This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp

MINERALOGY, SPATIAL DISTRIBUTION, AND ISOTOPE GEOCHEMISTRY OF SULFIDE MINERALS IN THE BIWABIK IRON FORMATION

A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY

Stephanie Ann Theriault

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

Dr. James Miller and Dr. Michael Berndt

October 2011

© Stephanie A. Theriault, 2011

Acknowledgements

A heartfelt thanks to my hardworking, patient, and dedicated co-advisors, Dr. Jim Miller & Dr. Mike Berndt. Special thanks also to the other members of my thesis committee, Dr. Josef Werne & Dr. Nate Johnson. Isotope analysis was conducted with the help of Dr. Ed Ripley and his students Valentina Taranovic, Kelli Donoghue, and Eric Stifter at Indiana University Bloomington – Department of Geological Sciences. The opportunity to work and learn at their laboratory was an invaluable experience. I was very fortunate to learn from Mark Severson at the Natural Resources Research Institute (NRRI) and Dr. Peter McSwiggen on the intricacies of the Biwabik Iron Formation. Bryan Bandli at the University of Minnesota Duluth helped navigate me through the world of the scanning electron microscope. Financial support was provided by both the University of Minnesota Duluth – Department of Geological Sciences and the Minnesota Department of Natural Resources – Division of Lands and Minerals. Additional help and support from Kim Lapakko, Dave Antonson, Travis Bavin, Jean Matthews, the UMD Geology faculty, support staff, fellow graduate students, as well as my family and friends kept me sane through the process. And a final, but important, thank you to my undergraduate professors at the University of St. Thomas for inspiring my love and curiosity for geology and encouraging me to continue my education and maintain ethics in my research. I am forever indebted to each and every one of you. Thank you all for helping me make this thesis possible.

Abstract

The Biwabik Iron Formation (BIF), which is located along the Mesabi Range in NE Minnesota, was deposited in the near shore environment of the Paleoproterozoic Animikie Basin. Although mined for natural ore and taconite, it does contain measurable amounts of sulfide minerals, as pyrite and pyrrhotite. This study is part of a larger study to evaluate whether sulfur from waste rock piles and tailings basins along the Mesabi Range are contributing to sulfate in the St. Louis River Watershed (SLRW).

The primary objective of this study is to characterize the mineralogic and lithologic occurrence, spatial distribution, and sulfur isotope geochemistry of both primary and secondary sulfide minerals in the BIF in order to better establish their variation and understand their origin. Previous isotopic studies conducted on sulfides in Animikie Basin sediments have focused largely on primary (syn-depositional) sulfides in order to determine the chemistry of ocean water at the time of deposition. These studies concluded that primary sulfides were the result of bacterial reduction of Paleoproterozoic seawater sulfate. Consistent with previous studies, primary sulfides appear as small anhedral "blebs" with δ^{34} S values of -5.4‰ to +12.4‰. Secondary sulfides display a wide range of morphologies (cubes, framboids, veins, and anhedral masses), geographic and stratigraphic distribution, and δ^{34} S values (+80.37‰ to -36.11‰). These secondary occurrences are largely attributed to metamorphic effects of the mafic Duluth Complex or to oxidation and desilicification processes attending the formation of natural iron ores.

A secondary objective of this study is to evaluate the source of sulfur to the SLRW. Sulfur isotope values from sulfates collected in the SLRW near mining operations yielded δ^{34} S results of +4‰ to +9‰. This range is similar to the δ^{34} S of primary sulfides in the BIF. However, it was determined that the average δ^{34} S value of all 72 sulfide occurrences analyzed in this study is 8‰. Therefore, it is more probable that the entire range of primary and secondary sulfide are contributing to sulfate in the SLRW, rather than one specific occurrence of sulfide.

ACKNOWLEDGEMENTS	I
ABSTRACT	
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: GEOLOGIC SETTING OF THE BIWABIK IRON FORMATION	5
2.1 LITHOSTRATIGRAPHY OF THE ANIMIKIE GROUP	7
2.2 DEPOSITIONAL SETTING OF THE ANIMIKIE GROUP	11
2.2.1 Transgressive and Regressive Sequences	12
2.2.2 Disconformity	15
2.2.3 Sediment Sources and Shifting Ocean Chemistry	15
2.3 TECTONIC EVOLUTION OF THE ANIMIKIE BASIN	16
2.3.1 Penokean Orogeny	16
2.3.2 Duluth Complex	19
2.4 ORE FORMATION	22
CHAPTER 3: SULFUR GEOCHEMISTRY	24
3.1 Sulfur Isotopes	24
3.1.1 Sulfur Isotope Analysis	25
3.1.2 Secular Variations of δ^{34} S	26
3.2 Sulfur Isotope Geochemistry of Paleoproterzoic Iron Formations	27
3.2.1 Sulfur Isotope Studies of the Biwabik and Gunflint Iron Formations	28
3.2.2 Sulfide Mineral Paragenesis in the Gunflint Iron Formation	35
CHAPTER 4: METHODS	
4.1 SAMPLING STRATEGY	37
4.2 Sulfur Isotope Analyses	40
4.3 Sulfide Mineral Identification and Petrographic Analysis	41
CHAPTER 5: RESULTS	44
5.1 Sulfide Petrography and Mineralization	44
5.2 Sulfur Isotope Results	45
5.2.1 Geographic Trends	52
5.2.2 Sub-Unit Stratigraphy Trends	55
5.2.3 Mineral Occurrence Trends	58
CHAPTER 6: DISCUSSION	61
6.1 Identification of Primary and Secondary Sulfides	62
6.2 PRIMARY SULFIDE MINERALIZATION	64
6.3.1 Metamorphic Sulfides	69
6.3.2 Anhedral Sulfides	72
6.3.3 Euhedral Sulfides	73
6.3.4 Vein Sulfides	76
6.3.5 Other Sulfides	79
6.4 SOURCES OF SULFUR IN THE BIWABIK IRON FORMATION	80
6.5 SULFIDE MINERAL PARAGENESIS IN THE BIWABIK IRON FORMATION	83
b.b SOURCES OF SULFUR IN THE ST. LOUIS RIVER WATERSHED	84
CHAPTER 7: CONCLUSION	

Table of Contents

REFERENCES	
APPENDICES	95

List of Tables

Table 1: Sulfide geographic location, lithology, morphology, and mineralogy for SEM	
samples	5
Table 2: Corrected δ^{34} S values for samples collected from the Virginia and Biwabik Iron	
Formations4'	7
Table 3: The δ^{34} S values reported from Poulton et al. (2010) using the SF ₆ -gas method	
and SO2-gas method corrected values for the Virginia and Biwabik Iron Formations 49)
Table 4: The δ^{34} S values reported from sulfate values collected by the MnDNR	1
Table 5: Summary criteria for primary and secondary sulfide minerals 64	1

List of Figures

Figure 1: The St. Louis River Watershed in Northeastern Minnesota	3
Figure 2: Distribution of Paleoproterozoic iron formations in Lake Superior region	6
Figure 3: Stratigraphic comparison of the Lake Superior region Ranges	6
Figure 4: Stratigraphic correlations between the Mesabi and Gunflint Ranges	8
Figure 5: Simplified cross section of the Biwabik Iron Formation.	. 10
Figure 6: Simplified cross-section of the Gunflint Iron Formation	. 10
Figure 7: Schematic model for the environment of deposition for the Mesabi Range	. 12
Figure 8: Evolution of the Penokean Orogeny.	. 18
Figure 9: The relationship between mineral occurrences in the Biwabik Iron Formation	ì
and the distance from the contact with the Duluth Complex	. 21
Figure 10: The spatial relationship between taconite ore, natural ores, and faults in the	
Mesabi Range	. 23
Figure 11: Range of δ34S values for various sulfur-bearing materials.	. 25
Figure 12: Distribution of samples and corresponding δ^{34} S values collected from the	
Gunflint Range, at Kakabeka Falls, Ontario, Canada	. 31
Figure 13: Distribution of primary sulfide samples from Animikie Group sediments	. 33
Figure 14: Directional fluxes of organic carbon and hydrothermal Fe (II) in the Animik	cie
Basin.	. 34
Figure 15: Ocean chemistry model for the sedimentary sequences along the Mesabi and	d
Gunflint Ranges.	. 34
Figure 16: Carbonate and sulfide mineral paragenesis in the Gunflint Iron Formation	36
Figure 17: Locations of drill core along the Mesabi Range selected for this study	. 38
Figure 18: Location of sulfur isotope and thin section samples collected for this study	. 43
Figure 19: Range and average of δ^{34} S values relative to geographic location.	. 53
Figure 20: Geographic distribution of δ^{34} S values in terms of mineral occurrence	. 54
Figure 21: Geographic distribution of δ^{34} S values in terms of stratigraphic sub-unit	. 54
Figure 22: Geographic distribution of δ^{34} S values, comparing values from this study an	ıd
the Poulton et al. (2010) study.	. 55
Figure 23: Range and average of δ^{34} S values relative to sub-unit stratigraphy	. 56
Figure 24: Stratigraphic distribution of δ^{34} S values, in terms of mineral occurrence	. 56
Figure 25: Stratigraphic distribution of δ^{34} S values, in terms of geographic location	. 57
Figure 26: Stratigraphic distribution of δ^{34} S values, comparing values from this study a	ınd
the Poulton et al. (2010) study.	. 57
Figure 27: Average and range of δ^{34} S values relative to mineral occurrences	. 58
Figure 28: Distribution of the δ^{34} S values associated with the various mineral occurrence	ces
present in the Mesabi Range, in terms of geographic location	. 59
Figure 29: Distribution of the δ^{34} S values associated with the various mineral occurrence	ces
present in the Mesabi Range, in terms of stratigraphic sub-unit	. 60
Figure 30: Geographic distribution of primary, secondary, & metamorphic sulfides	. 61
Figure 31: Geographic distribution of primary sulfide minerals in the Biwabik Iron	
Formation	. 67

Figure 32: Geographic distribution of secondary sulfides in terms of their mineral	
occurrence.	. 68
Figure 33: Different types of sulfide occurrences. A. anhedral mass; B. euhedral cubes	;
C. framboidal; D. vein.	. 68
Figure 34: The univariant curve for Pyrite-Pyrrhotite.	. 70
Figure 35: Layered concentrations of pyrrhotite and magnetite in a metamorphosed	
section of the Biwabik Iron Formation.	. 71
Figure 36: Massive, strata-bound, secondary sulfide masses/aggregates	. 73
Figure 37: Euhedral cubes of pyrite in the Biwabik Iron Formation	. 74
Figure 38: Framboidal pyrite located along dissolution surfaces.	. 76
Figure 39: Secondary sulfide minerals located in veins	. 78
Figure 40: Natural Ore from the Fayal Mine.	. 79
Figure 41: Geographic and depth distribution of sulfur isotopes in the Biwabik Iron	
Formation	. 82
Figure 42: Estimated mineral paragenesis for the sulfide minerals observed in the	
Biwabik Iron Formation	. 84

Chapter 1: Introduction

The Biwabik Iron Formation, a Paleoproterozoic iron formation located in northeast Minnesota, has been mined extensively for taconite over the past century. As not all of the formation was of economic value, a significant portion of the Biwabik and overlying Virginia Formation were placed in waste rock piles and tailings basins, many of which are in the northern part of the St. Louis River watershed (SLRW). Although the iron formation has not been mined for sulfide minerals, it does contain measurable amounts and has long been recognized as a source of sulfate in the SLRW (Berndt and Bavin, 2011b). The SLRW is the largest tributary to Lake Superior and covers a 9412 km² area in northeastern Minnesota, emptying into Lake Superior at Duluth (Fig. 1).

An additional concern about sulfur in northeastern Minnesota is its role in the natural production and concentration of methylmercury in the watersheds. Methylmercury is the type of mercury that accumulates in fish tissue and is thought that biological sulfate reduction in wetlands can drive the formation of methylmercury (Berndt and Bavin, 2011a). As a result, there is concern that sulfate loading from mining sources can stimulate methylmercury formation in the watersheds of northern Minnesota.

There has been limited information available regarding mineralogy, geochemistry, and distribution of sulfides in the Biwabik Iron Formation. Consequently, it has not been possible to properly assess the sulfur budget of the SLRW or to determine the best

management practices for mitigating sulfate release into the basin. The Minnesota Department of Natural Resources (MnDNR) put together a three-phase, two-year, sulfur cycling project in the SLRW, beginning July 1, 2010 and concluding June 30, 2012. Each part of the project is to determine the sulfur status of a given part of the SLRW: sulfide distribution in the Biwabik Iron Formation, sulfate and methylmercury distribution in the SLRW, and the effect of sulfate reduction and methylmercury formation, downstream, on St. Louis River Harbor sediments. During the summer of 2010, water samples were collected from sites located directly downstream from a number of active and inactive mine sites. Rock samples containing visible sulfide minerals in drill core from the Biwabik Iron Formation were also collected at that time. St. Louis River Harbor sediments were assessed during the fall of 2010 and again in the summer of 2011.

With all this information, the MnDNR hopes to evaluate the extent of sulfur cycling in the basin, and what, if any, mitigation measures need to be taken to reduce sulfate input to the SLRW. By documenting the source and distribution of the sulfur in the Biwabik Iron Formation (as well as in the SLRW), the primary benefits of this project are twofold. In addition to providing important geochemical and mineralogical data for the study and cooperating mining industries to use in making decisions on mitigating potential sulfate loading into the SLRW, the data generated will also have important implications for understanding the genesis and post-depositional history of the Biwabik Iron Formation. Therefore, the role of this thesis, in the context of the larger MnDNR study, is to assess the lateral and stratigraphic distribution of sulfide minerals in the Biwabik Iron Formation in terms of sulfur isotope (δ^{34} S) geochemistry, mineralogy, and paragenesis. Isotopic measurements provide a useful tool for determining source and fate relationships for chemical species in relatively complex geochemical systems.

Figure 1: The St. Louis River Watershed in Northeastern Minnesota. Biwabik Iron Formation is located along the northern boundary, as seen in red (Berndt and Bavin, in process).

Scientifically, the main objectives of the thesis are to determine the origin, relative timing, and distribution of sulfide mineralization in the Biwabik and Virginia Formations. Sulfur isotope data analyzed from samples within the Biwabik Iron Formation along with

mineral paragenesis are used to assess whether the sulfides are sedimentary, diagenetic, biogenetic, and/or hydrothermal in origin. This in turn helps constrain the processes by which the Biwabik Iron Formation was deposited and subsequently deformed. Because samples were acquired across the strike length of the Mesabi Iron Range, the effects of thermal metamorphism caused by the intrusion of the overlying Duluth Complex are evaluated as an ancillary benefit.

Chapter 2: Geologic Setting of the Biwabik Iron Formation

The Mesabi Range, which includes the Biwabik Iron Formation, is a part of a larger group of Paleoproterozoic iron formations in the Lake Superior region (Figs. 2 and 3) deposited in a foreland basin during the Penokean Orogeny. The other ranges, located in northeastern Minnesota, northern Wisconsin, and in the Upper Peninsula of Michigan, include: Cuyuna Range, Gunflint Range, Gogebic Range, Marquette Range, and Menominee Range (Schulz and Cannon, 2007; Waggoner, 2010). Iron formation deposition in these ranges ceased around 1.85 Ga, before the close of the Penokean Orogeny at 1.83 Ga. This orogenic event also deformed the region, with the Mesabi and Gunflint Ranges affected the least. However, the Mesabi and Gunflint Ranges, which were possibly continuous at deposition, were separated and thermally metamorphosed by the intrusion of the 1.1 Ga Duluth Complex. The Mesabi Range was much more affected than the Gunflint Range by this metamorphic event. Natural ore, or direct-shipping ore, was subsequently generated along faults and fractures via fluid flow through the Biwabik Iron Formation at some point after the emplacement of the Duluth Complex. The Mesabi Range is of primary focus for this thesis, with special attention also paid to the Gunflint Range, as studies relating to this project were conducted in that range.

Figure 2: Distribution of Paleoproterozoic iron formation-bearing ranges in the Lake Superior region (Waggoner, 2010).

Figure 3: Stratigraphic comparison of the Lake Superior region Ranges (in Ojakangas et al., 2005 after Morey and Southwick, 1995).

2.1 Lithostratigraphy of the Animikie Group

The Animikie Group sediments include the Mesabi Range, the Gunflint Range, and the Cuyuna Range (Fig. 4). The lithostratigraphic package comprising each range is quite similar, consisting of a basal arenite, an iron formation with an intermediate black slate, and an upper greywacke slate. They all strike east northeast and have a dip of 5-15° SE. The stratigraphic similarities in the Animikie Group sediments are suggestive that they were deposited contemporaneously (Morey, 1970; 1972; Ojakangas et al., 2005; Jirsa et al, 2008).

The Mesabi Range has three units: Pokegema Quartzite, Biwabik Iron Formation, and Virginia Formation. They rest unconformably on the Mille Lacs and North Range Groups in the south and Archean basement rocks in the north. The Gunflint Range has three correlative stratigraphic units: the Kakabeka Quartzite, Gunflint Iron Formation, and Rove Formation (Morey, 1970; 1972).

The Pokegama Quartzite is the lowermost unit of the Animikie Group along the Mesabi Range, with a maximum thickness on the western edge of about 800m and an average thickness of about 90m (Morey, 1972; Ojakangas et al., 2005). The Pokegema lies unconformably on Archean rocks and is composed mainly of a well-indurated, finegrained quartz arenite, but also contains significant amounts of feldspathic quartz arenite, feldspathic greywacke, and micaceous quartzose argillite. A maximum age of 2125 ± 45 Ma and a minimum age of 1930 ± 25 Ma have been determined from radiometric dating of dikes and veins bounding the quartzite (Southwick and Day, 1983; Beck, 1988; Hemming et al., 1990). The correlative Kakabeka Formation, of the Gunflint Range in Ontario, is also dominantly a fine-grained quartz arenite (Morey, 1972). However, because it is thin to absent in Minnesota, the Kakabeka Formation is typically included as a basal unit in the Gunflint Iron Formation.

Figure 4: Visual representation of the stratigraphic correlations between the Mesabi and Gunflint Ranges (Johnston et al., 2006).

The Biwabik Iron Formation of the Mesabi Range has been described by Morey (1972) as a "ferruginous chert that contains 25-30% iron". It ranges in thickness from 100m to 250m and has been subdivided into four lithological units, from oldest to youngest: Lower Cherty, Lower Slaty, Upper Cherty, and Upper Slaty (Fig. 5). The slaty portions are fine-grained, finely laminated, and primarily comprised of iron silicates and iron carbonates. The cherty portions are massive, granular, and rich in quartz (Severson et al., 2010). The main minerals in this iron formation are chert, magnetite, siderite, ankerite, and minnesotaite with minor amounts of greenalite, stilpnomalane, and hematite (Severson et al., 2010). Trace amounts of sulfides are also present and they include pyrite, pyrrhotite, covellite, chalcopyrite, and molybdenite (Gundersen and Schwartz, 1962). Minor, but notable, units within the iron formation are an intermediate slate layer between the Lower Cherty and Lower Slaty, two algal- (or stromatolitic-) bearing beds, and a limestone cap at the top of the Upper Cherty (Morey, 1970; 1972; Ojakangas et al., 2005; Jirsa et al, 2008).

The correlative unit to the Biwabik Iron Formation is the Gunflint Iron Formation in the Gunflint Range. The Gunflint Iron Formation is 90-120 meter thick and is split into six major facies: a basal conglomerate, an uppermost limestone, and four cyclic units of Upper and Lower Gunflint (Goodwin, 1956). Minor facies include an algal/stromatolitic chert, tuffaceous shale, and a limestone cap, all of which are comparable to minor units seen in the Mesabi (Fig. 6). The Gunflint also contains basaltic lava flows (Morey, 1970;

Morey, 1972). Radiometric dating on a tuffaceous shale layer near the top of the Gunflint yielded an age of 1878±2 Ma (Fralick et al., 2002).

Figure 5: Simplified cross section of the Biwabik Iron Formation (in McSwiggen and Morey, 2008 after Jirsa et al., 2008).

Figure 6: Simplified cross-section of the Gunflint Iron Formation (Morey, 1972).

The Virginia Formation is the uppermost Animikie Group unit along the Mesabi Range. It consists of argillite, argillaceous siltstone, very fine-grained greywacke, and minor amounts of carbonates, chert, and cherty sideritic iron formation. Argillite makes up nearly 80% of the lowermost 120-150 meters with alternating units of argillite, siltstone, and very fine greywacke in the upper portions. Morey (1970, 1972) concluded that most of the clastic sediments found in the Virginia Formation are derived from Archean rocks in the north and Paleoproterozoic rocks in the south (Morey, 1970; 1972). Radiometric dating of a zircon from an ash layer at the base of the Virginia Formation gave a date of about 1850 Ma (Hemming et al., 1996).

The stratigraphy of the Rove Formation, in the Gunflint Range, is almost exactly the same as the Virginia, where argillite makes up nearly 90% of the lower most 150 meters. This unit also contains alternating units of argillite, siltstone, and greywacke (with minor occurrences of quartzite) making up the rest (Morey, 1972). Radiometric dating on an ash layer near the base of the Rove Formation gave ages of 1836±5 Ma and 1821±16 Ma and zircons found 400 meters above the base of the Rove gave ages of 1780 Ma (Fralick et al., 2002).

2.2 Depositional Setting of the Animikie Group

Deposition of the Animikie Group sediments occurred in a shallow sea, which spread across what is now the Lake Superior region. It is thought that the Animikie Basin began with the deposition of clastic material on a stable shelf environment and morphed into fine-grained sand and mud deposition in a deeper basin with low energy (Fig. 7). Many of the changes seen in lithology throughout the Animikie Basin were suggested to be the result of tectonic instability and volcanism during deposition. However, recent advances suggest a different depositional history, as will be described in more detail. (Morey, 1970; 1972; Ojakangas, 1983; Pufahl et al., 2000; Fralick et al., 2002; Ojakangas et al., 2005; Schulz and Cannon, 2007; Severson, 2010; and Poulton et al., 2010).

Figure 7: Schematic model for the environment of deposition for the Mesabi Range. The tidal flat and subtidal facies represents the Pokegema Formation, the Biwabik Iron Formation is represented by the shelf facies and the slope facies represents the Virginia Formation (Ojakangas, 1983).

2.2.1 Transgressive and Regressive Sequences

Morey (1970, 1972) presented one of the first depositional models for the Animikie Group sediments, suggesting that the transgressive and regressive sequences were the result of changes in relative baseline. He posited that the Pokegema and Kakabeka Formations were formed in a high energy, tidally influenced, shoreline environment characterized by the deposition of sand and pebbles. The transition into the Biwabik and Gunflint Iron Formations represents the transition from a clastic depositional environment to an off shore environment characterized by chemical precipitation (Morey, 1972; Ojakangas et al., 2005).

To support his depositional model, Morey (1972) used mineral relationships in the Biwabik, observing the following vertical sequence: "hematite; hematite + magnetite; magnetite; magnetite + silicate; silicate; silicate + carbonate. The cycle then reverses itself, leading to hematite in the algal unit in the middle part of the upper cherty member. The water depth again deepened, resulting ultimately in the deposition of carbonate facies at the top of the iron formation" (Morey, 1972). Again, he found that deposition during the Biwabik is characterized by alternating phases of shallow and deep-water deposited in the shallow water and primary iron sulfides were deposited in the deep, reducing waters (Morey, 1972). He also suggested that the iron and silica were sourced to the Animikie Basin sea through "direct emanation or by reactions of water with the hot volcanic materials" (Morey, 1970; 1972), not terrigenous material.

Following the deposition of the Biwabik Iron Formation and without time markers or any obvious unconformities, Morey (1970, 1972) then interpreted the Rove and Virginia Formations were deposited almost contemporaneously in a deep, quiet water environment

with reducing conditions, allowing for the deposition of the argillite (plus some carbonates and pyrite). As this occurred, the basin began to subside at a rate faster than deposition allowing for the formation of a slope which accumulated very fine-grained silt material. Multiple turbidity currents along the slope deposited sand and silt derived from the surrounding plutonic material (Morey, 1972).

Ojakangas (1983, 2005), Schulz and Cannon (2005), and Severson et al. (2010) also generally agreed with Morey (1970, 1972) on the conditions that formed the Pokegama and Biwabik Formations. In short, the Pokegama Quartzite was deposited near the shoreline in a shallow, tidally influenced environment with a terrigenous sediment input. The Biwabik Iron Formation was then deposited seaward in a shelf environment, characterized by mineral precipitation stimulated by deep-ocean, iron-rich waters (Ojakangus, 1983; Ojakangas et al., 2005; Severson et al. (2010). It was suggested that the cherty members of the Biwabik were precipitated in a shallow, high-energy environment whereas the slaty members were more indicative of calm, deep-water settings (Fig. 7) (Ojakangus et al., 2005). Pufahl et al. (2000), while studying the correlative Gunflint Formation, also attribute the lateral facies changes to alterations in relative baseline. The Gunflint began with a transgressive sequence at the base (including conglomerate seen in the Kakabeka), shifted into a regressive sequence in the middle, and back to a transgressive sequence at the top of the formation, possibly including the Rove Formation (Pufahl et al., 2000).

2.2.2 Disconformity

In the past decade, new geochronologic data from ash layers in the Rove Formation (Fralick et al., 2002) indicate a +40 Ma disconformity between the Biwabik/Gunflint and Rove/Virginia formations. This suggests an interruption in depositional conditions between the iron formation and overlying argillites; the interval coincidently brackets the time during which the Sudbury meteorite impact occurred (1850 Ma; Schulz and Cannon, 2007). The Sudbury Igneous Complex, which filled the meteorite impact crater, is located about 980 km from Duluth near Sudbury, Ontario. Addison et al. (2005) also noted some ejecta between the Gunflint and Rove Formations that appeared to have been deposited sub-aerially, further implying a major shift in depositional environment, including the possibility of emergence.

2.2.3 Sediment Sources and Shifting Ocean Chemistry

Although the timing of the the cessation of iron formation deposition coincides with the Sudbury Impact, geologists, such as Poulton et al. (2010), do not believe the meteorite impact is the driving mechanism. Rather, Poulton et al. (2010) hypothesize a shift from aqueous mineral precipitation to terrigenous sediment input disrupted the ocean chemistry. They posit that the terrigenous input stimulated increased sulfate reduction which in turn depleted the dissolved iron (as the flux of sulfate was greater than the flux of reactive iron), allowing for the ocean to shift from a primarily ferruginous environment to a sulfidic environment, effectively ceasing all iron formation precipitation (Poulton et al., 2010).

2.3 Tectonic Evolution of the Animikie Basin

The Animikie Group sedimentary rocks along the Mesabi Range were affected by at least two tectonic events. The first was moderate faulting and folding occurring during and following deposition due to compressional effects of the 1.85 Ga Penokean Orogeny (Morey and Southwick, 1995; Schulz and Cannon, 2007). At 1.1 Ga, the Animikie Group was then thermally metamorphosed by the emplacement of the Duluth Complex during the formation of the Midcontinent Rift (French, 1968; McSwiggen and Morey, 2008; Jirsa et al., 2008). Morey (1970) pointed out that the Biwabik Iron Formation contains several other structural features that may or may not be explained by these deformational events, including the Virginia Horn, the Siphon Structure, the Biwabik Fault, numerous cross faults, and the Sugar Lake Anticline, to name a few. Gruner (1964) and White (1954) each concluded the southward dip found in some of the structures in the Mesabi Range, such as those seen in the Biwabik Fault and Sugar Lake Anticline, may be attributed to the formation of the Lake Superior anticline during the Midcontinent Rift event (Morey, 1970).

2.3.1 Penokean Orogeny

Several tectonic models have been proposed for the evolution of the Penokean Orogeny. Some scientists, like Morey and Southwick (1995), found that prior to iron formation deposition, the Animikie Basin was experiencing extension. Then, during iron formation deposition the basin began to compress. Alternatively, Pufahl et al. (2000) suggested the evolution of the Animikie Basin is "consistent with … beginning as a passive margin with a back arc basin, and ending as a telescoped back arc basin that closed as a result of a change in relative plate convergence direction" (Pufahl et al., 2000). Schulz and Cannon (2007) agree.

The most complete and presently accepted summary of current ideas on the tectonic progression of the Penokean Orogeny (Fig. 8) was presented by Schulz and Cannon (2007). The oldest portion of Penokean is the Chocolay Group, a basal quartzite in the Menominee Range, which was deposited between 2.3 and 2.2 Ga in a rift basin with an extensive ocean. The Penokean Orogeny evolved in the Becker Embayment, which possibly formed as a result of rifting in the Penokean Margin around 2150 Ma. Deposition of the Chocolay Group was followed by a 300 Ma hiatus. By about 1890 Ma the ocean began to close and the Pembine-Wausau Terrane was formed in the east, while the Chocolay Group and equivalent sediments continued to form in the west. Deposition of the Animikie Group on top of Archean basement began at about 1880 Ma. By 1875 Ma the Pembine-Wausau Terrane was accreted against the Superior Craton in the east and subduction flipped, bringing the newly formed Marshfield Terrane towards the west. A marginal arc and tholeiitic magmas formed as a result. Near or at the time of the Sudbury impact event (1850 Ma), subduction ceased with the closure of the ocean and collision of the Marshfield and Pembine-Wausau Terranes, allowing for significant terrigenous input into the foreland basin. A fold and thrust belt was created around 1840 Ma along the southern margin of the Animikie Basin. Most of the rocks affected by the Penokean were subjected to upper amphibolite metamorphic facies and the orogeny ceased around 1830 Ma. It has been posited that the Rove Formation continued to be deposited post-Penokean (Schulz and Cannon, 2007).

Figure 8: Evolution of the Penokean Orogeny (Schulz and Cannon, 2007).

2.3.2 Duluth Complex

The Duluth Complex, a multiply emplaced intrusive complex formed during the 1.1 Ga Midcontinent Rift, had a minor deformational effect, but a very strong metamorphic influence on adjacent portions of the Biwabik and Gunflint Iron Formations. The thermal effects are constrained to an aureole in the eastern Mesabi District and the Minnesota portion of the Gunflint Range (French, 1968; Bonnichsen, 1969; Morey, 1970; Jirsa et al., 2008; McSwiggen and Morey, 2008). Initially thought to be isochemical, the Duluth Complex has since been considered to be, in part, a metasomatic intrusion. Not only were volatiles, such as water and carbon dioxide, released during metamorphism, but the Re-Os isotope values seen in the support the notion of hydrothermal fluid flow component to the intrusion (Bonnichsen, 1968, Williams et al., 2010). Both prograde and retrograde metamorphic minerals are present in the iron formation as a result of contact metamorphism by the intrusion (McSwiggen and Morey, 2008). Peak metamorphic grades were defined by the presence of grunerite and cummingtonite (garnet grade) and pyroxene-bearing rocks (sillimanite grade) (Bonnichsen, 1968). It is posited that the Duluth Complex magmas were emplaced at temperatures of about 1200°C (Jirsa et al., 2008). A maximum temperature range for the metamorphism of the Biwabik is 700-750°C, determined from O^{18}/O^{16} ratios in iron formation rocks near the contact with the Duluth Complex (French, 1968). This was later refined by Bonnichsen (1969), who found metamorphic pigeonite at the boundary yielding a minimum peak temperature in the Biwabik of roughly 825°C. Hyslop et al. (2008) concluded from Bonnichsen's peak

temperature estimate, that the Biwabik Iron Formation cooled at a rate of about 5.6°C/kyr, reaching a temperature of 400°C in about 75 kyr.

In a classic study on the metamorphism of the Biwabik Iron Formation by French (1968), he defined four metamorphic zones in the Biwabik Iron Formation and three zones in the Gunflint Iron Formation based on metamorphic mineral assemblages (Fig. 9). The four zones defined by French (1968) for the Biwabik Iron Formation are:

1. <u>Unaltered Taconite</u>: farthest from the Duluth Complex; characterized by finegrained taconite, plus quartz, iron oxides, iron carbonates, and iron silicates.

2. <u>Transitional Zone</u>: No visible mineralogical changes; characterized by secondary replacement of the original minerals by quartz and ankerite.

3. <u>Moderately Metamorphosed Taconite</u>: 3.25-5 km from the contact with the Duluth Complex; attaining a temperature of about 300-400°C; characterized by the loss of layered silicates and carbonates and the appearance of grunerite.

4. <u>Highly Metamorphosed Taconite</u>: adjacent to the contact with the Duluth Complex; characterized by an increase in hardness and grain size; appearance of iron bearing pyroxenes.

20

Figure 9: The relationship between mineral occurrences in the Biwabik Iron Formation and the distance from the contact with the Duluth Complex. Special attention should be paid to pyrite and pyrrhotite arrivals and departures (In McSwiggen and Morey, 2008 after French, 1968).

2.4 Ore Formation

Two different types of minable ore are found in the Biwabik Iron Formation: magnetic taconite ore (taconite) and direct shipping ore (natural ore). Production of natural ore ceased in the 1970s, but taconite is still actively mined. Taconite is considered the primary product of iron formation deposition with metamorphic overprinting whereas the natural ore is resultant of post-depositional fluid flow along faults and fissures (Morey, 1999; Jirsa et al., 2008; Severson et al., 2010).

Taconite occurs as three texturally different occurrences: disseminated, aggregated, and layered clusters (Morey, 1970; 1972). Magnetite, when fine-grained, is assumed to be the product of primary processes. However, coarser grained, euhedral crystals are also present near the contact within the iron formation resultant of metamorphic recrystallization caused by the emplacement of the Duluth Complex (LaBerge, 1964; LaBerge et al., 1987; Zanko et al., 2003; Severson et al., 2010). Bleifuss (1964) found that hematite and goethite appear to be the product of weathering primary magnetite and siderite (Severson et al., 2010). Most of the taconite is found in the cherty beds as tabular, stratified bodies and has primarily been extracted from the Lower Cherty, with lesser amounts from the Upper Cherty and Upper Slaty (Jirsa et al, 2008; Severson et al., 2010).

The natural ores are only found on the Mesabi and Cuyuna Ranges (Morey, 1970; 1972; Jirsa et al, 2008), located along faults, fractures, fissures, and bedding planes (Fig. 10). Morey (1999) notes that almost 80% of the natural ore in the Mesabi Range is in close

proximity to a fault. Much debate surrounds the origin of natural ore formation. The two main theories are either the natural ore was formed from descending meteoric fluid or ascending hydrothermal fluid (Morey, 1999; Severson et al., 2010). However, the formation of natural ores is not resultant of a singular process, but rather a complex interaction of multiple events (Severson et al., 2010).

Figure 10: The spatial relationship between taconite ore, natural ores, and faults in the Mesabi Range. Distribution of natural ores are suggested to be caused either by the downward migration of surficial waters or the upward flow of hydrothermal fluids (Miller, unpublished).

Chapter 3: Sulfur Geochemistry

The primary objective of this thesis is to delineate the distribution of sulfide minerals in the Biwabik Iron Formation in terms of sulfur isotope signature. Sulfur geochemistry in Paleoproterozoic aqueous-sedimentary systems is inherently complex, due to a combination of biological processes and nearly two billion years time. Thus, in order to properly understand the distribution of sulfur isotope values in the Biwabik Iron Formation, it is important to delineate the possible sources of variation, both natural and analytical. A review of studies regarding sulfur isotope distribution in various Paleoproterozoic iron-formations, which address the possible sources of sulfur, is useful to compare with the data collected for this study in the Biwabik Iron Formation.

3.1 Sulfur Isotopes

Sulfur has four stable isotopes: ³²S, ³³S, ³⁴S, and ³⁶S. The sulfur isotope value, or δ^{34} S, is a measure of the ratio of the two most abundant isotopes, ³⁴S and ³²S (as ³⁴S/³²S), relative to that of a reference standard and is determined with the following equation:

$$\delta^{34}S = \left(\frac{\binom{(^{34}S/^{32}S)_{sample} - \binom{(^{34}S/^{32}S)_{reference}}}{(^{34}S/^{32}S)_{reference}}\right) \times 1000,$$

where $\delta^{34}S$ is expressed in terms of per mil (or parts per thousand, ‰). The values derived from this can be used to constrain a possible origin of the sulfur in question. Figure 11 (from Coplen, 2002) shows the range of $\delta^{34}S$ values for different sulfur sources and their related environments of origin. The reference, or standard, used for comparison

and calibration is the Cañon Diablo troilite (CDT) which has a δ^{34} S value of 0‰, which is considered to be that of the bulk Earth signature (Gunter, 1986; Sharp, 2007).

Figure 11: Range of δ 34S values for various sulfur-bearing materials (From Coplen, 2002).

3.1.1 Sulfur Isotope Analysis

Mass spectrometric analysis methods for sulfur isotope ratios typically involve one of two gases, SO_2 or SF_6 . Both methods are used widely, and although small variations

between the values obtained by each exist, correction methods can be applied to compare data (Coplen et al., 2002; Vienna, 2000). In 2000, The International Atomic Energy Agency (IAEA) (Vienna, 2000) mathematically defined the relationship between the two methods as follows:

$$\delta^{34}S_{SF6} = 1.0339\delta^{34}S_{SO2} - 0.34$$

This is of note, as this study analyzed samples using the SO_2 method, but, as will be discussed later, comparison will be made with other values derived from the SF_6 method. A more detailed discussion of the methods used in this study is given in Chapter 4.

3.1.2 Secular Variations of $\delta^{34}S$

A variety of natural effects can account for variations in sulfur isotope values. As depicted in Figure 11, different reservoirs yield different isotopic signatures, but variations within each reservoir exist as well. Most δ^{34} S values measured in this study range from +30‰ to -30‰, but naturally occurring values for sulfides have been recorded from -55‰ to nearly +80‰ (Raiswell, 1982; Coplen et al., 2002). Many natural processes lead to changes in δ^{34} S, one of the most important being fractionation associated with sulfate reduction. The degree of fractionation can be affected by the specific mechanism (i.e., rate limiting step) associated with the process, temperature, relative concentration of available sulfur/sulfate during the reduction process, the source of sulfur, and the degree and type of recycling (i.e., closed vs. open systems) (Gunter, 1986; Sharp, 2007).

Most data from Precambrian sediment studies suggest that bacterial reduction of sulfate to sulfide followed by reaction with reduced iron is the most important primary mechanism leading to sulfide precipitation. The reduction of sulfate and subsequent precipitation of sulfides will occur "as long as (1) organic material is available for sulfate-reducing bacteria, (2) reactive iron is present to react with H₂S, and (3) sulfate is available as a reactant" (Sharp, 2007). Once this begins, the amount of sulfur isotopic fractionation is inversely proportional to the sulfate reduction rate (Gunter, 1986). That is, rapid reduction rates, indicative of productive reducing environments, produce small degrees of fractionation, thus yielding sulfur isotope values in the sulfide close to that of the original sulfate source. Alternatively, if the conditions do not promote rapid reduction and the process is slow, conditions would then allow for greater degrees of fractionation, yielding sulfur isotopic values in the sulfate source. It is possible to estimate the δ^{34} S value of the source sulfate values via Rayleigh distillation in some systems (Sharp, 2007).

3.2 Sulfur Isotope Geochemistry of Paleoproterzoic Iron Formations

Research related to sulfur isotopes and sulfide paragenesis has been sparse for the Biwabik Iron Formation. However, several notable studies were conducted in various other Precambrian iron formations that use sulfur isotopes to help understand atmospheric and ocean chemical evolution and iron formation deposition during the Paleoproterozoic. Isotopic evidence for bacterial sulfate reduction occurs in rocks as old as 3.2 to 2.8 Ga but, by 1.8 Ga the deep ocean during formation of the Animikie Basin is
believed to have been transitioning from a ferruginous ocean to sulfidic ocean environment (Johnston et al, 2006; Canfield, 2004). Therefore, it has been posited by Canfield and Raiswell (1999) and Gunter (1986) that bacterial sulfate reduction could have been a major source of sulfur during the deposition of the Animikie Group.

3.2.1 Sulfur Isotope Studies of the Biwabik and Gunflint Iron Formations

As previously mentioned, it is generally accepted that the Biwabik Iron Formation and the Gunflint Iron Formation are correlative units that have been separated by the emplacement of the 1.1 Ga Duluth Complex. However, Carrigan and Cameron (1991) described the Gunflint Iron Formation as a "virtually unmetamorphosed Precambrian iron-formation" that has preserved its primary textures. The only notable effects of metamorphism were caused by diabase sills, creating localized effects (Carrigan and Cameron, 1991). That being said, the effects of the emplacement of the Duluth Complex on the Gunflint Iron Formation are minimal and therefore sulfur isotope analysis on the Gunflint Range may yield a pre-Duluth Complex geochemical signature, similar to the unmetamorphosed portions of the Biwabik Iron Formation located in the western-most portions of the Mesabi Range.

Three notable studies have been conducted on the sulfur isotope composition of the Biwabik and Gunflint Iron Formations. Carrigan (1990) and Carrigan and Cameron (1991) were the first to report sulfur isotope compositions of the Gunflint Iron Formation. Next, Johnston et al. (2006) studied the isotopic geochemisty of various Paleoproterozoic

iron formations in the Lake Superior region, including the Biwabik and the Gunflint Iron Formations. Most recently, Poulton et al. (2010) conducted a comprehensive geochemical study of sedimentary sequences along the Mesabi and Gunflint Ranges in an attempt to determine the ocean chemistry during iron formation deposition.

Carrigan (1990) and Carrigan and Cameron (1991) sampled and analyzed three type of pyrite in the Gunflint Iron Formation. The types were delineated based on their mineral textures: fine-grained, disseminated (Type 1); coarse-grained, euhedral (Type 2); and ellipsoidal concretions (Type 3). Figure 12 shows the stratigraphic distribution of samples and their corresponding δ^{34} S values. Their study found that δ^{34} S values were not related to a specific lithology or the result of metamorphism. Rather, variations resulted from the sulfide minerals stratigraphic position. More specifically, throughout the majority of the Gunflint Iron Formation pyrite had a narrow range of values from +4‰ to +12‰. However, in the Kakabeka Falls area in Ontario, values ranged from -18.2‰ to +22‰ (Fig. 12). They suggested that the narrow range of slightly δ^{34} S-enriched values was due to bacterial reduction of low concentrations of dissolved sulfate whereas the wide range of values observed in the Kakabeka Falls area was resultant of sulfur derived from fluid, possibly hydrothermal, circulating through the basin via syn-depositional faults.

In a more general study of Paleoproterozoic iron formations in the Lake Superior area, Johnston et al. (2006) analyzed samples from the Gunflint, Biwabik, Trommald, Mahnomen, and Rove Formations to examine the transition from a ferruginous to a sulfidic ocean, corresponding to the cessation of iron formation precipitation around 1.84 Ga. Their study noted an average range of δ^{34} S values in the iron formation to be 8.4 ± 4.6‰. These values were interpreted to be the signature of sedimentary (or primary) sulfides formed via rapid sulfate reduction on a continental shelf and intracratonic basin. The combination of depositional setting and incomplete reduction resulted in δ^{34} S values less than that of seawater sulfate.

This was followed up by a more recent, detailed study conducted by Poulton et al. (2010), which aimed to constrain the mechanisms behind the same shift in ocean chemistry. Poulton et al. (2010) used a variety of geochemical analyses, such as iron speciation, aluminum content, organic carbon content, and sulfur isotope values, to constrain the environments of sulfide deposition. For the Mesabi and Gunflint Ranges, they relied specifically on the sulfur isotope chemistry of samples interpreted to contain primary sulfides (i.e., those formed at the time of iron formation deposition). Figure 13 shows the stratigraphic distribution of δ^{34} S values at various locations along the Mesabi and Gunflint Ranges reported in their study.

Figure 12: Distribution of samples and corresponding δ^{34} S values (in parts per mil) collected from the Gunflint Range, at Kakabeka Falls, Ontario, Canada (From Carrigan, 1990).

Poulton et al. (2010) concluded that the sulfur isotope geochemistry reflects two distinct zones of ocean chemistry: euxinic and ferruginous. The euxinic zone, located near-shore, yielded heavier δ^{34} S values nearing that of late Paleoproterozoic seawater sulfate (~17‰). The average δ^{34} S values for sulfide formed in the deep water, ferruginous zone

were slightly lighter, around $5.5 \pm 3.6\%$. They suggested that a combination of organic carbon and sulfate fluxes shaped the two zones. More specifically, a decreased supply of organic material to the deep water limited the rate of sulfate reduction, thus explaining the lighter sulfur isotope values seen in the ferruginous zone. In contrast, the euxinic zone, which was more readily supplied with organic matter from continental weathering, saw almost all of the sulfate in the water reduced into sulfides and subsequently precipitated. In terms of iron fluxes, Poulton et al. (2010) posit that the primary source of Fe (II) is hydrothermal vents, and therefore iron is readily supplied to the deep-water ferruginous zone and decreases systematically, due to precipitation, as it travels towards the euxinic zone (Figure 14). For primary sulfide minerals, the δ^{34} S values progressively deplete as they move from shoreline to deep-water; this distribution is supported by studies conducted by Johnston et al. (2006) and Canfield (2004), as mentioned above. As seen in Figure 15, taken from the Poulton et al. (2010) report, the euxinic zone corresponds to Rove Formation in the Gunflint Range and a small portion of the lower Virginia Formation in the eastern part of Mesabi Range. The ferruginous zone corresponds to almost the entire stratigraphic sequence along the Mesabi Range and the Gunflint Iron Formation along the Gunflint Range.

Figure 13: Distribution of primary sulfide mineral samples from Animikie Group sediments and their corresponding δ^{34} S values. Darkened circles represent values obtained from samples located in the Rove and Virginia Formations, open circles are for samples from Gunflint and Biwabik Iron Formations (From Poulton et al., 2010).

Figure 14: Directional fluxes of organic carbons and hydrothermal Fe (II), limiting factors in sulfate reduction (From Poulton et al., 2010).

Figure 15: Ocean chemistry model for the sedimentary sequences along the Mesabi and Gunflint Ranges (From Poulton et al., 2010).

The average δ^{34} S values measured from samples located in the iron formations from both Carrigan and Cameron (1991) and Poulton et al. (2010) studies agree with the range of values found by Johnston et al. (2006) in other Lake Superior-type iron formations. This suggests an overall similar mechanism of primary sulfide precipitation during the deposition of the Animikie Group sediments. That is, the primary sulfide minerals formed as a result of bacterial reduction of late Paleoproterozoic seawater sulfate. The degree to which the seawater sulfate was reduced, however, is a function of the localized conditions, including the supply of organic material.

3.2.2 Sulfide Mineral Paragenesis in the Gunflint Iron Formation

Carrigan and Cameron's (1991) study of the Gunflint Iron Formation reported detailed descriptions of the sulfide mineralogy and textural occurrences of sulfides from which they interpreted the sulfide mineral paragenesis. The main sulfide minerals found in the Gunflint Formation are pyrite and pyrrhotite, with pyrite occurring in distinctly fine-grained or coarse-grained habits (Carrigan and Cameron, 1991). Fine-grained pyrite was most abundant and is interpreted as being indicative of primary sulfide precipitation. They interpret coarse-grained pyrite to have formed by recrystallization during burial. The occurrence of pyrrhotite is attributed to contact metamorphism-induced transformation from pyrite. Carrigan and Cameron's (1991) paragenetic sequence for the carbonate and sulfide minerals in the Gunflint Iron Formation is shown in Figure 16.

Figure 16: Carbonate and sulfide mineral paragenesis in the Gunflint Iron Formation (From Carrigan, 1990).

In studies of the overall mineral paragenesis of the Biwabik Iron Formation within the thermal aureole of the Duluth Complex, French (1968) and McSwiggen and Morey (2006) noted that pyrite gives way to pyrrhotite within 3.25 km from the intrusive contact (Fig. 9). Although the sulfide isotope studies by Johnston et al. (2006) and Poulton et al. (2010) did not describe the range of sulfide mineral occurrences in the Biwabik Iron Formation in detail, a similar paragenetic distribution of primary and secondary sulfides as observed in the Gunflint by Carrigan and Cameron (1991) would be expected for the Biwabik given the stratigraphic correlation and depositional similarities between the two iron formation units.

Chapter 4: Methods

A detailed, two component sampling strategy was delineated to properly address the main objectives of this study: the lateral and stratigraphic distribution of sulfide minerals in the Biwabik Iron Formation. During sample selection, it became evident that sulfide mineral habit may also be an important factor relating to the overall sulfide paragenesis and therefore it was added as an additional objective. Once the strategy was implemented and carried out, the samples were photographed, carefully described, analyzed for their sulfur isotopic composition, and/or were cut and made into polished thin section for mineral paragenesis and identification purposes.

4.1 Sampling Strategy

The first component of the sampling strategy was to select drill cores evenly spaced along the entire strike length of the Mesabi Range and that profile the entire stratigraphy of the Biwabik Iron Formation starting from the lower portion of the Virginia Formation and continuing into at least the top of the Pokegama Formation. Collecting samples along the Mesabi Range is particularly important in order to determine what, if any, lateral differences exist due to the effects of metamorphism by the Duluth Complex. The second component was to evenly profile the stratigraphy by obtaining samples from each member of the Biwabik Iron Formation (Upper Slaty, Upper Cherty, Lower Slaty, Lower Cherty, and Intermediate Shale) and the lower part of the Virginia Formation. It was estimated that this two-component sampling strategy would yield a minimum of 50-60 samples. An ancillary benefit to this overall ideal sampling strategy is it entails a careful inspection of all sections of the core for its sulfide content and lithologic setting, as well as locations where visible sulfide minerals are not present in the rock record. Biased sampling was deemed the preferred method of sample selection due to the heterogeneity of the iron formation, low sulfide concentrations, and monetary constraints.

Figure 17: Locations of drill core along the Mesabi Range selected for this study.

Five drill cores were chosen across the Mesabi Range that met the criteria specified above and were well spaced across the range, covering a strike length of approximately 110 kilometers (Fig. 17). Four cores were drilled by the Minnesota Geological Survey as part of the "Mesabi Deep Drilling Project" in the late 1960's. From southwest to northeast, MGS-8 is located near the town of Calumet, MGS-7 is located near Keewatin, MGS-5 is located southwest of Chisholm, and MGS-2 is located near Biwabik. The fifth core (B1-305) was drilled by Bear Creek (now Kennecott-Rio Tinto) as an exploratory hole for Cu-Ni sulfide mineralization associated with the base of the Duluth Complex. The mineralized gabbro of the Duluth Complex, which is part of the Mesaba deposit currently held by Teck American, is in intrusive contact with the Virginia Formation just

above its contact with the Biwabik Iron Formation. This core provides samples of the iron formation that were most intensely affected by the thermal metamorphism of the Duluth Complex. The drill cores were logged in detail by Mark Severson of the Natural Resources Research Institute (NRRI) between 1993 and 2005, which was very helpful in the focusing in on sampling particular stratigraphic units for this study. Sampling was conducted at the Minnesota Department of Natural Resources core library in Hibbing, Minnesota

During sample selection, the core was initially scanned in its entirety and any visible sulfide occurrences were noted. Each occurrence was briefly described as to its morphology, host lithology, relative size, stratigraphic distribution, and depth in the core run. Then, a half- to quarter-core samples, measuring between 5 and 20 centimeters, were collected from each stratigraphic unit in all five cores, if available. Two samples of natural ore (direct shipping ore) were collected in the field at the Fayal Mine. In total, 123 samples were collected. This is larger than the initial estimate of 50-60 samples, as the sulfide minerals present in the core were smaller than originally anticipated and thus may not have contained enough sulfides per sample to allow for both sulfur isotope analysis and to make a thin section. In addition, the sulfide mineral occurrences were more varied than anticipated. Therefore, additional samples were collected to address the distribution and geochemistry of the various morphologies of sulfide occurrences. In some instances, no samples were collected either due to lack of sulfides or lack of available core. Thus,

portions of the range were not characterized and therefore additional sampling is necessary for a more complete interpretation.

Following sample selection from the drill core, detailed macroscopic descriptions of the sulfide occurrences were tabulated, including sulfide type, habit, size, host rock, distribution, and any other distinguishing characteristics. Representative samples of each morphology were then sampled at each core location and stratigraphic unit, as possible, for isotope analysis and/or petrographic analysis. Representativeness was based on size, as there were analytical sample weight requirements. Figure 18 shows the locations of the samples used for sulfur isotope analysis and thin sections in this study.

4.2 Sulfur Isotope Analyses

Sulfur isotope sample preparation and analysis was conducted at the Department of Geological Sciences, Indiana University Bloomington. Sulfide minerals were drilled out of core samples with a carbide bit into a powder under a microscope. Generally, between 0.1 to 0.7 mg (depending on the amount of silicate contamination) of each sulfide sample powder was placed into 3.5×5 mm tin boats with an oxidizer, vanadium pentoxide (V₂O₅). Each tin boat was sealed and run through a continuous flow CE Instruments 1110 CHN elemental analyzer connected to a Finnigan MAT-252 stable isotope ratio mass spectrometer. Both international and internal standards were used, including NBS-127, EMR-Cp, ERE-Ag₂S, and PQB2 (+20.35‰, +0.9‰, -4.7‰, +41.5‰, respectively). Values were reported in parts per thousand, or "per mil" (‰), relative to the reference

sample, Cañon Diablo Troilite (V-CDT), in standard δ notation. International and internal standards fell within ±1.1‰ of the accepted values and average individual sample reproducibility was ±1.3‰, due to natural variability within each sample. All of the standards fell within the acceptable peak range of 1000±200 mV and therefore sample peaks within the range of 500-1500 mV were considered appropriate, as determined by the laboratory. Of the 63 sulfide samples analyzed, 17 were duplicated and eight others were thrown out, due to either insufficient sample size or analytical error, for 72 total data points (Fig. 18). Similar methods for sulfur isotope analysis at this laboratory have been cited in Ripley et al. (2010), Werne et al. (2008), and Studley et al. (2002).

4.3 Sulfide Mineral Identification and Petrographic Analysis

Twenty-six polished thin sections were prepared of sulfide-bearing samples for petrographic study and mineral chemical analysis (Fig. 18). Standard-sized (24 x 46 mm), probe-grade polished thin sections were made by Quality Thin Sections of Tucson, Arizona from billets cut from the core samples. The sections were examined with a petrographic microscope under reflected and transmitted light. Petrographic analysis of the samples was conducted mainly to establish the textural relationships between the sulfide minerals relative to the surrounding silicate and oxide minerals. This information has implications for the paragenesis of the sulfide minerals, particularly in determining whether they are primary (formed during deposition of the iron formation) or secondary. If secondary, the sulfide may occur in veins or as porphyroblasts. If formed from

hydrothermal fluids, sulfides may be associated with hydrous silicates. If formed by thermal metamorphism, pyrrhotite may occur as pseudomorphs after pyrite cubes.

Some polished thin sections were also investigated with the scanning electron microscope housed in the Department of Geological Sciences at the University of Minnesota Duluth. The UMD SEM is a variable pressure JEOL JSM-6490LV equipped with an Oxford energy dispersive spectrum detector. The SEM was used mainly to assist with mineral identification when such identification was uncertain by petrographic techniques.

Figure 18: Location of sulfur isotope and thin section samples collected for this study

Chapter 5: Results

In total, 123 sulfide-bearing mineral samples were collected for this study. Of these samples, 63 were analyzed for their sulfur isotope signature and 20 were made into polished thin sections for petrographic study and possible SEM-EDS analysis. Sulfur isotope values were analyzed based on their associated geographic location, stratigraphic sub-unit, and mineral occurrence type to determine trends.

5.1 Sulfide Petrography and Mineralization

Five different visible sulfide mineral morphologies were observed in drill core and hand samples during core logging and sampling: euhedral cubes, euhedral framboids or spheroids, anhedral "blebs," and veins. An uncommon occurrence of sulfide "needles" was also noted during logging and fine-grained, disseminated sulfides were observed during reflected-light petrographic analysis. Along with the apparent mineral occurrence type, macroscopic sample descriptions also included relative grain size, associated minerals/lithology, probable sulfide mineralogy, and/or concentration within the sample (Appendix A.1).

Both transmitted and reflected light were used during petrographic analysis to distinguish the various sulfide mineralogies present in 20 thin sections. Observations regarding sulfide mineral occurrence, concentration, habit, relative size, mineralogy, and textural relationships with adjacent phases were recorded (Appendix A.2). The scanning electron microscope aided in sulfide mineral identification. The main sulfide minerals identified through both methods are pyrite and pyrrhotite with minor amounts of galena (PbS), cobaltite (CoAsS), arsenopyrite (FeAsS), and chalcopyrite (CuFeS₂) with possible occurrences of pentlandite (Fe,Ni)₉S₈ and cubanite (CuFe₂S₃). An overview of the sulfide mineralogy, as confirmed by the SEM is located in Table 1. The detailed SEM-EDS results are located in Appendix A.3.

Sample Name	Location	Lithology	Morphology	Mineralogy
B1-305-2	B1-305	Virginia Formation	bleb	pyrrhotite, chalcopyrite, pentlandite, and/or cubanite
B1-305-15	B1-305	intermediate slate	bleb	pyrrhotite
B1-305-16	B1-305	intermediate slate	bleb	pyrrhotite
MGS-2-14	MGS-2	intermediate slate	cube	pyrite
MGS-2-18	MGS-2	intermediate slate	massive bleb	pyrite
MGS-2-22	MGS-2	lower cherty	massive bleb	pyrite, arsenopyrite, cobaltite
MGS-5-13	MGS-5	lower slaty	vein	pyrite
MGS-5-18	MGS-5	lower slaty	cube	pyrite
MGS-5-20	MGS-5	lower slaty	massive bleb	pyrite
MGS-5-25	MGS-5	lower cherty	framboid	pyrite, arsenopyrite
MGS-5-27	MGS-5	lower cherty	cube	pyrite, arsenopyrite
MGS-7-9	MGS-7	upper cherty	needles	pyrite, arsenopyrite, cobaltite
MGS-7-19	MGS-7	lower cherty	cube	pyrite
MGS-7-22	MGS-7	lower cherty	massive bleb	pyrite
MGS-8-1	MGS-8	transition (virginia to upper slaty)	cube	pyrite, galena

Table 1: Sulfide geographic location, lithology, morphology, and mineralogy for SEM samples

5.2 Sulfur Isotope Results

Sulfur isotope analysis was conducted in four different rounds using the SO₂ gas method at Indiana University Bloomington. Both raw and corrected δ^{34} S values were reported

(Appendix B.1). The correction factor for each sampling round was determined by comparing the measured δ^{34} S values of the analytical standards to their accepted values (Appendix B.2). Corrected values of the δ^{34} S analyses for this study are summarized in Table 2.

Due to the complexity of the stratigraphy of the Biwabik Iron Formation, isotope comparisons to sample depth was deemed inappropriate. Therefore, sulfur isotope values were instead compared to qualitative categorical descriptors: (1) geographic location (Figs. 19-21); to determine the influence of the Duluth Complex), (2) sub-unit stratigraphy (Figs. 23-25); to determine the influence of depositional environment), and (3) mineral occurrence type (Figs. 27-29); to determine the influence of morphology). Values between +2‰ and +13‰, which others (Poulton et al., 2010; Carrigan, 1990; Carrigan and Cameron, 1991) have interpreted to be the range for primary sulfides, are noted on each plot with a blue box. Implications regarding these specific compositional ranges will be addressed in Chapter 6.

Isotope data collected by Poulton et al. (2010) was included with data collected in this study in plots comparing geographic location (Fig. 22) and sub-unit stratigraphy (Fig. 26). Their samples were analyzed using SF_6 gas method. Therefore, in order to compare their data to this study's SO_2 analyzed data, conversion methods cited by IAEA (Vienna, 2000) were employed. The original data from the Poulton et al. (2010) study and the

newly converted data are given in Table 3, along with sample ID, depth, and associated sub-unit stratigraphy.

Sulfur isotope values for the sulfides in this study were also compared to sulfur isotope values analyzed from surface water sulfate values in the SLRW. As mentioned in Chapter 4, the sulfate samples were collected for the Minnesota Department of Natural Resources sulfur cycling study (Berndt, in progress). The values obtained for the sulfate samples can be found in Table 4.

Table 2: Corrected δ^{34} S values for samples collected from the Virginia and Biwabik Iron Formations (B = bleb, C = cube, F = framboids, V = vein, N = needle)

Sample Number	Unit Name	Depth (meters)	Corrected ? ³⁴ S (‰)	Mineral Occurrence
MGS-2-B	Transition	489.81	30.55	С
MGS-2-2	Upper Slaty	496.21	-7.71	В
MGS-2-10	Upper Cherty	545.29	12.44	В
MGS-2-16	Int Slate	604.72	9.20	В
MGS-2-16 (D)	Int Slate	604.72	-5.35	В
MGS-5-A	Transition	154.69	-17.00	С
MGS-5-A (D)	Transition	154.69	-16.50	С
MGS-5-B	Transition	158.04	11.05	С
MGS-5-1	Transition	158.19	11.84	С
MGS-5-2	Upper Slaty	158.34	16.07	F
MGS-5-2 (D)	Upper Slaty	158.34	14.91	F
MGS-5-4	Upper Slaty	162.46	-9.81	V
MGS-5-5	Upper Slaty	179.68	11.66	С
MGS-5-10	Upper Cherty	224.18	18.65	С
MGS-5-11	Upper Cherty	226.92	-36.11	V
MGS-5-11 (D)	Upper Cherty	226.92	-34.52	V
MGS-5-12	Lower Slaty	249.33	-31.87	V
MGS-5-15	Lower Slaty	265.79	4.38	C

	TT •4 NT	Depth	Corrected	Mineral
Sample Number	Unit Name	(meters)	? ³⁴ S (‰)	Occurrence
MGS-5-16	Int Slate	270.36	4.81	С
MGS-5-16 (D)	Int Slate	270.36	5.75	С
MGS-5-19	Lower Slaty	280.87	36.04	С
MGS-5-21	Lower Cherty	320.04	80.37	В
MGS-5-21 (D)	Lower Cherty	320.04	73.52	В
MGS-5-22	Lower Cherty	320.95	77.96	В
MGS-5-22 (D)	Lower Cherty	320.95	62.43	В
MGS-5-23	Lower Cherty	357.53	-27.65	V
MGS-5-24	Lower Cherty	359.36	-20.05	F
MGS-5-24 (D)	Lower Cherty	359.36	-18.69	F
MGS-5-26	Lower Cherty	366.98	23.71	С
MGS-7-A	Virginia	235.61	3.10	С
MGS-7-B	Virginia	238.35	-12.16	С
MGS-7-B (D)	Virginia	238.35	-11.93	С
MGS-7-C	Virginia	238.81	7.69	В
MGS-7-3	Upper Slaty	244.14	17.51	V
MGS-7-6	Upper Slaty	250.55	10.39	С
MGS-7-8	Upper Cherty	266.09	13.81	N (V)
MGS-7-10	Upper Cherty	267.61	22.78	С
MGS-7-11	Upper Cherty	299.62	17.96	С
MGS-7-12	Upper Cherty	311.20	10.93	В
MGS-7-13	Lower Slaty	320.04	10.05	В
MGS-7-14	Lower Cherty	328.88	13.83	С
MGS-7-14 (D)	Lower Cherty	328.88	13.56	С
MGS-7-16	Lower Cherty	335.74	10.51	С
MGS-7-17	Lower Cherty	335.74	16.20	С
MGS-7-17 (D)	Lower Cherty	335.74	12.76	С
MGS-7-21	Lower Cherty	392.13	32.49	В
MGS-8-A	Transition	445.62	3.33	С
MGS-8-B	Transition	459.64	6.68	В
MGS-8-2	Transition	468.48	-6.53	В
MGS-8-4	Upper Slaty	469.85	-16.76	В
MGS-8-6	Upper Cherty	478.23	-5.61	С
MGS-8-6 (D)	Upper Cherty	478.23	-5.20	С
MGS-8-10	Lower Slaty	504.90	37.38	V

ower Cherty ower Cherty	(meters) 533.10	? ³⁴ S (‰)	Occurrence
ower Cherty ower Cherty	533.10	-18.92	Г
ower Cherty			F
	533.10	-16.99	F
ower Cherty	533.25	-27.78	F
ower Cherty	537.82	-23.56	F
ower Cherty	537.82	-20.49	F
Virginia	381.91	10.25	В
Upper Slaty	401.27	27.34	С
Upper Slaty	401.27	25.99	С
Upper Slaty	401.27	7.80	V
Upper Slaty	401.57	8.27	С
Int Slate	444.40	6.19	В
Int Slate	445.31	6.41	В
Int Slate	446.23	8.85	В
Int Slate	446.53	11.34	В
ower Cherty	447.60	2.39	В
ower Cherty	447.60	3.53	В
		40.57	С
		21.11	С
		31.21	С
	ower Cherty ower Cherty ower Cherty Virginia Jpper Slaty Jpper Slaty Jpper Slaty Jpper Slaty Int Slate Int Slate Int Slate Int Slate ower Cherty ower Cherty	ower Cherty 533.25 ower Cherty 537.82 ower Cherty 537.82 ower Cherty 537.82 Virginia 381.91 Jpper Slaty 401.27 Jpper Slaty 401.27 Jpper Slaty 401.27 Jpper Slaty 401.57 Int Slate 444.40 Int Slate 446.23 Int Slate 446.53 ower Cherty 447.60 ower Cherty 447.60	ower Cherty 533.25 -27.78 ower Cherty 537.82 -23.56 ower Cherty 537.82 -20.49 Virginia 381.91 10.25 Jpper Slaty 401.27 27.34 Jpper Slaty 401.27 25.99 Jpper Slaty 401.27 7.80 Jpper Slaty 401.57 8.27 Int Slate 444.40 6.19 Int Slate 446.23 8.85 Int Slate 446.53 11.34 ower Cherty 447.60 2.39 ower Cherty 447.60 3.53

Table 3: The δ^{34} S values reported from Poulton et al. (2010) using the SF6-gas method and SO2-gas method corrected values for the Virginia and Biwabik Iron Formations.

Sampla ID	Core	δ^{34} S (‰)	δ ³⁴ S (‰)	Depth	Unit Nama
Sample ID	Location	SF ₆	SO ₂	(meters)	Unit Manie
B1	MGS-2	2.91	3.14	491.62	Upper Slaty
B2	MGS-2	2.77	3.01	492.52	Upper Slaty
B4	MGS-2	3.32	3.54	498.32	Upper Slaty
B5	MGS-2	1.83	2.10	498.92	Upper Slaty
B17	MGS-2	8.01	8.08	599.22	Int Slate
B18	MGS-2	6.11	6.24	604.72	Int Slate
B19	MGS-2	8.68	8.72	640.62	Lower Cherty
B20	MGS-2	15.90	15.71	639.72	Lower Cherty
KV45	MGS-7	-0.33	0.01	225.45	Virginia

Sample ID	Core Location	δ ³⁴ S (‰) SF ₆	δ ³⁴ S (‰) SO ₂	Depth (meters)	Unit Name	
V21a	MGS-7	-5.81	-5.29	227.85	Virginia	
V21b	MGS-7	-6.39	-5.85	227.85	Virginia	
V22	MGS-7	7.35	7.44	228.45	Virginia	
V23	MGS-7	-1.00	-0.64	229.15	Virginia	
V24	MGS-7	32.70	31.96	232.45	Virginia	
KV46a	MGS-7	18.30	18.03	233.05	Virginia	
KV46b	MGS-7	10.80	10.77	233.05	Virginia	
KV46c	MGS-7	9.18	9.21	233.05	Virginia	
KV47	MGS-7	23.00	22.57	233.35	Virginia	
V25	MGS-7	20.30	19.96	233.65	Virginia	
KV48	MGS-7	12.00	11.94	234.25	Virginia	
V26	MGS-7	1.77	2.04	234.55	Virginia	
KV49	MGS-7	0.83	1.13	236.45	Virginia	
V27	MGS-7	7.68	7.76	236.75	Virginia	
V28	MGS-7	1.08	1.37	238.25	Virginia	
V29a	MGS-7	0.66	0.97	238.85	Virginia	
V29b	MGS-7	-7.20	-6.64	238.85	Virginia	
V30	MGS-7	1.82	2.09	239.75	Virginia	
KV50	MGS-7	1.26	1.55	239.95	Virginia	
B24	MGS-7	4.82	4.99	247.65	Upper Slaty	
B28	MGS-7	6.98	7.08	256.25	Upper Slaty	
B30	MGS-7	5.57	5.72	295.75	Upper Cherty	
B33	MGS-7	-11.30	-10.60	297.35	Upper Cherty	
B34	MGS-7	3.79	3.99	297.95	Upper Cherty	
B35	MGS-7	16.00	15.80	328.45	Lower Cherty	
B36	MGS-7	7.13	7.23	362.95	Lower Cherty	
B37	MGS-7	6.68	6.79	364.45	Lower Cherty	
CV28	MGS-8	-5.79	-5.27	388.48	Virginia	
CV29	MGS-8	-7.60	-7.02	389.48	Virginia	
CV30a	MGS-8	-2.69	-2.27	393.48	Virginia	
CV30b	MGS-8	-5.04	-4.55	393.49	Virginia	
CV30c	MGS-8	-0.04	0.29	393.50	Virginia	
CV31	MGS-8	3.08	3.31	398.48	Virginia	
CV32	MGS-8	-14.70	-13.89	400.48	Virginia	
CV33	MGS-8	2.69	2.93	404.98	Virginia	
CV34a	MGS-8	0.15	0.47	421.48	Virginia	
CV34b	MGS-8	7.36	7.45	421.51	Virginia	

Sample ID	Core Location	δ ³⁴ S (‰) SF ₆	δ ³⁴ S (‰) SO ₂	Depth (meters)	Unit Name
CV34c	MGS-8	6.16	6.29	421.52	Virginia
CV35	MGS-8	7.09	7.19	442.48	Virginia
CV36	MGS-8	-1.95	-1.56	453.98	Virginia
B40	MGS-8	5.17	5.33	465.48	Virginia
B41	MGS-8	2.08	2.34	478.28	Upper Cherty
B42	MGS-8	5.77	5.91	479.48	Upper Cherty
B43	MGS-8	6.02	6.15	481.68	Upper Cherty
B45	MGS-8	6.40	6.52	528.58	Lower Cherty

Table 4: The δ^{34} S values reported from sulfate values collected by the Minnesota Department of Natural Resources (Berndt, in progress).

Sample	Sample Data		δ ³⁴ S (‰) Sample		Data	δ^{34} S (‰)
ID	Date	Sulfate		ID	Date	Sulfate
LLC-1-1	5/4/2010	8.37		ETR-2-6	7/19/2010	6.21
LLC-1-2	5/25/2010	8.89		ETR-2-7	8/11/2010	4.30
LLC-1-3	6/9/2010	8.38		ETR-2-8	9/15/2010	4.43
LLC-1-4	6/22/2010	8.62		ETR-2-9	10/20/2010	5.31
LLC-1-5	7/7/2010	8.38		ETR-3-1	5/4/2010	5.82
LLC-1-6	7/19/2010	9.17		ETR-3-2	5/25/2010	8.05
LLC-1-7	8/11/2010	9.64		ETR-3-3	6/9/2010	6.23
LLC-1-8	9/15/2010	8.27		ETR-3-4	6/22/2010	7.74
LLC-1-9	10/20/2010	7.29		ETR-3-5	7/7/2010	6.17
LLC-2-1	5/4/2010	11.20		ETR-3-6	7/19/2010	6.16
LLC-2-2	5/25/2010	13.03		ETR-3-7	8/11/2010	6.33
LLC-2-3	6/9/2010	14.60		ETR-3-8	9/15/2010	6.36
LLC-2-4	6/22/2010	14.68		ETR-3-9	10/20/2010	5.59
LLC-2-5	7/7/2010	13.43		SC-1-1	5/4/2010	7.05
LLC-2-6	7/19/2010	14.83		SC-1-2	5/25/2010	7.10
LLC-2-7	8/11/2010	11.96		SC-1-3	6/8/2010	7.37
LLC-2-8	9/15/2010	13.19		SC-1-4	6/22/2010	7.86
LLC-2-9	10/20/2010	13.40		SC-1-5	7/7/2010	6.53
SR-1-1	5/4/2010	35.28		SC-1-6	7/19/2010	7.40
SR-1-2	5/25/2010	36.03		SC-1-7	8/12/2010	7.29
SR-1-3	6/8/2010	38.51		SC-1-8	9/15/2010	7.30
SR-1-4	6/22/2010	39.60		SC-1-9	10/20/2010	6.85
SR-1-5	7/7/2010	36.15		SC-2-1	5/4/2010	10.81

Sample	Date	δ ³⁴ S (‰)	δ ³⁴ S (‰) Sample		Date	δ^{34} S (‰)
ID	Dau	Sulfate		ID	Dau	Sulfate
SR-1-6	7/19/2010			SC-2-2	5/25/2010	13.43
SR-1-7	8/11/2010			SC-2-3	6/8/2010	16.85
SR-1-8	9/15/2010	33.73		SC-2-4	6/22/2010	16.72
SR-1-9	10/20/2010	31.06		SC-2-5	7/7/2010	14.58
SR-2-1	5/4/2010	14.88		SC-2-6	7/19/2010	17.01
SR-2-2	5/25/2010	14.27		SC-2-7	8/12/2010	18.69
SR-2-3	6/8/2010	12.50		SC-2-8	9/15/2010	16.10
SR-2-4	6/22/2010			SC-2-9	10/20/2010	13.70
SR-2-5	7/7/2010			SC-3-1	5/4/2010	9.09
SR-2-6	7/19/2010			SC-3-2	5/25/2010	10.13
SR-2-7	8/11/2010			SC-3-3	6/8/2010	10.87
SR-2-8	9/15/2010			SC-3-4	6/22/2010	11.47
SR-2-9	10/20/2010	23.36		SC-3-5	7/7/2010	15.05
ETR-1-1	5/4/2010	6.39		SC-3-6	7/19/2010	11.49
ETR-1-2	5/25/2010	6.43		SC-3-7	8/12/2010	
ETR-1-3	6/9/2010	7.26		SC-3-8	9/15/2010	
ETR-1-4	6/22/2010	7.14		SC-3-9	10/20/2010	
ETR-1-5	7/7/2010	1.92		SC-4-1	5/4/2010	6.85
ETR-1-6	7/19/2010	4.98		SC-4-2	5/25/2010	7.64
ETR-1-7	8/11/2010	4.18		SC-4-3	6/8/2010	7.43
ETR-1-8	9/15/2010	4.94		SC-4-4	6/22/2010	7.75
ETR-1-9	10/20/2010	5.10		SC-4-5	7/7/2010	7.43
ETR-2-1	5/4/2010	7.19		SC-4-6	7/19/2010	7.23
ETR-2-2	5/25/2010	7.18		SC-4-7	8/12/2010	7.18
ETR-2-3	6/9/2010	7.36		SC-4-8	9/15/2010	8.02
ETR-2-4	6/22/2010	6.62		SC-4-9	10/20/2010	7.52
ETR-2-5	7/7/2010	4 79				

5.2.1 Geographic Trends

Geographic location does appear to have a slight correlation with the sulfur isotope value of the sulfide minerals (Figs. 19-22). Samples collected closest to the Duluth Complex (B1-305) have the narrowest range of sulfur isotope values, 2.96‰ to 11.34‰ (one outlier sample measured at 25.99‰ and 27.34‰) with an average value of 9.9‰. The

widest range of sulfur isotope values, -35.31‰ to +76.94‰, were found in the central portion of the Mesabi Range, MGS-5, near the Virginia Horn, with an average of 8.50‰. Samples collected farthest away from the Duluth Complex, MGS-8, have the lightest sulfur isotope values, averaging about -5.45‰. Samples collected from the Natural Ore at the Fayal Mine were some of the heavier values recorded, averaging at 33.37‰.

Figure 19: Range and average of δ^{34} S values relative to geographic location.

Figure 20: Geographic distribution of δ^{34} S values in terms of mineral occurrence.

Figure 21: Geographic distribution of δ^{34} S values in terms of stratigraphic sub-unit.

Figure 22: Geographic distribution of δ^{34} S values, comparing values from this study and the Poulton et al. (2010) study.

5.2.2 Sub-Unit Stratigraphy Trends

The distribution of sulfur isotope values does not seem to be strongly tied to sub-unit stratigraphy (Figs. 23-26). This conclusion is similar to that of Carrigan (1990) and Carrigan and Cameron (1991) where they also suggested that stratigraphy played little role in the distribution of δ^{34} S values in the Gunflint Iron Formation. The only unit that displays a narrow range of values is the Intermediate Slate layer, with an average δ^{34} S value of 6.7‰. The other stratigraphic sub-units tend to have a wide range of δ^{34} S values.

Figure 23: Range and average of δ^{34} S values relative to sub-unit stratigraphy.

Figure 24: Stratigraphic distribution of δ^{34} S values, in terms of mineral occurrence.

Figure 25: Stratigraphic distribution of δ^{34} S values, in terms of geographic location.

Figure 26: Stratigraphic distribution of δ^{34} S values, comparing values from this study & the Poulton et al. (2010) study.

5.2.3 Mineral Occurrence Trends

Carrigan (1990) and Carrigan and Cameron (1991) noted that mineral occurrence is correlative to δ^{34} S values in samples from the Gunflint Iron Formation. Similarly for this study, there appears to be a complex, but distinguishable, relationship between mineral occurrence type and sulfur isotope values in the Biwabik Iron Formation (Figs. 27-29).

Figure 27: Average and range of δ^{34} S values relative to mineral occurrences.

The anhedral "blebs" have a wide range of δ^{34} S values. Intermediate Slate and Upper Cherty samples with "bleb" occurrences were collected from B1-305, MGS-2, and MGS-7 have δ^{34} S values of 2.39‰ to 12.44‰. Lower Cherty "bleb" samples collected in the middle of the range (MGS-5) contain heavy isotope values, 62.43‰ to 80.73‰, respectively. Euhedral sulfide minerals appear as both cubes and framboids or spheres. Like the anhedral "blebs", the cubes have a wide range of values, -17.0‰ to 40.6‰, with an average of 12.5‰ and do not appear to be subsequently related to either sub-unit stratigraphy or sample location. The framboids and/or spheroids, however, range from - 27.8‰ to -17.0‰ and 14.9‰ to 16.1‰. The lightest δ^{34} S values were sampled from the Lower Cherty in MGS-5 and MGS-8. The heaviest δ^{34} S values were sampled from the Upper Slaty in MGS-5.

Figure 28: Distribution of the δ^{34} S values associated with the various mineral occurrences present in the Mesabi Range, in terms of geographic location.

Vein sulfides from MGS-5 were characterized by light sulfur isotope values, ranging from -36.1‰ to -9.8‰. The three other singular vein occurrences were in B1-305, MGS-7, and MGS-8 with isotopically heavy values of 7.8‰, 17.5‰, and 37.4‰, respectively.

There does not appear to be a correlation between sub-unit stratigraphy and δ^{34} S values of vein sulfide (Fig. 29).

Figure 29: Distribution of the δ^{34} S values associated with the various mineral occurrences present in the Mesabi Range, in terms of stratigraphic sub-unit.

Chapter 6: Discussion

Macro- and microscopic observations of the sample sulfide minerals, as well as the δ^{34} S values, allow for the opportunity to evaluate sulfide mineral distribution in the Biwabik Iron Formation and their relationship to sulfate δ^{34} S values seen in the St. Louis River Watershed. The isotopic and textural data also permit an assessment of whether a sulfide occurrence is primary (i.e. formed during initial deposition of the iron formation), or a product of secondary, post-depositional processes (Fig. 30). In this study, primary samples are characterized as interstitial, anhedral "blebs" of sulfide whereas secondary sulfides took on a variety of textures: euhedral cubes or framboids, anhedral masses, or within a vein.

Figure 30: Geographic distribution of primary, secondary, and metamorphic sulfide minerals.

Data collected in this study were also compared to δ^{34} S values of primary sulfides collected in the Poulton et al. (2010) study of the Biwabik Iron Formation. As evident in Figures 22 and 26, the average δ^{34} S values for each geographic location and stratigraphic unit in this study nearly mimics the average δ^{34} S values collected in the Poulton et al. (2010) study. It is important to note that the Poulton et al. (2010) study specifically targeted what they interpreted to be primary sulfides, explaining the narrow range of δ^{34} S values they measured. Alternatively, this study sought out both primary and secondary sulfides, thus a broader range of values is seen.

6.1 Identification of Primary and Secondary Sulfides

Primary and secondary sulfide minerals were principally determined based on their textural occurrence. Sulfur isotope values aided in the characterization, but were more useful in assessing trends. As mentioned, previous studies conducted by Carrigan (1990), Carrigan and Cameron (1991), Johnston et al. (2006), and Poulton et al. (2010) defined a range of δ^{34} S values, +2‰ to +13‰, for primary sulfides in the Biwabik and Gunflint Iron Formations. However, a sulfide is not necessarily primary because it falls within the assumed primary range. Rather, the combination of morphology, mineralogy, and sulfur isotope geochemistry is necessary to categorize a sulfide as primary or secondary.

Five main textures were identified in this study and each can be attributed to a primary or secondary precipitation process. Interstitial, anhedral blebs are assumed to be primary textures. Alternatively, large anhedral blebs, or anhedral "masses", have been classified

as secondary sulfides as they appear to have nucleated from earlier formed interstitial sulfide minerals. Euhedral occurrences, such as cubes and framboids, and those formed within veins and along joint faces are interpreted to be secondary as well.

Several of the secondary sulfides were found in both the oxidized iron formation in the western portion of the Mesabi Range and along lithologic boundaries. Oxidized, or leached, iron formation is characterized as chalky looking, silica poor iron formation containing magnetite, goethite, and limonite, all products of oxidation. These oxidized portions also contain open pore spaces, or vugs, throughout; some of which contain sulfides in the form of framboids. Lithologic boundaries are characterized as an obvious boundary by which fluid may flow through laterally and precipitate out new minerals, such as sulfides. Incorporation of surrounding minerals into the fluid may occur along this pathway, allowing for a hybrid fluid chemistry. These boundaries will hence forth be described as dissolution surfaces. Examples of dissolution surfaces can be seen at the transition between granular and banded iron formation and may appear as thin, dark, styolite-like, layers. An artifact of dissolution surface precipitation is sulfide minerals may appear bedded, or forming within a certain layer. However, it is important to distinguish between bedded sulfides that formed at the time of deposition and sulfides that appear bedded because of preferential secondary precipitation along fluid pathways.

This study also identified six mineralogical variations of sulfides in the Biwabik Iron Formation. Primary sulfides are exclusively associated with pyrite. Pyrrhotite and
chalcopyrite were only found in the metamorphosed samples. Secondary sulfides, related to post-Duluth Complex fluid flow, were composed of pyrite, arsenopyrite, cobaltite, and galena. More specifically, sulfides forming in the veins and as cubes are pyrite whereas some of the anhedral masses contained additional amounts of arsenic and cobalt, forming arsenopyrite and/or cobaltite. The presence of arsenic and cobalt in the anhedral masses may point to a different fluid source than what is associated with the vein and cube sulfides. Only one framboid sample was analyzed for its chemical composition using the SEM, it contained pyrite and a trace amount of arsenic. Galena was only found in a sample located in the transition zone between the Biwabik Iron Formation and the Virginia Formation. See Table 6.1 for summary criteria.

	Anhedral Bleb	Anhedral Masses	Euhedral Cube	Euhedral Framboid	Veins
B1-305		Interstitial -			Pyrite + Quartz -
(east)		Metamorphic			Secondary
MGS-2	Interstitial - Primary	Dissolution Surfaces - Secondary	Secondary		
MGS-5		GIF - Secondary		Between GIF & BIF - Secondary	Pyrite + Calcite + Quartz - Seondary
Natural Ore			Aggregates - Secondary		
MGS-7	Interstitial - Primary	GIF - Secondary	Secondary		Pyrite + Calcite + Quartz - Seondary
MGS-8 (west)		Dissolution Surfaces - Secondary	Secondary	Vugs - Secondary	Pyrite + Calcite + Quartz - Seondary

Table 5: Summary Criteria for Primary and Secondary Sulfide Minerals

6.2 Primary Sulfide Mineralization

Texture and mineralogy are very important for understanding primary sulfide minerals. For this study, primary sulfides are described as interstitial, anhedral blebs of pyrite with a range of δ^{34} S values from -5.4‰ to +12.4‰, and an average of +6.2‰. This range generally fits in with the accepted primary ranges cited in previous studies (Carrigan, 1990; Carrigan and Cameron, 1991; Johnston et al., 2006; and Poulton et al., 2010) but outlier samples do exist, attesting to the natural variability of system.

Of all the samples analyzed for their δ^{34} S value, 36% fall within the assumed primary range delineated by previous studies (+2‰ to +13‰). Of those, 50% are anhedral blebs, 46% are cubes, and 4% are in a vein. Anhedral blebs have been determined to be the appropriate texture for primary sulfide minerals but 54% all of the blebs are made up of metamorphic sulfides (pyrrhotite and/or chalcopyrite) and thus are not the product of primary precipitation, but as their morphology suggests they may have nucleated from primary sulfide minerals. Therefore, only five samples characterized as ahedral blebs of interstitial sulfides fall within the primary δ^{34} S range.

Due to the natural variability of δ^{34} S values at the time of precipitation, caused by the flux of available iron and organic material, it is possible for primary sulfide minerals to have values outside the primary range, given they meet the other textural and mineralogical requirements. Also, not all sulfide samples for this study were analyzed for their δ^{34} S value. That being said, of the 92 sulfide samples collected, 31% were categorized as anhedral blebs or masses. Pyrrhotite and chalcopyrite can be found in seven of those samples and are located in the thermal aureole of the Duluth Complex and can be attributed to metamorphism. The remaining anhedral sulfide samples are either

described as interstitial pyrite (24%), anhedral masses (41%), or along dissolution surfaces (16%). Dissolution surfaces and anhedral masses are not considered primary textures. As mentioned, dissolution surfaces suggest preferential fluid flow and precipitation and anhedral masses appear as coarse grained sulfides that may have nucleated on previously precipitated sulfides. In the end, only four additional Biwabik Iron Formation samples meet the requirements and may also be considered primary sulfides, despite their unknown δ^{34} S value. In total, eight of the 92 samples (or 7%) are considered primary sulfide samples because they meet the textural, geochemical, and/or mineralogical requirements.

Primary sulfide samples are located in MGS-2 (upper cherty, intermediate slate, and lower cherty) and MGS-7 (lower slaty and lower cherty) (Fig. 31). An important ancillary question to address is why primary sulfide minerals did not re-equilibrate at any point in the last 1.85 Ga. It is possible that the primary sulfides noted were not in connection with pore spaces, fractures, or dissolution surfaces but rather within units that have low porosity and permeability and thus have been "buffered" from fluid flow through the formation. A good example of sulfide minerals re-equilibrating to form secondary sulfides can be seen in the anhedral masses.

Figure 31: Geographic distribution of primary sulfide minerals in the Biwabik Iron Formation.

6.3 Secondary Sulfide Mineralization

Secondary sulfides are located throughout the iron formation (Fig. 32) and mainly appear as anhedral masses, euhedral cubes, euhedral framboids, and within veins (Fig. 33). Sulfide mineral precipitation related to secondary processes can be attributed to a variety of events that have affected the Biwabik Iron Formation since deposition ceased at 1.85 Ga. These events include the thermal metamorphism attending the emplacement of the Duluth Complex and the formation of natural ores by oxidation and desilicification. Only those samples located in the thermal aureole of the Duluth Complex were affected by its emplacement.

Figure 32: Geographic distribution of secondary sulfides in terms of mineral occurrence.

Figure 33: Different types of sulfide occurrences. A. anhedral mass (MGS-5-21); B. euhedral cubes (MGS-7-17); C. framboidal (MGS-8-16); D. vein (MGS-5-15).

6.3.1 Metamorphic Sulfides

Metamorphic sulfides are only found in the far eastern portion of the Mesabi Range, in B1-305. The Duluth Complex cross cuts the Virginia Formation at the surface and the Biwabik Iron Formation at depth at this location. Sulfides appear as pyrrhotite and chalcopyrite in interstitial anhedral blebs or inclusions within coarse grained metamorphic minerals. The sulfides are interpreted to be primary pyrite that recrystallized into pyrrhotite due to metamorphism (French, 1968). The δ^{34} S values for sulfides range from 2.4‰ to 11.3‰, with an average of +7.0‰, similar to primary values. Because this reaction occurred at a high temperature (Fig. 34) and the degree of fractionation was negligible, that is the δ^{34} S values of the metamorphic sulfides were nearly the same as the original primary sulfides (-5.4‰ to +12.4‰, average +6.2‰), the metamorphism caused by the Duluth Complex can be interpreted as a closed system.

Figure 34: The univariant curve for Pyrite-Pyrrhotite. Point c denotes the termination of this curve, at a temperature of 743 °C and 10bars of pressure (or 9.9 atm). As the pressure increases, the temperature necessary for equilibrium between pyrite and pyrrhotite increases as well. The rate increase was calculated to be $14^{\circ}C/1$ kbar (Kullerud and Yoder, 1959).

The metamorphic mineral textures also mirror that of primary sulfides. When occurring interstitially, the pyrrhotite and chalcopyrite appear concentrated in layers of fine-grained material that may be relict bedding planes (Fig. 35). If this layering is relict bedding, it

strongly suggests the sulfide was part of the initial deposition of the iron formation. Petrographically, pyrrhotite can also occur as inclusions in the coarser porphyroblasts of orthopyroxene, which is consistent with the sulfides being present prior to the crystallization of pyroxene during metamorphism. It is curious that unlike the silicate phases, sulfide does not coarsen due to metamorphism. Especially given that it goes through a mineral transformation of pyrite to pyrrhotite due to loss of sulfur. It is possible that the metamorphism reduced the available pore space in the eastern portion of the range. This lack of porosity and permeability would retard any fluid flow through the unit that could have re-equilibrated the isotope values with outside sources of sulfur. A study conducted by Crowe (1994), also found that when sulfide minerals were not in contact with one another and were encased in a quartz matrix, they were not susceptible to the overprinting effects of metamorphism and therefore the δ^{34} S value was not re-equilibrated with another source of sulfur.

Figure 35: Core sample B1-305-16 showing layered concentrations of pyrrhotite and magnetite in a metamorphosed section of the Biwabik Iron Formation.

6.3.2 Anhedral Sulfides

The textures associated with secondary anhedral sulfides have been described as either forming in masses or along dissolution surfaces. The anhedral masses are coarse-grained sulfides, sometimes appearing to have nucleated from earlier interstitial sulfide (Fig. 33a). Three of the anhedral masses were analyzed using the SEM and were found to contain pyrite with trace amount of arsenic and cobalt and/or cobaltite. One bedded sample was found to contain only pyrite. The presence of trace amounts of As and Co in the masses, but not along the dissolution surfaces, may point to fluids with different mineral chemistry. Interestingly, no anhedral masses were noted in the intermediate slate layer. Sulfides in the intermediate slate were either interstitial primary sulfides or bedded secondary sulfides forming along dissolution surfaces. The bedded sulfides are assumed to be secondary precipitates because of the high degree of concentration and cross cutting relationships.

Isotope analysis of secondary bedded sulfides yielded δ^{34} S-depleted values (-16.8‰ and -7.7‰). These isotope values are both associated with the upper slaty unit and are located on either side of the Mesabi Range (MGS-8 and MGS-2, respectively). Sample MGS-2-2 contains coarse-grained sulfide masses within calcite layers and in MGS-8-4 the sulfide occurs in aggregated masses in oxidized rocks (Fig. 36). The similar isotope values and location of crystal growth along dissolution surfaces suggests that primary sulfides were overgrown or replaced by secondary sulfides derived from a δ^{34} S-depleted fluid, yielding a hybridized δ^{34} S value for the precipitated sulfide. The δ^{34} S values for the anhedral masses analyzed ranged from 32.5‰ to 80.4‰. All the samples are associated with siliceous granular iron formation in the Lower Cherty unit located in the central portion of the range (MGS-5 and MGS-7). The extremely δ^{34} S-enriched values are associated with the largest sulfide samples collected in this study (Fig. 33a). One may posit that the larger the sulfide mass, the longer and larger the fractionation (in accordance with Rayleigh distillation), assuming a constant supply of sulfate, reactive iron, and organic carbon.

Figure 36: Massive, strata-bound, secondary sulfide masses/aggregates. A. Anhedral sulfide mass located in association with calcite in sample MGS-2-2 B. sulfide aggregation in leached layers in sample MGS-8-4.

6.3.3 Euhedral Sulfides

Pyrite cubes can be found throughout the entire formation, in all of the layers, and in the natural ores at the Fayal Mine. However, most of the samples containing cubes are located in the central and western portion of the range (MGS-5, MGS-7, and MGS-8). As mentioned, euhedral cubes have a very wide range of δ^{34} S values (-16.75‰ to +40.57‰); the depleted values associated with the Virginia Formation and the enriched with the natural ore. Their distribution does not appear to be related to geographic location or

associated lithology. Petrographic observations (Appendix A.2) of cubes were made in the following samples: MGS-2-14, MGS-5-18, MGS-5-27, MGS-7-15, MGS-8-1. In some instances, the cubes are cross-cut by veins containing quartz and calcite, suggesting that cube precipitation, in part, occurred prior to the vein formation (Fig. 37).

Figure 37: Euhedral cubes of pyrite in the Biwabik Iron Formation. A. pyrite cube crosscut by calcite vein in sample MGS-5-27, as seen under transmitted and reflected light; B. pyrite cube containing inclusions of granular iron formation in sample MGS-7-19, as seen under transmitted light

Framboids, named for their raspberry-like appearance, are spherical aggregations of microcrystalline euhedral pyrite (Ohfuji and Rickard, 2005; Scott et al., 2009). Scott et al. (2009) concluded from experimental data that a combination of the supersaturation of pyrite and rapid rate of precipitation from a reduced sulfur-rich fluid is one way to form framboids. Furthermore, supersaturation must occur at the site of framboid precipitation, as it is not likely for such fluids to travel considerable distances (Scott et al., 2009). Generally speaking, framboid precipitation can occur where sulfides did not previously exist, as they are not necessary for nucleation. Raisewell (1982) points out that framboidal precipitation involves sourcing iron from the rocks rather than as a dissolved

constituent in the fluid. Thus when the supersaturated, sulfur-rich fluid comes in contact with iron-rich rocks, rapid framboid precipitation occurs in place. This is notable, as most of the framboids sampled in the iron formation are located in the heavily oxidized portions of the range and therefore may have formed during the oxidation of those rocks. Ohfuji and Rickard (2005) additionally posit that the size of individual crystals within the framboids are directly proportionate to the amount of available nutrients.

As noted, samples collected from the far western portion of the range, MGS-8, contained framboids in vugs located in the oxidized, or leached, portions of the lower cherty with δ^{34} S values ranging from -28‰ to -17‰ and an average of -22.45‰ (Fig. 33c). Two samples from MGS-5 (MGS-5-24 and MGS-5-25) contained framboids located between the transition from granular iron formation to banded iron formation (Fig. 38). Duplicate analysis yielded an average δ^{34} S value of -19.4‰ for MGS-5-24. An additional sample (MGS-5-2) contained framboids that appear bedded in the upper cherty unit with an average δ^{34} S value of +15.5‰. The nearly 40‰ divergence in δ^{34} S value along with their obvious physical differences are suggestive of separate precipitation timing for the framboids, characterized by depleted and enriched sulfur isotope values in the fluid. The framboids located in the western end of the formation must be contemporaneous or postdate the removal of silica which significantly oxidized the rocks in that area. In accordance with Rayleigh and our interpretation of primary sulfides, it appears that the δ^{34} S-depleted secondary sulfides were precipitated first and subsequent fractionation of the fluid later precipitated the more δ^{34} S-enriched sulfides. This therefore suggests a possible lateral west to east secondary fluid flow migration during the formation (oxidation) of the natural ores.

Figure 38: Framboidal pyrite located along dissolution surfaces in sample MGS-5-25 viewed: A. in hand sample; B. in thin section, showing a quartz vein cross-cutting the framboids, as seen under transmitted and reflected light; and C. in a thin section scan.

6.3.4 Vein Sulfides

Veins containing sulfide minerals are located in every stratigraphic unit and at every core location. They are generally characterized as fine grained euhedral to anhedral aggregates of pyrite associated with both quartz and calcite. The isotopic composition of vein sulfide is remarkably variable, with δ^{34} S values ranging from -36.1‰ to +37.8‰, suggesting various degrees of homogenization between the sulfur in the rocks and the sulfur in the vein fluid to form a hybridized δ^{34} S value for the newly precipitated sulfide. Sulfur isotope values were analyzed from veins in four of the five core locations and in four of the five major units in the Biwabik Iron Formation (no samples were taken for analysis due to lack of availability in MGS-2 or the Intermediate Slate layer).

Samples from MGS-5 are characterized as anhedral sulfides in veins and/or on joint faces with calcite (Fig. 33d). Their δ^{34} S values get progressively enriched, moving downsection, from the upper cherty (-36.1‰) to the lower cherty (-27.6‰). This down section enrichment suggests a secondary horizontal fluid migration pathway, similar to what is seen in the δ^{34} S signature in the framboidal sulfides. An additional vein sulfide sample, MGS-5-4, from the upper slaty has a δ^{34} S value of -9.8‰ and is also associated with calcite on a joint face. The samples from MGS-7 and MGS-8 have δ^{34} S values of +17.5‰ and +37.8‰, respectively. The first is from fine-grained pyrite located on a joint face with calcite and second is fine grained pyrite within a layer of black slate forming along fracture planes without calcite.

Almost all the veins containing sulfide minerals also contain calcite. The presence of calcite suggests that CO_2 is an important constituent in the secondary sulfide-forming vein fluids. Petrographic evidence also supports this suggestion. Sample MGS-5-13 shows the association of pyrite with calcite+quartz veins (Fig. 39a and 39b). In contrast,

this sample, along with MGS-5-6, shows how quartz-only veins do not contain any sulfides (Fig. 39c and 39d). Interestingly, the B1-305 sample contains pyrite encased in a quartz only-vein and its δ^{34} S value falls within the assumed primary range. Since the vein sulfide value matches that of the interstitial metamorphic sulfides located in the same core, it is possible that fluid remobilized sulfur from the pyrrhotite to form pyrite in the vein.

Figure 39: Secondary sulfide minerals located in veins; A. Calcite vein cross cutting quartz vein, both containing pyrite (MGS-5-13); B. quartz and calcite vein containing pyrite (MGS-5-13); C, D. Quartz only vein with no sulfides present (MGS-5-6, MGS-5-13), all slides seen under transmitted and reflected light microscopy.

6.3.5 Other Sulfides

Two samples collected from MGS-7 were characterized as containing unusual needle-like sulfide morphology occurring on a joint face or bedding plane enriched in magnetite. They have a δ^{34} S value of +13.8‰, just slightly above the assumed "primary" sulfide range. In thin section, the "needle" sulfides appear to either cap or precede (original orientation is not known) a layer of granular iron formation. The location of this mineral occurrence suggests that secondary fluid flow along a dissolution surface is the likely cause of precipitation. Mineralogy analysis with the SEM found that the needles are comprised of pyrite with trace amounts of arsenic and cobaltite.

Figure 40: Natural ore containing fine grained, euhedral pyrite aggregates, Fayal Mine.

Finally, the natural ore samples collected from the Fayal Mine are characterized as aggregates of coarse grained, euhedral crystals of pyrite with δ^{34} S values of 20.1‰, 31.2‰, and 40.6‰ (Fig. 40). As discussed in Chapter 2, the Fayal Mine natural ores are

associated with leaching and low-temperature quartz±carbonate mineralization along the Fayal fault (Severson et al., 2010).

6.4 Sources of Sulfur in the Biwabik Iron Formation

Previous studies (Carrigan, 1990; Carrigan and Cameron, 1991; Johnston et al., 2006; Poulton et al., 2010) have interpreted that the δ^{34} S values of the primary sulfide minerals (+2% to +13%); -5.4% to +12.4% for this study) indicate the sulfur was sourced from bacterial reduction of seawater sulfate in a semi-closed basin. The Animikie Basin ocean chemistry model proposed by Poulton et al. (2010) (shown in Figs. 14-15) also supports this notion. They argue that as the amount of available organic carbon, which is needed to stimulate bacterial reduction, decreases with distance from the assumed strand line, the amount of sulfate reduction, and subsequent sulfide precipitation, decreases as well. Similarly, the flux of Fe (II), sourced from deep ocean hydrothermal vents, also puts limits on sulfide precipitation. The strand line is interpreted to be located in the far eastern portion of the current margin of the iron formation exposure, in the eastern Mesabi Range and the Gunflint Range. As such, they argue that the amount of primary sulfide minerals present and preserved should decrease towards the western portion of the basin (Poulton et al., 2010). This is supported by the lack of primary sulfide minerals observed in this study in the far western Mesabi Range.

Most of the secondary sulfide precipitation was caused by fluid flow through pore spaces, fractures, bedding planes and dissolution surfaces. The wide range of possible δ^{34} S values

associated with secondary sulfides can be tied to the re-equilibration of primary sulfides and/or secondary sulfur in the fluids as well as the degree of fractionation that occurred prior to and during precipitation. Some of the secondary sulfides appear to nucleate from primary sulfide minerals, whereas others precipitated in locations where sulfides did not previously exist. The source of sulfur for the secondary fluid can be generated by dissolution via oxidation and subsequent reduction of primary sulfides from within the Biwabik Iron Formation or can be sourced from meteoric sulfate, volcanic or hydrothermal sulfate, ocean sulfate, or some combination therein.

The sulfur isotope data in this study point toward the low temperature oxidation of primary sulfide minerals, most likely attributed to the meteoric fluid flow during the oxidation of the natural ores. Subsequent fluid migration and sulfate reduction allowed for re-precipitation of secondary sulfides throughout the iron formation; preferential crystallization occurring along fluid flow paths, as mentioned above. Reduction of sulfate, supplied by the oxidized sulfides, via Rayleigh distillation is thought to be the primary mechanism responsible for secondary sulfide isotope values. As mentioned, primary δ^{34} S values fall between -5.4‰ to +12.4‰. Assuming Rayleigh distillation was at play, the secondary δ^{34} S values should be about 30‰ below the primary values, yielding a new δ^{34} S signatures starting at -35‰ and progressively becoming δ^{34} S enriched as reduction continues. The rate and degree of fractionation depends on the amount of available organic material and reactive iron. The considerably large range of δ^{34} S values in the Biwabik Iron Formation supports a slower rate of reduction due to

limited, fluxing organic carbon and/or reactive iron concentrations. In attempt to observe any preferential oxidation pathways through sulfur isotope trends, samples were plotted based on their depth (distance away from the intermediate slate layer) and geographic location. The points were then color coded to match a 10‰ range of sulfur isotope values. Figure 41 shows the geographic and depth distribution of sulfur isotope values in the Biwabik Iron Formation. There does not appear to be any obvious sulfur isotope trends relating to depth or geographic location that may support to presence of an oxidation pathway; that does not, however, suggest that one never existed. Therefore, additional studies are necessary to better constrain the δ^{34} S variability in the Biwabik Iron Formation.

Figure 41: Geographic and Depth Distribution of sulfur isotopes in the Biwabik Iron Formation

6.5 Sulfide Mineral Paragenesis in the Biwabik Iron Formation

Three main phases of sulfide precipitation in the Biwabik Iron Formation are supported by both isotopic and textural evidence (Fig. 42). Primary sulfides, as interstitial anhedral blebs of pyrite, were formed during the deposition of the Animikie Group. The emplacement of the Duluth Complex at 1.1 Ga metamorphosed the eastern portion of the Mesabi Range, causing primary sulfides to be recrystallized into pyrrhotite. Little to no fractionation occurred and therefore the range of δ^{34} S values (2.4% to 11.3%) is similar to that of the primary sulfides. The main difference between the metamorphic sulfides and the primary sulfides from which they believed they were formed from is the mineralogy; all other aspects, including morphology, is essentially the same. That being said, one could argue that if secondary sulfides (non-blebs) were present prior to metamorphism as well, then their morphologies should also be visible in the metamorphosed portions of the Biwabik Iron Formation. However, the sulfides present in the eastern Mesabi Range exhibit only primary textures and therefore secondary sulfide mineralization is interpreted to have formed post-Duluth Complex. Secondary, low temperature oxidation via meteoric fluid flow and subsequent sulfate reduction can lead to a large range of δ^{34} S values as the rate at which reduction occurs may vary due to local conditions.

Figure 42: Estimated mineral paragenesis for the sulfide minerals observed in the Biwabik Iron Formation. The blue box indicates the timeframe over which primary precipitation occurred. Pyrrhotite was formed during the emplacement of the Duluth Complex. All subsequent secondary sulfide minerals formed post-Duluth Complex.

Textural evidence also yields observations regarding sulfide paragenesis on a microscopic scale. In sample MGS-5-25, a quartz vein is cross cutting framboids and in MGS-5-27, a calcite vein is cross cutting a cube (Figs. 37a and 38b). This suggests that in some instances, but perhaps not all, veins post-date both framboidal and cube nucleation.

6.6 Sources of Sulfur in the St. Louis River Watershed

Sulfate sampling in the St. Louis River Watershed immediately adjacent to mining activity in northeastern Minnesota was conducted by the Minnesota Department of Natural Resources. Analysis conducted on the water sulfate yielded a range of $\delta^{34}S$ values from +4% to +9%. Although δ^{34} S values were conducted on water sulfate, rather than solid sulfide minerals, Berndt and Bavin (2011b) assumed little to no fractionation between the two due to the close proximity between water sampling sites and the rock sources. This assumption therefore allows for direct comparisons between the water sulfate and solid sulfide δ^{34} S values, in attempt to determine the solid source of sulfur to the St. Louis River Watershed. Interestingly, the sulfate range falls comfortably within the primary sulfide range of +2% to +13%. The similarities suggest that sulfides within the Biwabik Iron Formation may be a dominant contributor of sulfur to the St. Louis River Watershed. Because only a small portion of the sampled sulfides in this study contained primary sulfides, it is possible to assume that primary sulfides are not the dominant morphology present in the Biwabik Iron Formation. Additionally, the effect of extreme δ^{34} S values associated with veins, framboids, and massive anhedral sulfides may lead to an average signature that artificially appears primary but is rather, and more appropriately, an average of all the sulfides present in the formation.

Chapter 7: Conclusion

The main objective of this study was to delineate the areal and stratigraphic distribution of sulfide minerals in the Biwabik Iron Formation and to determine their mineralogy, textural and lithologic occurrence, and sulfur isotope geochemistry. This data could then be evaluated to assess the paragenesis of the various sulfide occurrences, the characteristic isotopic compositions of those occurrences, and the likely genesis of the sulfide-forming events. Furthermore, the δ^{34} S sulfide values for this study were compared to δ^{34} S sulfate values collected for a sulfur cycling study in the St. Louis River Watershed by the Minnesota Department of Natural Resources. This comparison is necessary to estimate the possible sources of sulfur to the St. Louis River Watershed. Therefore, the main conclusions of this study addressed the sulfide-forming processes responsible for and controls on sulfide mineral distribution, and how that distribution correlates to sulfate in the St. Louis River Watershed.

Sulfide Mineral Distribution & Formation

The distribution of the various sulfide occurrences in the Biwabik Iron Formation appear to be somewhat controlled by the internal characteristics of the host lithology. The processes responsible for the formation of the various occurrences can be broadly attributed to three time-frames: primary, metamorphic, and secondary. Primary sulfides are those formed as a product of the environment of original deposition. In the case of the Biwabik Iron Formation, these sulfides are defined as anhedral blebs of interstitial pyrite. Most primary pyrite falls in the δ^{34} S range of +2‰ to +13‰, which others (Carrigan,

1990; Carrigan and Cameron, 1991; Johnston et al., 2006; and Poulton et al., 2010) have interpreted to be consistent with reduction of an ocean sulfate source in a near shore environment of the Paleoproterozoic Animike Sea. Within the Biwabik Iron Formation, the primary sulfide textures appear most often, if not exclusively, in low porosity portions, such as the intermediate slate. Metamorphic sulfides, characterized as interstitial pyrrhotite and chalcopyrite, were exclusively located within the thermal aureole of the Duluth Complex. No outside source of sulfur was integrated into the system at this time and therefore δ^{34} S values of the metamorphic sulfides were merely recrystallized from the primary sulfides. In contrast, secondary sulfides were precipitated from lowtemperature, oxidizing meteoric fluid flowing through the iron formation via faults, fractures, pore spaces, and dissolution surfaces. The oxidation, most likely the cause of nature ore formation, remobilized primary sulfide minerals, allowing for subsequent reduction via Rayleigh fractionation, yielded a variety of sulfide textures and a wide range of δ^{34} S as fractionation continued. The textures seen include anhedral masses, cubes, framboids, and within veins. The wide range of δ^{34} S values can be attributed to the homogenization of sulfate in the fluid with primary sulfide in the iron formation and the degree of fractionation, a product of available sulfate, reactive iron, and organic material for fuel.

Correlation to St. Louis River Watershed Sulfate

When comparing the δ^{34} S values of St. Louis River Watershed sulfate to Biwabik Iron Formation sulfides, it appears, perhaps artificially, that primary and metamorphic sulfides, anhedral interstitial blebs of pyrite and pyrrhotite, are the main contributors of sulfur as they share the same overall sulfur isotope signature. However, the occurrences associated with secondary, post-depositional fluid flow, average out similarly to the watershed, despite their extreme values. Therefore, although the primary and metamorphic sulfide mineral isotope signatures are more obviously similar to the isotope values seen in the St. Louis River Watershed, it also appears that the secondary sulfides are a plausible contributor to the sulfur budget as well. This seems a more likely conclusion as secondary sulfides are much more wide spread and coarser grained than the primary and metamorphic sulfides in the Biwabik Iron Formation and thus more easily incorporated into the watershed.

Future Implications and Further Studies

Studies regarding the location and characteristics of sulfide minerals in the Biwabik Iron Formation were limited prior to this study. Although not extensive, the data collected for this study paint a general picture of the distribution of sulfide minerals in the Biwabik, including their geochemistry, host lithology, and morphology. Although no single geographic location, lithology, or morphology contributes more sulfides to the overall sulfur budget of the St. Louis River Watershed, they do all appear to contribute. Therefore it is important, when moving forward and planning for the management of present and future waste rock and tailings basins containing Biwabik Iron Formation, to be aware of the presence of sulfide minerals and their ability to be incorporated into the local ground water and surface water bodies. This may have legal ramifications for mining companies as well as local, state, and federal government organizations as sulfate concentrations are monitored in nearby watersheds.

As this study principally focused on visible sulfide occurrences and a biased sampling methodology due to financial limitations, it may be helpful if further studies were conducted to determine an unbiased sulfide mineral distribution in the Biwabik Iron Formation. Detailed ion microprobe studies of individual sulfides to check for internal homogeneity and precipitation history would be useful, as well. Additionally, continued research into other possible sources of sulfate to the St. Louis River Watershed, such as sulfide distribution, mineralogy, and geochemistry in the glacial till as well as the Virginia Formation and Duluth Complex, can aide in fully understanding the sulfur budget in the region.

References

Addison, W.D., Brumpton, G.R., VAllini, D.A., McNaughton, N.J., Davis, D.W., Kissin, S.A., Fralick, P.W., and Hammond, A.L., 2005, Discovery of distal ejecta from the 1840 Ma Sudbury impact event, *Geology*, v. 33, p. 193-196.

Beck, J.W., 1988, Implications for early Propterozoic tectonics and the origin of continental flood basalts, based on combined trace element and neodymium/strontium isotopic studies of mafic igneous rocks of the Penokean Lake Superior belt, Minnesota, Wisconsin, and Michigan: Minneapolis, University of Minnesota, Unpublished Ph.D. Dissertation, p. 262.

Berndt, M. and Bavin, T., 2011a, Sulfate and mercury cycling in five wetlands and a lake receiving sulfate from taconite mines in northeastern Minnesota, Minnesota Department of Natural Resources, p. 78.

Berndt, M. and Bavin, T., 2011b, A preliminary assessment of sulfate release and cycling processes in the St. Louis River watershed: An Environmental and Natural Trust Fund Progress Report, Minnesota Department of Natural Resources, p. 45

Bleifuss, R.L., 1964, Mineralogy of oxidized taconites of the western Mesabi and its influence on metallurgical processes, *Society of Mining Engineers Transactions*, v. 229, p. 236-244.

Bonnichsen, B., 1968, General geology and petrology of the metamorphosed Biwabik Iron Formation, Dunka River area, Minnesota: Minneapolis, University of Minnesota, Unpublished Ph.D. Dissertation, p. 240.

Bonnichsen, B., 1969, Metamorphic pyroxenes and amphiboles in the Biwabik Iron Formation, Dunka River Area, Minnesota, Mineralogical Society of America Special Paper, n. 2, p. 217-241.

Canfield, D.E. and Raiswell, R., 1999, The Evolution of the Sulfur Cycle, *American Journal of Science*, v. 299, p. 697-723

Canfield, D.E., 2004, The evolution of the Earth surface sulfur reservoir, *American Journal of Science*, v. 304, p. 839-861

Carrigan, W.J., 1990, Stable isotope ratios of carbonate and sulfide minerals from the Gunflint Formation: evidence for the origin of iron-formations [Ph.D. Thesis]: University of Ottawa, p. 199.

Carrigan, W.J. and Cameron, E.M., 1991, Petrological and stable isotope studies of carbonate and sulfide minerals from the Gunflint Formation, Ontario: evidence for the origin of early Proterozoic iron-formation, *Precambrian Research*, v. 52, p. 347-380

Coplen T. B., Hopple J. A., Bohlke J. K., Peiser H. S., Reider S. E., Krouse H. R., Rosman K. J. R., Ding T., Vocke R. D., Revesz K. M., Lamberty A., Taylor P. and De Bievre P., 2002, Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. U.S.G.S. Water – Resources Investigations Report 01-4222, p. 98

Crowe, D.E., 1994, Preservation of original hydrothermal δ^{34} S values in greenschist to upper amphibolites volcanogenic massive sulfide deposits, *Geology*, v. 22, p. 873-876.

Farquhar, J., Wu, N., Canfield, D.E., and Oduro, H., 2010, Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits, *Economic Geology*, v. 105, p. 509-33

Fralick, P., Davis, D., and Kissin, S., 2002, The age of the Gunflint Formation, Ontario, Canada: single zircon U-Pb age determinations from reworked volcanic ash, *Canadian Journal of Earth Sciences*, v. 39, p. 1085-1091

French, B., 1968, Progressive Contact Metamorphism of the Biwabik Iron-formation, Measbi Range, Minnesota: Minnesota Geological Survey, Bulletin 45, p.103

Goodwin, A.M., 1956, Facies relations in the Gunflint Iron Formation, *Economic Geology*, v. 51, p. 565-595.

Gruner, J.W., 1946, *The mineralogy and geology of the taconites and iron ores of the Mesabi Range, Minnesota*, St. Paul, Minnesota, Office of the Commissioner of the Range Resources and Rehabilitation, p. 127.

Gunderson, J.N. and Schwartz, G.M., 1962, The Geology of the Metamorphosed Biwabik Iron-Formation, Eastern Mesabi District, Minnesota

Gunter, F., 1986, Sulfur, In: Principles of Isotope Geology, p. 523-552

Hemming, S.R., McLenna, S.M., Hanson, G.N., and Krogstad, K.M., 1990, Pb isotope systematics in quartz [abs], *EOS*, v. 71, no.17, p. 654-655.

Hemming, S.R., Hanson, G.N., and McLennan, S.M., 1995, Precambrian crustal blocks in Minnesota: Neodymium isotope evidence from basement and metasedimentary rocks, *U.S. Geological Survey, Bulletin 1904-U*, p. 15.

Hemming, S.R., McLennan, S.M., and Hanson, G.N., 1996, Geochemical source characteristics and diagenetic trends of the Virginia Formation, Mesabi Iron Range, Minnesota [abs], *Institute of Lake Superior Geology*, 42nd Annual Meeting, Cable, WI, Proceedings, v.42, p.13.

Hyslop, E., Valley, J., Johnson, C., and Beard, B., 2008, The effects of metamorphism on O and Fe isotope compositions in the Biwabik Iron Formation, northern Minnesota; *Contributions to Mineralogy and Petrology*; v.155, p.313-328

Jirsa, M.A., Miller, J.D., and Morey, G.B., 2008, Geology of the Biwabik Iron Formation and Duluth Complex, *Regulatory Toxicology and Pharmacology*, v. 52, p. S5-S10

Johnston, D.T., Poulton, S.W., Fralick, P.W., Wing, B.A., Canfield, D.E., and Farquhar, J., 2006, Evolution of the oceanic sulfur cycle at the end of the Paleoproterozoic, *Geochimica et Cosmochimica Acta*, v. 70, p. 5723-5739

Krouse, H.R., 1980, Sulphur Isotopes in our Environment, In: Fritz, P and Frontes, J.C., Handbook of Environmental Isotope Geochemistry

Kullerud, G., and Yoder, H.S., 1959, Pyrite stability relations in the Fe-S system, *Economic Geology*, v. 54, n.4, p. 533-572.

La Berge, G.L., 1964, Deveolopment of magnetite in iron-formations of the Lake Superior region, *Economic Geology*, v. 59, n. 7, p. 1313-1342.

LaBerge, G.L., Robbins, E.I., Han, T.M., 1987, A model for the biological precipitation of Precambrian iron-formations, A: Geological Evidence, IN: Appel, P.W.U. and LaBerge, G.L., eds., Precambrian iron-formations: Athens, Greece, Theophrastus Publications, p. 69-96.

McSwiggen, P.L. and Morey, G.B., 2008, Overview of the mineralogy of the Biwabik Iron Formation, Mesabi Iron Range, northern Minnesota, *Regulatory Toxicology and Pharmacology*, v. 52, p. S11-S25

Morey, G.B., 1970, Masabi, Gunflint and Cuyuna Ranges, Minnesota, In: Unesco, 1973, Genesis of Precambrian iron and manganese deposits. Proc. Kiev Symp., 1970, *Earth Sciences*, v.9, p. 193-208

Morey, G.B., 1972, General Geologic Setting, Mesabi Range, Gunflint Range, Cuyuna District, In: Sims, P.K. and Morey, G.B., Geology of Minnesota: A Centennial Volume, p. 199-239

Morey, G.B. and Southwick, D. L, 1995, Allostratigraphic Relationships of Early Proterozoic Iron-Formations in the Lake Superior Region, *Economic Geology*, v. 90, p. 1983-1993

Morey, G.B., 1999, High-grade ore deposits of the Mesabi Range, Minnesota – Product of a continental-scale Proterozoic ground-water flow system, *Economic Geology*, v. 94, p. 133-142.

Ohfuji, H. and Rickard, D., 2005, Experimental synthesis of framboids – a review, *Earth-Science Reviews*, v. 71, p. 147-170.

Ojakangas, R.W., ,1983, Tidal deposits in the early Proterozoic basi of the Lake Superior region – the Palms and the Pokegama Formations: Evidence for subtidal-shelf deposition of Superior-type banded iron-formation, IN: Medaris, L.D., Jr., ed., Early Proterozoic geology of the Great Lakes region: Geological Society of America Memoir 160, p. 49-66.

Ojakangas, R.W., Severson, M.J., Jongewaard, P.K., Arola, J.L., Evers, J.T., Halverson, D.G., Morey, G.B., and Holst, T.B., 2005, Geology and Sedimentology of the Paleoproterozoic Animikie group: the Pokegema Formation, the Biwabik Iron Formation, and Virginia Formation of the Eastern Mesabi Iron Range, and the Thomson Formation near Duluth, Northeastern Minnesota, In: Guidebook Series: Minnesota Geological History, v. 21, p. 208-237

Poulton, S.W., Fralick, P.W., and Canfield, D.E., 2010, Spatial Variability in Oceanic Redox Structure 1.8 Billion Years Ago, *Nature Geoscience*, v.3, p 486-490

Proceedings of the 8th IAEA Consultants Meeting on Future Trends in Stable Isotope Reference Materials and Laboratory Quality Assurance, Vienna, Austria, 2000.

Pufahl, P., Fralick, P., and Scott, J., 2000, Geology of the Paleoproterozoic Gunflint Formation, In: Institute on Lake Superior Geology Proceedings, 46th Annual Meeting, Thunder Bay, Ontario, v.46, part 2, p. 103-147

Raiswell, R., 1982, Pyrite Texture, Isotopic Condition, and the Availability of Iron, *American Journal of Science*, v. 282, p.1244-1263

Ripley, E.M., Li, C., Moore, C.H., and Schmitt, A.K., 2010, Micro-scale S isotope studies of the Kharaelakh intrusion, Noril'sk region, Siberia: Constraints on the genesis of coexisting anhydrite and sulfide minerals, *Geochimica et Cosmochimica Acta*, v. 74, p. 634-644

Schulz, K. and Cannon, W., 2007, The Penokean Orogeny in the Lake Superior Region, *Precambrian Research*, v.157, p.4-25

Scott, R.J., Meffre, S., Woodhead, J., Gilbert, S.E., Berry, R.F., and Emsbo, P., 2009, Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration, *Economic Geology*, v. 104, p. 1143-1168.

Severson, M.J., Heine, J.J., and Meinders Patelke, M., 2010, Plate II: Hung Stratigraphy of the Biwabik Iron Formation showing distribution of internal submembers at the various taconite mines on the Mesabi Range of Minnesota, Report NRRI/TR-2009/09

Severson, M.J., Ojakangas, R.W., Larson, P., and Jongewaard, P.K., 2010, Field Trip 2: geology and stratigraphy of the central Mesabi iron range, *Field Guide to the Geology of Precambrian Iron Formations in the Western Lake Superior Region Minnesota and Michigan*, PRC Guidebook 10-01, p. 15-52.

Sharp, 2007, Principles of Stable Isotope Geochemistry: Upper Saddle River, NJ, Pearson Prentice Hall, p.344

Shields-Zhou, G. and Och, L., 2011, The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences, *GSA Today*, v. 21, n.3, p.4-11

Southwick, D.L. and Day, W.C., 1983, Geology and petrology of Proterozoic mafic dikes, north-central Minnesota and western Ontario, *Canadian Journal of Earth Sciences*, v. 20, p. 622-638.

Studley, S.A., Ripley, E.M., Elswick, E.R., Dorais, M.J., Fong, J., Finkelstein, D., and Pratt, L.M., 2002, Analysis of sulfides in whole rock matrices by elemental analyzer-continuous flow isotope ratio mass spectrometry (short communication), *Chemical Geology*, v. 192, p. 141-148

Waggoner, 2010, Negaunee Iron Formation, Marquette Range, Michigan, IN: Precambrian Research Center Professional Workshop Series: Geology, Mineralogy, and Genesis of Precambrian Iron Formations Short Course, Duluth, MN.

Werne, J.P., Lyons, T.W., Hollander, D.J., Schouten, S., Hopmans, E.C., and Sinninghe Damsté, J.S., 2008, *Geochimica et Cosmochimica Acta*, v. 72, p. 3489-3502

White, D.A., 1954, The stratigraphy and structure of the Mesabi Range, Minnesota, *Minnesota Geological Survey* Bulletin 38, p. 92.

Williams, C.D., Ripley, E.M., and Li, C., 2010, Variations in Os isotope ratios of pyrrhotite as a result of water-rock and magma-rock interaction: Constraints from Virginia Formation-Duluth Complex contact zones, *Geochimica et Cosmochimica Acta*, v. 74, p. 4772-4792.

Zanko, L.M., Severson, M.J., Oreskovich, J.A., Heine, J.J., Hauck, S.A., and Ojakangas, R.W., 2003, Oxidized taconite geological resources for a portion of the western Mesabi Iron Range (west half of the Atcturus Mine to the east half of the Canisteo Mine), Itasca County, Minnesota – a GIS-based resource analysis for land-use planning: University of Minnesota Duluth, Natural Resources Research Institute, Technical Report NRRI/TR-2001/40, p. 85.

Appendices

Appendix A: Sulfide Sample Observations

					Cla	ssification		
Sample Number	Unit Name	/motors/	Macroscopic Hand Sample Description	Anhedral	Euhedral	Framboid		
		(הושרפו א		(Blebs)	(Cubes)	/Spheriod	Veins	Others
B1-305-1	Virginia	381.91	Disseminated blebs of sulfide (py & po), not related to specific lith	В				
B1-305-2	Virginia	382.07	Disseminated blebs of sulfide	В				
B1-305-3	Upper Slaty	393.04	Strat controlled cubes (w/in dk unit); possible vf gr blebs disseminated in quartz		С			
B1-305-4a,b	Upper Slaty	401.27	4a&b: cubes present in leached zones		С			
B1-305-4a,b (D)	Upper Slaty	401.27	4a&b: cubes present in leached zones		С			
B1-305-4c	Upper Slaty	401.27	4c: blebs w/in vein of quartz				^	
B1-305-5	Upper Slaty	401.42	Strat contolled sulfide cubes		С			
B1-305-6	Upper Slaty	401.57	Cubes in fracture plane		С			
B1-305-7	Upper Cherty	409.65						
B1-305-8	Upper Cherty	409.80						
B1-305-9	Lower Slaty	419.86						
B1-305-10	Lower Slaty	420.01						
B1-305-11	Lower Slaty	420.32						
B1-305-12	Lower Slaty	434.95	disseminated po	В				
B1-305-13	Lower Slaty	437.39	Strat controlled blebs of sulfide	В				
B1-305-14	Int Slate	444.40	Disseminated sulfide throughout (vfgr); larger dissem blebs; at least 2 types sulfide?	В				
B1-305-15	Int Slate	445.31	Disseminated sulfide throughout (vfgr); larger dissem blebs; at least 2 types sulfide?	В				
B1-305-16	Int Slate	446.23	Po blebs in magnetite strat (vfgr)	В				
B1-305-17	Int Slate	446.53	Po blebs in magnetite strat (vfgr); po whisps (blebs) in mag strat/bands	В				
B1-305-18	Lower Cherty	447.60	sulfide blebs within mag layers	В				
B1-305-18 (D)	Lower Cherty	447.60	sulfide blebs within mag layers	В				
B1-305-19	Lower Cherty	447.75	Pos blebs of sulfide not enough for isotopes	В				

Appendix A.1 Macroscopic Observations

		11.0			Cla	ssification		
Sample Number	Unit Name	(meters)	Macroscopic Hand Sample Description	Anhedral (Blebs)	Euhedral (Cubes)	Framboid /Spheriod	Veins	Others
MGS-2-A	Virginia	481.58	pos vein sulf; disseminated blebs throughout as well	В			>	
			disseminated subeuhedral cubes or sulf in specific					
MGS-2-B	Transition	489.81	banding/lith (xcutting existing lith including a quartz vein); blebs in another band (not x-cutting); some blebs in base black laver		U			
MGS-2-1	Upper Slaty	496.06	Pyrite blebs near/within quartz (possibly in veins, too); some fine grained blebs w/in (few)	В			>	
MGS-2-2	Upper Slaty	496.21	2- blebs, vfgr dissem throughout w/ quartz (more than circled); 2a – vfine grained, stratigraphically controlled, near quartz and black bits	В				
MGS-2-3	Upper Slaty	496.82	 3a - on surface? (pos f grained w/in matrix); 3b - cubes & blebs (pyrrhotite), vf grained, pos not enough for sampling; 3 blebs, f gr throughout; smaller chips have cubes & blebs 	۵	U			
MGS-2-4	Upper Slaty	503.83	-					
MGS-2-5	Upper Cherty	522.88	f gr disseminated sulfides + vuggy blebs (secondary replacement??)	В				
MGS-2-6	Upper Cherty	527.91	-					
MGS-2-7	Upper Cherty	529.13	sulfides (dark gold) circled; some f gr in quartz (few) pos not enough	В				
MGS-2-8	Upper Cherty	536.30	-					
MGS-2-9	Upper Cherty	537.97	Stratigraphically controlled blebs (pos v fgr)	В				
MGS-2-10	Upper Cherty	545.29	Sulfide blebs, possible fine grained stratigraphically controlled (?)	В				
MGS-2-11	Lower Slaty	573.02	-					
MGS-2-12	Lower Slaty	576.22						
MGS-2-13	Lower Slaty /Int Slate	599.69	Disseminated, strat controlled blebs (pos in clasts); pos f gr sulf in layers	В				
MGS-2-14	Lower Slaty /Int Slate	600.15	Blebs throughout, not strat controlled, only in cherty areas	В				
MGS-2-15	Lower Slaty /Int Slate	602.28	Blebs in specific clasts/or strat (quartz/chert &/or plag), possible fine grained strat controlled	В				

			V								
					J			С			
В	В	Я		В		В	В			В	
Disseminated blebs within cherty/quartz strat	Disseminated blebs within cherty/quartz strat	Round blebs, disseminated throughout; f & c gr blebs dissem throughout chert	<pre>vf grained disseminated in quartz veins/strat(?) (bottom); not w/in veins but on edges (cubes ?)</pre>	Vfgr strat controlled blebs (only component of strat)	subhedral cubes on surface	disseminated f grained sulfide	Blebs w/ quartz, pos only on surface, strat controlled	Cubes (f gr) in slaty (black chert) strat	-	Possibly disseminated, one bleb – not enough to analyze	
604.72	604.72	612.65	614.17	617.52	617.68	617.98	620.27	620.57	623.01	654.41	
Lower Slaty /Int Slate	Lower Slaty /Int Slate	Lower Slaty /Int Slate	Lower Slaty /Int Slate	Lower Slaty /Int Slate	Lower Slaty /Int Slate	Lower Cherty	Lower Cherty	Lower Cherty	Lower Cherty	Lower Cherty	
MGS-2-16	MGS-2-16 (D)	MGS-2-17	MGS-2-18	MGS-2-19	MGS-2-20	MGS-2-21	MGS-2-22	MGS-2-23	MGS-2-24	MGS-2-25	
		Douth			Cla	ssification					
---------------	--------------	---------	---	----------	----------	-------------	-------	--------			
Sample Number	Unit Name	(motor)	Macroscopic Hand Sample Description	Anhedral	Euhedral	Framboid					
		ווופופו		(Blebs)	(Cubes)	/Spheriod	Veins	Others			
MGS-5-A	Transition	154.69	conglomeration of cubes (tiny) in clast/inclusion (pos connected to qrtz vein); doesn't appear to have sulf els ewhere		C						
MGS-5-A (D)	Transition	154.69	conglomeration of cubes (tiny) in clast/inclusion (pos connected to qrtz vein); doesn't appear to have sulf els ewhere		U						
MGS-5-B	Transition	158.04	larger cube conglomeration, semi-related to a specific layer; pos disseminated sulf throughout slate unit		С						
MGS-5-1	Transition	158.19	Strat controlled subhedral cubes; layers wrap around large cube cluster- mostly w/in chert; flat, fgr sulf on joint/surf w/ calcite		U						
MGS-5-2	Upper Slaty	158.34	Strat controlled sulf framboids/spheres, few cubes; in dark unit, weakly magnetic			Ъ					
MGS-5-2 (D)	Upper Slaty	158.34	Strat controlled sulf framboids/spheres, few cubes; in dark unit, weakly magnetic			Ч					
MGS-5-3	Upper Slaty	162.15	Blebs on joint surface with calcite (fgr); related to calcite filled veins with some sulf				^				
MGS-5-4	Upper Slaty	162.46	F gr on joint surface with calcite				>				
MGS-5-5	Upper Slaty	179.68	Remnants of sulfide cube with quartz – can't tell if disseminate or secondary; trace bleb sulfides on joint (chert)		C						
MGS-5-6	Upper Slaty	189.74	Dissem blebs of sulf in quartz vein; one bleb w/in chert-like vague vein; poss dissem blebs throughout	В			٨				
7-5-2M	Upper Slaty	202.08	Framboids/spheres on joint; doesn't follow lithology				٨				
MGS-5-8	Upper Slaty	210.01	Dissem cubes in cherty matrix; pos strat controlled blebs/spheres as well	В	C						
MGS-5-9	Upper Cherty	223.88	One dissem cube in quartz/cherty zone		J						
MGS-5-10	Upper Cherty	224.18	Single dissem cube in quartz/cherty zone (same as mgs-5-9)		U						
MGS-5-11	Upper Cherty	226.92	V f gr subhedral sulf in veins with calcite (calcite mostly gone)				^				
MGS-5-11 (D)	Upper Cherty	226.92	V f gr subhedral sulf in veins with calcite (calcite mostly gone)				>				

MGS-5-12	Lower Slaty	249.33	framboids/spheres of sulf on joints with calcite (1/2 mm wide plane)				>	
MGS-5-13	Lower Slaty	255.12	Sulf on edges of veins filled with calcite (and quartz?); grew from edges of fractures in; some all sulf, all calcite, all quartz, or combination				N	
MGS-5-14	Lower Slaty	262.89	Strat controlled sulf cubes; pos veins		С			
MGS-5-15	Lower Slaty	265.79	Strat controlled cubes (euhedral to subhedral); pos related to clasts (chert) – surrounding clasts		υ			
MGS-5-16	Lower Slaty /Int Slate	270.36	Dissem sulf cubes in specific strat unit		U			
MGS-5-16 (D)	Lower Slaty /Int Slate	270.36	Dissem sulf cubes in specific strat unit		U			
MGS-5-17	Lower Slaty	274.47	Large dissem sulf cubes (in dark layer); cross cut by large calcite vein		U			
MGS-5-18	Lower Slaty	278.89	F gr dissem blebs (few cubes) strat controlled	В	С			
MGS-5-19	Lower Slaty	280.87	Cubes & f gr blebs capping cherty layer w/ dissem f gr cubes of sulf w/in chert		U			
MGS-5-20	Lower Slaty	288.49	Vfgr blebs (large), layer/clast w/ few cubes around; some sulf veins w/ quartz; between chert & carbonates - cubes with quartz; large blebs	В	C			
MGS-5-21	Lower Cherty	320.04	large (massive) sulfide blebs, sulfides also surrounds clasts (radiates out into dissem)	в				
MGS-5-21 (D)	Lower Cherty	320.04	large (massive) sulfide blebs, sulfides also surrounds clasts (radiates out into dissem)	В				
MGS-5-22	Lower Cherty	320.95	F gr dissem blebs in strat (f gr dark bands) + large (massive) blebs on surf	В				
MGS-5-22 (D)	Lower Cherty	320.95	F gr dissem blebs in strat (f gr dark bands) + large (massive) blebs on surf	В				
MGS-5-23	Lower Cherty	357.53	Sulfide on joint (vfgr cubes/framboids)				٧	
MGS-5-24	Lower Cherty	359.36	Sulfide blebs btwn two strat (lith – granular chert & fe carb yellow)			F		
MGS-5-24 (D)	Lower Cherty	359.36	Sulfide blebs btwn two strat (lith – granular chert & fe carb yellow)			F		
MGS-5-25	Lower Cherty	361.34	Dissem blebs pos throughout cherty unit; larger blebs separate red cherty w/f gr unit; f gr dissem sulfide blebs in maroon unit; *grtz vein cut thru sulfide	в				

ļ						
1	MGS-5-26	Lower Cherty	366.98	Large sulfide cubes throughout; pos f gr dissem sulfide btwn quartz/chert grains	c	
02	MGS-5-27	Lower Cherty	367.28	Cubes dissem throughout quartz/chert	c	

					Clas	ssification		
Sample Number	Unit Name	Depth (meters)	Macroscopic Hand Sample Description	Anhedral	Euhedral	Framboid		
				(Blebs)	(Cubes)	/Spheriod	veins	Uthers
MGS-7-A	Virginia	235.61	disseminated subeuhedral cubes within specific strat (massive bedded, pos xcut by qrtz vein); sulfide bl eb inclusion in fgr "shale" lith (layered unit); pos fgr sulfide throughout		U			
MGS-7-B	Virginia	238.35	fgr cube inclusions/clasts in massive bedded unit; pos xcut by qrtz vein; fg sulfide throughout (esp in layered parts)		U			
MGS-7-B (D)	Virginia	238.35	fgr cube inclusions/clasts in massive bedded unit; pos xcut by qrtz vein; fg sulfide throughout (esp in layered parts)		J			
MGS-7-C	Virginia	238.81	fgr zones, tiny cubes and clasts/inclusions; all over whispy/flow-like banding; pos 2 types of sulfide	в				
MGS-7-1	Virginia	238.96	Massive; pyrite + pyrrhotite; blebs + (pos vein infill) – strat controlled	В			(v)	
MGS-7-2	Upper Slaty	242.93	On surface with quartz; few strat controlled blebs; vein infill (rx clasts imbricated)	В			v	
MGS-7-3	Upper Slaty	244.14	Fine grained surface coating on joint (?); perhaps a layer?				>	
MGS-7-4	Upper Slaty	245.52	-					
MGS-7-5	Upper Slaty	245.97	Fine grained on surface; coating with quartz; in veins with quartz, too				>	
MGS-7-6	Upper Slaty	250.55	Disseminated blebs and cubes (stratigraphically controlled)		U			
7-7-7	Upper Cherty	262.89	Vug like infill (weathered out replacement (?)), disseminated throughout; on core edge - POS NONE??	В				
MGS-7-8	Upper Cherty	266.09	Disseminated, fine grained strat controlled; fibers/needles on joint surface					needles
MGS-7-9	Upper Cherty	266.17	Few disseminated cubes; fibers/needles on joint surface					needles
MGS-7-10	Upper Cherty	267.61	maybe vug like infill (weathered out replacement); disseminated throughout; large cube on top		С			
MGS-7-11	Upper Cherty	299.62	Possible disseminated in quartz, fine grained in shale, 2 larger cubes		С			
MGS-7-12	Upper Cherty	311.20	Disseminated blebs; strat controlled within black shale	В				
MGS-7-13	Lower Slaty	320.04	Disseminated blebs/cubes within clasts	В				
MGS-7-13b	Lower Slaty	319.89	Cubes in pink area (like granite or fe stained quartz)		C			

c	С	C	U	υ	C	C	J				
								В	В	В	
Disseminated cubes in pink area	Disseminated cubes in pink area	Cubes on surface (joints); some disseminated cubes; veins (15b); disseminated cubes (15b)	Cubes and blebs on surface (ends) - cubes disseminated w/in	Cubes within black (boudin like) strat; cubes in pink areas; blebs on ends	Cubes within black (boudin like) strat; cubes in pink areas; blebs on ends	Trace disseminated fine grained pyrite cubes in shale (pos within clasts or spec layers w/in)	Disseminated cubes; shale with clasts + pyrite (fine grained)	Two disseminated blebs	Massive blebs	Disseminated blebs in chert (red)	
328.88	328.88	329.03	335.74	335.74	335.74	338.48	380.85	383.90	392.13	413.00	
Lower Cherty	Lower Cherty	Lower Cherty	Lower Cherty	Lower Cherty	Lower Cherty	Lower Cherty	Lower Cherty	Lower Cherty	Lower Cherty	Lower Cherty	
MGS-7-14	MGS-7-14 (D)	MGS-7-15	MGS-7-16	MGS-7-17	MGS-7-17 (D)	MGS-7-18	MGS-7-19	MGS-7-20	MGS-7-21	MGS-7-22	

		4+20			Cla	ssification		
Sample Number	Unit Name	(meters)	Macroscopic Hand Sample Description	Anhedral	Euhedral	Framboid	Voinc	0.440
		101000		(Blebs)	(Cubes)	/Spheriod	veins	Others
MGS-8-A	Transition	445.62	sizable cube w/in quartz (vein?); pos fgr dissem in black "shale" unit		С			
MGS-8-B	Transition	459.64	blebs w/ inclusuions w/in; pos actually groups of cubes; fgr dissem in vuggy areas	В				
MGS-8-1	Transition	468.17	Pyrite on surface (secondary)				>	
MGS-8-2	Transition	468.48	Disseminated blebs throughout	В				
MGS-8-3	Transition	469.39	Fine stringers of pyrite (disseminated); possible disseminated throughout shale, some blebs	В				
MGS-8-4	Upper Slaty	469.85	Disseminated, some strat control	В				
MGS-8-5	Upper Slaty	471.53	Pyrite cubes disseminated; more on 5b		C			
MGS-8-6	Upper Cherty	478.23	Hightly altered – brecciated (??) vug infill of pyrite		C			
MGS-8-6 (D)	Upper Cherty	478.23	Hightly altered – brecciated (??) vug infill of pyrite		C			
MGS-8-7	Upper Cherty	488.59	-					
MGS-8-8	Upper Cherty	503.22	-					
MGS-8-9	Lower Slaty	504.60						
MGS-8-10	Lower Slaty	504.90	Fine grained disseminated, visible blebs				>	
MGS-8-11	Lower Slaty /Int Slate	506.58	Possible disseminated, strat controlled	В				
MGS-8-12	Lower Cherty	518.46	Highly altered/leached; sulfide framboids in vugs		J			
MGS-8-13	Lower Cherty	518.62	Highly altered/leached; sulfide framboid and cubs in vugs and fracture planes		С			
MGS-8-14	Lower Cherty	533.10	sulfide spheres in vugs, highly altered			ц		
MGS-8-14 (D)	Lower Cherty	533.10	sulfide spheres in vugs, highly altered			ч		
MGS-8-15	Lower Cherty	533.17	sulfide spheres in vugs; Highly altered		C			
MGS-8-16	Lower Cherty	533.25	large sulfide framboid in vug			ц		
MGS-8-17	Lower Cherty	535.84	Framboids/spheres and cubes on end; highly altered (weathered, etc)		С			
MGS-8-18	Lower Cherty	537.82	Highly altered (weathered, etc); framboids/spheres - vug infill			ш		

MGS-8-18	Lower Cherty	537.82	Highly altered (weathered, etc); framboids/spheres - vug infill			ш		
MGS-8-19	Lower Cherty	541.17	Highly altered, weathered; less leached; framboids/spheres on top (perhaps throughout)		C			
		Donth			Clas	sification		
Sample Number	Unit Name	(meterc)	Macroscopic Hand Sample Description	Anhedral	Euhedral	Framboid		
				(Blebs)	(Cubes)	/Spheriod	veins	Uthers
NatOre I			conglomeration of cubes		υ			
NatOre (II)			conglomeration of cubes		J			
Na tOre (II) (D)			conglomeration of cubes		C			

Appendix A.2 Microscopic Observations

Date: 5/27

-		
3	8	
-	٠	

Sampl	e N	lame:	M2-17	
-------	-----	-------	-------	--

Location	
BIF Unit	
Lithology	

Sulfides

TS-004	bhallos fisicaios	程	44
15_0010	200	Χę	8.97

		SEM 6/14
	Sample Name: M2-18	1997 - A
Location		
BIF Unit		
Lithology		

Sulfides

5-007	Shatebaund 11	PL R+T	+S-011	14	PLT	
15-000	74	XAL Em				

Date: 5/27 SEM 6/4

Sample Name: M2-22

Location _	
BIF Unit _	
Lithology	

6

4

TSLOR PUNCTIONAGE MORE TEL T TSDILL II XP & TSLOB PUNCE ONLY VEINT PL R TSLOTT - XP RIT TSLOH PUNCE ONLY VEINT PL R TSLOTT - XP RIT TSLOH PUNCE ONLY VEINT PL R

Date: 5/27

Sample Name: M2-25

Location	
BIF Unit	
Lithology	

Date: 5/28

Sample Name: Mg-6

6

Sulfides

75.022 QX12.100 + Way PL RAT 75.023 " XKJ PAT 45.024 " PL T

(S_D2 * CALLERTY XP & TS_019 # IT IS_03 & CALLER XF &

Sample Name: M5-20

Location .		_
BIF Unit		
Lithology	 	

Date:_5/28

Sample Name: M5-25

Location
BIF Unit
Lithology

TS_DHO PYFRAM + PYFRAM PL T

TS_040 P4 FRAM 1 P4 FRAM PL T TS_041 P4 FRAM + 9P2 UPIN XP T+P TS_042 " COM PL T+P

Date: <u>3/28</u>

Location	
BIE Holt	

Sulfides

- TS_043 Pytouber-out pytololeven XP RIT 45_044 Pytelich replace grains PL EAT 75_045 Pytouber relict RP RIT SIF

Date: 5/29/1

Sample Name: M7-9 Location **BIF Unit** Lithology KEEPLES Notes Thin Section Map normality suit weistital may? + Att granuels it real the gil 2 gammanens Suff - lotte lite relict aubes Arms@ mori of stp + 61F -disseminated for suif w coarser at edges of shat Stop Sulfides

TS_DHE PY DESEM # MEDIZ END ? PL THE TS_DHE PY IN ETYCKEDAM OFFESTER XP THE

Date: <u>5/29</u>

Location	
BIF Unit	
Lithology	

Sulfides

			kiew	
ECSO SCORE ALOS CREATION	PI THE	15.053	Gubao in Siyalitt	PL THE

=3

Date: 5/29

-	1.8	
-	-	

Sample Name: M7-18

Location	
BIF Unit	
Lithology	

TSLOSS by avides PL TAR

Date: 5/29

Sample Name: M7-19

TS_OSU PROJET WOULDAWS NO RAT

15.058 Hunder, hained xp T XP 14

Date:______7/29

×.

Sample Name: M7-20

Sulfides

Date: 5/29

Sample name; M7-22	Samp	le Nat	me: N	17-22
--------------------	------	--------	-------	-------

Location	
BIF Unit	
Lithology	

12.040 AF DEEK WEAR PL PL PL

Date: 5/29

Sampl	le N	ame:	M8-1

Location	
BIF Unit	
Lithology	

Sulfides

		4	1 CA	
75_662 75_662 75_063	n n n n	PL 24T PL 24T XP RM	7 TSOUS BUILD	dus PL Fit XP R.A

Date: _____

	Sample f	Name: M8-13
Location		
BIF Unit		
Lithology		

Sulfides

Date: 5/30

Sample Name: B1-2

Location	
BIF Unit	
Lithology	

Sulfides

	July Co	
TS. OLS PO WORM PL T TS. OVI " PL TIR TS. OVI " YP T	15.072 10 2 15.073 V	XPT +E

Date: 5/3d

Sample Name: B1-5

Location	
BIF Unit	
Lithology	

Sulfides

te nat	Te + shad	Q1 p	
15.074	10.1.9	EL EAT	

Date: 5/20

Sample Name: 81-15 Location **BIF Unit** Lithology Thin Section Map Notes Very White/It Yellow Interstitut to small # Inclusions to bugger wills (Pyx) Fig Sulfides Floriztof TT& 27 PL TIK 15.085 15.089 15.089 15.088 Po millusions PL ٧., 15.076 11 PL PIT YP TIP TR Né. XP 742 543 E

Date: 5/30

2	ъ	

Samp	sãe I	Name:	B1-1	6

2
 -

Sulfides

TS.081 Po thing PL R TS.083 Po PL R TS.083 Po PL R TS.084 " XP FIT

Processing option : All elements analysed

Spectrum	In stats.	Si	Ρ	\$	Fe	Total
Spectrum 1	Yes	0.14	0.33	60.69	48.52	109.68
Spectrum 2	Yes	0,17	0.35	60.70	48.79	110.01
Spectrum 3	Ves	0.19	0.23	60.38	48.38	109.18
Spectrum 4	Yes	0.34	0.31	60.93	47.98	109.56
Spectrum 5	Yes	0.16	0.30	61.11	48.48	110.05
Spectrum 6	Yes	0.14	0.32	59.81	48.07	108.34
Spectrum 7	Yes	0.56	0.31	60.22	47.25	108.34
Mean	1	0.24	0.31	60.55	48.21	109.31
Std. deviation	I	0.15	0.04	0.45	0.50	
Max.	1	0.56	0.35	61.11	48.79	
Min.		0.14	0.23	59.81	47.25	

All results in weight%

Project: Steph Theriault 061411 Owner: Inca User		Sample: 214 Type: Default		
Spectrum 8 2 4 8 Full Scale 24169 cts keV Spectrum 3 0 2 4 8 UI Scale 24169 cts keV Spectrum 7	0 2 4 Full Scale 24169 cts	Spectrum 1	0 2 4 Ful Scale 24169 cts 0 2 4 Ful Scale 24169 cts	Spectrum 2
0 2 4 6 Full Scale 24169 cts keV Comment:				

Owner: Inca User cessing option : All elternents analysed ectrum In stats S P S Ca Mn Fe ectrum In stats Si P S Ca Mn Fe ectrum Yes 0.15 0.30 S4.20 2.32 0.20 6.34 ectrum Yes 0.21 0.20 20.82 0.24 6.53 ectrum Yes 0.21 0.20 2.32 0.20 5.32 ectrum Yes 0.21 0.23 2.53 2.03 5.33 ectrum Yes 0.36 2.53 0.20 5.33 3.43 ectrum Yes 0.36 2.33 0.20 5.33 3.43 au Yes 0.36 0.30 2.43 5.33 3.43 au Yes 0.36 0.30 2.33 0.20 5.33 au Yes 0.36 0.30 2.33 0.20<			Sample: 222	
cosing option : All elements analyzed ectrum In stats S P S Ca Mn Fe ectrum Yes 0.15 0.30 54.20 2.32 0.49 46.06 ectrum Yes 0.21 0.30 54.20 0.24 0.22 6.34 ectrum Yes 0.21 0.31 51.32 0.26 6.34 ectrum Yes 0.21 0.34 64.50 2.33 48.75 ectrum Yes 0.36 0.34 64.50 2.33 48.75 ectrum Yes 0.36 0.34 64.50 2.33 48.75 ectrum Yes 0.36 0.34 64.50 2.33 48.75 ectrum 0.36 0.38 63.93 34.875 ectrum 0.36 0.33 63.83 63.23 ectrum 0.36 0.33 64.50 2.32 50.33 ectrum 0.36 0.38 64.50 2.32 50.23 ectrum 0.36 0.37 0.30 0.20 50.33 ectrum 0.36 0.37 0.36 0.23 50.23 ectrum 0.			Type: Default	
etrum In stats S P S Ca Mn Fe etrum1 Yes 0.16 0.30 54.20 2.32 0.49 46.06 etrum3 Yes 0.31 0.30 54.20 2.33 0.20 6.34 etrum4 Yes 0.21 0.30 54.50 0.24 5.023 etrum4 Yes 0.21 0.34 61.50 0.28 5.03 etrum5 Yes 0.20 0.34 61.50 0.28 5.03 etrum5 Yes 0.20 0.34 64.50 2.33 48.75 etrum6 Yes 0.36 0.38 64.50 2.33 48.75 etrum6 0.36 0.34 64.50 2.33 48.75 etrum6 0.36 0.36 0.20 0.20 5.38 etrum6 0.36 0.34 64.50 2.32 5.03 etrum6 0.36 0.34 64.50 2.32		1		
actrum 1 Yes 0.16 0.30 54.20 2.32 0.49 46.06 ectrum 2 Yes 0.57 0.00 20.82 0.24 0.22 6.34 octrum 3 Yes 0.17 0.29 64.50 0.22 6.34 octrum 4 Yes 0.17 0.29 64.50 0.20 5.38 octrum 4 Yes 0.17 23.23 0.20 5.33 9.31 octrum 5 Yes 0.20 0.34 64.50 0.28 5.33 9.31 octrum 6 Yes 0.20 0.34 64.50 0.23 5.33 9.31 octrum 6 Yes 0.26 0.34 64.50 0.22 5.33 octrum 6 0.16 0.00 20.81 0.22 5.33 9.31 octrum 7 0.16 0.00 20.82 0.20 0.23 5.38 octrum 8 0.00 0.00 20.82 0.20 0.22 5.38 <	Co Ni	As	Total	
ctrum Yes 0.57 0.00 20.82 0.24 0.22 6.34 ctrum Yes 0.21 0.29 64.50 0.24 5.023 ctrum Yes 0.21 0.29 64.50 0.26 5.023 ctrum Yes 0.21 0.23 61.50 0.28 5.023 ctrum Yes 0.20 0.34 61.50 0.28 5.023 ctrum Yes 0.20 0.34 64.50 2.33 48.75 ctrum 0.16 0.06 20.82 0.20 0.23 5.38 ctrum 0.16 0.00 20.82 0.20 0.23 5.38 ctrum 0.16 0.00 20.82 0.20 5.38 ctrum 0.16 0.00 20.82 0.20 5.38 ctrum 0.16 0.00 20.82 0.20 5.23 ctrum 0.16 0.00 20.82 0.20 5.23 ctrum 0.16 0.20 0.20 0.20 5.23 ctrum 0.16 0.20 0.20 0.20 5.23	96	2.75	106.28	
triumia Yes 0.21 0.29 64.50 0.24 5.02 ctrum A Yes 0.20 0.17 2.323 0.20 5.38 trum 6 Yes 0.20 0.34 61.50 0.28 0.33 48.75 trum 6 Yes 0.20 0.34 64.50 2.32 0.49 5.023 0.5 0.34 64.50 2.32 0.49 5.028 0.16 0.00 20.82 0.20 0.22 5.38 trum eght%	1 28.63 4.36	44.14	105.32	
ctrum 4 Yes 0.17 23.23 0.20 5.38 ctrum 5 Yes 0.20 0.34 61.50 0.28 0.33 48.75 ctrum 6 Yes 0.20 0.34 64.50 2.32 0.49 50.23 0.16 0.00 20.82 0.20 0.22 5.38 subts in weight %	m	3.86	119.33	
torum15 Yes 0.20 0.34 0.30 0.28 0.33 48.75 ctrum6 Yes 0.22 25.37 0.34 64.50 2.32 0.49 50.23 h 0.16 0.00 20.82 0.20 0.22 5.38 subts in weight K	8 31.21 3.42	50.04	113.66	
autic in weight 6	74 24 6 15	6113	113.35	
adds in weight 65 0.15 0.00 20,82 0.20 0.22 5.38 0.15 0.00 20,82 0.20 0.22 5.38 0.15 in weight 65 0.16 0.00 20,82 0.20 0.22 5.38 0.15 0.00 20,82 0.20 0.22 5.38				
0.16 0.00 20.82 0.20 0.22 5.38 suffs in weight?5	13 31.21 6.36	54.42		
sufts in weightfs	3 24.34 3.42	1.96		
		1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

				Ĩ								Ĩ	
	mple: 513	pe: Default		Total	107.82	ET.17	91.96	E7.201	106.54	101000			
	s	F	5	æ		139	41.88	47.01	46.87		47.09	198	
				Wu		2.53					233	5.53	
				đ		36.44					35.44	36.44	A
				10		100	41.08	58.25	58.72	-	58.72	41.08	A A A A A A A A A A A A A A A A A A A
500				4		1000	0.22	0.30	0.33	1910	0.38	0.22	
- 513				18	53.56		E7.8	11.0	0.62		53.56	117	
6141	061411			2	0.13						0.13	0.13	
ault 0	heriault	2	pese	WE		0.96					0.96	0'36	
1 Ther	Steph T	Inca Use	ints analy	0	ET'HS	18'5E	5.05				54,13	2,05	
Stept	Project:	Owner:	on : All elem	In stats.	Yes	Yes	e je	Yes	Yes Yes	9			l ghtts
			rocessing opti-	Spectrum	Spectrum 1	Spectrum 2	Spectrum 4	Spectnum 5	Spectrum 6	a manage	Max	Min.	All results in we

Project: Steph Theriault 061411		Sample: 513		
Owner: Inca User		Type: Default		
Spectrum 1 Spectrum 1 0 5 10 Full Scale 31736 cts keV Spectrum 4	0 S Ful Scale 31736 cts	Spectrum 2 10 keV Spectrum 5	0 5 Ful Scale 31736 cts	sectrum 3 10 keV sectrum 6
5 10 Full Scale 31736 cts keV Spectrum 7	3 5 Full Scale 31736 cts	10 KeV	d s Ful Scale 31736 cts	so ke∨
D 5 10 Full Scale 31736 cts keV				
			î	

roopin

Processing option : All elements analysed

Spectrum	In stats,	Si	P	5	Fe	Total
Spectrum 1	Yes	0.32	0.26	54.05	42.97	97.60
Spectrum 2	Yes	0.28	0.32	53.82	42.84	97.26
Spectrum 3	Yes	0.21	0.27	54.11	43.09	97.67
Spectrum 4	Yes	0.14	0.31	\$3.09	42.63	96.16
Spectrum 5	Yes	1.32	0.24	52.00	40.94	94.50
Mean		0.45	0.28	53.41	42.49	96.64
Std. deviation	I	0.49	0.03	0.89	0.88	
Max.	1	1.32	0.32	54.11	43.09	
Min.		0.14	0.24	52.00	40.94	

600µm

Electron Image 1

Processing option : All elements analysed

Spectrum	In stats.	0	5i	9	5	Fe	As	Total
Spectrum 1	Yes			0.30	52.92	42.27	0.91	96.40
Spectrum 2	Yes			0.28	51.82	42.02	0.93	95.06
Spectrum 3	Yes	22.94	0.38			63.73		87.05
Spectrum 4	Yes			0.30	52.70	43.29	0.79	97.07
Spectrum 5	Yes		0.56	0.23	52.31	42.78	0.87	96.75
Max.		22,94	0.56	0.30	52.92	63.73	0.93	
Min.		22.94	0.38	0.23	51.82	42.02	0.79	

Steph Theriault 061411 - 525	6/14/2011 2:15:29 PM
Project: Steph Theriault 061411	Sample: 525
Owner: Inca User	Type: Default

Comment:		

Project: Steph Theriault 061411	Sample: 527
Dwmer: Inca User	Type: Default

spectrum 1	Yes			0.48	0.29	52.92					42.27	42.27 1.41
spectrum 2	Yes			0770	0.32	SE.PS					43.15	43.15
(pectrum 3	Yers	32,45	9.42				0.31		19.32	19.37 1.20	19.37 1.20 4.64	19.37 1.20 4.64
Spectrum 4	Yes			0.15	0.27	48.32			0.29	67.0	0.29 40,79	0.29 40,79
spectrum 5	Yes			0.24	0.26	51.53					41.50	41.50
spectnum 6	Yes			0.19	0.24	52.49					A1.79	41.79
Var.		37,45	9.42	0.45	0.32	54.35	0.31	14	12.0	021 120	337 120 4315	937 1.20 43.15 1.41
Min.		37.45	9.42	0.15	0.24	48.32	0.31	9	57	29 1.20	29 1.20 4,64	29 1.20 4,64 1.41

J

Steph Theriault 061411 - 527	61412	013 2:27:45 PM
Project: Steph Theriault 061411	Sample: 527	0
Owner: Inca User	Type: Default	

Comment:	
	MD

Owner: linca User total represents analyted total representation representation total repre	Typ	r: Defau 77 17 65 21 96 21			
testing option: All elements analyticat tetram i In tath. D Mg N S Ca Ti tetram i In tath. D Mg N S D S Ca Ti tetram i M S N S D S Ca Ti Ethram i M M S N S Ca 3413 S <td< th=""><th>1</th><th>12 C2 06 21 06 21</th><th></th><th></th><th></th></td<>	1	12 C2 06 21 06 21			
Instatu. D Mg A S Ca Ti ettrum Tertum Terum	Alo Fa	2 11 D			
trunn 1 Yet 0.24 0.15 3.413 trunn 2 Yet 0.14 0.29 1.06 trunn 4 Yet 0.12 0.15 3.63 trunn 5 Yet 0.12 0.12 3.03 trunn 6 Yet 0.26 0.13 3.03 trunn 7 Yet 0.26 0.13 3.03 trunn 6 Yet 0.20 0.13 0.04 trunn 7 Yet 0.26 0.10 0.34 trunn 7 Yet 0.26 0.30 0.13 trunn 7 27.61 0.03 0.13 0.34 trunn 7 25.56 0.34 0.13 0.36 trunn 7 25.56 0.34 0.13 0.35 trun 7 25.56 0.34 0.13 0.35 trun 7 25.56 0.34 0.35 0.35 trun 7 25.55 0.34 0.35 0.36 trun 7 25.55 0.34 0.35 0.36 trun 7 25.55 0.34 0.36 0.34 trun 7 25.55 0.34 0.36 0.34		71 17 15 15 17 17 17	W	ş	Total
trunul Vectoria Vecto	16.	65 94 21 85 21	70 2.6/	17.72 6	66.66
trum 3 (vs. 2630 trum 6 (vs. 2635 0.44 0.12 1.32 trum 7 (vs. 2636 0.44 0.12 1.32 trum 7 (vs. 2261 1.09 0.10 1.32 0.29 51.06 0.34 19.18 trum 7 (vs. 2261 1.09 0.10 1.32 0.29 51.06 0.34 19.18 1.328 0.34 0.10 0.12 0.29 51.06 0.34 0.30 sits receiver	41	95 21		1.75	15'56
from 4 transis for Yes 26.35 2.6.35 0.14 0.10 0.17 0.13 50.71 1.32 0.02 ctransis Yes 26.36 0.30 0.13 0.33 0.30 ctransis Yes 22.49 3.09 0.13 0.29 51.68 0.34 ctransis Yes 22.63 1.09 0.13 0.13 0.34 91.33 ctransis 32.49 1.03 0.13 0.13 0.13 0.34 91.33 ctransis 26.36 0.34 0.13 0.13 0.13 0.30 0.30 ublic inversions 26.35 0.34 0.13 0.13 0.30 0.30	11	50	63 2.6	38,27	te oot
trant 5 Vis 26.56 0.14 0.12 1.32 0.00 trant 6 Vie 22.61 1.00 0.17 trant 7 Vie 22.61 1.00 0.10 0.13 0.13 0.14 0.13 trant 7 22.61 1.00 0.10 0.13 0.13 0.13 0.14 0.13 26.56 0.14 0.12 0.10 0.15 26.10 0.14 0.20 ulls in weights	41	Ē		1.65	94.47
tronn 6 Yes 32.49 0.30 0.17 19.18 tronn 7 Yes 27.61 1.08 0.10 0.19 0.19 1.21 32.49 1.09 0.10 1.32 0.29 51.68 0.34 19.13 26.56 0.34 0.12 0.10 0.15 26.30 0.34 0.20 ults in weight's	60	02			89.03
thum 7 Ves 27.6.6 1.00 0.10 0.34 32.49 1.02 0.10 1.32 0.29 51.68 0.14 0.13 26.36 0.14 0.12 0.10 0.15 26.30 0.14 0.20 ults in weight!	44	22			96.37
32.49 1.00 0.10 1.32 0.29 51.08 0.34 1.913 26.36 0.34 0.12 0.15 2.630 0.34 0.20 adfs in weights	0.54 38	04			69.73
ults in weights	0.54 60	20 21	61 2.6	38.27	
ufts in weights	0.54 11	04 IJ	70 2.6(0 1.65	
	* 200		100	1	
	Secular n 61	100	T ALL	1	
	A. Se	and a	10.00		
	Y		5		
			in all	1	
a the second sec	State of the second	No.	A State	14 A	
	See. 2	1	and.	ALC: N	
		153	Spectrum	The second	
			14	A STATE	
a state of the second sec	No.CE	NY-	AL. I		
and an and and and and and and and and a	ALL CONTRACTOR	2	2480		
and the second sec	and and		" Ner	No.	

Steph Theriault 061411 - 709	6/54/2011 2:47:22	9M
Project: Steph Theriault 061411	Sample: 709	1
Owner: Inca User	Type: Default	

Processing option : All elements analysed

Spectrum	In stats.	51	Р	5	Fe	As	Total
Spectrum 1	Yes	0.46	0.37	58.85	43.57		103:24
Spectrum 2	Yes	0.12	0.31	54.57	43.31	0.55	98.85
Spectrum 3	Yes		0.24	54.34	43.24		97.82
Spectrum 4	Yes		0.23	\$2.80	42.40	0.48	95.93
Spectrum 5	Yes	0,17	0.21	53.74	43.28		97.41
Spectrum 6	Yes	0.22	0.24	52.39	42.30		95.14
Max.		0.46	0.37	58.85	43.57	0.55	
Min.		0.12	0.21	52.39	42.30	0.48	

Steph Theriault 061411 - 719	6/14/2011 3 (02-35 PM
Project: Steph Theriault 061411	Sample: 719
Owner: Inca User	Type: Default

Comment:	
	MD
12	DUTUTH

Electron Image 1

Processing option : All elements analysed

Spectrum	In stats.	0	AL	SI	P	5	Fe	Co	As	Total
Spectrum 1	Yes				0.32	56.98	45.37	1.08	1.76	105.51
Spectrum 2	Yes	24,43		0.93			66.64			92.00
Spectrum 3	Yes	27.37		0.36			68.39			96.12
Spectrum 4	Yes	26.01	0.38	0.59			67.19			94.16
Spectrum 5	Yes	29.32	0.48	1,31			67.35			98.47
Max.		29.32	0.48	1.31	0.32	56.98	68.39	1.08	1.76	
Min.		24.43	0.38	0,36	0.32	56.98	45,37	1.08	1.76	

Steph Theriault 061411 - 722		6/14/2013 3 32:48 PM
Project: Steph Theriault 061411	Sample: 722	
Owner: Inca User	Type: Default	

comment.	
	MD
	WOULD THE

30µm

Electron Image 1

Processing option : All elements analysed

Spectrum	In stats.	0	Al	Si	Fe	Total	
Spectrum 1	Yes	29.23	0.25	2.69	65.42	97.59	
Spectrum 2	Yes	28.69	0.50	2.69	65.22	97.11	
Spectrum 3	Yes	36,37	0.37	13.60	56.99	107.33	
Mean		31,43	0.37	6.33	62.54	100.68	
Std. deviation		4.29	0.13	6.30	4.81		
Max.		36.37	0.50	13.60	65.42		
Min.		28.69	0.25	2.69	56.99		

Project Steph Thereault G61411 Sample: 81 Dwmer: Inca User Dwmer: Inca User Type: Default ussting ception: All elements analyset E Po N sectrum 1 Ves 2 P N Lu As Sec Po Total sectrum 1 Ves 13 0.23 5753 46.16 2.35 0.63 2.31 0.63 2.31 0.63 0.63 9.11 10.41 sectrum 2 Ves 1.35 0.12 5.35 46.16 1.23 0.63 9.31 10.63 sectrum 3 Ves 1.13 0.13 5.24 45.17 1.03 0.66 9.11 1.16 sectrum 4 Ves 1.13 0.13 5.50 41.17 1.13 0.66 0.30 0.66 0.31 0.66 0.32 9.31 10.33 sectrum 4 Ves 1.38 0.66 2.30 41.17 1.13 0.66 0.30 0.32 0.66 0.31<	Project Steph Therisult G61411 Sample: 81 Project Steph Therisult G61411 Sample: 81 Sample: 81 Project Steph Therisult G6141 Sample: 81 Sample: 81 Sample: 81 Project Steph Therisult G6141 Sample: 81 Sample: 81 Sample: 81 Project Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 Sample: 81 </th <th>Project Steph Therisult G61411 Sample: 81 Owner Inca User Demer Inca User Type: Default Prosistion of a law of the law</th> <th>Project: Steph Theriault G61411 Sample: 81 Owner: Inca User Owner: Inca User Type: Default Tressing optim: All elements analyset is 2 is 2 is 2 is 2 is 2 Spectrum: 1 Vers 1 is 2 is 2</th> <th>Project Steph Thereaut G61411 Sample 81 Ownern Intra User Ownern Intra User Ippe: Defluit Amerina and/viet Ippe: Defluit Ippe: Defluit Project Steph Thereaut G6141 Ippe: Defluit Ippe: Defluit Amerina and/viet Ippe: Defluit Ippe: Defluit Project minit Ippe: Defluit Ippe: Defluit Section 1 Verice 2 Ippe: Defluit Section 2 0 2 10 2 Section 3 Verice 13 0 2 Section 3 Verice 13 0 2 10 Section 3 Verice 13 11 15 2 10 Section 3 Verice 13 0 2 13 10 13 Section 3 Verice 13 1 1 1 10 11 Section 3 Verice 1 1 1 1 10 1 Section 4 Verice 1 1 1<th>Project: Steph Therisult G61411 Sample: 81. Owner: Incu User. Dwner: Incu User. Type: Default Ammer: Incu User. Type: Default Type: Default Ammer: Incu User. Distribution User. Type: Default Ammer: Incu User. Distribution User. Distribution User. Sectrum 1 Vers Distribution User. Distribution User. Sectrum 2 Vers Distribution User. Distribution User. Sectrum 3 Vers Distribution User. Distribution User. Sectrum 3 Vers Distribution User. Distribution User. Sectrum 3 Vers Distribution User. Distribution User. Sectrum 4 Vers Distribution User. Distribution User. Vers Distribution User. Distribution User. Distribution User. Vers<th>Point: Signith fromut 66141. Ample: 61 Owner into Uper Owner into Uper Type: Default Owner into Uper Imple: 61 Type: Default Ample: 61 Imple: 61 Imple: 61 Owner into Uper Imple: 61 Imple: 61 More: Into Uper</th><th></th><th>Step</th><th>oh Ther</th><th>iault (</th><th>06141</th><th>1-81</th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th>A SECTION AND</th></th></th>	Project Steph Therisult G61411 Sample: 81 Owner Inca User Demer Inca User Type: Default Prosistion of a law of the law	Project: Steph Theriault G61411 Sample: 81 Owner: Inca User Owner: Inca User Type: Default Tressing optim: All elements analyset is 2 is 2 is 2 is 2 is 2 Spectrum: 1 Vers 1 is 2	Project Steph Thereaut G61411 Sample 81 Ownern Intra User Ownern Intra User Ippe: Defluit Amerina and/viet Ippe: Defluit Ippe: Defluit Project Steph Thereaut G6141 Ippe: Defluit Ippe: Defluit Amerina and/viet Ippe: Defluit Ippe: Defluit Project minit Ippe: Defluit Ippe: Defluit Section 1 Verice 2 Ippe: Defluit Section 2 0 2 10 2 Section 3 Verice 13 0 2 Section 3 Verice 13 0 2 10 Section 3 Verice 13 11 15 2 10 Section 3 Verice 13 0 2 13 10 13 Section 3 Verice 13 1 1 1 10 11 Section 3 Verice 1 1 1 1 10 1 Section 4 Verice 1 1 1 <th>Project: Steph Therisult G61411 Sample: 81. Owner: Incu User. Dwner: Incu User. Type: Default Ammer: Incu User. Type: Default Type: Default Ammer: Incu User. Distribution User. Type: Default Ammer: Incu User. Distribution User. Distribution User. Sectrum 1 Vers Distribution User. Distribution User. Sectrum 2 Vers Distribution User. Distribution User. Sectrum 3 Vers Distribution User. Distribution User. Sectrum 3 Vers Distribution User. Distribution User. Sectrum 3 Vers Distribution User. Distribution User. Sectrum 4 Vers Distribution User. Distribution User. Vers Distribution User. Distribution User. Distribution User. Vers<th>Point: Signith fromut 66141. Ample: 61 Owner into Uper Owner into Uper Type: Default Owner into Uper Imple: 61 Type: Default Ample: 61 Imple: 61 Imple: 61 Owner into Uper Imple: 61 Imple: 61 More: Into Uper</th><th></th><th>Step</th><th>oh Ther</th><th>iault (</th><th>06141</th><th>1-81</th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th>A SECTION AND</th></th>	Project: Steph Therisult G61411 Sample: 81. Owner: Incu User. Dwner: Incu User. Type: Default Ammer: Incu User. Type: Default Type: Default Ammer: Incu User. Distribution User. Type: Default Ammer: Incu User. Distribution User. Distribution User. Sectrum 1 Vers Distribution User. Distribution User. Sectrum 2 Vers Distribution User. Distribution User. Sectrum 3 Vers Distribution User. Distribution User. Sectrum 3 Vers Distribution User. Distribution User. Sectrum 3 Vers Distribution User. Distribution User. Sectrum 4 Vers Distribution User. Distribution User. Vers Distribution User. Distribution User. Distribution User. Vers <th>Point: Signith fromut 66141. Ample: 61 Owner into Uper Owner into Uper Type: Default Owner into Uper Imple: 61 Type: Default Ample: 61 Imple: 61 Imple: 61 Owner into Uper Imple: 61 Imple: 61 More: Into Uper</th> <th></th> <th>Step</th> <th>oh Ther</th> <th>iault (</th> <th>06141</th> <th>1-81</th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>A SECTION AND</th>	Point: Signith fromut 66141. Ample: 61 Owner into Uper Owner into Uper Type: Default Owner into Uper Imple: 61 Type: Default Ample: 61 Imple: 61 Imple: 61 Owner into Uper Imple: 61 Imple: 61 More: Into Uper		Step	oh Ther	iault (06141	1-81	_							A SECTION AND
Owmen: Intra User Type: Default usessing option: All elements analyyed In Stats 0 S P S N Lu As Se Po Total spectrum Yes 153 0.23 57.35 46.18 0.63 2.75 46.18 entrum 1 Yes 153 0.23 57.35 46.18 0.63 2.75 46.18 entrum 3 Yes 154 0.23 57.35 46.18 1.23 2.76 61.17 vise 115 0.17 52.60 41.17 1.19 2.01 98.30 exertum 4 Yes 1.23 57.26 41.17 1.19 2.01 98.30 exertum 4 Yes 1.23 0.23 2.03 42.17 0.69 2.03 99.31 exertum 4 Yes 1.23 57.20 41.17 1.19 2.01 98.30 exertum 4 Yes 1.23 0.23 2.03 1.01.26 1.02.66 <th>Protest Inca User Type: Default Processing ception: All elements analysed Power: Inca User Type: Default Spectrum 1 In ratis. O S Pa N La Sectrum Spectrum 1 Ver 123 0.23 55.47 65.00 1.13 2.76 64.13 1.23 55.47 65.00 1.13 2.76 69.11 1.23 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.2</th> <th>Owner: Inca User Type: Defaut Pracesting gebin: All obments analyset File N Type: Defaut Sectrum Instans O S P S Ful Type: Defaut Sectrum Instans O S P S Ful C As Fo Total Sectrum Ver 1384 430 S 431 Li C As Fo Total Sectrum Ver 1384 430 S 431 Li S Fo Total Sectrum Ver 1384 430 232 431 Li S <</th> <th>Owner: Inca User Type: Defaut Processing controls analysed Implements analysed Processing control is allower analysed Processing control is analysed Processing control is analysed Processing control is analysed Spectrum 1 Vers 158 allower 158 allow</th> <th>Owner: Intra Uber Type: Default Transsing optimie: All Allments analyses Table Type: Default Section 1 Intras: O S F S Fe N Type: Default Section 1 Intals: O S F N C A S Fo Total Section 2 Ve 15,84 0,23 55,3 45,05 0,417 103 203 203 54,17 103 93 94 103 93 94 103 93 94 103 93 94 103 93 94 103 93 94 103 93 94 103 93 94 103 93 94 103 93 93 94 103 93 93 94 103 93 93 94 103 93 93 93 94 103 103 103 103 103 103 103 103 103 103 104 104<th>Owner: Inclu UJert Type: Defluit Finance optimie In stars D S Fa N Cu A S Type: Defluit Sectimie In stars D S Fa N Cu A S Type: Defluit Sectimie In stars D S Fa N Cu A S Type: Defluit Sectimie Ver 138 0.3 S 7.0 L A A Dot Data Sectimie Ver 138 0.3 S 7.0 L S A Data Sectimie Ver 4.0 0.3 S 0.0 1.33 S S Data Sectimie Ver 4.0 0.3 S 1.10 0.0 2.33 S Data Sectimie Ver 4.0 0.0 2.33 S S Data Data More 1.30 2.32 1.3</th><th>Owner Into Life The Entity Section Intità 0 5 7 N 10 Section Intità 0 5 7 N 10 10 Section Intità 0 5 7 N 10 10 10 Section Intità 0 2 2 10 10 10 10 10 Section 1 0 2 2 10<th></th><th>Projec</th><th>ct: Steph</th><th>Theriault</th><th>t 06141.</th><th>1</th><th></th><th></th><th></th><th></th><th>-</th><th>Sample:</th><th>: 81</th><th></th></th></th>	Protest Inca User Type: Default Processing ception: All elements analysed Power: Inca User Type: Default Spectrum 1 In ratis. O S Pa N La Sectrum Spectrum 1 Ver 123 0.23 55.47 65.00 1.13 2.76 64.13 1.23 55.47 65.00 1.13 2.76 69.11 1.23 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.11 99.2	Owner: Inca User Type: Defaut Pracesting gebin: All obments analyset File N Type: Defaut Sectrum Instans O S P S Ful Type: Defaut Sectrum Instans O S P S Ful C As Fo Total Sectrum Ver 1384 430 S 431 Li C As Fo Total Sectrum Ver 1384 430 S 431 Li S Fo Total Sectrum Ver 1384 430 232 431 Li S <	Owner: Inca User Type: Defaut Processing controls analysed Implements analysed Processing control is allower analysed Processing control is analysed Processing control is analysed Processing control is analysed Spectrum 1 Vers 158 allower 158 allow	Owner: Intra Uber Type: Default Transsing optimie: All Allments analyses Table Type: Default Section 1 Intras: O S F S Fe N Type: Default Section 1 Intals: O S F N C A S Fo Total Section 2 Ve 15,84 0,23 55,3 45,05 0,417 103 203 203 54,17 103 93 94 103 93 94 103 93 94 103 93 94 103 93 94 103 93 94 103 93 94 103 93 94 103 93 94 103 93 93 94 103 93 93 94 103 93 93 94 103 93 93 93 94 103 103 103 103 103 103 103 103 103 103 104 104 <th>Owner: Inclu UJert Type: Defluit Finance optimie In stars D S Fa N Cu A S Type: Defluit Sectimie In stars D S Fa N Cu A S Type: Defluit Sectimie In stars D S Fa N Cu A S Type: Defluit Sectimie Ver 138 0.3 S 7.0 L A A Dot Data Sectimie Ver 138 0.3 S 7.0 L S A Data Sectimie Ver 4.0 0.3 S 0.0 1.33 S S Data Sectimie Ver 4.0 0.3 S 1.10 0.0 2.33 S Data Sectimie Ver 4.0 0.0 2.33 S S Data Data More 1.30 2.32 1.3</th> <th>Owner Into Life The Entity Section Intità 0 5 7 N 10 Section Intità 0 5 7 N 10 10 Section Intità 0 5 7 N 10 10 10 Section Intità 0 2 2 10 10 10 10 10 Section 1 0 2 2 10<th></th><th>Projec</th><th>ct: Steph</th><th>Theriault</th><th>t 06141.</th><th>1</th><th></th><th></th><th></th><th></th><th>-</th><th>Sample:</th><th>: 81</th><th></th></th>	Owner: Inclu UJert Type: Defluit Finance optimie In stars D S Fa N Cu A S Type: Defluit Sectimie In stars D S Fa N Cu A S Type: Defluit Sectimie In stars D S Fa N Cu A S Type: Defluit Sectimie Ver 138 0.3 S 7.0 L A A Dot Data Sectimie Ver 138 0.3 S 7.0 L S A Data Sectimie Ver 4.0 0.3 S 0.0 1.33 S S Data Sectimie Ver 4.0 0.3 S 1.10 0.0 2.33 S Data Sectimie Ver 4.0 0.0 2.33 S S Data Data More 1.30 2.32 1.3	Owner Into Life The Entity Section Intità 0 5 7 N 10 Section Intità 0 5 7 N 10 10 Section Intità 0 5 7 N 10 10 10 Section Intità 0 2 2 10 10 10 10 10 Section 1 0 2 2 10 <th></th> <th>Projec</th> <th>ct: Steph</th> <th>Theriault</th> <th>t 06141.</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>Sample:</th> <th>: 81</th> <th></th>		Projec	ct: Steph	Theriault	t 06141.	1					-	Sample:	: 81	
lossing option: All elements analyted poetrum In stats. O Si P S Fa NI Cu As Se Po Total poetrum I Ves 133 0.23 5755 46.16 0.63 2755 46.16 10.41 poetrum 1 Ves 133 0.23 5753 46.16 1.23 90.11 104.19 poetrum 2 Ves 1158 0.17 52.60 41.77 1.19 2.76 82.39 90.11 poetrum 4 Ves 1.13 0.17 52.60 41.77 1.19 2.76 10.23 99.31 poetrum 5 Ves 4.80 1.20 2.276 41.77 1.99 2.37 39.11 poetrum 6 Ves 4.80 1.23 5.570 41.77 1.99 2.39 10.23 poetrum 7 Ves 4.80 1.23 2.34 0.49 2.39 10.32 99.30	Processing coption: All elements analysed Spectrum In fails. O S Fa NI Cu As See Po Total Spectrum Ves 12.8 0.23 55.47 46.16 1.23 25.67 46.15 1.23 56.47 46.06 1.23 56.47 46.06 1.23 56.47 46.06 1.23 56.47 46.06 1.23 56.47 46.06 1.23 56.47 46.06 1.23 99.11 100.13 56.06 41.17 1.19 2.01 99.11 100.23 99.11 100.23 99.11 100.13 100.23 99.11 100.13 100.23 99.11 100.13 100.23 99.11 100.13 100.23 99.11 100.13 100.23 99.11 100.13 100.23 99.11 100.23 99.11 100.23 99.11 100.23 99.11 100.23 99.11 100.23 100.23 99.11 100.23 99.11 100.23 99.23 100.24 <th>Protesting caption: All blumonts analyted Spectrum In stats. O S P S Pu All Cu As Su Pb Total Spectrum Ves 13.84 0.33 0.23 57.35 64.05 94.32 94.3 94.3 Spectrum Ves 13.84 0.3 57.35 65.00 41.17 1.19 2.06 92.3 93.11 Spectrum Ves 13.8 0.13 52.60 41.17 1.19 2.06 93.01 Spectrum Ves 13.8 0.32 55.70 41.77 0.96 2.35 91.1 Spectrum Ves 13.8 0.13 55.70 41.77 0.96 2.35 91.1 Ves 0.32 0.32 55.70 41.77 0.96 2.35 91.1 102.36 Spectrum Ves 1.33 56.70 41.77 0.96 2.36 101.26 Ves 1.34</th> <th>Processing gention: All obtiminity analyted Spectrum Instans O S P S R N Lo As Fe Total Spectrum Ves 13.8 4.30 5.3 45.35 46.15 10.3 2.75 46.15 10.3 Spectrum Ves 13.5 0.17 5.26 41.17 11.9 2.01 3.03 99.30 Spectrum Ves 13.6 0.17 5.26 41.17 11.9 2.01 3.01 3.03 Spectrum Ves 13.6 0.17 5.26 41.17 11.9 2.01 9.03 Spectrum Ves 4.30 0.32 5.35 41.17 11.9 2.01 9.03 Spectrum Ves 4.30 0.32 5.35 41.37 10.3 96.30 Spectrum Ves 4.30 0.32 5.35 41.37 10.30 10.32 96.30 Spectrum Ves <t< th=""><th>Transition of the interval of the interval</th><th>Transition participant. All observes analysed Section 1 N marks O S P S P N N C S P T Section 1 Ves 13.84 4.30 2.33 4.35 3.33 4.35 3.33 1.33 2.76 1.33 2.13 1.01.33 Section 1 Ves 1.33 2.34 4.30 0.33 3.53 4.13 1.19 2.34 9.11 Section 3 Ves 1.33 2.34 4.30 0.32 3.35 4.13 1.19 2.36 9.11 Section 3 Ves 1.33 2.34 3.34 0.13</th><th>Transmotion In aims O S P S P N L A S P D D Section 1 c S 3</th><th></th><th>Owne</th><th>r: Inca Us</th><th>ē.</th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th>Type: D</th><th>efault</th><th></th></t<></th>	Protesting caption: All blumonts analyted Spectrum In stats. O S P S Pu All Cu As Su Pb Total Spectrum Ves 13.84 0.33 0.23 57.35 64.05 94.32 94.3 94.3 Spectrum Ves 13.84 0.3 57.35 65.00 41.17 1.19 2.06 92.3 93.11 Spectrum Ves 13.8 0.13 52.60 41.17 1.19 2.06 93.01 Spectrum Ves 13.8 0.32 55.70 41.77 0.96 2.35 91.1 Spectrum Ves 13.8 0.13 55.70 41.77 0.96 2.35 91.1 Ves 0.32 0.32 55.70 41.77 0.96 2.35 91.1 102.36 Spectrum Ves 1.33 56.70 41.77 0.96 2.36 101.26 Ves 1.34	Processing gention: All obtiminity analyted Spectrum Instans O S P S R N Lo As Fe Total Spectrum Ves 13.8 4.30 5.3 45.35 46.15 10.3 2.75 46.15 10.3 Spectrum Ves 13.5 0.17 5.26 41.17 11.9 2.01 3.03 99.30 Spectrum Ves 13.6 0.17 5.26 41.17 11.9 2.01 3.01 3.03 Spectrum Ves 13.6 0.17 5.26 41.17 11.9 2.01 9.03 Spectrum Ves 4.30 0.32 5.35 41.17 11.9 2.01 9.03 Spectrum Ves 4.30 0.32 5.35 41.37 10.3 96.30 Spectrum Ves 4.30 0.32 5.35 41.37 10.30 10.32 96.30 Spectrum Ves <t< th=""><th>Transition of the interval of the interval</th><th>Transition participant. All observes analysed Section 1 N marks O S P S P N N C S P T Section 1 Ves 13.84 4.30 2.33 4.35 3.33 4.35 3.33 1.33 2.76 1.33 2.13 1.01.33 Section 1 Ves 1.33 2.34 4.30 0.33 3.53 4.13 1.19 2.34 9.11 Section 3 Ves 1.33 2.34 4.30 0.32 3.35 4.13 1.19 2.36 9.11 Section 3 Ves 1.33 2.34 3.34 0.13</th><th>Transmotion In aims O S P S P N L A S P D D Section 1 c S 3</th><th></th><th>Owne</th><th>r: Inca Us</th><th>ē.</th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th>Type: D</th><th>efault</th><th></th></t<>	Transition of the interval	Transition participant. All observes analysed Section 1 N marks O S P S P N N C S P T Section 1 Ves 13.84 4.30 2.33 4.35 3.33 4.35 3.33 1.33 2.76 1.33 2.13 1.01.33 Section 1 Ves 1.33 2.34 4.30 0.33 3.53 4.13 1.19 2.34 9.11 Section 3 Ves 1.33 2.34 4.30 0.32 3.35 4.13 1.19 2.36 9.11 Section 3 Ves 1.33 2.34 3.34 0.13	Transmotion In aims O S P S P N L A S P D D Section 1 c S 3		Owne	r: Inca Us	ē.							_	Type: D	efault	
Instants O S P S Fa NI Cu As See Po Total pectrum1 Ves 13.34 4.00 9.23 55.753 46.16 1.23 90.11 pectrum3 Ves 13.84 4.00 9.23 5.575 46.16 1.23 99.11 pectrum3 Ves 11.3 1.23 5.47 45.00 1.123 99.11 pectrum3 Ves 11.3 1.13 1.13 1.13 98.30 pectrum4 Ves 4.80 1.23 5.5.0 44.17 1.19 2.31 98.30 pectrum4 Ves 4.80 1.20 2.25 1.24 0.06 2.34 98.30 pectrum6 Ves 4.80 1.23 5.5.0 44.17 1.99 2.34 10.206 pectrum6 Ves 0.32 5.5.0 44.37 1.99 10.206 pectrum6 Ves 0.32 5.5.0	Spectrum In stats. O S1 P S Fa M La A Sad Fa Total Spectrum Ves 13.84 4.50 3.35 46.16 1.23 3.35 46.16 1.23 3.45.16 9.011 Spectrum Ves 13.84 4.50 3.35 46.16 1.23 3.45.16 9.013 9.921 Spectrum Ves 13.64 4.50 3.13 1.23 3.46.16 1.23 9.011 Spectrum Ves 13.6 0.32 5.5.0 41.17 1.19 2.01 9.01 Spectrum Ves 4.80 0.21 2.84 4.77 0.80 9.3 9.01 Spectrum Ves 4.30 1.31 1.99 2.301 9.02 9.011 9.02 Spectrum Ves 4.30 1.32 0.41 1.99 2.301 9.02 9.01 Ves 4.30 1.23 0.41	Spectrum In stats 0 5 Fa Ni Cu As Sea Fa Total Spectrum Yes 13.84 4.00 2.32 3.33 0.63 2.75 45.00 103.1 Spectrum Yes 13.84 4.00 3.52 3.54.1 45.00 1.23 3.55.2 9.117 Spectrum Yes 13.8 4.17 1.09 1.23 2.76 9.117 103.19 Spectrum Yes 13.5 0.13 5.5.00 4.177 1.29 2.37 9.911 Spectrum Yes 0.34 0.37 0.03 4.177 0.03 9.31 103.19 Yes 0.32 0.31 1.19 1.29 2.36 1.13 1.03 101.58 Yes Yes 1.23 2.37 1.44 0.00 2.39 1.01.58 1.01.58 Yes Yes 1.23 2.36 4.31 1.99 2.36 1.01.58	Spectrum In stats. 0 5 Pa Ni Lu As Sa Pa Total Spectrum Ver 123 0.23 5.35 46.16 2.75 46.16 2.75 46.16 Spectrum Ver 1384 4.50 2.35 3.45.16 0.43 2.27 3.45.16 1.01.23 Spectrum Ver 13.6 0.32 5.5.0 4.17 1.19 2.201 99.11 Spectrum Ver 13.6 0.31 1.19 1.19 2.201 99.11 Spectrum Ver 4.30 1.23 2.36 4.17 1.19 2.201 99.11 Spectrum Ver 4.30 1.23 2.36 4.216 0.401 2.201 99.30 Spectrum Ver 4.30 0.32 5.6.0 4.31 1.901 1.026 Ver 13.84 4.50 2.31 0.40 2.301 1.026 1.026 1.026 <	Spectrum1 In state. O Si P Si Ni Li Li <thli< th=""> Li Li</thli<>	Spectrum In starts. O Si P Si Ni Cu Ais Si Po Total Spectrum Ves 13.8 43.0 3.33 46.3 3.33 46.3 3.33 46.3 3.43 46.3 3.43 46.3 3.43 46.3 3.43 46.3 3.43 46.3 3.43 46.3 3.43 46.3 3.43 4.33 3.44 1.13 4.33 3.44 1.13 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 <th>Section Instat. O S P S Pa N C A S Pa Total Section Ves 133 0.23 5.33 46.36 0.33 5.33 46.36 0.33 5.33 46.36 0.33 5.33 46.36 0.33 5.33</th> <th>Processing cp</th> <th>tion : All eler</th> <th>ments anal</th> <th>bysed</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>E F</th> <th></th> <th></th> <th></th>	Section Instat. O S P S Pa N C A S Pa Total Section Ves 133 0.23 5.33 46.36 0.33 5.33 46.36 0.33 5.33 46.36 0.33 5.33 46.36 0.33 5.33	Processing cp	tion : All eler	ments anal	bysed							E F			
Ves 13.34 4.00 3.35 4.6.16 1.23 3.35 4.6.16 1.23 3.35 1.06.3 2.76 6.2.23 99.11 pectrum 3 Ves 13.84 4.00 3.32 5.5.47 5.00 1.123 2.76 6.2.23 99.11 pectrum 4 Ves 1.15 0.17 5.5.60 4.117 1.19 2.01 99.11 pectrum 5 Ves 1.15 0.17 5.5.60 4.117 1.19 36.30 pectrum 6 Ves 4.80 1.23 5.5.70 4.177 1.99 2.01 98.30 pectrum 7 Ves 0.32 5.5.70 4.4.77 0.400 1.02.56 0.02.55 pectrum 7 Ves 0.32 5.6.70 4.4.77 0.460 1.02.66 1.02.56 pectrum 7 Ves 0.32 0.33 4.34 0.60 2.50 1.01.56 1.02.66 pectrum 7 Ves 0.32 0.43 1.91 0	Spectrum 1 Ves 0.23 0.23 5.5.47 6.6.16 0.13 2.7.6 6.1.25 1.3.3 Spectrum 2 Ves 1.3.8 4.50 3.3 5.5.47 45.00 1.2.3 2.3.3 9.1.1 Spectrum 3 Ves 1.1.5 0.17 5.5.67 45.00 1.2.3 2.0.1 1.2.3 9.1.1 Spectrum 5 Ves 1.1.5 0.17 5.5.0 4.1.7 1.1.9 2.01 9.3.0 Spectrum 5 Ves 4.30 0.2.3 5.5.0 4.1.7 1.0.9 2.0.1 9.3.0 Spectrum 6 Ves 4.30 0.3.2 5.5.0 4.1.7 0.00 2.9.3 9.3.1 Spectrum 7 Ves 4.30 0.3.2 5.5.0 4.1.7 0.00 2.9.4 100.156 Ves 4.30 0.32 5.5.0 4.1.7 0.00 2.90 9.9.3 Ves 4.30 0.32 5.5.0 4.1.7 0.00 2.90 10.1.5	Spectrum 1 Ve 0.23 0.23 5.547 6.05 1.23 1.23 1.02.9 100.13 Spectrum 2 Ves 1.24 4.00 0.23 3.55 4.17 1.13 1.03.9 99.11 Spectrum 3 Ves 1.15 0.17 5.56.0 4.171 1.19 1.03.9 99.11 Spectrum 4 Ves 1.15 0.17 5.26.0 4.171 1.19 2.01 98.30 Spectrum 6 Ves 4.80 0.32 5.5.7 4.17 1.19 2.01 3.29 98.30 Spectrum 6 Ves 4.80 0.32 5.5.7 1.47 0.03 98.30 98.30 Spectrum 6 Ves 4.80 0.32 2.44 0.00 2.37 2.44 0.02.9 Spectrum 7 Ves 4.80 0.32 5.40 4.17 1.02.9 98.30 Spectrum 7 Ves 4.80 0.32 5.40 4.17 1.02.9 10.0.29	Spectrum 1 Ves 0.23 0.23 55.37 66.15 1.23 56.23 1.33 1.013 Spectrum 2 Ves 1.38 4.50 3.2 3.35 6.547 6.00 1.23 3.13 10.13 Spectrum 3 Ves 1.15 0.17 5.564 4.17 1.19 2.01 3.01 Spectrum 6 Ves 1.15 0.17 5.560 4.17 1.19 2.01 3.02 Spectrum 7 Ves 4.20 0.2 5.57 4.17 1.00 2.01 3.03 Spectrum 7 Ves 4.20 0.3 5.57 4.17 0.00 2.93 9.11 Ves 4.20 0.32 5.57 4.17 0.00 2.94 10.156 Spectrum 8 Ves 4.20 0.31 0.32 5.57 4.17 0.00 2.94 10.156 Ves 1.20 0.32 5.56 4.17 0.00 2.94 10.156 1	Sectrum 1 Ve 0.23 0.23 6.16 100.13 Sectrum 2 Ve 1.28 0.23 5.54 6.09 1.23 1.35 Sectrum 3 Ve 1.28 0.27 5.50 4.17 1.19 1.23 9.11 Sectrum 4 Ve 1.28 0.27 5.50 4.17 1.19 1.02 9.11 Sectrum 5 Ve 1.15 0.17 2.06 4.17 1.19 2.01 9.01 Sectrum 6 Ve 4.30 1.23 2.74 0.03 4.77 0.01 1.02 9.01 Sectrum 7 Ve 4.30 1.33 4.74 0.00 2.35 4.74 0.00 Sectrum 7 Ve 4.30 1.33 4.74 0.00 2.35 3.42 10.026 Sectrum 8 Ve 4.30 0.33 4.34 0.00 2.35 3.43 10.026 Max 1.34 0.32 5.73 4.34	Spectrum1 Ves 0.23 0.23 5.75 45.16 1.04.15 Spectrum2 Ves 15.84 4.50 9.23 3.35 0.03 5.347 6.03 Spectrum3 Ves 1.15 0.12 5.547 6.00 1.13 0.03 5.547 6.00 Spectrum3 Ves 1.15 0.17 2.30 41.17 1.19 2.06 6.23 9.11 Spectrum5 Ves 1.15 0.12 5.30 4.17 1.19 0.01 2.06 6.20 9.11 Spectrum5 Ves 4.30 0.32 5.36 4.11 1.19 0.10 2.30 10.11 Spectrum6 Ves 4.30 0.32 5.35 4.14 0.00 2.30 10.11 Ves 0.32 0.35 4.36 0.35 5.35 4.36 10.02 Ves 1.36 0.32 5.35 4.36 0.60 2.35 2.37 10.01	Vector 13 0.3 5.3 6.13 0.13 6	Spectrum	in stats.	o	55	4	44	Fe.	z	в	A.	35	£	Total	
Ver 13.84 4.50 9.32 3.33 0.63 2.76 6.2.32 99.11 evertum3 Ves 0.28 0.32 55.47 45.00 1.23 2.01 1.23 evertum4 Ves 1.15 0.17 52.60 41.17 1.29 2.01 98.30 evertum4 Ves 1.13 0.24 45.70 41.77 1.29 2.01 98.30 evertum6 Ves 0.12 0.23 54.17 1.19 2.01 98.30 evertum6 Ves 4.30 1.20 2.33 2.41 0.00 2.34 100.266 evertum6 Ves 4.30 0.33 56.70 4.17 1.91 100.266 evertum6 Ves 0.32 56.70 4.13 1.09 2.30 100.266 evertum7 Ves 0.33 56.70 4.13 0.00 2.30 100.266 evertum7 Ves 0.33 56.70 4.13	Spectrum 2 Ves 15.84 4,50 3.33 5.50 4.17 1.03 2.76 8.911 Spectrum 3 Ves 1,15 0,17 5.547 4.500 1.23 102.39 Spectrum 5 Ves 1,15 0,17 5.560 4.177 1,19 2.01 102.39 Spectrum 6 Ves 1,15 0,17 5.206 4.177 1,19 2.01 9.03 Spectrum 7 Ves 0,32 5.507 4.177 1,19 2.37 9.01 9.03 Spectrum 7 Ves 0,32 5.507 4.177 0,40 2.59 4.177 10.286 Spectrum 7 Ves 0,32 5.507 4.177 0,40 2.50 10.156 Spectrum 7 Ves 4.30 1.31 0,40 2.50 4.177 10.029 Spectrum 7 Ves 4.30 0.32 5.50 4.13 0.40 2.50 10.116 Max 13.84 <	Spectrum Ve 1.364 4.50 9.52 3.35 0.03 5.547 6.00 2.76 0.13 2.76 0.13 0.11 Spectrum Ves 1.13 0.13 5.547 6.00 1.13 0.13 9.30 Spectrum Ves 1.13 0.13 5.50 4.117 1.19 2.01 9.830 Spectrum Ves 4.80 1.23 5.50 4.117 1.19 2.01 9.830 Spectrum Ves 1.20 0.23 1.47 0.00 2.37 8.40 10.155 Spectrum Ves 0.32 5.60 4.13 0.10 2.90 10.155 Spectrum Ves 0.32 5.60 4.13 0.00 2.90 10.156 Ves 0.32 5.70 4.14 0.00 2.90 1.91 1.0156 Spectrum Ves 0.32 5.714 0.00 2.91 1.02.96 1.00.23 Max<	Spectrum 2 Ve 15.84 4.50 9.21 1.35 0.63 9.21 9.21 Spectrum 3 Ve 1.15 0.17 5.547 6.500 1.23 0.03 55.47 6.500 Spectrum 4 Ve 1.15 0.17 5.560 4.17 1.19 1.03 9.23 Spectrum 5 Ve 4.30 1.23 5.20 4.17 1.19 2.01 9.33 Spectrum 7 Ve 4.30 1.23 2.34 4.00 2.37 1.019 1.0156 Spectrum 7 Ve 4.30 1.33 6.00 4.17 1.09 2.01 2.026 Ve 4.30 1.32 5.60 4.13 0.00 2.37 2.37 1.0156 Spectrum 8 Ve 4.30 0.33 6.60 4.13 0.00 2.39 1.0156 Max 4.30 0.32 5.53 4.14 0.00 2.30 1.011 1.0126 Max <td>Sectrum 2 Ve 1584 450 923 335 0.03 52.03 911 Sectrum 3 Ve 1.15 0.17 5.00 1.11 1.19 1.02.39 Sectrum 3 Ve 1.15 0.17 5.50 4.11 1.19 2.01 102.39 Sectrum 4 Ve 1.15 0.17 5.50 4.17 1.19 0.02 9.01 Sectrum 5 Ve 4.20 0.31 2.75 4.74 0.00 2.91 10.28 Sectrum 6 Ve 4.20 0.32 5.70 4.71 1.91 1.02 Ve 1.20 0.23 5.70 4.71 0.00 2.95 1.01 1.02 Sectrum 6 Ve 2.30 4.71 0.00 2.95 1.01 1.02 Ve 1.23 0.32 5.03 4.71 0.00 2.90 1.01 1.02 Ve 1.28 4.71 0.01 2.20 2.75<td>Spectrum 2 Ve 1584 450 923 335 0.03 55.0 61.01 1.23 911 Spectrum 3 Ve 0.28 0.37 55.0 41.71 11.9 10.33 Spectrum 4 Ve 0.18 0.17 57.06 41.71 11.9 2.01 93.0 Spectrum 6 Ve 0.28 0.37 5.00 41.71 11.9 2.01 93.0 Spectrum 7 Ve 4.90 0.23 6.77 0.01 2.96 0.17 10.15 Spectrum 8 Ve 4.90 0.32 6.70 4.71 0.00 2.91 0.03 Ves 0.32 0.32 6.70 4.71 0.90 2.91 0.03 Ves 0.32 0.32 6.70 4.71 0.90 2.91 10.05 Max 1.91 0.32 6.73 6.73 2.91 10.015 Max 1.92 1.93 2.94 1.91</td><td>Section 1<!--</td--><td>Spectrum 1</td><td>Yes</td><td></td><td>0.23</td><td>0.25</td><td>57.55</td><td>46.16</td><td></td><td></td><td></td><td></td><td></td><td>104.19</td><td></td></td></td>	Sectrum 2 Ve 1584 450 923 335 0.03 52.03 911 Sectrum 3 Ve 1.15 0.17 5.00 1.11 1.19 1.02.39 Sectrum 3 Ve 1.15 0.17 5.50 4.11 1.19 2.01 102.39 Sectrum 4 Ve 1.15 0.17 5.50 4.17 1.19 0.02 9.01 Sectrum 5 Ve 4.20 0.31 2.75 4.74 0.00 2.91 10.28 Sectrum 6 Ve 4.20 0.32 5.70 4.71 1.91 1.02 Ve 1.20 0.23 5.70 4.71 0.00 2.95 1.01 1.02 Sectrum 6 Ve 2.30 4.71 0.00 2.95 1.01 1.02 Ve 1.23 0.32 5.03 4.71 0.00 2.90 1.01 1.02 Ve 1.28 4.71 0.01 2.20 2.75 <td>Spectrum 2 Ve 1584 450 923 335 0.03 55.0 61.01 1.23 911 Spectrum 3 Ve 0.28 0.37 55.0 41.71 11.9 10.33 Spectrum 4 Ve 0.18 0.17 57.06 41.71 11.9 2.01 93.0 Spectrum 6 Ve 0.28 0.37 5.00 41.71 11.9 2.01 93.0 Spectrum 7 Ve 4.90 0.23 6.77 0.01 2.96 0.17 10.15 Spectrum 8 Ve 4.90 0.32 6.70 4.71 0.00 2.91 0.03 Ves 0.32 0.32 6.70 4.71 0.90 2.91 0.03 Ves 0.32 0.32 6.70 4.71 0.90 2.91 10.05 Max 1.91 0.32 6.73 6.73 2.91 10.015 Max 1.92 1.93 2.94 1.91</td> <td>Section 1<!--</td--><td>Spectrum 1</td><td>Yes</td><td></td><td>0.23</td><td>0.25</td><td>57.55</td><td>46.16</td><td></td><td></td><td></td><td></td><td></td><td>104.19</td><td></td></td>	Spectrum 2 Ve 1584 450 923 335 0.03 55.0 61.01 1.23 911 Spectrum 3 Ve 0.28 0.37 55.0 41.71 11.9 10.33 Spectrum 4 Ve 0.18 0.17 57.06 41.71 11.9 2.01 93.0 Spectrum 6 Ve 0.28 0.37 5.00 41.71 11.9 2.01 93.0 Spectrum 7 Ve 4.90 0.23 6.77 0.01 2.96 0.17 10.15 Spectrum 8 Ve 4.90 0.32 6.70 4.71 0.00 2.91 0.03 Ves 0.32 0.32 6.70 4.71 0.90 2.91 0.03 Ves 0.32 0.32 6.70 4.71 0.90 2.91 10.05 Max 1.91 0.32 6.73 6.73 2.91 10.015 Max 1.92 1.93 2.94 1.91	Section 1 </td <td>Spectrum 1</td> <td>Yes</td> <td></td> <td>0.23</td> <td>0.25</td> <td>57.55</td> <td>46.16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>104.19</td> <td></td>	Spectrum 1	Yes		0.23	0.25	57.55	46.16						104.19	
Ves 0.28 0.32 55.47 45.00 1.23 102.39 sectrum 4 Ves 115 0.17 52.60 41.77 1.99 2.01 98.30 sectrum 5 Ves 115 0.17 52.60 41.77 1.99 2.01 98.30 sectrum 6 Ves 1.20 2.33 4.77 0.60 2.31 98.30 sectrum 7 Ves 0.38 5.370 4.77 0.60 10.26 101.26 sectrum 7 Ves 0.38 4.24 0.60 2.30 101.26 102.06 sectrum 7 Ves 0.38 4.24 0.60 2.30 1.91 10.11 Aux 1.34 0.60 2.35 4.34 0.60 2.30 4.01 1.02 1.02.66 Aux 1.91 1.91 1.91 1.91 1.01.11 1.02.11 Aux 1.34 0.60 2.35 4.36 1.91 1.91 1.01.11	Spectrum 3 Ves 0.28 0.32 55.47 45.00 1.23 102.39 Spectrum 4 Ves 1.15 0.17 57.26 41.17 1.19 2.01 98.30 Spectrum 5 Ves 1.15 0.17 57.26 41.17 1.19 2.01 98.30 Spectrum 6 Ves 0.32 0.32 55.70 41.77 0.40 2.37 98.30 Spectrum 7 Ves 0.32 0.32 55.70 44.31 1.01 1.01 1.02.66 Spectrum 7 Ves 0.32 55.70 44.31 0.40 2.37 1.02.66 Spectrum 7 Ves 0.32 55.70 44.31 0.40 2.30 1.01 1.02.66 Spectrum 8 Ves 0.32 55.70 44.31 0.40 2.30 1.01 1.02.66 Max 13.84 4.50 0.32 55.70 44.31 1.01 1.01 1.02.16 Max 4.80	Spectrum 3 Vis 0.28 0.32 55.47 45.00 1.13 102.39 Spectrum 5 Vis 1.15 0.17 5.26 4.17 1.19 0.01 98.30 Spectrum 6 Vis 1.15 0.17 5.20 4.17 1.19 0.01 98.30 Spectrum 7 Vis 1.20 2.37 2.474 0.00 2.39 3.846 101.56 Spectrum 7 Vis 0.32 5.670 4.13 0.00 2.39 3.846 101.56 Spectrum 7 Vis 0.32 5.670 4.31 0.00 2.39 4.20 0.01 Vis 0.32 5.670 4.31 0.02 2.35 4.20 0.02 0.02 Max 4.80 0.33 56.70 4.31 0.02 2.55 2.56 1.01 Mix 4.80 0.32 57.53 4.51 0.60 2.50 1.01 Mix 4.80 0.32 57.5	Sectrum 3 Ves 0.28 0.32 55.47 45.00 1.23 102.39 Sectrum 5 Ves 115 0.17 57.80 41.17 119 2.01 98.30 Sectrum 6 Ves 0.13 57.50 41.17 119 2.01 98.30 Sectrum 7 Ves 0.32 55.70 41.71 119 2.37 84.71 102.59 Sectrum 7 Ves 0.32 55.70 44.31 0.40 2.39 53.45 10.165 Sectrum 7 Ves 0.32 55.70 44.31 0.40 2.30 10.165 Sectrum 8 Ves 0.33 56.70 44.31 0.40 2.30 10.165 Max 4.30 0.32 56.70 44.31 0.40 2.31 38.46 100.25 Max 4.30 0.32 51.35 46.16 1.31 10.41 Max 4.30 0.23 3.13 0.30 0.25 2.75	Sectrum 3 Ves 0.28 0.32 55.47 65.00 1.13 102.39 Sectrum 5 Ves 1.15 0.17 2.00 1.17 1.19 0.01 Sectrum 5 Ves 1.15 0.17 2.00 4.17 1.19 0.01 98.30 Sectrum 5 Ves 0.21 0.23 4.77 0.00 2.90 101.15 Sectrum 7 Ves 0.32 56.70 4.31 0.00 2.90 101.15 Sectrum 7 Ves 0.32 56.70 4.31 0.00 2.90 101.15 Max 13.84 4.50 0.33 56.70 4.31 0.01 2.90 101.15 Max 13.84 0.86 0.32 56.70 4.31 0.02 101.15 Max 13.84 1.90 2.35 4.91 0.60 2.35 4.91 100.13 Max 13.84 0.81 0.82 2.92 2.92 2.94 10.	Sectrum 3 Ves 0.28 0.32 5.6.7 4.500 1.23 102.39 Sectrum 6 Ves 1.15 0.17 2.00 4.17 1.19 2.01 98.30 Sectrum 6 Ves 1.15 0.17 2.50 4.17 1.19 2.01 98.30 Sectrum 6 Ves 0.23 0.24 0.27 1.24 0.00 2.01 98.30 Sectrum 6 Ves 0.32 5.6.70 4.11 0.00 2.97 38.46 101.56 Sectrum 7 Ves 0.32 5.73 4.14 0.00 2.97 3.8.46 10.12.56 Max 15.84 4.50 0.32 5.67 4.19 0.05 2.97 3.8.46 10.11.56 Max 4.50 0.23 5.53 4.51 0.63 2.51 4.51 10.11.1 Max 1.51 0.52 2.53 1.51 0.51 1.51 1.51 Max 1.51	Vet D3 53.4 5.0 1.13 1.03 90.3 Secturuli Vet D3 0.3 5.0 1.17 D3 0.03 Secturuli Vet D3 0.3 5.0 1.17 D3 2.01 0.03 Secturuli Vet D3 5.0 4.17 D3 2.01 0.03 Secturuli Vet D3 5.00 4.11 D3 2.05 0.03 Secturuli Vet D3 5.03 4.14 D3 2.05 1.10 1.05 Secturuli Vet D3 5.03 4.14 D3 2.05 1.03 1.028 Secturuli Vet D3 5.03 4.14 D3 2.05 1.03 1.028 Vet D3 D3 D3 D3 D3 D3 D3 Vet D3 D3 D3 D3 D3 D3 D3 Vet D3 D3<	Spectrum 2	ş	15.84	4,50		9.52	3.35		0.63		2.76	62.52	11.99	
Wes 115 0.17 5.260 41.77 1.19 2.01 98.30 pectrum 5 Ves 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.20 44.77 0.60 101.56 101.56 101.56 0.01 98.30 spectrum 7 Yes 0.32 0.28 5.3.75 44.77 0.60 2.37 58.46 100.266 spectrum 8 Yes 0.32 0.32 56.70 44.31 0.00 2.30 100.296 spectrum 8 Yes 0.32 56.70 44.31 0.00 2.30 100.296 spectrum 8 Yes 0.32 56.70 44.31 0.01 2.30 100.296 spectrum 8 Yes 0.32 56.70 44.31 1001 100.296 spectrum 7 Yes 0.32 56.70 44.31 1.91 100.296 100.296 spectrum 8 Yes </th <td>Spectrum 1 Visc 1,15 0,17 5,25:0 4,17 1,19 2,01 98.30 Spectrum 5 Visc 1,24 0,24 5,70 4,77 0.60 10.35 10.35 Spectrum 7 Visc 4,80 1,20 2,37 4,77 0.60 2,37 84.75 10.156 Spectrum 7 Visc 4,80 0,32 56,70 44.31 0,90 2,59 100.266 Spectrum 8 Visc 0,32 56,70 44.31 0,40 2,59 100.29 Max 1584 4,50 0,32 56,70 44.31 1,91 104.11 Max 4,80 5,23 46.16 1,93 0,60 2,37 56.32 Max 4,80 5,23 46.16 1,93 2,50 2,75 56.32 40.11 Max 4,80 5,23 46.16 1,93 2,50 2,75 56.45 10.61 10.61 Max 4,80</td> <td>Spectrum I Yes 1.15 0.17 5.2.60 4.171 1.19 2.01 98.30 Spectrum IS Yes 0.24 0.24 5.7.0 4.177 0.0 2.37 58.46 101.56 Spectrum IS Yes 4.80 1.20 2.3.75 1.2.47 0.60 2.397 58.46 100.206 Spectrum IS Yes 0.32 2.3.75 4.14 0.60 2.90 1.91 10.136 Spectrum IS Yes 0.32 56.70 4.31 0.60 2.90 1.91 10.0.29 Spectrum IS Yes 0.36 0.32 56.70 4.31 1.91 1.0.29 Max 15.84 4.50 0.32 57.55 4.51 0.60 2.50 2.50 Max 4.80 0.32 57.55 4.51 0.60 2.50 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.56</td> <td>New 115 0.17 22.50 41.71 1.19 2.01 98.30 Spectrum 6 Ves 4.30 0.34 5.70 4.77 0.60 2.37 58.46 10.156 Spectrum 7 Ves 4.30 1.20 2.37 58.47 0.00 2.39 58.46 10.266 Spectrum 8 Ves 0.32 0.32 56.70 44.31 0.60 2.39 58.46 10.266 Spectrum 8 Ves 0.32 0.32 56.70 44.31 1.91 1.01 10.4.1 Max 1584 4.50 0.32 56.70 4.31 0.63 2.63 5.36 1.91 1.91 1.01 1.04.1 Max 4.80 0.23 1.17 0.61 0.63 2.55 46.16 1.91 1.01.1 1.04.1 Max 4.80 0.23 1.33 0.63 0.53 2.55 5.75 46.16 1.93 5.6.46 Max 4</td> <td>Secture 1 Vis 1.15 0.17 5.26 4.17 1.19 2.01 98.30 Secture 1 Vis 0.24 0.25 4.17 1.19 2.01 98.30 Secture 1 Vis 0.23 0.23 4.17 0.00 2.37 56.30 4.17 Secture 3 Vis 0.32 56.70 4.13 1.91 100.31 Secture 3 0.32 0.32 56.70 4.31 0.00 2.90 1.91 100.11 Max 15.84 4.50 0.32 56.70 4.31 0.01 2.90 1.91 100.11 Mix 4.80 0.23 3.17 9.23 2.95 4.91 1.91 1.01.11 Mix 4.80 0.23 3.13 2.05 2.75 4.93 1.92 3.35 2.92 3.94 Mix 4.80 0.23 3.13 9.23 0.60 2.37 3.846 1.00.11 Mix 4.80</td> <td>Secture 1 Vis 115 0.17 5.260 4.17 1.19 2.01 98.30 Secture 15 Vis 0.23 1.24 0.23 4.17 0.00 2.37 98.30 Secture 15 Vis 4.30 1.23 5.23 4.17 0.00 2.37 3.8.46 101.56 Secture 17 Vis 4.30 1.23 5.275 1.47 0.00 2.37 3.8.46 100.06 Secture 17 Vis 0.38 56.70 4.11 0.01 2.00 101.1 Max 15.84 4.50 0.32 5.53 4.51 0.63 2.60 2.75 Max 15.84 4.50 0.32 5.75 4.51 0.63 2.60 2.75 5.52 Max 15.84 4.50 0.32 2.55 2.55 5.54 10.11 Max 15.84 0.53 2.55 2.55 2.55 5.54 10.11 10.11 Max</td> <td>Sectured sectured (integration (integration) 113</td> <td>Spectrum 3</td> <td>Yes.</td> <td></td> <td>0.28</td> <td>0.32</td> <td>55.47</td> <td>45.09</td> <td></td> <td></td> <td>1,23</td> <td></td> <td></td> <td>102.39</td> <td></td>	Spectrum 1 Visc 1,15 0,17 5,25:0 4,17 1,19 2,01 98.30 Spectrum 5 Visc 1,24 0,24 5,70 4,77 0.60 10.35 10.35 Spectrum 7 Visc 4,80 1,20 2,37 4,77 0.60 2,37 84.75 10.156 Spectrum 7 Visc 4,80 0,32 56,70 44.31 0,90 2,59 100.266 Spectrum 8 Visc 0,32 56,70 44.31 0,40 2,59 100.29 Max 1584 4,50 0,32 56,70 44.31 1,91 104.11 Max 4,80 5,23 46.16 1,93 0,60 2,37 56.32 Max 4,80 5,23 46.16 1,93 2,50 2,75 56.32 40.11 Max 4,80 5,23 46.16 1,93 2,50 2,75 56.45 10.61 10.61 Max 4,80	Spectrum I Yes 1.15 0.17 5.2.60 4.171 1.19 2.01 98.30 Spectrum IS Yes 0.24 0.24 5.7.0 4.177 0.0 2.37 58.46 101.56 Spectrum IS Yes 4.80 1.20 2.3.75 1.2.47 0.60 2.397 58.46 100.206 Spectrum IS Yes 0.32 2.3.75 4.14 0.60 2.90 1.91 10.136 Spectrum IS Yes 0.32 56.70 4.31 0.60 2.90 1.91 10.0.29 Spectrum IS Yes 0.36 0.32 56.70 4.31 1.91 1.0.29 Max 15.84 4.50 0.32 57.55 4.51 0.60 2.50 2.50 Max 4.80 0.32 57.55 4.51 0.60 2.50 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.56	New 115 0.17 22.50 41.71 1.19 2.01 98.30 Spectrum 6 Ves 4.30 0.34 5.70 4.77 0.60 2.37 58.46 10.156 Spectrum 7 Ves 4.30 1.20 2.37 58.47 0.00 2.39 58.46 10.266 Spectrum 8 Ves 0.32 0.32 56.70 44.31 0.60 2.39 58.46 10.266 Spectrum 8 Ves 0.32 0.32 56.70 44.31 1.91 1.01 10.4.1 Max 1584 4.50 0.32 56.70 4.31 0.63 2.63 5.36 1.91 1.91 1.01 1.04.1 Max 4.80 0.23 1.17 0.61 0.63 2.55 46.16 1.91 1.01.1 1.04.1 Max 4.80 0.23 1.33 0.63 0.53 2.55 5.75 46.16 1.93 5.6.46 Max 4	Secture 1 Vis 1.15 0.17 5.26 4.17 1.19 2.01 98.30 Secture 1 Vis 0.24 0.25 4.17 1.19 2.01 98.30 Secture 1 Vis 0.23 0.23 4.17 0.00 2.37 56.30 4.17 Secture 3 Vis 0.32 56.70 4.13 1.91 100.31 Secture 3 0.32 0.32 56.70 4.31 0.00 2.90 1.91 100.11 Max 15.84 4.50 0.32 56.70 4.31 0.01 2.90 1.91 100.11 Mix 4.80 0.23 3.17 9.23 2.95 4.91 1.91 1.01.11 Mix 4.80 0.23 3.13 2.05 2.75 4.93 1.92 3.35 2.92 3.94 Mix 4.80 0.23 3.13 9.23 0.60 2.37 3.846 1.00.11 Mix 4.80	Secture 1 Vis 115 0.17 5.260 4.17 1.19 2.01 98.30 Secture 15 Vis 0.23 1.24 0.23 4.17 0.00 2.37 98.30 Secture 15 Vis 4.30 1.23 5.23 4.17 0.00 2.37 3.8.46 101.56 Secture 17 Vis 4.30 1.23 5.275 1.47 0.00 2.37 3.8.46 100.06 Secture 17 Vis 0.38 56.70 4.11 0.01 2.00 101.1 Max 15.84 4.50 0.32 5.53 4.51 0.63 2.60 2.75 Max 15.84 4.50 0.32 5.75 4.51 0.63 2.60 2.75 5.52 Max 15.84 4.50 0.32 2.55 2.55 5.54 10.11 Max 15.84 0.53 2.55 2.55 2.55 5.54 10.11 10.11 Max	Sectured sectured (integration (integration) 113	Spectrum 3	Yes.		0.28	0.32	55.47	45.09			1,23			102.39	
pectrum5 Ves 0.24 0.27 0.27 0.27 0.27 0.27 0.206 0.026 0.0	Spectrum 5 Ves 0.24 0.24 5.70 44.77 0.60 101.56 Spectrum 6 Ves 4.80 1.20 2.375 3.47 0.60 2.37 58.46 102.56 Spectrum 7 Ves 0.32 5.70 44.77 0.60 2.39 101.56 Spectrum 7 Ves 0.32 5.70 44.31 0.01 2.50 102.06 Spectrum 6 Ves 0.32 56.70 44.31 0.01 2.50 10.126 Max 158.4 4.50 0.32 56.70 44.31 1.91 100.11 Max 15.84 4.50 0.32 57.55 46.16 1.91 0.63 2.50 2.75 Min. 4.80 0.23 3.35 0.60 0.63 2.50 2.75 3.46 100.11 Alt results in weight for 4.80 0.23 3.35 0.60 2.81 2.66 2.81 5.8.46	Spectrum 5 Vis 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.02 237 58.46 101.56 101.56 Spectrum 7 Yes 4.30 0.32 53.38 4.274 0.60 2.59 102.06 Spectrum 8 Yes 0.32 53.36 4.274 0.60 2.59 100.29 Spectrum 8 Yes 0.32 53.36 4.274 0.60 2.59 100.11 Max 15.44 4.50 0.32 57.35 46.16 1.19 100.11 Max 4.80 0.32 57.35 46.16 1.19 0.63 2.60 2.75 56.35 Max 4.80 0.23 1.17 9.52 3.35 0.60 2.63 2.60 2.75 56.35 Max 4.80 0.23 0.83 0.80 2.37 56.45 10.11 Ma	Not D24 D24 D24 D24 D34 D55.00 H171 D160 H1156 Spectrum 7 Yes 4.30 1.21 2.275 1.477 0.60 2.39 58.46 102.06 Spectrum 7 Yes 0.86 0.32 56.70 4.13 0.60 2.59 100.29 Spectrum 8 Yes 0.86 0.32 56.70 4.13 0.60 2.59 100.29 Max 15.84 4.50 0.32 57.55 46.15 1.91 10.11 Max 4.50 0.23 1.17 9.25 3.35 0.60 2.37 58.46 Max 4.50 0.23 1.17 9.25 3.35 0.60 2.37 58.46 Max 4.50 0.23 1.17 9.25 3.35 0.60 2.37 58.46 Max 4.50 0.23 1.17 9.25 3.35 0.66 2.37 58.46	Sectrum 5 Nes 0.24 0.24 5.50 417 0.60 101.56 Sectrum 6 Yes 4.30 1.20 2.37 2.47 0.60 2.91 2.056 Sectrum 7 Yes 0.32 5.50 4.31 0.60 2.90 1.91 1.00.29 Sectrum 8 Yes 0.32 5.500 4.31 0.60 2.90 1.91 1.00.13 Max 1384 4.50 0.33 5.600 4.31 1.01 1.00.13 Max 4.80 0.23 1.35 0.60 0.53 2.97 5.6.36 Max 4.80 0.23 5.73 0.60 0.53 2.97 5.6.6 Max 4.80 0.23 3.35 0.60 0.53 2.96 5.75 Max 4.80 0.23 3.35 0.50 2.37 5.8.46 Max 4.80 0.23 1.37 9.63 2.96 2.95 Max 4.	Sectrum 5 Ne 0.24 0.24 5.50 417 0.00 101.56 Sectrum 6 Yes 4.30 1.20 2.37 3.47 0.00 2.37 3.46 102.66 Sectrum 7 Yes 0.32 5.70 4.31 0.01 2.37 3.4.6 100.29 Sectrum 7 Yes 0.33 5.70 4.31 0.01 2.30 1.01 1.00.29 Sectrum 8 Yes 0.33 5.70 4.31 0.01 2.30 1.01 1.00.11 Max 4.50 0.33 5.73 4.56 0.53 3.50 2.75 5.53 4.51 1.01.11 Max 4.50 0.23 5.73 4.53 0.60 2.33 3.60 2.37 5.6.36 Max 4.50 0.23 5.73 4.53 0.60 2.37 5.6.46 1.00.23 Max 4.50 0.23 0.23 2.50 2.76 5.2.72 5.4.6 <tr< td=""><td>No. D.3 <thd.3< th=""> <thd.3< th=""> <thd.3< th=""></thd.3<></thd.3<></thd.3<></td><td>Spectrum 4</td><td>Yes</td><td></td><td>5112</td><td>0.17</td><td>52:60</td><td>41.17</td><td>1.19</td><td></td><td>2.01</td><td></td><td></td><td>98.30</td><td></td></tr<>	No. D.3 D.3 <thd.3< th=""> <thd.3< th=""> <thd.3< th=""></thd.3<></thd.3<></thd.3<>	Spectrum 4	Yes		5112	0.17	52:60	41.17	1.19		2.01			98.30	
Operation Ves 4.80 1.20 2.2.75 1.2.47 2.3.75 12.47 2.3.75 12.47 10.2.06 operation Yes 0.3.2 0.2.85 5.3.85 4.2.74 0.40 2.5.0 100.29 operation Yes 0.3.2 56.70 44.31 1.91 100.111 Abs 15.84 4.50 0.3.2 56.70 44.31 1.91 100.111 Abs 15.84 4.50 0.3.2 56.70 44.31 1.91 100.111 Abs 15.84 4.50 0.3.2 57.55 46.16 1.9 0.63 2.50 2.76 5.75	Spectrum 6 Ves 4.80 1.20 22.75 1.2.47 2.37 58.46 102.06 Spectrum 7 Ves 0.32 0.28 5.385 4.2.74 0.00 2.90 1.00.29 Spectrum 7 Ves 0.32 0.32 56.70 4.4.31 1.91 100.29 Max 15.84 4.50 0.32 56.70 4.31 1.91 104.11 Min. 4.80 0.23 0.17 9.52 3.35 0.60 2.50 2.75 58.46 Min. 4.80 0.23 0.17 9.52 3.35 0.60 2.51 58.46	Spectrum Ves 4.80 1.20 2.3.75 1.4.7 2.30 2.4.6 102.06 Spectrum Ves 0.32 5.6.70 44.31 0.60 2.50 1.91 100.29 Spectrum Ves 0.32 5.6.70 44.31 0.60 2.50 1.91 100.11 Max 1544 4.50 0.32 5.735 46.16 1.19 1.00.11 100.11 Max 1544 4.50 0.32 5.755 46.16 1.19 0.63 2.76 2.75 Mar 4.80 0.23 9.13 0.60 0.63 2.90 2.76 5.57 Mar 4.80 0.23 9.13 0.60 0.63 2.90 2.76 5.8.46 Mar 4.80 0.23 9.13 0.60 0.63 2.37 5.8.46	Spectrum 6 Ve: 4.80 1.20 22.75 1.247 2.37 58.46 102.06 Spectrum 7 Yes 0.32 0.28 3.385 4.274 0.00 2.90 1.91 100.11 Spectrum 7 Yes 0.38 0.32 56.70 44.31 1.91 1.01.1 Max 1584 4.50 0.32 56.70 44.31 1.91 1.01.1 Max 1584 4.50 0.32 56.70 44.31 0.63 26.35 10.0.13 Max 1584 0.32 57.53 46.16 1.91 0.63 2.50 2.75 Min 4.80 0.23 3.35 0.60 2.53 2.50 2.75 53.46	Spectrum 6 Ves 4.30 1.20 2.375 1.447 2.377 56.46 102.06 Spectrum 7 Ves 0.32 0.285 4.31 0.00 2.90 1.91 100.13 Spectrum 7 Ves 0.32 56.70 4.31 1.91 100.13 Spectrum 8 Ves 0.32 56.70 4.31 2.90 2.90 100.11 Max 1584 4.50 0.32 57.55 46.3 0.63 2.00 2.37 58.46 Max 4.30 0.23 3.13 0.60 0.63 2.00 2.37 58.46 Max 4.30 0.23 3.13 0.60 0.63 2.00 2.37 58.46 Max 4.30 0.23 3.13 5.36 2.37 58.46 100.11 Max 4.30 0.23 3.13 5.60 2.51 58.46 Max 4.30 0.23 0.50 2.37 58.46 1	Spectrum 6 Vec 4.80 1.20 2.373 1.447 2.37 8.46 102.06 Spectrum 8 Ves 0.32 0.20 4.31 0.0 2.50 4.31 0.00.25 Spectrum 8 Ves 0.32 56.70 4.31 0.60 2.50 1.01.11 Spectrum 8 Ves 0.32 56.70 4.31 0.61 1.30 1.00.12 Max 13.84 4.50 0.32 56.70 4.31 0.63 2.50 2.55 5.53 5.54 5.54 5.54 5.54 5.54 <t< td=""><td>Vecture 4.80 1.20 2.75 1.41 2.34 1.0.06 Secturul Ves 0.32 0.32 5.00 4.31 0.02 1.00 Secturul Ves 0.32 0.32 5.00 4.31 0.02 1.001 Max 1.30 0.32 0.32 0.32 0.32 0.32 0.32 1.001 Max 1.30 0.32 0.32 0.32 0.32 0.32 0.32 1.001 Max 1.30 0.32 0.3</td><td>Spectrum 5</td><td>Ves</td><td></td><td>0.24</td><td>0.24</td><td>55.70</td><td>44.77</td><td></td><td></td><td>0.60</td><td></td><td></td><td>101.56</td><td></td></t<>	Vecture 4.80 1.20 2.75 1.41 2.34 1.0.06 Secturul Ves 0.32 0.32 5.00 4.31 0.02 1.00 Secturul Ves 0.32 0.32 5.00 4.31 0.02 1.001 Max 1.30 0.32 0.32 0.32 0.32 0.32 0.32 1.001 Max 1.30 0.32 0.32 0.32 0.32 0.32 0.32 1.001 Max 1.30 0.32 0.3	Spectrum 5	Ves		0.24	0.24	55.70	44.77			0.60			101.56	
Person D_32 D_32 D_32 S_570 A4.31 1.01 100.29 opectrum 8 Ves 0.86 0.32 56.70 A4.31 1.91 104.11 opectrum 8 Ves 0.86 0.32 56.70 A4.31 1.91 104.11 Abs 15.84 4.50 0.32 57.55 46.16 1.9 0.63 2.50 2.76 5.75 Abs 1.54 0.53 57.15 46.16 0.13 5.75 46.16 1.9 0.63 2.50 2.76 5.75	Spectrum 7 Ves 0.31 0.28 53.85 4.2.74 0.60 2.50 100.29 Spectrum 8 Ves 0.86 0.32 56.70 44.31 1.91 104.11 Max 13.84 4.50 0.32 56.70 44.31 1.91 104.11 Max 13.84 4.50 0.32 56.70 45.3 2.50 2.75 36.36 Min 4.80 0.23 0.13 9.52 3.35 0.60 2.76 58.46 All results in weight% 4.80 0.23 1.33 0.60 2.37 58.46	Spectrum 7 Ves 0.32 0.28 53,85 4.7.4 0.60 2.50 100.29 Spectrum 8 Ves 0.86 0.32 56.70 44.31 1.91 104.11 Max 15.84 4.50 0.32 57.55 45.16 1.19 0.63 2.50 2.75 5.25 Mn 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.00 2.37 58.46 Af readts in weight 6	Spectrum 7 Ves 0.32 0.28 5.3.55 4.2.74 0.40 2.50 100.29 Spectrum 8 Ves 0.86 0.32 56.70 44.31 1.91 104.11 Max 15.84 4.50 0.32 56.70 44.31 1.91 104.11 Max 15.84 4.50 0.32 56.70 4.31 2.91 2.92 2.75 Max 4.80 0.23 1.17 9.52 3.35 0.60 2.37 58.46 Min 4.80 0.23 1.17 9.52 3.35 0.60 2.37 58.46	Sectrum 7 Ves 0.32 0.28 53.85 4.74 0.60 2.50 100.29 Sectrum 8 Ves 0.86 0.32 56.70 44.31 1.91 104.11 Max 15.84 4.50 0.32 56.70 46.31 0.63 2.50 100.29 Max 15.84 4.50 0.32 57.55 46.5 1.9 0.63 2.60 2.75 Min 4.80 0.23 9.17 9.52 3.35 0.60 0.63 2.60 2.75 Min 4.80 0.23 9.17 9.52 3.56 2.60 2.75	Sectrum 7 Ves 0.32 0.28 53.55 4.274 0.60 2.50 100.29 Sectrum 8 Ves 0.86 0.32 56.70 44.31 1.01 104.11 Max 1.84 4.50 0.32 56.70 46.11 0.65 2.55 46.16 1.01 Max 1.80 0.23 1.19 0.63 2.00 2.17 56.20 Max 4.80 0.23 1.19 9.52 3.35 0.60 2.17 56.46 Max 4.80 0.23 1.19 9.52 3.35 0.60 2.17 56.46 Max 4.80 0.23 1.19 7.85 4.66 1.67 7.846	Sectururi Ves 0.32 0.33 4.74 0.00 2.50 1.01.3 Sectururi Ves 0.32 5.70 4.11 0.3 5.00 1.01 10.11 Max 15.84 6.90 0.32 5.73 46.16 1.9 0.03 5.03 10.11 Max 4.80 0.32 5.75 6.60 0.33 5.05 2.75 5.23 Max 4.80 0.33 3.55 0.63 2.35 2.35 5.35 5.35 Max 4.80 0.33 3.55 0.63 2.35 5.35 5.35 A reation 4.80 0.33 5.35 5.35 5.35 5.35 5.35	Spectrum 6	Yes	4,80	1.20		22.75	12.47				237	58.46	102.06	
Spectrum 8 Yes 0.86 0.32 56.70 44.31 1.91 1.04.11 Abx 15.84 4.50 0.32 57.55 46.16 1.9 0.63 2.50 2.76 5.52 Abx 1.5.84 4.50 0.32 57.55 46.16 1.19 0.63 2.50 2.76 5.252	Spectrum 8 Yes 0.86 0.32 56.70 44.31 1.91 104.11 Max 15.84 4.50 0.32 57.55 46.16 1.19 0.63 2.50 2.76 52.32 Max 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 All results in weight/s 4.80 0.23 0.17 9.52 3.35 0.60 2.37 58.46	Sectrum B Ves 0.86 0.32 56.70 44.31 1.91 104.11 Max 15.84 4.50 0.32 57.55 46.36 1.19 0.63 2.50 2.54 Max 4.80 0.32 0.17 9.52 3.35 0.60 0.63 2.50 2.75 84.46 Min 4.80 0.23 0.17 9.52 3.35 0.60 2.63 2.50 2.75 84.46 Aft results in weight 6 0.23 0.17 9.52 3.35 0.60 2.37 58.46	Sectrum 8 Ves 0.86 0.32 56.70 44.31 1.91 104.11 Max 15.84 4.50 0.32 57.55 46.16 1.9 0.63 2.50 275 53.25 Max 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 Aft readity in weight K 4.80 0.23 0.17 9.52 3.35 0.60 2.37 58.46	Sectrum 8 Ves 0.86 0.32 56.70 4.31 1.91 104.11 Max 15.84 4.50 0.32 55.755 4c.16 0.63 2.50 2.75 Max 4.80 0.23 3.13 0.60 0.63 2.95 53.46 53.46 Min 4.80 0.23 3.13 0.60 0.63 2.37 58.46 Min readty in weight's 4.80 0.23 3.35 0.60 0.37 58.46	New 0.86 0.32 56.70 44.31 1.91 104.11 Max 15.84 4.50 0.32 56.70 44.31 2.52 1.04.12 Max 14.80 0.23 0.53 46.16 1.19 0.63 2.55 46.16 1.10 Max 4.80 0.23 0.17 9.52 3.15 0.60 2.17 58.46 Max 4.80 0.23 0.17 9.52 3.15 0.60 2.17 58.46 Max custs in weights Max 1.17 9.52 3.15 0.60 2.17 58.46	Ves 0.86 0.32 5.70 41.31 10.11 Vax 15.84 4.00 0.32 5.75 46.16 0.32 5.25 Vax 15.84 4.00 0.32 5.75 46.16 0.3 5.60 1.31 Max 15.84 4.00 0.32 5.75 0.01 2.9 2.5 5.46 Max 15.91 0.31 3.51 3.50 2.35 58.46 Maxterine 13.3 5.17 3.60 1.37 58.46 58.46	Spectrum 7	Yes		0.32	0.28	53,85	42.74	0.60		2.50			100.29	
15.84 4.50 0.32 57.55 46.16 1.19 0.63 2.50 2.76 52.52	Max 15.84 4.50 0.32 57.55 46.36 1.19 0.43 2.50 2.76 52.52 Min. 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 All results in weight%	Max 15.84 4.50 0.32 57.55 46.16 1.19 0.63 2.50 2.76 6.152 Min 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.80 2.37 58.46 All readits in weight K	Max 15.84 4.50 0.32 57.55 46.36 1.19 0.43 2.50 2.76 6.2.52 Min 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 All results in weight K	Max 13.84 4.50 0.32 5755 45.16 119 0.63 2.50 2.75 52.22 Min 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 Al readts in weightle	Max 15.84 4.50 0.32 57.55 46.16 1.19 0.63 2.50 2.75 62.15 Min 4.80 0.23 1.17 9.52 3.35 0.60 0.63 2.91 58.46 Min 4.80 0.23 1.17 9.52 3.35 0.60 2.31 58.46 Min readth in weightlik 1.12 9.52 3.35 0.60 2.31 58.46	MX 35.84 4.50 0.32 57.35 45.16 1.19 0.43 2.50 2.52 5.33 45.16 1.13 0.43 2.50 2.51 3.36 4.50 2.51 3.55 4.51 3.55 <	Spectrum 8	ž		0.86	0.32	56.70	44.31			1.91			104.11	
VAX. 15.84 4.50 0.32 57.55 46.16 1.19 0.63 2.50 2.76 62.52	Max 15.84 4.50 0.32 57.55 46.36 1.19 0.63 2.50 2.75 62.52 Min 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 All results in weight?	Max 15.84 4.50 0.32 57.55 46.16 1.19 0.63 2.50 2.75 62.52 Min. 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.00 2.37 58.46 All results in weight®	Max 15.84 4.50 0.32 57.55 46.16 1.19 0.63 2.50 2.76 6.152 Mnn 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 Al results in weight?k	Max 15.84 4.50 0.32 5755 46.16 1.19 0.63 2.50 2.76 6.2.52 Mnn 4.80 0.23 1.17 9.52 3.35 0.60 0.63 0.00 2.37 58.46 Af reachts in weightfik	Max 1584 4.50 0.32 5735 46.16 1.19 0.63 2.50 2.75 6.252 Min 4.80 0.23 1.17 9.52 3.13 0.60 0.63 0.00 2.17 58.46 Al reacht in weight fi	Mox 3384 450 0.32 5735 4516 0.13 200 25 522 Mn 4.80 0.23 0.13 0.03 0.03 230 25 335 0.00 231 346														
and not only had not not not and	Min. 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 All results in weight%	Min. 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 All results in weight 6	Min. 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 All readts in weightly	Min. 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.00 2.37 58.46 Mirreadts in weightlik	Min 4.80 0.23 0.17 9.52 3.35 0.60 0.63 0.60 2.37 58.46 All results in weight to	Mm. 430 0.23 3.15 0.60 0.37 58.46 M reacts in weightig	Max		15.84	4.50	0.32	57.55	46.36	1.19	0.63	2,50	276	62.52		
40 32 J 37 00 32 3 01 22 3 01 22 3 01 1 22 3 02 1 1 1 2 2 3 1 20 4 2 3 1 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2	All results in weight%	All results in weightfill	All results in weightin.	All treachts in weightlis	1.1 treacht in worghtlik	All traducts in wrighting	Min.		4,80	0.23	0.17	9.52	3.35	0.60	0.63	090	2.37	58.46		
			Appetrum 1	E management a	Emologia	Statistical Contractor								and a				1	1 1 1 W 1	
				Spectrum E State		2 UNITABLE 2							20	-		, T	Spean	a de	1626 E.H	
Examination Control of	Statistical Statistics	E uniterester E uniterester E uniterester	Summary Sector Sec	Specifican E Specifican E Sectorement E	Spectrum 7 Sectorem 14								and the	1	-		÷.,		Section 5	
	A UNIT OF A				Streament For Stre										-	1.5		alinen a		
Contracts Contra	A manual A manu	Summer	A manage A mana	A manufactorial of the second se	Statistics Statistics Statistics															

E

Steph Theriault 061411 - 81		6/14/2011 3 56:34 PM
Project: Steph Theriault 061411	Sample: 81	7
Owner: Inca User	Type: Default	

| C Increating DBE1411 C Increating DBE1411 C Increating DBE1411 Topics JOS 2 Topics JOS 2 0.21 0.10 Topics JOS 2 Topics J | Repti Therrault D61411 Sample: 305.2 Inca Usec Inca Usec manifyed Type: Default manifyed Inca Usec inca Usec Inca Usec< | Intributi (B61411) Sample: 305-2 Intributi (B61411) Type: Default Intributi (B6141) Total Intributi (B61411) Total Intributi (B614111) | Sample: 305.2 Rample: 305.2 Type: Default Type: Type: Default Type: Type: Type: Type: Default Type: T | Sample: 305.2 Interlute Sample: 305.2 Interlute | Increation Sample: 305.2 ner. Incr. User Important ner. Incr. User Important Important Important <td< th=""><th>Ibit: Stepin Themault DB1411 Sample: 305.2 Iner: Intra User Isingle: 305.2 Sample: 305.2 Iner: Intra User Isingle: 305.2 Sample: 305.2 Ibit: Intra User Isingle: 305.2 Sample: 305.2 Ibit: Isingle: 30.3 Isingle: 30.3 Sample: 30.3 Sample: 30.2 Ibit: Isingle: 30.4 Isingle: 30.2 Isingle: 30.2 Isingle: 30.2 Isingle: 30.2 Ibit: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Ibit: 30.6 Isingle: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Ibit: 30.6 Isingle: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Ibit: 30.6 Isingle: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Ibit: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Ibit: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3</th><th>Ibert: Steph Therauch (16.14.1.) Sample: 305.2 Nerr: Inc. Use N N S F S F S T Type: Default Herman milyes N N S F S R I F I S F S F Type: Default Herman mulyes N A S F S R I F L I S F I F L I S R I S R I F L I S R I F L I S R I R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R</th><th>Ibert: Steph Thrauut (05,141) Sample: 305-3 one: Inta Use</th><th>Note::::::::::::::::::::::::::::::::::::</th><th>Reph Therisult D61411
nca User
Th andrysed
Th andrysed</th><th>Fe Cu
Fe Cu
29.66 12.41
30.12 32.68
50.13 32.68
50.18 32.75
0.88 32.75
0.88 32.75
0.88 32.75</th><th>305-2
fault
Total
100:05
99:57
90:00
92:57
9.00:06
9.57
1.36</th></td<> | Ibit: Stepin Themault DB1411 Sample: 305.2 Iner: Intra User Isingle: 305.2 Sample: 305.2 Iner: Intra User Isingle: 305.2 Sample: 305.2 Ibit: Intra User Isingle: 305.2 Sample: 305.2 Ibit: Isingle: 30.3 Isingle: 30.3 Sample: 30.3 Sample: 30.2 Ibit: Isingle: 30.4 Isingle: 30.2 Isingle: 30.2 Isingle: 30.2 Isingle: 30.2 Ibit: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Ibit: 30.6 Isingle: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Ibit: 30.6 Isingle: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Ibit: 30.6 Isingle: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Ibit: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Ibit: 30.6 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 Isingle: 30.3 | Ibert: Steph Therauch (16.14.1.) Sample: 305.2 Nerr: Inc. Use N N S F S F S T Type: Default Herman milyes N N S F S R I F I S F S F Type: Default Herman mulyes N A S F S R I F L I S F I F L I S R I S R I F L I S R I F L I S R I R | Ibert: Steph Thrauut (05,141) Sample: 305-3 one: Inta Use | Note:::::::::::::::::::::::::::::::::::: | Reph Therisult D61411
nca User
Th andrysed
Th andrysed | Fe Cu
Fe Cu
29.66 12.41
30.12 32.68
50.13 32.68
50.18 32.75
0.88 32.75
0.88 32.75
0.88 32.75 | 305-2
fault
Total
100:05
99:57
90:00
92:57
9.00:06
9.57
1.36 | | | | | | |
|---
--|--|--
--

--|---
---|---|--|--|---|--
---|---|--|---|---|
| Type: Default Type: Default Type: Default O Mg J S Type: Default O Mg J S Type: Default O Mg J S Total O Mg J S Total O O J SOUR Total J J SOUR
 | Inca User Type: Default mt antelyset Type: Default mt antelyset mt antelyset mt antelyset nt antelys | M AI S R Type: Default Mid AI S P S K Ti Fe Lu Total Mid AI S P S K Ti Fe Lu Total Mid AI S P S K Ti B6.03 U.18 0.13 37.89 30.13 37.89 30.13 37.66 J0.10 2.77 0.15 37.55 50.16 17.41 86.03 99.80 4.96 7.11 17.40 37.56 50.16 37.31 99.80 0.23 0.28 13.7 7.60 3.23 10.10 37.95 0.23 0.28 19.79 3.236 99.57 99.91 0.23 0.28 19.79 2.23 10.108 2.34 0.23 0.28 19.23 3.246 10.108 2.34 0.23 0.29 1.29 2.34 | Type: Default Type: Default 0 Na S Type: Default 0 Na Type: Default 0 S Type: Default 0 S Type: Default 0 S Type: Default 0 S Type: Top! 0 S Type: Top! 0 S S 0 S S 0 S S 0 S S 0 S S 0 S 0 0 0 0 1 2 3 2 0 0 0 1 3 3 3 3 0 0 1 1<
 | Type: Defaut Type: Defaut Party analyse C Mg A S F L Total 0 Mg A S F S T Fe Lu 13 0.23 0.23 37.59 30.12 35.06 10.08 30.12 14.0 17.3 0.03 37.35 20.16 17.41 86.3 15.9 0.31 37.35 20.16 17.3 96.95 16.06 7.11 17.40 2.12 20.16 12.75 0.29 0.31 37.35 20.11 32.35 96.95 16.06 7.11 17.40 2.17 37.66 10.10 0.39 0.31 37.35 20.41 37.35 96.95 0.41 2.31 0.31 37.35 20.41 37.35 0.30 0.31 17.30 0.32 14.76 30.95 0.41 2.31 0.32 2.41 3.35 30.35 0.51 1.50 1.50 1.23 0.31 3.36 0.61 0.31 0.31 3.16 1.31 3.36 0.61 0.31
 | Type: Defauit Type: Defauit ment and year 0 Mg N Type: Defauit 0 Mg S P S R To al 0 Mg Al S P S R To al 749 0.23 0.23 0.23 37.25 20.61 37.41 36.69 749 2.72 0.13 37.05 20.41 37.35 99.69 10.36 0.31 0.32 37.13 37.05 20.41 37.35 10.37 0.39 0.31 37.05 20.41 37.35 99.69 10.37 0.39 0.31 37.05 20.31 37.35 99.69 10.38 0.39 0.31 39.35 20.01 37.35 99.69 10.39 0.39 0.39 1.30 0.31 37.35 30.60 13.35 1.99 1.30 0.31 30.35 30.36 30.36 13.35 1.99 0.39 1.31 31.35 30.60 30.60 13.35 1.99 1.30 0.31 30.35 30.36 30.36 13.36 0. | Type: Defaut Nig
 | Type: Default Mile Viel Sign 0 Mile A S k T Fe Lu Total 1 0 Mile S k 1 Fe Lu Total 1 0 1 1 10 0.1 10.0 20.0 20.0 20.0 1.49 0.31 0.32 0.32 0.32 20.01 20.0 20.0 1.40 1.27 0.01 0.17 20.02 20.01 20.0 0.30 0.33 0.33 0.32 20.01 20.0 0.31 1.40 0.17 20.00 20.0 20.0 0.32 0.33 1.39 0.32 20.01 20.0 0.33 0.34 0.35 0.35 20.01 20.0 0.33 0.34 0.35 0.32 0.33 20.35 0.33 0.34 0.35 0.36 20.3 30.35 0.33 0.34 0.35 0.36 20.3 20.34 0.33 0.34 0.35 0.36 20.3 20.34 0.34 0.35 0.36 2.31 2.31 3.35 0.34 | Virie Life Initia Lile M A S P S I 0 M A S P S A 1 0 M A S P S A 1 0 0 0 S 0 I Fo C 1 0 0 0 0 S S S B 1 2 0 0 0 S S S B 1 2 0 0 0 S S S B 1 0 0 0 0 S S S B 1 1 0 0 0 S S S S 1 1 0 0 0 S S S S 1 1 0 0 0 S S S S 2 1 1 1 2 1 S S 3 1 1 1 1 1 S S 3 1 1 1 1 1 1 S | Initialitie Totalitie Initialitie 0 0 1 5 6 1 1 0 0 0 1 5 6 1 1 1 1 0 0 1 2 0 1 1 0 1 0 0 1 2 0 1 1 0 1 0 0 1 2 0 1 1 0 1 0 0 1 2 0 1 0 0 1 0 0 1 2 0 1 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | nca User
10 maipred
10 Mg Al 5 P 5 c 11 P
1 272 0.15 39.25
1 17.89
1 2.72 0.15 39.25
1 17.80
1 17.80
1 2.81 1.93
1 17.80
1 2.81 1.93
1 2.81 1.93
1 2.81 0.23 0.23 0.23 0.23 0.23
1 2.81 0.23 0.23 0.23 0.23 0.23 0.23
1 2.81 0.23 0.23 0.23 0.23 0.23 0.23 0.23
1 2.81 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
 | Type: Defa
Fe Cu
30.12 32.65
50.18 32.36
20.41 32.36
20.41 32.36
20.41 32.35
0.88 32.35
0.88 32.35
0.88 32.35
0.88 32.35 | fauft
Total
86.63
99.001
99.2
1.00.06
9.7 a1
4.36 | | | | | | |
| meth samlyred 0 Mg 41 5 8 1 6 Cu<
 | Trianity set Al S P S R Ti Fe Cu Total 0 Mg ÅI S P S K Ti Fe Cu Total 7.49 0.23 0.13 36.10 2706 12.41 98.03 30.15 37.06 7.49 2.77 0.13 37.15 20.16 12.71 98.03 99.57 10.16 2.37 0.13 37.36 20.11 37.36 99.51 99.57 10.16 0.23 0.13 17.30 2.32 10.10 22.3 10.00 10.17 17.30 0.13 37.36 20.41 32.35 100.06 10.17 17.30 0.13 27.36 20.41 22.35 100.06 10.18 0.13 17.30 0.13 20.16 12.73 90.50 10.18 0.13 17.30 2.32 20.41 22.36 90.71 10.18 0.13 17.30 2.32 20.41 22.36 90.30 90.31 | Mg M F S T Fs Cu Tech Mg M S P S T Fs Cu Tech Mg M1 S P S T Fs Cu Tech 0.23 0.23 0.23 37.89 32.12 22.64 32.26 99.80 2.72 0.15 37.59 32.13 32.36 99.30 99.80 2.73 0.20 0.17 37.95 20.41 32.36 99.57 4.96 7.71 17.30 0.17 37.95 29.41 32.36 0.23 0.21 37.05 2.941 32.36 99.57 0.23 0.24 0.31 37.95 90.31 30.81 0.23 0.24 0.28 0.281 30.31 30.81 0.23 0.24 0.28 2.018 32.75 10.066 0.24 0.25 0.24 0.28 2.24 | The antipled D Ma H S F S T Fa Cu Teal D Ma 41 S P S a T1 Fa Cu Teal AB 2.27 0.13 3.13 3.123 3.018 3.213 3.018 <t< th=""><th>etty antiljeet All Al S P S K T Fe Cu Teal 0 Ma 4 S 0 5 K T Fe Cu Teal 749 0.13 36.10 0.13 37.06 2016 37.41 86.08 7.49 0.13 37.06 2013 37.06 2013 37.06 2010 010.06 10.36 4.96 7.11 17.49 2.14 32.35 90.00 10.36 4.96 7.11 17.49 2.31 30.01 32.35 100.06 10.37 0.33 0.33 0.33 32.35 100.06 33.36 34.36 0.38 0.31 1.99 0.33 2.01 32.35 100.06 35.76 0.33 0.31 0.33 0.33 3.36 3.375 0.39 0.31 0.31 3.03 3.33 3.336 0.39 0.31</th><th>- 0 - 1 <th <="" colspan="6" th=""><th>Internit antilyted I S F S T F L Total 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.3 0.3 0.3 37.39 0.3 37.39 0.3 37.36 96.06 1.3 0.3 37.35 0.3 37.35 50.18 32.46 99.06 1.40 1.3 3.06 0.3 37.36 20.11 32.36 99.06 10.0 0.3 3.26 0.3 37.46 20.3 32.46 99.06 10.0 0.3 3.26 20.31 32.36 20.31 32.36 99.06 0.30 0.31 1.36 2.32 10.01 2.32 90.01 32.35 0.31 1.36 2.32 1.30 2.33 1.30 2.33 0.32 0.31 1.36 2.32 9.01 2.33 1.36 0.32 0.31 1.36</th><th>- 0 Mi S s Ti Fe Lu Teal - 1 - 1 - 5 - 5 - 5 - 1 - 6 - 1 - 6al - 1 - 1 - 1 - 5 - 5 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 5 - 5 - 5 - 1 - 5</th><th>transferent A S R T F L Teal 1 0 Ma S 1 S 6 Lu Teal 1 1 2 0.1 3 3 S 1 Teal 1 1 2 0.1 3 3 S 1 803 1 2 1 3 2
0.1 3 S 9 9 1 3 3 3 3 3 3 S 9 9 9 1 1 1 1 1 2 1 1 3 3 3 3 3 1 <td< th=""><th>Mile Al S R I F S R I F I I F I I F I I F I I F I I F I I F I I F I<th>nt anniyeed
0 Mg Al 5 P 5 C T P
7.49 0.23 0.21 0.21 06.10
7.49 2.72 0.15 39.25
8.76 4.96 7.71 17.40
0.10 0.17 37.05
0.20 0.12 37.05
0.20 0.12 37.05
0.20 0.23 0.23 1.29
8.76 4.96 7.71 12.80 0.21 39.25 7.60 2.22 0</th><th>Fe Cu
2956 12 41
3012 32 68
5018 12 75
2941 32 35
2941 32 35
2941 32 35
0.88 12 36
0.88 32 75
0.88 12 36</th><th>Total
98.63
93.00
93.57
9.00.06
9.7.81
4.36</th></th></td<></th></th></th></t<> | etty antiljeet All Al S P S K T Fe Cu Teal 0 Ma 4 S 0 5 K T Fe Cu Teal 749 0.13 36.10 0.13 37.06 2016 37.41 86.08 7.49 0.13 37.06 2013 37.06 2013 37.06 2010 010.06 10.36 4.96 7.11 17.49 2.14 32.35 90.00 10.36 4.96 7.11 17.49 2.31 30.01 32.35 100.06 10.37 0.33 0.33 0.33 32.35 100.06 33.36 34.36 0.38 0.31 1.99 0.33 2.01 32.35 100.06 35.76 0.33 0.31 0.33 0.33 3.36 3.375 0.39 0.31 0.31 3.03 3.33 3.336 0.39 0.31
 | - 0 - 1 <th <="" colspan="6" th=""><th>Internit antilyted I S F S T F L Total 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.3 0.3 0.3 37.39 0.3 37.39 0.3 37.36 96.06 1.3 0.3 37.35 0.3 37.35 50.18 32.46 99.06 1.40 1.3 3.06 0.3 37.36 20.11 32.36 99.06 10.0 0.3 3.26 0.3 37.46 20.3 32.46 99.06 10.0 0.3 3.26 20.31 32.36 20.31 32.36 99.06 0.30 0.31 1.36 2.32 10.01 2.32 90.01 32.35 0.31 1.36 2.32 1.30 2.33 1.30 2.33 0.32 0.31 1.36 2.32 9.01 2.33 1.36 0.32 0.31 1.36</th><th>- 0 Mi S s Ti Fe Lu Teal - 1 - 1 - 5 - 5 - 5 - 1 - 6 - 1 - 6al - 1 - 1 - 1 - 5 - 5 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 5 - 5 - 5 - 1 - 5</th><th>transferent A S R T F L Teal 1 0 Ma S 1 S 6 Lu Teal 1 1 2 0.1 3 3 S 1 Teal 1 1 2 0.1 3 3 S 1 803 1 2 1 3 2 0.1 3 S 9 9 1 3 3 3 3 3 3 S 9 9 9 1 1 1 1 1 2 1 1 3 3 3 3 3 1 <td< th=""><th>Mile Al S R I F S R I F I I F I I F I I F I I F I I F I I F I I F I<th>nt anniyeed
0 Mg Al 5 P 5 C T P
7.49 0.23 0.21 0.21 06.10
7.49 2.72 0.15 39.25
8.76 4.96 7.71 17.40
0.10 0.17 37.05
0.20 0.12 37.05
0.20 0.12 37.05
0.20 0.23 0.23 1.29
8.76 4.96 7.71 12.80 0.21 39.25 7.60 2.22 0</th><th>Fe Cu
2956 12 41
3012 32 68
5018 12 75
2941 32 35
2941 32 35
2941 32 35
0.88 12 36
0.88 32 75
0.88 12 36</th><th>Total
98.63
93.00
93.57
9.00.06
9.7.81
4.36</th></th></td<></th></th> | <th>Internit antilyted I S F S T F L Total 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.3 0.3 0.3 37.39 0.3 37.39 0.3 37.36 96.06 1.3 0.3 37.35 0.3 37.35 50.18 32.46 99.06 1.40 1.3 3.06 0.3 37.36 20.11 32.36 99.06 10.0 0.3 3.26 0.3 37.46 20.3 32.46 99.06 10.0 0.3 3.26 20.31 32.36 20.31 32.36 99.06 0.30 0.31 1.36 2.32 10.01 2.32 90.01 32.35 0.31 1.36 2.32 1.30 2.33 1.30 2.33 0.32 0.31 1.36 2.32 9.01 2.33 1.36 0.32 0.31 1.36</th> <th>- 0 Mi S s Ti Fe Lu Teal - 1 - 1 - 5 - 5 - 5 - 1 - 6 - 1 - 6al - 1 - 1 - 1 - 5 - 5 - 5 - 1 - 5 - 1 - 5 - 1 - 5
 - 5 - 5 - 5 - 5 - 5 - 1 - 5 - 5 - 5 - 5 - 1 - 5</th> <th>transferent A S R T F L Teal 1 0 Ma S 1 S 6 Lu Teal 1 1 2 0.1 3 3 S 1 Teal 1 1 2 0.1 3 3 S 1 803 1 2 1 3 2 0.1 3 S 9 9 1 3 3 3 3 3 3 S 9 9 9 1 1 1 1 1 2 1 1 3 3 3 3 3 1 <td< th=""><th>Mile Al S R I F S R I F I I F I I F I I F I I F I I F I I F I I F I<th>nt anniyeed
0 Mg Al 5 P 5 C T P
7.49 0.23 0.21 0.21 06.10
7.49 2.72 0.15 39.25
8.76 4.96 7.71 17.40
0.10 0.17 37.05
0.20 0.12 37.05
0.20 0.12 37.05
0.20 0.23 0.23 1.29
8.76 4.96 7.71 12.80 0.21 39.25 7.60 2.22 0</th><th>Fe Cu
2956 12 41
3012 32 68
5018 12 75
2941 32 35
2941 32 35
2941 32 35
0.88 12 36
0.88 32 75
0.88 12 36</th><th>Total
98.63
93.00
93.57
9.00.06
9.7.81
4.36</th></th></td<></th> | | | |
 | | Internit antilyted I S F S T F L Total 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.3 0.3 0.3 37.39 0.3 37.39 0.3 37.36 96.06 1.3 0.3 37.35 0.3 37.35 50.18 32.46 99.06 1.40 1.3 3.06 0.3 37.36 20.11 32.36 99.06 10.0 0.3 3.26 0.3 37.46 20.3 32.46 99.06 10.0 0.3 3.26 20.31 32.36 20.31 32.36 99.06 0.30 0.31 1.36 2.32 10.01 2.32 90.01 32.35 0.31 1.36 2.32 1.30 2.33 1.30 2.33 0.32 0.31 1.36 2.32 9.01 2.33 1.36 0.32 0.31 1.36 | - 0 Mi S s Ti Fe Lu Teal - 1 - 1 - 5 - 5 - 5 - 1 - 6 - 1 - 6al - 1 - 1 - 1 - 5 - 5 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 1 - 5 - 5 - 5 - 5 - 1 - 5 | transferent A S R T F L Teal 1 0 Ma S 1 S 6 Lu Teal 1 1 2 0.1 3 3 S 1 Teal 1 1 2 0.1 3 3 S 1 803 1 2 1 3 2 0.1 3 S 9 9 1 3 3 3 3 3 3 S 9 9 9 1 1 1 1 1 2 1 1 3 3 3 3 3 1 <td< th=""><th>Mile Al S R I F S R I F I I F I I F I I F I I F I I F I I F I I F I<th>nt anniyeed
0 Mg Al 5 P 5 C T P
7.49 0.23 0.21 0.21 06.10
7.49 2.72 0.15 39.25
8.76 4.96 7.71 17.40
0.10 0.17 37.05
0.20 0.12 37.05
0.20 0.12 37.05
0.20 0.23 0.23 1.29
8.76 4.96 7.71 12.80 0.21 39.25 7.60 2.22 0</th><th>Fe Cu
2956 12 41
3012 32 68
5018 12 75
2941 32 35
2941 32 35
2941 32 35
0.88 12 36
0.88 32 75
0.88 12 36</th><th>Total
98.63
93.00
93.57
9.00.06
9.7.81
4.36</th></th></td<> | Mile Al S R I F S R I F I I F I I F I I F I I F I I F I I F I I F I <th>nt anniyeed
0 Mg Al 5 P 5 C T P
7.49 0.23 0.21 0.21 06.10
7.49 2.72 0.15 39.25
8.76 4.96 7.71 17.40
0.10 0.17 37.05
0.20 0.12 37.05
0.20 0.12 37.05
0.20 0.23 0.23 1.29
8.76 4.96 7.71 12.80 0.21 39.25 7.60 2.22 0</th> <th>Fe Cu
2956 12 41
3012 32 68
5018 12 75
2941 32 35
2941 32 35
2941 32 35
0.88 12 36
0.88 32 75
0.88 12 36</th> <th>Total
98.63
93.00
93.57
9.00.06
9.7.81
4.36</th> | nt anniyeed
0 Mg Al 5 P 5 C T P
7.49 0.23 0.21 0.21 06.10
7.49 2.72 0.15 39.25
8.76 4.96 7.71 17.40
0.10 0.17 37.05
0.20 0.12 37.05
0.20 0.12 37.05
0.20 0.23 0.23 1.29
8.76 4.96 7.71 12.80 0.21 39.25 7.60 2.22 0 | Fe Cu
2956 12 41
3012 32 68
5018 12 75
2941 32 35
2941 32 35
2941 32 35
0.88 12 36
0.88 32 75
0.88 12 36 | Total
98.63
93.00
93.57
9.00.06
9.7.81
4.36 |
| O Mg A S P S R Ti Fe Lu Tesal 7.49 0.23 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 96.09 7.49 2.72 0.15 37.69 50.18 30.12 32.56 101.08 18.76 4.96 7.11 17.30 0.13 37.66 20.18 32.69 95.90 18.76 4.96 7.11 17.40 0.13 37.95 20.91 32.36 95.7 0.39 0.23 0.13 37.96 2.32 18.76 95.7 0.39 0.23 0.31 37.95 20.91 32.35 100.06 18.75 129 0.23 13.76 2.32 10.36 32.36 35.71 1290 0.23 9.43 0.38 3.36 4.36 0.66 0.38 0.36 2.32 0.38 3.36 4.36 </th <th>0 Mg AI S F Lu Total 7.49 1.23 0.21 36.10 20.04 37.40 98.63 7.49 1.23 0.21 36.10 20.21 36.10 20.06 17.41 98.63 7.49 2.77 0.16 37.36 20.12 32.06 10.108 31.05 1.03 0.13 37.05 20.14 32.35 99.57 31.05 0.23 0.13 37.05 20.41 37.35 100.06 31.05 0.23 0.28 1.93 7.00 2.22 11.76 95.7 31.05 4.96 7.11 17.340 2.32 110.68 20.31 12.75 100.06 31.05 0.23 0.28 1.95 2.041 32.75 100.06 95.7 31.0 0.23 1.91 0.23 1.01.68 2.34 32.96 31.0 0.23 0.28 2.22 20.18 32.76</th> <th>Mg Ål S P S k Ti Fe Lu Total 0.23 0.23 36.10 27.06 17.41 96.63 95.94 2.13 0.13 37.89 20.18 20.13 36.10 27.04 10.108 2.17 0.15 37.89 20.13 37.13 23.15 95.98 2.11 1.3.40 2.13 13.05 20.11 32.35 95.7 0.29 0.13 37.95 20.91 12.75 10.06 20.41 0.23 0.23 0.35 16.06 2.32 16.06 37.31 0.23 0.28 19.9 2.32 16.06 37.35 100.06 0.23 0.23 2.36 2.22 16.36 37.36 37.36 0.23 0.24 0.24 2.23 10.06 37.36 0.23 0.23 39.15 2.23 10.06 37.36 0.24 0.24 0.24</th> <th>0 Mg Ål 5 k T Fs Lu Total 7.39 0.23 0.23 0.53 0.53 36.40 2036 12.41 10.06 7.49 2.72 0.15 37.35 50.18 32.25 50.18 101.06 7.49 2.72 0.16 37.35 50.18 32.35 50.18 32.35 50.18 50.55 0.20 0.17 17.04 2.72 0.16 27.3 10.06 32.3 100.06 0.31 1.30 2.31 10.35 10.006 32.3 10.06 0.32 1.28 0.35 7.00 2.32 10.06 32.3 10.066 0.33 1.29 0.31 0.32 2.01 0.33 4.36 0.34 0.35 0.35 3.60 2.32 50.18 2.36 0.35 0.38 0.35 3.60 2.32 50.38 4.36 0.35 0.38 <</th> <th>0 Mg Å 5 F 1 Fa Lu Total 7.39 0.23 0.23 0.23 0.23 0.23 30.12 2506 17.41 30.63 7.39 2.73 0.13 37.59 30.12 32.06 17.41 32.66 90.63 10.30 0.13 37.05 20.13 37.26 20.14 32.66 90.63 10.30 0.31 37.05 20.41 32.66 20.41 32.66 90.67 10.30 0.31 17.40 2.33 10.70 2.33 10.76 90.67 10.31 17.40 2.33 10.36 2.33 10.76 2.34 90.67 10.31 17.40 2.33 10.76 2.33 10.76 90.73 10.35 1.36 2.31 1.36 2.33 13.36 4.36 10.36 0.33 0.31 0.32 2.60 3.36 3.35 0.06 0.33<th>A A S P S R Ta Fe Lu Tas 7.49 1.13 0.13<</th><th>A A S F L Teal 7.49 1.33 0.13 0.13 0.13 0.13 50.06 1.21 0.06 7.49 2.73 0.13 3.73 50.08 2.04 1.20 0.03 7.49 2.73 0.13 3.755 50.18 3.212 3.264 9.637 10.0 0.17 17.06 2.33 10.01 12.73 9.01 12.73 9.637 10.0 0.17 17.06 2.32 10.01 12.33 9.637 9.637 0.0 0.17 17.06 2.32 10.18 3.236 9.637 0.0 0.17 17.06 2.32 10.16 2.33 10.06 0.33 0.28 1.39 2.30 12.33 0.06 9.637 0.96 0.33 0.36 0.37 1.30 12.33 0.36 3.33 0.96 0.39 0.39 1.30 1.33 0.86 <</th><th>A A K F K T F L Total 7.49 113 0.13 0.13 0.13 0.13 0.13 0.10 0.10 0.10 1.49 2.77 0.13 0.13 3.13 2.036 1.14 1.008 1.49 2.77 0.13 3.135 2.011 3.135 2.011 3.235 9.010 18.06 0.13 3.106 1.21 1.10 2.01 3.23 9.930 9.930 18.06 0.13 1.100 1.13 1.00 3.13 1.006 0.14 0.13 1.10 1.21 1.20 1.21 1.20 0.21 2.01 3.23 0.91 0.13 1.21 1.20 1.21 1.20 0.23 3.26 9.23 0.91 0.13 1.21 0.13 1.21 0.20 1.21 0.20 0.91 0.13 0.13 1.20 1.21 0.20</th><th>A Ma A F F L Teat 7.49 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.60 7.49 2.72 0.13 0.33 20.33 20.33 20.36 20.46
 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 20.46 <t< th=""><th>x 0 Mi 4 5 r 5 r 1 fe Li Tail 73 03 033 130 033 130 203 100 203 100 73 03 033 130 033 203 203 203 203 100 031 130 031 233 203 233 930 100 031 130 031 233 203 233 930 100 031 133 033 233 130 233 930 100 031 133 033 233 133 336 030 033 033 033 133 1336</th><th>O Mg Al S P S c Ti F 7.49 0.23 0.23 0.23 0.23 0.23 0.24 2</th></t<><th>Fe Cu
29.06 N2.41
29.01 N2.41
29.01 N2.75
20.01 N2.75
0.88 32.75
0.88 32.75
0.88 32.75</th><th>Total
98.63
99.00
99.57
97.81
4.36</th></th></th> | 0 Mg AI S F Lu Total 7.49 1.23 0.21 36.10 20.04 37.40 98.63 7.49 1.23 0.21 36.10 20.21 36.10 20.06 17.41 98.63 7.49 2.77 0.16 37.36 20.12 32.06 10.108 31.05 1.03 0.13 37.05 20.14 32.35 99.57 31.05 0.23 0.13 37.05 20.41 37.35 100.06 31.05 0.23 0.28 1.93 7.00 2.22 11.76 95.7 31.05 4.96 7.11 17.340 2.32 110.68 20.31 12.75 100.06 31.05 0.23 0.28 1.95 2.041 32.75 100.06 95.7 31.0 0.23 1.91 0.23 1.01.68 2.34 32.96 31.0 0.23 0.28 2.22 20.18 32.76 | Mg Ål S P S k Ti Fe Lu Total 0.23 0.23 36.10 27.06 17.41 96.63 95.94 2.13 0.13 37.89 20.18 20.13 36.10 27.04 10.108 2.17 0.15 37.89 20.13 37.13 23.15 95.98 2.11 1.3.40 2.13 13.05 20.11 32.35 95.7 0.29 0.13 37.95 20.91 12.75 10.06 20.41 0.23 0.23 0.35 16.06 2.32 16.06 37.31 0.23 0.28 19.9 2.32 16.06 37.35 100.06 0.23 0.23 2.36 2.22 16.36 37.36 37.36 0.23 0.24 0.24 2.23 10.06 37.36 0.23 0.23 39.15 2.23 10.06 37.36 0.24 0.24 0.24 | 0 Mg Ål 5 k T Fs Lu Total 7.39 0.23 0.23 0.53 0.53 36.40 2036 12.41 10.06 7.49 2.72 0.15 37.35 50.18 32.25 50.18 101.06 7.49 2.72 0.16 37.35 50.18 32.35 50.18 32.35 50.18 50.55 0.20 0.17 17.04 2.72 0.16 27.3 10.06 32.3 100.06 0.31 1.30 2.31 10.35 10.006 32.3 10.06 0.32 1.28 0.35 7.00 2.32 10.06 32.3 10.066 0.33 1.29 0.31 0.32 2.01 0.33 4.36 0.34 0.35 0.35 3.60 2.32 50.18 2.36 0.35 0.38 0.35 3.60 2.32 50.38 4.36 0.35 0.38 <
 | 0 Mg Å 5 F 1 Fa Lu Total 7.39 0.23 0.23 0.23 0.23 0.23 30.12 2506 17.41 30.63 7.39 2.73 0.13 37.59 30.12 32.06 17.41 32.66 90.63 10.30 0.13 37.05 20.13 37.26 20.14 32.66 90.63 10.30 0.31 37.05 20.41 32.66 20.41 32.66 90.67 10.30 0.31 17.40 2.33 10.70 2.33 10.76 90.67 10.31 17.40 2.33 10.36 2.33 10.76 2.34 90.67 10.31 17.40 2.33 10.76 2.33 10.76 90.73 10.35 1.36 2.31 1.36 2.33 13.36 4.36 10.36 0.33 0.31 0.32 2.60 3.36 3.35 0.06 0.33 <th>A A S P S R Ta Fe Lu Tas 7.49 1.13 0.13<</th> <th>A A S F L Teal 7.49 1.33 0.13 0.13 0.13 0.13 50.06 1.21 0.06 7.49 2.73 0.13 3.73 50.08 2.04 1.20 0.03 7.49 2.73 0.13 3.755 50.18 3.212 3.264 9.637 10.0 0.17 17.06 2.33 10.01 12.73 9.01 12.73 9.637 10.0 0.17 17.06 2.32 10.01 12.33 9.637 9.637 0.0 0.17 17.06 2.32 10.18 3.236 9.637 0.0 0.17 17.06 2.32 10.16 2.33 10.06 0.33 0.28 1.39 2.30 12.33 0.06 9.637 0.96 0.33 0.36 0.37 1.30 12.33 0.36 3.33 0.96 0.39 0.39 1.30 1.33 0.86 <</th> <th>A A K F K T F L Total 7.49 113 0.13 0.13 0.13 0.13 0.13 0.10 0.10 0.10 1.49 2.77 0.13 0.13 3.13 2.036 1.14 1.008 1.49 2.77 0.13 3.135 2.011 3.135 2.011 3.235 9.010 18.06 0.13 3.106 1.21 1.10 2.01 3.23 9.930 9.930 18.06 0.13 1.100 1.13 1.00 3.13 1.006 0.14 0.13 1.10 1.21 1.20 1.21 1.20 0.21 2.01 3.23 0.91 0.13 1.21 1.20 1.21 1.20 0.23 3.26 9.23 0.91 0.13 1.21 0.13 1.21 0.20 1.21 0.20 0.91 0.13 0.13 1.20 1.21 0.20</th> <th>A Ma A F F L Teat 7.49 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.60 7.49 2.72 0.13 0.33 20.33 20.33 20.36 20.46 <t< th=""><th>x 0 Mi 4 5 r 5 r 1 fe Li Tail 73 03 033 130 033 130 203 100 203 100 73 03 033 130 033 203 203 203 203 100 031 130 031 233 203 233 930 100 031 130 031 233 203 233 930 100 031 133 033 233
130 233 930 100 031 133 033 233 133 336 030 033 033 033 133 1336</th><th>O Mg Al S P S c Ti F 7.49 0.23 0.23 0.23 0.23 0.23 0.24 2</th></t<><th>Fe Cu
29.06 N2.41
29.01 N2.41
29.01 N2.75
20.01 N2.75
0.88 32.75
0.88 32.75
0.88 32.75</th><th>Total
98.63
99.00
99.57
97.81
4.36</th></th> | A A S P S R Ta Fe Lu Tas 7.49 1.13 0.13< | A A S F L Teal 7.49 1.33 0.13 0.13 0.13 0.13 50.06 1.21 0.06 7.49 2.73 0.13 3.73 50.08 2.04 1.20 0.03 7.49 2.73 0.13 3.755 50.18 3.212 3.264 9.637 10.0 0.17 17.06 2.33 10.01 12.73 9.01 12.73 9.637 10.0 0.17 17.06 2.32 10.01 12.33 9.637 9.637 0.0 0.17 17.06 2.32 10.18 3.236 9.637 0.0 0.17 17.06 2.32 10.16 2.33 10.06 0.33 0.28 1.39 2.30 12.33 0.06 9.637 0.96 0.33 0.36 0.37 1.30 12.33 0.36 3.33 0.96 0.39 0.39 1.30 1.33 0.86 <
 | A A K F K T F L Total 7.49 113 0.13 0.13 0.13 0.13 0.13 0.10 0.10 0.10 1.49 2.77 0.13 0.13 3.13 2.036 1.14 1.008 1.49 2.77 0.13 3.135 2.011 3.135 2.011 3.235 9.010 18.06 0.13 3.106 1.21 1.10 2.01 3.23 9.930 9.930 18.06 0.13 1.100 1.13 1.00 3.13 1.006 0.14 0.13 1.10 1.21 1.20 1.21 1.20 0.21 2.01 3.23 0.91 0.13 1.21 1.20 1.21 1.20 0.23 3.26 9.23 0.91 0.13 1.21 0.13 1.21 0.20 1.21 0.20 0.91 0.13 0.13 1.20 1.21 0.20 | A Ma A F F L Teat 7.49 0.33 0.33 0.33 0.33 0.33 0.33 0.34 0.60 7.49 2.72 0.13 0.33 20.33 20.33 20.36 20.46 <t< th=""><th>x 0 Mi 4 5 r 5 r 1 fe Li Tail 73 03 033 130 033 130 203 100 203 100 73 03 033 130 033 203 203 203 203 100 031 130 031 233 203 233 930 100 031 130 031 233 203 233 930 100 031 133 033 233 130 233 930 100 031 133 033 233 133 336 030 033 033 033 133 1336</th><th>O Mg Al S P S c Ti F 7.49 0.23 0.23 0.23 0.23 0.23 0.24 2</th></t<> <th>Fe Cu
29.06 N2.41
29.01 N2.41
29.01 N2.75
20.01 N2.75
0.88 32.75
0.88 32.75
0.88 32.75</th> <th>Total
98.63
99.00
99.57
97.81
4.36</th> | x 0 Mi 4 5 r 5 r 1 fe Li Tail 73 03 033 130 033 130 203 100 203 100 73 03 033 130 033 203 203 203 203 100 031 130 031 233 203 233 930 100 031 130 031 233 203 233 930 100 031 133 033 233 130 233 930 100 031 133 033 233 133 336 030 033 033 033 133 1336 | O Mg Al S P S c Ti F 7.49 0.23 0.23 0.23 0.23 0.23 0.24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 | Fe Cu
29.06 N2.41
29.01 N2.41
29.01 N2.75
20.01 N2.75
0.88 32.75
0.88 32.75
0.88 32.75 | Total
98.63
99.00
99.57
97.81
4.36 | | | | | | |
| 7.49 7.11 0.23 0.21 36.10 27.96 12.41 96.63 7.49 2.72 0.15 37.26 37.05 30.12 32.66 101.05 36.75 2.72 0.15 37.26 30.12 32.66 101.05 36.76 4.96 7.11 17.30 0.17 37.66 20.91 32.75 36.76 4.96 7.11 17.30 2.32 18.76 92.37 36.76 4.96 7.11 17.30 2.32 18.76 92.37 36.76 4.96 7.11 17.30 2.32 18.76 93.67 36.76 4.96 7.11 17.30 0.23 2.01 32.35 36.76 4.96 7.71 17.80 0.23 2.01 2.02 36.76 4.96 7.11 17.80 0.23 2.01 2.32 36.76 0.33 3.93 3.36 3.36
 | 7.49 0.23 0.21 56.10 29.06 12.41 96.3 7.49 1.38 0.19 37.89 30.12 32.66 101.08 1.49 2.77 0.13 37.35 30.12 32.68 101.08 1.06 0.13 37.06 13.3 20.18 39.980 99.80 1.01.0 0.13 37.06 2.21 10.18 32.35 99.80 1.01.0 0.13 37.06 2.22 10.13 32.36 99.80 0.010 0.13 37.06 2.22 10.70 32.36 99.80 0.010 0.13 37.06 2.22 10.70 32.36 99.31 0.030 0.23 0.24 13.75 100.06 97.31 13.76 0.33 0.39 1.99 2.30 13.75 10.006 97.31 0.38 0.38 0.39 2.30 2.33 4.36 0.38 0.38 0.39 2.30 3.33 | 0.23 0.21 0.21 0.10 20.16 17.41 86.9 2.72 0.15 37.26 30.12 35.18 30.12 35.04 10.06 2.72 0.15 37.26 20.13 37.05 30.12 35.04 99.80 4.96 7.71 17.30 0.13 37.06 29.41 32.75 99.80 0.30 0.13 37.06 2.31 18.79 92.91 95.91 0.30 0.13 37.06 2.32 18.79 97.91 97.91 0.33 0.28 1.99 2.32 18.79 97.91 37.95 0.33 0.38 1.99 2.32 18.79 97.91 37.95 0.33 0.38 1.99 2.32 18.79 97.91 37.95 0.33 0.36 0.35 2.01 37.95 4.36 0.34 0.35 0.36 2.32 32.35 4.36 0.34 0.36 0.36 | 1021 0.21 0.21 0.21 0.21 0.21 0.21 0.24 0.26 0.24 0.863 7.9 2.72 0.15 37.26 30.12 32.16 9863 7.0 0.15 37.26 50.13 32.16 90.07 0.20 0.13 37.06 20.13 32.35 90.07 0.00 0.13 37.06 20.13 32.35 90.07 0.01 1.740 0.13 37.06 20.13 32.35 90.07 0.02 0.23 1.9 0.13 37.06 2.23 10.06 0.03 1.9 0.21 1.96 2.24 32.35 90.37 0.03 0.23 1.9 0.23 1.6 2.24 32.36 0.03 1.9 0.15 1.9 0.23 0.23 0.03 0.03 0.13 0.13 0.13 0.13 0.13 0.13
 | 143 0.21 0.10 273 0.21 51.0 274 86.3 7.49 2.72 0.15 37.39 30.12 32.66 10.16 98.63 7.49 2.72 0.15 37.35 50.15 32.56 50.16 32.66 99.60 10,0 0.17 37.66 0.13 37.66 20.11 32.36 99.67 10,06 49.6 7.11 17.40 2.32 14.16 32.3 90.67 0.10 0.17 37.66 2.01 32.35 90.71 32.36 90.57 0.11 17.40 2.31 17.33 10.01 2.32 14.16 97.36 0.12 2.31 12.9 0.23 2.01 2.33 4.36 0.11 12.80 0.13 3.01 2.23 50.18 3.36 0.13 0.13 0.13 3.01 2.33 3.36 0.11 1.30 0.13 3.01 2.33
 | 123 0.21 0.10 0.20 17.41 86.9 124 12.8 0.25 17.89 30.12 32.56 93.0 123 0.13 3.16 3.12 5.01 3.25 93.0 14.0 4.96 7.11 17.40 2.21 10.01 3.23 93.0 14.0 4.96 7.11 17.40 2.12 10.01 3.23 93.0 16.0 0.23 0.24 17.40 2.24 10.25 30.06 18.0 0.23 0.24 17.3 0.03 2.24 0.03 38.3 1.39 0.3 3.04 2.32 0.08 3.36 0.93 0.23 0.34 0.3 3.25 10.06 10.3 0.04 0.3 3.04 3.36 3.36 13.67 0.04 0.3 0.3 3.03 13.36 13.67 0.05 0.3 0.3 3.3 13.6 13.67 <tr< th=""><th>139 0.21 0.20 0.21 0.40 2016 1.41 86.0 124 0.23 0.26 3.25 50.13 3.25 50.13 3.26 93.0 125 0.23 0.23 0.23 3.26 20.13 3.26 95.0 1076 496 7.11 17.40 2.1 2.04 3.25 20.41 3.26 95.0 1076 0.23 0.28 17.3 3.06 2.23 147.16 3.25 0.03 0.23 3.26 95.7 0.06 0.23 0.24 0.23 0.26 12.2 0.03 0.23 3.26 0.23 0.08 0.23 0.24 0.23 0.04 12.3 0.34 2.36 0.08 0.39 0.36 10.3 3.23 0.33 3.25 0.08 0.39 0.36 13.3 0.33 3.36</th><th>1249 0.21 0.10 0.23 0.29 0.21 0.20 0.24 0.20 1249 0.23 0.23 0.23 27.83 0.01 3.236 9.30 1290 0.31 13.03 23.04 2.04 2.04 2.04 9.90 1400 4.06 7.11 17.00 2.24 2.04 2.245 9.90 1400 4.06 7.11 17.00 2.24 13.25 9.00 2.245 9.90 1400 0.23 0.28 1.99 7.00 2.23 0.03 0.03 0.03 0.03 0.04 0.04 0.08 0.33 0.34 1.7 0.03 0.33 0.35 0.03 0.03 0.04 1305 0.33 0.34 0.35 0.35 0.35 0.34 0.34 0.04 1406 0.33 0.34 0.35 0.35 0.35 0.34 0.34 1406 0.34 0.35</th><th>749 0.31 0.31 0.31 0.31 0.31 0.31 0.30 1.31 0.60 138 0.35 1.36 0.35 1.36 0.32 2.06 1.08 139 0.31 1.32 0.32 2.01 2.32 0.01 2.32 0.03 149 4.96 771 1.90 0.31 2.03 1.33 0.03 0.33 0.39 0.33 0.90 0.31 1.30 0.31 0.30 1.33 0.33 1.39 0.33 0.39 0.34 0.90 0.31 1.30 0.31 1.00 1.33 0.06 1.33 0.06 0.91 1.31 0.31 1.32 1.93 1.33 0.34 0.34 0.91 0.32 0.31 1.93 1.93 1.93 0.34 0.91 1.32 1.93 1.93 1.93 1.93 1.94 0.91 1.33 1.93 1.93 1.93</th><th>14 0.1 0.1 0.10 0.11 0.01 0.10 14 1.2 0.13 0.13 0.13 0.01 0.13 0.03 14 1.2 0.13 0.11 0.10 0.11 0.01 0.01 0.01 140 1.31 1.00 0.11 0.01 1.23 0.01 1.24 0.01 140 1.31 1.00 0.11 1.01 0.01 1.23 0.01 1.24 0.01 140 0.31 1.30 0.31 1.30 0.31 1.35 0.01 1.35 0.01 140 0.3 0.31 0.31 0.31 0.31 0.31 0.31 0.31 140 0.3 0.31 0.31 0.31 0.31 0.31 0.31 0.31 140 1.30 1.30 1.30 1.30 1.31 0.31 0.31 0.31 140 1.30 1.30 1.31 1.30 1</th><th>0.23 0.23 0.23 0.24 0.24 0.24 0.25 17.89 2<!--</th--><th>29.06 112.41
30.12 32.68
50.18 32.64
20.41 32.75
20.41 32.75
0.88 32.75
0.88 12.96
0.88 12.96</th><th>80.89
80.101
72.69
100.001
4.36
4.35</th></th></tr<> | 139 0.21 0.20 0.21 0.40 2016 1.41 86.0 124 0.23 0.26 3.25 50.13 3.25 50.13 3.26 93.0 125 0.23 0.23 0.23 3.26 20.13 3.26 95.0 1076 496 7.11 17.40 2.1 2.04 3.25 20.41 3.26 95.0 1076 0.23 0.28 17.3 3.06 2.23 147.16 3.25 0.03 0.23 3.26 95.7 0.06 0.23 0.24 0.23 0.26 12.2 0.03 0.23 3.26 0.23 0.08 0.23 0.24 0.23 0.04 12.3 0.34 2.36 0.08 0.39 0.36 10.3 3.23 0.33 3.25 0.08 0.39 0.36 13.3 0.33 3.36
 | 1249 0.21 0.10 0.23 0.29 0.21 0.20 0.24 0.20 1249 0.23 0.23 0.23 27.83 0.01 3.236 9.30 1290 0.31 13.03 23.04 2.04 2.04 2.04 9.90 1400 4.06 7.11 17.00 2.24 2.04 2.245 9.90 1400 4.06 7.11 17.00 2.24 13.25 9.00 2.245 9.90 1400 0.23 0.28 1.99 7.00 2.23 0.03 0.03 0.03 0.03 0.04 0.04 0.08 0.33 0.34 1.7 0.03 0.33 0.35 0.03 0.03 0.04 1305 0.33 0.34 0.35 0.35 0.35 0.34 0.34 0.04 1406 0.33 0.34 0.35 0.35 0.35 0.34 0.34 1406 0.34 0.35 | 749 0.31 0.31 0.31 0.31 0.31 0.31 0.30 1.31 0.60 138 0.35 1.36 0.35 1.36 0.32 2.06 1.08 139 0.31 1.32 0.32 2.01 2.32 0.01 2.32 0.03 149 4.96 771 1.90 0.31 2.03 1.33 0.03 0.33 0.39 0.33 0.90 0.31 1.30 0.31 0.30 1.33 0.33 1.39 0.33 0.39 0.34 0.90 0.31 1.30 0.31 1.00 1.33 0.06 1.33 0.06 0.91 1.31 0.31 1.32 1.93 1.33 0.34 0.34 0.91 0.32 0.31 1.93 1.93 1.93 0.34 0.91 1.32 1.93 1.93 1.93 1.93 1.94 0.91 1.33 1.93 1.93 1.93 | 14 0.1 0.1 0.10 0.11 0.01 0.10 14 1.2 0.13 0.13 0.13 0.01 0.13 0.03 14 1.2 0.13 0.11 0.10 0.11 0.01 0.01 0.01 140 1.31 1.00 0.11 0.01 1.23 0.01 1.24 0.01 140 1.31 1.00 0.11 1.01 0.01 1.23 0.01 1.24 0.01 140 0.31 1.30 0.31 1.30 0.31 1.35 0.01 1.35 0.01 140 0.3 0.31 0.31 0.31 0.31 0.31 0.31 0.31 140 0.3 0.31 0.31 0.31 0.31 0.31 0.31 0.31 140 1.30 1.30 1.30 1.30 1.31 0.31 0.31 0.31 140 1.30 1.30 1.31 1.30 1 | 0.23 0.23 0.23 0.24 0.24 0.24 0.25 17.89 2
 2 2 </th <th>29.06 112.41
30.12 32.68
50.18 32.64
20.41 32.75
20.41 32.75
0.88 32.75
0.88 12.96
0.88 12.96</th> <th>80.89
80.101
72.69
100.001
4.36
4.35</th> | 29.06 112.41
30.12 32.68
50.18 32.64
20.41 32.75
20.41 32.75
0.88 32.75
0.88 12.96
0.88 12.96 | 80.89
80.101
72.69
100.001
4.36
4.35 | | | | | | |
| 7.49 0.13 0.15 37.89 30.12 3.5.01
 | 749 0.18 0.19 37.89 30.12 32.68 101.08 7.49 2.77 0.15 37.35 29.18 99.80 0.30 0.15 37.06 29.18 99.80 0.40 0.11 37.06 29.41 32.36 99.80 0.40 0.11 37.06 2.22 16.76 99.80 0.40 0.11 37.06 2.22 16.76 99.37 0.40 0.11 37.06 2.22 16.76 99.81 0.31 1.90 0.11 37.06 2.22 16.76 94.16 0.31 1.94 0.33 0.39 18.25 96.37 0.38 0.33 0.33 1.99 2.22 16.76 9.39 4.36 33.75 0.38 0.38 2.36 2.33 4.36 0.34 0.34 0.35 3.6.10 7.60 2.32 3.375 | 118 0.15 37.89 30.12 32.66 10.108 277 0.15 3.25 20.18 99.80 280 0.15 37.66 20.18 99.80 0.30 0.15 37.66 20.41 32.35 99.80 0.31 17.10 0.17 37.66 29.41 32.35 99.80 0.32 0.30 0.17 37.66 29.41 32.35 90.00 0.33 0.36 0.31 37.96 92.35 90.00 97.81 0.33 0.38 1.7.40 3.2.95 100.06 97.91 97.81 0.33 0.38 1.9.95 7.60 2.22 91.81 97.8 0.33 0.38 1.9.95 2.60.18 32.75 0.00.66 0.36 0.34 0.35 0.36 2.32 3.3.75 0.36 0.36 0.38 0.35 0.36 2.32 3.3.75 0.36 0.36 0.35 0.36 | 7.49 1.15 0.15 37.89 30.12 3.56 101.08 7.31 2.73 0.15 3.325 50.13 3.236 9.601 80.76 0.15 3.736 2.941 3.236 9.601 80.76 0.13 3.766 2.941 3.236 9.601 80.76 0.31 3.736 2.941 3.236 9.631 80.76 2.31 1.40 2.71 10.01 2.23 18.76 80.76 1.39 3.746 1.879 0.031 3.235 9.631 90.81 1.39 0.31 3.436 0.731 0.83 3.36 90.80 0.33 0.35 0.36 1.22 0.81 3.25 0.01 0.13 9.13 7.00 1.22 0.81 2.36 0.02 0.13 0.13 0.13 0.13 0.13 0.13
 | 7.49 7.12 0.15 37.29 30.12 3.548 10.168 7.49 7.71 0.35 3.325 50.13 3.746 59.80 10.76 0.39 0.13 3.746 20.18 3.746 59.80 10.76 0.39 0.13 3.746 20.11 3.235 99.80 10.76 0.30 0.13 3.746 2.911 3.235 99.80 10.76 0.30 0.13 3.746 2.911 3.235 99.60 0.91 12.40 2.23 14.76 2.93 10.94 0.731 0.91 0.23 0.31 123 14.76 0.93 0.731 0.91 0.33 0.36 0.33 2.91 2.33 4.36 0.91 0.31 0.32 0.91 2.30 0.93 2.316 0.91 0.36 0.33 0.32 0.91 2.316 0.93 0.316
 | 749 118 015 3789 3012 3249 1016 277 016 315 325 5018 331 930 1036 430 771 123 302 201 323 930 1046 430 771 1700 222 141/6 323 930 1046 430 771 1700 222 141/6 223 930 1046 033 034 233 932 700 223 930 1046 033 034 233 932 933 936 1046 033 034 233 035 931 930 1046 033 034 233 035 931 936 1346 134 133 132 133 134 135 034 133 133 136 136 035 130 133 134 | 7.49 7.13 0.16 3.789 3.013 3.613 3.0168 7.49 7.71 0.16 3.12 2.01 2.01 2.01 2.01 10.46 6.46 7.11 17.40 2.23 10.13 2.02 2011 2.25 5.016 10.46 0.30 0.31 3.76 2.01 1.73 0.02 2011 2.25 9.01 10.46 7.40 7.40 2.23 1.01 2.25 0.03 0.23 0.24 0.24 0.24 0.46 0.31 1.36 1.40 1.22 0.18 2.31 0.03 0.06 0.33 0.34 0.31 3.43 0.34 2.35 0.35 0.01 0.31 0.43 1.03 2.31 0.34 2.35 0.02 0.33 0.34 1.30 1.32 0.34 2.35 0.03 0.34 0.34 1.30 1.32 0.34 2.35
 | T49 0.15 3.78 3.012 2.06 0.06 7.49 7.11 0.16 3.25 5.018 | 749 729 0.13 3739 3012 3246 0018 174 173 0.13 3235 5011 3236 990 174 170 123 1016 203 323 900 170 430 171 1700 123 1005 900 170 123 123 1205 2011 323 900 170 123 120 123 1005 900 900 170 123 120 123 1005 900 900 1835 130 133 120 123 100 123 1005 1935 1336 133 123 123 123 136 1835 130 130 130 132 133 136 1935 133 130 133 133 136 | 149 133 133 3313 3113 3133 3013 149 140 111 140 111 140 111 140 1111 111 111 111< | 7.49 0.18 0.15 37.89 7.49 2.77 0.16 39.25 0.15 37.50 0.15 37.50 0.15 0.15 37.36 0.15 0.15 0.15 37.36 0.12 0.15 0.17 17.40 0.12 0.98
 0.23 0.28 1.90 0.99 0.23 0.28 1.90 0.95 0.21 17.30 0.12 0.99 0.23 0.28 1.90 | 30.12 32.65
50.18 50.41 32.75
20.41 32.75
18.76 32.75
0.88 32.75
0.88 12.36 | 101.08
95.80
90.05
97.81
4.36 | | | | | | |
| 7.49 2.72 0.15 3.92.5 50.18 99.80 1059 0.15 37.06 20.41 32.36 99.57 10.10 0.17 37.05 20.41 32.36 99.57 10.10 0.17 37.55 20.91 32.75 10.00 10.17 17.40 2.22 16.76 2.91 32.75 0.91 0.23 0.23 1.87 2.91 32.95 0.91 0.23 0.23 1.93 3.43 3.36 0.85 4.96 7.71 1.280 0.23 5.01 2.32 36.76 0.23 0.36 0.13 2.60 2.22 50.18 3.2.75 0.96 0.23 0.18 0.15 7.60 2.22 0.36 32.36
 | 7.49 2.72 0.15 37.26 50.18 99.80 10.70 0.15 37.06 29.41 32.36 99.37 10.70 0.10 37.06 22.2 18.76 99.41 10.70 0.13 37.06 22.2 18.76 99.41 0.89 0.13 37.06 22.2 18.76 99.41 0.90 0.13 37.06 2.22 18.76 97.81 0.99 0.23 0.13 37.06 2.22 18.76 97.81 0.99 0.23 0.23 1.99 2.38 4.36 0.88 4.36 0.86 0.23 0.50 2.22 56.18 32.35 0.06 0.33 0.13 36.10 7.00 2.22 55.18 32.35 0.86 0.23 0.38 0.30 2.22 50.18 32.35 0.00 0.33 0.36 0.36 0.33 0.36 0.36 32.35 | 2.72 0.16 34.25 50.18 99.80 4.96 7.71 17.3 37.06 29.41 32.36 99.81 0.30 0.17 37.06 2.24.1 32.36 99.81 97.81 0.30 0.17 37.06 2.24.1 32.36 99.81 97.81 0.23 0.38 1.740 7.90 2.22 18.76 97.81 0.23 0.28 1.99 9.31 0.38 4.36 0.23 0.28 1.94.5 7.60 2.22 50.18 32.75 0.33 0.31 9.13 96.10 7.60 2.22 50.18 32.75 0.23 0.28 0.15 96.10 7.60 1.22 0.38 32.75 | 7.49 2.72 0.15 3.425 50.18 99.80 10.56 0.15 3.706 2.9.41 3.236 99.87 10.70 0.13 3.706 2.9.41 3.236 99.67 10.70 0.13 3.706 2.9.41 3.236 99.67 10.70 1.306 2.91 3.79 10.016 10.73 0.86 0.23 1.89 0.731 1.8.76 0.731 0.86 0.23 0.21 39.45 7.60 2.23 50.18 0.86 0.23 0.15 0.15 36.10 7.60 1.22 0.81 3.235 0.06 0.23 0.13 19.10 7.60 1.22 0.81 3.236 <td>7.49 7.72 0.15 343-5 50.18 93-80 10.56 0.13 37.36 20.41 32.36 99.87 10.76 0.30 0.13 37.36 20.41 32.36 99.67 10.76 0.30 0.13 37.36 20.41 32.36 90.67 10.86 7.71 17.40 2.23 14.76 2.33 16.01 37.35 0.98 0.33 0.38 1.99 7.60 2.23 14.76 97.36 0.86 7.71 17.30 0.23 39.25 7.60 2.33 3.36 0.86 0.38 0.36 0.13 3.610 7.60 2.33 0.36 12.36 0.86 0.38 0.36 0.37 0.81 12.36 13.36</td> <td>749 7.49 7.71 0.16 3.3.56 5.0.18 9.980 147 173 0.17 3.706 2.3.1 12.75 0.957 147.6 0.10 0.17 3.706 2.3.1 16.76 29.41 147.6 0.33 0.38 17.30 0.1 3.756 29.41 0.98 0.33 0.38 17.30 0.3 3.436 9.361 0.98 0.33 0.38 1.93 7.60 2.32 50.18 3.736 35.76 0.38 0.35 3.60 2.22 50.18 3.736 0.99 0.33 0.34 0.35 3.60 3.23 0.99 0.33 0.36 1.32 0.98 1.336</td> <td>7.49 7.72 0.16 3.135 50.18 95.80 10.76 0.39 0.13 3.706 2.941 3.25 95.90 10.76 0.39 0.17 1.700 2.32 10.18 2.35 95.90 10.76 0.33 0.35 0.13 3.706 2.91 1.35 96.97 0.99 0.33 0.38 1.99 2.32 10.10 2.32 10.81 2.35 36.76 0.38 0.35 0.31 95.40 2.32 50.8 3.36 36.76 0.33 0.35 0.35 3.45 2.83 3.46 0.98 0.34 0.35 0.35 2.03 2.32 3.36 0.98 0.39 0.36 0.32 0.31 2.30 3.36 0.99 0.33 0.34 2.30 2.32 0.38 2.36 0.99 0.39 0.30 1.30 1.30 1.30 1.30 0.91</td> <td>7.49 7.49 7.41 9.315 9.018 9.315 9.010 9.315 9.011 3.326 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.311 3.336 9.311 3.336 3.</td> <td>7.49 7.74 0.16 3.175 0.016 3.018 5.018 5.018 5.041 2.361 5.361 10.06 0.30 0.17 1.700 2.31 1.01 2.33 0.63 0.031 10.06 0.33 0.38 1.94 2.32 10.16 2.33 0.36 10.06
0.33 0.38 0.33 0.33 0.33 0.33 0.34 10.06 0.33 0.36 0.32 0.01 3.03 0.34 10.06 0.33 0.34 0.33 0.32 0.03 3.33 10.06 0.33 0.34 0.32 0.01 3.33 3.35 10.06 0.33 0.34 0.33 0.33 3.33</td> <td>748 273 0.6 3135 501 3235 501 323 501 100 10 0.1 10 0.1 201 135 600 100 10 0.1 10 11 30 130 130 130 100 11 100 11 100 11 300 301 100 0.23 0.30 100 10 10 10 10 10 100 100 0.23 0.30 10 10 12 10 12 10 12 10 100 0.23 0.30 10 12 10 12 13 10 12 13 100 12 10 12 10 12 12 12 100 12 13 13 13 13 13</td> <td>7.49 2.77 0.16 39.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.0 117 31.06 12.22 19.0 11.2 19.0 12.22 19.0 12.22 19.0 12.22 19.0 12.22 19.0 12.22 19.0 12.22 19.25 1.560 12.22 19.25 1.560 12.22 19.25 1.560 12.22 19.25 19</td> <td>50.18
20.91
20.91
21.02
20.18
22.25
50.18
32.75
0.88
0.89
0.29</td> <td>98.85
29.57
10.00
4.36
4.36</td> | 7.49 7.72 0.15 343-5 50.18 93-80 10.56 0.13 37.36 20.41 32.36 99.87 10.76 0.30 0.13 37.36 20.41 32.36 99.67 10.76 0.30 0.13 37.36 20.41 32.36 90.67 10.86 7.71 17.40 2.23 14.76 2.33 16.01 37.35 0.98 0.33 0.38 1.99 7.60 2.23 14.76 97.36 0.86 7.71 17.30 0.23 39.25 7.60 2.33 3.36 0.86 0.38 0.36 0.13 3.610 7.60 2.33 0.36 12.36 0.86 0.38 0.36 0.37 0.81 12.36 13.36
 | 749 7.49 7.71 0.16 3.3.56 5.0.18 9.980 147 173 0.17 3.706 2.3.1 12.75 0.957 147.6 0.10 0.17 3.706 2.3.1 16.76 29.41 147.6 0.33 0.38 17.30 0.1 3.756 29.41 0.98 0.33 0.38 17.30 0.3 3.436 9.361 0.98 0.33 0.38 1.93 7.60 2.32 50.18 3.736 35.76 0.38 0.35 3.60 2.22 50.18 3.736 0.99 0.33 0.34 0.35 3.60 3.23 0.99 0.33 0.36 1.32 0.98 1.336 | 7.49 7.72 0.16 3.135 50.18 95.80 10.76 0.39 0.13 3.706 2.941 3.25 95.90 10.76 0.39 0.17 1.700 2.32 10.18 2.35 95.90 10.76 0.33 0.35 0.13 3.706 2.91 1.35 96.97 0.99 0.33 0.38 1.99 2.32 10.10 2.32 10.81 2.35 36.76 0.38 0.35 0.31 95.40 2.32 50.8 3.36 36.76 0.33 0.35 0.35 3.45 2.83 3.46 0.98 0.34 0.35 0.35 2.03 2.32 3.36 0.98 0.39 0.36 0.32 0.31 2.30 3.36 0.99 0.33 0.34 2.30 2.32 0.38 2.36 0.99 0.39 0.30 1.30 1.30 1.30 1.30 0.91
 | 7.49 7.49 7.41 9.315 9.018 9.315 9.010 9.315 9.011 3.326 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.911 3.336 9.311 3.336 9.311 3.336 3. | 7.49 7.74 0.16 3.175 0.016 3.018 5.018 5.018 5.041 2.361 5.361 10.06 0.30 0.17 1.700 2.31 1.01 2.33 0.63 0.031 10.06 0.33 0.38 1.94 2.32 10.16 2.33 0.36 10.06 0.33 0.38 0.33 0.33 0.33 0.33 0.34 10.06 0.33 0.36 0.32 0.01 3.03 0.34 10.06 0.33 0.34 0.33 0.32 0.03 3.33 10.06 0.33 0.34 0.32 0.01 3.33 3.35 10.06 0.33 0.34 0.33 0.33 3.33 | 748 273 0.6 3135 501 3235 501 323 501 100 10 0.1 10 0.1 201 135 600 100 10 0.1 10 11 30 130 130 130 100 11 100 11 100 11 300 301 100 0.23 0.30 100 10 10 10 10 10 100 100 0.23 0.30 10 10 12 10 12 10 12 10 100 0.23 0.30 10 12 10 12 13 10 12 13 100 12 10 12 10 12 12 12 100 12 13 13 13 13 13 | 7.49 2.77 0.16 39.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.0 117 31.06 12.22 19.0 11.2 19.0 12.22 19.0 12.22 19.0 12.22 19.0 12.22 19.0 12.22 19.0 12.22 19.25 1.560 12.22 19.25 1.560 12.22 19.25 1.560 12.22 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25
19.25 19 | 50.18
20.91
20.91
21.02
20.18
22.25
50.18
32.75
0.88
0.89
0.29 | 98.85
29.57
10.00
4.36
4.36 | | | | | | |
| 1.25 1.26 1.25 1.26 1.25 1.26 1.25 1.26 1.25 1.26 <th1.26< th=""> 1.26 1.26 <th1< th=""><td>10.25 0.12 3.746 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 3.041 3.046 3.041</td><td>4.96 7.71 17.36 2.43 2.434 2.434 2.434 2.434 4.96 7.71 17.36 2.13 3.65 2.931 13.75 100.066 0.23 0.28 1.936 2.12 16.76 2.931 13.75 100.066 0.23 0.28 1.99 2.36 2.32 16.76 9.736 0.33 0.28 1.59 0.53 3.40 2.22 50.38 3.26 4.95 7.71 1.2.80 0.21 39.25 7.50 2.22 50.18 3.275 0.23 0.28 0.15 96.10 7.90 1.22 0.38 32.36</td><td>0.30 0.13 37.06 2.34 3.2.4 0.00 0.10 0.17 17.06 2.01 12.75 00.06 0.18 0.23 0.28 1.60 2.32 10.06 0.86 0.23 0.28 1.60 2.33 0.31 0.86 0.23 0.28 2.30 2.35 0.33 18.76 0.38 0.31 3.25 2.01 3.25 0.60 0.28 0.15 0.15 36.10 7.00</td><td>10.76 1.73 1.746 2.741 3.746 2.041 3.745 2.041 3.745 2.041 3.745 2.00 0 0.17 3.745 2.041 3.755 0.006 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.01 3.75 1.00 0 0.01 0.00 0 0.00 0 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 <th0.01< th=""> 0.01 <th0.01< th=""></th0.01<></th0.01<></td><td>0.26 0.13 3.740 2.241 3.246 2031 2.351 14.76 4.96 7.11 17.30 2.22 16.93 12.25 10006 0.38 0.33 0.38 1.36 2.32 16.93 12.35 10006 0.38 0.33 0.38 1.39 0.33 3.36 3.36 38.36 4.96 7.11 17.30 0.32 50.18 3.235 10006 0.98 0.33 0.34 0.35 3.63 12.35 0.88 13.36 0.99 0.33 0.34 0.35 3.63 3.235 0.88 3.36</td><td>U29 U21 37.06 U21 37.06 U21 37.06 U21 37.06 U21 <thu21< th=""> U21 U21 <thu< td=""><td>0.00 0.13 3.10 0.01 3.24 0.01 3.24 0.01 10.0 0.13 10.0 11 100 11 100 125 100 125 100 0.06 0.33 0.38 139 130 132 10.01 125 0006 0.06 0.33 0.35 130 132 30.3 236 336 38.76 4.96 7.11 1.28 0.23 20.1 2.23 50.18 3275 0.06 0.33 0.35 0.10 7.00 1.32 0.88 3.36 0.06 0.33 0.34 0.32 0.31 3.35 3.36</td><td>000 0.13 3.146 2.041 2.241 0.031 100 6.33 0.38 1.39 1.30 1.35 1004 0.36 6.34 1.11 1.40 2.35 2.04 2.35 0.03 0.38 0.38 1.39 0.35 2.01 1.30 1.35 0.006 0.09 0.33 0.34 0.35 2.03 2.33 3.36 38.56 4.36 7.11 1.38 0.35 2.01 2.00 2.33 0.09 0.39 0.34 0.35 0.01 2.02 2.31 0.34 0.09 0.39 0.34 0.32 0.31 2.32 0.34 3.36</td><td></td><td>0.25 0.27 0.25 1.25 1.25 0.25 1.25 0.25 1.25 0.25 1.25 0.25 1.29 0.95 7.60 2.22 1.29 0.95 0.23 0.23 0.23 1.29 0.20 1.29 0.20 1</td><td>2041 3235
18.76
0.88
50.18 32.75
0.88 12.96</td><td>17570
1876
1876</td></thu<></thu21<></td></th1<></th1.26<>
 | 10.25 0.12 3.746 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 2.041 3.246 3.041 3.046 3.041 | 4.96 7.71 17.36 2.43 2.434 2.434 2.434 2.434 4.96 7.71 17.36 2.13 3.65 2.931 13.75 100.066 0.23 0.28 1.936 2.12 16.76 2.931 13.75 100.066 0.23 0.28 1.99 2.36 2.32 16.76 9.736 0.33 0.28 1.59 0.53 3.40 2.22 50.38 3.26 4.95 7.71 1.2.80 0.21 39.25 7.50 2.22 50.18 3.275 0.23 0.28 0.15 96.10 7.90 1.22 0.38 32.36 | 0.30 0.13 37.06 2.34 3.2.4 0.00 0.10 0.17 17.06 2.01 12.75 00.06 0.18 0.23 0.28 1.60 2.32 10.06 0.86 0.23 0.28 1.60 2.33 0.31 0.86 0.23 0.28 2.30 2.35 0.33 18.76 0.38 0.31 3.25 2.01 3.25 0.60 0.28 0.15 0.15 36.10 7.00
 | 10.76 1.73 1.746 2.741 3.746 2.041 3.745 2.041 3.745 2.041 3.745 2.00 0 0.17 3.745 2.041 3.755 0.006 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.01 3.75 1.00 0 0.01 0.00 0 0.00 0 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 <th0.01< th=""> 0.01 <th0.01< th=""></th0.01<></th0.01<>
 | 0.26 0.13 3.740 2.241 3.246 2031 2.351 14.76 4.96 7.11 17.30 2.22 16.93 12.25 10006 0.38 0.33 0.38 1.36 2.32 16.93 12.35 10006 0.38 0.33 0.38 1.39 0.33 3.36 3.36 38.36 4.96 7.11 17.30 0.32 50.18 3.235 10006 0.98 0.33 0.34 0.35 3.63 12.35 0.88 13.36 0.99 0.33 0.34 0.35 3.63 3.235 0.88 3.36 | U29 U21 37.06 U21 37.06 U21 37.06 U21 37.06 U21 U21 <thu21< th=""> U21 U21 <thu< td=""><td>0.00 0.13 3.10 0.01 3.24 0.01 3.24 0.01 10.0 0.13 10.0 11 100 11 100 125 100 125 100 0.06 0.33 0.38 139 130 132 10.01 125 0006 0.06 0.33 0.35 130 132 30.3 236 336 38.76 4.96 7.11 1.28 0.23 20.1 2.23 50.18 3275 0.06 0.33 0.35 0.10 7.00 1.32 0.88 3.36 0.06 0.33 0.34 0.32 0.31 3.35 3.36</td><td>000 0.13 3.146 2.041 2.241 0.031 100 6.33 0.38 1.39 1.30 1.35 1004 0.36 6.34 1.11 1.40 2.35 2.04 2.35 0.03 0.38 0.38 1.39 0.35 2.01 1.30 1.35 0.006 0.09 0.33 0.34 0.35 2.03 2.33 3.36 38.56 4.36 7.11 1.38 0.35 2.01 2.00 2.33 0.09 0.39 0.34 0.35 0.01 2.02 2.31 0.34 0.09 0.39 0.34 0.32 0.31 2.32 0.34 3.36</td><td></td><td>0.25 0.27 0.25 1.25 1.25 0.25 1.25 0.25 1.25 0.25 1.25 0.25 1.29 0.95 7.60 2.22 1.29 0.95 0.23 0.23 0.23 1.29
0.23 1.29 0.20 1.29 0.20 1</td><td>2041 3235
18.76
0.88
50.18 32.75
0.88 12.96</td><td>17570
1876
1876</td></thu<></thu21<> | 0.00 0.13 3.10 0.01 3.24 0.01 3.24 0.01 10.0 0.13 10.0 11 100 11 100 125 100 125 100 0.06 0.33 0.38 139 130 132 10.01 125 0006 0.06 0.33 0.35 130 132 30.3 236 336 38.76 4.96 7.11 1.28 0.23 20.1 2.23 50.18 3275 0.06 0.33 0.35 0.10 7.00 1.32 0.88 3.36 0.06 0.33 0.34 0.32 0.31 3.35 3.36 | 000 0.13 3.146 2.041 2.241 0.031 100 6.33 0.38 1.39 1.30 1.35 1004 0.36 6.34 1.11 1.40 2.35 2.04 2.35 0.03 0.38 0.38 1.39 0.35 2.01 1.30 1.35 0.006 0.09 0.33 0.34 0.35 2.03 2.33 3.36 38.56 4.36 7.11 1.38 0.35 2.01 2.00 2.33 0.09 0.39 0.34 0.35 0.01 2.02 2.31 0.34 0.09 0.39 0.34 0.32 0.31 2.32 0.34 3.36 | | 0.25 0.27 0.25 1.25 1.25 0.25 1.25 0.25 1.25 0.25 1.25 0.25 1.29 0.95 7.60 2.22 1.29 0.95 0.23 0.23 0.23 1.29 0.20 1.29 0.20 1
 | 2041 3235
18.76
0.88
50.18 32.75
0.88 12.96 | 17570
1876
1876 | | | | | | |
| 10.76 4.96 7.71 17.40 7.00 2.22 16.76 97.81 0.99 0.23 0.28 1.99 7.00 2.22 16.76 97.81 0.99 0.23 0.28 1.99 7.60 2.22 50.81 3.36 38.76 4.96 7.71 1.280 0.21 39.45 5.60 2.22 50.18 32.75 0.96 0.23 0.28 0.15 0.15 7.60 2.22 50.18 32.75
 | 18.76 4.96 7.11 17.30 7.00 2.22 18.76 97.81 0.98 0.23 0.28 1.99 7.86 2.36 0.88 4.36 0.86 0.23 0.28 1.99 0.88 4.36 0.83 4.36 38.76 4.96 7.71 1.780 0.21 56.18 32.75 0.86 0.23 0.13 36.10 7.60 2.22 50.18 32.75 0.06 0.23 0.18 0.12 36.10 7.00 1.22 0.36 32.36 | 4.96 7.11 17.30 7.40 2.22 16.76 97.81 0.23 0.28 1.99 7.40 2.22 16.76 97.81 0.23 0.28 1.99 7.40 2.22 16.76 97.81 0.23 0.28 1.59 0.88 4.36 0.8 4.36 4.95 7.71 1.7.80 0.21 39.25 7.80 2.22 50.18 32.75 0.23 0.26 0.15 36.10 7.90 1.22 0.36 32.36 | III 70 4 90 7 71 1 7 40 7 40 2 22 1 4 76 9 7 31 0.98 0.23 0.28 1.99 7.40 2.22 1 4 76 9 7 31 0.98 0.23 0.28 1.99 0.83 3.36 18.76 0.28 0.15 0.15 36.10 7.00 1.22 0.01 3.255 0.06 0.28 0.15 0.15 36.10 7.00 1.22 0.08 3.235
 | H0.76 496 7.11 17.40 2.22 H.76 97.31 0.98 0.23 0.28 1.99 7.60 2.22 14.76 97.31 0.98 0.23 0.13 1.91 0.23 2.02 2.18 3.36 135.76 4.96 7.11 1.940 0.23 2.03 2.33 0.96 0.23 0.36 0.32 0.36 2.23 0.38 32.36
 | 14.76 4.96 7.11 17.40 7.13 17.16 0.81 0.98 0.23 0.28 1.99 0.38 2.35 0.38 3.36 38.75 4.96 7.11 17.30 0.21 30.25 5.01 3.25 0.08 3.25 0.98 0.23 0.13 0.15 3.05 7.20 1.23 0.81 3.25 0.99 0.23 0.31 0.32 0.88 12.30 3.35 0.99 0.23 0.31 0.32 0.88 12.30 3.25 0.91 0.35 0.50 1.22 0.88 12.30 3.26 | 10.06 4.06 7.11 17.40 2.22 18.76 90.41 0.98 0.33 0.28 1.96 0.83 0.36 0.34 0.96 0.35 0.36 0.13 3.43 7.60 2.23 50.18 2.35 0.96 0.38 0.35 0.50 2.32 0.08 2.33
 | Hu-26 4.0 7.1 1.1.0 7.00 1.2.2 10.7.6 0.0.81 0.88 0.33 0.38 1.9.9 0.33 0.31 0.01 0.031 0.98 0.33 0.13 0.13 30.13 0.13 30.13 0.03 3.25 0.98 0.39 0.39 0.30 1.3.2 0.08 3.235 0.99 0.39 0.30 1.3.2 0.03 1.3.3 0.03 3.235 | 10.06 4.00 7.11 1.10 7.00 1.22 10.16 9.31 0.98 0.33 0.38 1.99 0.33 0.38 0.31 10.06 0.33 0.34 0.31 3.15 20.0 2.32 0.01 2.35 10.06 0.39 0.31 0.31 2.32 2.01 2.35 3.35 10.06 0.39 0.31 0.31 0.32 0.03 2.33 0.04 2.35 | 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.8 0.3 0.3 0.3 0.3 0.3 0.3 8.0 0.3 0.3 0.3 0.3 0.3 0.3 8.0 0.3 0.3 0.3 0.3 0.3 0.3 9.0 0.3 0.3 0.3 0.3 0.3 0.3 9.0 0.3 0.3 0.3 0.3 0.3 0.3 9.0 0.3 0.3 0.3 0.3 0.3 0.3 9.0 0.3 0.3 0.3 0.3 0.3 0.3 | 10.76 4.96 7.71 17.80 7.02 2.22 1
0.96 0.23 0.28 1.99
18.76 4.96 7.71 17.80 0.21 39.25 7.60 2.22 9
 | 18.76
0.88
50.18 32.75
0.88 12.36 | 95.5 | | | | | | |
| 0.99 0.23 0.28 1.99 0.23 2.28 0.28 4.36
38.76 4.96 7.71 1.2.80 0.21 39.25 7.60 2.22 50.18 32.75
0.06 0.28 0.28 0.18 0.15 36.10 7.60 2.22 0.48 32.36
 | 0.38 0.23 0.18 1.99 0.88 0.88 4.36 38.76 4.96 7.71 17.80 2.22 50.18 32.75 0.06 0.28 0.18 0.15 36.10 7.60 2.22 50.18 32.75 | 0.23 0.28 1.99 0.88 4.36 0.46 771 17.38 0.21 39.25 7.60 2.22 50.18 32.75 0.23 0.28 0.16 0.15 36.10 7.60 1.23 0.88 32.36 | 0.38 1.29 0.38 1.36 0.38 4.36 38.76 4.36 0.31 30.25 7.60 2.22 50.18 32.35 30.8 0.28 0.15 36.10 7.60 1.22 0.84 32.36
 | 0.33 0.33 1.39 0.33 1.39 1.36 0.33 3.31 0.33 3.32 0.33 3.35 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.35 1.36 <th< td=""><td>0.09 0.23 0.28 1.95 0.88 4.16 38.75 4.96 7.11 12.34 0.21 50.12 50.18 32.75 0.96 0.23 0.36 0.12 0.32 0.38 3.235</td><td>0.33 0.33 1.39 0.33 2.35 0.33 3.16 33.76 4.36 7.71 1.280 0.21 3.42 2.60 3.27 0.36 0.33 0.34 0.35 0.610 7.00 1.32 0.88 1.36</td><td>0.08 0.23 0.28 159 0.08 2.31 1.28 0.21 39.25 5.01 3.23 6.01 3.215 38.76 4.16 7.11 1.28 0.21 30.25 5.018 32.75 0.08 0.23 0.21 0.22 0.20 1.22 0.08 1.23</td><td>0.08 0.33 1.54 0.84 0.84 1.54 0.34 3.15 18.75 1.65 0.31 0.32 5.01 3.25 5.01 3.25 0.06 0.33 0.34 0.32 0.32 0.33 3.25</td><td>03 13 13 13 13 13 13 13 37.6 4.96 7.11 13.00 0.13 3.15 0.01 3.15 0.06 0.28 0.13 0.15 0.01 2.15 0.01 3.15 0.06 0.29 0.13 0.15 0.01 2.15 0.01 2.15</td><td>0.09 0.23 0.28 1.99
18.76 4.96 7.71 1.280 0.21 39.25 7.60 2.22 5</td><td>0.88
50.18 32.75
0.88 32.36</td><td>9.86</td></th<>
 | 0.09 0.23 0.28 1.95 0.88 4.16 38.75 4.96 7.11 12.34 0.21 50.12 50.18 32.75 0.96 0.23 0.36 0.12 0.32 0.38 3.235 | 0.33 0.33 1.39 0.33 2.35 0.33 3.16 33.76 4.36 7.71 1.280 0.21 3.42 2.60 3.27 0.36 0.33 0.34 0.35 0.610 7.00 1.32 0.88 1.36
 | 0.08 0.23 0.28 159 0.08 2.31 1.28 0.21 39.25 5.01 3.23 6.01 3.215 38.76 4.16 7.11 1.28 0.21 30.25 5.018 32.75 0.08 0.23 0.21 0.22 0.20 1.22 0.08 1.23 | 0.08 0.33 1.54 0.84 0.84 1.54 0.34 3.15 18.75 1.65 0.31 0.32 5.01 3.25 5.01 3.25 0.06 0.33 0.34 0.32 0.32 0.33 3.25 | 03 13 13 13 13 13 13 13 37.6 4.96 7.11 13.00 0.13 3.15 0.01 3.15 0.06 0.28 0.13 0.15 0.01 2.15 0.01 3.15 0.06 0.29 0.13 0.15 0.01 2.15 0.01 2.15 | 0.09 0.23 0.28 1.99
18.76 4.96 7.71 1.280 0.21 39.25 7.60 2.22 5
 | 0.88
50.18 32.75
0.88 32.36 | 9.86 | | | | | | |
| 38.76 4.96 7.71 17.80 0.21 39.25 7.60 2.22 50.18 32.75
0.96 0.23 0.28 0.18 0.15 36.10 7.60 2.22 0.88 32.36
 | 38.75 4.96 7.71 1.7380 0.21 39.25 7.60 2.22 50.18 32.75
0.08 0.28 0.18 0.15 36.10 7.60 2.22 0.38 32.36 | 4.96 7.71 1.780 0.21 39.25 7.60 2.12 50.18 32.75 0.28 0.38 0.15 96.10 7.60 2.22 0.38 32.36 | 18.75 4.96 7.71 1.7340 0.21 39.25 7.60 2.22 50.18 32.75
304 0.28 0.18 0.15 36.10 7.60 2.22 0.38 32.36
 | 18.76 4.06 7.71 12.80 0.21 39.15 7.60 2.22 50.18 3.275
0.08 0.23 0.28 0.15 3.6.10 7.60 2.22 0.38 3.2.36
 | 38.75 4.96 7.71 17.24 0.21 30.25 7.60 2.22 50.18 3.275
0.08 0.23 0.24 0.15 16.10 7.00 1.22 0.88 12.30 | 33.76 4.06 7.71 1.7.20 0.21 34.25 7.60 2.22 50.18 32.75 0.06 0.28 0.15 36.10 7.60 2.22 0.08 3.235 0.06 0.28 0.15 36.10 7.60 2.22 0.08 3.236
 | 33.76 4.96 7.11 1.28 0.21 31.25 50.18 31.75 0.98 0.28 0.18 0.15 9.6.10 7.00 1.22 0.08 31.30 | 33.76 4.66 7.11 1.280 0.21 3.125 5.018 3.235 0.08 0.28 0.38 0.31 3.6.0 7.00 7.32 0.88 3.30 | 33.5 1.6 7.1 1.3 0.1 3.1 0.1 3.15 0.0 0.23 0.14 0.15 0.0 2.2 0.0 3.15 | 38.76 4.96 7.71 17.80 0.21 39.25 7.60 2.22 1
 | 50.18 32.75
0.88 32.36 | | | | | | | |
| 0.96 0.23 0.28 0.18 0.15 36.10 7.60 2.22 0.38 32.36
 | 0.08 0.28 0.18 0.15 36.10 7.00 2.22 0.38 32.36 | 0.28 0.28 0.15 36.10 7.00 1.22 0.38 32.36 | 2016 023 028 015 015 3610 7,00 222 038 3236
 |
 | |
 | | | | 10.00 TOTA 10.01 10.01 10.01 10.01
 | 0.08 12.36 | | | | | | | |
|
 | | |
 |
 | |
 | | | | 0.98 0.23 0.28 0.18 0.15 36.10 7.60 2.22 0
 | 9 | | | | | | | |
|
 | | |
 |
 | |
 | A STATE OF | | | | 51.1
 | - Marthan | | | | | | |

Steph Theriault 061411 - 305-2		6/14/2011 4:10:08 PM
Project: Steph Theriault 061411	Sample: 305-2	
Owner: Inca User	Type: Default	

Steph Theriault 061411 - 305-15	6/14/2013 4:23:52 PM
Project: Steph Theriault 061411	Sample: 305-15
Owner: Inca User	Type: Default

Comment:	
	CMD

Processing option : All elements analysed

Spectrum	In stats.	0	Mg	,AJ	Si	P	5	Mn	Fe	Total
Spectrum 1	Yes					0.26	40.19		57.67	98.12
Spectrum 2	Yes					0.23	39.45		57.26	96.95
Spectrum 3	Yes					0.27	39.58		57.85	97.70
Spectrum 4	Yes	23.81		0.45					66.95	91.21
Spectrum 5	Yes	31.03	6.43		15.61			5.87	36.55	95.49
Spectrum 6	Yes	22.92		0.51				0.27	66.35	90.04
Max		31.03	6.43	0.51	15.61	0.27	40.19	5.87	66.95	
Min.		22.92	6.43	0.45	15.61	0.23	39.45	0.27	36.55	

Appendix B: Sulfur Isotope Analysis

Sample Number	Raw ∂ ³⁴ S	Corrected
MGS-2-B	20.21	20.55
MGS-2-D MGS-2-2	7.26	30.55
MGS-2-10	-7.50	-7.71
MG8-2-16	0.21	0.20
MGS-2-16 (D)	-5.04	-5.35
	-5.04	-5.55
MGS-5-A	-16.68	-17.00
MGS-5-A (D)	-14.93	-16.50
MGS-5-B	11.13	11.05
MGS-5-1	12.03	11.84
MGS-5-2	16.17	16.07
MGS-5-2 (D)	14.94	14.91
MGS-5-4	-9.43	-9.81
MGS-5-5	11.90	11.66
MGS-5-10	18.81	18.65
MGS-5-11	-35.70	-36.11
MGS-5-11 (D)	-33.77	-34.52
MGS-5-12	-31.48	-31.87
MGS-5-15	4.61	4.38
MGS-5-16	5.26	4.81
MGS-5-16 (D)	6.47	5.75
MGS-5-19	36.12	36.04
MGS-5-21	79.44	80.37
MGS-5-21 (D)	73.89	73.52
MGS-5-22	77.85	77.96
MGS-5-22 (D)	61.76	62.43
MGS-5-23	-27.01	-27.65
MGS-5-24	-18.85	-20.05
MGS-5-24 (D)	-18.17	-18.69
MGS-5-26	23.58	23.71
MGS-7-A	3.33	3.10
MGS-7-B	-11.86	-12.16
MGS-7-B (D)	-11.51	-11.93
MGS-7-C	7.90	7.69
MGS-7-3	17.68	17.51
MGS-7-6	10.59	10.39
MGS-7-8	14.49	13.81
MGS-7-10	22.68	22.78

	Raw ô ³⁴ S	Corrected
Sample Number	(‰)	∂ ³⁴ S (‰)
MGS-7-11	18.00	17.96
MGS-7-12	11.01	10.93
MGS-7-13	10.33	10.05
MGS-7-14	14.00	13.83
MGS-7-14 (D)	13.74	13.56
MGS-7-16	10.78	10.51
MGS-7-17	16.37	16.20
MGS-7-17 (D)	12.81	12.76
MGS-7-21	32.59	32.49
MGS-8-A	3.52	3.33
MGS-8-B	6.90	6.68
MGS-8-2	-5.17	-6.53
MGS-8-4	-15.92	-16.76
MGS-8-6	-5.34	-5.61
MGS-8-6 (D)	-4.88	-5.20
MGS-8-10	37.08	37.38
MGS-8-14	-18.59	-18.92
MGS-8-14 (D)	-16.50	-16.99
MGS-8-16	-27.13	-27.78
MGS-8-18	-22.24	-23.56
MGS-8-18	-19.96	-20.49
B1-305-1	10.35	10.25
B1-305-4a,b	27.46	27.34
B1-305-4a,b (D)	25.85	25.99
B1-305-4c	8.01	7.80
B1-305-6	8.39	8.27
B1-305-14	6.41	6.19
B1-305-15	6.62	6.41
B1-305-16	8.96	8.85
B1-305-17	11.53	11.34
B1-305-18	2.91	2.39
B1-305-18 (D)	3.72	3.53
NatOre I	40.22	40.57
NatOre II	21.06	21.11
NatOre II (D)	31.80	31.21

Appendix B.1 Raw and Corrected Sulfur Isotope Data

Appendix B.2 Sulfur Isotope Analysis Standards

