112	Drive Shoe?	Ves 🗌	asing	Above/Below		
Goological	Material	From To	ft.) Colar	Hardness	Casing Diame	ter W	cielut		Hole Diamete	
COARSE S	AND &	0 8	RED/BRN	SOFT	1.2 in To	34.8 ft. 0	0.74 Ibs/ft.		8.2 in To	174 ft
SILTY SAI	NDY CLAY	8 11	RED/BRN	HARD						
SAND & G	RAVEL	11 22	GRAY	HARD						
SAND & G	RAVEL	22 43	GRAY	HARD						
CLAY W/S	TV WITH	43 120	RED/BRN	HARD	Open Hole	From	ft.	To	ft.	
annu, all	AT WITH	120 1/4	BROWN	1000	Screen?	(Type slotted	pipe Make	aNWR(ONM)a	NTAL
					Diameter	Slot/Gauze	Length	Set	361 0	
					1.2 m.	10	2./ Ħ	52.) ft.	55.1 ff.	
					Static Water	Level				
					28.6 ft.	land surf	ace	Measure	08/17/2015	
					Pumping Let	rel (below la	and surface)			
					£.	2.8 hrs.	Pumping at	0.17 g	p.m.	
					Wellhead Co	mpletion				
					Pitess adapter	manufacturer	1971 10 -	M	lodel	
					At-grad	e (Environm	ental Wells and B	orings ONLY)		
					Grouting Inf	ormation	Well Grouted?	X Yes N	o Not S	pecified
					Material well grouted	, type unkno	An	aouzi	From T ft.	° ft.
					Nearest Kno	wa Source o at	of Contamination Direction	ı		Turn
					Well disinfe	cted upon co	mpletion?	Yes	X No	-75
					Pump	X Not	t Installed I	Date Installed		
					Manufacturer	s name				
					Model Number	er n nim	HP the Comparison	Vo	it Tam	
					Abandoned	h http:	n Capacity	8.P.	- 79	
					Does property	have any not	in use and not sealed	well(s)?	Yes	X No
					Variance					
					Was a variance	e granted from	n the MDH for this w	ell?	Yes	X N
					Miscellaneou	15				
					First Bedrock			Aquifer	Quat. buried	
					Last Strat	sand+sib	r-trown marota Conlogical	Depth to Be	drock	π
Remarks					Locate Metho	d Disi	tization (Screen) -	Map (1:24.000)		
SEE DRILLI	ERS LOG FOR DET	TAILED INFORMATION	ON.		System	UTM - NA	D83, Zone 15, Meter	s X 5086	25 Y 517	0347
					Unique Numb	er Verification	Informat	ion from la	put Date 08	/14/2015
					Angled Drill	Hole				
					Well Contra	ctor				
					US Geolog Licensee B	ical Survey usiness	Lic	1548 . or Reg. No.	HUCKAI Name of D	BY, J. riller
					20.00					

Figure 51. Well and Boring Report - Well 773067

77.	3067	County Quad	Cromwell	WE	LL AND	BORING	REP	ORT	Entry Date Update Date	08/14/201 10/20/201	15 15
		Quad ID	226B		Minnesota Sta	tutes Chapte	ar 1031		Received Date		
Vell Name	Townsh	up Rau	ige Dir Sec	tion Subsec	ction	Well Depth	1	Depth Completed	Date We	I Completed	
WO2-B	49	20	W 33	CABA	BA	60.5 ft.	3	9.62 ft.	07/13/20	15	
levation	1332.2 Elev.	Method	LiDAR 1m	DEM (MNDNR)	Drill Method	Auger (nor	a-specified)	Drill Fluid		
ddress						Use environ	, bore hole			Status	Active
Vell	1189 VII	LA VIST	A CI CROMW	ELL MIN 5572	26	Well Hydrofrac	tured?	Yes 📃 No	X From	To	
Contact	2280 WC	ODALEI	OR CROMWE	L MN 55112	1	Casing Type	Single ca	sing	Joint		
hutigraphy	InfoGRAM	ELL MN	55726			Drive Shoe?	Yes	No	Above/Below		
Sectorical N	aterial	Pro	an To(ff.) °	Color	Hardness	Casing Diamete	er We	ight		Hole Diamete	•
AND STIT	V WITH		ů.	RED/BRN	MEDIUM	1.2 in To 3	56.8 ft. 0.	.74 Ibs/ft.		8.2 in To	60.5 ft.
RAVELA	SAND	ů	22	DK GRY	MEDIUM						
AND WITH	I SILT. MED.	22	40	DK. GRY	MEDIUM						
AND&GR	L POOR	40	43	DK. GRY	HARD						
ILTY CLA	Y	43	61	RED/BRN	HARD	Open Hole	From	£.	То	£.	
						Screen?		Type slotted p	upe Make f	NVIKONME	NTAL
						1.2 in.	10	2.7 ft.	57 £.	59.6 ft.	
						Static Water 1	Level				
						27.9 ft.	land surfa	C0	Measure	08/18/2015	
						Pumping Lev	el (below lau	ad surface)	015		
						II. Wellbead Cor	2.1 Mrs.	Fumping at	V.13 BI	p.m.	
						Pitless adapter i	nanufacturer		Me	del	
						X Casing P At-grade	rotection (Environme	ntal Wells and Bo	. above grade ings ONLY)		
						Grouting Info	rmation	Well Grouted?	X Yes No	Not S	pecified
						Material		Amo	ount	From T	•
						concrete		6 1	Sacks Sacks	2 ft.55 ft.2	5 fL fL
						Nearest Know	n Source o	f Contamination			
						tee Well disinfec	e tad upon cor	upletion?	Yes D	No No	Туре
						Pump	Not	Installed D	ate Installed		
						Manufacturer's	name	HP	Vol		
						Length of drop	nine	ft Canacity	ED. 1	Ivo	
						Abandoned			21		
						Does property	have any not i	n use and not sealed	vell(s)?	Yes	X No
						Was a verience	erapted from	the MDH for this we	г Г	Yes	X No
						Miscellaneon	Common molta	the reaction of the state we	L		~ ~~
						First Bedrock	-		Aquifer	Quat. buried	
						Last Strat	pebbly sa	nd/silt/clay	Depth to Bed	rock	ft
Comerte						Located by	Minn	esota Geological S	lurvey		
EE DRILLES	S LOG FOR DE	TAILED	FORMATION			Locate Method	Digit	ization (Screen) - 1	dap (1:24,000)		
						Unique Northe	r Verification	Theorematic	A 30862	23 I 317 NULDRIE /12	/14/2015
						Angled Drill 1	Hole				
						Well Contrac	tor				
						US Geologi	cal Survey		1548	HUCKAL	BY, J.
						Licensee Bu	smess	Lic.	ar Reg. No.	Name of D	riller
Minneso	ta Well In	dex Rer	oort		773	067				Printed	on 05/22/20
	en m				1						

Figure 52. Well and Boring Report - Well 773066

77	3066	Quad Quad ID	Cromwell 226B	WE	LL AND I Minnesota Sta	BORINO	F REP 1031	ORT	Update Date Received Date	08/14/20	15 15
Well Name	Towns	up Ran	ge Dir Sect	on Subsec	tion	Well Depth	1	Depth Complete	d Date W	ell Completed	
WO2-C	49 1331 0 Flam	20 Mathad	W 33	CABA	AB	81.57 ft.	A	51.57 ft.	07/10/20	15	
levation	1551.9 Elev	Alethod	LiDAR 1mD	EM (MNDNR)	Drill Method	Auger (no	a-specimed)	Drill Fluid	Parter	A
aaress						Use environ	oore hole			Status	Active
Vell	1189 VII	LA VISTA	CI CROMWE	LL MN 557.	26	Well Hydrofrac	tured?	Yes No	X From	To	
ontact	2280 WC	TELL MOUS	K MOUNDS V	IEW MIN 33	112	Casing Type Drive Shoe?	Single c	No 🗆	Joint Abaus/Balaur		
interior spin icological l	daterial	Fro	m To(ft.)	Color	Hardness	Casing Dispet			Above below	Hale Dismate	-
OARSE S.	AND &	0	8	RED/BRN	SOFT	1.2 in To	78.7 £. 0	.74 Ibs/ft.		8.2 in To	81.5 ft.
AND, SIL	TY WITH	8	11	RED/BRN	MEDIUM						
RAVEL &	SAND,	11	22	DK. GRY	MEDIUM						
AND WIT	H SILT, MED.	22	40	DK. GRY	MEDIUM						
ANDROGR	VL, POOR	+0	82	DK. GKI	haso	Open Hole	From	ft.	То	ft.	
						Screen? X	1	Type slotted	pipe Make	INVIRONME	NTAL
						Diameter 1.2 in.	Slot/Gauze 10	Length 2.7 ft.	Set 79.9 £t.	81.5 ft.	
						Static Water I	Level land surfi		Measure	08/18/2015	
						Pumping Lev	el (below la	nd surface)		00102017	
						£.	12. hrs.	Pumping at	0.3 g	p.m.	
						Wellhead Cor	npletion				
						Pidess adapter a X Casing P At-grade	nanufacturer rotection (Environme	X 12 i	in. above grade prings ONLY)	odel	
						Grouting Info	rmation	Well Grouted?	X Yes N	Not S	pecified
						Material		An	acuat	From T	-
						bentonite concrete		6 1.5	Sacks Sacks	2 ft. 7. ft. 2	3.5 ft. ft.
						Nearest Know	m Source o	f Contamination			-
						Well disinfec	e ted upon co	mpletion?	Yes	No	Type
						Pump	K Not	Installed I	Date Installed	-	
						Manufacturer's	name				
						Model Number	r	HP	Vo	t	
						Length of drop	pipe	# Capacity	S-P-	Тур	
						Does property	have any not i	in use and not sealed	well(s)?	Yes	X No
						Variance	-				_
						Was a variance	granted from	the MDH for this w	ell?	Yes	X No
						Miscellaneou					
						First Bedrock	cand+ik	-0731/	Aquiter Depth to Be	Quat. Water	÷
						Located by	Min	esota Geological	Survey		-
Remarks						Locate Method	Digit	ization (Screen) -	Map (1:24,000)		
SEE DIGLLE	KS LOG FOR DE	TAILED IN	FORMATION.			System	UTM - NAI	D83, Zone 15, Meter	s X 5086	27 ¥ 51	70347
						Angled Drill 1	r ventication Hole	Informat	ion from is	put Date 08	/14/2015
						Well Contrac	tor				
						US Geologi Licensee Bu	cal Survey siness	Lie	1548 . or Reg. No.	HUCKA Name of D	BY, J. riller
					773	066					

77	3065	County Car Quad Cro Quad ID 226	iton mwell B	WE	MESOTA DI LL AND Minnesota S	BORING	REP 7 1031	ORT	Entry Date Update Date Received Dat	08/14/20 10/23/20	15 15
Well Name WO2-D	Townsh 49	ip Range 20	Dir Sectio W 33	a Subse CABA	tion BA	Well Depth 107.5 ft.	1	Depth Completed 106.45 ft.	Date W 06/29/2	Vell Completed	
levation	1331.9 Elev.	Method 1	LiDAR 1m DE	M (MNDNR)	Drill Method	Auger (no	n-specified)	Drill Fluid		
ddress						Use environ.	bore hole			Status	Active
Vell	1189 VIL	LA VISTA CI	CROMWEL	L MN 557	26	Well Hydrofract	iured?	Yes 🗌 No	X From	т.	
Contact	2280 WO	ODALE DR N	IOUNDS VI	EW MN 55	112	Casing Type	Single c	asing	Joint	10	
intigraph	v Infofillalide	ELL MN 5572	6			Drive Shoe?	Yes 🗌	No 🗌	Above/Below		
Geological N	fatorial	From	To (ft.)	Color	Hardness	Casing Diamete	r W	cight		Hole Diamete	ar .
OARSE S	AND &	0	8 1	RED/BRN	SOFT	1.2 in To 1	03. ft. 0	.74 Ibs/ft.		8.2 in To	107. ft .
AND, SIL1	TY W/CLAY	8	11 1	RED/BRN	MEDIUM	1					
OARSE S	AND &	11	22	DK. GRY	MEDIUM	1					
AND W/S	ILT, MED.	22	40	DK. GRY	MEDIUM	1					
AND&GR	VL POOR	40	43	DK. GRY	HARD	Open Hole	From		То	A	
ILTY CLA	r	43	108	KED/BRN	HARD	Screen?	11000	Type slotted	pipe Make	ENVIRONME	NTAL
						Diameter 3	Slot/Gauzo	Longth	Set		
						1.2 in. 1	10	2.7 ft .	103.8 ft .	106.4 ft.	
						Static Water L	evel	-	Maaroo	08/18/2015	
						Density I.	1 Advento	and another h		00102015	
						ft.	1.1 hrs.	Pumping at	0.33	çp.m.	
						Wellhead Con	apletion				
						Pidess adapter m	anufacturer	_	N	fodel	
						X Casing Pr	otection	12 in	a. above grade		
						Ar-grade	(Cinvironita	ental Wells and Do	mgs ONL I)	In D Mat 9	-
						Material	institen.	weil Grouted?		Error T	фесшеа
						bentonite		9	Sacks	2.5 £.9	2 ft.
						concrete		2	Sacks	ft. 2	5 ft.
						Nearest Know	n Source (of Contamination			
						feet	1	Direction			Туре
						Well disinfect	ed upon co	mpletion?	Yes	X No	
						Pump	Not Not	Installed D	ate Installed		
						Manufacturer's	name				
						Model Number	nine	A Court	Ve	ut Tem	
						Abandoned	pipe	n Capacity	8-P-	-yp	
						Does property h	ave any not	in use and not sealed	well(s)?	Yes	X No
						Was a variance	granted from	a the MDH for this w	:117	Yes	X No
						Miscellaneous	1				
						First Bedrock	_		Aquifer	Quat. buried	-
						Last Strat	pebbly s	and/silt/clay	Depth to B	adrock	Ĥ
Remarks						Located by	Diei	tization (Screen) - 1	Survey Man (1-24.000)		
EE DRILLE	RS LOG FOR DE	TAILED INFOR	MATION.			System	UTM - NA	D83, Zone 15, Meters	X 508	624 ¥ 511	70347
ORE TAKE	N FROM O FT. T	O 107 FT. AS P/	ART OF USGS	TILL STUE	YY.	Unique Number	Verification	Informati	on from 1	nput Date 08	/14/2015
						Well Contract	lor				
						US Goologic	al Survey		1548	HUCKA	BY, J.
						Lacensee Bus	smess	Lic.	or Keg. No.	Name of D	miller
					7	3065					
	4- XV-11 T	I P	4							Printed	on 05/22/20

Figure 53. Well and Boring Report - Well 773065

77.	3064		County Quad Quad ID	Cariton Cromwell 226B	WEI	LL AND Minnesota S	BORING tatutes Chapt	G REP er 1031	ORT	Entry Date Update Date Received Dat	08/14/2 10/23/2	015 015
Well Name	T	ownsh	ip Ra	ige Dir Sect	ion Subsec	tion	Well Depth	1	Depth Complete	d Date V	ell Complete	d
WU2-E	1221.0		20	w 33	CADA	DA.	129.5 H.		28.03 H.	0//12/2	013	
levation	1331.9	Elev.	Method	LiDAR 1m I	DEM (MNDNR)	Drill Method	Auger (no	n-specified)	Drill Fluid		
ddress							Use environ	n. bore hole			Status	Active
Vell	118	9 VIL	LA VIST	A CI CROMWI	ELL MIN 5572	26	Well Hydrofra	ctured?	Yes No	From	Te	
Contact	228	wow o	ODALEI	OR MOUNDS V	VIEW MIN 55	112	Casing Type	Single c	sing	Joint		
antist aph	v Infofiik	61.6W	ELL MN	55726			Drive Shoe?	Yes	No 🗌	Above/Below		
Goological N	fatorial		Fre	m To(ft.)	Color	Hardness	Casing Diame	ter We	ialu		Hale Diama	ter
COARSE SA	ND &		0	8	RED/BRN	SOFT	1.2 in To	125 8 0	74 Ibs/ft		82 in To	129 8
AND, SILT	YW/CL	AY	8	11	RED/BRN	MEDIUM						
GRAVEL &	SAND		11	22	DK. GRY	MEDIUM						
AND W/SI	LT MED	. TO	22	40	DK. GRY	MEDIUM						
AND & GR	VL POO	R	40	43	DK. GRY	HARD						
ILTY CLA	Y		43	120	RED/BRN	HARD	Open Hole	From	ft.	То	ft.	
ILTY SAN	DY CLA	Y	12	0 130	DK. BRN	HARD	Screen?	9	Type slotted	pipe Make	ENVIRONM	ENTAL
		-					Diameter 1.2 in.	Slot/Gauze 10	Length 2.7 ft.	Set 126 ft.	128.6 ft.	
							Static Water 23.9 ft.	Level land surfa	.ce	Measure	08/18/201	5
							Pumping Lev	vel (below la	nd surface)			
							£.	3.9 hrs.	Pumping at	0.4	g.p.m.	
							Wellhead Co	mpletion				
							Pidess adapter	manufacturer Protection	12	in. above grade	fodel	
							At-grade	(Environme	ntal Wells and B	orings ONLY)		
							Grouting Int	ormation	Well Grouted?	X Yes	io Not	Specified
							Material		Az	soust	From	То
							concrete		2	Sacks	2 ff.:	24.1 ff. 2 ff.
							Nearest Kno fa	wn Source o et	f Contamination Direction	I		Type
							Well disinfe	cted upon co	mpletion?	Yes	No No	
							Pump	Not	Installed 1	Date Installed		
							Manufacturer	s name				
							Model Numbe	*	нр	v	alit	
							Length of drop Abandoned	p pipe	π Capacity	S-P-	тур	
							Does property	have any not	in use and not scale	I well(s)?	Ye Ye	s X No
							Variance				□ v	V
							was a variance	e granted from	the MiDH for this v	vem?		A NO
							Miscellaneou	5				
							First Bedrock	mahhh	ad/sile/slaw	Aquiter	Quar. buried	۱ ۵
							Located by	pectory sa Minu	na surcay-	Surray	Marth, R.	
Remarks							Locate Methor	1 Dieit	ization (Seman) -	Map (1:24.000)		
SEE DRILLEI	RS LOG P	OR DE	TAILED IN	FORMATION.			System	UTM - NAI	083, Zone 15, Mete	s X 508	624 Y 5	170349
ORE TAKE	N FROM 1	08 FT.	TO 120.5 F	T. AS PART OF	USGS TILL ST	UDY.	Unique Numb Angled Drill	er Verification Hole	Informat	ion from 1	nput Date 0	08/14/2015
							W-1-0					
							US Contra	ical Summer		1548	HICH	ARV I
							Licensee B	usiness	Lie	. or Reg. No.	Name of	Driller
Vinneso	ta We	ll Ind	der Rer	ort		77	3064				Printe	d on 05/22/201

Figure 54. Well and Boring Report - Well 773064

Analysis of the Litchfield, Minnesota Well 2 (607420) Aquifer Test

CONDUCTED ON JUNE 29, 2017 CONFINED QUATERNARY GLACIAL-FLUVIAL SAND AQUIFER

Analysis of the Litchfield, Minnesota Well 2 (607420) Aquifer Test Conducted on June 29, 2017

Minnesota Department of Health, Source Water Protection Program PO Box 64975 St. Paul, MN 55164-0975 651-201-4700 health.drinkingwater@state.mn.us www.health.state.mn.us/divs/eh/water/swp

To obtain this information in a different format, call: 651-201-4700.

Upon request, this material will be made available in an alternative format such as large print, Braille or audio recording. Printed on recycled paper.

Contents

Analysis of the Litchfield, Minnesota Well 2 (607420) Aquifer Test 1
Data Collection and Analysis7
Description7
Purpose of Test7
Well Inventory7
Hydrogeologic Setting7
Other Interfering Wells
Test Setup8
Weather Conditions
Discharge Monitoring8
Data Collection9
Qualitative Aquifer Hydraulic Response9
Quantitative Analysis 11
Conceptual Model11
Pumped Aquifer
Aquitard (Confining) Layer12
Conclusion13
Acknowledgements13
References
Tables and Figures

List of Tables

Table 1. Summary of Results for Leaky Confined - Radial Porous Media Flow	15
Table 2. Aquifer Test Information	16
Table 3. Well Information	17
Table 4. Data Collection	18
Table 5. Transient Analysis Results	19
Table 6. Steady-state Analysis Results	19

List of Figures

Figure 1. Adjustments for pumping-phase data 20
Figure 2. Theis (1935) analysis of pumping and recovery data from Litchfield 2 (607420) 21
Figure 3. Theis (1935) analysis of pumping and recovery data from Litchfield MW (607417) 22
Figure 4. Theis (1935) analysis of pumping and recovery data from USGS 2-F (773051) 23
Figure 5. Theis (1935) analysis of pumping and recovery data from USGS 1-F (773057) 24
Figure 6. Theis (1935) analysis of pumping and recovery data from Desens (800011)
Figure 7. Theis (1935) composite (t/r ²) analysis of recovery data
Figure 8. Projected recovery to 10,000 minutes for steady-state analysis
Figure 9. Cooper-Jacob (1946) transient and Hantush-Jacob (1955) steady-state analyses 28
Figure 10. de Glee (1930) steady-state analysis 29
Figure 11. Difference in water level at USGS Nest-1 during pumping and recovery
Figure 12. Aqtesolv composite (t/r2). Hantush-Jacob (1955) model
Figure 13. Aqtesolv analysis of data from Nest 1 wells, Neuman-Witherspoon (1969) model. Till thickness 63 feet
Figure 14. Aqtesolv analysis of data from Nest 1 wells, Neuman-Witherspoon (1969) model. Till thickness 50 feet
Figure 15. Aqtesolv analysis of data from Nest 1 wells, Neuman-Witherspoon (1969) model. Drawdown from unknown pumping wells
Figure 16. Well Location Map: well name and Minnesota unique well number
Figure 17. Schematic Section
Figure 18. Depth to Water from Top of Casing at Litchfield 2 (607417), Both Manual and Electronic Measurements
Figure 19. Depth to Water from Top of Casing at Litchfield MW (607420), Both Manual and Electronic Measurements

Figure 20. Depth to Water from Top of Casing at Litchfield 3 (632077), Manual Measurements
Figure 21. Depth to Water from Top of Casing at Litchfield 4 (632078), Manual Measurements
Figure 22. Depth to Water from Top of Casing at Litchfield 5 (764258), Manual Measurements
Figure 23. Depth to Water from Top of Casing at USGS 1-B (773062), Both Manual and Electronic Measurements
Figure 24. Depth to Water from Top of Casing at USGS 1-C (773060), Both Manual and Electronic Measurements
Figure 25. Depth to Water from Top of Casing at USGS 1-D (773059), Both Manual and Electronic Measurements
Figure 26. Depth to Water from Top of Casing at USGS 1-E (773058), Both Manual and Electronic Measurements
Figure 27. Depth to Water from Top of Casing at USGS 1-F (773057), Both Manual and Electronic Measurements
Figure 28. Depth to Water from Top of Casing at USGS 2-A (773056), Both Manual and Electronic Measurements
Figure 29. Depth to Water from Top of Casing at USGS 2-B (773055), Both Manual and Electronic Measurements
Figure 30. Depth to Water from Top of Casing at USGS 2-C (773054), Both Manual and Electronic Measurements
Figure 31. Depth to Water from Top of Casing at USGS 2-D (773053), Both Manual and Electronic Measurements
Figure 32. Depth to Water from Top of Casing at USGS 2-F (773051), Both Manual and Electronic Measurements
Figure 33. Depth to Water from Top of Casing at Desens Observation (800011), Both Manual and Electronic Measurements
Figure 34. Groundwater elevation at Litchfield-2 and Nest 1
Figure 35. Groundwater elevation at Litchfield-2 and Nest 2
Figure 36. Groundwater elevation at Litchfield-2 and Observation Wells Constructed in Aquifer, All Data
Figure 37. Groundwater elevation at Litchfield-2 and Observation Wells, Test Period
Figure 38. Groundwater elevation at Litchfield-2 and Nest 1, Test Period
Figure 39. Groundwater elevation at Litchfield-2 and Nest 2, Test Period
Figure 40. Groundwater Elevation in Aquifer Compared to Barometric Pressure, Test Period 59

Figure 41.	Depth to Water in Water-Table Wells Compared to Rainfall Events	60
Figure 42.	Daily Pumping Volume from Community Supply Wells, June 1, to July 10, 2017	61
Figure 43. 2017	Expanded View of Groundwater Elevation in Aquifer Wells from July 2 to July 11,	62
Figure 44.	Local Effects of Community Supply Wells from July 5 to July 11, 2017	63
Figure 45. of 2016	Groundwater Elevation at USGS 2-F (773051) Compared to Rainfall Events, Summe	r 64
Figure 46.	Well and Boring Report - Litchfield 2 (607420)	65
Figure 47.	Well and Boring Report - Litchfield 3 (632077)	66
Figure 48.	Well and Boring Report - Litchfield 4 (632078)	67
Figure 49.	Well and Boring Report - Litchfield 5 (764258)	68
Figure 50.	Well and Boring Report - Litchfield-MW (607417)	69
Figure 51.	Well and Boring Report - USGS 1-B (773062)	70
Figure 52.	Well and Boring Report - USGS 1-C (773060)	71
Figure 53.	Well and Boring Report - USGS 1-D (773059)	72
Figure 54.	Well and Boring Report - USGS 1-E (773058)	73
Figure 55.	Well and Boring Report - USGS 1-F (773057)	74
Figure 56.	Well and Boring Report - USGS 2-A (773056)	75
Figure 57.	Well and Boring Report - USGS 1-F (773057)	76
Figure 58.	Well and Boring Report - USGS 2-C (773054)	77
Figure 59.	Well and Boring Report - USGS 2-D (773053)	78
Figure 60.	Well and Boring Report - USGS 2-E (773052)	79
Figure 61.	Well and Boring Report - USGS 2-F (773051)	80
Figure 62.	Well and Boring Report - Desens Observation (800011)	81

Data Collection and Analysis

The constant-rate pumping test of Litchfield 2 (607420) was conducted as described below. The representative aquifer properties are summarized in Table 1. The specifics of test location, scope, and timing are presented in Table 2 and Table 3. The associated data files and a comparison of manual and transducer measurements are presented in Table 4. The results of analyses are presented in Appendix 1 and are summarized in Table 5. The analyses used standard methods, cited in references. The figures include maps, field notes, other documentation, and records of well construction.

Description

Purpose of Test

The test of Litchfield 2 was conducted by the Minnesota Department of Health (MDH) Source Water Protection Unit as a small part of a long-term project that was led by the United States Geological Survey (USGS). The overall purpose of the study was to assess the rates of groundwater recharge through low-conductivity glacial sediments (till) at various sites in Minnesota.

Specific to Litchfield, nine observation wells were installed by the USGS in 2015. Water elevations were recorded on a one-hour interval in seven of these wells for approximately one-year. The USGS had completed its data collection and was preparing to seal the observation wells. Prior to sealing the wells, notification was provided to the partner agencies relative to the completion of the work. At that time, staff in the Source Water Protection Unit recognized that this configuration of observation wells is nearly ideal for conducting short-term constant-rate aquifer tests on Public Water Supply (PWS) wells so as to estimate vertical groundwater flow. Therefore prior to sealing the wells, MDH proposed to conduct tests that would complement the USGS data collection efforts.

Well Inventory

The well records are presented in Figures 46-62 and the well construction is summarized in Table 22. The site plan is shown in Figure 16.

Hydrogeologic Setting

A schematic section (geologic cross-section) through the test site is shown on Figure 17 to illustrate the three layers that comprise the flow system; water table, aquitard, aquifer, and the construction of wells within these layers.

Other Interfering Wells

Other high capacity wells exist in the area that may cause interference. These wells are associated with the First District dairy processing in the center of Litchfield (to the south of the wellfield), and the Desens crop irrigation well (to the east of the wellfield). Several smaller domestic and non-community supply wells exist in the area. However, based on previous testing these smaller wells are not judged to present significant interference. Mr. Desens was contacted prior to the test to gain access to the observation well on his property. This well contains a transducer and water level data over the test period was obtained with the assistance of Minnesota Department of Natural Resources (MDNR).

Test Setup

The USGS provided the pressure transducers and data loggers used for long-term monitoring, re-programmed to a one-minute interval. MDH hydrologists, Justin Blum and Luke Pickman, traveled to Litchfield on June 13, 2017 to assess site conditions and re-install the transducers to collect background water level and barometric data. Transducers were placed in all existing observation wells, with the exception of USGS 2-E.

Access to Litchfield 2 is provided by a 0.75-inch polyethylene tube. The restricted diameter of this tube did not allow a transducer to be placed in the well to monitor water levels even though manual measurements were easily made. The three additional PWS wells in the wellfield; 3, 4 and 5, are similarly constructed and equipped. A prior test of Litchfield 2 was conducted by a geotechnical consultant (ECAD, 1998) and the observation well from that testing still exists a short distance from Well 2. Because of these factors; access to the wells, prior tests, and the relative distance of the observation wells, Litchfield 2 was selected to be the pumping well for this test.

The water operator, Mr. Herb Watry, was not comfortable with a standard test schedule; 24-hours of rest, 24-hours of pumping and 24-hours of recovery, because of system water demand and the limitations of the city water treatment plant. Extensive discussions with the operator indicated that an abbreviated pumping and recovery period of 4 to 6 hours each was possible and would still provide sufficient capacity. On that basis, the test was tentatively scheduled to begin on June 23, 2017. However, a major storm event on June 22, 2017 and various other public works projects caused the start of testing to be put off for a week. Other preparations for the test continued; on June 22, 2017 an acoustic water level sensor was installed in Litchfield 2, and the transducer in the Desens observation well was set up on a five-minute interval with the assistance of MDNR staff.

Weather Conditions

Conditions were warm and mostly dry during background data collection. Rain events greater 0.2-inches were recorded on June 22th and 27th at the Litchfield Waste Water Treatment Plant. No appreciable precipitation occurred during the pumping and recovery periods of June 29th to June 30th, 2017.

Discharge Monitoring

The pumping rates of the wells were reported by the Litchfield water treatment plant SCADA system. This was supplemented by manual readings of the totalizing flow meter on the Well 2 discharge line.

Data Collection

MDH personnel mobilized for the test on 6/29/2017, arriving on-site at 11:00. Upon arrival, the system was not in a 'rest' state; Litchfield Wells 3 and 5 were pumping, and Wells 2 and 4 were off. [Well 4 remained out of service for repairs until 7/6.] Wells 3 and 5 were turned off at 12:16:30 to place the wellfield into a limited recovery. The Litchfield 2 pump was started at 6/29/2017 14:03:30 by hand control through the SCADA system. Water levels were collected manually from Litchfield Wells 3, 4, and 5 from 12:00 until 15:00. The operator turned off the Litchfield 2 pump at 20:00 and all city wells remained off until 6/30/2017 06:00. At that time the system was critically short of water and Wells 2, 3, and 5 were pumped intensively over the next day to restore reserve capacity.

The USGS transducers remained in the wells until 7/10/2017 when static levels were measured and all equipment was removed. Data were attempted to be downloaded from the transducers at Nest 2 prior to equipment removal but difficulties connecting to the data loggers caused the equipment to be pulled before downloading. Data from the Desens obwell was downloaded on 7/13/2017 by MDNR staff. (personal communication, Ari Berland, MDNR)

The comparisons of manual and transducer measurements are presented in Figures 15 through 33. Only one well saw a decline in water level below the transducer setting, USGS 1-E, Figure 26, affecting data collection after 7/6/2017. The batteries of the acoustic transducer in Litchfield 2 failed during the extended recovery period and data after 7/7/2017 were not recorded. However, the MDH transducer in the Litchfield monitoring well continued to function over the monitoring period to provide a continuous record at that location.

Time signatures of the data files were checked against the computer clock after the equipment was removed from the wells. It was found that the USGS data logger clocks lost between 40 and 58 seconds, an average of 50 seconds, over the 28-day data collection period. This small and nearly uniform time shift was judged to not strongly affect data over the short, 14-hour, test period. Otherwise, the USGS loggers performed as expected and the equipment was returned to the USGS Mounds View office on 7/11/2017.

After the test was complete, precipitation records from the WWTP were obtained and the operator generated reports from the SCADA system for daily pumping from the wells. The daily pumping totals were compared to readings from the totalizing flowmeter on Well 2. There is a significant difference in flow volume between these two sources. The SCADA average cumulative volume reported for Well 2 was 710 gpm. The reading from totalizer, 46 minutes after the start of pumping, was 787 gpm. The appropriate value to use for the analysis was evaluated by comparison to results from the 1998 test of Litchfield 2, ECAD - test 2209. The larger rate produced comparable transmissivity values to the earlier test and is considered to be more accurate.

Qualitative Aquifer Hydraulic Response

A general site plan is shown in Figure 16, identifying the wells monitored for this test. Distances between the pumping and observation wells are presented in Table 3. A schematic cross section is provided for visual context of the test conditions, Figure 17. Comparison of manual and transducer data are shown in, Figures 18 through 33, documenting the proper functioning of the equipment.

The differences between pre and post-test manual and transducer water levels from wells completed in the pumped aquifer were consistent, indicating little effect of cable stretch, transducer 'drift,' or other common problems. This was not the case for observation wells constructed in till, particularly in Nest 2, where static water levels were disturbed by

installation of the transducers. The instrumentation displaced water in the well casings similar to a 'slug' injection. This disturbance dissipated over a time interval that varied according to the hydraulic conductivity of the materials in which the wells are constructed; from seconds to greater than 20 days. The USGS had analyzed these 'slug' tests during earlier parts of this study; therefore, additional slug analyses were not performed on this dataset.

The groundwater elevations in both nests showed a downward gradient, as expected, Figure 34 and Figure 35. There was a clear signal in all wells completed in the aquifer caused by the pumping of Litchfield 2, Figure 36 and Figure 37. As for the response in the till observation wells, the effects of pumping of Litchfield 2 was seen only at Nest 1, Figure 34. No response was seen in any of the till observation wells at Nest 2, Figure 35.

The possible influence on groundwater elevation from barometric pressure changes was evaluated, Figure 40. Barometric pressure varied little over the pumping test period. The range around the mean pressure was +/- 0.03 psi with a small upward trend of 0.05 psi. This variation is considered to have a negligible effect on water elevation and the data were not corrected for barometric efficiency.

Long-term trends in groundwater elevation were evaluated. The groundwater elevation in the shallow water-table observation well, USGS 1-B declined about 0.5 foot over the monitoring period, Figure 23. At Nest-2, the decline in well USGS 2-A was about 2 feet, Figure 28. The declines differed between the well nests; at Nest 1 the decline was linear, whereas Nest 2 saw a curvilinear decline – similar to a stream recession curve. The overall decrease in groundwater elevation at the water table appears to be an area-wide trend.

The vertical groundwater gradient is uniformly downward over the test area. At Nest 1, to the south of the wellfield, the ambient groundwater elevation difference is approximately 25 feet. During the test this difference increased by about 1 foot. Therefore, the incremental difference in the volume of leakage through the till as the result of this test is small relative to the ambient leakage.

Precipitation events are associated with small increases in groundwater elevation at both Nests 1 and 2, Figure 41. At Nest 2, the changes in elevation are seen to propagate downward, decreasing in magnitude with depth, in wells 2-B, 2-C, and 2-D, Figure 29, Figure 30, and Figure 31. This relationship holds true for Nest 1 also but is less pronounced, Figure 24 and Figure 25. The trend in the pumped aquifer is less clear because of the cycling of many pumping wells; but, groundwater elevation was relatively stable until 7/5/2017.

During the extended monitoring period, between 7/5 and 7/8/2017, groundwater elevation in the aquifer declined up to 10 feet, starting to recover on 7/9/2017, Figure 36. This event affected all wells constructed in the aquifer nearly equally. It was not associated with a marked increase in pumping from the Litchfield wellfield, Figure 42. The SCADA system reported an increase in total pumping volume over that period of about ten percent above average. Nor was it associated with any changes in flow from the First District dairy processing; as the waste water flow from that facility to the Litchfield WWTP was within the normal range over that time and no additional pumping was reported from First District wells. (personal communication, M. Geers, city of Litchfield and R. Albrecht, First District, Inc.) It was clearly not associated with pumping of the Desens irrigation well as that well remained off until about 7/12, after the time that water elevations had started to recover, Figure 33. The small differences in the response of the Desens obwell relative to other wells in the aquifer are probably associated with the return to service of Well 4, Figure 43 and Figure 44. Because of the magnitude and uniform effect of this change in water elevation, it can only be caused by a large discharge located at a large distance; greater than 2000 gpm, and at one mile or greater distance. During this analysis, the mystery of the source of this disturbance was referred to MDNR as it clearly has area-wide significance.

Subsequent discussions with the USGS verified that similar declines had occurred the previous year, Figure 45. In 2016, three episodes of water elevation decline similar in magnitude to that observed during this test occurred during the summer months, June, July and August. Comparison of these declines in water elevation to records of precipitation showed that they only occurred during dry times and on two occasions the recovery coincided with rain events. The declines are not strongly related to local pumping because the magnitude of the cycling of local wells is consistent throughout the year. Because these declines 1) regularly occur only in the summer months, 2) start during dry periods, and 3) recover after significant rainfall events, leads to the conclusion that they are the result of cumulative effects of area-wide irrigation pumping.

Quantitative Analysis

Traditional aquifer test analysis utilizes two main types of simple inverse models, transient and steady-state, see: selected references. When both types of models are used for the analysis (data permitting) - the aquifer hydraulic response may be proved consistent from the two perspectives and uncertainty in hydraulic properties is reduced.

Conceptual Model

The conceptual model for this test is of a layered leaky aquifer system with the majority of wells completed in two of three layers, as per the schematic section, Figure 17. The layers have distinctly different hydraulic characteristics. The first layer is composed of glacial drift and alluvium, which contains the water table. The second layer is the till which provides hydraulic confinement and recharge by leakage to the third layer. The third layer is the hydraulically-confined glacial outwash aquifer in which the production wells are constructed.

For the analysis of the confining layer data, it is preferred initially to use the simplest approach so as to introduce as few degrees of freedom as possible. The conceptual model of flow through the till is each well nest is analogous to a column of permeable material in the laboratory and flow is steady-state. For analysis of aquifer properties, the steady-state conceptual model leakage of a two-layer system is used [de Glee (1930) and Hantush-Jacob (1955)]. There is assumed to be no change in storage in these steady-state models. Transient analysis by the Neuman-Witherspoon (1969) method was also done for comparison, as data permitted.

Pumped Aquifer

Analyses are presented in Figures 1 through 10. Adjustments to the data were made prior to analysis to account for the effects of the short rest period before the start of pumping and the abbreviated duration of the test. The first adjustment is made to estimate the impact of previous pumping/recovery cycles by superposition, Figure 16. This correction was applied to the drawdown of each well for the composite transient analyses, Figures 17 through 21.

The recovery period was 10-hours in length and therefore is a bit higher quality. The transient distance drawdown analysis (t/r^2) , Figure 7, used recovery data. However, the duration of the 10-hour recovery was not long enough for steady-state conditions to develop. Therefore, recovery data were projected to 10,000 minutes, Figure A1-8, for the steady-state analyses, Figure 9 and Figure 10.

Aquifer transmissivity is best represented by the distance-drawdown analyses between 8,800 to 11,000 ft2/day. The storativity (dimensionless) is in the range of 5.5e-5 at the Nest 2 site to as large as 2.0e-4 at nest 1, to the south of the wellfield. This variation in storativity corresponds to the relative conductivity of the till at the well nests. No wells showed a leaky response, as expected, and the corresponding leakage factor from the steady-state analyses is quite large, approximately 22,000 feet. Comparison of these results to those of the earlier aquifer test shows that the transmissivity and storativity are within the same range but the characteristic leakage factor from the earlier test was significantly smaller. [This may be due in part to a bias in the earlier analysis which used drawdown values after only 1440 minutes of pumping. It also was the result of choices to weight proximal wells more heavily to the fit rather than more distant wells. The uncertainty of the leakage factor from that analysis was quite large.]

There are differences between the response to pumping and recovery for USGS 1-F and Desens Obwell, Figure 5 and Figure 6, that are not seen in the response of wells located within the wellfield. It is believed that these differences are the result of interference from other, more distant, pumping wells. The effect of the differences causes an increase in uncertainty of hydraulic properties at these wells, +/- 30% of the nominal values which are presented on the figures and Table 5.

Aquitard (Confining) Layer

Analyses are presented in Figures 11 - 15. The assessment of the vertical hydraulic conductivity of the till at Nests 1 and 2 depends on the observed response to pumping. There was no observed response to pumping at Nest 2 and the analysis is therefore limited. The observed response to pumping at Nest 1 is shown on Figure 11as four series:

- 1) pumping,
- 2) recovery,
- 3) recovery projected to 1000 minutes, and
- 4) that caused by the 'unknown pumping.'

The short-term differences in water level caused by pumping are best fit by a log function. As the well nest is expected to react linearly, as a hydraulic column in the laboratory; this indicates that the duration of pumping was insufficient for the system to reach equilibrium. The recovery data projected to 10,000 minutes may be used, as that response was linear, but limited to only two wells. The strongest linear signal was caused by the `unknown pumping' 7/5 through 7/8/2017. These data indicate that only the deeper observation wells; USGS 1-E, 1-D, and possibly 1-C, may provide a reasonably linear relationship of clay thickness vs. water level change. As water levels drew down below the transducer in USGS 1-E, an estimate of the water level was made from the consistent difference between USGS 1-E and 1-F of 0.6 feet, Figure 26.

Note that on Figure 11, the intersection of all regressions at ~ 0 feet of drawdown is much less than the full thickness of the till. Therefore, the true thickness of competent till as a confining layer is not its full lithological thickness at the Nest 1 site. It appears that the effective thickness is approximately 48 to 50 feet.

The composite leaky analysis, Figure 12, used the parameter estimation tool in Aqtesolv for the data from the wellfield area. The data from wells 1-F and Desens Obwell plot significantly below the other wells. This indicates that the transmissivity and/or leakage is different for the wells not matched. This is additional confirmation that the aquitard is more permeable in the area near Nest 1.

The Neuman-Witherspoon analysis of recovery data from Nest 1, Figure 13, produces a kV of the aquitard of 1.8e-2 ft/day. However, the match is poor because the test was not conducted long enough to generate a strong signal. Also, this initial analysis assumed that

the thickness of the aquitard is 63 feet rather than that from the well records (114 feet). The smaller effective aquitard thickness from Figure 11 can be verified with this model. On Figure 14, the match to data from well 1-E is much improved if an aquitard thickness of 50 feet is used, with no other change in parameters.

The analysis of the data associated with this abbreviated constant-rate test is limited because of the relatively small signal that only affected wells 1-E and 1-D. However, a very strong signal was generated by the disturbance after 7/5/2017 19:00, Figure 43. Unfortunately, no facts are available to verify the well location(s) or pumping rate(s) that may have caused the disturbance. Modeling the impact of the observed response has inherent uncertainties but is a worthwhile check on the aquitard properties, if only because of the strength of the signal.

If aquifer properties are reasonably consistent in this area, the effects of the 'unknown pumping' well at Nest 1 may be modeled in Aqtesolv. Assuming a well located approximately 8000 feet from Nest 1 and discharging at a rate of 2300 gpm for 5000 minutes, a steady-state model provides similar aquifer properties: T - 9,000 ft2/day, S - 5e-5, and L - 20,000 feet. These assumptions were then used as the basis for a Neuman-Witherspoon analysis of the data after 7/5/2017 19:00, Figure 15. The match was quite good to data from all observation wells in the till: 1-E (estimated), 1-D, and 1-C. The k_V of the aquitard was smaller, 1.0e-3 ft/day, than that calculated from the test of Litchfield 2, Figure 14, but not out of the reasonable range. For comparison, this value is essentially the same as than that from the steady-state analyses, Figure 9 and Figure 10.

Because no response was observed at the Nest 2 site, the k_V of the aquitard is at least one order of magnitude smaller than that at Nest 1, at most 1.0e-4 ft/day or smaller.

Conclusion

The hydraulic properties of the two-layer aquifer and aquitard system are shown in Table 1. These values are a summary of the analyses listed on Table 5. The large range of estimated aquifer properties shown are the result of both the sub-set of the data to which an analysis method was applied and natural lithological variation - particularly within the till.

The bulk aquifer properties were within the expected range given the prior test of Litchfield 2 in 1998. The leakage factor from this test was larger (a lower rate of leakage) than that from the earlier test, with better documentation and a much more robust analysis.

The interesting aspect of these data is that the more conductive portion of the aquitard (Nest 1) appears to dominate the bulk hydraulic response, as represented by the steady-state analyses.

Acknowledgements

There have been few opportunities to collect this level of detailed hydraulic information for the analysis of rates of leakage through till. The test conducted at the Litchfield municipal wellfield described here was successful not simply because of the efforts of MDH but also for the work of many, over decades. This analysis drew heavily on previous testing of Litchfield Well 2 in 1998, data collected by the USGS in 2015 and 2016, the work of MDNR with irrigators in the area, as well as other sources. It is an example of how success may sometimes result from being there to gather information, taking advantage of coincidental and uncontrolled field conditions, rather than the 'proper conduct' of an aquifer test.

References

- Cooper, H.H. and Jacob, C.E. (1946) A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well-field History, Trans. American Geophysical Union, V. 27, pp. 526 – 534.
- Blum, J.L. and Woodside, J. (2017) Analysis of the Litchfield 2 (607420) Pumping Test, June 29, 2017, Confined - Quaternary Glacial-Fluvial Aquifer, Technical Memorandum -Aquifer Test 2617, Minnesota Dept. of Health, pp 93.
- de Glee, G. (1930) Over grondwaterstroomingen bij wateronttrekking door middle van putten. Ph.D. thesis, Delft Technische Hogeschool, Delft. In: Kruseman and De Ridder, (1991) Analysis and Evaluation of Pumping Test Data (2nd Edition), Publication 47, International Institute for Land Reclamation and Improvement, P.O. Box 45, 6700 AA Wageningen, The Netherlands, pp. 76-78.
- Environmental Concepts and Design, Inc. (1998) Municipal Well-Field Pump Test and Conceptual Design Report - Litchfield Public Works, Meeker County, Minnesota. Aquifer Test Analysis File 2209.
- Duffield, G.M. (2007) AQTESOLV for Windows Version 4.5 User's Guide, HydroSOLVE, Inc., Reston, VA.
- Jacob, C.E. (1947) Drawdown Test to Determine the Effective Radius of Artesian Wells. Transactions of the American Society of Civil Engineers, 112, pp.1047–1170.
- Hantush, M. S. and Jacob, C.E. (1955a) Non-steady Radial Flow in an Infinite Leaky Aquifer, Trans. American Geophysical Union, Vol. 35, pp. 95-100.
- Hantush, M. S. and Jacob, C.E. (1955b) Steady Three-dimensional Flow to a Well in a Twolayered Aquifer, Trans. American Geophysical Union, Vol. 36, pp. 286-292.
- Neuman, S.P. and Witherspoon, P.A. (1969) Theory of flow in a confined two aquifer system, Water Resources Research, vol. 5, no. 4, pp. 803-816.
- Theis, C. V. (1935) The Relation Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Ground-Water Storage, Trans. American Geophysical Union, 16th Annual Meeting, April, 1935, pp. 519-24.
- Walton, W.C. (1960) Leaky Artesian Aquifer Conditions In Illinois, Illinois State Water Survey, Bulletin 39, pp. 27.
- Western Regional Climate Center Daily Precipitation Data for Weather Station, 214778, Litchfield, Minnesota (2017). Available at: https://wrcc.dri.edu/cgibin/cliMAIN.pl?mn4778.

Tables and Figures

Table 1. Summary of Results for Leaky Confined - Radial Porous Media Flow

Parameter	Value	Unit	Range Minimum	Range Maximum	+/- % variation
Top Stratigraphic Elev.	1015	feet (MSL)	1008	1022	
Bottom Stratigraphic Elev.	986	feet (MSL)	978	986	
Transmissivity (T)	9,000	ft2/day	7,000	14,500	
Aquifer Thickness (b)	29	feet	30	44	
Hydraulic Conductivity (k)	310	ft/day	155	310	
Ratio Vertical/Horizontal k (k _v /K _R)	1	0.00 %			
Primary Porosity (ep)	0.25	0.00 %			
Storativity (S)	7.5e-5	dimensionless	5.5e-5	3.3e-4	
Characteristic Leakage (L)	21,000	feet	5,000	24,100	
Hydraulic Resistance (c)	44,400	days	2,800	63,500	
Thickness of till (b')	50	feet	48	130	
Hydraulic Conductivity of till (k_v)	1.0e-3	ft/day	< 1.0e-4	2.0e-2	

TEST 2617, LITCHFIELD 2 (607420) JUNE 29, 2017

Information Type	Information Recorded				
Aquifer Test Number	2617				
Test Location	Litchfield 2 (607420)				
Well Owner	City of Litchfield				
Test Conducted By	MDH - J. Blum and J. Woodside				
Aquifer	QBAA				
Confined / Unconfined	Confined				
Date/Time Monitoring Start	06/13/2017 12:10				
Date/Time Pump off Before Test	06/29/2017 12:16:30				
Date/Time Pumping Start	06/29/2017 14:03:30				
Date/Time Recovery Start	06/29/2017 20:00:00				
Date/Time Test Finish	7/13/2017 14:35				
Pumping time (minutes)	1454.93				
Totalizer – end reading	not recorded				
Totalizer – start reading	122,434,800				
Total volume (gallons)	280,060 gallons				
Nominal Flow Rate	787 (gallon per minute)				
Number of Observation Wells	8 (see Table 3)				

Table 2. Aquifer Test Information

Well Name (Unique Number)	Easting Location, X ¹ (meter)	Northing Location, Y ¹ (meter)	Radial Distance (feet)	Ground Surface Elevation, GSE ² (feet, MSL)	Measuring Point Description GSE+(stick-up) (feet, MSL)	Open Interval Top (feet, MSL)	Open Interval Bottom (feet, MSL)	Aquifer
Wellfield								
Litchfield 2 (607420)	613	481.6	1	1120	1124.35 e	1013	988	QBAA
L-MW (607417)	607.8	496.1	51	1120	1123.7	1001.2	996.2	QBAA
Litchfield 3 (632077)	674.4	711.6	781	1123.2	1127.2	1018	990	QBAA
Litchfield 4 (632078)	538.4	1129.6	2140	1126	1130	1026	1002	QBAA
Litchfield 5 (764258)	466.1	1014.9	1815	1149	1153	1015.5	990.5	QBAA
Desens, D. (800011)	1384.7	947.7	2958	1128.4	1129.4 e	980.4	970.4	QBAA
Nest 1								
USGS 1-B (773062)	1021.8	265.5	1517	1114.5	1118.23	1092.1	1089.2	QWTA
USGS 1-C (773060)	1019.2	267.5	1506	1114.8	1118.35	1064.6	1061.7	Till
USGS 1-D (773059)	1020.4	267.5	1510	1114.7	1118.25	1042.3	1039.4	Till
USGS 1-E (773058)	1021.8	267.5	1514	1114.5	1118.07	1022.1	1019.2	Till
USGS 1-F (773057)	1020.4	265.6	1513	1114.7	1118.1	996.7	987.2	QBAA
Nest 2								
USGS 2-A (773056)	559.8	844	1202	1139.6	1142.82	1122.5	1119.6	QWTA
USGS 2-B (773055)	559.8	842.9	1198	1139.2	1142.24	1106.9	1104.1	Till
USGS 2-C (773054)	561.3	844	1201	1139.4	1142.41	1082.4	1079.6	Till
USGS 2-D (773053)	559.7	841.6	1194	1139.2	1142.15	1058.1	1058.1	Till
USGS 2-E (773052)	561.4	842.9	1197	1139.3	1142.46	1028.3	1025.5	QBAA
USGS 2-F (773051)	561.4	841.6	1193	1139.3	1142.37	986.8	976.9	QBAA

Table 3. Well Information

¹ Local Datum

² Vertical Datum: NAV88

Table 4.	Data	Collection
----------	------	------------

Data File Name: Well Name_Unique Number	Data Logger Type, SN:	Probe Id., Range (psi)	Install 1. Static WL ³	Install 2. XD ⁴ Setting	Remove 3. Static WL	Remove 4. XD Setting	Diff. Static WL (1-3)	Diff. XD Setting (4-2)
L-2_(607420)	Acoustic transducer		50.29	49.64	71.04 ⁵			
Baro_data	Hermit 3000 45333	6, 15 psia						
L-Ob(607417)	Troll 500 145815	17, 30 psi	46.50	61.59	59.70	48.54	-13.2	-13.04
USGS-1-B(773062)	OTT 382929		13.55	12.96	14.17	12.33	-0.62	-0.63
USGS-1-C(773060)	OTT 382931		14.61	13.97	15.46	14.83	0.78	0.79
USGS-1-D(773059)	OTT 382935		28.77	28.30	32.75	32.34	-3.98	4.04
USGS-1-E(773058)	OTT 382934		38.04	37.52	45.29	39.60 ⁶	-0.21	
USGS-1-F(773057)	OTT 382937		38.20	37.11	45.45	44.88	7.25	7.77
USGS-2-A(773056)	OTT 382927		13.99	14.19	16.09	16.23	-2.1	2.04
USGS-2-B(773055)	OTT 382932		14.99	16.09	16.39	18.72	1.4	0.35
USGS-2-C(773054)	OTT 382930		17.87	16.06	19.02	18.59	-2.15	2.52
USGS-2-D(773053)	OTT 382933		35.19	34.07	35.90	35.38	-0.71	1.31
USGS-2-E(773052)	None installed		64.36		71.33			
USGS-2-F(773051)	OTT 382938		65.43	64.88	70.88	70.01	-5.45	5.13

³ WL = water level below measuring point, feet.

⁴ XD = pressure transducer depth below water surface, feet.

⁵ Pump running

⁶ Transducer set above water surface in well at removal

Well Name (Unique Well No.)	Transmissivity, T (ft2/day)	Storativity, S (dimensionless)	Leakage Factor, L (feet)	Hydraulic Conductivity of Aquitard, kV (ft/day)	Analysis Method	Figure No. Remarks
L-2 (607420)	3,440	NA ⁷	NA	NA	Theis	2. poor match, T not credible
L-MW (607417)	8,600	2.5e-4	NA	NA	Theis	3. good match
USGS 2-F (773051)	14,700	5.5e-5	NA	NA	Theis	4. good match to pumping data
USGS 1-F (773057)	14,700	3.3e-4	NA	NA	Theis	5. divergence between pumping and recovery data – uncertainty in T & S values +/- 30%
Desens (800011)	14,300	1.5e-4	NA	NA	Theis	6. divergence between pumping and recovery data – uncertainty in T & S values +/- 30%
Aquifer, composite	10,000	1.1e-4	NA	NA	Theis - t/r2	7. good match, inefficiency of pumped well causes divergence from Theis-curve
Aquifer, composite	9,170	2.0e-4			Cooper – Jacob	9. representative bulk aquifer properties
Aquifer, composite	11,000	9.5e-4	20,000	1.4e-3	Hantush-Jacob - t/r2	12. Aqtesolv solution - match to L-MW and USGS 2-F
Nest 1, composite	14,000	1.0e-4	6,700	2.0e-2	Neuman- Witherspoon	13. aquitard thickness of 63 feet - poor match
Nest 1, composite	10,800	1.2e-4	5,500	1.8e-3	Neuman- Witherspoon	14. aquitard thickness of 50 feet - better match to USGS 1-E
Nest 1, composite	8,000	7.4e-5	10,800	1.0e-3	Neuman- Witherspoon	15. aquitard thickness of 50 feet - good match to all till wells

Table 5. Transient Analysis Results

Table 6. Steady-state Analysis Results

Transmissivity, T (ft²/day)	Leakage Factor, L (feet)	Hydraulic Resistance, c (days)	Hydraulic Conductivity of Aquitard, k _v (ft/day)	Analysis Method	Plot No. Remarks
9,170	24,100	63,500	7.9e-4	Hantush- Jacob	9. representative bulk aquifer properties
8,830	22,000	54,800	9.0e-4	De Glee	10. representative bulk aquifer properties

⁷ Not Applicable

Figure 2. Theis (1935) analysis of pumping and recovery data from Litchfield 2 (607420)

Figure 3. Theis (1935) analysis of pumping and recovery data from Litchfield MW (607417)

TEST 2617, LITCHFIELD 2 (607420) JUNE 29, 2017

Figure 4. Theis (1935) analysis of pumping and recovery data from USGS 2-F (773051)

Figure 5. Theis (1935) analysis of pumping and recovery data from USGS 1-F (773057)

TEST 2617, LITCHFIELD 2 (607420) JUNE 29, 2017

Figure 6. Theis (1935) analysis of pumping and recovery data from Desens (800011)

Figure 7. Theis (1935) composite (t/r^2) analysis of recovery data

Figure 8. Projected recovery to 10,000 minutes for steady-state analysis

Figure 9. Cooper-Jacob (1946) transient and Hantush-Jacob (1955) steady-state analyses

Figure 10. de Glee (1930) steady-state analysis

Figure 11. Difference in water level at USGS Nest-1 during pumping and recovery

Figure 12. Aqtesolv composite (t/r2). Hantush-Jacob (1955) model

L = 20,000 feet kV = 0.00005 * 11,000 * 50 = 0.0014 ft/day Figure 13. Aqtesolv analysis of data from Nest 1 wells, Neuman-Witherspoon (1969) model. Till thickness 63 feet.

L = 5,000 feet kV = 0.0002 * 10,000 * 50 = 0.02 ft/day Figure 14. Aqtesolv analysis of data from Nest 1 wells, Neuman-Witherspoon (1969) model. Till thickness 50 feet

L = 5,500 feet

 $k_V = 0.0001825 * 10,800 * 50 = 0.018 \text{ ft/day}$

Figure 15. Aqtesolv analysis of data from Nest 1 wells, Neuman-Witherspoon (1969) model. Drawdown from unknown pumping wells.

L = 20,000 feet

 $k_V = 0.00005 * 8000 * 50 = 0.001 \text{ ft/day}$

Figure 16. Well Location Map: well name and Minnesota unique well number

Figure 17. Schematic Section

Figure 18. Depth to Water from Top of Casing at Litchfield 2 (607417), Both Manual and Electronic Measurements

Figure 20. Depth to Water from Top of Casing at Litchfield 3 (632077), Manual Measurements

Figure 21. Depth to Water from Top of Casing at Litchfield 4 (632078), Manual Measurements

Figure 22. Depth to Water from Top of Casing at Litchfield 5 (764258), Manual Measurements

Figure 23. Depth to Water from Top of Casing at USGS 1-B (773062), Both Manual and Electronic Measurements

Figure 24. Depth to Water from Top of Casing at USGS 1-C (773060), Both Manual and Electronic Measurements

Figure 25. Depth to Water from Top of Casing at USGS 1-D (773059), Both Manual and Electronic Measurements

Figure 26. Depth to Water from Top of Casing at USGS 1-E (773058), Both Manual and Electronic Measurements

Figure 27. Depth to Water from Top of Casing at USGS 1-F (773057), Both Manual and Electronic Measurements

Figure 28. Depth to Water from Top of Casing at USGS 2-A (773056), Both Manual and Electronic Measurements

Figure 29. Depth to Water from Top of Casing at USGS 2-B (773055), Both Manual and Electronic Measurements

Test No: 2617 Pumped Well: Litchfield 2 (607420) Obwell: USGS 2-C (773054) Test Date: 6/29/2017 Data Series: Comparison of manual and transducer data Radial Distance (feet): 1201 16 Measurement \oplus manual Ο transducer 17 Ð 18

19 20 6/12/17 6/16/17 6/20/17 6/24/17 6/28/17 7/2/17 7/6/17 7/10/17 7/14/17 Date - Time of Reading

Depth to Water from Top of Casing [feet]

Figure 31. Depth to Water from Top of Casing at USGS 2-D (773053), Both Manual and Electronic Measurements

Date - Time of Reading

Figure 32. Depth to Water from Top of Casing at USGS 2-F (773051), Both Manual and Electronic Measurements

Figure 33. Depth to Water from Top of Casing at Desens Observation (800011), Both Manual and Electronic Measurements

Figure 35. Groundwater elevation at Litchfield-2 and Nest 2

Figure 36. Groundwater elevation at Litchfield-2 and Observation Wells Constructed in Aquifer, All Data

Figure 37. Groundwater elevation at Litchfield-2 and Observation Wells, Test Period

Figure 39. Groundwater elevation at Litchfield-2 and Nest 2, Test Period

Figure 40. Groundwater Elevation in Aquifer Compared to Barometric Pressure, Test Period

Figure 41. Depth to Water in Water-Table Wells Compared to Rainfall Events

Figure 42. Daily Pumping Volume from Community Supply Wells, June 1, to July 10, 2017

Figure 43. Expanded View of Groundwater Elevation in Aquifer Wells from July 2 to July 11, 2017

Figure 44. Local Effects of Community Supply Wells from July 5 to July 11, 2017

Figure 45. Groundwater Elevation at USGS 2-F (773051) Compared to Rainfall Events, Summer of 2016

Figure 46. Well and Boring Report - Litchfield 2 (607420)

Minnesota Unique Well Number	County M	ooker	MINN	ESOTA DEP.	ARTMENT O	F HEALTH	1	Entry Date	03/23/1000
607420	Ored La	tchfield	WELI	AND H	BORIN	G REPO	DRT	Undets Date	05/15/0017
00/420	Qual 12	54	Mi	nnesota Sta	tutes Chapt	er 1031		Update Date	00/10/2017
	Quad ID 12							Keceived Dat	ie i
Well Name Town	aship Range	Dir Sectio	n Subsection		Well Depth	1	Depth Completed	Date W	fell Completed
LITCHFIELD 2 119	31	W 2	CDCDAA		134 ft .	1	32 ft.	02/19/1	998
Elevation 1120 El	ev. Method	7.5 minute top	ographic map (+/-	- 5 feet)	Drill Method	Non-specif	fied Rotary	Drill Fluid Bez	ationite
Address					Use comm	unity supply(r	nunicipal)		Status Active
Contact 126 MARSHALL AV N LITCHFIELD MN 55355					Well Hydrofra	ctured?	Yes No.	X From	т.
Well LITCHFIELD MN 55355					Casing Type	Single ca	sing	Joint	10
Stratigraphy Informatio	a				Drive Shoe?	Yes	No X	Above/Below	
Geological Material	From	To (ft.)	Color H	ardness	Casing Diame	ter Wei	isht		Hole Diameter
CLAY	0	24	BROWN		12 in To	107 ft.	Ibs/ft.		18 in.To 134 ft.
CLAY	24	29	GRAY						
SAND & GRAVEL	29	35	BROWN						
CLAY	35	65	GRAY						
SAND & GRAVEL	65	71	BROWN		Onen Hole	-		-	
CLAY	71	105	GRAY		Screen? 15	From	II. Type stainles:	10 Make	II. JOHNSON
SAND & GRAVEL	105	134	BROWN		Diameter	Slot/Gauze	Length	Set	
CLAY	134	134	GRAY		12 in.	115	25 ft.	107 ft .	132 ft .
					Static Water	Level			
					42 ft.	land surfa	C0	Measure	02/19/1998
					Pumping Lev	rel (below laz	ad surface)		
					132 ft.	7.5 hrs.	Pumping at	1000 g	sp.m.
					Wellhead Co	mpletion			(-).)
					Pittess adapter	manufacturer	X 12 -	ahoon mada	lodel
					At-grade	(Environme	ntal Wells and Bo	rings ONLY)	
					Grouting Inf	ormation	Well Grouted?	X Yes	Not Specified
					Material		Am	ouat	From To
					neat cement		85	Sacks	0 ft.87 ft.
					high solids b	entonite	50	Sacks	87 ft. 132 ft.
									ft. ft.
					Nearest Kno	wn Source of	Contamination		-
					19 Well disinfe	et cted unon con	mletion?	Yes	No
					Pump	Not 1	Installed D	ata Installad	
					Manufacturer	s name			
					Model Numbe	a	HP	Ve	olt
					Length of drop	p pipe	ft Capacity	8-P-	Тур
					Abandoned				
					Does property	have any not is	n use and not sealed	well(s)?	Yes X No
					Variance Was a variance	e granted from	the MDH for this we	117	Yes X No
					Miscellaneou	15			
					First Bedrock			Aquifer	Quat. buried
					Last Strat	clay-gray		Depth to Be	edrock ft
Remarks					Located by	Minn	esota Department	of Health	
MDH AQUIFER TEST, 200		System	 Digiti UTM - NAD 	zation (Screen) - 1 183. Zone 15. Meren	Map (1:24,000) X 370	047 Y 4000548			
					Unique Numb	er Verification	Informatio	on from 1	nput Date 09/19/2000
					Angled Drill	Hole			-
					-				
					Well Contra	ctor		71526	POPPTETOON
					Licensee B	usiness	Lie	or Reg. No.	Name of Driller
				607	420				Printed on Octoberry
Minnesota Well I	ndex Kepor	rt -							HE-01205-15
				1					

Figure 47. Well and Boring Report - Litchfield 3 (632077)

Minnesota Unique Well Number	nty Meeker	MINNESOTA D	EPARTMENT	OF HEALTH	Fater Data	02/00/000		
(20077	a Litchfield	WELL ANI	D BORIN	G REPORT	End y Date	03/22/2000		
032077 Qua		Minnesota	Statutes Chap	ter 1031	Update Date	03/10/2014		
Qua	ID 125A				Received Date			
Well Name Township	Range Dir Sec	tion Subsection	Well Depth	Depth Completed	Date Well	Completed		
LITCHFIELD 3 119	31 W 2	CDABDC	140 ft.	136 ft.	12/09/1999			
Elevation 1126 Elev. Meth	hod 7.5 minute 1	pographic map (+/- 5 feet)	Drill Method	Non-specified Rotary	Drill Fluid Benton	ite		
Address			Ure	mite and formations D		Status Activo		
			Cite Collin	tunty suppry(municipal)		Junes Secure		
Contact 126 MARSHA	LL AV N LITCHF	ELD MN 55355	Well Hydrofr	actured? Yes No	From	To		
Well LITCHFIELD	MIN 55355		Casing Type	Single casing	Joint W	elded		
Stratigraphy Information			Drive Shoe?	Yes No	Above/Below			
Geological Material	From To (ft.)	Color Hardness	Casing Diam	eter Weight	1	Hole Diameter		
TOP SOIL	0 2	BLACK	12 in To	108 ft. 49.5 Ibs/ft.	1	18 in.To 140 ft.		
CLAY	2 18	YELLOW						
CLAY	18 98	GRAY						
DIRTY SAND	98 106	GRAY						
SAND	106 117	GRAY						
SAND COARSER	117 130	GRAY	Open Hole	From ft.	То	ft.		
SAND FINER	130 136	GRAY	Screen?	Type stainless	Make JO	HNSON		
CLAY	136 140	GRAY	Diameter	Slot/Gauze Length	Set			
			12 in.	70 28 ft.	108 ft.	136 ft.		
			Static Water	r Level				
			43.6 ft.	mill	Measure	11/22/1999		
			Pumping Le	vel (below land surface)				
			65.5 ft.	20 hrs. Pumping at	750 g.p.:	m.		
			Wellhead C	ompletion		1		
			Pidess adapte	r manufacturer MONITOR		el 7PS1214WBW		
				Protection 12 m	n acove grade			
			Granting In	formation Well Counter?	Ver No	Not Specified		
			Of Guing In	weil chould?				
			Material	Amo	ount 1	rom To		
			neat cement		Cubic yards 1	2 п.96 п.		
			New York					
			frearest Known Source of Contamination					
			Wall doing	acted upon completion?		No		
				cad apon comproadu.		210		
			Pump	Not installed D	ate installed			
			Manufacture	rs name				
			Model Numb	er IIF	voit	_		
			Length of dr	ap pape II Capacity	8-p. 1)	P		
			Absidoned	where any paths are and and article				
			Locs propert	y neve any not in use and not scaled	men(b)r			
			Variance			Ver 🖭 11		
			was a varian	ce granted from the MDH for this we		K N0		
			Miscellaneo	85				
			First Bedrock		Q return.	uat. buried		
			Last Strat	ciay-gray	Depth to Bedro	а п		
Remarks			Located by	Autoresota Department	or riearn			
GAMMA LOGGED 10-5-1999 BY SI	UMMIT.		System	 UTM - NAD82 Zone 15 Materia 	X 370300	Y 4000778		
			Unime North	ber Verification		Date 09/19/2000		
			Angled Dail	Hele		03/15/2000		
			Augueo Diti	11000				
			Well Contro	ctor				
			L.tp. Ente	rprises, Inc.	91686	VERDECK, D.		
			Lacensee h	usmess Lic.	or Asg. No.	Name of Driller		
			20075					
Minnesota Well Inder	Report	0	52077			Printed on 06/12/2017		
winnesota wen inder	report					HE-01205-15		
Figure 48. Well and Boring Report - Litchfield 4 (632078)

Minnesota Unique Well N	lumber	County M	ooker	MIN	NESOTA DEP	ARTMENT O	F HEALTH	t i i i i i i i i i i i i i i i i i i i	Entry Date		2000
(22007)	632078 Ound Litchfield WELL AND				L AND 1	BORIN	G REPO	DRT	Entry Date 03/22/2000		2000
632078	8	Quad La	SA	A	linnesota Sta	itutes Chapt	er 1031		Conducte Date 03/10/2014		
	_	Quad ID 12	JA.			-			Received D	ate	
Well Name	Townsh	ip Range	Dir Sect	ion Subsect	08	Well Depth	1	Depth Completed	Date	Well Complet	ed
LITCHFIELD 4	119	31	W 2	CABAC	в	159 ft .	1	47 ft.	12/09	9/1999	
Elevation 1149	Elev.	Method	7.5 minute to	pographic map (*	+/- 5 feet)	Drill Method	Non-specif	fied Rotary	Drill Fluid E	entonite	
Address						Use comm	unity supply()	municipal)		Status	Active
Contact	126 MAR	SHALL AV	NUTCHED	TLD MN 5535	5	Well Hydrofes	ctured?	Ver 🗌 Ne		-	
Wall	LITCHE	FLD MN 553	55		-	Casing Trees	Single co		From	Trans.	0
Stratigraphy Info	mation					Drive Shoe?	Ves 🗌	No 🗆	Above/Baler	Welded	
Geological Materia	d	From	To (ft.)	Color	Hardness	Codes Blogs			ADOVE DED	n The la Diversi	
TOP SOIL SILTY		0	1	BLACK		12 in To	123 A 44	igna 05 lbs/⊕		18 in Te	eter 147 0
SANDY CLAY/G	RAVEL	1	10	BROWN			125 11. 12			62 in Te	5 159 ft.
CLAY SANDY/PE	BBLES	10	42	GRAY							
SANDY CLAY/SA	AND	42	48	GRAY							
SANDY CLAY/PE	BBLES	48	97	GRAY							
SANDY CLAY		97	113	BROWN	V.SOFT	Open Hole	From	£.	То	ft.	
SANDY CLAY/PE	BBLES	113	121	GRAY		Screen?		Type stamless	Make	 JOHNSON 	
SAND & GRAVE	L	121	128	GRAY		12 in	20	24 A	102 4	147 4	
SAND & GRAVE	L	128	136	GRAY		12 10	10	27 II.	123 1	4/ 1	-
SAND & GRAVE	L	136	146	GRAY		Static Water	Land				
SANDY CLAY/PE	BBLES	146	150	GRAY		61 2 0	land surfa		Maatura	12/08/19	00
CLAY		150	159	GRAY						120017	
						Pumping Lev	vel (below lar	ud surface)			
						77.8 ft.	21 hrs.	Pumping at	750	g.p.m.	
						Wellbead Co	moletion				
						Pitless adapter	manufacturer	MONITOR		Model 7PS	1214WBW
						Casing I	rotection	X 12 in	above grade		
						At-grad	e (Environme	ntal Wells and Bor	ings ONLY)		
						Grouting Inf	ormation	Well Grouted?	X Yes	No No	t Specified
						Material		Ame	mat	From	То
						neat cement		4.5	Cubic yards	: 8 ft.	113 ft .
						Nearest Kno	wn Source of	Contamination			_
						fe Well Keinfe	et 	Direction	v		Туре
						Well distille	casa upon con		X 195	NO	
						Manufactured	K Not	installed Da	te installed		
						Madal Murthe	s manue	HP		Volt	
						Length of dro	n nine	ft Canacity	g.p.	Typ	
						Abandoned				-74	
						Does property	have any not it	n use and not sealed y	vell(s)?		es X No
						Variance	-				
						Was a variance	e granted from	the MDH for this we	17	Yes	X No
						Miscellaneou	8				
						First Bedrock			Aquif	er Quat. burie	d
						Last Strat	clay-brow	20	Depth to	Bedrock	ft
Famarla						Located by	Minn	esota Department (of Health		
BOTTON 12 FT. OF	HOLE GR	OUTED WHI	GH SOLIDS			Locate Metho	GPS	SA Off (averaged)			
	TIOLE OF		011 001 00			System	UTM - NAD	83, Zone 15, Meters	X 3	79172 1	5000196
						Unique Numb	er ventication			Input Date	09/19/2000
						Angled Drill	riole				
						Well Contra	ctor				
						L.tp. Enter	prises, Inc.		91686	VERD	ECK, D.
						Licensee B	usiness	Lic. (ar Reg. No.	Name of	f Driller
Minnesste II	Vall Ta	lar Rama			632	078				Print	ed on 06/19/2017
Minnesota W	ven mo	iex Kepoi	n								HE-01205-15

Figure 49. Well and Boring Report - Litchfield 5 (764258)

Vertex of Lackdaid Multiplete Update Date Update Date Output to Date Well Coll 202000 Well Name Towaship Kange Dis Social Statute: Chapter 1031 Update Date Output to Dis 20200 Well Name Towaship Kange Dis Social Statute: Chapter 1031 Date Well Coll Date Well Coll Dis 202008 Well Well Statute: Chapter 1031 Dis Well Coll Dis Well Coll Dis Well Coll Dis Mell Coll <thdis coll<="" mell="" th=""> <thdis coll<="" mell="" t<="" th=""><th colspan="6">Minnesota Unique Well Number County Mooker MINNESOTA DEI</th><th colspan="5">TA DEPARTMENT OF HEALTH Entry Date 01/20/000</th><th></th></thdis></thdis>	Minnesota Unique Well Number County Mooker MINNESOTA DEI						TA DEPARTMENT OF HEALTH Entry Date 01/20/000					
Vol. 2013 Minnecota Statute: Chapter 1031 Update Date Options		-0	Out	Litchfield	WELL AND BORING REPORT		DRT	Entry Date	01/29/2009			
Owner De LAX Owner De LAX Well Name Formaking Names De Section Subsection LITCHFEED 5 119 31 W CARCCA Evension 112 Even Mothed 7.5 minute topogable map (+-5 feet) Mafers: 126 MASSRAIL AV NE LITCHFEED DAN 53355 Well Mark TC (HTFEED DAN 53355 Statigraphy Barkinsmian Form To (ft) Color Geological Mancial Form To (ft) Color 109 SOL 0 1 ELACK SANDY CLAY 1 2 BROWN SANDY CLAY WITH 14 20 GRAY SANDY CLAY WITH 14 20 GRAY SANDY CLAY WITH 13 GRAY SANDY CLAY WITH 131 GRAY SAND VCLAY 131 GRAY SAND WITH 131 GRAY SAND WITH 144 GRAY SAND WITA 135 GRAY	7042	58	Quad	1254	M	înnesota Sta	itutes Chapt	er 1031		Excited Date 01/01/0000		
Well Name Termsting Karger Dis Section Subscription LITCHFFELD S119 31 W 2 CABCCA Lift First D2 Deriv Method 7.5 minute topographic map (vi- 5 feet) Dell Mached Non-specified Entry Dell Phade Lift First D2 Canacc Dell Mached Non-specified Entry Dell Phade Beatmains Connect 126 MARSHALL AV NE LITCHFFELD MN 53355 Use community upplytamicipal) Status: Active Sensing Type Single status Tree No Mached Prema To Sensing Type Single status Status To Status Accent Entry Consignition 0 1 ELACK Status No Mached No Mached SANDY CLAY 1 2 BEAUW Status Mached No Mached No			Quad ID	12/14			-			Keceived Dat	e 01/21/2009	
LTTCHFELD 5 19 31 W 2 CABCCA 165 ft. 161 5 ft. 10302008 Mdfress 125 Ziew Andrake topographic map (r+.5 for) Deft Michael Non-specified Kotary point Pask Bactonia Address Contact 126 MARSHALL AV NE LITCHFEED MN 55335 Stams: Activ Viei Community upply(camicipal) Stams: Activ Seringraphy Laformation From To (ft) Color Hambass No (X) AboveBdore Joint To Geological Material From To (ft) Color Hambass Diver Stams: Make Network No (X) AboveBdore SANDY CLAY WITH 1 2 BROWN SOFT Sandy CLAY WITH 16 GAY SANDY CLAY WITH 14 GRAY SANDY CLAY WITH 12 IS GRAY SANDY CLAY WITH 12 IS GRAY Soft Jack Stams Make NHNSON SANDY CLAY WITH 12 IS GRAY Soft Jack Stams Make NHNSON SANDY CLAY WITH 12 IS GRAY Soft Jack Stams Make NHNSON SANDY CLAY WITH 13 IS GRAY Soft Langth Soft Jack Stams SAND YCLAY 13 IS GRAY	Well Name	Town	uship Ra	nge Dir Sec	tion Subsection	n	Well Depth	1	Depth Completed	Date W	fell Completed	
Eleret. Method 7.5 minuste upographic map (r+.5 fm) Dell Method Mon-rpacified Kotary Dell Field Eastnaire Madress Contact 126 MARSHALL AV NE LITCHFEELD MN 53355 Status Active Status International From To To Conjogical Markonstaverd Yein No M Above Balere Cological Markonstaverd Yein No M Above Balere Casing Type Single craing Mile Biametere 12 in. To 16 in SANDY CLAY 11 TAN SANDY CLAY WITH 11 14 GRAY SANDY CLAY WITH 12 12 in. Address Set 12 in. Address Make JoHNSON SANDY CLAY WITH 12 12 in. Address Make JoHNSON 12 in. Address Make JoHNSON SANDY CLAY WITH 12 12 in. Address Make JOHNSON 12 in. John John John John John John John John	LITCHFIELD 5	119	31	W 2	CABCCA	1	165 ft .	1	61.5 ft.	10/30/2	008	
Addres: Use community supply(municipal) Status: Activ Contact: 126 MARSHALL AV NE LITCHFELD MN 53355 Will Hyderforcheret? Yee No (X) Freem To Straingraphy Information Geological Marshall From To (ft) Color Hardmass Coological Marshall From To (ft) Color Hardmass DP SOL 0 1 BLACK SANDY CLAY 1 2 BROWN SANDY CLAY WITH 2 7 YELLOW SANDY CLAY WITH 14 40 GRAY SANDY CLAY WITH 14 121 GRAY SANDY CLAY WITH 121 IS GRAY South CLAY WITH SANDY CLAY WITH 121 IS GRAY SANDY CLAY WITH 123 IS GRAY SANDY CLAY WITH 123 IS GRAY SANDY CLAY WITH 123 IS GRAY SANDY CLAY 124 IS GRAY <tr< td=""><td>Elevation 11:</td><td>52 Eb</td><th>lev. Method</th><td>7.5 minute I</td><td>opographic map (+</td><td>/- 5 feet)</td><td>Drill Method</td><td>Non-specif</td><td>fied Rotary</td><td>Drill Fluid Ber</td><td>etizotte</td><td></td></tr<>	Elevation 11:	52 Eb	lev. Method	7.5 minute I	opographic map (+	/- 5 feet)	Drill Method	Non-specif	fied Rotary	Drill Fluid Ber	etizotte	
Contact 126 MARSHALL AV NE LITCHFIELD MN 53535 Well Hydreferaturet? Yes No X Pream To Stratingeryby information Geological Material From To (f) Color Hardmann Jessifier Jessifier No X Absere@How Geological Material From To (f) Color Hardmann Head Mass Jessifier No X Absere@How SANDY CLAY 1 2 BEOWN SANDY CLAY WITH 1 Jessifier Jessifier To field Jessifier Jessifier Set Jan. To Jessifier Jess	Address						Use commu	unity supply()	municipal)		Status Activ	
Weil LITCHFEELD MN 53355 Casing Type Single casing Jeint Joint Geological Material From To (ft.) Color Hardness Geological Material From To (ft.) Color Hardness SANDY CLAY 1 2 BROWN BROWN SANDY CLAY 1 2 BROWN Barder SANDY CLAY WITH 2 7 YELLOW SANDY CLAY WITH 11 TAN SANDY CLAY WITH 47 GRAY Sandy CLAY WITH 54 To ft. SANDY CLAY WITH 47 GRAY Soft SANDY CLAY 121 in 60 25 ft. 136. ft. 161.3 ft. SANDY CLAY WITH 121 GRAY Soft SANDY CLAY 121 in 60 25 ft. 136.5 161.3 ft. SANDY CLAY WITH 121 IS GRAY Soft Soft SANDY CLAY 131 135 GRAY SAND SOME PEA ROCK 135 144 GRAY MEDIUM Pumping Level (below land surface) Mosil PS012000 SANDY CLAY	Contact	126 M/	ARSHALL	AV NE LITCH	FIELD MIN 5535	5	Well Hydrofra	ctured?	Yes No	X From	То	
Drive Shee? Yet No Above Below Goological Material From To (ft.) Color Hardness Goological Material Orion School 1 BLACK Casing Biasseter Weight Hete Biasseter SANDY CLAY 1 2 BROWN SANDY CLAY WITH 1 I.6 For 1.6 SanDY CLAY WITH 1 I.6 For 1.6 SanDY CLAY WITH 1 I.4 GRAY SANDY CLAY WITH 36 GRAY GRAY SanDY CLAY WITH 47 121 GRAY SANDY CLAY WITH 47 121 GRAY SanDY CLAY WITH 54 70 ft. 1.6.1.5 ft. SANDY CLAY WITH 47 121 GRAY SanDY CLAY WITH 121 GRAY SanDY CLAY 122 BROWN SOFT SAND YCLAY 128 131 GRAY SanDY CLAY 128 I.31 GRAY SANDY CLAY 128 133 GRAY SanDY CLAY 1.2.128 Soft 2.4 In. Pumping t 900 g.p.m. SAND YCLAY 128 1.6.2 VARIED	Well	LITCH	HFIELD MN	55355			Casing Type	Single ca	sing	Joint		
Geological Material From To (ft.) Color Harthess TOP SOIL 0 1 BLACK Batavian SANDY CLAY 1 2 BROWN SANDY CLAY WITH 2 7 YELLOW SANDY CLAY WITH 11 TAN SANDY CLAY WITH 11 TAN SANDY CLAY WITH 11 IA SANDY CLAY WITH 14 20 GRAY SANDY CLAY WITH 36 GRAY SANDY CLAY WITH 121 GRAY SANDY CLAY WITH 121 GRAY SANDY CLAY WITH 121 GRAY SANDY CLAY WITH 123 ISANY SANDY CLAY 126 GRAY SANDY CLAY 128 ISARAY SAND YOLAY 128 ISARAY SAND YOLAY 128 ISARAY SAND YOLAY 131 GRAY SANDY CLAY 135 IGA CAY SANDY CLAY 136 GRAY SANDY CLAY 138 IGA PA SAND YOR PEAROCK 135	Stratigraphy In	formatio	on				Drive Shoe?	Yes 🗌	No X	Above/Below		
TOP SOLL 0 1 BLACK SANDY CLAY 1 2 BROWN SANDY CLAY 1 2 BROWN SANDY CLAY WITH 2 7 YELLOW SANDY CLAY WITH 2 7 YELLOW SANDY CLAY WITH 14 20 GRAY SANDY CLAY WITH 36 GRAY SanDY CLAY WITH 47 SANDY CLAY WITH 47 121 GRAY SanDY CLAY WITH 47 SANDY CLAY WITH 47 121 GRAY SanDY CLAY WITH 47 SANDY CLAY WITH 121 GRAY Sentic Water Level 70.4 f. SANDY CLAY WITH 123 I33 GRAY Sentic Water Level 70.4 f. Imming Level (below land starface) SAND WITH CLAY 131 I35 GRAY WEDIUM Meanues Model SPS1214 COARSE SAND 144 147 GRAY WeDIUM Meanues Model SPS1214 GRAVEL 158 162 VARED Meanues Model SpS1214 GRAVEL 155 GRAY <td>Geological Mate</td> <td>rial</td> <th>F</th> <td>rom: To (ft.)</td> <td>Color H</td> <td>lardness</td> <td>Casing Diame</td> <td>er We</td> <td>ight</td> <td></td> <td>Hole Diameter</td> <td></td>	Geological Mate	rial	F	rom: To (ft.)	Color H	lardness	Casing Diame	er We	ight		Hole Diameter	
SANDY CLAY 1 2 BROWN SANDY CLAY WITH 2 7 YELLOW SANDY CLAY WITH 11 14 GRAY SANDY CLAY WITH 11 14 GRAY SANDY CLAY WITH 14 20 GRAY SANDY CLAY WITH 16 47 GRAY SANDY CLAY WITH 36 47 GRAY SANDY CLAY WITH 12 GRAY State Tiste State SANDY CLAY WITH 12 GRAY State Tiste State SANDY CLAY WITH 12 123 GRAY SANDY CLAY WITH 123 125 GRAY SAND YCLAY WITH 123 135 GRAY SAND YCLAY 131 135 GRAY SAND SORF PLAROCK 135 144 GRAY SAND YCLAY 162 165 GRAY SANDY CLAY 162 165 GRAY SANDY CLAY 162 165 GRAY SAND YCLAY 162 165 GRAY SANDY CLAY 162 165 GRAY	TOPSOIL		0	1	BLACK		12 in. To	136. ft . 0	lbs./ft.		18 in. To 165	ft.
SANDY CLAY WITH 2 7 YELLOW SANDY CLAY 7 11 TAN SANDY CLAY 20 36 GRAY SANDY CLAY 20 36 GRAY SANDY CLAY 20 36 GRAY SANDY CLAY 20 36 GRAY SANDY CLAY 21 123 BROWN SOFT SANDY CLAY 21 123 GRAY COARSE SAND AND 125 128 VARIED SANDY CLAY 128 131 GRAY SAND WITH CLAY 131 135 GRAY SAND WITH CLAY 131 135 GRAY SAND WITH CLAY 131 135 GRAY COARSE SAND 144 147 GRAY COARSE SAND 145 LAT CRAY COARSE SAND 144 147 GRAY COARSE SAND 144 147 GRAY COARSE SAND 144 147 GRAY COARSE SAND 144 147 GRAY COARSE SAND 1450 LAT COARSE SAND 1450 LAT COARSE SAND CARSE SAND 1450 LAT COARSE SA	SANDY CLAY		1	2	BROWN							
SANDY CLAY 7 11 TAN SANDY CLAY WITH 11 14 GRAY SANDY CLAY WITH 20 GRAY SANDY CLAY WITH 36 47 GRAY SANDY CLAY WITH 36 47 GRAY SANDY CLAY WITH 47 121 GRAY SANDY CLAY WITH 47 121 GRAY SANDY CLAY WITH 121 ISB BOWN SOFT SANDY CLAY WITH 123 ISC GRAY SOFT SANDY CLAY 121 ISB BOWN SOFT SANDY CLAY WITH 123 ISG GRAY SANDY CLAY 125 ISA GRAY SANDY CLAY 125 ISG GRAY SAND SOET GRAY Settic Water Level SANDY CLAY 131 ISG GRAY SAND SOET GRAY Settic Water Level SAND SOET FERSON 135 I44 FINE SAND 144 I47 GRAYE ISG RAY SANDY CLAY 162 I65 GRAY ISG IGRAY SANDY CLAY 162 I65 GRAY ISG IGRAY SANDY CLAY I62 I65 GRAYE ISG IGRAY SANDY CLAY ISG IGRAY <td>SANDY CLAY</td> <td>WITH</td> <th>2</th> <td>7</td> <td>YELLOW</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SANDY CLAY	WITH	2	7	YELLOW							
SANDY CLAY WITH 11 14 14 20 GRAY SANDY CLAY 20 36 GRAY SANDY CLAY WITH 36 47 GRAY SANDY CLAY WITH 47 121 GRAY SOFT SANDY CLAY WITH 17 121 GRAY SOFT SANDY CLAY WITH 121 123 BROWN SOFT SANDY CLAY WITH 123 125 GRAY SOFT SANDY CLAY 121 123 BROWN SOFT SANDY CLAY 121 GRAY Soft SANDY CLAY 121 SANDY CLAY 121 GRAY Soft SANDY CLAY 121 SANDY CLAY 128 IAG GRAY Soft SANDY CLAY 128 SAND SORT SANDAND 125 VARIED Santic Water Level 70.4 ft. SAND SORT SAND 144 147 GRAY Soft SAND 90 FINER SAND 144 147 GRAY Soft SANDY CLAY 162 165 SANDY CLAY 162 165 GRAY Soft SANDY CLAY 162 165 SANDY CLAY 162 165 GRAY Soft SANDY 10 10 SANDY CLAY 162 165 GRAY Soft SANDY 10 10 <td>SANDY CLAY</td> <td></td> <th>7</th> <td></td> <td>TAN</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SANDY CLAY		7		TAN							
SANDY CLAY 14 20 36 GRAY SANDY CLAY WITH 36 47 GRAY SANDY CLAY WITH 36 47 GRAY SANDY CLAY WITH 47 GRAY 12 in 60 25 ft 136.5 ft SANDY CLAY WITH 121 GRAY 12 in 60 25 ft 136.5 ft 161.5 ft SANDY CLAY WITH 123 125 GRAY Static Water Level 70.4 ft in all surface Measure 08/12/2008 SANDY CLAY 128 131 GRAY Static Water Level 70.4 ft in all surface Measure 08/12/2008 SAND WITH CLAY 131 135 GRAY MEDUM WEILead Completion Pumping t 900 gp.m. SAND YCLAY 162 165 GRAY MEDUM WEILead Completion In in subrow grade Model 9PS1214 COARSE SAND- 144 147 GRAY MEDUM Measure Model 9PS1214 In subrow grade Model 9PS1214 In subrow grade In in tothow specified	SANDY CLAY	CANTO 6	. 1	1 14	GRAY		Open Hole	From	ft.	To	ft.	
SANDY CLAY WITH 36 47 GRAY SANDY CLAY WITH 47 121 GRAY SANDY CLAY WITH 121 123 BROWN SOFT SANDY CLAY WITH 123 125 GRAY SANDY CLAY WITH 123 125 GRAY SANDY CLAY WITH 123 125 GRAY SANDY CLAY 125 128 VARIED SANDY CLAY 128 131 GRAY SAND SORT 135 144 GRAY SAND SORT 135 144 GRAY SANDY CLAY 162 165 GRAY GRAVEL 138 162 VARIED GRAVEL 162 165 GRAY SANDY CLAY 162 165 GRAY Well disinfacture MONITOR Modal 9PS1214 Casing Protection 121 in. above grade Artyrake (Environmental Well small and Borings ONLY) Growing Information Q Grade Interviron Well disinfacture upon completion? Mol intralled	SANDI CLAI-	SALND &	a 1 2	+ 20 0 36	CRAV		Screen?	1	Type stainless	Make	JOHNSON	
SANDY CLAY WITH 47 121 GRAY SOFT SANDY CLAY 121 123 BROWN SOFT SANDY CLAY WITH 123 125 GRAY SANDY CLAY 121 123 BROWN SOFT SANDY CLAY 121 123 BROWN SOFT SANDY CLAY 123 126 GRAY SANDY CLAY 128 131 GRAY SANDY CLAY 128 131 GRAY SAND SOME PEA ROCK 135 144 GRAY SANDY CLAY 138 GRAY MEDIUM COARSE SAND- 147 158 VARIED GRAVEL 158 162 VARIED GRAVEL 158 162 VARIED SANDY CLAY 162 165 GRAY Matwina	SANDY CLAY	WITH	1	6 47	GRAV		Diameter	Slot/Gauge	Length	Set		
SOFT SANDY CLAY 121 123 BROWN SOFT SANDY CLAY 121 123 SROWN SOFT SANDY CLAY 121 123 GRAY COARSE SAND AND 125 128 VARIED SANDY CLAY 131 135 GRAY SAND SOME PEAROCK 135 144 GRAY MEDIUM FINER SAND 144 147 GRAY COARSE SAND- 147 158 VARIED GRAVEL 158 162 VARIED GRAVY 162 165 GRAY NEIDEN Argrade (Environmental Wells and Boring: ONLY) Growting Information (L fore to Decide Ty Well disinfacted upon completion (L for the self) Nearest Known Source of Contamination (L for the self) Nearest Known Source for the MDH for this well Physical Advance Nearest Known Source For the self) Nearest Known Source For the s	SANDY CLAY	WITH	4	7 121	GRAY		12 in.	60	25 ft.	136.5 ft.	161.5 ft.	
SANDY CLAY WITH 123 125 GRAY COARSE SAND AND 125 128 VARIED SANDY CLAY 128 131 GRAY SAND SOME PEA ROCK 135 144 GRAY MEDIUM FINER SAND 144 147 GRAY COARSE SAND 144 147 GRAY SANDY CLAY 162 165 GRAY SANDY CLAY 162	SOFT SANDY O	LAY	i	21 123	BROWN S	OFT						
COARSE SAND AND 125 128 VARIED SANDY CLAY 128 131 GRAY SAND WITH CLAY 131 135 GRAY SAND SOM FEAR NOCK 135 144 GRAY FINER SAND 144 147 GRAY GRAYEL 158 162 VARIED GRAVEL 158 162 VARIED SANDY CLAY 162 165 GRAY MEDIUM From To 162 165 GRAYEL 158 162 VARIED SANDY CLAY 162 165 GRAY Media Gravincommental Wells and Borings OMLY) Model 9PS1214 Casing Protoction 121 in above grade At-grade (Environmental Wells and Borings OMLY) Ometal To the Installed SANDY CLAY 162 165 GRAY Nearest Known Source of Contamination 0 fost Well disinformation 0 fost Direction Nearest Known Source of Contamination 0 fost No Nearest Known Source of Contamination 0 fost No	SANDY CLAY	WITH	1	23 125	GRAY		70.4 O	Level	-	Maarrow	08/12/2008	
SANDY CLAY 128 131 GRAY SAND WITH CLAY 131 135 GRAY SAND SOME PEAROCK 135 144 GRAY SAND SOME PEAROCK 135 144 GRAY FINER SAND 144 147 GRAY COARSE SAND- 147 158 VARIED GRAVEL 158 162 VARIED SANDY CLAY 162 165 GRAY SANDY CLAY 162 165 GRAY Method At grade (Environmental Wells and Borings ONLY) GRAVEL 158 162 SANDY CLAY 162 165 GRAY Method Amount From To nest carnent 4.5 Cubic yards 10 ft 126.5 Material Amount From To nest carnent 4.5 Cubic yards Valid disinfected upon completion? X Yes Wall disinfected upon completion? Yes No Pamp Not Installed 10/20/2008 Massfauer's name GRINDFOS Model Number 2005400- HP Length of drop pipe 120 ft Capacity 500 Does property have any not in use and not seal	COARSE SAND	AND	1	25 128	VARIED		70.4 LL				00122000	
SAND WITH CLAY 131 135 GRAY SAND SOME PEAROCK 135 144 GRAY MEDIUM FINER SAND 144 147 GRAY MEDIUM COARSE SAND- 147 158 VARIED Mediaed Completion SANDY CLAY 162 165 GRAY Pites adapter manifecturer MONITOR Model 9PS1214 SANDY CLAY 162 165 GRAY Growing Information Well Growted? X yes No Not Specified Material Amount From To neat command Media infortation Q foot No Not Specified Material Amount From To neat commant 4.3 Cubic yards 10 ft 126.5 ft Vell disinfecturer's name GRUNDFOS Monafecturer's name GRUNDFOS Monafecturer's name GRUNDFOS Model pop pip 120 ft Capacity 200 g.p. Typ Submarable Abandoard Does property have any not in use and not scaled well(s)? YesN N Variance Wast at incertance granted from the MDH for this well? YesN N <	SANDY CLAY		1	28 131	GRAY		Pumping Lev	el (below la	ud surface)			
SAND SOME PEA ROCK 133 144 GRAY MEDIUM FINER SAND 144 147 GRAY COARSE SAND- 147 158 VARIED GRAVEL 158 162 VARIED SANDY CLAY 162 165 GRAY Material Argrade (Environmental Wells and Borings ONLY) SANDY CLAY 162 165 GRAY 162 165 GRAY Material Argonal (Environmental Wells and Borings ONLY) SANDY CLAY 162 165 GRAY Well disinfacturer Model PS1214 Casing Protection 12 in. above grade Material Argonal (Environmental Wells and Borings ONLY) Social (Environmental Wells and Borings ONLY) SANDY CLAY 162 165 GRAY Well disinfacturer Material Argonal (Environmental Wells and Borings ONLY) Sandy CLAY 162 165 No Material Argonal (Environmental Wells and Borings ONLY) No Material Argonal (Environmental Wells and Borings ONLY) No Medial Mather Material Argonal (Environmen	SAND WITH CI	LAY	1	31 135	GRAY		88.5 ft.	24 hrs.	Pumping at	900 g	g.p.m.	
FINER SAND 144 147 GRAY COARSE SAND- 147 158 VARIED GRAVEL 158 162 VARIED SANDY CLAY 162 165 GRAY Material Amount From To neat cament 4.3 Cubic yards 10 ft. 126.5 ft Nearest Known Source of Contamination 0 foet Direction Typ No Pump Not Installed Date Installed 10/20/2008 Manufacture's name GRUNDFOS Model Number S005400_ HP 40 Volt 450 Length of drop pipe 120 ft Capacity 500 gt N No Well disinfecture's name GRUNDFOS Model Number S005400_ HP 40 Volt 450 Length of drop pipe 120 ft Capacity 500 gt N No No Variacc Was a variance granted from the MDH for this well? Yes No Miccellanceous Apuifur Quat. buried Length of drop pipe 120 ft Apuifur Quat. buried Length of drop pipe 120	SAND SOME P	EA ROCI	ж 1	35 144	GRAY N	MEDIUM	Wellhead Co	mpletion				
COARSE SAND- 147 158 VARIED GRAVEL 158 162 VARIED SANDY CLAY 162 165 GRAY GRAVEL 162 165 GRAY GRAVEL 162 165 GRAY Growing Information Well Grouted? X'es No Material Amount From To neat 4.5 Cubic yards 10 ft. 126.5 Nearest Known Source of Contamination 2 foet Direction Typ Well disinfacted upon completion? X Yes No No Pump Not Installed Date Installed 10/30/20208 Manufacturer's name GRUNDFOS Model Number 2005400- HP 40 Volt 450 Length of drop pipe 120 ft Capacity 500 g.P. Typ Submarrable Abandoard Does property have any not in use and not scaled well(s)? Yes N Variance Was a variance granted from the MDH for this well? Yes N Mitcellaneous First Bodrock Aquif	FINER SAND		1	44 147	GRAY		Pidess adapter	manufacturer	MONITOR		dodel 9PS1214	
GRAVEL 158 162 VARIED SANDY CLAY 162 165 GRAY Growing Information Well Growth? Yes No Material Amount From To neat camout 4.5 Cubic yards 10 ft 126.5 Nearest Known Source of Contamination 0 field No Not Specified Well disinfactured upon completion? X Yes No No Well disinfacturer's name GRUNDFOS Manufacturer's name GRUNDFOS Model Number S005400- HP 40 Volt 460 Length of drop pipe 120 ft Capacity 200 g.p. Typ Submarsable Abandoned Does property have say not in use and not scaled well(s)? Yes N Variance Wis a variance granted from the MDH for this well? Yes N Miscellaneous First Bodrock Aquifar Quat. buried Last Strat Cay+sand-gray Depth to Bedrock ft	COARSE SAND)-	1	47 158	VARIED		Casing I	rotection	🗌 12 in	above grade		
SANDY CLAY 162 163 GRAY Crouning information Well Grouted? X Yes No Not Specified Material Amount From To neat cament 4.5 Cubic yards 10 ft. 126.5 ft Nearest Known Source of Contamination Q feet Direction Ty Well disinfected upon completion? X Yes No Pump Not Installed Date Installed 10/20/2008 Maanfacturer's name GRUNDFOS Model Number <u>\$005400</u> . HP 40 Volt 460 Length of drop pipe 120 ft. Capacity <u>\$00 g.p.</u> Typ <u>Submersible</u> Abandoned Does property have any not in use and not sealed well(s)? Yes X N Variance Was a variance granted from the MDH for this well? Yes X N Mitscellaneous First Bedrock Aquifor Quat. buried Last Strest Clay+tand-gray Depth to Bedrock ft Least Strest Clay+tand-gray Depth to Bedrock ft	GRAVEL		1	58 162	VARIED		At-grade	(Environme	ntal Wells and Bor	ings ONLY)		
Material Amount From 10 neat camont 4.5 Cubic yards 10 ft. 126.5 ft Nearest Known Source of Contamination Q feet Direction Tyj Well disinfacted upon completion? X Yes No Pump Not Installed Date Installed 10/20/2008 Massificture's name GRUNDFOS Model Number \$2005400_HP HP 40 Volt 460 Length of drop pipe 120 ft Capacity \$200 g.p. Typ Submersible Abandoned Does property have any not in use and not sealed well(s)? Yes X N Variance Was a variance granted from the MDH for this well? Yes X N Miscellaneous First Bodrock Aquifor Quat. buried Last Strat Clay+tward-gray Depth to Bodrock ft	SANDY CLAY		1	62 165	GRAY		Grouting Int	ormation	Well Grouted?	X 105	Not Specifie	Ja .
Nearest Known Source of Contamination Q feet Direction Typ Well disinfacted upon completion? X Yes No Pump Not Installed Date Installed 10/30/2008 Massificturer's name GRUNDFOS Model Number 2005400. HP 40 Volt 450 Length of drop pipe 120 ft< Capacity							Material		Amo	Cubicount	From To	•
Nearest Known Source of Contamination 0 foot Typ Q foot Direction Typ Well disinfacted upon completion? X Yes No Pump Not Installed Date Installed 10/30/2008 Manufacturer's name GRUNDFOS Model Number \$2005400_ HP 40 Volt 450 Length of mop pipe 120 ft Capacity \$200 g.p. Typ Submersible Abandoned Does properly lave any not in use and not sealed well(s)? Yes X N Variance Was a variance granted from the MDH for this well? Yes X N Miscellaneous First Bodrock Aquifur Quat. buried Last Strast clary+sand-gray Dept ho Bedrock ft							near cement		+.)	Cubic yards	10 H. 126.5 1	п.
Nearest Known Source of Contamination 0 foot Direction Typ Well disinfacted upon completion? IX Yes No Pump Not Installed Date Installed 10/30/2008 Massificturer's name GRUNDFOS Model Number \$2005400_ HP 40 Volt 450 Length of drop pipe 120 ft Capacity \$200 g.p. Typ Submersible Abandoned Does property have any not in use and not sealed well(s)? I Yes X N Variance Was a variance granted from the MDH for this well? Yes X N Miscellaneous First Bodrock Aquifur Quat. buried Last Strat clary+sand-gray Depth to Bedrock ft Lexet how Minaceath Demathment of Health Minaceath Demathment of Health Strat												
Q feet Direction Typ Well disinfacted upon completion? X Yes No Pump Not Installed Date Installed 10/30/2008 Massificturer's name GRUNDFOS Model Number 2005400 HP 40 Volt 450 Length of drop pipe 120 ft Capacity 200 g.p. Typ Submersible Abandoned Does property have any not in use and not sealed well(s)? Yes X N Variance Was a variance granted from the MDH for this well? Yes X N Miscellaneous First Bodrock Aquifur Quat. buried Last Strat clary+sand-gray Dept to Bedrock ft Located by Minaceth Department of Health Minaceth Department of Health Partment Health A							Nearest Kno	wa Source of	Contamination			
Well disinfacted upon completion? X Yes No Pump Not Installed Date Installed 10/30/2008 Massificturer's name GRUNDFOS Model Number S005400. HP 40 Volt 450 Length of drop pipe 120 ft Capacity 200 g.p. Typ Submarsable Abandoned Does property have any not in use and not sealed well(s)? Typ Yes X N Variance Was a variance granted from the MDH for this well? Yes X N Miscellaneous First Bodrock Aquifur Quat. buried Last Strat clay+sand-gray Dept ho Bedrock ft							Q fø	et	Direction		Ту	ype
Pump Not Installed Date Installed 10/30/2008 Massificturer's name GRUNDFOS Model Number S005400_ HP 40 Volt 450 Length of drop pipe 120 ft Capacity 200 g.p. Typ Submersible Abandoned Does property have any not in use and not sealed well(s)? Tyos X N Variance Was a variance granted from the MDH for this well? Yes X N Miscellaneous First Bodrock Aquifur Quat. buried Last Strat clay+trand-gray Dept to Bedrock ft							Well disinfec	ted upon cor	upletion?	X Yes	No	
Manufacturer's name GRUNDFOS Model Number <u>\$2005400</u> HP 40 Volt <u>450</u> Length of drop pipe 120 ft Capacity <u>\$200 g.p.</u> Typ <u>Submarsible</u> Abandoned Does property have any not in use and not sealed well(s)? Tyos X N Variance Was a variance granted from the MDH for this well? Yes X N Mitscellaneous First Bodrock Aquifur Quat. buried Last Strat clary+sand-gray Dept to Bedrock ft Lossed by Mitscellaneous Mitscellaneous First Bedrock Aquifur Quat. buried							Pump	Not	Installed Da	ate Installed	10/30/2008	
Model Number <u>S005400</u> ftP <u>40</u> Voit <u>450</u> Length of drop pipe <u>120</u> ft Capacity <u>500</u> <u>8.9</u> Typ <u>Submersible</u> Abandoned Does property have any not in use and not sealed well(s)? Types <u>Yes</u> <u>X</u> N Variance Was a variance granted from the MDH for this well? Yes <u>X</u> N Mitscellaneous First Bodsock Aquifur Quat. buried Last Strat clay+tand-gray Depth to Bedrock ft Lost Strat Clay-tand-gray Depth to Bedrock ft							Manufacturer	s name	GRUNDFOS			
Length or morp pipe 120 If Capacity 2000 8.9. 17.9 Submarizable Abandoned Does properly have any not in use and not sealed well(s)? Yes X N Variance Was a variance granted from the MDH for this well? Yes X N Mitscellaneous First Bodsock Aquifur Quat. buried Last Strat clay+sand-gray Depth to Bedrock ft Least Strat Minaceth Department of Health Minaceth Department of Health Minaceth Department of Health							Model Numbe	* <u>800540</u>	<u>0-</u>	<u>10</u> V	olt <u>400</u>	
Does property have any not in use and not sealed well(s)? Yos N Variance Was a variance granted from the MDH for this well? Yos N Mitscellaneous First Bodrock Aquifar Quat. buried Last Strat clay+sand-gray Depth to Bedrock ft							Abandoned	pipe 12	I capacity	200. 51-	Typ Submersion	
Variance Was a variance granted from the MDH for this well? Yes Miscellaneous First Bedrock Aquifier Quat. buried Last Strat Lost Strat Minneoth Department of Health							Does property	have any not it	n use and not scaled y	vell(s)?	Yes X 3	No
Was a variance granted from the MDH for this well? Yes X N Miscellaneous First Bodrock Aquifer Quat. buried Last Strat clay+sand-gray Depth to Bedrock ft Located by Minneouth Department of Hashin							Variance					
Miscellaneous First Bolrock Aquifar Quat. buried Last Strat clay+sand-gray Depth to Bedrock ft Lost et du Minnesota Department of Health							Was a variance	e granted from	the MDH for this we	87	Yes X 1	No
First Bedrock Aquifar Quat. buried Last Strat clay+sand-gray Depth to Bedrock ft Located by Minneagth Department of Health							Miscellaneou	5				
Last Strat clay+sand-gray Depth to Bedrock ft							First Bedrock			Aquifer	Quat. buried	
Located by Minnesota Department of Health							Last Strat	clay+sand	l-gray	Depth to Be	edrock fi	Ł
Remarks	Remarks						Located by	Minn	esota Department	of Health		
Locas Melloot GPS SALUE (artistica)							System	UTM_NAD	SA Off (averaged) 183 Zone 15 Meters	X 379	100 Y 5000084	
Unique Number Verification Input Date 11/13/200							Unique Numb	er Verification		1	nput Date 11/13/200	08
Angled Drill Hole							Angled Drill	Hole				
-							-					
Wall Contractor							Well Control	tor				
I.TP Fatamicas Inc. 2157 THEISEN R							LTP Entern	rises Inc.		2157	THEISEN R	
Licensee Business Lic. or Reg. No. Name of Driller							Licensee Br	isiness	Lic. (or Reg. No.	Name of Driller	-
764258	10					764	258				Printed on 06/13	2/2017
Minnesota Well Index Keport	Minnesota	Well I	index Ke	port							HE-012	205-15

Figure 50. Well and Boring Report - Litchfield-MW (607417)

Minnesota Unique Well Number	County	Mooker	MIN WFL	NESOTA DEP.	ARTMENT	F HEALTH	DRT	Entry Date	04/22/2003
607417	Quad	Litchfield	WEL	E AND I	buter Chem	3 INEF	JKI	Update Date	08/18/2014
	Quad ID	125A	16	unnesota sta	uunes Chapi	WF 1031		Received Ds	te
Well Name Townsh	up Ran	ge Dir Sect	ion Subsect	on	Well Depth	1	Depth Completed	Date	Well Completed
LITCHFIELD MW 119	31	W 2	CDCAD	в	130 ft .	1	27 ft.	12/18/	1997
Elevation 1123.2 Elev.	Method	Surveyed			Drill Method	Auger (nor	-specified)	Drill Fluid Be	atonite
Address					Use monito	r well			Status Active
					Well Hydrofes	chured?	Ver 🗆 Ne	V	-
					Carine Tree	Single ce	ies No	A From	To
Stratigraphy Information					Drive Shoe?	Ves 🗌	No X	Above Below	
Geological Material	Fro	m To(ft.)	Color	Hardness	Casing Biang			2100YO DOUD	Hale Dismater
SANDY CLAY	0	22	BROWN		2 in To	122 0	Ibs/ft		65 in To 130 ft
CLAY	22	29	GRAY						
SAND & GRAVEL	29	37	BROWN						
CLAY	37	40	GRAY						
SAND	40	45	BROWN						
ROCK	45	47	BLK/WHT		Open Hole	From	£.	To	£
CLAY	47	72	GRAY		Screen?		Type stamless	S-A	JOHNSON
SAND & GRAVEL	72	76	BROWN		2 in	10	10 0	122 0	127 🖶
CLAY	76	107	GRAY				10 H.	II.	447 M.
SAND & GRAVEL	10	7 130	BROWN		Static Water	Land			
					40 ft.	land surfa		Measure	12/18/1997
					Pumping Lev	vel (below lar	ud surface)		
					Wellhead Co	mpletion			
					Pidess adapter	manufacturer	_		Model
					X Casing I	rotection	X 12 in	above grade	
					At-grad	e (Environme	ntal Wells and Bor	ings ONLY)	
					Grouting Int	ormation	Well Grouted?	X Yes	No Not Specified
					Material		Amo	ount	From To
					nign souds o	en jointee	,	SBCKS	3 H.120 H.
					Nearest Kno	Source of	Contamination		
					fo	of	Direction		Туте
					Well disinfe	en cted upon cor	upletion?	Yes	N₀
					Pump	K Not	Installed Da	ate Installed	
					Manufacturer	s name			
					Model Numbe	ar .	HP	1	olt
					Length of drop	p pipe	ft Capacity	g-p-	Тур
					Ab and oned Does property	have any not it	n use and not sealed v	vell(s)?	Yes X No
					Variance				
					Was a variance	e granicu trom	the Marrison for this we		
					First Badmath			Amile	Out hurid
					Lest Street	and the		Depth to I	v Quar. oursea
					Located by	Minn	esota Geological S	arvey .	
Remarks					Locate Metho	1 Digiti	zation (Screen) - M	dap (1:24,000)	
WELL OBS #1					System	UTM - NAD	83, Zone 15, Meters	X 37	9227 Y 4999595
					Unique Numb	er Verification	Info/GPS :	from data	Input Date 10/22/1998
					Angled Drill	Hole			
					Well Contra	ctor			
					Traut M.J.	Well Co.		71536	ROBBIE & DON
					Licensee B	usiness	Lic.	or Reg. No.	Name of Driller
				607	417				Printed on 06/10/201
Minnesota Well Inc	iex Kep	ort							HE-01205-1

Minnesota Unique Well Number	County Meeker	MINNESOTA DE	PARTMENT	OF HEALTH		Entry Date	08/14/2015
773062	Ouad Litchfield	WELL AND	BORIN	G REPO	ORT	Undate Date	10/20/2015
115002	Quad ID 125A	Minnesota S	atutes Chap	ter 1031		Received Da	te
Terret	Banan Die Carati	- Caburdia			and Completed	Data	Completed
LFOI-B 119	31 W 11	ABACBB	25.27 ft.	2	5.27 ft.	06/12/	2015
Elevation 1114.5 Elev.	Method LiDAR 1m Di	EM (MNDNR)	Drill Method	Auger (non	-specified)	Drill Fluid	
Address			Use monit	or well			Status Active
Contact 126 MAR	SHALL AV N LITCHFIE	LD MN 55355	Well Hydrofr	ctured?	Yes 🗌 No	X From	То
Well 982 MILL	ER AV N LITCHFIELD 1	VIN 55355	Casing Type	Single ca	sing	Joint	Glued
Statigraphy Info2060360	ODALE DR MOUNDS VI	EW MN 55112	Drive Shoe?	Yes	No X	Above/Below	
Geological Material	From To (ft.)	Color Hardness	Casing Diam	tter Wei	ght		Hole Diameter
SAND, WELL SORTED	0 12	GRAY SOFT	1.2 in To	22.4 ft. 0.7	74 Ibs./ft.		8.2 in. To 25.2 ft.
SAND WELLSORTED	12 14	GRAY SOFT					
SAND, WELL SORIED,	14 19	GRAY SOFT					
SAND, MED. TO	19 25	GAAT SOFT					
			Open Hole	From	£.	То	£.
			Screen?	K .	Type slotted p	pipe Make	ENVIRONMENTAL
			1.2 in.	Slot/Gauze 10	Langth 2.7 ft.	Set 22.4 ft.	25 ft.
			Static Water	Land			
			11 ft.	land surfac		Measure	08/17/2015
			Pumping Le	vel (below lan	d surface)		
			£.	3.7 hrs.	Pumping at	0.21	g.p.m.
			Wellhead C	ompletion			
			Pidess adapte	r manufacturer		1	Model
			At-grad	Protection le (Environmen	ntal Wells and Bo	i above grade rings ONLY)	
			Grouting In	formation	Well Grouted?	X Yes 1	No Not Specified
			Material		Amo	ount	From To
			bentonite		1.67	Sacks	4.5 ft. 19.2 ft.
			concrete		2	Sacks	ft. 4.5 ft.
			Nearest Kno	own Source of	Contamination		
			f	vet	Direction		Туре
			Well disinfs	cted upon con	upletion?	Yes	X No
			Pump	Not 1	installed D	ate Installed	
			Manufacture	's name	100		
			Model Numb	er m nim	ff Conscitu		Tan
			Abandoned	դ իդե	a capacity	6 r -	-12
			Does propert	y have any not in	use and not scaled	well(s)?	Yes X No
			Was a varian	ce granted from	the MDH for this we	ar?	Yes X No
			Miscellaneo	85			
			First Bedrock			Aquifer	Quat. Water
			Located by	Sand+silt-	guey esota Geological S	Survey	
Remarks			Locate Metho	d Digiti	zation (Screen) - 1	Map (1:24,000)	
SEE DRILLERS LOG FOR DE	TAILED INFORMATION.		System	UTM - NAD	83, Zone 15, Meters	X 379	655 Y 4999332
			Unique Numi	er Verification	Informatio	on from	Input Date 08/14/2015
			Angled Dril	Hole			
			Well Contro	ctor			
			US Goolog	tical Survey		1548	HUCKABY, J.
			Licensee B	lusiness	Lic.	or Rog. No.	Name of Driller
		77	3062				
Minnesota Well Ind	lex Report						Printed on 06/19/2017 HE-01205-15

Figure 51. Well and Boring Report - USGS 1-B (773062)

Figure 52. Well and Boring Report - USGS 1-C (773060)

Minnesota Unique Well Number MinNESOTA Di					NESOTA DEP	DEPARTMENT OF HEALTH Entry Date 08/14/2015						
	20.00		Out I	it-bfold	WELL AND		BORIN	G REPO	DRT	Eastly Date	08/14/201	
	3000		Quad 1	15.4	1	Ainnesota Sta	itutes Chapt	er 1031		Update Date 10/20/2015		
		_	Quad ID 1	DA.						Received Date		
Well Name	To	wash	ip Range	Dir Sect	ion Subsect	bon	Well Depth	1	Depth Completed	Date W	ell Completed	
LFO1-C	119	9	31	W 11	ABACE	BB	53.1 ft.	5	3.1 ft.	06/12/20	015	
Elevation	1114.8	Elev.	Method	LiDAR 1m I	EM (MNDNR)		Drill Method	Auger (nor	i-specified)	Drill Fluid		
Address							Use monito	r well			Status	Active
C	106	MAR		NT PROPERTY								
Contact	120	MININ	SHALL AV	NLITCHPL	ADJ SERVER		Well Hydrofra	ctured?	Yes No	X From	To	
Well	982	мш.	EK AV N L	ITCHFIELD	MIN 22222		Casing Type	Single ca	sing Tr Tel	Joint	Glued	
Statigraph	y Infoitin	HMID	ODALE DR	MOUNDS V	/IEW MN 551 Color	12	Drive Shoe?	Yes	No X	Above/Below		
Geological P	Material		From	10(11)	CRAV	FORT	Casing Diame	ter We	ight		Hole Diameter	
CAND WEI	LL SORIE		12	14	CRAV	SOFT	1.2 in To	50.2 ft. 0.	74 Ibs/ft.		8.2 in. To	53 ff.
SAND WEL	L SORI		12	17	GRAY	SOFT						
SAND, WEI		ш,	14	19	GLAI	SOFI						
SAND, MEL	0.10		19	22	GRAY	SOFT						
SAND, MEL	DIUM WE	LL.	22	40	GRAI	SOFT	Open Hole	From	÷.	То	Ĥ.	
SILTACLA	AT WITH		40	33	GRAI	MEDIUM	Screen? 5	1	Type slotted p	ipo Make l	ENVIRONMEN	ITAL
							Diameter	Slot/Gauze	Length	Set		
							1.2 in.	10	2.7 ft.	50.2 ft.	52.8 ft.	
							Static Water	Level				
							12.5 ft.	land surfa	C0	Measure	08/17/2015	
							Pumping Lev	el (below la	ad surface)			
							ft.	1.9 hrs.	Pumping at	0.21 g	p.m.	
							Wellhead Co	mpletion				
							Pidess adapter	manufacturer		. M	fodel	
							X Casing I	Protection (Environme	ntal Wells and Bor	ings ONLYO		
							Granting Inf	ormation	Well Grouted?		o 🗆 Not Sr	ecified
							Maturial		weir Groueur		- 1	
							hantanita		Amo 3.5	Sache	770m 10	<u> </u>
							concrete		2.5	Sacks	£.3.5	£
							Nearest Kno	wn Source o	Dimetion			T
							I9 Woll disinfo	et ctad unon con	mletion?	Ves	No.	Type
									apresson.		× 100	
							rump	K Not	installed Di	te installed		
							Manuacturer	s manic	HP	Ve		
							Length of day	a olor	+ Consulty		Tum	
							Abandonad	, lube	a capacity	8 2 -	-//	
							Does property	have any not i	n use and pot scaled a	vell(s)?	Ves.	X No
							Variance	and any and a				
							Was a variance	e granted from	the MDH for this we	117	Yes	X No
							Miscellaneou	15				
							First Bedrock			Aquifer	Quat. buried	
							Last Strat	pebbly sa	nd/silt/clay-gray	Depth to Be	drock	Ħ
Remarks							Located by	Minn	esota Geological S	iurvey		
SEE DRILLE	RS LOG PO	RDE	TAILED INFO	RMATION			System	 Digit UTM - MAT 	zation (Screen) - 3	aap (1:24,000) V 2004	C V 400	0224
							Unique Numb	er Verification	Toformatic		100 1 1999 1001 Date (72/	14/2015
							Angled Drill	Hole	11101103010		har our of	142017
							- angles bran	11000				
							Well Contra	ctor				
							US Goolog	ical Survey		1548	HUCKAE	Y, J.
							Lacensee B	usmess	Lác.	or Keg. No.	Name of Dr	uler
—						773	060					
Minneso	ota Well	l Ind	lex Repo	rt		113	000				Printed o	a 06/19/2017
											1	HE-01205-15

Figure 53. Well and Boring Report - USGS 1-D (773059)

Minnesota Unique Well Number	ESOTA DEP	ARTMENT	F HEALTH	I						
		Selected	hfield WELL AND			G REP	ORT	Entry Date	08/14/20	15
773059	Quad L	atchmeld.	Mi	nnesota Sta	tutes Chap	ter 1031		Update Date	10/20/20	15
P	Quad ID 1	20A						Received Da	te	
Well Name Townshi	p Range	Dir Sect	ion Subsection	8	Well Depth	1	Depth Completed	Date	Well Completed	
LF01-D 119	31	W 11	ABACBB		75.5 ft .	7	75.27 ft .	06/11/	2015	
Elevation 1114.7 Elev. 1	Method	LiDAR 1m I	EM (MNDNR)		Drill Method	Auger (no	n-specified)	Drill Fluid		
Address					Use monito	or well			Status	Active
Contact 126 MARS	SHALL AV	N LITCHFI	ELD MN 55355		Well Hydrofra	ctured?	Yes No	X From	Та	
Well 982 MILL	ERAVNL	ITCHFIELD	MN 55355		Casing Type	Single ca	sing	Joint	Glued	
Statigraphy InfoRitikhikiOC	DALE DR	MOUNDS V	TEW MN 55112		Drive Shoe?	Yes 🗌	No X	Above/Below		
Geological Material	From	To (ft.)	Color H	ardness	Casing Diame	ter We	ight		Hole Diamete	er
SAND, WELL SORTED	0	12	GRAY SO	OFT	1.2 in To	72.4 ft. 0	.74 Ibs/ft.		8.2 in To	75.5 ft.
SAND WELL SORT	12	14	GRAY SC	OFT						
SAND, MEDIUM WELL	14	19	GRAY SO	OFT						
SAND, MED. TO	19	22	GRAY SO	OFT						
SAND, MEDIUM WELL	22	45	GRAY SO	OFT	Open Hole	From	Ĥ	То	÷.	
SILT & CLAY WITH	40	/0	GRAI M	EDIUM	Screen? 5	0	Type slotted p	ipo Make	ENVIRONME	NTAL
					Diameter	Slot/Gauze	Length	Set		
					1.2 in.	10	2.7 ft.	73.4 ft.	75 ft.	
					Static Water	Level land surfa		Maarma	08/17/2015	
					20.0 2				001112013	
					Pumping Lev	vel (below la	nd surface)			
					ft.	3.6 hrs.	Pumping at	0.2	g.p.m.	
					Wellhead Co	mpletion				
					Pidess adapter	manufacturer		1	Model	
					X Casing At-orad	Protection (Empirement	■ 12 in I Wells and Bor	above grade		
					Granting Inf	ormation	Well Grouted?		No 🗆 Not S	necified
					Material		Ame		From T	b
					cuttings		5		4 £.7	0.2 ft.
					concrete		2.5		£.4	£.
					Nearest Kno	wa Source o	f Contamination			
					fe	et	Direction			Туре
					Well disinfe	cted upon co	mpletion?	Yes	X No	
					Pump	Not Not	Installed Da	te Installed		
					Manufacturer Model Murch	s name	HP		alt.	
					Length of dro	o pipe	ft Canacity		Typ	
					Abandoned		- capital	01	-76	
					Does property	have any not i	in use and not sealed v	vell(s)?	Yes	X No
					Variance					
					Was a variance	e granted from	the MDH for this we	17	Yes	X No
					Miscellaneou	15				
					First Bedrock		10 Th 1	Aquife	Quat. buried	4
					Last Strat	peoply sa	und/silf/clay-gray	Depth to E	iourock.	ц
Remarks					Locate Metho	d Digit	ization (Screen) - N	(ap (1:24.000)		
SEE DRILLERS LOG FOR DET	AILED INFO	ORMATION.			System	UTM - NAI	083, Zone 15, Meters	X 379	654 Y 49	99334
					Unique Numb	er Verification	Informatio	n from	Input Date 08	/14/2015
					Angled Drill	Hole				
					Well Contra	ctor				
					US Geolog	ical Survey		1548	HUCKA	BY, J.
					Licensee B	usiness	Lic. (or Reg. No.	Name of D	miller
					050					
Minnesota Well Ind	ex Reno	rt		773	059				Printed	on 06/19/2017
in the source of the										HE-01205-15

Figure 54. Well and Boring Report - USGS 1-E (773058)

Minseach Unique Well Number County Mooker MINNESOTA D				ESOTA DEP	DEPARTMENT OF HEALTH Entry Date 08/14/2					5
773058	Quad I	atchfield	MLL	innesota Ste	itutes Cham	or 1031	OKI	Update Date	10/20/201	5
	Quad ID 1	25A			chap.			Received Dat	•	
Well Name Towns	hip Rang	e Dir Sect	tion Subsecti	n	Well Depth		Depth Completed	Date W	ell Completed	
LF01-E 119	31	W 11	ABACB	3	95.3 ft.	9	95.28 ft.	06/10/2	015	
Elevation 1114.5 Elev	Method	LiDAR 1m I	DEM (MNDNR)		Drill Method	Auger (no	n-specified)	Drill Fluid		
Address					Use monito	r well			Status	Active
Contact 126 MAI	RSHALL AV	N LITCHFI	ELD MN 55355		Well Hydrofra	ctured?	Yes No	From	To	
Well 982 MIL	LER AV NI	ITCHFIELD	MN 55355		Casing Type	Single o	asing	Joint		
Statigraphy Info2200186	DODALE DR	MOUNDS	VIEW MN 5511	2	Drive Shoe?	Yes	No X	Above/Below		
Geological Material	From	To (ft.)	Color 1	lardness	Casing Diame	ter We	right		Hole Diamete	r
SAND, WELL SORTED,	10	12	GRAY S	OFT	1.2 in To	92.4 ft. 0).74 Ibs/ft.		8.2 in. To	95 ft.
SAND, WELL SORIED,	12	19	GRAV S	OFT						
SAND MED TO	19	22	GRAY S	OFT						
SAND, MEDIUM WELL	22	43	GRAY S	OFT						
SILT & CLAY WITH	43	95	GRAY S	FT-HRD	Open Hole	From	ft.	То	ft.	
					Screen?	1	Type slotted p	ipe Make	ENVIRONME	NTAL
					12 in	5100 Galize	27 0	974 0	05 A	
					Static Water	Level				
					36.3 ft.	land surfa	ace	Measure	08/17/2015	
					Pumping Lev	rel (below la	nd surface)			
					ft.	11. hrs.	Pumping at	0.28 g	p.m.	
					Wellhead Co	mpletion				
					Pidess adapter	manufacturer	_	N	fodel	
					X Casing I	Protection	X 12 in	above grade		
					Cronting Inf	e (Environme	Well Grouted?		lo 🗆 Not S	nacified
					Maturial	of manon	weil Grouter?		Error T	pecanea
					bentonite		7	Sacks	4 ft 89	5 0
					concrete		2.5	Sacks	ft. 4	£.
					Nearest Kno	wa Source o	of Contamination			_
					fe Well disinfe	et cted unon co	Direction mulation?	Ves	No.	Тура
					Pamp	Not Not	Installed D	the Installed	A	
					Manufacturer	s name	Installed La	ine installed		
					Model Numb	ar .	HP	Vo	dt	
					Length of dro	p pipe	ft Capacity	g.p.	Тур	
					Abandoned					
					Does property	have any not	in use and not sealed v	vell(s)?	Yes	X No
					Variance				Ver	w
					Was a variance	e granted from	the MDH for this we	1 7	195	A No
					First Badarch			Amifor	Oust Invial	
					Last Strat	pebbly s	and/silt/clav-grav	Depth to Be	drock	£
					Located by	Min	nesota Geological S	urvey		
Kemarics		Dista Tront			Locate Metho	d Digit	tization (Screen) - M	dap (1:24,000)		
SEE DRILLER LOG FOR DE	AILED INFO	IMATION.			System	UTM - NA	D83, Zone 15, Meters	X 379	555 Y 499	9334
					Unique Numb	er Ventication	Informatio	in from 1	nput Date 08	/14/2015
					Angled Drill	fiole				
					Well Contra	ctor				
					US Geolog	ical Survey		1548	HUCKAR	BY, J.
					Licensee B	usiness	Lic. (or Rog. No.	Name of D	riller
Manuaria Well T	J P			773	058				Printed	a 06/19/2017
Minnesota Well In	aex Kepo	rt							- made (HE-01205-15

Figure 55. Well and Boring Report - USGS 1-F (773057)

Minnesota Unique Well Number	c	a diam	MINN	ESOTA DEP	ARTMENT O	F HEALTH	r			
772057 County Meeker WELL AN					BORINO	REP	ORT	Entry Date	08/14/20	15
773057	Quad La	tchtheid	M	innesota Sta	tutes Chapt	er 1031		Update Date	10/22/20	15
	Quad ID 1.	OA						Received Da	te	
Well Name Townshi	p Range	Dir Sect	ion Subsectio	n a	Well Depth	1	Depth Completed	Date V	Vell Completed	
LF01-F 119	31	W 11	ABACBE	3	130 ft .	1	27.46 ft.	06/15/	2015	
Elevation 1114.7 Elev. 1	Method	LiDAR 1mI	EM (MNDNR)		Drill Method	Auger (nor	n-specified)	Drill Fluid		
Address					Use monito	r well			Status	Active
Contact 126 MARS	SHALL AV	N LITCHFI	ELD MN 55355		Well Hydrofrac	tured?	Yes No	X From	To	
Well 982 MILLI	ER AV N L	TCHFIELD	MN 55355		Casing Type	Single ca	asing	Joint	Glued	
Statigraphy Information	DALE DR	MOUNDS	/IEW MN 5511	2	Drive Shoe?	Yes	No X	Above/Below		
Geological Material	From	To (ft.)	Color F	lardness	Casing Diamet	er We	ight		Hole Diamet	er
WELL SORT, SAND,	0	12	GRAY S	OFT	2 in To	118 ft. 1.	.02 Ibs/ft.		8.2 in To	130 ft.
SAND WELL SORT	12	14	GRAY S	OFT						
SAND, MEDIUM WELL	14	19	GRAI S	OFT						
SAND, MED. 10	19	43	GRAI S	OFT						
STAND, MEDIUM WELL	43		GRAV S	ET.HED	Open Hole	From	£.	To	£.	
SAND & CRAVEL	98	130	GRAV N	TIM	Screen?	1	Type slotted p	ipe Make	ENVIRONME	NTAL
and a chorver,			GIGTI D		Diameter	Slot/Gauze	Length	Set		
					1.9 in.	20	9.6 ft.	118 ft .	127.4 ft.	
					Static Water	Level		Mana	08/17/0015	
					30.0 II.	Party Street		Mensure	06/1//2013	,
					Pumping Lev	el (below la	nd surface)			
					£.	2.9 hrs.	Pumping at	1.11	g.p.m.	
					Wellhead Co	mpletion				
					Pidess adapter	manufacturer		1	Model	
					X Casing P	rotection	X 12 in	above grade		
					At-grade	(Environme	intal Wells and Bor	ings ONLY)		
					Grouting Info	rmation	Well Grouted?	X Yes 1	No Not ?	Specified
					Material		Amo	tau	From 1	lo .
					bentonite		9	Sacks	3.4 ff. 9	5 11.
					concrete		2.3	SACES	п. э	.+ II.
					Nearest Know	Source of	Contamination			
					for	*******	Direction			Type
					Well disinfec	n tad upon cor	mpletion?	Yes	X No	- //-
					Pump	K Not	Installed Da	te Installed		
					Manufacturers	name				
					Model Number	r	HP	v	olt	
					Length of drop	pipe	ft Capacity	S-P-	Тур	
					Abandoned					
					Does property	have any not i	in use and not sealed v	vell(s)?	Yes	X No
					Variance			_		N
					Was a variance	e granted from	the MDH for this we	ur -		N0
					Miscellaneou	5		Amifu		
					Last Strat	cand +lar		Depth to B	Quar. oursea	÷
					Located by	Min	esota Geological S	urvey		-
Remarks					Locate Method	Digit	ization (Screen) - M	(1:24,000)		
SEE DRILLERS LOG FOR DET	AILED INFO	RMATION.	ED EOD LIGOS		System	UTM - NAI	083, Zone 15, Meters	X 379	654 Y 49	99332
GAMMA & EM INDUCTION D	OGGED 6-24	-2015, LOGG	ED FOR USGS.		Unique Numbe	er Verification	Informatio	n from	Input Date 00	8/14/2015
					Angled Drill	Hole				
					Well Contrac	tor				
					US Goologi	cal Survey		1548	HUCKA	BY, J.
					Licensee Bu	1510055	Lic. (or Rog. No.	Name of I	Driller
Minnesota Wall Ind	or Roper	-		773	057				Printed	on 06/19/2017
winnesota wen ind	er vebo	n			I					HE-01205-15

Figure 56. Well and Boring Report - USGS 2-A (773056)

Minnesota Unique Well Number County Mooker MINNESOTA				NNESOTA DEP	ARTMENT	OF HEALTH	I	Parton Data				
	2056		-ounty Sound	Litchfield	WE	LL AND I	BORIN	G REP	ORT	Luty Date	09/09/20	115
	3050	- D	Zusa	1254		Minnesota Sta	atutes Chapt	ter 1031		Update Dat	te 10/20/20	115
_			June 1D	12.74						Keceived D	ate	
Well Name	Т	ownship	Ran	ge Dir Sec	tion Subsec	tion	Well Depth		Depth Completed	Date	Well Completes	
LFO2-A	11	9	31	W 2	CACD	BD	20 ft .	1	19.99 ft.	06/24	/2015	
Elevation	1139.6	Elev. M	fethod	LiDAR 1ml	DEM (MNDNR)	Drill Method	Auger (no	n-specified)	Drill Fluid		
Address							Use monito	or well			Status	Active
Well	616	56 270T	HSTLI	TCHFIELD M	IN 55355		Well Hydrofra	ctured?	Yes No	From	To	
Contact	126	MARS	HALL A	V N LITCHFI	ELD MN 553	55	Casing Type	Single o	asing	Joint	Glued	
Statigraph	y Infoitin	OBMICO	DALED	R MOUNDS	VIEW MN 55	112	Drive Shoe?	Yes	No	Above/Below	r	
Geological I	Material	_	Free	m To(ff.)	Color	Hardness	Casing Diame	ter We	ight		Hole Diamet	er
SILTRULA	I W/SAN	υ,	0	20	GIAT	MEDIOM	1.2 in.To	17.1 ft . 0	.74 Ibs./ft.		8.2 in. To	20 ft.
							Open Hole	From	÷	То	÷	
							Screen?	0	Type slotted p	ipe Make	ENVIRONME	NTAL
							Diameter	Slot/Gauze	Length	Set		
							1.2 in.	10	2.7 ft.	17.1 ft	. 19.7 ft .	
							Castie Wester	Land				
							17.3 ft.	land surf	100	Measure	08/17/2015	i
							Pumping Lev	vel (below la	nd surface)			
							£.	1.2 hrs.	Pumping at	0.08	g.p.m.	
							Wellhead Co	moletion				
							Pitless adapter	manufacturer			Model	
							X Casing	Protection	X 12 in	above grade		
							At-grad	e (Environne	intal Wells and Bor	ings ONLY)		
							Grouting Inf	ormation	Well Grouted?	X Yes	No Not	Specified
							Material		Amo	Sache	From 1	ίο < Α
							concrete		15	Sacks	9 11 1	э <u>н</u>
												-
							Nearest Kno	wa Source o	f Contamination			
							fe	et	Direction			Туре
							Well disinfe	cted upon co	mpletion?	Yes	X No	
							Pump	Not	Installed Da	te Installed		
							Manufacturer	's name	HD			
							Model Numb	er n nim	# Constitu		Tan	
							Abandoned	b hibe	in capacity	er-	1.75	
							Does property	have any not	in use and not sealed v	vell(s)?	Yes	X No
							Variance					_
							Was a variant	e granted from	the MDH for this we	17	Yes	X No
							Miscellaneou	15				
							First Bedrock	mahhhr	nd/silt(class.mass	Aquit	ar Quat. buried. Bedrock	÷
							Located by	Min	assota Geological S	miles.		-
Remarks							Locate Metho	d Digit	ization (Screen) - M	(ap (1:24,000))	
SEE DRILLE	aks LOG P	OR DET/	AILED IN	FORMATION.			System	UTM - NAI	D83, Zone 15, Meters	X 37	79193 Y 49	99910
							Unique Numb	er Verification	Informatio	n from	Input Date 05	9/09/2015
							Angled Drill	Hole				
							Well Contra	ctor				
							US Geolog	ical Survey		1548	HUCKA	BY, J.
							Licensee B	usiness	Lic. (or Reg. No.	Name of I	Driller
L							0.54					
Minneso	ota Wel	l Inde	ex Rep	ort		773	0050				Printed	lon 06/12/2017 HE-01205-15

Figure 57. Well and Boring Report - USGS 1-F (773057)

Minnesota Unique Well Namber 773055 Quad Litchfield WELL AN Quad Unique Unique Vell Namber						ARTMENT O BORINO	F HEALTH	a ORT	Entry Date Update Dat	09/09/20 • 10/20/20	015 015
		Quad ID	125A						Received D:	ate	
Well Name	e Towns	ip Ra	nge Dir Sec	tion Subsecti	08	Well Depth	1	Depth Completed	Date	Well Completed	
LFO2-B	119	31	W 2	CACDBI	D	35.5 ft .		35.13 ft.	06/24	/2015	
Elevation	1139.2 Elev	Method	LiDAR 1m	DEM (MNDNR)		Drill Method	Auger (no	n-specified)	Drill Fluid		
Address						Use monito	r well			Status	Active
Well	61656 27	OTH ST I	ITCHFIELD M	ON 55355		Well Hydrofra	ctured?	Yes No	X From	To	
Contact	126 MAI	RSHALL .	AV N LITCHF	ELD MN 55355	5	Casing Type	Single o	asing	Joint	Glued	
Statigrap	hy Information	ODALE	DR MOUNDS	VIEW MN 5511	2	Drive Shoe?	Yes	No	Above/Below	r	
Geological	Material	Fr	om To(ft.)	Color 1	lardness	Casing Diame	ter We	eight		Hole Diamet	ler
SILTOLLY	LI WAAND,		30	GAT	MEDION	1.2 in. To	32.3 ft. 0	0.74 Ibs./ft.		8.2 in. To	33.5 ft.
						Open Hole	From	£.	То	ft.	
						Screen?	1	Type slotted p	pipe Make	ENVIRONME	INTAL
						Diameter 1.2 in.	Slot/Gauze 10	Length 2.7 ft.	Set 32.2 ft.	34.9 ft.	
						Static Water 23.8 ft.	Level land surf	200	Measure	08/17/2015	5
						Pumping Lev	el (below la	and surface)			
						ft.	1.4 hrs.	Pumping at	1.43	g.p.m.	
						Wallbard Co	molation				
						Pitless adapter	manufacturer			Model	
						X Casing I	rotection	X 12 in	1. above grade		
						At-grade	e (Environne	ental Wells and Bo	rings ONLY)		
						Grouting Int	ormation	Well Grouted?	X Yes	No Not	Specified
						Material		Am 4	Sacks	3 4 3	10 4
						concrete		1.5	Sacks	£.3	£.
						Nearest Kno	wn Source o	of Contamination			
						fe	et	Direction			Туре
						Well district	cuea upon co	mpienon/	Tes	X NO	
						Manufactured	Not Not	Installed D	ate installed		
						Model Number		HP		/olt	
						Length of dro	p pipe	ft Capacity	8-P-	Тур	
						Abandoned					_
						Does property	have any not	in use and not scaled	well(s)?	Yes	X No
						Variance				U Ver	V No
						Was a variance	e granicu iron	a the party for this we		L •••	M 110
						First Bedrock	-		Aquife	Cuat buried	
						Last Strat	pebbly sa	and/silt/clay-gray	Depth to I	Bedrock	ft
Remark						Located by	Min	nesota Geological S	Survey		
SEE DRILL	ERS LOG FOR D	TAILED I	FORMATION			Locate Methor	1 Digit	tization (Screen) - 1	Map (1:24,000)	0102 V	
						Unique Numb	er Verification	Information	on from	Input Date 0	9/09/2015
						Angled Drill	Hole				
						Well Contra	ctor				
						US Goolog	ical Survey		1548	HUCKA	BY, J.
						Licensee B	usmess	Lic.	or Reg. No.	Name of I	Uniller
Minnes	ota Well In	dex Rej	port		773	055				Printed	lon 06/12/2017 HE-01205-15
					1						

Figure 58. Well and Boring Report - USGS 2-C (773054)

Minnesota Unique Well Number Committy Monker MIN	DEPARTMENT OF HEALTH Entry Date 08/14/2015					
773054 Ousd Litchfield WELL AND		BORING REPORT			Litry Date	08/14/2015
773054 Quad Lincinsia M	innesota Sta	tutes Chapt	er 1031		Update Date	10/20/2015
Quad ID 125A					Received Ds	te
Well Name Township Range Dir Section Subsecti	08	Well Depth	1	Depth Completed	Date	Vell Completed
LF02-C 119 31 W 2 CACDB	D	70 £t.	5	9.84 ft.	06/22/	2015
Elevation 1139.4 Elev. Method LiDAR 1m DEM (MNDNR)		Drill Method	Auger (nor	r-specified)	Drill Fluid	
Address		Use monito	r well			Status Active
Well 61656 270TH ST LITCHFIELD MN 55355		Well Hydrofew	tured?	Ver 🗆 Ne	V P	-
Contect 126 MARSHALL AV N LITCHETELD MN 55355		Caring Trees	Single co	105100	A From	To
Statistanter Info@000000000000000000000000000000000000	2	Drive Shoe?	Ves 🗌	No 🗆	Above Balow	Gritted
Geological Material From To (ft.) Color	Tardness	Contra Minera			ADOVE DELON	H.I. Norman
SILT & CLAY W/SAND, 0 70 GRAY 1	MEDIUM	1.2 in To	er we 57 ft. 0.	ngme 74 Ibs./ft.		8.2 in To 70 ft.
		Open Hole Screen? X Diameter 1.2 in.	From Slot/Gauze 10	ft. Type slotted Langth 2.7 ft.	To pipo Make Set 56.9 ft.	fi. ENVIRONMENTAL 59.6 fi.
		Static Water 31.8 ft.	Level land surfa	C0	Measure	06/22/2015
		Pumping Lev	el (below las	ud surface)		
		ft.	1.2 hrs.	Pumping at	0.14	g.p.m.
		Wellhead Co	mpletion			
		Pitless adapter	manufacturer			Model
		X Casing P At-grade	Totection (Environme	ntal Wells and Bo	n. above grade wings ONLY)	
		Grouting Info	rmation	Well Grouted?	X Yes	No 🔲 Not Specified
		Material		Am		From To
		bentonite		7	Sacks	3 ft. 54.7 ft.
		concrete		2	Sacks	£.3 £.
		Nearest Know	rn Source of	f Contamination		_
		for Well divinfor	at and one con	Direction		Туре
		Well distilled	and upon con	upredon.		X NO
		Manufactume	Not.	installed L	ate installed	
		Model Numbe		HP		olt
		Length of drog	pipe	ft Capacity	g.p.	Тур
		Abandoned				
		Does property	have any not it	n use and not sealed	well(s)?	Yes X No
		Variance				
		Was a variance	e granted from	the MDH for this w	ell?	L Yes X No
		Mincellaneou First Protocol	5		A	Court Invited
		Last Stret	nabhbran	nd/silt/class-ores	Death to 3	k Quar. ouned Bedrock A
		Located by	Minn	esota Geological	Survey	
Remarks		Locate Method	Digiti	ization (Screen) -	Map (1:24,000)	
SEE DRILLERS LOG FOR DETAILED INFORMATION.		System	UTM - NAD	83, Zone 15, Meter	s X 37	9195 Y 4999910
		Unique Numbe	ar Verification	Informati	on from	Input Date 08/14/2015
		Angled Drill	Hole			
		Well Contrac US Geologi Licensee Br	tor cal Survey isiness	Lic	1548 . ar Reg. No.	HUCKABY, J. Name of Driller
Minnesota Well Index Report	773	054				Printed on 06/12/20 HE-01205

Figure 59. Well and Boring Report - USGS 2-D (773053)

Minnesota Unique Well Number Manker MINNE	SOTA DEPARTMENT	OF HEALTH
County Monte WELL	AND BORIN	G REPORT Entry Date 08/14/2015
773053 Quad Lincaneid Min	nesota Statutes Chai	Update Date 10/20/2015
Quad ID 125A		Received Date
Well Name Township Range Dir Section Subsection	Well Depth	Depth Completed Date Well Completed
LF02-D 119 31 W 2 CACDBD	85.5 ft.	81.14 ft. 06/23/2015
Elevation 1139.2 Elev. Method LiDAR 1m DEM (MNDNR)	Drill Method	I Auger (non-specified) Drill Fluid
Address	Use moni	itor well Status Active
Wall 61656 220TH ST LITCHETELD MN 55355	Well Hedrey	
Contrat 106 MARCHAIL AUXILITYCHURELD MIL S255	wei nyuron	ractureu: ies No X From To
CONSCIENCE AND	Casing Typ Drive Sheet	e Single casing Joint Glued
Geological Material From To (ft.) Color Ha	rdness Code and	. Tes 140 ADOVE/DEIOW
SILT& CLAY W/SAND 0 80 GRAY M	DIUM 1.2 in To	seter Weight Hole Diameter
SAND& CLAY W/SAND 80 86 GRAY HA	RD 1.2 m. 10	81.1 H. 0.74 105/H. 8.2 H. 10 87.5 H
	Open Hole	From ft. To ft.
	Screen?	Type slotted pipe Make ENVIRONMENTAL
	Diameter	Slot/Gauze Length Set
	1.2 m.	10 2.7 ft. \$1.1 ft. \$1.1 ft.
	Static Wate	r Level
	/е п.	Iand surface Measure 06/1//2015
	Pumping Lo	evel (below land surface)
	£	1.4 hrs. Pumping at 0.1 g.p.m.
	TT: 10 - 10	
	Weilbead C	-ompienon Madal
	Y Casing	Protection X 12 in above grade
	At-gra	de (Environmental Wells and Borings ONLY)
	Grouting In	aformation Well Grouted? X Yes No Not Specified
	Material	Amount From To
	bentonite	6.5 Sacks 3 ft. 78.5 ft.
	concrete	1.5 Sacks ft.3 ft.
	Nearest Kn	own Source of Contamination
	1	feet Direction Typ
	Well disinf	fected upon completion? Yes X No
	Pump	Not Installed Date Installed
	Manufacture	er's name
	Model Num	ber HP Volt
	Length of dr	rop pipe II Capacity g.p. 1 yp
	Does proper	ty have any not in use and not cooled well(c)?
	Variance	in the any local data and the scale mental.
	Was a varia	nce cranted from the MDH for this well? Yes X N
	Miscellaner	
	First Bedrock	Aquifer Oust huried
	Last Strat	pebbly sand/silt/clav-gray Depth to Bedrock ft
	Located by	Minnesota Geological Survey
Remarks	Locate Meth	od Digitization (Screen) - Map (1:24,000)
SEE DRILLERS LOG FOR DETAILED INFORMATION.	System	UTM - NAD83, Zone 15, Meters X 379193 Y 4999908
	Unique Num	aber Verification Information from Input Date 08/14/2015
	Angled Dri	ll Hole
	Well Contr	sctor
	US Geolo	gical Survey 1548 HUCKABY, J.
	Licensee	Business Lic. or Reg. No. Name of Driller
		_
	773053	R.J 1 2010
Minnesota Well Index Report		Printed on 06/12/2 EFE-0120

Figure 60. Well and Boring Report - USGS 2-E (773052)

Minnesota Unique Well Number County Meeker MINNY	SOTA DEPARTMENT O	F HEALTH	Fatter Data 00/14/0015		
773052 Ored Litchfield WELL	AND BORIN	G REPORT	Entry Date 08/14/2015		
//3052 Quild Internation Min	mesota Statutes Chap	er 1031	Provinced Date 10/20/2015		
Quarter 1.			Received Date		
Well Name Township Range Dir Section Subsection	Well Depth	Depth Completed	Date Well Completed		
LF02-E 119 51 W 2 CAUDED	115.9 п.	115.82 ft.	08/20/2013		
Elevation 1139-3 Elev. Method LiDAR 1m DEM (MNDNR)	Drill Method	Auger (non-specified) D	rill Fluid		
Address .	Use monit	r well	Status Active		
Well 61656 270TH ST LITCHFIELD MN 55355	Well Hydrofra	ctured? Yes No	X From To		
Contact 126 MARSHALL AV N LITCHFIELD MN 55355	Casing Type	Single casing	Joint Glued		
Statigraphy Info21601WeOODALE DR MOUNDS VIEW MN 55112	Drive Shoe?	Yes No	Above Below		
Geological Material From To (ff.) Color Ha	Casing Diamo	ter Weight	Hole Diameter		
SILISCLAT WAAND, 0 80 GRAT ME	LDIUM 1.2 in To	111 ft. 0.74 Ibs/ft.	8.2 in. To 113. ft.		
SILTECLAT WARNE, SU 114 GRAT HE					
	Open Hole	From ft. 1	fo ft.		
	Screen?	Type slotted pip	 Make ENVIRONMENTAL 		
	Diameter 1.2 in	Slot/Gauze Length	Set 1126 A		
	1.2 m.	10 2.7 H.	110.9 H. 115.0 H.		
	Static Water	Level			
	95.6 ft.	land surface	Measure 08/17/2015		
	Pumping Le	el (below land surface)			
	£	0.6 hrs. Pumping at	0.47 g.p.m.		
	Wellhead Co	mpletion			
	Pitless adapter	manufacturer	Model		
	X Casing	Protection X 12 in a	bove grade		
	Cronting Int	crimetion Well Grouted?	Ver No Not Specified		
	Material	Amon	Tes I to I her operated		
	bentonite		Sacks 3 ft 108.6 ft.		
	concrete		Sacks ft. 3 ft.		
	Nearest Kno	wn Source of Contamination			
	fr	et Direction	Туре		
	Well disinfe	cted upon completion?	Yes X No		
	Pump	Not Installed Date	Installed		
	Manufacturer	s name HD	V-la		
	Length of dro	a nine 🛱 Canacity	en Tun		
	Abandoned	here a caland	61/F		
	Does property	have any not in use and not sealed we	fl(s)? Yes X No		
	Variance	-			
	Was a variant	e granted from the MDH for this well?	Yes X No		
	Miscellaneou	5			
	First Bedrock		Aquifer Quat. buried		
	Last Strat	pebbly sand/silt/clay-gray	Depth to Bedrock ft		
Remarks	Located by	Minnesota Geological Sur Displayers (Server) - Ma	may (1.24.000)		
SEE DRILLERS LOG FOR DETAILED INFORMATION.	System	UTM - NAD83, Zone 15, Meters	X 370105 Y 4000000		
	Unique Numb	er Verification Information	from Input Date 08/14/2015		
	Angled Drill	Hole			
	-				
	Well Control	ctor			
	US Geolog	ical Survey	1548 HUCKABY, J.		
	Licensee B	usiness Lic. or	Reg. No. Name of Driller		
	773052		Delevel on Octobolis		
Minnesota Well Index Keport			HE-01205-15		

Figure 61. Well and Boring Report - USGS 2-F (773051)

Minnesota Uniq	que Well Numbe	· .		fasher	MI	NESOTA DEP	ARTMENT O	F HEALTH	I			
	County Meeker WELL AND		BORING REPORT			Entry Date	08/14/	2015				
77	73051	- 9	Zuad L	archineld	1	Minnesota Sta	tutes Chapt	er 1031		Update Dat	e 10/23/	2015
			Quad ID 1	25A	-					Received D	ate	
Well Name	To	mship	Rang	 Dir Sec 	tion Subsec	tion	Well Depth		Depth Completed	Date	Well Complet	ed
LFO2-F	119)	31	W 2	CACD	BD	162.5 ft.	1	162.42 ft.	06/18	/2015	
Elevation	1139.3 1	Elev. M	fethod	LiDAR 1m	DEM (MNDNR)		Drill Method	Auger (no	n-specified)	Drill Fluid		
Address							Use monito	r well			Statu	s Active
Wall	6165	6 2707	HSTLIT	CHEFTLD N	NI 55355		Well Hydrofes	chured?	Ver 🗆 No			
Contact	1261	MARCI	HATT AV	NITCHE	TTD MN 553	**	Carina Tran	Circle o	165 100	A From	1	0
Contract	L. T. C. 9900	- HIOO	DALEDE	MOIDINE	UTERU MAN SS	112	Drive Shoe?	Ver 🗌	No 🗆	Joint About Ralas	Glued	
Geological 1	Material		From	To (ft.)	Color	Hardness	Codes Bloos			Above beau		
SILTACLA	AY W/SAND).	0	80	GRAY	MEDIUM	Casing Diame	152 A 1	nght 02 The / D			
SILT&CLA	AY W/SAND		80	117	GRAY	HARD	2 11.10	1.72. 11. 1	.02 105/10			
SAND & G	RAVEL		117	161	GRAY	HARD						
SILT&CLA	AY W/SAND) .	161	163	GRAY	HARD						
							Open Hole	From	ft.	То	ft.	
							Screen?	9	Type slotted p	nipe Make	ENVIRON	TENTAL
							Diameter	Slot/Gauze	Length	Set		
							1.9 m.	20	9.6 ff.	152.4 ft.	162 #	Ł
							Static Water	Level			00/17/00	
							ог п.	land sure	100	Measure	08/1//20	D
							Pumping Lev	el (below la	nd surface)			
							÷.	6.4 hrs.	Pumping at	0.86	g.p.m.	
							Wellhead Co	mpletion			Madal	
							Carine I	manufacturer Instruction	X 12 m	abovo orado	NICOSI	
							At-grade	(Environme	antal Wells and Bo	rings ONLY)		
							Grouting Inf	ormation	Well Grouted?	X Yes	No 🗆 No	t Specified
							Material		Ame		From	To
							bentonite		10	Sacks	2 ft.	137 ft .
							concrete		2	Sacks	ft.	2 ft.
							Nearest Kno	wn Source o	f Contamination			
							fe	et	Direction			Туре
							Well disinfe	cted upon co	mpletion?	Yes	X No	
							Pump	X Not	Installed D	ate Installed		
							Manufacturer	s name				
							Model Numbe	a.	HP		Volt	
							Length of drop	p pipe	ft Capacity	s.p.	Тур	
							Abandoned				— •	
							Does property	have any not	in use and not sealed	well(s)?	1	es X No
							Variance			-	U Ver	
							Was a variance	e granted from	the MDH for this we		195	X NO
							Miscellaneou	5		4		
							First Bedrock		10.200	Aquis	r Quat. bune	a 🕰
							Last other	peccry sa Mine	ma un cuy-gray	Depth to	DOUTOCK	
Remarks							Locate Method	1 Digit	ization (Screen) - 1	Man (1:24 000)		
SEE DRILLE	ERS LOG FO	R DET/	AILED INF	ORMATION.			System	UTM - NAI	D83, Zone 15, Meters	X 37	9195 Y	4999908
GAMMA &	INDUCTION	LOGG	ED 8-19-20	15. LOGGED	FOR USGS.		Unique Numb	er Verification	Informatio	on from	Input Date	08/14/2015
							Angled Drill	Hole			-	
							-					
							THE R C.					
							Well Contra	ctor		1645		
							US Geolog	cal Survey	15	1048 or Rog Mo	HUCK	Dollar
							Latensee D		1.40.	or 100g. 100.	24000 O	
<u> </u>						773	051					
Minnese	ota Well	Inde	ex Repo	rt		113	051				Print	ed on 06/19/2017
												HE-01205-13

Figure 62. Well and Boring Report - Desens Observation (800011)

Minnesota Unique Well Number	C	wher	MIN	ESOTA DEP	ARTMENT O	F HEALTH					
County Model		-hfald	WEL	L AND I	BORING REPORT			Entry Date	•		
800011 Quad Literated		SA SA	M	innesota Sta	itutes Chapt	ter 1031		Update Date	08/26/201	•	
	Quad ID 12	A			-			Keceived Date	10/02/201	5	
Well Name Towns	hip Range	Dir Sect	ion Subsecti	on	Well Depth	1	epth Completed	Date We	I Completed		
DESEN, DOUG 119	31	W 2	DACAA	C	158 ft.	1	38 ff.	07/29/201	3		
Elevation 1128.4 Elev	Method	Surveyed			Drill Method	Non-specif	ied Kotary	Drill Fluid Bento	nite		
Address					Use monito	r well			Status	Active	
Contact 28003 62	OTH AV LITC	HFIELD M	IN 55355		Well Hydrofra	ctured?	Yes No	X From	To		
Well 620TH A	V LITCHFIFI	LD MN 553	55		Casing Type	Single ca	sing	Joint G	Hued		
Stratigraphy Information	F	T- (A)	C-1 1	T	Drive Shoe?	Yes	No X	Above/Below			
TOP SOT	Prom.	3	BLACK S	OFT	Casing Diame	ter Wei	ght		Hole Diameter		
CLAY	3	5	BROWN S	OFT	2 m. 10	148 п.	lbs/m		0.2 m. 10	138 п.	
GRAVEL	5	9	BROWN	OFT							
CLAY	9	112	GRAY N	MED-HRD							
DIRTY GRAVEL	112	117	GRAY S	OFT							
CLAY	117	120	GRAY S	FT-MED	Open Hole	From	£.	To	ft.		
SAND/GRAVEL	120	158	GRAY S	OFT	Diameter	Slot/Gauze	Length	Set Set	/IIINSOIN		
CLAY/GRAVEL	158	158	GRAY S	OFT	2 in.	10	10 ft.	148 ft.	158 ft.		
					Static Water	Level					
					59.8 ft.	land surfa		Measure	07/29/2013		
					Pumping Lev	rel (below lan	d surface)				
					••						
					Wallbard Co	mulation					
					Pitless adapter	manufacturer		Mo	del		
					X Casing 1	Protection	12 in	above grade			
					At-grade (Environmental Wells and Borings ONLY)						
					Grouting Information Well Grouted? X Yes No Not Specified						
					Material		Ame	time:	From To		
					bentonite		2	Carlo	4 ff. 14.	2 #.	
					Teat Cettern		-	oduas	1. 4		
					Nearest Kno	wn Source of	Contamination				
					900 fe	et We	ast Direction	Septi	c tank/drain fi	ald Type	
					Well disinfe	cted upon con	miletion?	Yes	No		
					Pump	Not 1	installed Da	te Installed			
					Manufacturer	s name					
					Model Number		A Crowitz	Volt	_		
					Abandoned	b bibe	n capacity	8P. 1	78		
					Does property have any not in use and not sealed well(s)? Yes X No						
					Variance						
					Was a variance granted from the MDH for this well? Yes X No						
					Miscellaneou	15					
					First Bedrock Aquifer Quat. buried						
					Last Strat	pebbly sat	ad/silt/clay-gray	Depth to Bedr	ock	Ħ	
Remarks					Locate Metho	d Digiti	ration (Second) - N	fan (1:12.000)			
DRILLERS: STEVE WEISBR	System	UTM - NAD	83, Zone 15, Meters	X 38001	8 Y 500	0014					
					Unique Numb	er Verification	Info/GPS	from data Inp	at Date 08/	18/2014	
					Angled Drill	Hole					
					Well Contractor						
		Mark J Traut Wells, Inc. 1404 STEVE/DREW									
					Licensee B	usiness	Lic. (or Rog. No.	Name of Dr	iller	
				000	011						
Minnesota Well In	dex Renor	+		800	011				Printed o	a 06/12/2017	
in and the second se	and stepor	-							1	HE-01205-15	

🌠 University of Minnesota

Minnesota Geological Survey Harvey Thorleifson, Director

CORE DESCRIPTIONS AND BOREHOLE GEOPHYSICS IN SUPPORT OF USGS HYDROLOGIC PROPERTIES OF TILL INVESTIGATION,

LITCHFIELD AND CROMWELL, MINNESOTA

Kaleb Wagner and Robert Tipping, *Minnesota Geological Survey*, 2609 Territorial Road, St. Paul MN, 55114, USA.

March 2016

Funded through the Environment and Natural Trust Fund as recommended by the Legislative and Citizens Commission on Minnesota Resources (LCCMR).

Contents

Executive summaryii
List of figuresiii
List of tablesiv
List of appendicesv
Introduction1
Methods1
Texture data and core analysis1
Borehole geophysics
Results
Core descriptions and textural analysis
Borehole geophysics
Discussion
Litchfield10
Cromwell
Acknowledgements
References cited
Appendices: Logging and analysis of core materials and borehole geophysical logs i
Appendix A – Logging and analysis of core materialsi
Appendix B – Borehole geophysical logsxi
Appendix C – Generalized borehole lithostratigraphy and borehole geophysical logs xix

Executive summary

This report summarizes the contributions of the Minnesota Geological Survey to Phase I of an ongoing study – Environmental and Natural Resources Trust Fund (ENRTF), M.L. 2014, Chp. 226, Sec. 2, Subd. 03h, led by the United States Geological Survey (USGS) Minnesota Water Science Center, which seeks to further knowledge on the sources and rates of recharge to confined aquifers. Geologic cores from sites in Litchfield and Cromwell Minnesota were described both in the field and in the laboratory, and then archived at the Minnesota Department of Natural Resources core repository in Hibbing, Minnesota. Core sediments were described systematically in terms of grain size and sorting, texture, structure, Munsell color, level of consolidation, carbonate content of matrix, and clast lithological assemblage. Textural characterization included collection of 72 bulk sediment samples for particle-size analysis from the three cores at approximate 4' intervals to detect textural deviations between core sediments at each site, and to determine the degree of internal compositional variation. Borehole geophysical logs were collected for all drill holes of adequate diameter, including gamma, electromagnetic induction, spontaneous potential and resistivity logs.

Sediments in the two cores (LF01, LF02) acquired from Litchfield, MN chronicle the incursion of the Des Moines Lobe of the Laurentide Ice Sheet (LIS) into south-central Minnesota, and its subsequent demise during the Late Wisconsinan glacial episode. Recent work documents large-scale reorganizations of ice flow during the late last glacial within catchment areas of the Des Moines Lobe in southern Saskatchewan and Manitoba (Ross et al., 2009; O'Cofaigh et al., 2010), and these shifts are likely linked, in combination with local factors, to subtle variations in till texture, colour and visible clast lithologies documented down-core in LF01 and LF02. In Cromwell, core materials recovered from CW02 detail lobate interactions of the LIS in northeastern Minnesota throughout the Late Wisconsinan glacial episode. Glacial tills and associated glaciolacustrine and glaciofluvial meltwater deposits of the St. Croix and Automba phases of the Superior Lobe are lithostratigraphically assigned to the Cromwell Formation (Wright et al., 1970; Johnson et al., 2016).

List of figures

- **Figure 1** Ternary diagrams showing results of sample particle-size analysis from cores LF01, LF02, and CW02 for grouped units interpreted as: [A] glacial till, glaciolacustrine, and finegrained ice-contact deposits (i.e., potential aquitards), and [B] grouped proglacial deltaic, outwash, and undifferentiated glaciofluvial deposits (i.e., potential aquifers). Classification and nomenclature follows United States Department of Agriculture (USDA) textural soil classification. QAIA = Aitkin Formation, Alborn Member, QCMU = Cromwell Formation, QNVT = New Ulm Formation, Villard Member.
- Figure 2 Scatterplot matrix depicting the relationship between sand, silt, and clay separates for till samples obtained from cores LF01, LF02, and CW02, grouped by lithostratigraphic formation. Sample density by particle-size fraction is shown along the diagonal for clay (left column), sand (middle column), and silt (right column). QAIA = Aitkin Formation, Alborn Member, QCMU = Cromwell Formation, QNVT = New Ulm Formation, Villard Member.
- Figure 3 Central tendency statistics for sand, silt, and clay separates of till samples obtained from cores LF01, LF02, and CW02, grouped by lithostratigraphic formation. Two samples of the Alborn Member of the Aitkin Formation collected from core CW02 are not shown. * = sample has been reassigned to an interpreted depth due to inconsistency between texture result and sampled deposit-type. See Results for details.
- Figure 4 Qualitative identification of depth intervals where conductivity and gamma trends deviate, Cromwell observation well cluster 1. Rock-water conductivity measurements typically track gamma logs, with increasing conductivity associated with increased clay or silt content. Deviations from these trends may indicate changes in fluid conductivity due to changes in water chemistry. Both logs from EM-Induction sonde.
- **Figure 5** Qualitative identification of depth intervals where conductivity and gamma trends deviate, Litchfield observation wells LFO1-F and LFO2-F. Rock-water conductivity measurements typically track gamma logs, with increasing conductivity associated with increased clay or silt content. Deviations from these trends may indicate changes in fluid conductivity due to changes in water chemistry. Both logs from EM-Induction sonde.

List of tables

Table 1 – Logging rates for Litchfield and Cromwell borehole geophysical logs.

Table 2 – Bulk grain size distributions for Cromwell and New Ulm Tills from cores CW02, LF01 and LF02.

List of appendices

- **Appendix A** Logging and analysis of core materials
- **Appendix B** Borehole geophysical logs

Appendix C – Generalized borehole lithostratigraphy and borehole geophysical logs

Introduction

Confined aquifers set within glacigenic valley-fill sequences are an important source of drinking water for residents in many areas of Minnesota. Generally, these sequences are comprised of packages of low-permeability glacial tills and fine-grained glaciolacustrine sediments (i.e., potential aquitards) which overlie and/or encompass high permeability glaciofluvial outwash sands and gravels (i.e., potential aquifers). Confining units in these systems act as crucial elements by protecting underlying confined aquifers from land-surface contamination, but rates and sources of recharge to these aquifers remain poorly-understood. Estimations of aquifer connectivity within buried-valley sequences in Minnesota are confounded by significant variability in the hydraulic properties of glacial sediments across the state, much of which is attributable to the differing substrates and dynamics of the various ice lobes that deposited them. The ability to accurately characterize these properties has considerable implications for groundwater modeling, which is commonly used to inform policy and planning decisions. This report summarizes the contributions of the Minnesota Geological Survey to Phase I of an ongoing study, led by the United States Geological Survey Minnesota Water Science Center, which seeks to further knowledge on the sources and rates of recharge to confined aquifers set within buried-valley sequences in Minnesota.

Methods

Texture data and core analysis

Unlithified Quaternary age sediments were collected on-site between 06/09/2015 and 06/26/2015 at Litchfield (cores LF01, LF02) and Cromwell, MN (core CW02) by hollow-stem coring and extruded into polyethelene casing and transported to Minnesota Geological Survey (MGS) facilities for cutting, description, sampling, and packaging. Each 5' interval was scored along the outer edge of the casing with a circular saw, and the core materials split using a standard mason's chisel and rubber mallet. Unsampled splits were shipped to the DNR Drill Core Library at Hibbing, MN for archiving. Core sediments were described systematically in terms of grain size and sorting, texture, structure, Munsell color, level of consolidation, carbonate content of matrix, and clast lithological assemblage.

72 bulk sediment samples were collected for particle-size analysis from the three cores at approximate 4' intervals, with higher sampling density near lithostratigraphic contacts, in order to detect textural deviations between core sediments at each site, and to determine the degree of internal compositional variation. Individual bulk sediment samples ranged in mass between ~150 and 200 g. Particle-size analysis was carried out by laboratory staff at MGS facilities and was conducted in two stages, broadly following ASTM D 422 procedural standards (Standard Test Method for Particle-Size Analysis of Soils): Dry sieving of the < 4.0 ϕ (> 0.63 mm) fraction, and hydrometer analysis of the > 4.0 ϕ (< 0.63 mm) fraction.

Prior to fines separation, samples were manually crushed, and 50 g of the > 4.0 ϕ (< 0.63 mm) fraction from each sample (in batches of 20) was weighed and placed into a 250 mL beaker, and the remaining portion of the raw sample archived. 150 mL of 40 g/L sodium pyrophosphate dispersant solution was added to each beaker and the slurries were stirred using a metal spatula and left to settle for 24 hours. A 1 L control cylinder was prepared for each test with 150 mL of 40 g/L sodium pyrophosphate and 850 mL of deionized water. Sediment mixtures were washed from 250 mL beakers into metal stirring cups using deionized water and placed on a mechanical mixer for 1 minute. After mixing, each sample was transferred to a 1 L settling cylinder and deionized water was added to make up the slurry to 1 L. ASTM 152H hydrometers were placed in both sample settling cylinders and the blank cylinder, and the meniscus correction factor calculated for each apparatus. Prior to measurement, samples were mixed and re-suspended for 1 minute using a metal plunger. Thermometers were placed in each cylinder, and temperature and hydrometer readings taken from both the blank and sample cylinders at 2 minutes following resuspension, and thereafter at 2 hours. Wet Munsell color was obtained from each cylinder during particle sedimentation. The rate of particle settling was estimated using Stokes Law, which assumes that a solid, perfectly spherical particle of radius r and density ρs will settle downward through a fluid of density ρl at a calculable rate.

Following hydrometer testing, the < 4.0 φ (> 0.63 mm) sample fraction was isolated and retained by wet sieving. Retained fractions were transferred to beakers for drying on a hot plate. Dry sieving was then carried out using a stack of mesh sieves with apertures ranging from -1.0 φ (2 mm) to 4.0 φ (0.63 mm) (US Mesh #10 – 230). Dried samples were transferred to a sieve stack, loaded onto a RoTap® sieve-shaker, and mechanically agitated for 5 minutes to facilitate particle sorting. After shaking, the contents of each sieve were collected and their mass measured to three decimal places using a digital weigh scale. Percentages derived from hydrometer readings for particle fractions up to 4.0 φ (0.63 mm) were combined with dry sieving data for the 0 – 4.0 φ range, which returned baseline textural profiles for each sample.

Borehole geophysics

Litchfield observation wells LFO1-F and LFO2-F were logged using EM-Induction and Gamma sondes on June 24, 2015. Litchfield LFO2-F was re-logged using the EM-Induction sonde, with an adjustment to narrow the tool diameter, on August 19, 2015, in an attempt to reach the bottom of the hole. Cromwell observation wells CWO1-A, CWO1-B, and CWO1-C were logged using EM-Induction and Gamma sondes on August 13, 2015. Logging was conducted in holes having 2 inch diameter plastic casing inserted into 6 inch diameter holes. Fluid in the holes was aquifer water. Logging sondes and software used are manufactured by Century Geophysical Corporation, Tulsa Oklahoma. The EM-Induction sonde, tool type code 9512A, serial number 2704, is owned by the USGS; the Gamma sonde, tool type code 9060A, serial number 202 is owned by the MGS. Logging rates are shown in Table 1.

Hole name	EM-Induction rate (ft/min)	Gamma rate (ft/min)
Litchfield LFO1-F	5	10
Litchfield LFO2-F	5	15
Cromwell CWO1-A	16	22
Cromwell CWO1-B	16	16
Cromwell CWO1-C	15	15

Table 1. Logging rates for Litchfield and Cromwell borehole geophysical logs.

Results

Core descriptions and textural analysis

Logging and analysis of core materials revealed interpretable successions of glacially-derived sediments at each of the three sites (Appendix A). Core CW02 is capped by ~ 5.5' of Alborn Member diamicton (*Qat*) of the Aitkin Formation (*QAIA*), overlying ~ 20' of Cromwell Formation (*QCMU*) sand and gravel and ~ 76.5' of subjacent *QCMU* diamicton. ~ 7.5' of sand and gravelly sand overlies ~ 8.5' of finer-grained sand and silt at surface in core LF01, all of which rests on ~ 70' of alternating sandy loam (*Nva*), to loam (*Nvt*) textured diamicton of the Villard Member, New Ulm Formation (*QNVT*). Similarly, core LF02 is comprised of a thick (~ 113.5') package of unsorted sediments with variable textures (*Nva*, *Nvt*), intercalated with thin (\leq 7.5') glaciofluvial sequences and occasional sand stringers, flow noses and lenses. Bulk sample grain size distributions are presented in Table 2. See Appendix A for sample stratigraphic context.

Table 2. Bulk grain size distributions for Cromwell and New Ulm Tills from cores LF01, LF02 and CW02.

	Cron	nwell Till ((QCMU)	Ν	New Ulm T	All			
	Sand	Silt	Clay	Sand	Silt	Clay	Sand	Silt	Clay
Mean	0.57	0.31	0.13	0.49	0.33	0.18	0.5	0.32	0.17
Median	0.56	0.31	0.13	0.47	0.33	0.18	0.48	0.33	0.18
Mode	0.56	0.33	0.14	0.47	0.34	0.18	0.47	0.33	0.18
St. Dev	0.03	0.02	0.02	0.06	0.04	0.03	0.06	0.04	0.04

Sample values are plotted in terms of their relative proportions of sand (0.063 - 2.00 mm), silt (0.002 - 0.063 mm), and clay (< 0.002 mm) for grouped units interpreted as glacial till, glaciolacustrine, and fine-grained ice-contact deposits (i.e., potential aquitards, *Group A*) in Fig.1[A], and grouped proglacial deltaic, outwash, and undifferentiated glaciofluvial deposits (i.e., potential aquifers, *Group B*) in Fig.1[B]. *QCMU* units within *Group A* (retrieved from core CW02) are relatively coarse-grained and exclusively exhibit sandy loam matrix textures.

Conversely, *QNVT* units within *Group A* (retrieved from cores LF01 and LF02) are, on average, finer-grained, and display predominantly loam, with minor skew towards sandy loam, matrix textures. *QCMU* units within *Group B* also plot with higher sand proportions and appear better-sorted than those of *QNVT*.

Comparison of grain size distributions (Fig.2) for *till samples only* confirms the existence of two separate populations, correlative with formations *QCMU* vs. *QNVT*. Density plots (shown along the diagonal in Fig.2) indicate that most of the variability between sampled tills is contained within the clay component (both within and between formations), though significant overlap occurs within the silt size-fraction. High negative correlation exists between sand and clay fractions within the sample distribution (as evidenced by the tightly-constrained negative slope on the sand vs. clay cross-plot), implying sufficient mixing and homogenization (i.e., a lack of bimodal till texture). *QNVT* tills exhibit slightly greater proportions of silt and clay, but moderately lesser proportions of sand compared to *QCMU* tills, in terms of all three measures of central tendency (Fig.3).

12 of 17 samples collected from core CW02 returned textural profiles inconsistent with their logged deposit-type (see Appendix A.1). Six of these samples (CW02/02-07) extracted in sequence from intervals logged as proglacial outwash (with the exception of CW02/02, interpreted as Alborn Member till of the Aitkin Formation) yielded uncharacteristically loamy textures, whereas 6 samples (CW02/10-15) obtained from intervals logged as glacial till yielded anomalously high sand and low fines percentages (with the exception of CW02/10 which ran high silt and clay). Our best judgment determined that samples were misordered at some unidentified stage during texture processing, and further, that interval CW02/2-07 corresponds to CW02/12-15 and *vice versa*. Samples are treated as such in all analyses presented here. Resampling of the archived core split has been completed and sample reprocessing for grain-size analysis is currently underway.

Figure 1. Ternary diagrams showing results of sample particle-size analysis from cores LF01, LF02, and CW02 for grouped units interpreted as: [A] glacial till, glaciolacustrine, and finegrained ice-contact deposits (i.e., potential aquitards), and [B] grouped proglacial deltaic, outwash, and undifferentiated glaciofluvial deposits (i.e., potential aquifers). Classification and nomenclature follows United States Department of Agriculture (USDA) textural soil classification. QAIA = Aitkin Formation, Alborn Member, QCMU = Cromwell Formation, QNVT = New Ulm Formation, Villard Member.

Figure 2. Scatterplot matrix depicting the relationship between sand, silt, and clay separates for till samples obtained from cores LF01, LF02, and CW02, grouped by lithostratigraphic formation. Sample density by particle-size fraction is shown along the diagonal for clay (left column), sand (middle column), and silt (right column). QAIA = Aitkin Formation, Alborn Member, QCMU = Cromwell Formation, QNVT = New Ulm Formation, Villard Member.

Figure 3. Central tendency statistics for sand, silt, and clay separates of till samples obtained from cores LF01, LF02, and CW02, grouped by lithostratigraphic formation. Two samples of the Alborn Member of the Aitkin Formation collected from core CW02 are not shown. * = sample has been reassigned to an interpreted depth due to inconsistency between texture result and sampled deposit-type. See Results section for details.

Borehole geophysics

Major hydrogeologic factors that can affect EM response are dissolved solids concentrations in the groundwater and silt and clay content (Williams et al., 1993). In general, boreholes logged using the EM-Induction sonde as part of this investigation have similar patterns in conductivity and gamma logs; increases in conductivity correspond to increasing gamma, likely due to increasing silt and clay content. Deviations from this pattern may correspond to changes in groundwater chemistry. Deviation depth intervals from Cromwell observation well cluster 1 (Figure 4) and Litchfield observation wells LFO1-F and LFO2-F (Figure 5) identify zones where changing dissolved solids concentrations may be occurring. Wells in Cromwell observation cluster 1 are closely spaced and deviation depth intervals roughly correspond in the upper 100 feet, particularly at depths 18 to 26 feet bgs and 60 to 70 feet bgs.(Figure 4). Deviation depth intervals in Litchfield LFO1-F and LFO2-F correspond to thick sand and gravel intervals in the bottom of the holes (Figure 5) and likely represent water chemistry differences in the confined aquifer from water in overlying fine-grained sediment.

During the June 24, 2015 logging of LFO2-F, the EM-Induction sonde stopped at 153 feet below the ground surface prior to logging, approximately 10 feet above the completed hole depth. The EM-Induction sonde has a larger diameter than the Gamma sonde and may have become stuck in a section of the casing that was not plumb. LFO2-F was re-logged using the EM-Induction sonde on August 19, 2015, this time with several wraps of electrical tape removed from the

lower portion of the sonde to reduce tool diameter. The sonde again stopped at 153 feet below the ground surface,

Figure 4. Qualitative identification of depth intervals where conductivity and gamma trends deviate, Cromwell observation well cluster 1. Rock-water conductivity measurements typically track gamma logs, with increasing conductivity associated with increased clay or silt content. Deviations from these trends may indicate changes in fluid conductivity due to changes in water chemistry. Both logs from EM-Induction sonde.

Figure 5. Qualitative identification of depth intervals where conductivity and gamma trends deviate, Litchfield observation wells LFO1-F and LFO2-F. Rock-water conductivity measurements typically track gamma logs, with increasing conductivity associated with increased clay or silt content. Deviations from these trends may indicate changes in fluid conductivity due to changes in water chemistry. Both logs from EM-Induction sonde.

resulting in no EM-induction record for the lower 10 feet of LFO2-F. EM-Induction and Gamma logs are included in Appendix B.

Prior to this investigation, borehole geophysical work by MGS has not included the EM-Induction sonde. The interpretation presented here is qualitative, and would benefit from review by USGS staff more familiar with EM-Induction logs. We see value in continued use of this sonde, recognizing casing material restrictions.

Discussion

Litchfield

Sediments encountered in the two cores (LF01, LF02) acquired from Litchfield, MN chronicle the incursion of the Des Moines Lobe of the Laurentide Ice Sheet (LIS) into south-central Minnesota, and its subsequent demise during the Late Wisconsinan glacial episode. During this stage, ice advanced out of Manitoba and Saskatchewan from the northwest, occupying the present-day Red River Valley, moving through Meeker County, and reaching as far south as Des Moine, Iowa by 14 ka BP (Clayton and Moran, 1982). The Des Moines Lobe represented the outlet of several dynamically-coupled ice streams (Patterson, 1997; Jennings, 2006) that eroded, incorporated, and transported materials from two broad source areas up-ice, conventionally referred to as "Riding Mountain" (northwest) and "Winnipeg" (north) provenances, the former of which is enriched proportionally with up to 50% higher gray Cretaceous Pierre shale content in the very-coarse sand (1-2 mm) fraction (Lusardi et al., 2011). The Villard Member of the New Ulm formation (QNVT) predominantly reflects a mixed Winnipeg provenance. Within the geographic boundaries of its occurrence, it has an average crystalline/carbonate/shale composition of .52/.31/.17 (Johnson et al., 2016). The reduced shale content, and the sandier texture compared to the Heiberg Member – the coeval and laterally stratigraphic equivalent member of the New Ulm Formation (the surface unit as little as 5 miles south and west of Litchfield (Meyer, 2015a)) – suggests that multiple ice sheds contributed distinctive lithological signatures to tills of the Des Moines Lobe, and impacted its dynamics, with the ice stream depositing the Villard Member having emerged from the north, and overridden and incorporated sandy materials of the Alexandria moraine complex in west-central Minnesota (Hobbs and Goebel, 1982). As this ice stream outlet thinned, it was partially captured by a second and buttressing outlet to the southwest that deposited the Heiberg Member till, shifting ice flow towards the northeast across most of Meeker County, and enabling ice to overtop the St. Croix moraine, thus spawning the Grantsburg Sublobe (Lusardi et al., 2011). The Villard Member in south-central Minnesota has not been directly dated, however, it is assumed correlative with the event that formed the Pine City moraine in east-central Minnesota between approximately 12 ka

¹⁴C yr BP (14 ka cal yr BP; Wright and Rubin, 1956; Clayton and Moran, 1982) and 13 ka BP (16 ka cal yr BP; Jennings et al., 2013).

Recent work documents large-scale reorganizations of ice flow during the late last glacial within catchment areas of the Des Moines Lobe in southern Saskatchewan and Manitoba (Ross et al., 2009; O'Cofaigh et al., 2010), and these shifts are likely linked, in combination with local factors, to subtle variations in till texture, colour and visible clast lithologies documented here down-core in LF01 and LF02. The observed increase in felsic igneous lithologies, the introduction of sparse Late Precambrian North Shore Volcanic Group (NSVG) red volcanics, and the associated proportional reduction of carbonates (Paleozoic limestone and dolostone) incorporated as clasts within till at the base of both cores, indicate local incorporation of older Rainy provenance materials, most likely till and/or outwash of the underlying Hewitt Formation (including deposits of the Alexandria moraine complex) deposited by the Wadena Lobe early in the Late Wisconsinan. The sustained presence of Cretaceous shale corroborates that this is indeed a mixed-provenance unit, as the pure Hewitt Formation is devoid of this lithology. At both sites, it is inferred that all changes in the nature of the tills reflect variability within a single member (i.e., units nvt, nva of the Villard Member) of the New Ulm formation driven by fluctuating ice stream dynamics and interactions at the ice-bed interface, rather than oscillations between members (i.e., Villard vs. Heiberg), as mean sand, silt, and clay proportions of all QNVT tills shown here are within 1 standard deviation of values reported by workers in surrounding counties for the Villard Member of the New Ulm Formation (e.g., Lusardi, 2009; Lusardi et al., 2012, Meyer, 2015b). Systematic counts of the very coarse sand (1-2 mm) fraction were not completed for this study, but would be the preferred method of establishing a basis for this argument, as discrete members of the New Ulm Formation retain well-understood and distinctive lithologic assemblages (Johnson et al., 2016), and exhibit unique areal distributions on bivariate plots comparing % sand and % shale (Harris, 1998). Down-hole 1-2 mm grain counts were completed by the MGS on samples from a rotary-sonic core (MS-3) drilled 0.17 miles west of LF02 in support of the Meeker County Geological Atlas (Meyer, 2015b), and all tills described there from the surface to a depth of 134 ft. were interpreted as Villard Member of the New Ulm Formation.

The uppermost sands and gravelly sands encountered at surface in LF01 are interpreted as deltaic sediments deposited as interflow and underflow plumes into Glacial Lake Litchfield II (GLL II) (represented in the sediment archive in LF01 from 12-20.5'), which formed following recession from a late-stage re-advance of the Des Moines Lobe, when drainage was blocked to the north by stagnant ice, and to the east, by the western margin of the Grantsburg Sublobe in Wright County (Meyer, 2015a). The thin outwash sequence bounded by till, present from 21.75-28' in core LF02, possibly marks the position of this re-advance in the local stratigraphy. Though the difference in surface elevation between LF01 and LF02 is minor (< 25 ft.), the latter boring is sited on a till knob which evidently escaped inundation by the lake body, suggesting GLL II was relatively shallow and possibly short-lived.

Cromwell

Core materials recovered from CW02 detail lobate interactions of the LIS in north-eastern Minnesota throughout the Late Wisconsinan glacial episode. During the St. Croix phase, the first of multiple, successively less-expansive configurations of the Superior Lobe recognized within the Late Wisconsinan, ice (sourced from the Labrador-Québec divide centered south of Ungava Bay) occupied the Lake Superior lowland and advanced – confluently with the Rainy Lobe – south into west-central and south-central Minnesota, culminating in the deposition of the St. Croix moraine between 15 and 20 ka cal yr BP (Wright, 1972; Clayton and Moran, 1982; Johnson and Mooers, 1988). Subsequently, the Superior Lobe contracted back into the Lake Superior basin, fronted by networks of small proglacial lakes depositing fine sands, silts and clays which were later incorporated into the basal deposits of a second Superior Lobe advance (The Automba Phase) \sim 13.5 – 14 ka cal yr BP, which generated the Mille Lacs Moraine along its westernmost extent (Wright, 1972).

Glacial tills and associated glaciolacustrine and glaciofluvial meltwater deposits of the St. Croix and Automba phases of the Superior Lobe are lithostratigraphically assigned to the Cromwell Formation (QCMU; Wright et al., 1970; Johnson et al., 2016). Materials of this formation are present in core CW02 from 8.5' through to the base (120'), and consist of ~ 76.5' of subglacial till overlain by a ~ 20' sequence of variously graded and stratified proglacial outwash. Large (\leq 17 ft.) and frequent intervals of core loss and/or zero recovery in CW02 preclude detailed consideration of the glacial stratigraphy at this location; in particular, because differentiation of Automba and St. Croix phase deposits based on texture or lithology is problematic and generally relies on stratigraphic sense. This difficulty is exacerbated by a lack of confidence in sample texture results (see Results above). Though no formal assignment is offered here, the entire package of sediments below 8.5' is assumed Automba Phase in origin, in keeping with more regional subsurface mapping completed by the MGS for the Carlton County Geologic Atlas (Hobbs and Knaeble, 2009; Knaeble and Hobbs, 2009), including description of a rotary-sonic core (Unique #: 257600) drilled to 162 ft. depth 2.5 miles north of CW02. This package is hence interpreted as a continuous record marking sedimentation during a single phase of advance (subglacial till) and retreat (proglacial outwash over subglacial till) of the Superior Lobe. Assuming correct reassignment of misordered samples to depth, mean sand proportions of QCMU tills derived here are within 2 standard deviations, silt proportions within 3 standard deviations, and clay values equivalent to those reported by Hobbs and Knaeble (2009).

The Cromwell Formation in CW02 is capped by $\geq 5.5^{\circ}$ of distinctive reddish-brown (5YR 4/4 – 7.5YR 4/4) silty diamicton interpreted as the Alborn Member of the Aitkin Formation (*QAIA*). The Aitkin Formation includes all deposits associated with the St. Louis Sublobe of the Koochiching Lobe, which advanced from the northwest as a piedmont glacier into glacial lakes Aitkin I and Upham I that formed following retreat of the Superior Lobe from its maximum Automba Phase configuration ~12.5 ka ¹⁴C yr BP (~15 ka cal yr BP) (Jennings et al., 2013). The prominent red color and silt loam to clay loam texture of the Alborn Member derives from

incorporation of fine-grained Glacial Lake Upham I sediments and underlying Automba Phase deposits. It exists at surface as only a narrow (1-8 miles wide) rim which demarcates the boundary of the St. Louis Sublobe beyond the former extent of Glacial Lake Upham II, which formed following the sublobe's collapse (Johnson et al., 2016). Two samples of Alborn Member till retrieved at surface from core CW02 diverge widely in terms of texture (again, assuming correct reassignment of misordered samples to depth). Clear indications of pedogenesis, including leaching, oxidation, root infiltration, fines translocation and ped development through the 0-1.5 ft. interval, and the presence of a platy, illuviated, argillic horizon from 3.5-5.5 ft. suggest extensive modification by soil-forming processes, and hence, that a representative sample of Alborn Member till was not obtained. Consequently, these samples are not isolated for comparison in Fig.3. It is important to note that the assignment of this uppermost diamicton in CW02 to the Alborn Member is somewhat tenuous, given the misassignment of textures to depth intervals, and the tendency for soil-forming processes to sufficiently alter Cromwell Formation tills such that they may be texturally indistinguishable from those of the Alborn Member (Alan Knaeble, pers comm.). Hobbs and Knaeble (2009) depict the surface unit at site CW02 as Cromwell Formation till (Qat), however this assessment was based locally on a hand sample obtained from a surface exposure, and thus did not account for the underlying ~20 ft. of sorted outwash deposits, which are considered here as a significant bounding unit between formations. The Alborn Member is construed as relatively patchy in the mapping of Hobbs and Knaeble (2009) and exists at surface as close as 3 miles east of CW02.

Acknowledgements

The author gratefully acknowledges funding from the United States Geological Survey (USGS) via the Environment and Natural Resource Trust Fund as recommended by the Legislative and Citizen's Commission on Minnesota Resources (LCCMR) for their support of this investigation. Meetings and informal discussions with Dr. William Simpkins and Alyssa Witt from Iowa State University along with Jim Stark and Jared Trost at the USGS helped guide the content of this report. Special thanks also to Andy Berg of the USGS for great field support!

References cited

- Clayton, L., and Moran, S.R. 1982. Chronology of late-Wisconsinan glaciation in middle North America. Quaternary Science Reviews, 1: 55-58.
- Hobbs, H.C., and Goebel, J.E. 1982. Geologic map of Minnesota, Quaternary geology. Minnesota Geological Survey State Map S-1, scale 1:500,000.
- Hobbs, H.C., and Knaeble, A.R. 2009. Plate 4 Quaternary Stratigraphy. C-19 Geologic atlas of Carlton County, Minnesota [Part A]. Minnesota Geological Survey. Retrieved from the University of Minnesota Digital Conservancy, http://purl.umn.edu/58760.
- Jennings, C.E. 2006. Terrestrial ice streams A view from the lobe. Geomorphology, 75(1-2): 100-124.
- Jennings, C.E., Adams, R.S., Arends, H.E., Breckenridge, A., Friedrich, H.G., Gowan, A.S., Harris, K.L., Hobbs, H.C., Johnson, M.D., Knaeble, A.R., Larson, P., Lusardi, B.A., Meyer, G.N., Mooers, H.D., and Thorleifson, L.H. 2013 Deglacial margin chronology of Minnesota and implications. Canadian Quaternary Association and Canadian Geomorphology Research Group Conference, Edmonton, Alberta, Program and Abstracts: 134 p.
- Johnson, M.D., Adams, R.S., Gowan, A.S., Harris, K.L., Hobbs, H.C., Jennings, C.E., Knaeble, A.R., Lusardi, B.A., and Meyer, G.N. 2016. Quaternary lithostratigraphic units of Minnesota. Minnesota Geological Survey Report of Investigations, 68: 262 p.
- Johnson, M.D., and Mooers, H.D. 1998. Ice-margin positions of the Superior lobe during Late Wisconsinan deglaciation. In: Patterson, C.J., and Wright, H.E., Jr. (eds.), Contributions to Quaternary studies in Minnesota. Minnesota Geological Survey Report of Investigations, 49: 7-14.
- Knaeble, A.R., and Hobbs, H.C. 2009. Plate 3 Surficial Geology. C-19 Geologic atlas of Carlton County, Minnesota [Part A]. Minnesota Geological Survey. Retrieved from the University of Minnesota Digital Conservancy, http://purl.umn.edu/58760.
- Lusardi, B.A., Jennings, C.E., and Harris, K.L. 2011. Provenance of Des Moines lobe till records ice-stream catchment evolution during Laurentide deglaciation. Boreas, 40(4): 585-597.
- Lusardi, B.A., Meyer, G.N., Knaeble, A.R., Gowan, A.S., and Jennings, C.E. 2012. Plate 4 Quaternary Stratigraphy. C-24 Geologic Atlas of Sibley County, Minnesota [Part A]. Minnesota Geological Survey. Retrieved from the University of Minnesota Digital Conservancy, http://purl.umn.edu/116056.

- Meyer, G.N. 2015a. Plate 3 Surficial Geology. C-35 Geologic Atlas of Meeker County, Minnesota [Part A]. Minnesota Geological Survey. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/166576.
- Meyer, G.N. 2015b. Plate 4 Quaternary Stratigraphy. C-35 Geologic Atlas of Meeker County, Minnesota [Part A]. Minnesota Geological Survey. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/166576.
- O'Cofaigh, C., Evans, D.J.A., and Smith, I.R. 2010. Large-scale reorganization and sedimentation of terrestrial ice streams during late Wisconsinan Laurentide Ice Sheet deglaciation. Geological Society of America Bulletin, 12: 743-756.
- Patterson, C.J. 1996. Southern Laurentide ice lobes were created by ice streams: Des Moines Lobe in Minnesota, USA. Sedimentary Geology, 111: 249-261.
- Ross, M., Campbell, J.E., Parent, M., and Adams, R.S. 2009. Palaeo-ice streams and the subglacial landscape mosaic of the North American mid-continental prairies. Boreas, 38: 421-439.
- Williams, J.H., Lapham, W.W. Barringer, T.H., 1993, Application of electromagnetic logging to contamination investigations in glacial sand-and-gravel-aquifers. Ground Water Monitoring and Remediation, v.13, no. 1: 129-138. Wright, H.E., Jr. 1972. Quaternary history of Minnesota. In: Sims, P.K., and Morey, G.B. (eds.), Geology of Minnesota—A centennial volume. Minnesota Geological Survey: 515-547.
- Wright, H.E., Jr., and Rubin, M., 1956. Radiocarbon dates of Mankato drift in Minnesota. Science, 124(3223): 625-626.
- Wright, H.E., Jr., Mattson, L.A., and Thomas, J.A. 1970. Geology of the Cloquet quadrangle, Carlton County, Minnesota. Minnesota Geological Survey Geologic Map, GM-3: 30 p.
Appendices: Logging and analysis of core materials and borehole geophysical logs

Appendix A – Logging and analysis of core materials

Appendix A.1 Textural analysis

_	Q#	Sample	Top (f)	Bot. (f)	Sand Separate	Silt Separate	Clay Separate	Gravel Fraction	Deposit Type	Leached	Dry Color	Wet Color	Formation
		CW02/01	1	1.5	0.52	0.37	0.12	0.13	Soil Modified Till	Y	7.5YR 4/4	10YR 4/4	QAIA
		CW02/10*	4	4.5	0.15	0.62	0.22	0.01	Soil Modified Till	Y	5YR 4/4	5Y 4/4	QAIA
		CW02/11*	8.5	10.5	0.97	0.01	0.02	0.01	Outwash	Y	10YR 4/4	10YR 5/8	QCMU
		CW02/12*	15	15.5	0.96	0.02	0.02	0.08	Outwash	Y	10YR 4/4	10YR 6/6	QCMU
		CW02/13*	19	19.5	0.97	0.01	0.03	0.26	Outwash	Y	10YR 3/4	2.5Y 7/6	QCMU
		CW02/14*	22	22.5	0.98	0	0.02	0	Outwash	Y	10YR 5/3	2.5Y 7/6	QCMU
		CW02/15*	27	27.5	0.99	0	0.01	0.11	Outwash	Y	7.5YR 3/2	2.5Y 8/2	QCMU
	274	CW02/08	44	44.5	0.54	0.33	0.13	0.09	Till	N	5Y 4/2	5Y 4/4	QCMU
	Q0045	CW02/09	48.5	50	0.53	0.31	0.16	0.13	Till	N	7.5YR 3/2	5Y 4/4	QCMU
	8	CW02/02*	54	54.5	0.63	0.27	0.1	0.19	Till	N	7.5YR 3/2	5Y 4/4	QCMU
		CW02/03*	63	63.5	0.61	0.3	0.09	0.34	Till	N	7.5YR 3/2	5Y 4/4	QCMU
		CW02/04*	66.5	67	0.58	0.29	0.13	0.1	Till	N	7.5YR 3/2	5Y 4/4	QCMU
		CW02/05*	81.5	82	0.56	0.3	0.14	0.16	Till	N	7.5YR 3/2	5Y 4/4	QCMU
		CW02/06*	94	94.5	0.56	0.3	0.14	0.16	Till	N	7.5YR 3/2	5Y 4/4	QCMU
		CW02/07*	106	106.5	0.54	0.32	0.14	0.14	Till	N	7.5YR 3/2	5Y 4/4	QCMU
		CW02/16	108.5	109	0.56	0.33	0.11	0.08	Till	N	7.5YR 3/2	5Y 4/4	QCMU
		CW02/17	119.5	120	0.56	0.33	0.11	0.1	Till	N	7.5YR 3/2	5Y 4/4	QCMU
		LF01/01	6	6.25	0.97	0.03	0	0	Deltaic	Y	2.5Y 7/2	2.5Y 7/8	QNVT
		LF01/02	10	10.25	0.97	0.03	0	0.01	Deltaic	Ν	2.5Y 5/4	2.5Y 7/8	QNVT
		LF01/03	13	13.25	0.76	0.24	0	0	Deltaic	Ν	2.5Y 5/2	2.5Y 6/8	QNVT
		LF01/04	16	16.25	0.03	0.9	0.07	0	Glaciolacustrine	Ν	2.5Y 5/3	2.5Y 4/4	QNVT
		LF01/05	16.5	16.75	0.02	0.93	0.05	0	Glaciolacustrine	Ν	2.5Y 5/3	10YR 3/4	QNVT
		LF01/06	19.5	20	0.01	0.87	0.12	0	Glaciolacustrine	Ν	2.5Y 4/1	2.5Y 5/2	QNVT
		LF01/07	39.5	40	0.3	0.42	0.27	0.02	Till	Ν	2.5Y 4/1	2.5Y 5/2	QNVT
		LF01/08	43.5	43.75	0.09	0.56	0.35	0.03	Ice Contact	Ν	2.5Y 6/2	2.5Y 5/2	QNVT
	5272	LF01/09	46	46.25	0.52	0.35	0.13	0.05	Till	Ν	2.5Y 3/1	2.5Y 5/2	QNVT
	0Q004	LF01/10	52	52.25	0.58	0.29	0.13	0.22	Till	Ν	2.5Y 5/2	2.5Y 5/2	QNVT
	0	LF01/11	53	53.25	0.48	0.34	0.18	0.06	Till	Ν	2.5Y 3/1	2.5Y 5/2	QNVT
		LF01/12	55	55.25	0.46	0.34	0.2	0.09	Till	Ν	2.5Y 3/1	2.5Y 5/2	QNVT
		LF01/13	58	58.25	0.46	0.36	0.18	0.03	Till	Ν	2.5Y 3/1	2.5Y 5/2	QNVT
		LF01/14	62	62.25	0.45	0.36	0.19	0.06	Till	Ν	2.5Y 3/1	2.5Y 5/2	QNVT
		LF01/15	65	65.25	0.47	0.36	0.18	0.1	Till	Ν	2.5Y 3/1	2.5Y 5/2	QNVT
l		LF01/16	72	72.25	0.47	0.32	0.21	0.07	Till	Ν	2.5Y 3/1	2.5Y 5/2	QNVT
l		LF01/17	75	75.25	0.45	0.33	0.23	0.08	Till	Ν	2.5Y 3/1	2.5Y 5/2	QNVT
l		LF01/18	78	78.25	0.65	0.27	0.08	0.02	Lensoidal	Ν	2.5Y 3/1	2.5Y 5/2	QNVT
L		LF01/19	80.5	81	0.85	0.09	0.06	0.07	Glaciofluvial	N	2.5Y 4/2	2.5Y 5/2	QNVT

i.	1											
	LF01/20	81.5	81.75	0.88	0.08	0.04	0.28	Glaciofluvial	Ν	2.5Y 4/2	2.5Y 5/4	QNVT
	LF01/21	81.75	82	0.67	0.15	0.18	0.05	Till	Ν	2.5Y 3/1	2.5Y 5/2	QNVT
	LF01/22	84	84.25	0.95	0.03	0.02	0	Glaciofluvial	Ν	2.5Y 5/2	10YR 6/4	QNVT
	LF01/23	84.25	85	0.56	0.29	0.15	0.03	Till	N	2.5Y 4/1	2.5Y 5/2	QNVT
	LF01/24	90	90.5	0.53	0.33	0.14	0.05	Till	N	2.5Y 3/1	2.5Y 5/2	QNVT
	LF02/01	3	3.5	0.5	0.34	0.16	0.05	Till	N	2.5Y 5/4	10YR 6/6	QNVT
	LF02/02	6.5	7	0.47	0.33	0.2	0.05	Till	N	2.5Y 4/4	10YR 6/6	QNVT
	LF02/03	12.5	13	0.47	0.35	0.18	0.05	Till	N	2.5Y 4/4	10YR 6/6	QNVT
	LF02/04	16.5	17	0.44	0.35	0.2	0.07	Till	N	2.5Y 4/2	2.5Y 4/4	QNVT
	LF02/05	18.5	18.75	0.52	0.35	0.13	0	Lensoidal	N	2.5Y 6/4	2.5Y 5/6	QNVT
	LF02/06	21	21.5	0.45	0.34	0.21	0.1	Till	N	2.5Y 3/1	2.5Y 4/4	QNVT
	LF02/07	24.5	25	0.97	0.02	0.01	0.01	Glaciofluvial	N	2.5Y 5/3	2.5Y 7/6	QNVT
	LF02/08	27	27.5	0.91	0.08	0.01	0.05	Glaciofluvial	Ν	2.5Y 4/1	2.5Y 5/4	QNVT
	LF02/09	30.5	31	0.53	0.31	0.16	0.06	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/10	33.5	34	0.49	0.32	0.19	0.05	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/11	38	38.5	0.5	0.31	0.18	0.07	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/12	42	42.5	0.49	0.33	0.17	0.07	Till	N	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/13	46.5	47	0.46	0.32	0.21	0.06	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
с	LF02/14	50	50.5	0.46	0.34	0.2	0.28	Till	Ν	5Y 3/1	2.5Y 4/2	QNVT
04527	LF02/15	54	54.5	0.46	0.36	0.18	0.05	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
0000	LF02/16	58	58.5	0.46	0.34	0.2	0.04	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/17	61	61.5	0.47	0.31	0.22	0.08	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/18	65	65.5	0.5	0.32	0.18	0.11	Till	Ν	2.5Y 3/2	2.5Y 4/2	QNVT
	LF02/19	68	68.5	0.47	0.33	0.2	0.06	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/20	73	73.25	0.64	0.27	0.09	0.08	Till	Ν	2.5Y 4/2	2.5Y 4/2	QNVT
	LF02/21	75.5	76	0.53	0.32	0.15	0.07	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/22	80.5	81	0.48	0.34	0.18	0.11	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/23	84.5	85	0.47	0.32	0.21	0.05	Till	Ν	2.5Y 3/2	2.5Y 4/2	QNVT
	LF02/24	88	88.5	0.47	0.36	0.17	0.04	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/25	93	93.5	0.47	0.35	0.19	0.03	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/26	97.5	98	0.48	0.31	0.21	0.04	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/27	102	102.5	0.44	0.35	0.21	0.04	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/28	106	106.5	0.47	0.34	0.19	0.07	Till	Ν	2.5Y 3/1	2.5Y 4/2	QNVT
	LF02/29	107.25	107.5	0.87	0.09	0.05	0.58	Glaciofluvial	Ν	2.5Y 5/2	2.5Y 6/2	QNVT
	LF02/30	112	112.5	0.58	0.29	0.13	0.06	Till	N	5Y 3/1	2.5Y 4/2	QNVT

Appendix A.2 Description and correlation of log units

Description of Log Units

QUATERNARY Wisconsinan Episode

New Ulm Formation Villard Member

nd	DELTAIC - Interbedded very fine grained to very coarse grained sand and very fine to medium gravels
ns	GLACIOLACUSTRINE - Very fine to fine grained sand interbedded with very fine grained silt to sandy silt.
nvt	LOAMY TILL - Loam textured, unsorted sediment (diamicton).
nva	SANDY LOAM TILL - Loam to sandy loam textured, unsorted sediment (diamicton).
ng	OUTWASH - Massive to planar parallel to cross stratified fine to very coarse sand and very fine to coarse gravel.

Aitkin Formation Alborn Member

S Qat to

SILT LOAM TILL - Predominantly silt loam to clay loam textured, unsorted sediment (diamicton).

Cromwell Formation Automba and/or St. Croix Phase

Qco	OUTWASH - Massive to planar parallel to cross stratified fine to very coarse sand and very fine to coarse gravel.
Qct	SANDY LOAM TILL - Sandy loam to loam textured, unsorted sediment (diamicton).

Correlation of Log Units

Appendix A.3 Core descriptions LF01 – Graphical log

-	Depu	Linio	Description	Colour	HCL	Sampre	Notes
			0-3.8: Fill materials, loamy sand and gravel.				
nd	5		 Ioamy fine sand. Leached. 5-5.5: Alternating brown medium-fine sand and pebbles with fine brown-black sand. Pockets of secondary carbonate. Orange, oxidized. 5.5-6: Medium to coarse sand and fine gravel, brown, with high concentration of secondary carbonate. 	2.5Y 7/2		LF01/01 6-6.25	Soil A horizon (buried). Illuviated soil B horizon (buried).
	7-		6-7: Clean, tan fine sand, massive. Thin bed of laminated brown silt under dark brown medium sand below 6.5'. Red/rusty mottling.				
nd			9-12: Tan, medium to coarse sand, massive, with pebbles at 9'. Slightly finer and browner at 11'. Lots of clear quartz, some carbonate, in very coarse sand fraction.	2.5Y 5/4		LF01/02 10-10.25	Distal deltaic, homopycnal interflow deposits.
ns	12-		12-14: Sharp upper contact to 4" of massive brown silt over planar parallel laminated very fine sand and sandy silt. Finer bedding and more brown until 13', then slightly coarser and grayer. Red and black laminae. 14-15.75: Mottled tan-brown fine sand,	2.5Y 5/2		LF01/03 13-13.25	Glaciolacustrine

Core ID: LF CWI Uniqu	01 e No.: 773058	Location: Litchfield Co./T/R/S/SS: 47	l, MN Elevatio	on (f): 1114.5 Coring Date: 06/09/2015	Drillin 5 Lo	g Method: Ho ogging Geolog	llow-st ist: Ka	em leb Wagner	Logging Date: 10/13/2015 Location Described: MGS
Unit	Depth (f)	Lithology	De	escription		Colour	HCl*	Sample**	Notes
ns			15.75-16.5: Plana laminated tan-bro and silt. Black lan Vaguely scoured of massive brown fir 16.5-17.5: Brown black laminae at of towards gradation 17.5-20.5: Grey f rich silt, relatively	ar parallel to ripplown very fine sand ninae of silt @ 16 contact to overlyir ne sand. n silt with very fine depth. Inverse gra nal lower contact. microlaminated cla y dense.	e d ng ading ay-	2.5Y 5/3 2.5Y 5/3 2.5Y 4/1	1	LF01/04 16-16.25 LF01/05 .6.5-16.75 LF01/06 19.5-20	Glaciolacustrine.
	21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 28 - 29 -								
Pg. 2 of 6	CI	Si'S'G'CD				*Effervescent	*Non	-effervescent	**Texture **Porewater

CWI Uniqu	ae No.: 773058	Co./T/R/S/SS: 47	/119N/31W/11/ABACBB Coring Date: 06/09/2015 I	Logging Geologi	st: Kaleb Wagner	Location Described: MGS
Unit	Depth (f)	Lithology	Description	Colour I	HCl* Sample**	Notes
nvt			 39-39.5: Deformed brown, medium sand. 39.5-43.5: Massive, matrix-supported diamicton. Moderately clast-rich. Clasts mostly subrounded, mostly carbonates, very fine to medium gravel-size. Graybrown loam matrix. Granular structure. Deformed light grey banding @ 39.5'. More compact below 40'. Stringers of grey very fine sand @ 41'. Mixing of brown and dark brown matrices below 41.5'. 	2.5Y 4/1	LF01/07 39.5-40	No core recovered from 30-39'. Ablation till, Riding Mountain- Winnipeg Provenance.
			43.5-44: Alternating dry gray silt and dark brown fine sand. 44-44.25: Massive brown clay.	2.5Y 6/2 (silt)	LF01/08 43.5-43.75	Depression hollow ponding.
nva	$45 - 0 \circ 0$		44.25-52: Relatively dense, grey, massive, matrix-supported diamicton. Sandy loam matrix. Frequent fractures, some with light brown or rust coloured fine sandy skins/infills. Some fracturing, probably an artefact of coring and exhumation/expansion. Very fine to medium gravel-sized clasts, mostly subrounded but vary to subangular. Felsics, mafics, carbonate, shale present; perceived increase in shale content with depth. Higher proportion of medium gravel-sized clasts below 50'.	, 2.5Y 3/1	LF01/09 46-46.25	Subglacial till, Riding Mountain- Winnipeg provenance.
			52-52.25: Carbonate-cemented, light brown, compact, fine sandy loam diamicton. 52.25-54: Similar diamicton to 44.25'+, less fractured.	2.5Y 5/2 2.5Y 3/1	51-51.5 LF01/10 52-52.25 LF01/11 53-53.25	
Pg. 3 of 6	C1 9	Sils GICID	1	*Effervescent	*Non-effervescent	**Texture **Porewater

Elevation (f): 1114.5

Drilling Method: Hollow-stem

Core ID: LF01

Location: Litchfield, MN

Logging Date: 10/13/2015

CWI Uniqu	e No.: 773058	Co./T/R/S/SS: 47/	(119N/31W/11/ABACBB Coring Date: 06/09/2015 L	ogging Geologi	st:	Kaleb Wagner	Location Described: MGS
Unit	Depth (f)	Lithology	Description	Colour H	10	l* Sample**	Notes
nvt			54-59: Similar diamicton as above, but with apparent higher proportion of felsic lithologies. Several clasts around 55' are partially disintegrated and have highly weathered rinds.	2.5Y 3/1 2.5Y 3/1		LF01/12 55-55.25 56-56.5 LF01/13 58-58.25	Subglacial till, Riding Mountain- Winnipeg Provenance.
nvt	62-00			2.5Y 3/1		LF01/14 62-62.25	
	64-		61.5-69: Very dense brown to grey- brown, massive, matrix-supported diamicton. Loam matrix; fines with depth, grading to siltier loam texture. Subtle colour change from grey-brown to grey with depth. Subhorizontal	2.5Y 3/1		63.5-64 LF01/15 65-65-25	
nvt			ractures (exhumation related?) from 61.5-65'. Very fine to coarse gravel- sized subangular to subrounded clasts. High proportion of carbonate clasts. Some shale, though visibly lower proportion than above, or perhaps just fewer large shale clasts. Chert @ 62'.				Subglacial till,
						60 5 60	Riding Mountain- Winnipeg provenance.
Pa A of f	CI	Sil S G CID		*Efferment	*>	lon offerror ut	**Toyburg
1'g. 4 of 6	101 1			~Effervescent	TN-	von-effervescent	Porewater

Elevation (f): 1114.5

Drilling Method: Hollow-stem

Logging Date: 10/13/2015

Core ID: LF01

Core ID: LF CWI Uniqu	701 1 e No.: 773058	Location: Litchfield Co./T/R/S/SS: 47/	, MN Elevatio /119N/31W/11/ABACBB	on (f): 1114.5 Dri Coring Date: 06/09/2015	lling Method: Ho Logging Geolog	llow ;ist:	r-stem Kaleb Wagner	Logging Date: 10/13/2015 Location Described: MGS
Unit	Depth (f)	Lithology	D	escription	Colour	нс	l* _{Sample**}	Notes
nvt			71.5-74: Overcor massive, matrix- with loam matrix Many potassium f felsic igneous lith argillyte @72' - p basin sourced. 74-78.25: Similar but with siltier loa proportion of carl igneous (possibly lithologies, visible axis) chert clast a gravel-sized clast common in this in 78.25-78.5: Ligh fine sand, probab	nsolidated grey, supported diamicton . Extremely dense. feldspars. Increase in nologies overall. Pink botentially Superior at matrix. High bonate and pink felsi / a few reds) e shale. Large (7 cm at 76.5'. Very fine ts of cherty lithologie nterval.	2.5Y 3/1 2.5Y 3/1 2.5Y 3/1 2.5Y 3/1		LF01/16 72-72.25 LF01/17 75-75.25 LF01/18 78-78.25	Subglacial till and basal sorted sediment deposits, Riding Mountain- Winnipeg provenance; local incorporation of Rainy provenance materials.
nvt	79-70		79-80: Similar di 80-81: Well-sorte sand.	amicton as 71.5'+. ed light brown mediu	m 2.5Y 4/2 (m. sand	,	LF01/19 80.5-81 LF01/20	
	81-	3	and silt. 81.25-81.5: Poor	ly-sorted fine to very	2.5Y 3/1		LF01/21 81.75-82	
nva	82-		gravel. Carbonate	e-rich.				
nva	83-0-00		81.5-84: Overcor massive, matrix- Extremely dense. with obvious text above diamicton. contact.	nsolidated grey, supported diamicton . Sandy loam matrix cural change from . Scoured upper				
Pg. 5 of 6	Cl	Si S G C D	 		*Effervescen	*N	lon-effervescent	**Texture **Porewater

Core ID: LF01	Location: Litchfield, MN	Elevatio	n (f): 1114.5	Drilling	g Method: Hollow-stem	Logging Date: 10/13/2015
CWI Unique No.: 773058	Co./T/R/S/SS: 47/119N/31W/11/2	ABACBB	Coring Date: 06/09/201	5 Lo	gging Geologist: Kaleb Wagner	Location Described: MGS

Unit	Depth (f)	Lithology	Description	Colour	нс	l* Sample**	Notes
nva	85		84-84.25: Massive, grey silty very fine sand over brown medium sand. No apparent structure. Drilling issues encountered at this depth, possible that this could be slough from unbole (2)	2.5Y 5/2 2.5Y 4/1		LF01/22 84-84.25 LF01/23 84.25-85	
	86 -		84.25: Water saturated grey sandy silt, mixed with underlying diamict; either drilling slough or an erosive contact. 84.25-85: Grey, overconsolidated,				Subglacial till and basal sorted sediment deposits, Riding
	87 -		massive, matrix-supported diamicton. Coarse-grained sandy loam matrix texture. Very fine to medium gravel- sized subangular to subrounded clasts. Carbonate and shale present but clearly in lower proportions than				Mountain- Winnipeg provenance; local incorporation of Painy
	89-		uphole. Proportionally more felsic igneous lithologies. Purplish-red rhyolite and vesicular basalt indicative of local incorporation of northeastern- sourced/Northshore lithologies.				provenance materials.
nva	90		89-89.75: Massive grey to light brown medium sand grading at depth to grey sandy silt. 89.75-90.5: Similar diamicton as	2.5Y 3/1		LF01/24 90-90.5 90.5-91	
Pg. 6 of 6	CI	_{Si} S G C D		*Effervescen	t *N	Jon-effervescent	**Texture **Porewater

Core ID: LI CWI Uniqu	F02 1e No.: 773052	Location: Litchfield Co./T/R/S/SS: 47	, MN Elevation (f): 1139.3 Drillin /119N/31W/02/CACDBD Coring Date: 06/19/2015 I	ng Method: Ho .ogging Geolog	ollow-st gist: Ka	em leb Wagner	Logging Date: 10/16/2015 Location Described: MGS
Unit	Depth (f)	Lithology	Description	Colour	HCI*	Sample**	Notes
nva			1.5-4: Oxidized olive to yellow-brown, massive, matrix-supported diamicton. Loam matrix. Moderately clast-rich; felsics and mafic igneous/carbonate/ weathered shale. Granular structure. Clear stringers of secondary carbonate. Red ochre spots present throughout. Clasts mostly subrounded but vary to subangular. Several broken-up, weathered micaceous granites.	2.5Y 4/4		LF02/01 3-3.5	Soil-modified ablation (?) till, Riding Mountain- Winnipeg provenance.
nva	5-		6-6.5: Similar diamicton as 1.5'+ but very dessicated. Poor recovery.				
nvt			 6.5-7: Dark gray, massive, matrix-supported diamicton. Coarse grained, friable. Possibly mixed with slough (?). 7-9: Similar diamiction as 1.5'+, but finer matrix, and more clast-rich, with more visible shale present. Accumulation of secondary carbonate @ 7.25'. Frequent broken-up, weathered micaceous granites. 	2.5Y 4/4		LF02/02 6.5-7	
nvt			9.5-13.5: Similar diamicton as 7'+, but lacks secondary carbonate. Frequent red ochre spots.	2.5Y 4/4		LF02/03 12.5-13 13.5-14	Ablation (?) till, Riding Mountain- Winnipeg provenance.
nvt		Sil s GICID		*Effervescen	t *Nor	-effervescent	**Texture **Porewater

LF02 – Graphical log

Core ID: LF02	Location: Litchfield, MN	Elevatio	on (f): 1139.3	Dril	lling Method: Hollow-stem	Logging Date: 10/16/2015
CWI Unique No.: 773052	Co./T/R/S/SS: 47/119N/31W/02/C	CACDBD	Coring Date: 06/19/201	5	Logging Geologist: Kaleb Wagner	Location Described: MGS

Unit	Depth (f)	Lithology	Description	Colour	HCl*	Sample**	Notes
nvt			 14-16.3: Yellow-brown oxidized massive, matrix-supported diamicton. Sandy loam matrix with granular structure. Grades to unoxidized grey-brown colour at base. 16.3-18.5: Same as above, but unoxidized and grey. Red rusty precipitate along cracks. Rich in shale. Fining matrix with depth, grading to sandy clay loam at base. 18.5-19: Alternating planar parallel laminated yellow-brown very fine sand. Capped by rusty bedding @ 18.5'. 1.5" thick dark grey massive, matrix-supported diamict inclusion with sandy clay loam matrix at 18.75'. 	2.5Y 4/2 2.5Y 6/4		LF02/04 16.5-17 LF02/05 18.5-18.75	Ablation (?) till, Riding Mountain- Winnipeg provenance.
			19-21.75: Dark grey, overconsolidated, massive, matrix-supported diamicton. Sandy clay loam matrix. High fissility with a platy breakage structure. Subangular to subrounded carbonates, felsic and mafic igneous. Some visible shale, but proportionally less than above. Purple basalt @ 20'.	2.5Y 3/1		LF02/06 21-21.5	
ng	22-		21.75-23.1: Brown silty sand and gravel over light brown oxidized planar parallel bedded sand, alternating between fine and medium grain size.				
		\succ	sand.				
ng	24-		24-25: Moderately well-sorted, massive, brown medium sand over 3" of dark brown silty sand at base. Quartz and carbonate-rich.	2.5Y 5/3		LF02/07 24.5-25	
	26-	\times					Proglacial outwash.
	27		26.5-27: Drilling slough.			LE02/08	
ng	27		27-28.5: Brown very fine bedded sandy silt over bedded grey silt over poorly sorted fine to coarse brown sand with occasional fine subrounded gravels. Sand is bedded in upper 3", massive below.	2.5Y 4/1		27-27.5	
		$> \langle$				28.5-29	
nva	29						
Pg 2 of 8	C1	SI S G C D	I	*Effervescent	*No	n-effervescent	**Texture **Porewater

CWI Uniqu	ae No.: 773052	Co./T/R/S/SS: 47/	119N/31W/02/CACDBD Coring	Date: 06/19/2015 Lo	ogging Geologi	st: Ka	aleb Wagner 🛛 I	Location Described: MGS
Unit	Depth (f)	Lithology	Description		Colour J	HCI*	Sample**	Notes
nva			29-38.5: Overconsolidat massive, matrix-support Loam to sandy loam ma pockets in places. Clast- 1', less so at depth. Prin subrounded clasts, inclu and relatively low amou shale. Red volcanic at 3 places. Platy structure a matrix below 36.5'.	ted, grey, ted diamicton. trix, siltier nrich in upper narily des carbonate nts of visible 3'. Fractured in nd browner	2.5Y 3/1 2.5Y 3/1		LF02/09 30.5-31 LF02/10 33.5-34	
	35	\succ						
nva					2.5Y 4/2		LF02/11 38-38 5	Subglacial till, Riding Mountain- Winnipeg provenance; variable mixing with Rainy provenance materials.
	39-				2 54 2 4		38.5-39	
nva			39.3-48.5: Compact, da massive, matrix-support Loam to sandy loam ma granular structure. Fract throughout, especially 4 be due to exhumation a splitting, except 46' whe sand infills voids. Many gravel-sized carbonate of throughout. Most larger	rk grey, ted diamicton. trix with tured 1.4-43.5'; may nd/or core ere fine brown very fine to fine clasts clasts are	2.5¥ 3/1		LF02/12 42-42.5	
	43-00		subrounded felsic igneou (e.g., pink granite @ 45 present but appears less with depth. Several red pulled from core (e.g., p 40').	us lithologies '). Shale s frequently lithologies ourple basalt @			43.5-44	
nva	0							
Pg. 3 of 8		Sits GICID	1		*Effervescent	*No	n-effervescent	**Texture **Porewater

Core ID: LF02 Location: Litchfield, MN Elevation (f): 1139.3 Drilling Method: Hollow-stem

Logging Date: 10/16/2015

CWI Uniqu	e No.: 773052	Co./T/R/S/SS: 47/	/119N/31W/02/CACDBD	Coring Date: 06/19/2015	Logging Geologi	st: K	aleb Wagner	Location Described: MGS
Unit	Depth (f)	Lithology	D	escription	Colour	HCI*	Sample**	Notes
nvt					2.5Y 3/1		LF02/13 46.5-47	
nvt			49.6-53.5: Simila but slightly brown loam matrix textu above. High fract 51.5-53.5'. Large a-axis) @ 52'. Su of light brown-gro 53.5'.	ar diamicton as 39.3'+ ner and finer-grained ure. More dense than cure density from e greywacke clast (3" ub-horizontal stringer ey very fine sand @	5Y 3/1		48.5-49	Subglacial till, Riding Mountain- Winnipeg provenance.
	53- 54- 55-7*				2.5Y 3/1		53.5-54 LF02/15 54-54.5	
nvt			54-61.5: Similar Less fractured. D igneous and carb some shale. Ligni browner and mat	diamicton as 49.6'+. ominance of felsic ionate lithologies, ite @ 55.5'. Becomes rix is siltier @ 59.5'.	2.5Y 3/1		LF02/16 58-58.5	
nvt	59						58.5-59	
Pg. 4 of 8					*Effervescent	*No:	n-effervescent	**Texture **Porewater

Elevation (f): 1139.3

Drilling Method: Hollow-stem

Logging Date: 10/16/2015

Core ID: LF02

	ie No.: 773052	C0./1/K/5/55:4/	(119/N/31W/02/CACDBD Coring Date: 06/19/2015 L	ogging Geologi	st: K	aleb wagner	Location Described: MGS
Unit	Depth (f)	Lithology	Description	Colour I	ICI,	* Sample**	Notes
nvt			61.5-65.3: Grey-brown, overconsolidated, massive, matrix- supported diamicton. Loam matrix. Many carbonates, felsic and mafic igneous lithologies, some shale. Most clasts subangular to subrounded.	2.5Y 3/1		LF02/17 61-61.5	
	64 -		Fractured throughout, some with rusy skins.			63.5-64	
	65-			2.5Y 3/2		LF02/18 65-65.5	
	66-		65.3-65.5: Lag of coarse sand, mixed with diamicton. Possibly drilling- induced.			05 05.5	Subglacial till, Riding Mountain- Winnipeg
nvt	67		65.5-73: Similar diamicton as 61.5'+. Matrix coarsens with depth to sandy loam and becomes more compact. No	2.5Y 3/1		LF02/19 68-68.5	provenance.
	69 -		obvious change in lithological assemblage, but becomes slightly greyer/less brown. Fewer fractures towards base.			68.5-69	
	71-						
	72-						
ng	73 -		73-75: Inversely graded sequence; very poorly sorted brown loamy coarse sand and very fine to fine gravel, grading to faintly stratified grey fine sand with occasional very fine to fine gravel, over sharp transition to brown, well sorted medium sand, over scoured contact to grey very fine sand and silt with occasional very fine to fine gravel.	2.5Y 4/2 (v.f. sand)		LF02/20 73-73.25	
Pg. 5 of 8	CI	SilsIGICD		*Effervescent	*No	on-effervescent	**Texture **Porewater

CWI Uniqu	e No.: 773052	Co./T/R/S/SS: 47/	/119N/31W/02/CACDBD Coring Date: 06/19/2015	Logging Geologi	st: k	Kaleb Wagner	Location Described: MGS
Unit	Depth (f)	Lithology	Description	Colour J	ICI	* Sample**	Notes
nva	76			2.5Y 3/1		LF02/21 75.5-76	
	77 - 78 - 79 - 80 -		75-83.5: Massive, grey-brown matrix- supported diamicton. Very compact. Loam matrix. Very similar to 49.6'+.			1 502 /22	
nva				2.5Y 3/1		80.5-81.5	Subglacial till, Riding Mountain- Winnipeg provenance.
	84-		84.4-84.7: Light brown fine to medium			83.5-84	
nvt			sand coating fragments of diamict; could be related to drilling issues and barrel removal at this depth. 84.7-88.5: Similar diamicton as 75'+. Matrix fines downwards and becomes browner in places. Fissile, platy breakage structure around 85'. Severa angular clasts, though these are mostly shale. Otherwise lithologically similar to above. Higher fracture density from 86.5-88.5'. Lignite @ 87'. Mixed with light brown very fine sand from 91.5-92' - possibly dried slurry from top of barrel.	2.5Y 3/2 2.5Y 3/1		LF02/23 84.5-85 LF02/24 88-88.5 88.5-89	
Pg. 6 of 8	CITS	Sils GCD		*Effervescent	*N	on-effervescent	**Texture **Porewater

Elevation (f): 1139.3

Drilling Method: Hollow-stem

Logging Date: 10/16/2015

Core ID: LF02

Core ID: LF0 CWI Unique	02 2 No.: 773052	Location: Litchfield Co./T/R/S/SS: 47/	, MN Elevatio /119N/31W/02/CACDBD	n (f): 1139.3 Coring Date: 06/19/2015	Drillin 5 Lo	g Method: Ho ogging Geolog	ollow gist:	r-stem Kaleb Wagner	Logging Date: 10/16/2015 Location Described: MGS
Unit	Depth (f)	Lithology	De	escription		Colour	нс	l* _{Sample**}	Notes
nvt	91- 92- 93- 00- 00- 00- 00- 00- 00- 00- 00- 00- 0		92-93.5: Similar (diamicton as 84.7	'+'.	2.5Y 3/1		LF02/25 93-93.5	
	94	\times						93.5-94	
nvt	96 - 1 , , , , , , , , , , , , , , , , , ,		95.4-106.5: Grey	r, massive, matrix	-	2.5Y 3/1		LF02/26 97.5-98	Subglacial till, Riding Mountain- Winnipeg provenance.
nvt			Variably-textured grained below 10- breakage structur to fine gravel-size fewer large clasts subangular to sub carbonates have a shale present. Po- igneous lithologie lens @ 103'. More 102.5-103'.	loam matrix, fine 4.2'. Granular re. Frequent very ed carbonate clasts orounded. Some a rusty coating. S ssibly less felsic es than above. Sar e fissile from	fine s; ome ndy			98.5-99	
						2.5Y 3/1		LF02/27 102-102.5	
nvt									
Pg. 7 of 8	Cl	SisGCD				*Effervescen	t *N	lon-effervescent	**Texture **Porewater

Core ID: LF02 CWI Unique I	No.: 773052	Location: Litchfield Co./T/R/S/SS: 47/	, MN Elevatio /119N/31W/02/CACDBD	on (f): 1139.3 Coring Date: 06/19/2015	Drillinį 5 Lo	g Method: Ho ogging Geolog	llow g ist: l	-stem Kaleb Wagner 🛛 🛚	Logging Date: 10/16/2015 Location Described: MGS
Unit D	Depth (f)	Lithology	De	escription		Colour	HCI	* Sample**	Notes
nvt	106 -) ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		106.5-107.5: Sim 95.4'+, with loam disintegrated grev Very poorly sorte carbonate-rich fir very fine to medi from 107.25-107 volcanics present	nilar diamicton as n matrix. Large y shale clast @ 10 d, light brown, ne to coarse sand a um subangular gra .5'. Some red)7'. and avels	2.5Y 3/1 2.5Y 5/2		LF02/28 106-106.5 LF02/29 107.25-107.5 108.5-109	Subglacial till, Riding Mountain- Winnipeg provenance.
	110-		107.5-113.5: Sim 95.4'+, but with browner matrix. / clasts present. Pr carbonate litholog	nilar diamicton as noticeably coarser A couple of large (redominantly gies. Shale presen	r and (2"+) t.				
nva						5Y 3/1		LF02/30 112-112.5	
Par 8 of 8		5i [†] S [†] G [†] C † D				*Effervascon	*N1	anoffarvecent	**Texture **Porewater

Core ID: CW02 Location: Cromwell, MN Elevation (f): 1331.9 Drilling Method: Hollow-stem Logging Date: 10/21/2015 CWI Unique No.: 773064 Co./T/R/S/SS: 09/49N/20W/33/CABABA Coring Date: 06/26/2015 Logging Geologist: Kaleb Wagner Location Described: MGS Description Sample** Notes Unit Depth (f) Lithology Colour HCI* 0-0.5: Topsoil; brown loam with occasional angular gravels. Roots penetrate to $\sim 0.7'$. Qat Soil A horizon. CW02/01 7.5 YR 4/4 0.5-1.5: Reddish-brown soil modified 1 - 1.5silt loam with fine gravels and occasional up to medium gravels. 2 3 3.5-5.5: Vaguely-stratified oxidized reddish-brown to orange-brown silt CW02/02 -Subglacial till, 4 5 YR 4/4 loam diamicton, becomes sandier 4-4.5 Mixed Superiorbelow 5 ft. 1" diameter dark brown clay Qat Winnipeg ball inclusion @ 4'. Occasional very provenance. coarse sand to fine gravels strewn 5 throughout. Several cobble-sized angular clasts @ 4.5'. Colour change to olive brown @ 5.25'. 6 8 CW02/03 8.5-12.5: Poorly sorted, tan to light 10 YR 4/4 8.5-10.5 brown massive sand and gravel. Predominantly medium sand, but ranging from fine to very coarse. Fine Qco to medium subrounded gravels; felsic, mafic and red volcanics, and metasedimentary lithologies. Some 10 Proglacial rusted cemented layering below 9.5'. outwash, Occasional very coarse gravels to fine Superior cobbles, some rounded to wellprovenance. rounded. Becomes cobbly/gravelly @ 11 12', then better sorted medium to very coarse sand below, though sands are very loose and likely experienced mixing and/or settling in core liner. Qco 12-13 13.5-15.5: Fine tan to brown sand with lesser medium to very coarse sand and 14 occasional subrounded to rounded Qco gravels. Varied lithologies, some iron fm., vesicular basalt. Sand becomes mostly coarse to very coarse @ 15'. CI Si S G C D

CW02 – Graphical log

Pg. 1 of 8

*Effervescent *Non-effervescent **Texture **Porewater

Core ID: CW02 CWI Unique No.: 773064	Location: Cromwell, MN Co./T/R/S/SS: 09/49N/	Elevation (f): 1331.9 D /20W/33/CABABA Coring Date: 06/26/2015	rilling Method: H Logging Geol	lollow- ogist: F	stem Kaleb Wagner	Logging Date: 10/21/2015 Location Described: MGS
Unit Depth ^(f)	Lithology	Description	Colour	HCI	* Sample**	Notes
		.5-44.5: Massive, purplish-red, ntij stratified, matrix-supported				
Qct 44		anular breakage structure. Stratifi ick residue present beneath athered mafics. Several large (2"- bangular and subrounded mafics.	ed 5 YR 4/ -3")	2	CW02/08 44-44.5	Subglacial till, Superior provenance.

Pg. 3 of 8

Core ID: CW02

*Effervescent *Non-effervescent **Texture **Porewater

Core ID: CV CWI Uniqu	W02 1e No.: 773064	Location: Cromwell Co./T/R/S/SS: 09/	, MN Elevat 49N/20W/33/CABABA	ion (f): 1331.9 Coring Date: 06/26	Drill 5/2015	ing Method: Ho Logging Geolog	ollow gist:	-stem Kaleb Wagner	Logging Date: 10/21/2015 Location Described: MGS
Unit	Depth (f)	Lithology	Г	Description		Colour	НC	l* Sample**	Notes
Qct	76 76 77 78 78 78 79 80 81 82 83 84 85 86 87 88 89		81-82: Similar to brown to reddish matrix-supporte loam matrix. Rel this interval. Sin assemblage as a	o 63.5+. Reddis n-grey, massive d diamicton. Sa atively clast-po nilar lithological bove.	sh- e, andy or in	7.5 YR 3/	2	CW02/13 81.5-82	Subglacial till, Superior provenance.
Pg. 6 of 8	Cl	IST SIGICIDI	1			*Effervescen	t *N	on-effervescent	**Texture **Porewater

Core ID: CV CWI Uniqu	V02 e No.: 773064	Location: Cromwell, N Co./T/R/S/SS: 09/49	/IN Elevati N/20W/33/CABABA	ion (f): 1331.9 Coring Date: 06/26/20	Drillin 15 L	ng Method: Ho .ogging Geolog	llow gist:	-stem Kaleb Wagner	Logging Date: 10/21/2015 Location Described: MGS
Unit	Depth (f)	Lithology	D	Description		Colour	нC	l* _{Sample**}	Notes
	91 - 92 - 93 -								
Qct	94	9 S V S	3.5-94.5: Simil lightly redder he 'ery coarse grav late clast @ 94.	ar to 81'+. Matrix ue and siltier text rel-sized broken-u 5'.	k has ture. Ip	7.5 YR 3/	2	CW02/14 94-94.5	Subglacial till, Superior provenance.
	95 96								
	97 - - 98 -								
	99 -								
	100								
	102 -								
	103 -								
Pg. 7 of 8		Si S G C D				*Effervescent	*N	on-effervescent	**Texture **Porewater

Core ID: CW02	Location: Cromwell, MN	Elevati	on (f): 1331.9	Drillin	g Method: Hollow-stem	Logging Date: 10/21/2015
CWI Unique No.: 773064	Co./T/R/S/SS: 09/49N/20W/33/0	CABABA	Coring Date: 06/26/201	15 Lo	ogging Geologist: Kaleb Wagner	Location Described: MGS

Unit	Depth (f)	Lithology	Description	Colour	HCI	* Sample**	Notes
	- 106 -		106-106.5: Reddish-brown to reddish-			CW02/15	
Qct			grey, massive, matrix-supported diamicton. Sandy loam matrix. Coarse	7.5 YR 3/2		106-106.5	
	107 -		gravel-sized (3" a-axis) well-rounded metasedimentary clasts @ 106'. Same lithological assemblage as above (red volcanics and metasedimentary rocks dominant). Slightly redder matrix hue			106.5-107	Subglacial till, Superior provenance.
	108-5		than above.			CW02/16	
Qct	109		108-109: Similar diamicton as 106'+ with slightly sandier matrix. Retains red hue.	7.5 YR 3/2		108.5-109	
	110 -						
	111-						
	112 -						
	113-						
	114						
	115 -						
	116-						
	117 -						
	118-						
Qct	119-		119-120: Similar diamicton as 108'+, but very faintly stratified. Apparent well-developed clast macrofabrics ~ parallel to sense of stratification.	7.5 YR 3/2		CW02/17 119.5-120 120-120.5	Subglacial till, Superior provenance.
Pg. 8 of 8	Cl	ISI S G C D	I	*Effervescent	*N	on-effervescent	**Texture **Porewater

Appendix B – Borehole geophysical logs

EM Induction Log - CWO1A

Unique Number: CW01A_em_induction.xlsx

Minnesota Geological Survey University of Minnesota 2609 Territorial Rd. St. Paul, MN 55114 (612) 626-2969

EM Induction Log - CWO1B

Unique Number: CW01B_em_induction.xlsx

Minnesota Geological Survey University of Minnesota 2609 Territorial Rd. St. Paul, MN 55114 (612) 626-2969

GAMMA

xii

EM Induction Log – CWO1C

Unique Number: CW01C_em_induction.xlsx

Minnesota Geological Survey University of Minnesota 2609 Territorial Rd. St. Paul, MN 55114 (612) 626-2969

EM Induction Log with core description (see Appendix A) – LFO1F

Unique Number: LFO1F_em_induction.xlsx

Minnesota Geological Survey University of Minnesota 2609 Territorial Rd. St. Paul, MN 55114 (612) 626-2969

xvi

EM Induction Log with core description (see Appendix A) – LFO2F, first run

Unique Number: LFO2F_em_induction.xlsx

Minnesota Geological Survey University of Minnesota 2609 Territorial Rd. St. Paul, MN 55114 (612) 626-2969

GAMMA

EM Induction Log with core description (see Appendix A) – LFO2F, second run

Unique Number: LFO2F_em2_induction.xlsx

Minnesota Geological Survey University of Minnesota 2609 Territorial Rd. St. Paul, MN 55114 (612) 626-2969

~

Appendix C – Generalized borehole lithostratigraphy and borehole geophysical logs

Litchfield observation well cluster 1

Litchfield LFO2-F

Litchfield observation well cluster #2

Cromwell observation well cluster 1

Cromwell O1-A

Cromwell observation well cluster 2 (EM-induction log from cluster 1, CWO1-A)