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Overall Project Outcome and Results 
Updated wetland maps were created for 13 counties in east-central Minnesota (7,150 square 
miles), encompassing the Twin Cities metropolitan area. Wetlands in Minnesota were originally 
mapped by the U.S. Fish and Wildlife Service in the early 1980’s as part of the National 
Wetlands Inventory (NWI). Although still widely used for land use planning, wetland permit 
screening and natural resource management, the original maps have grown increasingly out-of-
date due to landscape alterations over the years. The data created for this project marks the 
first significant update to the NWI in Minnesota.  
  
The new maps are much more accurate, capture more detail, and provide more information 
than the original maps.  Besides showing the location, size, and type of each wetland, the 
updated map data includes information on the wetland’s landscape position and hydrologic 
characteristics, which can be useful in assessing the benefits provided, such as water quality 
improvement, flood storage, and fish and wildlife habitat. Updating the NWI is a key component 
of the State’s strategy to monitor and assess wetlands in support of efforts to assure healthy 
wetlands and clean water for Minnesota. The DNR is planning to complete the NWI update for 
the entire state by 2020.  
 
Accomplishments for this project phase also include acquiring high-resolution, spring leaf-off 
digital aerial imagery for 23,900 square miles of southern Minnesota, acquiring field validation 
data for southern Minnesota, and developing wetland mapping procedures for the agricultural 
region of Minnesota. 
  
Project Results Use and Dissemination  
Imagery acquired for this project is available to the public through the Minnesota Geospatial 
Information Office 
(MnGeo): http://www.mngeo.state.mn.us/chouse/wms/geo_image_server.html. The MnGeo 
imagery service receives about one million page requests per month for the southern Minnesota 
imagery. This is the first publicly available leaf-off imagery data for southern Minnesota since 
1991. 
 
The updated wetland map data are available through an interactive mapping application on the 
DNR’s website at:  http://www.dnr.state.mn.us/eco/wetlands/map.html.  The data can also be 
downloaded, free of charge, for use in geographic information system applications through the 
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DNR’s data deli at:  http://deli.dnr.state.mn.us/. The data will eventually be incorporated into the 
national “Wetland Mapper” application maintained by the U.S. Fish and Wildlife Service.  
 
The wetland mapping procedures and accuracy results for the 13-county updated NWI data are 
presented and discussed in a manuscript that has been submitted to the journal Wetlands, a 
publication of the Society of Wetland Scientists (SWS). Information from this project was also 
presented at the SWS annual conference in Duluth, MN in 2013. In addition, a press release 
was distributed regarding the updated NWI data and the story was published on several online 
news websites.  
 
Researchers at the University of Minnesota Remote Sensing and Geospatial Analysis 
Laboratory conducted an extensive study of the effects of digital elevation model (DEM) 
preprocessing and mapping methods on the accuracy of wetlands maps in three different 
physiographic regions of Minnesota. This research covered two study sites in agricultural areas 
including the Minnesota River Headwaters (Big Stone County) and Swan Lake (Nicollet County) 
as well as a comparison site from northern Minnesota (St. Louis and Carlton Counties). The 
results of this effort were compiled and submitted for publication in several peer-reviewed 
scientific journals along with results from the earlier phase of the NWI update project. Three 
hard copies and one electronic copy of these publications have been submitted with the final 
report to LCCMR. There have also been numerous presentations at professional conferences. 
 
Publications 
 
Corcoran, J.M, Knight, J.F., B. Brisco, S. Kaya, A. Cull, and Murhnaghan, K. (2011) The integration of optical, topographic, and 
radar data for wetland mapping in northern Minnesota. Canadian Journal of Remote Sensing, 27(5): 564-582. 
 
Corcoran, J.M., Knight, J.F., and Gallant, A.L. (2013) Influence of Multi-Source and Multi-Temporal Remotely Sensed and 
Ancillary Data on the Accuracy of Random Forest Classification of Wetlands in Northern Minnesota. Remote Sensing, 5(7): 
3212-3238. 
 
Knight, J.F., B. Tolcser, J. Corcoran, and Rampi, L. (2013) The effects of data selection and thematic detail on the accuracy of 
high spatial resolution wetland classifications. Photogrammetric Engineering and Remote Sensing, 79(7): 613-623. 
 
Rampi, L.P., Knight, J.F., and Pelletier, K.C. (2014) Wetland mapping in the Upper Midwest United States: An object-based 
approach integrating lidar and imagery data. Photogrammetric Engineering and Remote Sensing. 80(5): 439-449. 
 
Rampi, L.P., Knight, J.F., and Lenhart, C.F. (2014) Comparison of flow direction algorithms in the application of the CTI for 
mapping wetlands in Minnesota. Wetlands, 34(3): 515-525. 
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Environment and Natural Resources Trust Fund (ENRTF) 
2010 Final Report 

 
Date of Report:   July 31, 2014 
Final Report July 31, 2014 
Date of Work Program Approval:   January 5, 2010 
Project Completion Date:   June 30, 2014 
 
I.   PROJECT TITLE:   Updating the National Wetlands Inventory: Phase 2 
 
Project Manager:  Steve Kloiber 
Affiliation: Minnesota Dept. of Natural Resources 
Mailing Address:  500 Lafayette Road, Box 25 
City / State / Zip: St. Paul, MN 55155 
Telephone Number:   651-259-5164 
E-mail Address:   steve.kloiber@state.mn.us 
Fax Number:   651-296-1811 
Web Site Address:   http://www.dnr.state.mn.us/eco/wetlands/nwi_proj.html  
 
Location:   This phase of the project focuses on updating the National Wetland 

Inventory (NWI) maps for a 13-county area in east-central Minnesota 
surrounding the greater metropolitan region of Minneapolis and St. Paul 
(figure 1). This phase includes a pilot study to test wetland mapping 
methods for an as yet unspecified agricultural site in southern Minnesota. In 
addition, this phase also includes primary imagery acquisition and field 
validation data collection for southern Minnesota.  

 
Total ENRTF Project Budget: ENRTF Appropriation $ 1,100,000 
  Minus Amount Spent: $  1,100,000       
  Equal Balance:  $  0        
 
Legal Citation: M.L. 2010, Chp. 362, Sec. 2, Subd. 3b and M.L. 2013, Chapter 52, 

Section 2, Subdivision 17 
 
Appropriation Language:   
$1,100,000 is from the trust fund to the commissioner of natural resources to continue 
the update of wetland inventory maps for Minnesota. The availability of the 
appropriation for the following project is extended to June 30, 2014: (3) Laws 2010, 
chapter 362, section 2, subdivision 3, paragraph (b), Updating Minnesota Wetlands 
Inventory: Phase 2. This appropriation is available until June 30, 2014 by which time the 
project must be completed and final products delivered. 
 
II. FINAL PROJECT SUMMARY AND RESULTS:  
Updated wetland maps were created for 13 counties in east-central Minnesota (7,150 
square miles), encompassing the Twin Cities metropolitan area. Wetlands in Minnesota 
were originally mapped by the U.S. Fish and Wildlife Service in the early 1980’s as part 
of the National Wetlands Inventory (NWI). Although still widely used for land use 
planning, wetland permit screening and natural resource management, the original 
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maps have grown increasingly out-of-date due to landscape alterations over the years. 
The data created for this project marks the first significant update to the NWI in 
Minnesota.  

The new maps are much more accurate, capture more detail, and provide more 
information than the original maps.  Besides showing the location, size, and type of 
each wetland, the updated map data includes information on the wetland’s landscape 
position and hydrologic characteristics, which can be useful in assessing the benefits 
provided, such as water quality improvement, flood storage, and fish and wildlife habitat. 
Updating the NWI is a key component of the State’s strategy to monitor and assess 
wetlands in support of efforts to assure healthy wetlands and clean water for Minnesota. 
The DNR is planning to complete the NWI update for the entire state by 2020.  

Accomplishments for this project phase also include acquiring high-resolution, spring 
leaf-off digital aerial imagery for 23,900 square miles of southern Minnesota, acquiring 
field validation data for southern Minnesota, and developing wetland mapping 
procedures for the agricultural region of Minnesota. 

III. PROGRESS SUMMARY AS OF: 
 
July 31, 2014  
The DNR Resource Assessment Office has completed the data processing for the 
LiDAR digital elevation model (DEM) and soils data for the remainder of the state. All 
tasks for this project have been completed. 
 
January 31, 2014 
The remaining imagery for southern Minnesota was acquired, processed, and delivered. 
The final quality assessment found the imagery data to meet the project requirements. 
The data was delivered to the State and is posted on the MnGeo web service for public 
access. With this, all of the tasks in the original work program have been completed.  
 
The remaining budget was redirected to assist with completion of the data processing 
for the remainder of the state. This additional task is expected to be complete by mid-
April 2014. 
 
Amendment Request (9/9/13) – Approved (9/11/13) 
A variety of cost savings were achieved for this project such that the project has an 
overall balance of $10,175.22 after accounting for the remaining anticipated invoices. 
We received approval for an amendment to direct the remaining funds into an effort to 
accelerate the overall project by completing the data pre-processing for the remainder 
of the state. Previously, this work was done on a phase-by-phase approach. The DNR 
Resource Assessment Office (RA) will process the LiDAR and soils data to create a 
number of derivative data sets for the update of the NWI. The LiDAR derived products 
include slope, topographic position index, and the compound topographic index. The 
derived soils data include percent hydric soils and the water regime class. This work is 
already complete for east-central and southern Minnesota. With phase 4 of the project 
just getting underway, RA will be pre-processing the LiDAR and soils data for 
northeastern MN. This work program request will partially fund the data preprocessing 
for the rest of the state. The total additional cost will be $19,171. We have proposed to 
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use the remaining $10,175.22 from this grant and an additional $8995.78 from savings 
achieved under the grant for phase 3 of this project.  
 
July 31, 2013: 
The remaining imagery for southern Minnesota was acquired and the processing is 
about 90% complete. Final processing and quality assessment will be performed in 
FY14. This is the only outstanding deliverable for this project. We anticipate that the 
project should be 100% complete by October of 2014. Ducks Unlimited completed all 
contracted tasks and provided a complete set of deliverables. The DNR reviewed these 
deliverables and conducted the final accuracy assessment on the data. The data have 
been publicly posted on the DNR Data Deli (http://deli.dnr.state.mn.us/) and a copy of 
the data has also been provided to the US Fish and Wildlife Service for posting on their 
Wetland Mapper website (http://www.fws.gov/wetlands/Data/Mapper.html). The 
University of Minnesota Remote Sensing and Geospatial Analysis Laboratory (RSGAL) 
delivered updated wetland map data for all the pilot areas along with a complete 
wetland mapping protocol document for southern Minnesota. Additionally, the University 
of Minnesota hosted a wetland mapping methods workshop with the mapping vendor for 
southern Minnesota and other project stakeholders.  
 
We have received two additional invoices for a total of $28,456 that are not reflected in 
the financial report yet. Also, there will be another invoice from MnGeo for the remaining 
imagery acquisition costs of $20,016. The expected ending balance is $10,175. This 
reflects cost savings achieved on the project. We anticipate submitting an amendment 
to use the remaining funds to further advance the statewide NWI update. 

Amendment Request (1/25/13) – Approved (5/9/13): A weather-related delay in 
imagery acquisition required a work program amendment. In 2011, imagery was 
acquired for 35 out of 36 counties during the targeted spring, leaf-off period. Mop-up 
imagery acquisition operations scheduled for 2012 were scuttled by an early onset of 
very warm temperatures in March coupled with an extended period of overcast skies. 
We are requested a one year extension, contingent on Legislative approval to allow the 
contractor to complete the necessary data processing and deliver the imagery to the 
state. 
 
January 31, 2013: Ducks Unlimited (DU) has completed the photo-interpretation 
process for 437 out of 541 quarter quads (81%) in the East Central project area. DU’s 
internal QA/QC process has been completed on 433 out of 541 quarter quads (80%) in 
the east-central project area. The DNR has conducted a secondary review on 317 
quarter quads (59%) for this project area. Comments from the DNR have been 
incorporated by DU. DU finished the scripting for the plant community and 
hydrogeomorphic classifications and tested the results and has developed the input 
layers needed for the HGM classification for the entire East Central project area. RAP 
has completed draft NWI data for all 50 quarter quads in the Koochiching project area. 
The primary and secondary QA//QC have been completed for the Koochiching project 
area. Final revisions are in process. 

The University of Minnesota RSGAL hosted a technical workshop on wetland mapping 
for the southern Minnesota NWI update project. RSGAL researchers continue to study 
the effects of DEM preprocessing and mapping algorithm choice on the accuracy of 
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wetlands maps. The results of this study have been compiled and are being prepared 
for publication in a peer reviewed scientific journal and will be included in final report to 
LCCMR. RSGAL researchers continued efforts at optimizing mapping methods for 
wetlands in agriculture dominated portions of Minnesota. Findings from this research 
will be incorporated into NWI mapping methods. 
 
July 31, 2012 
Ducks Unlimited (DU) has completed the image segmentation for 80% of the east-
central Minnesota (ECMN) project area. DU has also completed 50% of the initial photo-
interpretation and 33% of the ECMN project area has received an internal review for 
QA/QC. Data that have passed the internal review process are delivered to the DNR for 
review. The DNR has reviewed updated wetland maps for about 15% of the ECMN. DU 
is currently developing the computer code to generate additional wetland attributes for 
the wetland plant community classification and the hydro-geomorphic classification as 
well as the model code for the wetland probability layer. 
 
Pre-processing of all data for the Koochiching project area was completed and the 
image segmentation has also been completed for all 50 quarter quads in this area. 
Initial image interpretation is nearly complete for all quarter quads in this area and an 
internal review has been completed for 20 quarter quads (40% complete). 
 
The DNR has expanded the level of effort for QA/QC for the NWI data. This includes re-
programming funds saved on data acquisition to support additional QA/QC review of the 
NWI data. This will be accomplished through a combination of additional DNR staff time 
as well as soliciting feedback from local wetland experts using a web-based review tool 
developed by the DNR. 
 
Imagery data that was delivered by Surdex for 35 counties in southern MN has passed 
the quality control assessment. The data have been accepted and posted to the MnGeo 
web service for public access. Imagery acquisition for last remaining county in the 
acquisition area was delayed to spring 2013 due to weather issues this past spring. 
 
The University of Minnesota RSGAL researchers have continued their efforts to study of 
the effects of DEM preprocessing and mapping algorithm choice on the accuracy of 
wetlands maps for different physiographic regions. In addition, RSGAL is also studying 
optimal geospatial data types and mapping methods for wetlands in agriculture 
dominated portions of Minnesota.  
 
Amendment Request (1/25/12) – Approved (1/26/12) 
The cost for the imagery acquisition of southern Minnesota came in 4.7% below the 
estimated cost. We proposed to re-allocate the savings toward updating of wetland 
maps (result/activity one). We propose to use $7000 to provide support for some 
additional staff time to work on web-based system for reviewing draft maps for 
accuracy. DNR staff will develop a web-based data review application that will allow the 
project team, technical advisory committee members, and local wetland experts to 
provide an efficient and standardized way of reviewing and commenting on draft NWI 
data. The remaining cost savings of $14,000 will be applied toward expanded quality 
control of NWI data.  
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January 31, 2012 
Ducks Unlimited (DU) provided a working draft version of the technical procedures 
document. This document will   be revised as adjustments are made to the method. DU 
conducted the tech transfer workshop with the DNR Resource Assessment Office RA to 
harmonize the methods and approach used by the groups working on the NWI update. 
DNR also participated in other coordination meetings in Duluth, St. Cloud, and 
Bloomington. DU has developed a website for the work they are doing on this project as 
well as a web-based status map that shows the state of data production.  
 
RA has completed all of the data preprocessing for 11 of the 13 counties in the east-
central Minnesota project area and submitted this to DU. The data for the Koochiching 
NWI update area has been compiled, but is still being preprocessed. DU submitted draft 
data for nine quarter quads for DNR review. DNR has reviewed and provided comments 
on the draft data. Errors have all been addressed by DU. RA conducted follow-up field 
investigations to provide feedback to DU on difficult to interpret wetlands. 
 
UMN continued to develop and test mapping methods for the Swan Lake pilot area near 
Mankato, MN and they have added another informal pilot area in Big Stone County. 
UMN has presented their wetland mapping methods to the U.S. Fish and Wildlife 
Service staff in the Bloomington, MN regional office. They have also submitted two 
papers based on these methods for publication. 
 
Draft imagery for southern Minnesota was provided by the aerial photography vendor 
(Surdex, Inc.). A detailed review of the draft imagery was conducted by DNR, MnGeo, 
and other project partners. All comments were addressed by the vendor and final 
imagery was delivered for 35 out of 36 counties. Imagery for the last remaining county 
in this phase of imagery acquisition (Meeker County) will be acquired in spring 2012. 
UMN completed the field data acquisition and delivered the data to the DNR for 2703 
sites (1722 upland and 981 wetland sites).  
 
It should be noted that while the paid expenditures for this project currently total about 
32% of the project budget, the task completion status is close to 50%. The reason for 
this apparent discrepancy is that tasks must be completed by contractors before 
invoices can be submitted for payment. 
 
July 31, 2011 
Data have been gathered for the east-central project area including aerial photos, radar 
imagery, soils data, DEMs derived from available LiDAR, original NWI data, and other 
wetland data. Processing of this data is ongoing. Twelve test areas have been selected 
and the mapping procedures have been tested, refined, and documented based on 
these test areas. Draft wetland maps for the 12 test areas (about 50-square miles for 
each test area) are currently being prepared. Field training data was collected for 510 
sites this spring and processed along with other sources of wetland training data for 
input into the classification model.  
 
Methods evaluation work for the agricultural pilot area was initiated. The pilot area is in 
the vicinity of Swan Lake near Mankato, MN. Optical and radar imagery data for the 
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pilot areas have been acquired. Processing of this data has begun. Other data have 
been ordered. 
 
Acquisition of aerial photography was completed for 35 out of 36 counties. Imagery 
acquisition was conducted this spring. However, due to weather issues, the acquisition 
for Meeker County will be delayed until spring 2012. Preliminary image processing has 
been completed for all of the acquired images. Processing of the ortho-rectified imagery 
is ongoing. The UMN has hired and trained field staff for collecting field validation data. 
Acquisition of field data for southern MN was initiated this May.  
 
January 31, 2011 
A vendor was selected for updating the NWI maps for east-central Minnesota. A 
contract was signed this fall and a kick-off meeting was held in December. Efforts have 
begun to compile and pre-process data for the NWI update. A contract was also signed 
between the UMN and DNR to address the completion of the methods evaluation work 
and to collect additional field validation data. The process to select a vendor for 
acquiring spring, leaf-off imagery for southern Minnesota has begun and the DNR and 
MnGeo have developed an interagency agreement for assistance with managing this 
project. 
 
IV. OUTLINE OF PROJECT RESULTS:   
 
RESULT/ACTIVITY 1:  Updating Wetland Maps  
 
Description: This component of the project is devoted to updating the NWI maps for 13 
counties in east-central Minnesota surrounding the greater Twin Cities metropolitan 
area (figure 1). The primary task of map production will be contracted out using the 
State’s standard competitive bid process. The Minnesota DNR will provide oversight for 
this effort including contract management, supplying primary input data, approving 
mapping procedures, reviewing map products for accuracy, coordinating stakeholder 
involvement, and distributing updated NWI data to the public. 
 
Summary Budget Information for Result/Activity 1: ENRTF Budget:   $410,742 
  Amount Spent:   $410,742 
  Balance:    $          0 
 
Deliverable/Outcome Completion 

Date 
Budget 

1. Updated digital wetland inventory maps for 13 
counties in east-central Minnesota 

06/30/13 $410,742 

 
Result Completion Date: June 30, 2013 
 
Result Status as of January 2011:  

• A Request for Proposals was advertised and a vendor was selected to update 
the NWI maps for east-central Minnesota. Ducks Unlimited was selected through 
a competitive bid process. Their proposal was judged to provide the best overall 
value for the State. They have considerable experience with updating wetland 
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maps and provided the lowest overall cost. A contract between DNR and DU was 
developed and signed covering the update of the NWI maps for the 13 county 
east-central Minnesota project area (scope of work is attached). Some of the pre-
processing of data and field-work will be conducted in-house, by the DNR 
Resource Assessment Office (RA). 

• A kick-off meeting was held with Ducks Unlimited and members of the technical 
advisory panel for the NWI project to provide an overview of the scope of work, 
identify potential risks, and determine required actions to address these risks. 

• DU and RA held a coordination meeting to plan for field logistics and technology 
transfer. 

• DU and RA have begun gathering and formatting aerial imagery and other 
ancillary GIS data (soils, flood maps, local wetland inventories, DNR Public 
Water Inventory, and bathymetry). DU has acquired radar imagery from 
PALSAR. 

• DU has begun testing of batch processing operations to move from pilot-scale 
operations to full production-scale. 

 
Result Status as of July 2011:  

• DU and RA have gathered all the data for the east-central project area including 
aerial photos, radar imagery, soils data, DEMs derived from available LiDAR, 
original NWI, and other wetland data. These data have been processed for 12 
test areas (USGS quads). Some of the data has also been processed for areas 
outside the 12 test quads. 

• Field training data was collected for 510 sites during May 2011 and processed for 
input into the classification model. Additional training data from other sources has 
also been processed for input in the classification model. 

• Multiple iterations of the segmentation have been performed on the test quads 
with the aerial photos, digital elevation models, radar and soils data. 
Segmentation parameters have been optimized to generate segments for the 
photo-interpretation process. 

• Initial runs of the potential wetlands classification have been tested and the 
process has been finalized.  The photo interpreters have been through a two-day 
training session with the Senior GIS Analyst. 

• Detailed methods and procedures have been developed, from data generation to 
data backup.  The process steps from generating the segments and potential 
wetland classification to performing the photo interpretation and quality control 
have been determined and tested.  Automation scripts have been written for 
processing the data, attribute editing, and quality control checks. 

• The photo interpretation process to produce the draft classification is currently 
underway for the 12 test quads. 

 
Result Status as of January 2012:  

• DU provided a working draft of the technical procedures document. This document 
will be revised as adjustments are made to the method. A final version will be 
provided at the end of this project phase. 

• DU conducted the tech transfer workshop with RA to harmonize the methods and 
approach used by the groups working on the NWI update.  
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• RA has completed all of the data preprocessing for 11 of the 13 counties in the 
east-central Minnesota project area. Processing continues for Rice and Goodhue 
counties, as this imagery was just recently delivered from the vendor. 

• The data for the Koochiching NWI update area have been compiled, but are still 
being preprocessed. 

• DU submitted draft data for nine quarter quads for DNR review. The production 
rate for draft NWI is beginning to accelerate. 

• RA conducted follow-up field investigations to provide feedback to DU on difficult 
to interpret wetlands. 

• DU has developed a website for the work they are doing on this project 
(http://www.ducks.org/Conservation/glaro/glaro-gis-mn-nwi-update) as well as a 
web-based status map that shows the status of data 
production. http://gis.ducks.org/MNNWI/  

• DNR has reviewed and provided comments on the draft data submitted to date. 
Errors of omission and commission as well as classification errors have all been 
addressed by DU. Solutions to a few technical and cartographic issues with the 
data are still in the development stage, but issues will be resolved shortly. 

• Results from the review of the initial draft data were presented to the Technical 
Advisory Committee to solicit additional feedback. 

• DNR and USFWS held a meeting in October targeted at federal and state 
agencies to provide an overview of the NWI project, the current status, and to 
seek potential partnering opportunities with these agencies.  

• DNR provided an overview and status report to GIS users at the Minnesota 
GIS/LIS conference in St. Cloud in October. 

 
Result Status as of July 2012:   

• DU has completed the initial image segmentation for all quarter quads in the 
ECMN project area except Rice & Goodhue (80% complete). Image 
segmentation on the remaining area is awaiting approval of an updated process 
for ensuring an accurate and efficient edge-matching procedure.  

• DU has also completed initial photo-interpretation on 274 quarter quads (50% 
complete) and conducted an internal QA/QC review on 178 of these (33%). For 
this reporting period, DU has done the initial photo-interpretation for 244 quarter 
quads and internal QA/QC for 168 quarter quads. 

• Quarter quads that have passed the internal review process are delivered to the 
DNR for its review. 

• Processing has been finalized for 61 quarter quads, except for the addition of the 
requested enhanced wetland attributes. 

• DU is currently developing the computer code to generate additional wetland 
attributes for the Eggers and Reed wetland plant community classification and 
the hydro-geomorphic classification. 

• DU has also developed the model code for the wetland probability layer. 
• Pre-processing of all data for the Koochiching project area was completed and 

the image segmentation has also been completed for all 50 quarter quads in this 
area. 

• Initial image interpretation is nearly complete for all quarter quads in this area 
and an internal review has been completed for 20 quarter quads (40% complete). 

http://www.ducks.org/Conservation/glaro/glaro-gis-mn-nwi-update
http://gis.ducks.org/MNNWI/
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• The production-level mapping methods developed for this project were presented 
at the ASPRS annual conference in Sacramento by Aaron Smith (DU/Equinox 
Analytics) 

• The DNR has expanded the level of effort for QA/QC for the NWI data. This 
includes re-programming funds saved on data acquisition toward a service level 
agreement with the DNR Resource Assessment (RA) office to provide support for 
QA/QC review of the NWI data.  

• Some of the funds saved from the data acquisition component of this project 
were re-programmed toward a service level agreement with the DNR 
Management Information Service (MIS) bureau to develop an online review tool. 
The purpose of this review tool is to provide a simple and efficient way to gather 
stakeholder review comments on the NWI from local wetland experts. This web-
based mapping application displays the draft NWI data along with aerial imagery 
and LiDAR data. The application has tools that allow users to submit suggested 
revisions to the data. This tool has been developed, tested and deployed. 

• The budget detail (Attachment A) has been modified to identify the service level 
agreements with other DNR units as separate line items.  

• During this reporting period the DNR developed a Request for Proposal (RFP) for 
updating the NWI data for southern Minnesota. This RFP has been noticed in the 
State Register and we will be selecting a contractor to conduct the next phase of 
the NWI Update project. 

• The DNR has completed its review of 78 quarter quads of draft data. 

Results Status as of January 2013:  
• Ducks Unlimited (DU) has completed the photo-interpretation process for 437 out 

of 541 quarter quads (81%) in the East Central project area (201 within the last 6 
months). 

• DU’s internal QA/QC process has been completed on 433 out of 541 quarter 
quads (80%) in the east-central project area (265 within the last six months).  

• The DNR has conducted a secondary review on 317 quarter quads (59%) for this 
project area. Two-hundred and twelve of these were reviewed by the DNR 
Resource Assessment Program (RAP) and 105 of these were reviewed by DNR 
Ecological and Water Resources (EWR). Comments from the DNR have been 
incorporated by DU. 

• DU finished the scripting for the plant community and hydrogeomorphic 
classifications and tested the results and has developed the input layers needed 
for the HGM classification for the entire East Central project area. 

• RAP has completed draft NWI data for all 50 quarter quads in the Koochiching 
project area. 

• RAP completed an internal QA/QC review and EWR conducted a secondary 
review for the entire Koochiching project area. Final revisions are in process. 

 
Results Status as of July 2013:  
Ducks Unlimited completed all contracted tasks and provided a complete set of 
deliverables. The DNR reviewed these deliverables and conducted the final accuracy 
assessment on the data. The data have been publicly posted on the DNR Data Deli 
(http://deli.dnr.state.mn.us/) and a copy of the data has also been provided to the US 

http://deli.dnr.state.mn.us/
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Fish and Wildlife Service for posting on their Wetland Mapper website 
(http://www.fws.gov/wetlands/Data/Mapper.html). Aaron Smith (Equinox Analytics – 
Ducks Unlimited) presented at the Society of Wetland Scientists annual meeting in 
Duluth Minnesota on June 6, 2013 based largely on work that was done for this project. 
 
Results Status as of January 2014: 
All of the original tasks under this activity are complete and the data have been posted 
publicly. The remaining $10,175 in the budget was re-directed to accelerate the data 
processing task for the rest of the state. The DNR Resource Assessment Office has 
developed automated procedures for data processing. The initial results are currently 
under review. Once the results have been approved, the input GIS data for the rest of 
the state will be processed. This final additional task is expected to be complete by mid-
April of 2014. The DNR and other project participants have also written a manuscript 
that will be submitted to the journal Wetlands for publication. 
 
Final Report Summary:   
Updated wetland maps were created for 13 counties in east-central Minnesota, 
encompassing the Twin Cities metropolitan area. Wetlands in Minnesota were originally 
mapped by the U.S. Fish and Wildlife Service in early 1980’s as part of the National 
Wetlands Inventory (NWI). Although still widely used for land use planning, wetland 
permit screening and natural resource management, the original maps have grown 
increasingly out-of-date due to landscape alterations over the years. The data created 
for this project marks the first significant revision to the NWI in Minnesota.   

RESULT/ACTIVITY 2:  Methods Evaluation  
 
Description: The goal of this component of the project is to complete the methods 
evaluation work that was started under phase one of the overall project. Specifically, 
this entails completing a pilot test of wetland mapping techniques for a site located in an 
agricultural setting in southern Minnesota. The methods evaluation aims to help develop 
high-accuracy, cost-effective procedures for updating NWI maps for the various major 
landscapes in Minnesota. The agricultural region pilot study is important because it 
addresses issues that are unique to wetland mapping in an area that is scheduled for 
update in the next phase of the overall project. This component of the project will be 
conducted by the University of Minnesota Remote Sensing and Geospatial Analysis 
Laboratory.  
 
Summary Budget Information for Result/Activity 2: ENRTF Budget:   $126,040 
  Amount Spent:   $126,040 
  Balance:    $          0 
 
Deliverable/Outcome Completion 

Date 
Budget 

1. Updated wetland maps for pilot area 6/30/12 $32,000 
2. Wetland mapping protocol for southern MN 12/31/12 $87,040 
3. Conduct workshop on wetland mapping 9/30/12 $7,000 
 
Result Completion Date: June 30, 2012 

http://www.fws.gov/wetlands/Data/Mapper.html
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Result Status as of January 2011: 

• A contract between the DNR and the UMN was developed and signed covering 
the completion of a third pilot test area in the agricultural region of Minnesota 
(scope of work is attached). 

• Preliminary data gathering and evaluation for the third pilot area has begun. 
 
Result Status as of July 2011: 

• A pilot area was selected in the vicinity of Swan Lake near Mankato, MN.  
• Imagery and other data are being acquired for the pilot areas. Currently, 

PALSAR and optical data are in hand.  Radarsat-2 and lidar-derived DEM data 
have been ordered. 

 
Result Status as of January 2012: 

• UMN continued to develop and test mapping methods for the Swan Lake pilot area 
near Mankato, MN. 

• An additional (informal) pilot area was selected in Big Stone County to look at the 
effects of a different landscape on wetland mapping methods. 

• UMN presented wetland mapping methods to the US Fish and Wildlife Service 
Regional Office. 

• UMN has authored two publications related to the methods development work for 
this project. One paper has been accepted for publication and the second paper is 
in review. 

o Corcoran, J., J.F. Knight, B. Brisco. K. Shannon, A. Cull, and K. 
Murnaghan. Integration of Optical, Topographic, and Radar Data for 
Wetland Mapping in Northern Minnesota.  Canadian Journal of Remote 
Sensing.  Accepted for publication. 

o Knight, J.F. and B.P. Tolcser. Remote classification of wetlands using 
decision trees. Photogrammetric Engineering and Remote Sensing.  In 
review.   

 
Result Status as of July 2012: 

• RSGAL researchers conducted an extensive study of the effects of digital 
elevation model (DEM) preprocessing and mapping algorithm choice on the 
accuracy of wetlands maps in three physiographically different regions of 
Minnesota.  The results of this study are being compiled and will be submitted for 
publication in a peer reviewed scientific journal and included in reports to 
LCCMR. 

• RSGAL researchers continued studying optimal geospatial data types and 
mapping methods for wetlands in agriculture dominated portions of Minnesota.  
Current study sites are in the Swan Lake watershed near Mankato and the Big 
Stone watershed in western MN.  Findings from this research will be incorporated 
into NWI mapping methods. 

• Presentations: 
o Corcoran, J., Knight, J. Incorporating Data from Several Remotely Sensed 

Platforms to Map Current and Potentially Restorable Wetlands. 
International Association for Ecology (INTECOL), Orlando, FL, June 6, 
2012. 
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o Corcoran, J., Knight, J. Incorporating Data from Several Remotely Sensed 
Platforms to Accurately Map Current and Potential Wetlands. American 
Society for Photogrammetry and Remote Sensing (ASPRS), Sacramento, 
CA, March 5, 2012. 

Results Status as of January 2013:  
• The University of Minnesota Remote Sensing and Geospatial Analysis 

Laboratory (RSGAL) hosted a technical workshop on wetland mapping for the 
southern Minnesota NWI update project. This full day event was held on the 
University of Minnesota Campus and was attended by three staff from St. Mary’s 
University Geospatial Services (GSS). GSS was selected under the Phase 3 
grant to update the wetland inventory maps for southern Minnesota.  

• RSGAL researchers conducted an extensive study of the effects of digital 
elevation model (DEM) preprocessing and mapping algorithm choice on the 
accuracy of wetlands maps in three physiographically different regions of 
Minnesota.  The results of this study have been compiled and are being prepared 
for publication in a peer reviewed scientific journal and included in reports to 
LCCMR. 

• RSGAL researchers continued studying optimal geospatial data types and 
mapping methods for wetlands in agriculture dominated portions of Minnesota.  
Current study sites are in the Swan Lake watershed near Mankato and the Big 
Stone watershed in western MN.  Findings from this research will be incorporated 
into NWI mapping methods. 

• Publications 
o Knight, J.F., B. Tolcser, J. Corcoran, and L. Rampi. The effects of data 

selection and thematic detail on the accuracy of high spatial resolution 
wetland classifications. Photogrammetric Engineering and Remote 
Sensing.  In press. 

o Jiang, Z., Shekhar, S., Mohan, P., Knight, J.F., Corcoran, J.  Learning 
spatial decision tree for geographical classification: a summary of results. 
ACM SIGSPATIAL GIS 2012.  In press. 

o Corcoran, J.M. and Knight, J.F.  Influence of Multi-Platform, Multi-
Frequency, and Multi-Temporal Remote Sensing Data on the 
Performance and Accuracy of Decision Tree Classification of Wetlands.  
Remote Sensing.  In review. 

o Rampi, L. and Knight, J.F. Using lidar and high resolution imagery for 
wetland mapping in Minnesota. Remote Sensing.  To be submitted in 
spring 2013.   

o Knight, J.F., Kloiber, S.M., Corcoran, J.M., Rampi, L.P.  Effects of digital 
elevation model preprocessing and topographic derivations on wetland 
mapping accuracy.  Journal TBD.  To be submitted in summer 2014.  

• Presentations  
o Corcoran, J.M.; Knight, J.F.; 2012. The influence of multi-platform, multi-

frequency, and multi-temporal remote sensing and field reference data 
quality on the accuracy of decision tree classification of wetlands. 
Minnesota GIS/LIS Consortium, St. Cloud, MN, October 7, 2012. 
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Results Status as of July 2013:  
The University of Minnesota delivered updated wetland map data for all the pilot areas 
along with a complete wetland mapping protocol document for southern Minnesota. 
Additionally, the University of Minnesota hosted a wetland mapping methods workshop 
with the mapping vendor for southern Minnesota and other project stakeholders. Lian 
Rampi (University of Minnesota) presented at the Society of Wetland Scientists annual 
meeting in Duluth Minnesota on June 6, 2013 based on the methods assessment work 
performed for this project. 

• Publications 
o Knight, J.F., B. Tolcser, J. Corcoran, and L. Rampi. 2013. The effects of 

data selection and thematic detail on the accuracy of high spatial 
resolution wetland classifications. Photogrammetric Engineering and 
Remote Sensing, 79(7): 613-623. 

o Corcoran, J.M, J.F. Knight, A.L. Gallant. 2013. Influence of multi-source 
and multi-temporal remotely sensed and ancillary data on the accuracy of 
random forest classification of wetlands in northern Minnesota. Remote 
Sensing, 5(7): 3212-3228. 

• Presentations 
o Rampi, L.P., Knight J.F.  Wetland mapping in Minnesota: an object based 

approach to integrate lidar and multispectral imagery. Society of 
Wetland Scientists, Duluth, MN, June 6, 2013. 

o Rampi, L.P., Knight J.F.  Wetland mapping in Minnesota: an object based 
approach to integrate lidar and multispectral imagery. International 
Lidar Mapping Forum, Denver, CO, February 12, 2013. 

 
Results Status as of January 2014: 
All method assessment tasks are complete. 
 
Final Report Summary:   
Researchers at the University of Minnesota conducted an extensive study of the effects 
of digital elevation model (DEM) preprocessing and mapping methods on the accuracy 
of wetlands maps in three different physiographic regions of Minnesota. This research 
covered two study sites in agricultural areas including the Minnesota River Headwaters 
(Big Stone County) and Swan Lake (Nicollet County) as well as a comparison site from 
northern Minnesota (St. Louis and Carlton Counties). The results of this effort were 
compiled and submitted for publication in in several peer-reviewed scientific journals 
along with results from the earlier phase of the NWI update project. Three hard copies 
and one electronic copy of these publications have been submitted with the final report 
to LCCMR. There have also been numerous presentations at professional conferences. 
 
RESULT/ACTIVITY 3:  Data Acquisition  
 
Description: Creating a high quality update of the NWI requires having high quality 
data. This component will include acquisition of imagery along with field verification data 
for the next anticipated mapping phase in southern Minnesota. We will acquire high-
resolution, spring leaf-off, multi-spectral aerial photography for 36 counties (although 
specifications could change based on recommendations from Result 2). The imagery 
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will be used as a base for updating the NWI maps for southern Minnesota. Data 
acquisition will also include a field-based assessment of wetland type for 400 to 500 
sites chosen using a stratified random selection process. The field data will be used to 
assess the accuracy of the final wetland maps. To maintain the independence of the 
field data, the field data acquisition will be managed by University of Minnesota, Remote 
Sensing and Geospatial Analysis Laboratory and not shared with the mapping 
contractor. 
  
Summary Budget Information for Result/Activity 3: ENRTF Budget:   $563,218 
  Amount Spent:   $563,218 
  Balance:    $          0 
 
Deliverable/Outcome Completion 

Date 
Budget 

1. High-resolution, spring leaf-off, multi-spectral 
digital aerial imagery 

6/30/14 $475,218 

2. Field data acquisition 06/30/13 $88,000 
 
Result Completion Date: 2014 
 
Result Status as of January 2011:    

• A Request for Proposals was developed and advertised. A vendor was selected 
to acquire high-resolution, leaf-off imagery for southern Minnesota this coming 
spring. 

• An interagency agreement was developed between DNR and MnGeo to 
establish a partnership to better manage the spring aerial imagery acquisition 
project for southern MN.  

• A contract between the DNR and the UMN was developed and signed covering 
the acquisition of field validation data for the southern agricultural region of 
Minnesota. Acquisition of field data will take place this summer. 

 
Result Status as of July 2011: 

• Acquisition of aerial photography was completed for 35 out of 36 counties. 
Imagery acquisition was conducted between April 12, 2011 and May 16, 2011. 
However, due to weather issues, the acquisition for Meeker County will be 
delayed until spring 2012. 

• Preliminary image processing has been completed for all of the acquired images 
including aero-triangulation and seam line edits. Processing of the ortho-rectified 
imagery is ongoing. Delivery of both stereo and ortho-rectified imagery is on 
schedule for later this summer. 

• The UMN has hired and trained field staff for collecting validation data.  
• Acquisition of field data for southern MN was initiated in May 2011. However, 

these efforts were temporarily suspended during the State government shutdown 
from July 1 to July 21, 2011. 
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Result Status as of January 2012: 
• Draft imagery for 35 out of 36 counties in southern Minnesota was provided by the 

aerial photography vendor (Surdex, Inc.). Imagery for Meeker County will be 
acquired in spring 2012. 

• A detailed review of the draft imagery was conducted by DNR, MnGeo, and other 
project partners. All comments were addressed by the vendor (Surdex). 

• Final imagery was delivered for 35 counties. The acceptance of the data is 
pending the results of the horizontal accuracy assessment, which is being 
conducted by MnDOT.  

• UMN completed the field data acquisition and delivered the data to the DNR for 
2703 sites (1722 upland and 981 wetland sites). DNR will be reviewing these 
data. 

 
Results Status as of July 2012: 

• Imagery data that was delivered by Surdex for 35 counties in southern MN has 
passed the quality control assessment. The data have been accepted and posted 
to the MnGeo web service for public access. 

• Imagery acquisition for last remaining county in the acquisition area was delayed 
to spring 2013 due to weather issues this past spring. 

• The DNR and MnGeo have been conducting outreach campaign to reach 
potential partners for next imagery acquisition phase. A series of informational 
meeting were held as a part of this effort in Fergus Falls, Bemidji, & Brainerd. 

Result Status as of January 2013 
• There were no additional actions related to result two (data acquisition) in this 

reporting period. All field data has already been acquired and the one remaining 
county of imagery data that needs to be acquired will be acquired this spring.  

 
Results Status as of July 2013:  
The remaining imagery for southern Minnesota was acquired and the processing is 
about 90% complete. Final processing and quality assessment will be performed in 
FY14. This is the only outstanding deliverable for this project. We anticipate that the 
project should be 100% complete by October of 2014. 
 
Result Status as of January 2013 
The remaining imagery for southern Minnesota was acquired and processing is 
complete. The final quality assessment found the data to meet the requirements. The 
data was delivered to the State and is posted on the MnGeo web service for public 
access 2014. All data acquisition tasks are complete. 

Results Status as of July 2013: 
All data acquisition tasks are complete. 
 
Results Status as of January 2014: 
All data acquisition tasks are complete. 
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Final Report Summary:   
Accomplishments for this project include acquiring high-resolution, spring, leaf-off, 
digital aerial imagery for 23,900 square miles of southern Minnesota as well as 
acquiring field validation data for southern Minnesota.  

V.  TOTAL ENRTF PROJECT BUDGET:   
 
Personnel:  $ 135,000 (DNR Project Manager – 0.65 FTE unclassified employee) 
Contracts:  $ 955,000 (Details in Attachment A) 
Equipment/Tools/Supplies:  $ 1,500 (batteries and accessories for GPS units, spray 
paint for accuracy assessment targets, etc.) 
Acquisition (Fee Title or Permanent Easements): $ NA 
Travel:  $ 6,000 ($4,000 for in-state travel for business meetings, field work, and 
training. $2,000 for out-state travel for the DNR project manager to attend a professional 
symposium/workshop regarding current technology for mapping wetlands – American 
Society of Photogrammetry and Remote Sensing) 
Additional Budget Items: $ 500 (printing field manuals, procedures documents, 
reports, and maps) 
 
TOTAL ENRTF PROJECT BUDGET: $1,100,000 
 
Explanation of Capital Expenditures Greater Than $3,500:  None 
 
VI.   PROJECT STRATEGY:  
A. Project Partners:   Joe Knight, Ph.D., of the University of Minnesota, Remote 
Sensing and Geospatial Analysis Laboratory will receive a total of $180,000; $100,000 
for Result 2 (methods evaluation) and $80,000 for Result 3 (field data acquisition). 
Other partners providing in-kind services for this project include the Minnesota Pollution 
Control Agency, the Minnesota Board of Water and Soil Resources, the U.S. Fish and 
Wildlife Service, and the Minnesota Dept. of Administration’s Geographic Information 
Office. 
B. Project Impact and Long-term Strategy:  This is the second phase of a multi-
phase project to update the National Wetlands Inventory (NWI) for the entire state of 
Minnesota.  The NWI provides critical baseline data that inform many wetland 
management actions and policies.  We anticipate submitting proposals every other year 
for four additional phases (ie. 2012, 2014, 2016, and 2018). The estimated total budget 
for the project is $7.5 million. With this project phase, we will have received $1.65 
million (about 22%) from ENTRF. Upon completion of this project phase, we will have 
completed 100% of the methods evaluation, 50% of imagery and field validation data 
acquisition for the state, and 10% of the updated wetland maps for the state. 
C. Other Funds Proposed to be Spent During the Project Period:  The DNR and its 
partners listed above will provide approximately $20,000 of in-kind staff time in support 
of this project (but not tracked for reporting purposes). In addition, approximately 
$154,000 in Department Operations and Division Support charges accruing to this 
project will be covered by Division general funds or other eligible Division funds. 



17 
 

Based on experience from phase one of this project, we also anticipate being able to 
find matching funds from local, state, and federal agencies for imagery acquisition. Any 
savings in the ENRTF budget that result from this will be redirected toward updating 
NWI maps for additional areas and/or acquisition of additional field data to validate the 
updated maps. 
D. Spending HIstory: The ENTRF provided $550,000 for the first phase of this project. 
The first phase included: 1) developing mapping standards designed to ensure that the 
final product meets the needs of end users; 2) acquiring high-resolution, leaf-off, color 
infrared aerial imagery for northeastern and east-central Minnesota; and 3) evaluating 
imagery sources and mapping technologies to identify the most cost-effective, reliable 
inventory procedures for pilot study sites in northeastern and east-central Minnesota. 
Matching funds for imagery acquisitions included: 1) National Geospatial Intelligence 
Agency (via U.S. Geological Survey) - $25,000, 2) St. Louis County Planning 
Department - $24,999, 3) Minnesota Pollution Control Agency - $111,373, 4) National 
Oceanographic Atmospheric Administration (via DNR Coastal Zone Program) - 
$24,227, and 5) DNR  - $181,065. We anticipate that the Metropolitan Council will 
contribute about half of the cost (about $70,000) for acquiring imagery for the 13-county, 
east-central Minnesota project area (the Metropolitan Council will cover the costs for the 
seven-county region that corresponds to their statutory authority). 
 
VII.   DISSEMINATION:   
Imagery acquired for this project is available to the public through the Minnesota 
Geospatial Information Office 
(http://www.mngeo.state.mn.us/chouse/wms/geo_image_server.html). The MnGeo 
imagery service receives about one million page requests per month for the southern 
Minnesota imagery. This is the first publicly available leaf-off imagery data for southern 
Minnesota since 1991. 

The updated wetland map data are available through an interactive mapping application 
on the DNR’s website at:  http://www.dnr.state.mn.us/eco/wetlands/map.html.  The data 
can also be downloaded, free of charge, for use in geographic information system 
applications through the DNR’s data deli at:  http://deli.dnr.state.mn.us/. The data will 
eventually be incorporated into the national “Wetland Mapper” application maintained by 
the U.S. Fish and Wildlife Service.  

The wetland mapping procedures and accuracy results for the 13-county updated NWI 
data are presented and discussed in a manuscript that has been submitted to the 
journal Wetlands, a publication of the Society of Wetland Scientists (SWS). Information 
from this project was also presented at the SWS annual conference in Duluth, MN in 
2013. In addition, a press release was distributed regarding the updated NWI data and 
the story was published on several online news websites.  

Researchers at the University of Minnesota conducted an extensive study of the effects 
of digital elevation model (DEM) preprocessing and mapping methods on the accuracy 
of wetlands maps in three different physiographic regions of Minnesota. This research 
covered two study sites in agricultural areas including the Minnesota River Headwaters 
(Big Stone County) and Swan Lake (Nicollet County) as well as a comparison site from 
northern Minnesota (St. Louis and Carlton Counties). The results of this effort were 

http://www.mngeo.state.mn.us/chouse/wms/geo_image_server.html
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compiled and submitted for publication in in several peer-reviewed scientific journals 
along with results from the earlier phase of the NWI update project. Three hard copies 
and one electronic copy of these publications have been submitted with the final report 
to LCCMR. There have also been numerous presentations at professional conferences. 

Publications 

Corcoran, J.M, Knight, J.F., B. Brisco, S. Kaya, A. Cull, and Murhnaghan, K. (2011) The 
integration of optical, topographic, and radar data for wetland mapping in northern 
Minnesota. Canadian Journal of Remote Sensing, 27(5): 564-582. 

Corcoran, J.M., Knight, J.F., and Gallant, A.L. (2013) Influence of Multi-Source and 
Multi-Temporal Remotely Sensed and Ancillary Data on the Accuracy of Random Forest 
Classification of Wetlands in Northern Minnesota. Remote Sensing, 5(7): 3212-3238. 

Knight, J.F., B. Tolcser, J. Corcoran, and Rampi, L. (2013) The effects of data selection 
and thematic detail on the accuracy of high spatial resolution wetland classifications. 
Photogrammetric Engineering and Remote Sensing, 79(7): 613-623. 

Rampi, L.P., Knight, J.F., and Pelletier, K.C. (2014) Wetland mapping in the Upper 
Midwest United States: An object-based approach integrating lidar and imagery data. 
Photogrammetric Engineering and Remote Sensing. 80(5): 439-449. 

Rampi, L.P., Knight, J.F., and Lenhart, C.F. (2014) Comparison of flow direction 
algorithms in the application of the CTI for mapping wetlands in Minnesota. Wetlands, 
34(3): 515-525. 

 
VIII.   REPORTING REQUIREMENTS:  Periodic work program progress reports will 
be submitted not later than January 2011, July 2011, January 2012, July 2012, 
January 2013, July 2013, and January 2014.  A final work program report and 
associated products will be submitted between July 31, 2014 and August 31, 2014 
as requested by the LCCMR. 
 



19 
 

 
Figure 1: The focus of the first update of NWI will be the 13 counties 
Metropolitan Area. 



J:\SHARE\WORKFILE\ML2010\2010 WP\_Subd 3 - NR Data - Info\3b - MN Wetlands Inv\2014-08-20 Revised FINAL Attach A.xlsx

Attachment A:  Final Budget Detail for 2010 Projects

Project Title: Updating the National Weltand Inventory for Minnesota: Phase 2 (019-A3)

Project Manager Name: Steve Kloiber

Trust Fund Appropriation:  $1,100,000
1) See list of non-eligible expenses, do not include any of these items in your budget sheet
2) Remove any budget item lines not applicable

2010 Trust Fund Budget Result 1 Budget: Amount Spent Balance (7/31/14) Result 2 Budget: Amount Spent Balance 
(7/31/14)

Result 3 Budget: Amount Spent Balance (7/31/14) TOTAL 
BUDGET

TOTAL BALANCE

BUDGET ITEM Updating Wetland 
Maps 

Methods Evaluation Data Acquisition

PERSONNEL: wages and benefits                    
(Steve Kloiber 65%FTE - unclassified)

$52,080 $52,080 $0 $26,040 $26,040 $0 $52,080 $52,080 $0 $130,200 $0

MIS Direct Support (Craig Perrault/Hal Watson - 
87 hrs)

$5,520 $5,520 $0 $5,520 $0

Contracts                                                                        
Professional/technical             (Ducks 
Unlimited, selected by RFP, Wetland 
Mapping)

$288,886 $288,886 $0 $288,886 $0

Professional/technical                 (Univ. of 
MN, Methods Evaluation)

$100,000 $100,000 $0 $100,000 $0

Professional/technical                 (Univ. of 
MN, Field Data Acq.)

$80,000 $80,000 $0 $80,000 $0

Professional/technical             (Surdex, 
selected by RFP, Aerial Imagery)

$428,873 $428,873 $0 $428,873 $0

Printing (procedures, reports, & maps) $0 $0 $0 $0
Supplies (field supplies, batteries, GPS 
accessories, spray paint)

$643 $643 $0 $758 $758 $0 $1,401 $0

Travel expenses in Minnesota (mileage, per 
diem, lodging, etc.)

$1,506 $1,506 $0 $1,506 $1,506 $0 $3,012 $0

Travel outside Minnesota (conference/training, 
see note in workplan)

$0 $0 $0 $0 $0 $0

Other (Service Level Agreement with DNR 
Resource Assessment Office in Grand Rapids, 
MN for support on wetland mapping including 
data processing, field recon., and QA/QC)

$62,107 $62,107 $0 $62,107 $0

COLUMN TOTAL $410,742.10 $410,742 $0.00 $126,040 $126,040 $0 $563,218 $563,218 $0 $1,100,000 $0



Selected news websites with stories about the updated NWI data 

  



 

Link to the story is highlighted. The full story from the website is shown below. 



 



 

  



 

From LCCMR’s Facebook page 
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Abstract: Wetland mapping at the landscape scale using remotely sensed data requires 
both affordable data and an efficient accurate classification method. Random forest 
classification offers several advantages over traditional land cover classification 
techniques, including a bootstrapping technique to generate robust estimations of outliers 
in the training data, as well as the capability of measuring classification confidence. 
Though the random forest classifier can generate complex decision trees with a multitude 
of input data and still not run a high risk of over fitting, there is a great need to reduce 
computational and operational costs by including only key input data sets without 
sacrificing a significant level of accuracy. Our main questions for this study site in 
Northern Minnesota were: (1) how does classification accuracy and confidence of mapping 
wetlands compare using different remote sensing platforms and sets of input data; (2) what 
are the key input variables for accurate differentiation of upland, water, and wetlands, 
including wetland type; and (3) which datasets and seasonal imagery yield the best 
accuracy for wetland classification. Our results show the key input variables include terrain 
(elevation and curvature) and soils descriptors (hydric), along with an assortment of 
remotely sensed data collected in the spring (satellite visible, near infrared, and thermal 
bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and 
horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite 
radar). We undertook this exploratory analysis to inform decisions by natural resource 
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managers charged with monitoring wetland ecosystems and to aid in designing a system 
for consistent operational mapping of wetlands across landscapes similar to those found in 
Northern Minnesota.  

Keywords: wetland; classification; data integration; decision tree; random forest 

 

1. Introduction 

Wetlands provide many ecosystem services such as filtering polluted water [1], mitigating flood 
damage [2–4], recharging groundwater storage [5,6], and providing habitat for diverse flora and 
fauna [7–9]. Wetland quality and quantity are particularly important in light of the increasing impacts of 
climate change, a growing human population, and changing land cover and land use practices [10,11]. It 
is therefore essential that wetlands are managed appropriately and monitored frequently. 

The US Army Corps of Engineers defines wetlands as: “areas that are inundated or saturated by 
surface or ground water at a frequency and duration sufficient to support, and that under normal 
circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil 
conditions” [12]. The Corps identifies potential wetland areas using three broad categories: soils, 
vegetation, and hydrology, where the classification is specifically based on geological substrate (soil 
type, drainage), the presence and type of hydrophytic vegetation, and topographic features that 
influence the hydrological movement and storage of water.  

Characteristics of wetland structure and position are not the only influential factors on the 
permanence and duration of a wetland’s capacity to store water. Regional and local climate conditions 
are the main driving forces behind a wetland’s hydroperiod. Hydroperiod can be defined as the 
seasonal pattern of water level, duration and frequency in a wetland, akin to a “hydrologic signature”. 
The hydroperiod of a wetland has been described by Wissinger [13] as the single most important 
aspect of the biodiversity within a wetland habitat, because the duration between dry and wet periods 
directly influences complex biological interactions and communities. The phenology of a wetland has 
a major influence on its classification and changes in the hydroperiod over time can thus alter a 
wetland’s classification. 

Accurate landscape-scale wetland maps are important for stakeholders that represent many different 
interests in wetland ecosystems. Accurate wetland maps are needed to: better respond to and prepare 
for natural disasters and invasive species mediation [14,15], conserve and restore wetland areas 
following policy and regulation changes [16,17], address water quality and quantity concerns [18,19], 
and better understand the linkages and seasonality of these ecosystems to biodiversity and other natural 
resources [20,21]. However, many existing wetland maps are out of date and efforts for updating them 
tend to happen over small geographic extents or at intervals too infrequent for appropriate 
environmental mitigation [22]. Furthermore, traditional wetland mapping methods often rely on optical 
imagery and manual photo interpretation or classification using single date imagery. These maps 
typically under-represent ephemeral and forested wetlands, due to their possible absence during time 
of data acquisition and because of obscuration by vegetative canopy [18]. Even if the temporal 



Remote Sens. 2013, 5 3214 
 
coverage is appropriate, optical imagery alone may not reveal wetlands obscured by clouds or haze, or 
a dense vegetated canopy. 

The integration of multi-source (multi-platform and multi-frequency) and multi-temporal remotely 
sensed data can provide information for mapping wetlands in addition to the use of single date optical 
imagery traditionally used for wetland classification. Surface features, such as extent of inundation, 
vegetation structure, and likelihood of wetlands can be better resolved with the addition of longer 
wavelength radiometric responses, topographic derivatives [23], and ancillary data about the 
geological substrate [24,25]. Long-wave radar signals, such as C-band (5.6 cm) or L-band (23 cm), 
have been found to improve land cover classification accuracy because these wavelengths have deeper 
canopy penetration and are sensitive to soil moisture and inundation [26–28]. These active sensors are 
not as sensitive to atmospheric effects, penetrate clouds, and are operational at night, thereby 
increasing the temporal coverage of wetland mapping. Research has shown that data from multiple 
sources and over multiple seasons capture greater variation in hydroperiod and vegetative condition 
and thus have the potential to increase both classification accuracy and confidence [29–31].  

Given the wealth of remotely sensed and ancillary data, a robust wetland classification method 
applied to large geographic areas needs to be computationally fast, require no assumptions about data 
distribution, handle nonlinearity in relations between input variables, and be capable of using numeric 
and categorical data. In addition, the assessment of results will be improved if the classification 
method identifies outliers in the training data, provides rankings of the importance of the input 
variables, and produces internal estimates of error and confidence of the output classification. Many 
decision tree classifiers fulfill all these requirements and have been used in land cover mapping for 
years [32–35], including several that use the meta-classifier random forest [36–38]. 

Our goal was to identify an optimal selection of input data from multiple sources and time periods 
of remotely sensed and ancillary data for accurate wetland mapping using random forest decision tree 
classification in a forested region of Northern Minnesota. We assessed ways of increasing 
classification accuracy, confidence, and practicality by assessing results from several combinations of 
input data. Our main questions for this study site in Northern Minnesota were: (1) how does 
classification accuracy and confidence of wetland mapping compare using different remote sensing 
platforms and ancillary data from different periods of the growing season; (2) what are the key input 
variables for accurate differentiation of upland, water, and wetlands, including wetland type; and 
(3) which datasets and seasonal imagery yield the best accuracy for wetland classification. 

2. Methods 

2.1. Study Area  

Much of northern Minnesota (MN) is forested. The hydrographic patterns of the landscape have 
been influenced heavily by glacial advances and retreats over the millennia [39]. Our study centered on 
Cloquet, MN (Figure 1), which lies in the sparsely populated “Arrowhead” region of northeastern 
Minnesota. This study area is dominated by managed and natural hardwood and conifer forests, woody 
and herbaceous wetlands [40], and low density residential housing with a small city center (population 
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12,000) [41]. The elevation across the study area is 330–450 m above sea level (mean of 392 m), with 
the slope of the landscape averaging less than 1.7 degrees. 

Given the variable nature of hydroperiod in space and over time, the weather during remotely 
sensed and field data acquisition is especially relevant when mapping wetlands. We collected field data 
in the summers of 2009 and 2010 and acquired remotely sensed data for several dates from 2008 to 
2010. The 30-year normal total annual precipitation for the nearest major NOAA weather station in 
Duluth, MN (about 35 km away from the study site) measures between 5 and 10 cm in the spring, 
about 10 cm in the summer, and between 5 and 10 cm in the fall, for a total of about 79 cm 
annually [42]. The 30-year normal minimum precipitation in the spring is between 0.6 and 1.25 cm, 
with a maximum between 18 and 20 cm. In the summer the minimum precipitation is between 1.75 
and 2 cm, with a maximum between 20 and 25 cm. The minimum precipitation in the fall is around 
0.25 cm, with a maximum between 18 and 23 cm. Hydrologists in the northern hemisphere use the 
term water year to describe the period of time between 1 October and 30 September of the next 
calendar year. The lowest level of precipitation is in general during the fall and the landscape is 
typically replenished during the winter and spring of that water year. Precipitation over the study site 
during the 2008 water year (October 2007–September 2008) was slightly above normal, whereas the 
rest of that summer and well into the 2009 water year the trend was slightly below normal. 
Precipitation during the first part of the 2010 water year was slightly above normal around the study 
site and trended more towards normal throughout the north east region, whereas in the latter part of 
that year the trend was slightly below average [43].  

Figure 1. Study area near Cloquet, Minnesota (MN). The aerial photo on the right is from 
the 2008 National Agricultural Imagery Program (NAIP).  
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2.2. Land Cover Classification Schemes  

Two levels of classification were performed. The land cover classification schemes we used 
differentiated between upland, water, and wetland areas (Level 1) and sub-classified wetlands into 
wetland type (Level 2). Upland areas included all non-wetland classes, for example: urban, forest, 
grassland, agriculture, and barren land cover classes. Areas classified as wetland were sub-classified 
into a modified version of the Cowardin classification scheme [44], including the three most common 
wetland classes in the study area according to the National Wetlands Inventory (NWI) [45]: emergent, 
forested, and scrub/shrub wetlands. We merged the palustrine unconsolidated bottom class with the 
emergent wetland class and the riverine unconsolidated bottom class with the water class, based on 
visual assessment of the landscape variability in the study area (Table 1).  

Table 1. Level 2 classification and our corresponding class modifications.  

Level 2 Class Modification of the Classes Used 
Upland Upland 
Water Water + Palustrine Unconsolidated Bottom 
Emergent Wetland Emergent + Riverine Unconsolidated Bottom 
Forested Wetland Forested Wetland 
Scrub/Shrub Wetland Scrub/Shrub Wetland 

Any errors present in the initial Level 1 classification result prior to sub-classifying the wetland 
class can be propagated to the Level 2 classification [46–49]. We tested whether classification 
accuracy could be improved by developing a Level 2 classification directly from the full set of input 
data without first producing a Level 1 classification, but the results were too poor for further 
consideration. Thus, all subsequent Level 2 classification results and discussion represent a 
hierarchical sub-classification of the wetland class from the results of the corresponding Level 1 land 
cover classification. 

2.3. Decision Tree Classification  

We used random forest as the decision tree classifier for our study [50]. Generating decision trees 
was an efficient means of using our point reference training data to establish relations between our 
independent (remotely sensed and ancillary data) and dependent (field determined land cover class) 
variables to produce a land cover classification [51,52]. Random forest is a meta-classifier that consists 
of a collection (forest) of decision trees using training data. The decision trees were constructed with a 
random sample of input variables selected to split at each node [53]. The default number of variables 
selected equals the square root of the total number of input variables, which we held as a constant 
during forest growing. The decision trees were fully grown without pruning using a sample (with 
replacement) of about one-third of the training data. The cross-validation accuracy was calculated 
using the remaining training data (out-of-bag) and was used to evaluate the relative accuracy of each 
model prior to a formal accuracy assessment. Each tree produced a 'vote' for the final classification, 
where the final result was the class which had the highest number of votes [53]. The classification 
confidence, or probability, equals the ratio of the number of votes for a given class out of the total 
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number of trees generated, with a resulting value range of 0–1. For each model tested we ran 500 
decision trees. 

We built several random forest models per classification level by integrating different combinations 
of remotely sensed and ancillary input data to determine: (1) the most important data sources 
(corresponding to platform and wavelength of optical or radar data, and ancillary topographic and soils 
data derivatives), (2) the most significant input variables for mapping wetlands and classifying wetland 
type, and (3) the most effective temporal period (all data or only spring, summer, or fall season).  
Pre-defined combinations of input data are shown in Figure 2. We reviewed the top three models with 
highest overall accuracy for each classification level. 

To determine if reducing the data load significantly changed the accuracy of the classification, we 
re-ran the top random forest models having the highest overall accuracy using only a selection of 
important variables-referred to as Reduced Data Load (RDL) models from this point forward. We used 
a combination of assessment measures from random forest (i.e., mean decrease in accuracy and Gini 
index for the overall model and per class, explained in the Accuracy Assessment section below) and 
expert knowledge to assess variable importance. In the selection of important variables for the RDL, 
we thought it was valuable to have fair representation from all data sources and seasons, to incorporate 
both remote sensing and wetland science knowledge, and to utilize the measures of variable 
importance produced by the random forest classifier. For example, if a radar data variable was within 
the top 20 variables for either the Gini index or the mean decrease in accuracy, that variable was 
included in the RDL model based on our knowledge of the sensitivity of the radar signal to saturated 
conditions. Selection for the Level 2 RDL was complex. We considered variable importance measures 
for the overall model and for each of the three wetland classes, and we incorporated expert knowledge 
of specific input data layers for our final selection of the RDL. We selected 10 important variables for 
the Level 1 classification. We increased our selection to 15 variables for the Level 2 classification to 
accommodate anticipated overlap in the input data distributions between different classes. 

2.4. Training and Test Reference Point Data 

Reference training and test point data (Table 2) were compiled from randomly generated field sites 
visited in the summers of 2009 and 2010, from study sites of an existing wetland monitoring program 
(centroids from polygons of the 2006–2008 MN Department of Natural Resources Wetland Status and 
Trends Monitoring Program [19]), and from our expert knowledge in photo interpretation. The 
protocol for reference data collection in 2009 and 2010 involved several steps in the field: two 
different field crews were sent to locate random ground reference points with a GPS unit; crew 
members identified the dominant Cowardin wetland type [44] within a reasonable visual distance; 
crew members recorded basic observations about the site's characteristics; 2–5 photographs were taken 
per site; and crew members recorded the point ID, photo ID, Cowardin classification, and GPS 
coordinates in a back-up field book. Each field point represents a spatial area equal to the ground 
resolution of the input raster data used in the model (30 m). If the landscape surrounding the field point 
was not homogeneous within a reasonable visual distance, the field crew would use their discretion 
and move the GPS point to a new location which was more homogeneous. Empirical comparison of 
accuracies of results using different subdivisions of training and testing data [45] led us to use a 
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stratified random sample of 75% of the reference point data for training the random forest classifier 
and 25% of the reference point data for testing the accuracy of the results. Reference points were 
added to the training dataset via photo interpretation to maintain appropriate representation of land 
cover classes and to preserve a suitable spatial distribution of training points. Assessment of outliers in 
the training dataset integrated the proximity measure from random forest (described in more detail 
below), aerial and field photo interpretation, and expert knowledge to determine whether training sites 
were appropriate reference for their respective classes. We filtered only training sites; all testing sites 
were maintained in the reference set (Table 2). Spatial autocorrelation in either reference dataset was 
not formally addressed in this study. 

Table 2. Summary of reference point data before and after the filtering of training sites. 

Land Cover 
Classification 

Training Sites Prior 
to Filtering 

Final Sites for  
Model Training 

Sites Used for  
Accuracy Testing 

Final Total  

Upland 464 305 136 441 
Water 69 46 19 65 

Wetland 421 402 149 551 
Total 954 753 304 1057 

Emergent Wetland 97 109 43 152 
Forested Wetland 156 140 49 189 

Scrub/Shrub Wetland 168 153 57 210 
Total 421 402 149 551 

The set of reference training data were evaluated for outliers using the proximity measure from the 
random forest classifier. Proximity was calculated by running the training dataset down each tree in the 
forest a second time, increasing the proximity value by one each time the training site occupied the 
same terminal node of the decision tree in the first and second run. The proximity measure was 
normalized by dividing by the total number of trees generated by random forest. Training sites with a 
low proximity measure may be outliers in the training data. For this study, the proximity measure was 
used to guide the selection and evaluation of training sites that were considered outliers. Each of the 
identified sites was evaluated and, subsequently, some of the sites were removed.  

2.5. Input Datasets and Process Flow 

The implementation used to run random forest required that all raster data have the same spatial 
resolution and geographic extent. We chose to resample all raster data to match the layer with the 
coarsest resolution: Landsat 5 Thematic Mapper (TM) at 30 m spatial resolution. Resampling an image 
can introduce errors prior to classification [48], so we used the nearest neighbor sampling approach to 
minimize alteration of the original data values for our optical imagery. All input data were used in 
raster format and coregistered using ERDAS Imagine (v. 2010) with a root mean square error (RMSE) 
of less than 15 m.  

In all of the tables and figures to follow, if a data source/platform is mentioned (e.g., “Landsat TM” 
or “radar”), all data layers from that source/platform are included in the tested combination. For 
example, the “All Season, All Data” model which uses Landsat TM, PALSAR, and Soils data includes 
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all Landsat TM bands and derivatives from all dates (Table 2), all PALSAR polarizations from all 
dates, and all Soils data layers. 

Following preparation of input datasets and training point data, we ran random forest to generate 
classification and confidence layers based on predefined combinations of datasets, including 
combinations of different platforms and seasons described earlier. We used our test point data to assess 
accuracy of each of the output classifications (Figure 2).  

Figure 2. Data process flow. Preprocessing of input datasets and reference point data 
(shown in blue) are in the left-hand column. Combinations of datasets used to perform 
random forest (shown in red), along with generation of the output classification, confidence 
maps, and accuracy assessment are referenced by boxes in the right-hand column. 

 

2.5.1. Topographic Input Data 

We used the US Geological Survey (USGS) National Elevation Dataset (NED) [54] (10 m 
resolution resampled to 30 m) to determine elevation and derive slope gradient, aspect, curvature, and 
flow accumulation across the study area. The accuracy of this dataset varied spatially, but the overall 
vertical root mean square error was 2.44 m. We applied the flow accumulation function provided by 
the Environmental Systems Research Institute (ESRI) ArcGIS (v. 10.0) to calculate the direction(s) of 
water flow across the landscape and accumulate flow for all downslope cells. Cells with high flow 
accumulation imply areas of concentrated flow, such as stream channels, and cells with low flow 
accumulation likely are ridges or plateaus [55]. The curvature metric is a second derivative of slope 
and influences the convergence and divergence of water flow [23]. The topography of this study area 
does not vary significantly (330–450 m elevation, 392 m mean elevation, 20 m standard deviation;  
0–37 degree slope with an average of 1.7 degrees). Compared to the height distribution of the study 
area, the vertical accuracy of the dataset has a negligible RMSE. 
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2.5.2. Soils Input Data 

Soil attributes are defining variables in all working definitions of wetland areas [44]. Though soils 
data are not available everywhere and the quality of the maps that are available may be questionable, 
we tested the effectiveness of including or not including soils data in this study. We extracted soils 
tabular and vector data from the US Department of Agriculture (USDA) Soil Survey Geographic Data 
Base (SSURGO) [56]. The following data layers were used based on their likelihood to be associated 
with wetland areas: soil type (e.g., mucky peat, loam), dominant and wettest drainage class (e.g., 
moderately well drained, poorly drained, and somewhat poorly drained), and hydric class (e.g., hydric, 
or partially hydric) [25,57]. We joined the tabular and vector data for these four soils data layers and 
then converted the layers to raster format with 30 m spatial resolution. 

2.5.3. Optical Input Data 

Northern Minnesota is frequently cloudy, particularly in the summer, making it a challenge to find 
cloud-free conditions over our study area. The only Landsat TM imagery available with adequate 
cloud-free conditions was from early spring and fall (Table 3). We used blue (TM Band 1, B), green 
(TM Band 2, G), red (TM Band 3, R), near-infrared (TM Band 4, NIR), two mid-infrared (TM Band 5, 
MIR1; and TM Band 7, MIR2), and thermal infrared (TM Band 6, TIR) bands from all image dates. 
We included NIR, MIR1, MIR2, and TIR because of their suitability for land cover mapping and 
detecting water content in plants and soil [58,59]. Though multi-temporal and multi-platform data were 
used, the acquired satellite data were not atmospherically corrected and the data remained in digital 
number format. All of the input data were integrated into a single dataset, from which the training data 
were derived to classify land cover as a single snapshot [60]. 

Table 3. Input optical data for decision tree classification. 

Season Date Band Combinations Platform-Source 

Spring 
17 April 2010 B, G, R, NIR, MIR1, MIR2, TIR  Satellite-Landsat 5 TM 
19 May 2010 B, G, R, NIR, MIR1, MIR2, TIR Satellite-Landsat 5 TM 

June 2009 B, G, R, NIR Aerial Orthophoto-NAIP 

Summer 
August 2008 B, G, R, NIR Aerial Orthophoto-NAIP  
August 2010 B, G, R Aerial Orthophoto-NAIP  

Fall 
21 September 2009 B, G, R, NIR, MIR1, MIR2, TIR Satellite-Landsat 5 TM 

4 October 2008 B, G, R, NIR, MIR1, MIR2, TIR Satellite-Landsat 5 TM 

We calculated both the normalized difference vegetation index (NDVI) and Tasseled Cap 
transformations for each TM image date. NDVI has been useful for separating vegetated versus  
non-vegetated areas and wet versus dry areas [61]. The brightness, greenness, and wetness axes of the 
Tasseled Cap transformation [62,63] have a long record of use in improving classification results, 
assessing land cover change, and aiding in estimates of forest structure and disturbance [64–66].  

Due to the aforementioned challenge to find cloud-free imagery during the summer season over our 
study area, we also acquired aerial orthophotos from the US Department of Agriculture (USDA) Farm 
Service Administration (FSA) National Agricultural Imagery Program (NAIP) for August 2008 and 
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2010 and an additional orthophoto from June 2009 (early leaf onset) to increase our temporal coverage 
of optical data during the summer season. The 2008 and 2009 images were acquired with visible and 
near infrared bands (blue, green, red, NIR), whereas the 2010 image was collected only in visible 
bands (blue, green, red). We used the red and near infrared bands to calculate NDVI for both 2008 and 
2009. All aerial orthophotos were resampled to 30 m spatial resolution. 

2.5.4. Radar Input Data 

We used synthetic aperture radar (SAR) from RADARSAT-2 (C-band, 5.6 cm wavelength) and 
Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar 
(PALSAR) (L-band, 23.6 cm wavelength) satellite systems (Table 4). We obtained two fully polarized 
RADARSAT-2 images (15 June 2009 and 19 September 2009) through the Canadian Space Agency’s 
Science and Operational Applications Research (SOAR) Program. Two additional dates (9 July 2009 
and 26 August 2009) were made available by the Canada Center for Remote Sensing (CCRS). Though 
proprietary data and licensing restrictions prohibited us from incorporating the backscatter data from 
the dates provided by CCRS, we were able to generate polarimetric decompositions for use in our 
analysis (all preprocessing steps were performed in the same manner, described below). All of the 
RADARSAT-2 imagery was provided by the vendor with the constant beta application look up table 
(LUT) applied to avoid over saturation of the data [67]. Table 4 outlines which dates included the 
backscatter plus polarimetric decompositions (“Full dataset”) and which dates did not include 
backscatter (“Decomp only”). 

We used the software package PCI Geomatica (v. 9.1) to preprocess the RADARSAT-2 imagery 
and generate polarimetric decompositions. Prior to resampling the imagery, we applied a boxcar filter 
(7 × 7 moving window) to reduce speckle and increase the number of effective looks for polarimetric 
decomposition [68]. The data were then resampled to 30 m using a mean window after terrain 
correcting the imagery. We then radiometrically corrected the data, performed antennae pattern 
correction, converted the amplitude values to sigma naught (σ0; output scaling LUT), and scaled the 
backscatter values in decibels for quantitative analysis [69]. After preprocessing the imagery as 
described above, we generated polarimetric decompositions.  

We used three types of polarimetric decompositions on the RADARSAT-2 imagery to assess the 
benefits of radar polarimetry for mapping wetlands: van Zyl, Freeman-Durden, and Cloude-Pottier [70]. 
The premise behind a polarimetric decomposition is that the received signals contain important 
information regarding the structure of the landscape target, the scattering mechanism of the return 
signal, and the apparent shift in the phase of the signal from the target [71–74]. The van Zyl 
decomposition is a classification [70] based on the backscatter and number of phase shifts that occur in 
the returned signal, where each pixel is discreetly classified as having a single, odd, or diffuse 
dominant backscatter. The Freeman-Durden decomposition [75] models the target scattering 
mechanisms as a continuous variable where each pixel represents relative proportions of surface 
scattering, double bounce, and volume scattering. The Cloude-Pottier decomposition [76] uses 
parameters of entropy, alpha angle, and anisotropy calculated from the eigenvalues and eigenvectors of 
a coherency matrix. Entropy is the randomness of scattering mechanisms, alpha angle represents the 
dominant scattering mechanism, and anisotropy characterizes directional dependence and importance 
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of the secondary scattering mechanism. Among these three polarimetric decompositions, many 
authors have found the Freeman-Durden decomposition in particular to be useful for wetland 
mapping [77–79]. These polarimetric decompositions represent the advanced analysis possible with 
radar polarimetry and thus were included in the random forest models which evaluated the 
effectiveness of RADARSAT-2 imagery for mapping wetlands. 

We also acquired three dual-polarized (horizontal-horizontal (HH) and horizontal-vertical (HV)) 
ALOS PALSAR images (29 July and 11 September 2009 and 14 June 2010) for the study area from 
the Alaska Satellite Facility (ASF) archive (Table 4). We used the software package MapReady 
(v. 2.3), available through the ASF, for preprocessing the PALSAR data. The imagery was geocoded 
and resampled to 30 m spatial resolution using the default method, bilinear interpolation, which 
considers four neighboring pixel values. MapReady was used to perform antenna pattern correction 
using the beta coefficient, scale the data to decibel backscatter, and perform radiometric and geometric 
terrain correction using the 10 m NED elevation dataset. The RADARSAT-2 and PALSAR imagery 
were preprocessed using different LUTs and it is assumed that any resulting differences are negligible.  

Table 4. Input radar data for decision tree classification. 

Season Date Source Acquisition Mode * Incidence Angle Product 

Spring 
15 June 2009 RADARSAT-2 FBQ 26.9 near, 28.7 far Full dataset 
14 June 2010 PALSAR FBD 34.3 center Full dataset 

Summer 
09 July 2009 RADARSAT-2 FBQ 26.9 near, 28.7 far Decomp only 
29 July 2009 PALSAR FBD 34.3 center Full dataset 

26 August 2009 RADARSAT-2 FBQ 26.9 near, 28.7 far Decomp only 

Fall 
11 September 2009 PALSAR  FBD 34.3 center Full dataset 
19 September 2009 RADARSAT-2 FBQ 26.9 near, 28.7 far Full dataset 

* FBQ: Fine Beam Quad-polarization; FBD: Fine Beam Dual-polarization. 

2.6. Accuracy Assessment 

We reserved a stratified random subset of 25% of the reference point data and implemented traditional 
methods to assess accuracy and evaluate results. We constructed error matrices with overall accuracy, 
95% confidence intervals (CI), User’s and Producer’s accuracies, kappa statistic (k-hat), and ran 
significance tests of error matrix k-hat values [80] for all random forest classification models. We 
performed two error matrix significance tests for each of the land cover classification levels: (1) between 
the most accurate random forest model with the full data suite to the same model with only a selection 
of the most important variables (RDL), and (2) between the most accurate random forest model with 
the full data suite to the most accurate random forest model using only data from a seasonal snapshot. 
Asterisks were used next to table values that were significant at an alpha of 0.05. We also conducted 
an accuracy assessment of the original NWI for comparison to our accuracy results. 

Outputs from random forest provide unique complements to traditional accuracy assessment, 
including: (1) cross-validation, using the out-of-bag sample of training data to evaluate relative 
accuracy of each model prior to a formal accuracy assessment; (2) classification confidence, or 
probability, calculated by the number of times a given class was designated as the final class out of the 
total number of trees, with a resulting value range of 0–1; (3) mean decrease in accuracy, calculated 
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per input data layer, giving insight to how influential a layer was on the overall accuracy; and (4) Gini 
index, which aids in evaluating the influence of input layers on the structure of the decision trees.  

To calculate mean decrease in accuracy, the sample of reference data that was retained during the 
growth of each decision tree (out-of-bag) was used to determine the relative change in accuracy by 
including or excluding a particular variable. The normalized change in cross-validation accuracy was 
totaled after all decision trees were run and represents the relative importance of that variable [53]. The 
Gini index is calculated by, starting with an index value of 1, reducing the index value per variable 
every time that variable was used to make a dichotomous split in each decision tree. This index value 
was totaled per variable and represents the relative influence of that variable on the structure of each 
decision tree [53]. The most important variables in the random forest model can be inferred by 
evaluating both the mean decrease in accuracy and Gini index.  

3. Results 

3.1. Upland, Water, and Wetland Land Cover Classification (Level 1) 

The most accurate full season random forest model for the Level 1 classification (85% accurate) 
integrated all available Landsat 5 TM, topographic, PALSAR, and soils data. The error matrix (Table 5) 
shows this model confused upland areas with wetland areas about 29% of the time (commission error 
calculated from the User's accuracy), but wetland areas were confused with upland areas only 4% of 
the time. In terms of Producer’s accuracy (omission error), reference upland areas were more often 
correctly classified as uplands (94%) compared to the wetland class (78%). The water class was highly 
accurate in terms of both Producer’s and User’s accuracies (100% and 95%, respectively). 

Table 5. Classification error matrix for the most accurate full season random forest model 
for the Level 1 classification which incorporated all available Landsat 5 TM, topographic, 
PALSAR, and soils data. 

  Reference Data 

 Class Upland Water Wetland 
Row 
Total 

User Accuracy 
(%) 

C
la

ss
ifi

ed
 D

at
a Upland 97 0 39 136 71 

Water 0 18 1 19 95 
Wetland 6 0 144 150 96 

Column Total 103 18 184 305  
Producer 

Accuracy (%) 
94 100 78 

Overall = 85% 
k-hat = 0.73, 95% CI ± 4% 

The second and third most accurate full season random forest models for the Level 1 classification 
had overall accuracies of 84% and 83%, respectively (Table 7). The second most accurate model 
incorporated all available Landsat 5 TM, aerial orthophoto, topographic, PALSAR, and soils data. This 
result shows that adding aerial orthophotos changes the accuracy by a very small amount (<1%). The 
third most accurate model incorporated all available Landsat 5 TM, topographic, RADARSAT-2, 
PALSAR, and soils data. This result shows that adding RADARSAT-2 data changes the accuracy by 
about 2%. 
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The classification map for the best Level 1 model illustrates how wetlands dominate the study 
landscape (Figure 3). The confidence for the resulting land cover classification (see representative area 
subset in Figure 3) was relatively high for most of the area classified as wetland, particularly around 
the shoreline of water bodies and in larger wetland complexes. Areas of lower confidence may be 
prone to misclassification from high variability or data redundancy in the input variables. We also 
tested a full season reduced data load (RDL) model to evaluate if using only the top 10 important 
variables significantly changed the accuracy of the classification.  

Figure 3. Output classification of the most accurate full season random forest model for 
the Level 1 land cover classification using all available Landsat 5 TM, topographic, 
PALSAR, and soils data. 

 

We identified the top 10 variables using expert knowledge and the mean decrease in accuracy and 
Gini index values for each variable in the Landsat 5 TM, topographic, PALSAR, and soils model 
(Table 6). The overall accuracy of classification results from the RDL model (Table 7) was  
81% (±4%) with generally lower values of Producer’s and User’s accuracies. However, a significance 
test of the difference between the full data suite and RDL models was not significant at an alpha level 
of 0.05. There was a small difference in the resulting wetland area between the two models: the full 
season model had a slightly lower total wetland area (18,969 ha) than the RDL model (19,010 ha). 
Though the difference in wetland area was negligible, a difference map of the results from the two 
models revealed widespread spatial differences, without pattern, due to more isolated pixels 
throughout the RDL model.  
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When ancillary datasets were used without the addition of remotely sensed data, the accuracy was 
significantly reduced. Classifying upland, water, and wetlands using topographic and soils data 
produced a higher accuracy (74%) than a model with soils data alone (73%) or topographic data alone 
(62%). Conversely, the best classification result without ancillary data, using only Landsat TM and 
PALSAR imagery, was still less accurate (80%) than models which used both remotely sensed and 
ancillary data (85%). All comparisons made here were statistically significant at an alpha level of 0.05. 
These findings show that integrating ancillary datasets with remotely sensed data can statistically 
improve accuracy of mapping wetlands.  

Table 6. Top 10 important variables, in order of importance, selected from the most 
accurate full season random forest model used in a Reduced Data Load (RDL) model for 
the Level 1 classification. 

Data Type Date Source 
NIR Band 19 May 2010 Landsat 5 TM 

Hydric Soils NA USDA SSURGO 
MIR1 Band  21 September 2009 Landsat 5 TM 
Elevation NA USGS NED 
Curvature NA USGS NED 

Green Band 4 October 2008 Landsat 5 TM 
Red Band 4 October 2008 Landsat 5 TM 
Blue Band 17 April 2010 Landsat 5 TM 

NDVI 17 April 2010 Landsat 5 TM 
HV Polarization 14 June 2010 PALSAR 

Table 7. Error matrix summary of the three best full season random forest models for the 
Level 1 land cover classification, as compared to the NWI. 

Model Overall Accuracy (%) Kappa Statistic Z Statistic 
Best: TM, topo, PALSAR, soils (Table 5) 85 0.73 19.4* 

RDL: top variables in best model (Table 6) 81 0.67 16.3* 
2nd Best: TM, aerial, topo, PALSAR soils 84 0.71 18.3* 

3rd Best TM, topo, RSAT-2, PALSAR soils 83 0.68 17.2* 
National Wetlands Inventory 70 0.46 9.6* 

* Values were significant at an alpha of 0.05. 

We also evaluated results of different models from a temporal perspective to determine the 
influence of season for data acquisition on classification results (Table 8). Input data from different 
platforms were available for different periods of the growing season (Tables 3 and 4), a situation 
typical of multi-platform analyses and worth investigating. The seasonal model with the best accuracy 
(85%) was constructed from spring season data and had an overall accuracy comparable with the full 
season model. When we compared the full season and spring season models, the full season model had 
a lower total wetland area (18,969 ha) than the spring season model (19,679 ha). A difference map of 
the results from the two models did not reveal significant widespread spatial differences, but there was 
an observed pattern of differences occurring along roads and land cover transition zones; meaning, the 
two models have slight differences in feature boundaries. The most accurate model using fall data had 
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an overall accuracy of 82% and the best model constructed from summer data had the least accurate 
results at 79%.  

Table 8. Summary of results for the best seasonal random forest models for the Level 1 
land cover classification. 

Season Model Overall Accuracy (%) Kappa Statistic Z Statistic 
Spring TM, topo, PALSAR, soils 85 0.72 19.1* 

Summer Aerial, topo, PALSAR, soils 79 0.63 14.5* 
Fall TM, topo, RSAT-2, PALSAR, soils 82 0.67 16.3* 

Full Season TM, topo, PALSAR, soils 85 0.73 19.4* 

* Values were significant at an alpha of 0.05. 

3.2. Cowardin Wetland Classification (Level 2) 

The most accurate full season random forest model for the Level 2 classification integrated all 
available Landsat 5 TM, aerial orthophoto, topographic, RADARSAT-2, PALSAR, and soils data to 
yield an overall accuracy of 69% (±%5) (Figure 4). The overall accuracy for this model prior to  
sub-classifying the wetland class was 84% (±5%), with the Producer’s and User’s accuracies for the 
wetland class at 79% and 93%, respectively (±6% and 4%, respectively).  

Figure 4. Output classification of the most accurate full season random forest model for the 
Level 2 land cover classification using all available Landsat 5 TM, aerial orthophoto, 
topographic, RADARSAT-2, PALSAR, and soils data. 
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The error matrix for results from the best Level 2 classification model (Table 9) shows that upland 
areas were confused with wetland areas about 28% of the time (User’s accuracy was 72% ± 8%). The 
forested wetland class had the highest User’s accuracy (71% ± 13%) and the emergent wetland class 
had the highest Producer’s accuracy (65% ± 5%). Reference upland sites were classified correctly as 
uplands 92% of the time (±5%). Reference emergent wetlands were classified correctly 65% of the 
time (±5%), but forested and scrub/shrub wetlands were classified correctly only about half of the time 
(49% and 48%, respectively, ±12% for each). Both forested and emergent wetlands tended to be 
confused with scrub/shrub wetlands. The water class was highly accurate for both Producer’s and 
User’s accuracies (95% for each, ±11% for each). 

Table 9. Classification error matrix for the most accurate full season random forest model 
for the Level 2 classification which incorporated all available Landsat 5 TM, aerial 
orthophoto, topographic, RADARSAT-2, PALSAR, and soils data. 

  Reference Data 

 Class Upland Water 
Emergent  

Wetland 

Forested 

Wetland 

Scrub/ 

Shrub Wetland 

Row  

Total 

User  

Accuracy 

C
la

ss
ifi

ed
 D

at
a 

Upland 98 0 4 21 14 137 72 

Water 0 18 1 0 0 19 95 

Emergent Wetland 5 1 24 1 12 43 56 

Forested Wetland 3 0 0 35 11 49 71 

Scrub/Shrub Wetland 1 0 8 14 34 57 60 

Column Total 107 19 37 71 71 305  

Producer Accuracy 92 94 65 49 48  

Overall = 69% 

k-hat = 0.58 

95% CI ± 5% 

The second and third most accurate full season random forest models for the Level 2 classification 
had overall accuracies of 66% and 65%, respectively (Table 10). The second most accurate model 
incorporated all available Landsat 5 TM, topographic, RADARSAT-2, PALSAR, and soils data. This 
result shows that when we do not include aerial orthophotos, the overall accuracy in sub-classifying 
wetlands changes by about 3%. The third most accurate model incorporated all available Landsat 5 
TM, aerial orthophoto, topographic, RADARSAT-2, and soils data. This result shows that when we do 
not include PALSAR data, the overall accuracy in sub-classifying wetlands decreases by about 4%. 

Table 10. Error matrix summary of the three best full season random forest models for the 
Level 2 classification. 

Model Overall Accuracy (%) Kappa Statistic Z Statistic 
Best: TM, aerial, topo, RSAT-2, PALSAR, soils (Table 9) 69 0.58 16.4* 

RDL: top variables in best model (Table 11) 63 0.50 13.7* 
2nd Best: TM, topo, RSAT-2, PALSAR soils 66 0.55 15.3* 

3rd Best: TM, aerial, topo, RSAT-2, soils 65 0.53 14.6* 
National Wetlands Inventory 55 0.38 11.0* 

* Values were significant at an alpha of 0.05. 
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We assessed a full season RDL model to evaluate whether using the most important variables 
significantly changed the accuracy of the results for the Level 2 classification. We used expert 
knowledge and the mean decrease in accuracy and Gini index values for each variable in the full model 
to identify the top 15 variables for a RDL model (Table 11). The accuracy of the RDL model  
(Table 10) was 63% (± 5%), which did not differ significantly from the accuracy of the full model at 
an alpha level of 0.05. There was a difference in the resulting wetland area between the two models: 
the full season model had a lower total wetland area (18,351 ha) than the RDL model (20,376 ha). 
Most of the difference in area between the two models was from forested and scrub/shrub wetland 
classes erroneously classified as upland areas in the full season model. A difference map of the results 
from the two models revealed widespread spatial differences with an observed pattern of classification 
differences occurring along roads and land cover transition zones. 

Table 11. Top 15 important variables, in order of importance, selected from the most 
accurate full season random forest model used in a RDL model for Level 2 classification. 

Data Type Date Source 
TC Greenness 19 May 2010 Landsat 5 TM 

NDVI 19 May 2010 Landsat 5 TM 
TIR Band  17 April 2010 Landsat 5 TM 

MIR1 Band 21 September 2009 Landsat 5 TM 
TC Wetness 21 September 2009 Landsat 5 TM 
MIR1 Band 4 October 2008 Landsat 5 TM 

HH Polarization 21 September 2009 PALSAR 
HV Polarization 21 September 2009 PALSAR 

NDVI 17 April 2010 Landsat 5 TM 
NDVI Summer 2008 NAIP 

TC Wetness 19 May 2010 Landsat 5 TM 
TC Wetness 4 October 2008 Landsat 5 TM 

HH Polarization 14 June 2010 PALSAR 
HV Polarization 14 June 2010 PALSAR 
HV Polarization 29 July 2009 PALSAR 

We evaluated several models to determine the extent to which season and corresponding data 
platforms could influence results for the most accurate Level 2 classification (Table 12). Satellite data 
from the spring yielded the most accurate results (71%), exceeding the level of accuracy produced by 
the full season model (69%). When we compared the full season and spring season models, the full 
season model had a higher total wetland area (18,351 ha) than the spring season model (17,162 ha). 
Most of the difference in area between these two models was from forested and scrub/shrub wetland 
areas erroneously classified as the upland class in the spring season model. A difference map of the 
results from the two models revealed less significant widespread spatial differences and no apparent 
pattern. The most accurate model using summer data had an overall accuracy of 65%. The best model 
constructed from fall data had the least accurate results at 62%.  
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Table 12. Error matrix summaries of the best seasonal random forest models for the 
Level 2 classification. 

Season Model Overall Accuracy (%) Kappa Statistic Z Statistic 
Spring TM, topo, PALSAR, soils 71 0.60 17.3* 

Summer Aerial, topo, soils 65 0.51 13.8* 
Fall TM, topo, RSAT-2, PALSAR, soils 62 0.48 13.0* 

Full Season TM, aerial, topo, RSAT-2, PALSAR soils 69 0.58 16.4* 
* Values were significant at an alpha of 0.05. 

4. Discussion 

A key challenge in mapping and monitoring the landscape with remotely sensed data is that 
temporal coverage can be limited because of cloud contamination of imagery and because overpass 
schedules and return frequencies vary from platform to platform. Conditions for our research were no 
exception. This motivated us to examine the importance of type and seasonal timing of source data for 
classifying wetland-dominated landscapes in a forested region of the Upper Midwest.  

4.1. Upland, Water, and Wetland Land Cover Classification (Level 1) 

Our best Level 1 classification (85%) relied on ancillary soils, topographic, and remotely sensed 
data from satellite optical (Landsat 5 TM) and radar (PALSAR) platforms. This most accurate model 
used remotely sensed variables from fewer data sources than did the second (84%) and third best 
(83%) models, and did not require full temporal coverage (Table 7). A possible reason the best model 
did not place importance on summer data (aerial orthophotos), according to the Gini index and mean 
decrease in accuracy values, was that the fully developed tree canopy obscures underlying landscape 
features (i.e., inundation, wetland plant species, etc) that could otherwise reduce confusion in 
classifying vegetated upland and wetland areas [81]. The third most accurate model included 
RADARSAT-2 imagery and polarimetric decompositions, along with ancillary soils and topographic 
data. The fact that these particular radar datasets were not incorporated in the most accurate model 
implies that the C-band imagery was not as appropriate as L-band imagery for mapping wetlands in a 
forested region, primarily due to better propagation of the longer wavelength radar signal through the 
tree canopy. These results echo findings elsewhere that, though filtering techniques may vary, the high 
variability from radar backscatter in C-band imagery can confuse the model and cause a reduction in 
accuracy [34]. Though none of the three best models or the RDL model were significantly different 
from each other (at an alpha level of 0.05), all four models were significantly more accurate than the 
original NWI.  

Reducing the number of variables in the Level 1 model to only the 10 most important variables 
produced results that were 4% less accurate than obtained with the full data suite model. However, this 
accuracy still was relatively high (81%) and enabled us to remove nearly 50 variables from the full 
model, thereby increasing classification efficiency and reducing cost without sacrificing a significant 
level of accuracy. Furthermore, our assessment of seasonal data sources suggests that imagery from 
spring alone can provide comparable results with imagery distributed throughout the entire growing 
season (Table 8). Most of the spring input data used in the model corresponded with above-normal 
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precipitation conditions, confirming findings from other research that precipitation conditions are 
highly relevant to differentiating upland, water, and wetland classes [61,82]. Our results show the 
effectiveness of targeting input variables acquired during the spring season in this geographic region to 
improve land cover classification accuracy and confidence.  

Results of the RDL model for this classification level showed that in addition to elevation, 
curvature, and hydric soils data, the most important spring season data included: satellite blue and NIR 
bands, satellite NDVI, and HV polarization using L-band radar. The satellite blue band, which had a 
high importance based on the mean decrease in accuracy for the upland class, was acquired on an 
especially clear day (17 April 2010) and thus had very little atmospheric interference, which typically 
makes this band noisy and not as useful. Others have found the blue band to be useful in classifying 
upland classes such as bare soil and in masking out shadowed areas [83,84]. Other studies have 
confirmed these remotely sensed variables, particularly near infrared and NDVI, are important for land 
cover classification and land cover change mapping. Such variables are particularly important when 
discriminating between forest structural condition (i.e., open or closed canopy), monitoring stand age 
and regrowth, and estimating species composition and richness [85–87]. Studies have also established 
that the multiple scattering and subsequent depolarization of the radar signal explains the importance 
of HV polarization for classifying land cover and estimating biomass, particularly in forested 
regions [72,78,87]. It is important to note that even though our best results included ancillary soils and 
topographic input data, without the inclusion of ancillary data, the selected remotely sensed layers in 
the RDL model retain their level of importance. 

4.2. Cowardin Wetland Classification (Level 2) 

The second and third most accurate models (66% and 65%, respectively) developed for the Level 2 
classification relied on fewer data sources than used by the best model and performed better than the 
RDL model. None of the three best models or the RDL model were significantly different from each 
other (at an alpha level of 0.05), but all four were a statistical improvement over the NWI (Table 10). 
Sub-classifying wetlands accurately required ancillary soils and topographic data, as well as increasing 
the temporal and spectral coverage of remotely sensed data with optical and L-band radar, the latter 
undoubtedly because of deeper canopy penetration and increased interaction of the signal which has 
been known to be useful for distinguishing differences in vegetative land cover [26–28,88].  

Our attempts to produce a RDL model using the top 15 variables from the full data suite indicated 
too great a reduction in classification accuracy for distinguishing between wetland types, even with the 
inclusion of ancillary soils and topographic data. The top 15 variables used in the model, though 
important, do not sufficiently represent the variation in characteristics needed to sub-classify wetlands. 
However, results from our seasonal analysis suggest output from a RDL model might be improved if 
we selected for spring data, as the spring model produced the highest accuracy for the Level 2 
classification (Table 12). 

We observed fewer differences from a visual comparison of results between the full season and 
spring models than between the full season and RDL models, but wetland class confidence was 
somewhat higher with full data suite (118 input data layers) than with the spring season model (33 
input data layers). Though in some cases classification accuracy can be improved by increasing the 
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number of input data layers [89], research has also shown that increasing the number of discrete 
classes requires comparable increases in training data to improve the sensitivity of classifiers to more 
refined class differences [90,91]. Results from our efforts to model Cowardin wetland classes indicate 
that our model might benefit from additional reference training sites, particularly for the forested and 
scrub/shrub wetland classes which had very low accuracy compared to the emergent wetland class. 

The most important variables selected for a RDL model of the Level 2 classification incorporated a 
rather different set of data sources and seasons (Table 11) than were selected for the Level 1 
classification (Table 6). The most important variables for sub-classifying wetlands included remotely 
sensed data from a broader temporal range than for simply differentiation between upland, water, and 
wetland areas. Many studies have found multi-temporal data to aid in land cover classification, 
particularly for wetland mapping [69,73,88,92]. The Level 2 model made use of thermal data and 
Tasseled Cap transformation derivatives, as well as a much greater use of radar data. Other studies 
have confirmed that thermal data is important for land cover classification, particularly in separating 
vegetated and impervious areas and different moisture levels throughout the landscape [58,93]. The 
Tasseled Cap transformation also has been used by others to improve wetland mapping [81,94]. We 
found that using radar backscatter was more useful than using the polarimetric decompositions; in 
particular, our findings further confirm those of others documenting the importance of co- and  
cross-polarization radar backscatter (HH and HV, respectively) in classifying land cover [95–97].  

5. Conclusions 

One of our main goals was to identify an optimal selection of input data from various sources of 
remotely sensed and ancillary data to accurately map wetland areas in Northern Minnesota. We 
accomplished this goal by rigorously testing the results from several combinations of data at two 
classification levels. We found that the key input variables for accurately differentiating between 
upland, water, and wetland areas include satellite red, near infrared (NIR), and middle infrared (MIR1) 
bands and normalized vegetation index (NDVI), elevation and curvature, hydric soils ancillary data, 
and L-band horizontal-vertical (HV) polarization. We conclude that, in addition to the variables used 
for the Level 1 classification, the key input variables for a Level 2 classification of wetlands include 
Tasseled Cap Greenness and Wetness, satellite thermal band, and L-band horizontal-horizontal (HH) 
polarization. Our sound methods have generated an important set of results for the remote sensing 
community, describing in detail the differences in accuracy of wetland mapping in a forested region 
using specific data sources and combinations. 

Weather conditions over the study site during the water years October 2007-September 2010 were 
relevant to conclusions made regarding seasonal data importance. This is because precipitation, and 
any subsequent deviation from the 30 year normal, influences the site’s hydrologic characteristics prior 
to data acquisition. The important spring datasets identified in Tables 5 and 9 all correspond to above 
normal precipitation conditions. With the exception of the summer of 2008, the rest of the important 
summer and fall datasets were acquired during below normal precipitation conditions. Though it is 
possible to plan spring data acquisition knowing the water year trends from the fall and winter before, 
it is difficult to fully anticipate precipitation events that will obscure optical data acquisition.  
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To accurately identify wetland areas in a forested region, such as Northern Minnesota, we found 
accuracy is improved when incorporating only spring season data for both Level 1 and Level 2 
classifications. We conclude that, provided multi-temporal satellite optical, L-band radar (PALSAR), 
topographic, and soils data are included, identifying wetland areas in this region is more accurate when 
quad-polarization C-band radar (RADARSAT-2) and higher resolution aerial orthophotos are left out 
of the random forest model. However, we found that once wetland areas are identified, classifying 
wetland type is more accurate when C-band radar and broader temporal coverage of optical data are 
included. These findings are unique because through rigorous testing of different sources of remotely 
sensed data, a task that has not been done before in this region, we found that different wavelengths of 
radar data are beneficial for different levels of land cover classification.  

The results of this study suggest that wetland mapping in a forested region such as Northern 
Minnesota can be improved by targeting the selection of important input variables from essential data 
platforms (such as L-band PALSAR) and by allocating more complete spectral coverage during the 
spring season. The way forward for further improvements to wetland classification in a forested region 
may include: analysis and utilization of classification confidence to target areas for future field 
reference data collection, using additional topographic information derived from light detection and 
ranging (lidar) such as canopy height and other parameters that relate to vegetation structure (e.g., 
standard deviation of height and number of returns within a grid cell, intensity), and incorporating 
spatial context and geometry of features through use of image segmentation and object based 
image analysis.  
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Abstract Topography has been traditionally used as a surro-
gate to model spatial patterns of water distribution and variation
of hydrological conditions. In this study, we investigated the use
of light detection and ranging (lidar) data to derive two Single
Flow Direction (SFD) and five Multiple Flow Direction (MFD)
algorithms in the application of the compound topographic
index (CTI) for mapping wetlands. The CTI is defined here as
ln [(α)/(tan (β)], where α represents the local upslope contrib-
uting area and β represents the local slope gradient. We evalu-
ated the following flow direction algorithms: D8, Rho8, DE-
MON, D-∞MD-∞, Mass Flux, and FD8 in three ecoregions in
Minnesota. Numerous studies have found that MFD algorithms
better represent the spatial distribution of water compared to
SFD algorithms. CTImapswere compared to field collected and
image interpreted reference data using traditional remote sensing
accuracy estimators. Overall accuracy results for the majority of
CTI based algorithms were in the range of 81–92 %, with low
errors of wetland omission. The results of this study provide
evidence that 1) wetlands can be accurately identified using a
lidar derived CTI, and 2) MFD algorithms should be preferred
over SFD algorithms in most cases for mapping wetlands.

Keywords Wetlandmapping . Lidar . Flow direction
algorithm . Compound topographic index

Introduction

Wetlands are distinctive ecosystems as a result of their hydro-
logic conditions, chemistry, and transitional bridge between
terrestrial and aquatic life.

Wetlands benefit human society and nature in numerous
ways. These include support of wildlife habitat, fishing activ-
ities and educational activities, protection of shorelines, re-
duction of negative effects of floods and drought, recharge of
groundwater aquifers, cleansing of contaminated waters and
climate regulation. The prairie pothole region of southern and
western Minnesota, for example, is one of the critical water-
fowl nesting and stopover points in the United States.
Peatlands, which are abundant in northern Minnesota, have
the ability to regulate climate change through carbon seques-
tration. Peatlands may hold up to 540 gigatons of carbon,
representing in approximately 1.5 % of the total estimated
global carbon storage (Bridgham et al. 2008; Anteau and
Afton 2009; Charman 2009).

Despite their benefits, many wetlands have not been
protected but instead have been drained and filled for agricul-
tural or urban development. For example, the United States
has lost about 53 % of the original wetlands since the mid-
1800s. Those wetlands were converted to agricultural, urban
and other commercial land uses (Dahl and Johnson 1991;
Stedman and Dahl 2008). Similar change was seen in the state
of Minnesota from the 1780s to the mid-1980s where about
42 % of the original wetlands were drained, ditched, filled and
converted to other land uses (Dahl 2006). The vast majority of
wetland loss occurred in the southern and western agricultural
regions of the state while the northern forest region retains
more than 90 % of its wetlands (Prince 2008).

Currently the most widely used quantitative source of
wetland inventory in the majority of the United States, includ-
ing Minnesota, is the National Wetlands Inventory (NWI).
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However, many NWI maps are outdated, having been com-
pleted in the late 1980’s, and many changes in the landscape
have occurred. Furthermore, the NWImaps were created from
aerial imagery (some black and white) collected from 1979
to1988 (LMIC 2007). Thus, it is important and necessary to
update wetland inventories with accurate locations of wet-
lands. An updated wetland inventory would greatly assist
local and state government units in making better decisions
for the preservation, protection and restoration of these valu-
able ecosystems.

The use of topography data provides a fast and cost-
effective way to analyze watershed morphology, spatial dis-
tribution of soil moisture, and computation of terrain indices
useful for improving river, lake, and wetland identification
(Rodhe and Seibert 1999; Chaplot and Walter 2003; Sørensen
et al. 2006; Corcoran et al. 2011). Digital Elevation Models
(DEMs) are preferred to calculate terrain attributes because of
the visual representation of these features and the easy com-
puter implementation of algorithms to calculate terrain fea-
tures (Guntner et al. 2004; Sørensen and Seibert 2007; Shoutis
et al. 2010; Knight et al. 2013).

For example, flow direction algorithms can be calculated
directly from DEMs to determine in which direction the
outflow from a given cell will be distributed to one or more
neighboring downslope cells. Flow direction algorithms are
important for the calculation of topographic indices such as
the Compound Topographic Index (CTI), also known as the
Topographic Wetness Index (TWI). One of the valuable ben-
efits of using indices such as the CTI is the ability to represent
the distribution and flow of water (saturated vs. non-saturated
areas) based only on topographic data (Moore et al. 1993;
Guntner et al. 2004; Grabs et al. 2009). The CTI can identify
parts of the landscape where sufficient wetness could allow
the formation of wetlands. A potential issue with surface flow
algorithms is that they do not detect wet areas that are not
formed in topographic depressions such as groundwater dis-
charge zones which often occur on slopes. These hydrologic
settings may be more difficult to detect with flow direction
algorithms in the application of the CTI for mapping rarer
wetland types such as fens.

The CTI is based on the formula proposed by Beven and
Kirkby (1979): CTI=ln [(α)/(tan (β)], where represents the
local upslope contributing area per unit contour draining through
each cell, and β represents the local slope gradient. Upslope
contributing areas are calculated using a flow direction algo-
rithm; thus, the choice of flow direction algorithm is important
because it influences the spatial pattern of the CTI values.

Flow direction algorithms are divided in two main groups
based on how they distribute flow from one grid cell to another
cell (Erskine et al. 2006; Gruber and Peckham 2008; Wilson
et al. 2008). The first group consists of single flow direction
(SFD) algorithms, which allow flow to pass to only one neigh-
boring cell downslope. The following algorithms are examples

of the SFD group: the Deterministic D8 algorithm proposed by
O’Callaghan andMark (1984), and the random single direction
algorithm Rho8 described by Fairfield and Leymarie (1991).

The second group consists of multiple flow direction (MFD)
algorithms, which allow flow to pass to more than one neighbor
cell downslope. This group is further subdivided into algorithms
that allow flow to be distributed to a maximum of two, three,
four, and eight neighbor cells downslope. Examples of algo-
rithms that allow flow to be distributed to a maximum of two
cells include the Digital Elevation Model Network (DEMON)
proposed by Costa-Cabral and Burges (1994), and the Determin-
istic Infinite (D ∞) algorithm suggested by Tarboton (1997).

The Mass Flux (MF) algorithm proposed by Gruber and
Peckham (2008) is an example of algorithms that allow flow to
pass into a maximum of four neighbors cells. Examples of
algorithms that allow flow to be distributed to a maximum of
eight neighbor cells include the Triangular Multiple Flow direc-
tion algorithm (MD ∞) proposed by Seibert and McGlynn
(2007), and the Divergent Flow algorithm (FD8) proposed by
Freeman (1991). Studies related to hydrological applications
across disciplines have used SFD algorithms such as the D-8
more often thanMFD algorithms. Although several studies have
confirmed that MFD algorithms can provide more accurate
results in calculating the distribution and flow of water, the use
of SFD algorithms continues (Wilson and Gallant 2000; Zhou
and Liu 2002; Pan et al. 2004).

Numerous studies have shown differences between SFD
and MFD algorithms for stream network applications and
statistical distribution of primary and secondary terrain attri-
butes (Tarboton 1997; Guntner et al. 2004). However, little
research has been done to assess the accuracy of these types of
algorithms using high resolution elevation data in the appli-
cation of topographic derivatives such as CTI for identifying
wetlands in the upper Midwest, U.S.A. In recent years, the
acquisition of high resolution elevation data using Light De-
tection and Ranging (lidar) has increased.

Lidar is an active remote sensing technology that uses laser
light to produce accurate land elevation data. Numerous stud-
ies have confirmed the importance of lidar data to improve the
process of mapping wetlands (Jenkins and Frazier 2010;
Knight et al. 2013; Lang et al. 2013). Lang and McCarty
(2009) mapped forested wetlands using lidar intensity and
obtained a high overall acccury of 96.3 %. They compared
their lidar intensity results to NIR photointerpretation of wet-
lands, which had an overall accuracy of 70 % for the same
area. Antonarakis et al. (2008) also achieved high overall
accuracy results of 95–99 % for mapping open water features
using a combination of lidar intensity and lidar derived terrain
attributes. Thus, the goal of this paper was to assess the
suitability of a selection of two Single Flow Direction (SFD)
and fiveMultiple Flow Direction (MFD) algorithms for use in
creating several CTIs from lidar data for wetland mapping in
three ecoregions in the state of Minnesota, U.S.
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Study Areas Description

This study was conducted in three study areas within three
different ecoregions in the state of Minnesota (Fig. 1). The first
study area is located in the Northern Glaciated Plains ecoregion
and consists of five watersheds of a 12-digit-level Hydrologic
Unit Code (i.e., HUC-12). The five watersheds include Big
Stone Lake, Big Stone Lake State Park, Barry Lake, Fish Creek,
and Salmonson Point, all within Big Stone County. The total
area of the five watersheds together is 293 km2 with primarily
loamy soils and a mixture of well and poorly drained soils. Land
use within these watersheds is predominantly agricultural with
grain crops, including corn and soybeans. The elevation of these
watersheds ranges from 290 to 364 m above sea level.

The average annual precipitation in this area is 640 mm
with 360 mm occurring in the growing season of May to
September. These watersheds are part of the prairie pot-
hole region in Minnesota, characterized by numerous
small depressional wetlands known as prairie potholes.
Wetlands in this ecoregion are of vital importance for
waterfowl habitat, storage of surface water, groundwater

recharge and discharge, and reduction in the risk of down-
stream flooding (Winter and Rosenberry 1995; LaBaugh
et al. 1998).

The second study area is located in the Central Hard-
wood Forest ecoregion and contains five watersheds of a
12-digit level Hydrologic Unit Code (i.e., HUC-12). The
five watersheds include Upper Lake Minnetonka, Riley
Creek, Purgatory Creek, Lower Lake Minnetonka and the
City of Shakopee-Minnesota River. These watersheds are
located within Hennepin and Carver counties. The total
area of the five watersheds is 69 km2, with fine to mod-
erately coarse texture and well drained soils. Land use is
dominated by urban development including medium den-
sity residential, with some areas for commercial growth
and open space. The elevation across these watersheds is
209–332 m above sea level. The average annual precipi-
tation is 762 mm while during the growing season (May
to September) it is 508 mm. The majority of the wetlands
types in these watersheds are shallow marshes and wet
meadows (Ci ty o f Chanhassen Sur face Wate r
Management Plan 2006).

Fig. 1 Three study areas located in three different ecoregions in the state of Minnesota, U.S.A
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The third study area is located within the Northern Lakes
and Forest ecoregion and includes four watersheds of a 12-
digit level Hydrologic Unit Code (i.e., HUC-12). The four
watersheds include Big Lake, the City of Cloquet-St. Louis
River, Otter Creek and the Thompson Reservoir-St. Louis
River. These watersheds are located between St. Louis and
Carlton counties. The total area of the four watersheds togeth-
er is 265 km2 with poorly drained soils and near-surface water
tables. The main land use in these watersheds is mixed forest-
ed land dominated by conifer forest, mixed hardwood-conifer
forest and conifer bogs and swamps. The elevation in these
areas ranges between 307 and 436 m above sea level. The
average annual precipitation is 710 mm and during the grow-
ing season (May to September) the average precipitation is
440 mm. Wetlands types in these watersheds are primarily
forested wetlands covered by coniferous and tall shrubby
vegetation (Minnesota Department of Natural Resources
2010).

Lidar Data

We used a 3 m lidar DEM for each study area to compute
seven different flow direction algorithms. The 3 m lidar DEM
for the Northern Glaciated Plains study area was obtained
from the International Water Institute (IWI) lidar download
portal. The DEM was created by interpolating the bare earth
point LAS files using the ‘Raster to ASCII’ command in the
Environmental Systems Research Institute (ESRI) ArcGIS
software.

Collection of the lidar data used to create the DEM oc-
curred during the spring of 2010 (leaf-off conditions) by
Fugro Horizons Inc. with an average post spacing of 1.35 m.
The lidar data horizontal accuracy was of +/− 1 m (95 %
confidence level), with a vertical accuracy RMSE of 15.0 cm.

The 3 m lidar DEM for the Central Hardwood Forest study
area was downloaded from the Minnesota Geospatial Infor-
mation Office (MnGeo). This lidar DEMwas produced by the
Minnesota DNR by extracting bare earth points from the point
cloud data. The DEM was hydro flattened using the edge of
the water breaklines. Collection of the lidar point cloud data
took place between Nov 11 and Nov 17, 2011 by Fugro
Horizons Inc. with an average post spacing of 1.5 m. The
horizontal accuracy for these data was of +/− 0.6 m (95 %
confidence level), and a vertical accuracy RMSE of 5 cm.

The 3 m lidar DEM for the Northern Lakes and Forest
study area was also acquired from the Minnesota Geospatial
Information Office (MnGeo). The 3 m DEMwas produced by
the Minnesota DNR by extracting bare earth points from the
point cloud data. The DEMwas also hydro flattened using the
edge of the water breaklines. Acquisition of the lidar data took
place between May 3 and May 5, 2011 by Woolpert Inc. with
an average post spacing of 1.5 m. The horizontal accuracy of

the lidar data was +/− 1.2 m (95 % confidence level), with a
vertical accuracy RMSE of 5 cm.

Analysis Methods

This section is composed of three subsections: The first de-
scribes the pre-processing steps applied to the lidar DEMs.
The second describes the steps and software used to calculate
each of the lidar derived terrain attributes required for the CTI
calculation CTIs. The third explains the accuracy assessment
procedures used to assess the results for each study area.

Lidar DEM Pre-Processing

Each lidar DEMwas subset to a shapefile watershed boundary
that was obtained from the Minnesota Department of Natural
Resources (DNR). Sinks or pits that did not have a surface
water outlet were moderately filled to avoid irregularities that
could interfere with correct hydrologic flow (trapping flow).
We used the tool fill sinks XXL implemented in the free open
source software System for Automated Geoscientific Analysis
(SAGA) v. 2.1.0. We chose this tool because it offers the
option to fill sinks fully or partially by keeping a minimum
slope gradient along the flow path.

Otherwise, if no minimum slope gradient value was spec-
ified, all the sinks would be filled to the spill elevation which
would create completely flat areas. Due to the high resolution
of our lidar DEMs we avoided filling surface depressions
completely by preserving a minimum slope gradient of
0.001 between cells. The resultant sink-moderately-filled
DEM for each study area was used to compute the required
terrain attributes for calculation of the upslope contributing
areas.

Derived Terrain Surfaces

The following flow direction algorithms were implemented in
different software packages for the computation of seven
upslope contributing areas: The D8, Rho8 and DEMON al-
gorithms were implemented using the SAGA software; the
FD8 and MD-∞ algorithms were implemented using
Whitebox Geospatial Analysis Tools v. 1.0.7 open source
software; the Mass Flux algorithm was implemented using
the River Tools v. 3.0.3, GIS software; the D∞ algorithm was
implemented using the Terrain Analysis Using Digital Eleva-
tion Models (TAUDEM) v. 5.0 toolbox in ArcGIS 9.3.1; and
the seven upslope contributing areas for each study area were
used to calculate the seven CTIs in ArcGIS v. 10.1.

We computed a slope grid in degrees from the partially pre-
filled DEM using the spatial analyst tool in ArcGIS v. 10.1
and then converted to radians using the raster calculator. The
method used in ArcGIS to compute the slope is the average
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maximum technique, where the maximum rate of change in
value from a cell to its neighbors is calculated using a 3×3 cell
neighborhood around the center grid cell (Burrough and
McDonell 1998).

We modified the resultant slope by adding a minimum
value of 0.0001 to avoid division by zero for CTI calculations.
The raster calculator in ArcGIS v. 10.1 was used to modify the
slope and impose the minimum value. Finally, we calculated
all the CTIs based on the formula proposed by Beven and
Kirkby (1979): CTI=ln [(α)/(tan (β)]. The CTI computations
were carried out in ArcGIS v. 10.1 using the raster calculator
from the Spatial Analyst toolbox.

Accuracy Assessment

We evaluated the CTI results for each study area based on
traditional accuracy assessment methods, including error ma-
trices, overall accuracy, producer’s accuracy, user’s accuracy,
and kappa statistic (k-hat) for upland and wetland classes. We
also executed a significance test of error matrices known as
the Z Pair-Wise statistical test described by Congalton and
Green (2009). This Z-test was used to determine whether there
was a statistically significant difference between the various
CTIs at an alpha level of 0.05. The Z-test was also performed
between every CTI and the NWI wetland map using the same
classification scheme (upland/wetland).

We thresholded the CTI results into two classes: uplands
and wetlands. The threshold values were determined
through a series of trial-and-error experiments, where sev-
eral CTIs across the three different ecoregions were
assessed against field data collection and photointerpreta-
tion reference points. Results indicated that the most com-
mon value for separating upland from wetlands using a 3 m
lidar CTI was always the value closest to the mean value of
the entire range.

The CTIs and NWI were assessed against a set of indepen-
dent randomly generated sample points for each study area.

These reference data used for the Northern Glaciated Plain
and Central Hardwood Forest study areas were collected from
a few sources that included: randomly generated field sites
visited by trained field crews in the summers of 2009 and
2010, plots generated by the MN Department of Natural
Resources Wetland Status and Trend Monitoring Program
(WSTMP) using centroids from polygons of 2006 and 2008
updates, and randomly generated points using photointerpre-
tation by our experienced analyst.

The reference data used for the Central Hardwood Forest
study area was developed by the City of Chanhassen using a
combination of photo-interpretation and field data collection
during the fall of 2004, and the growing season of 2005. The
field data collected for the three study areas contained the
following information: Plant type and percent coverage,
land-cover/land-use type, UTM coordinates, 5–6 photos per
site, and the Cowardin wetland type (Cowardin et al. 1974).
Upland types included crop fields, other agriculture, forests,
grasslands, urban areas, construction areas, bare areas, and
others. We used 2000 reference data points for the Northern
Glaciated Plains study area, 9,994 for the Central Hardwood
Forest study area and 2,000 for the Northern Lakes and Forest
study area.

Results

Accuracy assessment results and significance tests of the three
study areas are summarized in Tables 1, 2, 3, 4, 5, and 6. Maps
of the seven CTIs and NWI wetland/upland classification are
displayed in Figs. 2, 3, 4, 5, 6, and 7. Overall accuracy results
for the majority of CTIs across the three study areas were in
the range of 81–92 % with low errors of wetland omission.

Wetlands larger than 0.20 ha (0.5 acres) throughout the
three study areas were identified by all the algorithms, with
producer’s and user’s accuracies in the range of 67–97 % and
65–98 %, respectively.

Table 1 Accuracy estimators of the seven CTIs algorithms and the NWI for the Northern Glaciated Plains study area (Classification scheme:
wetland/upland)

CTI algorithm Threshold used Overall
accuracy

Wetland user’s
accuracy

Upland user’s
accuracy

Wetland producer’s
accuracy

Upland producer’s
accuracy

Overall
kappa

D8 6.0 92 87 98 97 87 0.84

Rho8 6.7 71 70 72 67 75 0.42

DEMON 8.1 92 87 97 96 88 0.84

D-∞ 7.2 92 87 97 97 87 0.84

MD-∞ 6.1 92 87 97 97 87 0.83

Mass Flux 6.1 91 98 85 85 98 0.82

FD8 11.0 86 87 85 82 89 0.71

NWI 1 88 87 89 87 88 0.76

Total # points used for the accuracy assessment: 2000
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Also, a comparison assessment of the seven CTIs and the
original NWI was performed for each study area, using the
same two classes (wetland/upland). The comparison assess-
ment was done using the kappa-statistic (Z- test) proposed by
Congalton and Green (2009). The majority of the CTIs based
flow direction algorithms derived from lidar data for identify-
ing wetlands; produced higher accuracy results compared to
the NWI results that were in the range of 75–88 % for overall
accuracy, 73–97 % for user’s accuracy and 71–87 % for
producer’s accuracy across the three study areas.

Results for the Northern Glaciated Plains Study Area

Detailed accuracy assessment results of the sevenCTIs algorithms
and NWI results of two classes (wetland/upland) are reported in
Table 1. The overall accuracies for the CTIs evaluated in this area
were in the range of 71–92 %, with overall kappa scores in the
range of 0.42–0.84. Producer’s and user’s accuracies for the CTI’s
were in the range of 67–97 % and 70–98 % respectively.

The majority of CTIs, with the exception of the CTI Rho8,
showed low errors of commission and omissions for the wetland
class. The NWI accuracy assessment results were lower than the
majority of CTIs for predicting wetland locations in this study
area. Table 2 displays only the significance test (Z-test) results of
those CTI and NWI results that were found to be statistically
different at a 95% confidence level. These Z-test results revealed
that the CTI FD8, CTI Rho8 and NWI maps were significantly
different compared to every CTI evaluated.

This statistical difference for the CTI FD8, CTI Rho8 and
NWI suggests that the other algorithms are more suitable for
identifying wetland occurrences in this ecoregion.

Avisual comparison of the seven CTI algorithms and NWI
polygons for a small portion of the Northern Glaciated Plains
study area are presented on Fig. 2.

This qualitative comparison revealed more details of the differ-
ences between the algorithms and the original NWI polygons for
representingflowwaterdistribution inwetlands in thatarea.Figure3
illustrates a Color-Infrared (CIR)map and a CTImap for this entire
studyarea.Overall, theD8,D-∞, andMassFluxCTIswere theonly
algorithms for this study area that showed excellent agreementwith
the reference data in the visual and quantitative assessment,with the
highest overall accuracy results in the range of 91–92 %.

Results for the Central Hardwood Forest Study Area

Accuracy assessment results of the seven CTIs algorithms and
NWI results of two classes (wetland/upland) for this study
area are presented in Table 3.

Table 2 Significance test (Z-test) for comparing the seven algorithms and
the NWI for the Northern Glaciated Plains study area (Classification
scheme: wetland/upland)

CTI type Kappa1 vs. Kappa2 Z-value

D8 vs. Rho8 0.84 vs. 0.42 17.6*

D8 vs. FD8 0.84 vs. 0.71 6.7*

D8 vs. NWI 0.84 vs. 0.76 4.5*

Rho8 vs. DEMON 0.42 vs. 0.83 17.5*

Rho8 vs. D-∞ 0.42 vs. 0.84 17.6*

Rho8 vs. MD-∞ 0.42 vs. 0.83 17.2*

Rho8 vs. Mass Flux 0.42 vs. 0.82 16.6*

Rho8 vs. FD8 0.42 vs. 0.71 10.9*

Rho8 vs. NWI 0.42 vs. 0.76 13.2*

DEMON vs. FD8 0.83 vs. 0.71 6.5*

DEMON vs. NWI 0.83 vs. 0.76 4.3*

D-∞ vs. FD8 0.84 vs. 0.71 6.6*

D-∞ vs. NWI 0.84 vs. 0.76 4.4*

MD-∞ vs. FD8 0.83 vs. 0.71 6.2*

MD-∞ vs. NWI 0.83 vs. 0.76 4.0*

Mass Flux vs. FD8 0.82 vs. 0.71 5.6*

Mass Flux vs. NWI 0.82 vs. 0.76 3.4*

Fd8 vs. NWI 0.71 vs. 0.76 2.24*

*A Z-value over 1.96 indicates that there is a significant difference at the
95 % confidence level

Table 3 Accuracy estimators of the seven CTIs algorithms and the NWI for the Central Hardwood Forest study area (Classification scheme:
wetland/upland)

CTI algorithm Threshold used Overall
accuracy

Wetland user’s
accuracy

Upland user’s
accuracy

Wetland producer’s
accuracy

Upland producer’s
accuracy

Overall
kappa

D8 6.1 88 88 89 89 87 0.77

Rho8 5.5 72 71 74 75 70 0.45

DEMON 7.3 85 85 85 85 85 0.71

D-∞ 5.4 86 82 92 93 79 0.72

MD-∞ 5.1 87 87 87 87 87 0.74

Mass Flux 5.0 85 84 87 87 84 0.71

FD8 5.6 70 70 70 71 70 0.41

NWI 1 85 97 77 71 98 0.70

Total # points used for the accuracy assessment: 9994
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Overall accuracy percentages for the CTIs assessed in this
study area were in the range of 70–88 %, with overall kappa
scores in the range of 0.41–0.77. Producer’s and user’s accu-
racies for the CTI’s were in the range of 71–93 % and 70–
88 %, respectively. The majority of CTI algorithms excluding
the Rho8 and FD8 showed low errors of commission and
omissions for the wetland class. NWI producer’s accuracy

was relatively low compared to the majority of CTIs, which
resulted in higher rates of wetland omission in this area.
Table 4 displays the significance test (Z-test) results of those
CTIs and NWI maps that were found to be significantly
different at a 95 % confidence level.

The CTI FD8, CTI Rho8 and CTI D8 were found to be
statistically significant compared to the rest of the CTI and
NWI results. A detailed visual comparison of the seven algo-
rithms, wetland polygons created by the City of Chanhassen,
and NWI polygons for a small portion of this study area is
presented in Fig. 4. This visual comparison exposes many
differences between the polygons created by the City of
Chanhassen, the NWI polygons and the straight flow water
patterns of the single flow direction algorithms. A map of the
CTI and CIR image for the complete study area is shown in
Fig. 5.

In general, out of all the algorithms tested, the D-∞ and
MD-∞ CTIs indicated excellent agreement with the reference
data in the visual and quantitative assessment for this study
area. These CTIs had high overall accuracy results in the range
of 86–87 %, with low errors of wetland omissions and
commission.

Results for the Northern Lakes and Forest Study Area

Table 5 shows accuracy assessment results for the two classes
(wetland/upland) for this study area. Overall accuracy results
for the CTI’s based algorithms evaluated in this study area
were in the range of 69–82 % with kappa scores between 0.38
and 0.64. Producer’s and user’s accuracies for the CTI’s were
in the range of 80–86 % and 65–81 %, respectively. NWI
accuracy assessment estimators were lower compared to the
majority of the CTI algorithms for this area. Lower accuracy
assessment results of the NWI revealed the inaccuracy of the
polygons in this forested area for identifying wetlands, partic-
ularly forested wetlands.

Table 6 displays significance tests (Z-tests) for only CTI
algorithms that were found to be statistically different at a

Table 4 Significance test (Z-test) for comparing the seven algorithms and
the NWI for the Central Hardwood Forest study area (Classification
scheme: wetland/upland)

CTI type Kappa1 vs. Kappa2 Z-value

D8 vs. Rho8 0.77 vs. 0.45 28.7*

D8 vs. DEMON 0.77 vs. 0.71 6.21*

D8 vs. D-∞ 0.77 vs. 0.72 4.7*

D8 vs. MD-∞ 0.77 vs. 0.74 2.9*

D8 vs. Mass Flux 0.77 vs. 0.71 6.0*

D8 vs. FD8 0.77 vs. 0.41 31.9*

D8 vs. NWI 0.77 vs. 0.70 7.6

Rho8 vs. DEMON 0.45 vs. 0.71 22.5*

Rho8 vs. D-∞ 0.45 vs. 0.72 24.15*

Rho8 vs. MD-∞ 0.45 vs. 0.74 25.7*

Rho8 vs. Mass Flux 0.45 vs. 0.71 22.7*

Rho8 vs. FD8 0.45 vs. 0.41 3.18*

Rho8 vs. NWI 0.45 vs. 0.70 21.6*

DEMON vs. MD-∞ 0.71 vs. 0.74 3.2*

DEMON vs. FD8 0.71 vs. 0.41 25.7*

D-∞ vs. FD8 0.72 vs. 0.41 27.4*

D-∞ vs. NWI 0.72 vs. 0.70 2.8*

MD-∞ vs. Mass Flux 0.74 vs. 0.71 3.0*

MD-∞ vs. FD8 0.74 vs. 0.41 28.9*

MD-∞ vs. NWI 0.74 vs. 0.70 4.5*

Mass Flux vs. FD8 0.71 vs. 0.41 25.9*

Fd8 vs. NWI 0.41 vs. 0.70 24.8*

*A Z-value over 1.96 indicates that there is a significant difference at the
95 % confidence level

Table 5 Accuracy estimators of the sevenCTIs algorithms and theNWI for the Northern Lakes and Forest study area (Classification scheme: wetland/upland)

CTI algorithm Threshold used Overall
accuracy

Wetland user’s
accuracy

Upland user’s
accuracy

Wetland producer’s
accuracy

Upland producer’s
accuracy

Overall
kappa

D8 5.2 82 80 84 86 78 0.64

Rho8 6.1 69 65 77 84 54 0.38

DEMON 7.1 75 73 77 80 70 0.50

D-∞ 7.0 81 81 81 81 81 0.61

MD-∞ 5.5 82 80 83 84 80 0.63

Mass Flux 6.0 81 80 81 82 79 0.61

FD8 5.8 81 79 83 83 78 0.61

NWI 1 75 73 78 80 70 0.50

Total # points used for the accuracy assessment: 2000
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95 % confidence level. The CTI FD8, CTI Rho8 and CTI D8
were found to be statistically significant different compared to
the rest of the CTI and NWI results for mapping wetlands.
Visual comparisons of the seven CTI algorithms and NWI
polygons for a small portion of this study area are shown in
Fig. 6. This visual comparison revealed the differences be-
tween the algorithms and NWI polygons for predicting for-
ested wetlands. Figure 7 shows two maps: the CTI and CIR
image, for the whole study area. In general, the D-∞, MD-∞,
and Mass Flux CTIs were the only algorithms that had excel-
lent agreement with the reference data in the visual and
quantitative assessment for this study area. These three algo-
rithms had the highest overall accuracy results in the range of
81–82 %, with relatively low errors of wetland omissions and
commission.

Discussion

We compared and evaluated seven CTI based algorithms
derived from lidar DEMs for identifying wetlands across three
different ecoregions in Minnesota. The computation of the
CTI offered a practical and fast method to identify wetlands
greater than 0.20 ha. All CTI based maps showed a relatively
high overall percentage of agreement with the reference data
for wetland and upland classes (69–92 %). Results of this

study demonstrate that lidar derived CTIs can significantly
improve the accuracy of wetlands classification compared to
the NWI across different ecoregions in Minnesota.

Although a direct comparison of the NWI and our CTI
results may be not fair because of the differences in data types
and techniques used to create these two wetland maps; the
CTI-based approach developed here provides an alternative
efficient and accurate method to update wetland maps. Avail-
able updated wetland maps would be valuable for many
governmental and non-governmental entities that currently
only used NWI maps as a tool and resource to monitor and
take decisions regarding wetlands.

Our results showed the importance of choosing the correct
flow direction algorithm for identifying wetlands location
visually and quantitatively. Visual comparison of the seven
CTI algorithms in the three study areas revealed noticeable
differences that are partially seen in the quantitative accuracy
assessment analysis for some algorithms.

We speculate that the quantitative accuracy assessment anal-
ysis did not show strong differences for all the algorithms
because of the type of reference data used to assess these
algorithms: points instead of polygon reference data types.
For example, the D8 SFD algorithm exhibits similar quantita-
tive accuracy results compared to three of the MFD algorithms
(D-∞, MD-∞, Mass Flux) in the three study areas; nevertheless,
the qualitative visual analysis exposes major difference related
to unrealistic parallel flow patterns of the SFD algorithms (D8
and Rho8) for differentiating wetlands from uplands.

Similarities and differences between the two groups of
algorithms are also highlighted in the way each of these
algorithms tends to distribute the flow and accumulation of
water in wetlands and uplands across the three study areas.

The Northern Glaciated Plains study area exhibited simi-
larities in the way the majority of the CTI based algorithms
represented water flow and accumulation for wetland map-
ping. For example, the D8, D-∞, and Mass Flux CTIs showed
parallel flow patterns and similarly high accuracy assessment
results. Low topography relief and presence of more concave
hillslopes in this study area were the two main factors that
favored greater flow convergence for the majority of wetlands
located in this study area. These factors may explain the
similarities in performance of the majority of flow direction
algorithms in this area. Additionally, this study area had the
highest overall accuracy, user’s and producer’s accuracy re-
sults compared to the other two study areas.

High accuracy results can be explained primarily be-
cause of the type of wetlands found in this study area,
known as prairie pothole wetlands or depressional wet-
lands (LaBaugh et al. 1998). The majority of flow accu-
mulation that contributes to the hydrology of these wet-
lands tends to occurs in these topographic depressions
that can be identified efficiently using high resolution
elevation data. As a result, the CTI method tested in this

Table 6 Significance test (Z-test) for comparing the seven algorithms and
the NWI for the Northern Lakes and Forest study area (Classification
scheme: wetland/upland)

type Kappa1 vs. Kappa2 Z-value

D8 vs. Rho8 0.64 vs. 0.38 9.78*

D8 vs. DEMON 0.64 vs. 0.50 5.43*

D8 vs. NWI 0.64 vs. 0.50 5.24*

Rho8 vs. DEMON 0.38 vs. 0.50 4.18*

Rho8 vs. D-∞ 0.38 vs. 0.61 8.84*

Rho8 vs. MD-∞ 0.38 vs. 0.63 9.43*

Rho8 vs. Mass Flux 0.38 vs. 0.61 8.59*

Rho8 vs. FD8 0.38 vs. 0.61 8.80*

Rho8 vs. NWI 0.38 vs. 0.50 4.37*

DEMON vs. D-∞ 0.50 vs. 0.61 4.52*

DEMON vs. MD-∞ 0.50 vs. 0.63 5.10*

DEMON vs. Mass Flux 0.50 vs. 0.61 4.28*

DEMON vs. FD8 0.50 vs. 0.61 4.48*

D-∞ vs. NWI 0.61 vs. 0.50 4.34*

MD-∞ vs. NWI 0.63 vs. 0.50 4.91*

Mass Flux vs. NWI 0.61 vs. 0.50 4.10*

Fd8 vs. NWI 0.61 vs. 0.50 4.30*

*A Z-value over 1.96 indicates that there is a significant difference at the
95 % confidence level
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study is an efficient mapping technique to identify these
wetlands because of the topographic nature of this index.

For the Central Hardwood Forest study area marked visual
differences between the SFD and MFD algorithms were

Fig. 3 aCIR aerial imagery 2011
map, and b CTI map for the
Northern Glaciated Plains study
area

Fig. 2 Visual comparison of a
the NWI polygons, b CIR aerial
imagery 2011, c D8 CTI, d Rho8
CTI, e DEMON CTI, f FD8 CTI,
g D-∞ CTI, h MD-∞ CTI, i Mass
Flux CTI for the Northern
Glaciated Plains study area.
Higher CTI values represent
water accumulation (potential
wetland location) and lower CTI
values represent dryness
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displayed in this study. For example, parallel flow patterns
were very evident on the D8, Rho8 and DEMON CTIs. The

Rho8 showed the lowest accuracy assessment results for
classifying wetlands and uplands.

Fig. 5 aCIR aerial imagery 2008
map, and b CTI map for the
Central Hardwood Forest study
area

Fig. 4 Visual comparison of a
the NWI polygons, b CIR aerial
imagery 2008 and wetland
polygons created by the City of
Chanhassen, c D8 CTI, d Rho8
CTI, e DEMON CTI, f FD8 CTI,
g D-∞ CTI, h MD-∞ CTI, i Mass
Flux CTI for the Central
Hardwood Forest study area.
Higher CTI values represent
water accumulation (potential
wetland location) and lower CTI
values represent dryness
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This study area had the second relatively high overall
accuracy, user’s and producer’s accuracy results compared to
the other two study areas. Visually and statistically the best

algorithms for mapping wetlands in this area were the D-∞
and MD-∞ CTIs. Marked differences between algorithms in
this study area can be attributed to the presence of medium to

Fig. 7 aCIR aerial imagery 2009
map, and b CTI map for the
Northern Lakes and Forest study
area

Fig. 6 Visual comparison of a
the NWI polygons, b CIR aerial
imagery 2009 , c D8 CTI, d Rho8
CTI, e DEMON CTI, f FD8 CTI,
g D-∞ CTI, h MD-∞ CTI, i Mass
Flux CTI for the Northern Lakes
and Forest study area. Higher CTI
values represent water
accumulation (potential wetland
location) and lower CTI values
represent dryness

Wetlands



high topography relief and more convex hillslopes near or in
the type of existing wetlands in this area.

The majority of existing wetlands include open water,
shallow and deep marshes, and unconsolidated bottom
(Knight et al. 2013). Thus, CTIs based on MFD algorithms
were more suitable than SFD algorithm for this area to repre-
sent realistic patterns of wetlands areas and greater flow of
divergence distribution of water.

The Northern Lakes and Forest study area study area had
the lowest overall accuracy, user’s accuracy, and producer’s
accuracy results for all the CTIs maps compared to the other
two study areas. This can be explained because of the wet-
lands types located in this area which includes calcareous fens,
sedge meadows, hardwood wetlands, coniferous swamps, and
coniferous bogs. The majority of these existing wetlands in
this area are groundwater-fed wetlands, and generally high in
the landscape.

For example, fens wetlands are groundwater discharge
wetlands that occur along topographic or geologic breaks or
where groundwater aquifers are exposed near the surface.
Thus, these types of wetlands are less sensitive to topography
influence and inundation events as they are located at an
elevation above floodplain.

Nevertheless, of all the CTI’s based algorithms, the MFD
algorithms performed better at visually separating uplands
from wetlands. The D-∞, MD-∞, and Mass Flux CTIs had
the highest accuracy results for separating wetlands from
uplands. The threeMFD algorithms mentioned above allowed
for a more divergent and smoother distribution of water in
very pronounced convex-steep hillslopes near or close to these
wetlands.

Lang et al. (2013) reinforces our results regarding the
accuracy and preferences for MFD over SFD algorithms for
identifying wetland locations. The Lang et al. (2013) results
indicate that the FD8 CTI multiple flow direction algorithms
derived from lidar data performed better than other non-
distributed flow direction algorithms including the D8 for
identifying locations of forested wetlands in the Coastal Plain
of Maryland.

Our significance Z-test results for the three study areas
confirmed the significant differences between the SFD algo-
rithms and MFD, particularly for the Rho8 CTI, across the
three study areas. CTI based algorithms (D8, D-∞, MD-∞,
Mass Flux D, and FD8) wetland/upland classification maps in
general were significant improvements over the NWI map for
two of our study areas. However, for the Central Hardwood
Forest study area, the CTI based algorithms (D8, D-∞, MD-∞,
andMass Flux D) outperformed only the NWI. NWI results in
this area had high errors of omission because of rapid urban
development over the past 6 years.

Our research demonstrated the outdated nature of many
NWI maps in Minnesota. Still, many of these maps are used
by governmental and non-governmental policymakers

for wetland management and policy development for
lack of better data. Improved mapping accuracy will
be greatly beneficial for policymakers developing local
or regional wetland inventories, restoration or mitigation
plans and other policies.

Conclusions

Lidar derived CTIs enable a fast, efficient, and more accurate
method to estimate current wetland location compared to NWI
maps. Our results provide evidence that different wetland
types in varied ecoregions can be identified accurately using
lidar derived terrain indices. In general, the seven CTI based
algorithms were able to predict wetland locations across dif-
ferent ecoregions. However, there were statistically and visu-
ally significant differences in their performance.

Our visual comparison results revealed that CTIs based on
MFD algorithms are generally better than CTIs based on SFD
algorithms for separating wetlands from uplands. Based on
our results, we suggest the use of the following algorithms:
D-∞, MD-∞ or Mass Flux in the application of the CTI for
mapping wetlands in areas similar to the ones evaluated in this
study. The MFD algorithms represented the distribution and
accumulation of water (wetness) in wetlands in a more visu-
ally accurate form compared to SFD algorithms.

Further research is encouraged to investigate the effect of
different DEM resolutions and use of the CTI combined with
other ancillary data such as optical data for mapping wetlands.
The combination of the CTI and other ancillary data could
potentially help to identify wetlands located at an elevation
above floodplain level where elevation information alone is
not as influential as it is for depressional wetlands. For exam-
ple, organic flat wetlands and groundwater discharge-fed wet-
lands that occur along slopes including some types of fens
may require additional tools to map with greater accuracy.

Additional research is also needed to address evaluate
numerically the visual differences seen in this study from the
different flow direction algorithms. One possible approach
could be a wet area-polygon based assessment, that would
extract and measure the amount of CTI wet areas found only
in wetland references polygons.

Finally, the use of NWI maps continues across different
parts of the country because these maps are the most accessi-
ble information available. Many of these NWI maps need to
be updated. Remote sensing techniques including those based
on the CTI offer a fast, cost-effective and reliable method to
quickly identify wetland location and update such maps.
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The Effects of Data Selection and Thematic 
Detail on the Accuracy of High Spatial 

Resolution Wetland Classifi cations
Joseph F. Knight, Bryan P. Tolcser, Jennifer M. Corcoran, and Lian P. Rampi

Abstract
Accurate wetland maps are of critical importance for preserv-
ing the ecosystem functions provided by these valuable land-
scape elements. Though extensive research into wetland map-
ping methods using remotely sensed data exists, questions 
remain as to the effects of data type and classifi cation scheme 
on classifi cation accuracy when high spatial resolution data 
are used. The goal of this research was to examine the effects 
on wetland mapping accuracy of varying input datasets and 
thematic detail in two physiographically different study areas 
using a decision tree classifi er. The results indicate that: topo-
graphic data and derivatives signifi cantly increase mapping 
accuracy over optical imagery alone, the source of the eleva-
tion data and the type of topographic derivatives used were 
not major factors, the inclusion of radar and leaf-off imagery 
did not improve mapping accuracy, and increasing thematic 
detail resulted in signifi cantly lower mapping accuracies i.e., 
particularly in more diverse wetland areas.

Introduction
Wetlands are a valuable natural resource and play a cru-
cial role in the ecological systems of a landscape. Wetlands 
provide important ecosystem functions such as maintaining 
water quality by fi ltering nutrients and pollutants, storing 
fl oodwater and mitigating its effects, and providing habitat 
for a variety of wildlife adapted to saturated environments. 
Wetlands also play a role in the global carbon cycle, acting 
as both carbon sources and sinks (Keddy, 2000; Mitsch and 
Gosselink, 2000). 

Wetland loss has occurred at a rapid rate in the United 
States. In the years between European settlement and the 
1980s, the 48 conterminous states lost an estimated 53 percent 
of wetland acreage due to human activities such as agricul-
ture, urbanization, and pollution (Dahl, 1990). In the state of 
Minnesota, United States, over 50 percent of the estimated 
pre-settlement 3.6 million ha of wetlands have been lost 
statewide. However, the degree of wetland loss is greatest, 
over 80 percent, in southern and western Minnesota where 
wetlands were drained primarily for agriculture. Urbanization 
has caused comparatively smaller wetland area losses, but has 
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signifi cantly altered wetlands’ physical, biological, and chem-
ical properties (Johnston, 1989). The loss of wetlands con-
tinues, but some studies suggest that wetland loss is slowing 
due to regulatory controls (Dahl and Johnson, 1991). Despite 
the critical importance of accurate mapping of the spatial 
distributions of wetlands for making policy decisions related 
to preservation of existing wetlands (Baker et al., 2006), the 
National Wetlands Inventory (NWI) in Minnesota is as much as 
38 years out of date in some areas (MNGeo, 2012).

Accurate mapping of wetlands can be achieved through 
a variety of approaches ranging from fi eld investigation to 
remote wetland assessment. Due to the high costs of perform-
ing fi eld wetland mapping, remote sensing-based approaches 
have been used for several decades (Cowardin and Myers, 
1974). Numerous studies have examined remote sensing 
based data sources and approaches for wetland mapping. 

Frequently examined methods include aerial photograph 
interpretation and satellite image analysis of both single 
and multi-date optical satellite imagery, in which optical 
properties (e.g., refl ectance) of wetland vegetation and land 
forms are assessed (Baker et al., 2006; Harvey et al., 2001; 
Hodgson et al., 1987; Lunetta and Balogh, 1999; Ozesmi 
and Bauer, 2002; Pope, 1994; Sader et al., 1995; Tiner, 1990; 
Townsend and Walsh, 2001; Wang et al., 1998a; Wright and 
Gallant, 2007). A notable example of a project incorporating 
these techniques is the National Oceanic and Atmospheric 
Administration’s (NOAA) Coastal Change Analysis Program 
(C-CAP). C-CAP provides periodic land-use/land-cover clas-
sifi cations of areas near coastlines and the Great Lakes, with 
the goal of studying change, including in wetlands, in those 
areas. A somewhat less studied optical method involves the 
use of hyperspectral imagery to map wetlands based on fi ne 
details in vegetation spectral response. Though hyperspectral 
imagery can be used to derive accurate wetland maps, the 
data acquisition, storage, and processing requirements are 
greater than those of multispectral imagery (Becker et al., 2005 
and 2007; Hirano et al., 2003; Jollineau and Howarth, 2008; 
Neuenschwander et al., 1998; Wang et al., 1998b). Though 
useful, hyperspectral data were not available for inclusion in 
this project. In recent years, high spatial resolution satellite 
and aerial imagery have been assessed for wetland mapping 
potential. Maxa and Bolstad (2009) used Ikonos imagery and 
lidar data to map northern wetlands, which outperformed an 



J u l y  2 0 1 3   PHOTOGRAMMETR IC  ENGINEER ING &  REMOTE  SENS ING614

Despite the aforementioned extensive research in wet-
land mapping, many questions remain i.e., particularly with 
respect to studies using high spatial resolution imagery. An 
important question is which data types, among the many that 
are available to geospatial researchers, should one prioritize 
for inclusion in high spatial resolution mapping projects. In 
the research described here, we examined the effects of data 
type selection on wetland mapping accuracy using multiple 
classifi cation schemes in two physiographically different 
study areas. The specifi c goals of this study were: (a) to exam-
ine the advantages and disadvantages of using several input 
geospatial datasets for mapping wetlands, (b) to describe the 
suitability of geospatial data for classifying wetlands accord-
ing to three schemes (wetland/non-wetland, Cowardin class, 
and MNDNR), and (c) To compare classifi cation accuracies of 
wetlands in two very different physiographic regions.

Study Areas
Two study areas in Minnesota were selected for this research, 
one located in the Minneapolis-St. Paul metropolitan area 
and one located in the northeast forested region (Figure 1). 
These areas were selected because they represent a wide range 
of wetland types and because geospatial datasets and fi eld 
reference data (described below) were available. The metro 
study area encompassed the limits of the City of Chanhassen, 
Minnesota, a southwestern suburb of Minneapolis with an 
area of approximately 60 km2. Land-use within the city is 
primarily medium density residential with some areas of 
industrial and dedicated open space. Wetlands, lakes, ponds, 
and rivers account for approximately 27 percent of the city’s 
surface area (City of Chanhassen, 2006).

The Fond du Lac Reservation (FDL), located northwest 
of the City of Cloquet, Minnesota, is part of the boreal for-
est biome. FDL has an area of approximately 390 km2. The 
land-cover is dominated by both deciduous and evergreen 
forests and low density residential. Wetlands and water bod-
ies account for approximately 38 percent of FDL’s surface area. 
The FDL area experienced dryer than normal weather condi-
tions during 2009 when some of the FDL imagery used in this 
study were acquired. Drought conditions persisted throughout 
the spring and summer of 2009, which may have affected the 
study results with respect to the measured utility of those 
images.

Methods
Classifi cation Schemes
Three classifi cation schemes were used in this study: (a) A 
simple wetland versus upland discrimination, (b) Wetlands 
classifi ed to the Cowardin class level (Cowardin et al., 1974; 
Table 1), and (c) A simplifi ed plant community classifi cation 
(hereafter termed “MNDNR”). The MNDNR scheme was devel-
oped by the Minnesota Department of Natural Resources (DNR) 
and is based on Eggers and Reed (1997), with modifi cations to 
make the scheme more appropriate for remote sensing-based 
mapping of wetlands. The full classifi cation scheme including 
class defi nitions can be found in Kloiber and MacLeod, 2011. 
The scheme is in offi cial use in Minnesota within the wetland 
mapping group of the DNR. In addition, it is dissimilar to the 
Cowardin scheme; thus it provides a useful and applicable 
base for comparison of the various input data types used. 

Tables 2 and 3 show the wetland composition in 
Chanhassen and FDL by Cowardin and MNDNR classes, respec-
tively. Wetland data for the City of Chanhassen were collected 
during the 2006 Surface Water Management Plan (SWMP) 
update (described below); data for FDL were derived from a 

existing wetland inventory for the State of Wisconsin. Laba 
et al. (2008) used QuickBird imagery to map invasive wet-
land species. Bowen et al. (2010) used high-resolution aerial 
images and ancillary data to map playa wetlands in Kansas. 
Halabisky et al. (2011) used a combination of high-resolution 
imagery and object-based classifi cation to map semi-arid wet-
lands. Many other studies have examined issues such as wet-
land vegetation analysis and coastal wetland mapping with 
high spatial resolution imagery (Dechka et al., 2002; Ramsey 
and Laine, 1997; Wei and Chow-Fraser, 2011).

Radar imagery has been shown to have utility for wetland 
remote sensing. Unlike optical sensors, radar sensors operate 
in the microwave portion of the electromagnetic spectrum and 
are insensitive to most atmospheric and low light conditions. 
Radar backscatter is sensitive to soil and vegetation mois-
ture properties and can, to some degree, penetrate the forest 
canopy and provide sub-canopy vegetation and soil saturation 
information (Whitcomb et al., 2007). Because radar is sensi-
tive to moisture, techniques using interferometric analysis 
of radar data have been shown to identify changes in water 
levels to within a centimeter (Wdowinski, 2008). Numerous 
researchers report that careful selection of the timing of image 
acquisition with respect to soil moisture levels, radar band(s) 
to be used, and the combination of radar and optical imagery 
results in higher wetlands mapping accuracies (Costa et al., 
2006; Dobson et al., 1995; Henderson and Lewis, 2008; Hess 
et al., 1990; Hess et al., 1995; Hess et al., 2003; Kasischke, 
1997; Lozano-Garcia and Hoffer, 1993; Ramsey, 1998; 
Rosenqvist et al., 2004; Wang et al., 1995). Others caution 
that radar imagery may be only situationally useful due to the 
effects of speckle and forest canopy interference on classifi ca-
tion results (Corcoran et al., 2012; Li and Chen, 2005).

Non-image geospatial data sets may provide valuable 
information for wetland mapping. Digital Elevation Models 
(DEM) are commonly used, both for elevation information and 
a number of topographic derivatives including slope, fl ow 
accumulation, and probability of soil wetness. Studies on the 
use of DEMs for land-cover mapping include the effects of DEM 
resolution on wetland mapping accuracy (Creed et al., 2003), 
determination of soil characteristics (NRCS, 2010; Thompson 
et al., 2001), use of a depth-to-water index for modeling of 
wet areas (Murphy et al., 2007), and the suitability of sev-
eral DEM derivatives for identifi cation of wetlands (Hogg and 
Todd, 2007).

A large number of studies have focused on the effects of 
classifi cation algorithm choice on wetland mapping accuracy, 
with rule-based and decision tree algorithms emerging as 
strong alternatives to traditional approaches such as maxi-
mum likelihood estimation (Bolstad and Lillesand, 1992; 
Rodriguez-Galiano, 2012). Hogg and Todd (2007) compared 
several statistical methods and found the Classifi cation 
and Regression Tree (CART) algorithm to result in the high-
est accuracy. Baker et al. (2006) compared the accuracy of 
Classifi cation Tree Analysis (CTA) and Stochastic Gradient 
Boosting (SGB) classifi ers and reported that the SGB method 
performed best. Liu et al. (2008) used a decision tree approach 
to successfully map mangrove forests. Rover et al. (2011) 
determined hydrologic function of wetlands using a decision 
tree classifi er. Li and Chen (2005), Parmuchi et al. (2002), and 
Phillips et al. (2005) developed rule-based wetland mapping 
methods for combining inputs from a variety of geospatial 
sources. In terms of more general (i.e., not wetland specifi c) 
land-cover/land-use mapping, a notable example is the 2001 
National Land Cover Database (NLCD), which was created 
using a decision tree classifi er with inputs composed of sev-
eral dates of imagery, topography and topographic derivatives, 
and other ancillary data sets such as impervious surface maps 
(Homer et al., 2004). 
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2008 one meter aerial image-based wetland inventory pro-
vided by FDL. Note that this latter FDL inventory was used for 
qualitative purposes only, as it was found to be of insuffi cient 
quality for either classifi er training or results validation.

Data Used
The data used in this research varied depending on the study 
area. Data common to both study areas included: National 
Agriculture Imagery Program (NAIP) images (acquired in sum-
mer of 2008, one meter spatial resolution, color infra-red, 5 m 
horizontal accuracy), US Department of Agriculture (USDA) 

Figure 1. Locations of study areas.

TABLE 1. COWARDIN WETLAND CLASSES

Cowardin Code1 Description

PEM Palustrine Emergent

PSS Palustrine Scrub Shrub

PFO Palustrine Forested

L Lacustrine

PUB Palustrine Unconsolidated Bottom
1 Cowardin codes are taken from Cowardin et al. (1974).

TABLE 2. SUMMARY OF WETLAND TYPES BY COWARDIN CLASS

Chanhassen Fond du Lac

Class Count Acres % of Total Count Acres % of Total

PEM 305 2304 58.4% 826 4311 11.8%

PFO 40 19 0.5% 1797 15776 43.1%

PSS 3 1 0.02% 2334 13584 37.1%

W1 189 1621 41.1% 309 2949 8.1%

Total Features 537 3944 100.0% 5266 36619 100.0%

Study Area 14515 27.2% 96119 38.1%
1 Water class included Lacustrine and PUB wetlands as well as non-vegetated stormwater detention basins.
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input dataset(s) into the requested output classes (“leaves”). 
Decision trees require no assumptions about the underlying 
distributions of the input datasets and are able to use both 
continuous and categorical data (Breiman, 2001; Friedl and 
Brodley, 1996; Quinlan, 1993). As mentioned above, these 
algorithms have been shown to perform well in land use/
cover mapping. The decision tree used was the See5 software 
package by Rulequest, Inc., along with the NLCD Mapping Tool 
developed by MDA, Ltd. Three steps were involved in the 
decision tree classifi cation: data sampling, data mining/tree 
creation, and classifi cation.

The fi rst step, data sampling, involved assembling 
training data points and collecting values from the input 
data layers. Training data for the Chanhassen classifi cation 
were derived from the city’s 2006 SWMP data (described in 
Accuracy Assessment below). Before the SWMP data were used 
for training, the polygons were edited to correct for changes 
resulting from a 2008 highway construction project. Five 
thousand simple random points were generated throughout 
the study area in each of wetland and upland areas, for a total 
of 10,000 training points. 

Training data for the FDL location were created from man-
ual interpretation of the 2008 NAIP and 2009 leaf-off imagery. 
A Minnesota Certifi ed Wetland Delineator manually deline-
ated 140 training polygons. The polygons ranged in size from 
approximately 50 image pixels to 300 pixels. Sample pixels 
representing the range of wetland and upland types present in 
the study area were selected from the training polygons using 
a simple random sampling method. This procedure resulted 
in a total of 5,412 wetland and upland training samples.

The NLCD Sampling Tool ver. 2.0, a utility included in the 
NLCD Mapping Tool, was used to create an input data fi le for 
use in See5. The NLCD Sampling Tool extracted values from 
each input dataset at each sampling point. The utility gener-
ated a tabular fi le which contained a row for each sampling 
point with comma separated values for each input data layer. 

In the second step, data mining/tree creation, the See5 
software package was used to create decision trees derived 
from the data tables created with the NLCD Sampling Tool. 
The boost, fuzzy thresholds, and global pruning options were 
enabled for classifi er construction. The boost option caused 
See5 to create decision trees using a recursive algorithm, in 
which results from previous trees were weighted more heavily 
in subsequent trees. The fuzzy threshold option established 
upper and lower bounds for each independent variable rather 

Soil Survey Geographic (SSURGO) maps, and the US National 
Elevation Data (NED; acquired in 2008, ten meter spatial reso-
lution, vertical accuracy estimated at 2.4 m). The extracted 
SSURGO drainage class (e.g., “hydric” and “poorly drained”) 
served as the soil-related input variables. For the Chanhassen 
study area, additional data used included a lidar-derived 
digital elevation model (lidar acquired in spring of 2006, 
three meter spatial resolution, 15 cm vertical resolution). 
For the FDL area, additional data used included: Radarsat-2 
C-band radar imagery (acquired 15 June 2009, “Fine” 4.7 m 
spatial resolution, quad-polarization, backscattering coef-
fi cients scaled in decibels), and leaf-off digital aerial images 
(acquired mid-May to early-June 2009, 0.5 m spatial resolu-
tion, color infra-red, 3.5 m horizontal accuracy). Though 
C-band radar imagery is not optimal for wetland mapping 
under forest canopy, we included such imagery for complete-
ness and because it was available at no cost. We recognize that 
additional polarimetric processing of the radar imagery may 
have yielded improved results, but software to perform that 
processing was not available. All data were projected to the 
Universal Transverse Mercator coordinate system, Zone 15, 
NAD83 datum. Both the NED and lidar-derived DEMs were 
hydrologically corrected before use. Topographic derivatives 
were computed for the elevation datasets: slope, Compound 
Topographic Index (CTI), and Curvature. The CTI is a well 
known measure of the likely wetness of an area. It is com-
puted with the formula CTI = ln (As / tan(B)), where As is the 
upstream contributing area to the pixel and B is the slope in 
radians (Gessler et al., 1995). The d-infi nity fl ow model was 
used to create the CTI. Curvature indicates local convexity or 
concavity for each pixel, with positive values indicating con-
cavity, zero values indicating linearity, and negative values 
indicating convexity (Parsons, 1979).

Wetland Classifi cations
Since the focus of this research was to test the effects on 
accuracy of data type selection and classifi cation scheme 
rather than classifi cation method, a common classifi cation 
approach was used throughout the various trials. We chose to 
use a decision tree classifi er in this research. A decision tree 
is a supervised algorithm that produces a classifi cation by 
developing a set of decision points, or nodes, that are cre-
ated by identifying diagnostic features in the training data. 
The resulting “tree” of nodes is then used to partition the 

   TABLE 3. SUMMARY OF WETLAND TYPES BY MNDNR CLASSIFICATION SCHEME

Chanhassen Fond du Lac

Class Count Acres % of Total Count Acres % of Total

Coniferous Wetland 0 0 0% 883 9743 27%

Deep Marsh 52 228 6% 148 1045 3%

Hardwood Wetland 47 25 0.6% 914 6033 17%

Seasonally Flooded 10 5 0.1% 0 0 0%

Shallow Marsh 132 1410 36% 270 2013 6%

Shrub Wetland 3 1 0.02% 2334 13584 37%

Water1 191 1635 42% 309 2949 8%

Wet Meadow 102 641 16% 408 1253 3%

Total Features 537 3944 100% 5266 36619 100.0%

Study Area 14515 27% 96119 38%
1 Water class included Lacustrine and PUB wetlands as well as non-vegetated stormwater detention basins.
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Several classifi cations were performed to determine the 
effects of various input datasets on classifi cation accuracy 
(Table 4). The fi rst classifi cation was a wetland versus upland 
discrimination using all of the available data types (e.g., 
imagery, topography, etc.). Then, areas identifi ed as wetlands 
were classifi ed at higher thematic detail according to the 
Cowardin and MNDNR schemes. These wetland type classifi ca-
tions were creating using a variety of inputs, including: the 
available data of all types, the available data without topogra-
phy, and the NAIP/optical imagery alone. Additional classifi ca-
tions in Chanhassen were performed to compare differences 
between high spatial resolution (3 m) and lower resolution 
(10 m) topography data as well as differences between the CTI 
and Curvature topographic derivatives. Additional classifi ca-
tions in Fond du Lac were performed to determine the effects 
of including C-band radar data and leaf-off imagery on the 
classifi cation accuracy. 

Because some areas identifi ed as wetland in the initial 
wetland/upland discrimination may not have been wetlands, 
upland was included as an output class in the wetland type 
classifi cations. A small percentage of pixels initially classi-
fi ed as wetland in the wetland/upland classifi cation were 

than using hard values. When constructing the decision tree, 
a value between the upper and lower bound was assigned a 
class by See5. The global pruning option allowed the See5 
algorithm to remove (prune) parts of the trees exhibiting 
relatively high error rates. The results of the data mining 
processes were decision trees that were used to produce the 
various classifi cation trials (Table 4). Decision trees were con-
structed for use in wetland versus upland classifi cation, wet-
land classifi cation to the Cowardin class level, and wetland 
classifi cation using the MNDNR scheme. Additional decision 
trees were constructed to evaluate the mapping accuracy dif-
ferences resulting from varying the type and number of input 
data sets (described below).

The fi nal step was to produce the classifi cations. The out-
put classes were those drawn from the training data. The area 
classifi ed was the geometric intersection of all input datasets. 
The classifi cations were performed using the See5 Classifi er 
Tool, a part of the NLCD Mapping Tool. The See5 output 
included an internal validation done using the input sampling 
points as a measure of error inherent in the resultant decision 
tree (i.e., contingency accuracy). Cross-validation was enabled 
to provide validation estimates using “out of bag” sampling. 

 TABLE 4. DATA USED SCENARIOS FOR WETLAND CLASSIFICATIONS

Data Layer

Classifi cation Scenario
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Imagery

2008 NAIP Leaf On Imagery (R,G,B,IR) X X X X X X X X X X X X X X

2009 Spring Leaf Off Imagery (R,G,B,IR) X X X X

RaDAR Imagery (Quad Pol) X X X

Imagery – Derived

2008 NAIP NDVI X X X X X X X X X X X X X X

2009 Leaf Off NDVI X X X X

NDVI Difference X X X X

Topography

10m NED DEM X X X X X X

2-ft Hi-Res LiDAR Based DEM X X X

Topography Derivations

CTI (3m LiDAR derived) X X

CTI (10m NED derived) X X X X X

CTI (24m LiDAR degrade derived) X X

Slope (3m LiDAR derived) X X X

Slope (10m NED derived) X X X X X X

Curvature (3m LiDAR derived) X X

Curvature (10m NED derived) X X X X X

Other Data

SSURGO (Drainage Class) X X X X X X X X X X
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The wet meadow, shallow marsh, and deep marsh classes 
each had fewer than ten fi eld validation points and so were 
not included in the accuracy assessment.

The See5 software’s internal cross-validation process was 
employed to provide a measure of the agreement of the clas-
sifi cations’ outputs with the training data. With cross-valida-
tion, See5 performed a user-determined number of iterations 
of decision tree construction (i.e., folds) with a subset of the 
total training points and used the remainder of the points for 
validation. In this study, a 10-fold cross-validation was used, 
in which 10 percent of the training points were randomly set 
aside and the decision tree was constructed using the other 
90 percent of points. Repeated iterations were performed with 
different subsets of points set aside such that after ten itera-
tions each point had been used once in cross-validation.

Results
The results of this research are summarized in Tables 5 
through 14. Full error matrices are presented for the “All 
Data” scenario for each of the different classifi cation schemes 
and study areas. Due to space constraints, only the overall 
percent accuracy is given for the many other trials described 
in Table 4. Unless otherwise noted, all of the accuracy assess-
ment results in each study area were compared using the 
kappa-based z-statistic tests described in Congalton and Green 
(1999) and were found to be signifi cantly different at an alpha 
level of 0.05. Although there has been controversy surround-
ing the kappa coeffi cient (e.g., Foody, 1992; Pontius and 
Millones, 2011; Stehman and Czaplewski, 1998), we believe 
that kappa retains value in thematic accuracy assessment i.e., 
especially for comparison of error matrices.

Table 5 shows the results of the wetland/upland dis-
crimination in the Chanhassen study area using the All Data 
scenario. The overall accuracy was 93 percent, with low 
errors of omission and commission. When the decision tree 
classifi er was trained to identify Cowardin classes rather 
than the simpler wetland/upland determination (Table 6), 
overall performance remained strong at 86 percent; however 
the user’s and producer’s accuracies of the PFO class were 
both relatively low. The MNDNR error matrix is shown in 
Table 7. The overall accuracy of this trial was lower than the 
preceding Cowardin class mapping, at 77 percent. Two of the 
classes exhibited very high errors of omission and/or com-
mission: hardwood wetland and deep marsh. Tables 8 and 9 
show the See5 cross-validation (X-Val) and accuracy assess-
ment (Assess) results for the other trials conducted in the 
Chanhassen area. The combination of high-resolution optical 
imagery, SSURGO, topography, and a topographical derivative 
performed signifi cantly better (as measured by the z-test) than 
the trials without topographical information; and, much better 
than the optical imagery and SSURGO data alone. However, 
the differences between the lidar versus NED trials and the 
CTI versus Curvature trials were not statistically signifi cant. 
Thus, the source of the topographic data and the choice of 
topographic derivative were not important infl uences on the 
overall accuracies of the trials.

subsequently classifi ed as upland in the wetland type classifi -
cations and were maintained as such in the accuracy assess-
ment. Areas incorrectly identifi ed as upland were included 
in the error matrices, but the accuracy of the upland class 
within the wetland type classifi cations was not assessed. This 
approach was necessary so that the overall accuracy estimates 
of the various classifi cation trials would better refl ect the 
performance of the wetland type classifi cations rather than 
wetland/upland discrimination.

Accuracy Assessment
The accuracy of each classifi cation was assessed by com-
parison with ground and image-based reference data. Error 
matrices were calculated using the methods described in 
Congalton and Green (1999). For the Chanhassen pilot area, 
the city’s SWMP was used as the reference data source. In the 
SWMP, uplands, wetlands, and water features throughout the 
city were identifi ed and observed in the fi eld. Mapping for 
all areas within city was completed using a combination of 
fi eld GPS delineation and image interpretation. A Minnesota 
Certifi ed Wetland Delineator validated all polygons. Further 
methodology is described in City of Chanhassen (2006). To 
create the reference data for this study, a random sample of 
10,000 points was generated throughout the city. This sample 
was independent of the 10,000 samples used in training the 
classifi ers. Wetland classes were extracted from the SWMP for 
each point. Wetland polygons in the SWMP with two or more 
wetland types noted were considered to be the dominant 
wetland type. A simple random sampling scheme resulted in 
7,343 upland points and 2,657 wetland points. Wet features 
in Chanhassen consisted of water, forested wetlands, and 
emergent wetlands, as listed in Tables 1 and 2. Wetland type 
classifi cation by Cowardin class included water (L, PUB, 
PAB), emergent (PEM), scrub/shrub (PSS), and forested (PFO) 
wetlands. Scrub/shrub comprised a very small area of the 
wetland cover in the study area and contained only fi ve fi eld 
validation points; therefore that class was not included in 
the accuracy assessment. The MNDNR classifi cation included 
water, wet meadow, shallow marsh, deep marsh, shrub 
wetland, seasonally fl ooded, and hardwood wetland classes. 
Seasonally fl ooded and shrub wetlands each had fewer than 
ten fi eld validation points and were removed from the accu-
racy assessment to maintain statistical validity. 

For FDL, fi eld reference data were collected 13-17 July 
2009 by a team from the University of Minnesota, which was 
led by a Minnesota Certifi ed Wetland Delineator. A stratifi ed 
random sampling scheme based on the existing NWI classes 
was used within wetland types to generate a sample of 250 
wetland sites. An additional 150 sites were randomly gener-
ated within uplands. Data collected at each site included 
land-cover/land-use type, vegetative species present, crown 
closure percent, neighboring land-cover/land-use, pano-
ramic and canopy photographs, and general notes about the 
site. A total of 195 points was collected during one week of 
fi eld work. These points were used as reference data for the 
accuracy assessment for the FDL study area. These reference 
data were independent of the training polygons used in deci-
sion tree development. Wet features in Fond du Lac consisted 
primarily of forested and scrub/shrub type wetlands. Wetland 
type classifi cation by Cowardin class included water (L, 
PUB, PAB), emergent (PEM), scrub/shrub (PSS), and forested 
(PFO) wetlands. Most of the fi eld validation points were 
scrub/shrub and forested wetlands, so emergent wetlands 
were not included in the accuracy assessment due to insuf-
fi cient validation points to create statistically signifi cant error 
estimates for that class. Wetland type classifi cation by MNDNR 
included water, wet meadow, shallow marsh, deep marsh, 
shrub wetland, hardwood wetland, and coniferous wetland. 

TABLE 5. CHANHASSEN ALL DATA SCENARIO – WETLAND/UPLAND ERROR MATRIX

Reference Data

M
ap

 D
at

a

Upland Wetland Map Total User’s Acc.

Upland 6945 296 7241 96

Wetland 398 2361 2759 86

Ref. Total 7343 2657 10000

Prod. Acc. 95 89 93
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TABLE 6. CHANHASSEN ALL DATA SCENARIO – COWARDIN CLASS ERROR MATRIX

Reference Data

UPL PEM W PFO PSS Map Tot User.Acc.

M
ap

 D
at

a
UPL 0 230 34 11 0 276 0

PEM 0 1262 53 8 0 1323 95

W 0 41 1013 0 0 1054 96

PFO 0 1 0 2 0 3 67

PSS 0 0 0 0 0 0 0

Ref. Total 0 1534 1101 21 0 2656*

Prod.Acc. 0 82 92 10 0 86

*One wetland sample was removed because the Cowardin class reference label was incorrect.

 TABLE 7. CHANHASSEN ALL DATA SCENARIO – MNDNR ERROR MATRIX

Reference Data

Upl Shall. Mrsh. Water Wet Mead Deep Marsh Hdwd Wet Seas. Flood Shrub Wet. Map Total User Acc

M
ap

 D
at

a

Upland 0 126 42 104 37 12 0 0 321 -

Shal Marsh 0 743 23 64 30 2 0 0 862 86

Water 0 22 1005 11 39 0 0 0 1077 93

Wet Mead 0 37 14 251 14 3 0 0 319 79

Deep Mrsh 0 9 17 7 31 2 0 0 68 46

Hdwd Wet 0 2 0 2 0 2 0 0 6 33

Seas Flood 0 0 0 1 0 0 0 0 1 -

Shrub Wet 0 0 0 0 1 0 0 0 1 -

Ref. Total 0 939 1101 442 152 21 0 0 2655*

Prod.Acc. - 79 91 57 20 10 - - 77

*Two wetland samples were removed because the MNDNR class reference labels were incorrect.

TABLE 9. CHANHASSEN TRIALS - SEE5 CROSS VALIDATION VERSUS ACCURACY ASSESSMENT (CONTINUED) 

Classifi cation Scheme

Hi-Res Topo
Curvature Only

NED Topo
Curvature Only

Hi-Res Topo
CTI Only

NED Topo
CTI Only

X-Val Assess X-Val Assess X-Val Assess X-Val Assess

Wetland/Upland 86 93‡ 85 91‡ 90 92‡ 86 91‡

Cowardin Class 81 84‡ 81 84‡ 85 84‡ 82 85‡

MNDNR 77 76‡ 76 77‡ 79 75‡ 77 77‡

 TABLE 8. CHANHASSEN TRIALS - SEE5 CROSS VALIDATION VERSUS ACCURACY ASSESSMENT, PART 1; 
ACCURACY ASSESSMENT VALUES (“ASSESS”) MARKED WITH ‡ WERE NOT SIGNIFICANTLY DIFFERENT FROM EACH OTHER WITHIN CLASSIFICATION SCHEMES

Classifi cation Scheme

All Data NED Topo No Topo NAIP Only

X-Val Assess X-Val Assess X-Val Assess X-Val Assess

Wetland/Upland 90 93‡ 86 92‡ 82 89 69 78

Cowardin Class 85 86‡ 82 84‡ 77 80 64 55

MNDNR 81 77‡ 77 76‡ 67 61 60 43
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Tables 10 through 14 present the results of the FDL study 
area trials. Table 10 shows the wetland/upland discrimina-
tion using the All Data scenario. Both the overall and most 
of the user’s/producer’s accuracies were lower than in the 
Chanhassen area. We attribute these differences to complex-
ity introduced by the greater variety of wetland types and 
the large extent of forest canopy in FDL. Tables 11 and 12 
show the Cowardin and MNDNR classifi cation results. The 
class-specifi c accuracy estimates were also generally lower 
than in Chanhassen. In both schemes, upland class commis-
sion errors had greater impacts on the overall accuracy than 
in Chanhassen. Tables 13 and 14 show cross-validation and 

overall percent accuracy estimates for the FDL trials. The 
FDL study area trials included input data types that were not 
available in Chanhassen, such as spring leaf-off aerial images 
and Radarsat-2 imagery. As was the case in Chanhassen, the 
exclusion of topography data and its derivatives had the 
largest negative impact on mapping accuracy. An unexpected 
result was that the inclusion of leaf-off and radar imagery had 
no statistically signifi cant impact on accuracy in any of the 
classifi cation schemes.

Discussion and Conclusions
The overarching goal of this research was to examine the wet-
land mapping accuracy effects of varying input data types and 
classifi cation schemes using high spatial resolution datasets. 
To that end, several classifi cation trials were performed in 
two physiographically different study areas. In aggregate, the 
results from both areas broadly suggest that more and varied 
input data can improve mapping accuracy, but there were 
unexpected fi ndings along with those more typically seen in 
the relevant literature. 

First, as expected, including topography information 
signifi cantly improved classifi cation accuracy across the 
different classifi cation schemes and the input data trials in 
both study areas. Since the ability to at least temporarily hold 
water is a defi ning characteristic of wetlands, topographic 
position is important to discriminate both wetland versus 

TABLE 10. FDL ALL DATA SCENARIO - WETLAND/UPLAND ERROR MATRIX

Reference Data

M
ap

 D
at

a

Upland Wetland Map Total User’s Acc.

Upland 27 37 64 42

Wetland 4 127 131 97

Ref. Total 31 164 195

Prod. Acc. 87 77 79

 TABLE 11. FDL ALL DATA SCENARIO - COWARDIN CLASS ERROR MATRIX

Reference Data

UPL PSS PFO PEM W Map Tot User’s Acc.

M
ap

 D
at

a

UPL 0 14 20 0 1 35 -

PSS 0 31 14 0 0 45 69

PFO 0 8 47 0 0 55 85

PEM 0 8 1 0 0 9 -

W 0 0 0 0 14 14 100

Ref. Total 0 61 82 0 15 158*

Prod. Acc. - 51 57 - 93 58

*Six wetland samples were removed because the Cowardin class reference labels were incorrect.

TABLE 12. FDL ALL DATA SCENARIO - MNDNR ERROR MATRIX

Reference Data

Upl Shrub Wet. Conif. Wet. Shal. Marsh Water Hdwd Wet Deep Marsh Wet Mead Map Tot User’s Acc.

M
ap

 D
at

a

Upland 0 13 7 0 1 12 0 0 33 -

Shrb. Wet 0 34 11 0 0 6 0 0 51 67

Conif.Wet 0 3 25 0 0 2 0 0 30 83

Shl. Mrsh 0 8 1 0 0 1 0 0 10 -

Water 0 0 0 0 14 0 0 0 14 100

Hdwd W. 0 2 2 0 0 15 0 0 19 79

Dp. Mrsh 0 0 0 0 0 0 0 0 0 -

W. Mead. 0 1 0 0 0 0 0 0 1 -

Ref. Total 0 61 46 0 15 36 0 0 158*

Prod. Acc. - 56 54 - 93 42 - - 55

 *Six wetland samples were removed because the MNDNR reference class labels were incorrect.
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upland and different wetland types. Two unexpected results 
were that the source of the elevation information, and the 
choice of topographic derivative did not have statistically 
signifi cant infl uences on accuracy. The NED and lidar-derived 
(“Hi-Res”) topography data produced similar results, which 
suggest that in areas like Chanhassen, with relatively low 
wetland and topographic diversities, the coarser resolu-
tion NED (10 m) may be suffi cient. The comparisons of the 
CTI with Curvature also indicated no signifi cant differences 
in accuracy, no matter whether the topographic derivatives 
were computed from the NED or lidar-derived DEMs, or which 
classifi cation scheme or study area was examined. The CTI is 
a well known method of determining the wetness potential of 
an area, but it requires signifi cant computational resources to 
create for large areas at high spatial resolution. It also requires 
a hydrologically corrected DEM, while Curvature does not. 
These results indicate that Curvature may represent a suitable 
alternative in some situations. 

Second, the choice of classifi cation scheme had a signifi -
cant effect on classifi cation accuracy. The relatively simple 
wetland versus upland discrimination unsurprisingly resulted 
in the highest accuracy estimates in both study areas. In con-
trast, the accuracies of the wetland type classifi cations were 
lower, and the results were not consistent between the study 
areas. In Chanhassen, the Cowardin and MNDNR accuracy 
estimates (Tables 8 and 9: “Assess”) were signifi cantly lower 
than the wetland/upland discrimination, but were not as dif-
ferent as in FDL. In Chanhassen, the Cowardin class scheme 
performed much better than did the MNDNR scheme, while in 
FDL both type classifi cations’ accuracy estimates were low. We 
attribute these differences to the lower wetland diversity in 
Chanhassen and the higher diffi culty of mapping the forested 
wetlands in FDL. Of particular note is that the MNDNR classifi -
cation, which was developed to be suitable for mapping with 
remotely sensed data, performed worse than the Cowardin 
scheme in nearly every classifi cation trial. A likely reason for 
this discrepancy is that the MNDNR scheme is more themati-
cally detailed i.e., especially in specifying multiple types of 
emergent wetlands.

Third, the differences between the internal See5 cross-
validation and the accuracy assessment results raise interest-
ing questions. In Chanhassen, the cross-validation values 
were much more similar to the accuracy estimates than they 

were in FDL. This indicates that the out-of-bag sampling per-
formed during See5 classifi cations fairly closely represented 
the actual accuracies of the Chanhassen results as measured 
by comparison with the reference data. However, the cross-
validation values in FDL were substantially higher in every 
combination of trial and classifi cation scheme. These large 
discrepancies may have been caused by the added mapping 
complexity in FDL; however another important factor may be 
that fi eld-based reference data were used to assess the accu-
racy of classifi cations created with image-based training data. 
By comparison, in Chanhassen the same dataset was used for 
training and assessment (though with independent training 
and reference samples). In FDL, the training data were col-
lected by interpreting aerial images, while the reference data 
were collected by a fi eld crew over one week. Thus, it is likely 
that the fi eld team made determinations based on informa-
tion that was not visible on the aerial images, such as counts 
of obligate wetland plants. In addition, the image interpreter 
had access to imagery collected on multiple dates, which may 
have further increased the effective differences between the 
training and reference databases. Finally, while the train-
ing database contained representatives of all Cowardin and 
MNDNR classes present in the study area, the fi eld database 
lacked suffi cient representatives of some classes, which 
resulted in a small downward bias in the overall accuracy 
estimates.

Fourth, these results show that the inclusion of leaf-off 
and C-band radar imagery did not increase classifi cation 
accuracies in FDL. Based on existing literature, challenges 
to the use of C-band radar in forested areas were expected. 
Incorporating derivatives of the radar imagery such as polari-
metric analyses may have improved the results, but software 
to perform such tests was not available. Lack of accuracy 
improvement with the inclusion of leaf-off imagery was sur-
prising. The FDL area contains a mix of coniferous and decidu-
ous vegetation. Spring leaf-off imagery was expected to allow 
for better viewing of ground features and wetness in decidu-
ous areas; however both the cross-validation and error matri-
ces results showed no signifi cant change in accuracy with its 
inclusion. It is possible that both the radar and leaf-off results 
were affected by the especially dry conditions present in FDL 
during the time of image acquisition (spring/summer 2009), 
since normal spring wetness that would have been visible on 
the imagery may not have been as evident. A further potential 
complicating factor with both the leaf-off and NAIP imagery is 
differences in illumination levels of the forest canopy. Such 
differences can be somewhat ameliorated with smoothing 
of the imagery; however we chose not to degrade the spatial 
resolution out of concern that doing so would decrease the 
mapping accuracies of non-forest classes.

In summary, this research suggests the following conclu-
sions related to mapping wetlands with high spatial resolu-
tion geospatial data: (a) Mapping accuracy is greatly improved 
by including topography data with optical imagery; (b) The 
source of the topography data is less important than its 
presence or absence; (c) Simple topographic derivatives like 

TABLE 13. FDL TRIALS - SEE5 CROSS VALIDATION VERSUS ACCURACY ASSESSMENT, PART 1; ACCURACY ASSESSMENT VALUES (“ASSESS”) 
MARKED WITH ‡ WERE NOT SIGNIFICANTLY DIFFERENT FROM EACH OTHER WITHIN CLASSIFICATION SCHEMES

Classifi cation Scheme

All Data No Leaf Off No Radar No Topo

X-Val Assess X-Val Assess X-Val Assess X-Val Assess

Wetland/Upland 96 79‡ 96 77‡ 96 78‡ 92 71

Cowardin Class 93 58‡ 93 60‡ 93 54 87 44

MNDNR 93 56‡ 92 58‡ 93 53 86 43

TABLE 14. FDL TRIALS - SEE5 CROSS VALIDATION VERSUS ACCURACY 
ASSESSMENT (CONTINUED)

Classifi cation 
Scheme

Optical Only NAIP Only

X-Val Assess X-Val Assess

Wetland/Upland 84 50 76 42

Cowardin Class 80 29 73 26

MNDNR 78 32 71 23
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Curvature can provide mapping accuracy similar to the more 
complex and labor intensive CTI; (d) C-band radar and leaf-off 
imagery did not improve mapping accuracy in an area with 
signifi cant forest canopy; (e) Simpler wetland classifi cations 
schemes are more likely to perform well than more complex 
schemes i.e., even those designed with remote sensing in 
mind; and (f) Mapping wetlands in forested areas is challeng-
ing even with the inclusion of several different geospatial 
data types.
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ABSTRACT 1 

Comprehensive wetland inventories are an essential tool for wetland management, but developing and 2 

maintaining an inventory is expensive and technically challenging. Funding for these efforts has also 3 

been problematic. Here we describe a large-area application of a semi-automated process used to 4 

update a wetland inventory for east-central Minnesota. The original inventory for this area was the 5 

product of a labor-intensive, manual photo-interpretation process. The present application incorporated 6 

high resolution, multi-spectral imagery from multiple seasons; high resolution elevation data derived 7 

from lidar; satellite radar imagery; and other GIS data. Map production combined image segmentation 8 

and random forest classification along with aerial photo-interpretation. More than 1000 validation data 9 

points were acquired using both independent photo-interpretation as well as field reconnaissance. 10 

Overall accuracy for wetland identification was 90% compared to field data and 93% compared to 11 

photo-interpretation data. Overall accuracy for wetland type was 72% and 78% compared to field and 12 

photo-interpretation data, respectively. By automating the most time consuming part of the image 13 

interpretations, initial delineation of boundaries and identification of broad wetland classes, we were 14 

able to allow the image interpreters to focus their efforts on the more difficult components, such as the 15 

assignment of detailed wetland classes and modifiers. 16 

Keywords: wetlands inventory, wetland mapping, accuracy assessment, remote sensing  17 
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INTRODUCTION 18 

Wetland inventory maps are essential tools for wetland management, protection, and restoration 19 

planning. They provide information for assessing the effectiveness of wetland policies and management 20 

actions. These maps are used at all levels of government, as well as by private industry and non-profit 21 

organizations for wetland regulation and management, land use and conservation planning, 22 

environmental impact assessment, and natural resource inventories. Wetland inventories are used to 23 

assess impacts of regulatory policy (Gwin et al. 1999), assess habitat distribution and quality (Austin et 24 

al. 2000; Hepinstall et al. 1996; Marchand and Litvaitis 2004; Knutson et al. 1999), evaluate carbon 25 

storage potential and climate change impacts (Euliss et al. 1999; Burkett and Kusler 2000), and measure 26 

and predict waterfowl and amphibian population distribution (Yerkes, et al. 2007; Munger et al. 1998; 27 

Knutson et al. 1999). 28 

There are several notable efforts across the globe to conduct national and regional comprehensive 29 

wetland inventories. The Canadian Wetland Inventory (CWI) is developing a comprehensive wetland 30 

inventory based on remote sensing data from Landsat and Radarsat platforms (Li and Chen 2005; 31 

Fournier et al 2007). The CWI maps wetlands down to a minimum mapping unit of 1 ha using a five class 32 

system. In 1974, the U.S. Fish and Wildlife Service began an effort to implement the National Wetlands 33 

Inventory (NWI) for the United States (Cowardin et al. 1979). The NWI is based on manual aerial photo-34 

interpretation with a target map unit of 0.2 ha and a detailed hierarchical classification scheme involving 35 

wetland systems, classes, subclasses, water regimes, and special modifiers (Dahl 2009). The 36 

Mediterranean wetland initiative promotes standardized methods for wetland inventory and monitoring 37 

across multiple countries in the Mediterranean region (Costa et al 2001). Wetland classification and 38 

mapping recommendations for this initiative closely follow the NWI. More recently, wetlands across 39 

China have been mapped using Landsat data into three broad classes with 15 subtypes generally based 40 

on landscape and landform characteristics (Gong et al. 2010). Despite these efforts, a review of the 41 
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status of wetland inventories concluded that there still are significant gaps in our knowledge about the 42 

extent and condition of global wetland resources. Finlayson and Spiers (1999) found that outside of a 43 

few of the more developed countries and regions, wetland inventories were generally incomplete or 44 

non-existent. 45 

Even regions with comprehensive wetland inventories require periodic updates. For example, in 46 

Minnesota, most of the NWI is 25 to 30 years old. Many changes in wetland extent and type have 47 

occurred since the original inventory was completed. Agricultural expansion and urban development 48 

have contributed to wetland loss. Conversely, various wetland conservation policies and programs have 49 

resulted in the restoration of some previously drained wetlands and the creation of new wetlands. 50 

Furthermore, limitations in the technology, methodology and source data for the original NWI resulted 51 

in an under representation of certain types of wetlands. In northeastern Minnesota, wetlands were 52 

originally mapped using 1:80,000 scale panchromatic imagery. The resulting wetland maps in this area 53 

tend to be very conservative, missing many forested and drier emergent wetlands (LMIC 2007). 54 

Updating the wetland inventory for such areas enhances the ability of conservation organizations to 55 

make better management decisions. There is a significant ongoing need to develop and update wetland 56 

inventories. 57 

Maintaining wetland inventories can be expensive and technically challenging given the complexity of 58 

wetland features and user expectations for a high degree of accuracy. Federally funded updates to the 59 

NWI are required to conform to the federal wetland mapping standard (FGDC 2009). This standard calls 60 

for ≥98% producer’s accuracy for all wetland features larger than 0.2 ha and a wetland class-level 61 

accuracy of ≥85%. Unfortunately, funding for mapping in the NWI program has declined over the past 20 62 

years (Tiner 2009) and has been almost entirely eliminated as of 2014 (NSGIC 2014). 63 
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Historically, the NWI has been primarily the product of manual aerial photo-interpretation (Tiner 1990). 64 

Much of the original delineation and classification was done using hardcopy stereo imagery with mylar 65 

overlays. In the last decade, NWI mapping efforts have largely transitioned to heads-up, on-screen 66 

digitizing and classification from digital orthorectified imagery (Drazkowski et al 2004; Dahl et al. 2009). 67 

Despite the efficiency gains achieved by migrating to an on-screen digitizing process, the process is still 68 

labor-intensive.  69 

Automated classification of wetlands from remote sensing data has had varied results. Ozesmi and 70 

Bauer (2002) compare the results of automated wetland classification using satellite imagery to wetland 71 

mapping from manual photo-interpretation. In their review, they note that the limitations of satellite 72 

imagery, specifically resolution limitations when compared to aerial photography as well as limitations 73 

related to spectral confusion between classes, led the NWI program to choose a method based on 74 

photo-interpretation. However, given the advancements in the fields of remote sensing and image 75 

analysis since the NWI was originally designed, the use of automated mapping and classification 76 

techniques warrants reconsideration.  77 

Collecting, managing, and analyzing large quantities of high spatial resolution digital imagery has 78 

improved significantly over the past two or three decades. Airborne imagery acquisition systems like the 79 

Zeiss/Intergraph Digital Mapping Camera (Z/I DMC) and the Vexcel Ultracam are commonly used to 80 

acquire four-band multispectral imagery at less than 1-meter resolution. In addition, high-resolution, 81 

multispectral imagery is also available through various satellite systems such as Worldview-2, Quickbird 82 

and IKONOS. The costs for data storage required for the large quantities of high-resolution imagery data 83 

have dropped significantly and advances in automated image analysis techniques have improved the 84 

efficiency with which these data can be processed. 85 
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Radar imagery shows potential to provide new information such as water level changes in wetlands, soil 86 

saturation and vegetation structure (Corcoran et al. 2011; Bourgeau-Chavez et al. 2013). In the near 87 

term, the sources of satellite radar imagery are somewhat limited. Yet, Radarsat imagery is being used 88 

operationally as part of the Canadian Wetland Inventory (Brisco et al. 2008).  89 

Recent widespread adoption of scanning topographic lidar systems also provides a new source of highly 90 

relevant digital information for wetland mapping. The distribution and occurrence of wetlands is heavily 91 

influenced by topography. For example, Beven and Kirkby (1979) described a topographic index to 92 

predict spatial patterns of soil saturation based on the ratio of the upslope catchment area to the 93 

tangent of the local slope. Numerous researchers have used this topographic index, alternately known 94 

as the compound topographic index (CTI) or the wetness index, to predict the occurrence of wetlands 95 

(Hogg and Todd 2007; Murphy et al. 2007; Rampi et al. 2014b). As such, topographic analysis of lidar 96 

data is an important emerging technology for wetland mapping. 97 

Image segmentation is a process that groups adjacent image pixels into larger image objects based on 98 

criteria specified by the image analyst. The goal of segmentation is to simplify the image into a smaller 99 

number of potentially meaningful objects which can then be classified using various attributes 100 

describing these objects (i.e. brightness, texture, size, and shape). This technique simultaneously 101 

reduces data volume while incorporating spatial contextual information in the classification process. 102 

Image segmentation has been shown to be a potentially valuable technique for improving image 103 

classification accuracy for mapping land cover (Myint et al. 2011) and wetlands (Frohn et al. 2009).  104 

Classification algorithms like random forest (Breiman 2001) have greatly improved our ability to 105 

effectively integrate data from multiple sources into an automated classification procedure. 106 

Incorporating data from multiple sensor systems as well as ancillary GIS data can potentially improve 107 
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wetland classification accuracy (Corcoran et al. 2011, Knight et al. 2013, Corcoran et al. 2013, Rampi et 108 

al. 2014a).  109 

Here we describe a large area application of a semi-automated classification process used to update the 110 

NWI. The objective of this effort was to determine whether automated techniques such as image 111 

segmentation, digital terrain analysis, and random forest classification could be combined with multiple 112 

high-resolution remote sensing and GIS data sets and traditional photo-interpretation to efficiently 113 

produce an accurate and spatially detailed wetland inventory map.  114 

METHODS 115 

Study Area 116 

The study area is 18,520 square kilometers, centered on the 13-county metropolitan area of 117 

Minneapolis and Saint Paul, Minnesota (Figure 1). The study area is situated primarily in the Eastern 118 

Broadleaf Forest Ecological Province (DNR 2013) and the climate is typical of its continental position 119 

with hot summers and cold winters. Typical annual precipitation ranges from about 76 to 81 centimeters 120 

(Minnesota Climatology Working Group 2012). Land use in the study area varies from a dense urban 121 

core with a mix of commercial and high density residential area, to lower density suburban and exurban 122 

communities, and rural agricultural and forests. 123 

Input Data 124 

The primary imagery used for the NWI update was spring, leaf-off, digital aerial imagery with four 125 

spectral bands (red, green, blue, and near infrared) in 541 orthorectified USGS quarter quadrangle tiles. 126 

The imagery was acquired using a Z/I DMC camera in early April of 2010 and late April to early May of 127 

2011. Imagery for 60% of the project area was acquired at a spatial resolution of 30 cm, while imagery 128 

for the other 40% was acquired at 50 cm resolution. The imagery has a horizontal root mean square 129 
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error (radial) of 78 cm (MnGeo 2010). For the image segmentation process, the 30cm images were 130 

resampled to 50cm resolution using a bilinear interpolation algorithm.  131 

Thirteen single-date scenes of PALSAR L-band radar were acquired to cover the project area to aid in the 132 

identification of forested wetlands. The scenes available were a combination of single and dual 133 

polarization during a leaf-off seasonal window. The Alaska Satellite Facility MapReady Remote Sensing 134 

Tool Kit (ASF 2011) was used for terrain correction and geo-referencing. Additional geo-referencing was 135 

performed in ArcGIS using control points selected from the aerial imagery. A radar processing extension 136 

in Opticks was used to reduce speckle in the data (Opticks 2011). Radar imagery was classified using a 137 

10-class maximum-likelihood ISODATA clustering routine implemented in ERDAS Imagine software 138 

(ERDAS 2008). The classes associated with “wet forest” training sites were identified and the 139 

classification was applied to all clusters within the radar image. 140 

Digital elevation models (DEMs) were derived from lidar data for approximately 60% of project area, 141 

while DEMs for the remainder were 10-meter resolution DEMs obtained from the National Elevation 142 

Dataset. The typical lidar point spacing was about 1 point per square meter. The Minnesota DNR 143 

processed the bare earth points into a digital elevation model using 3D Analyst for ArcGIS by importing 144 

the points into a terrain data set and then interpolating a 1-meter DEM that was subsequently 145 

resampled to a 3-meter DEM. This lidar DEM has a vertical root mean square of 18 cm. 146 

ArcGIS Spatial Analyst (ESRI 2011) was used to calculate slope, curvature, plan curvature, profile 147 

curvature, topographic position index (TPI) and compound topographic index (CTI). TPI was calculated by 148 

subtracting the mean elevation for a given pixel from the mean elevation of its neighborhood (Guisan et 149 

al. 1999). We used an annulus neighborhood with radii of 15 and 20 meters. The CTI (Moore 1991) was 150 

calculated using a sinkless version of the DEM. A slope grid and upstream catchment area grid were 151 
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calculated using the D-Infinity flow directions tool from TauDEM (Tarboton 2003). CTI was then 152 

computed from slope and contributing drainage area using a custom python script. 153 

The Natural Resources Conservation Service (NRCS) digital Soil Survey Geographic (SSURGO) layers were 154 

compiled for the project area (NRCS 2010). Two derived raster products were produced from SSURGO 155 

data; (1) the soil water regime class, and (2) the percentage of hydric soil. The variables used to derive 156 

these products included drainage class, flood frequency for April, pond frequency for April, and pond 157 

frequency for August. 158 

The layers described above were formatted for input to an Object Based Image Analysis (OBIA) process 159 

using the Cognition Network Language (CNL) implemented within eCognition software (Trimble 2010). 160 

Images were clipped to the boundary of the relevant quarter quad tile and stacked with ERDAS Imagine 161 

software (ERDAS 2008) into a single multi-layer file subsequently referred to here as the layer-stack.  162 

Training Data  163 

Reference field data were collected to serve as training data for the random forest classification and to 164 

guide the interpreters during the image interpretation process. A set of 12 representative sub-areas 165 

were selected for field visits to provide representative training data for the wetland types found 166 

throughout the project area. The sub-areas were selected to be spatially distributed and to represent 167 

the range of landscape types in the project area. Within these sub-areas, individual wetland sites were 168 

selected for field visits using a stratified-random sampling approach with strata proportioned according 169 

to the frequency of wetland classes. Rarely occurring wetland types were always flagged for field visits. 170 

A total of 510 field sites were visited. The training data were augmented by including 1967 sites selected 171 

from field data provided by field biologists at the Metropolitan Mosquito Control District as well as 873 172 

sites image-interpreted by Ducks Unlimited. 173 
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All training data were classified according to the Cowardin classification system (Cowardin et al. 1979), 174 

which is a hierarchical system developed to standardize the classification of wetlands and deepwater 175 

habitats of the United States. Additional details of the classification system including the definition of 176 

each system, subsystem, class, and subclass can be found in Cowardin et al. (1979) and Dahl et al. 177 

(2009).  178 

Automated Components 179 

The object-based image analysis (OBIA) rule set consisted of several steps to separate wetlands from 180 

other land cover types. The process began with a multi-resolution segmentation algorithm (Baatz and 181 

Schape2000) that created image objects (groups of spectrally similar pixels). Parameters for the initial 182 

segmentation were; scale factor = 6, shape = 0.5, compactness = 0.9, RGB weight = 1, and near infrared 183 

weight = 2. A relatively small scale parameter was chosen to ensure that small wetlands would be 184 

represented in the lowest level of the image object hierarchy. A three-tier hierarchy consisting of 185 

spatially nested sub-objects, mid-level objects, and super objects provided a flexible framework for 186 

iteratively integrating information from different image and topographic data sources. The rule set was 187 

designed to draw boundaries for real world features of interest (e.g., stream beds) by iteratively 188 

aggregating sub-objects at a temporary mid-level according to rules defining specific features of interest 189 

for each major sequence of the larger rule set. Once useful boundaries for a particular sequence were 190 

identified (using temporary classification thresholds and modification of the object boundaries at the 191 

mid-level), the feature boundary information was conveyed to the super-level for inclusion in the final 192 

output. Each modified mid-level was then destroyed and the unmodified sub-objects were re-used to 193 

initialize a new version of the mid-level to repeat the process of selective aggregation and classification 194 

for the next feature of interest. 195 

The first major process sequence was designed to identify wooded-wetlands using the PALSAR radar 196 

data. Sub-objects were aggregated at a temporary mid-level according to boundaries created from the 197 
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previously classified PALSAR data. A mask layer with the boundaries of the PALSAR wetland clusters was 198 

incorporated into the layer stack data. The boundaries created by the 20m resolution PALSAR-derived 199 

wooded wetland mask were not cartographically compatible with boundaries for other features derived 200 

from the 0.5m resolution image data. This difference was reconciled in the eCognition rule set via a 201 

custom-built iterative pixel-based object merging and reshaping algorithm applied to the mid-level in 202 

the object hierarchy.  203 

The second major process sequence in the rule set was designed to isolate open water stream features 204 

and stream-bed topographic features. A preliminary linear stream vector layer was generated using Arc 205 

Hydro terrain modeling software (Maidment 2002) to identify likely flow pathways using the lidar 206 

derived DEM data. This linear flow path layer was used to seed a region growing sequence that 207 

identified spectrally dark sub-objects contiguous to the modeled stream lines. These objects were 208 

merged at the mid-level and the boundaries were smoothed to form the stream polygons, which were 209 

then stored at the super-object level. A spectral difference segmentation algorithm (Definiens Imaging, 210 

2009) was then used on the DEM (threshold value of 0.05m) to generate temporary elevation contours. 211 

The contour objects containing nested stream-sub-objects were then identified and classified as 212 

potential riparian areas, which were more likely to contain wetlands.  213 

The third major process sequence in the rule set separated forested areas from non-forested areas and 214 

selectively generated contour lines in forest polygons. Forested areas were identified by aggregating 215 

sub-objects at a temporary mid-level according to image spectral characteristics (0.017 < NDVI < 0.28 216 

and RGB brightness < 150) and textural characteristics (average mean difference to neighbors of sub-217 

objects > 0.95 in the NIR band). Small candidate forest objects were then merged into stand sized 218 

forested objects. Based on prior experience, the photo interpretation team requested that elevation 219 

data be added to forested areas. A spectral difference algorithm which merged together objects with 220 
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similar elevation values was applied to the sub-objects of the forest stand objects. An elevation 221 

threshold value of 0.33m was used to create objects that approximate 0.33m contour intervals. 222 

The final major process sequence in the rule set was designed to create a background layer of general-223 

purpose image objects, which are delivered to the photo-interpretation team for editing in order to 224 

create the final wetland map. A multi-resolution segmentation algorithm (parameters: scale factor = 225 

400, shape = 0.1, compactness = 0.9, RGB weight = 1 and NIR weight = 2) was used in all areas not 226 

classified in the previous sequences to delineate strongly visible boundaries in the spring leaf-off 227 

imagery. This finalized set of image objects was then smoothed and exported in a vector shape-file 228 

format for transfer to the photo-interpretation team.  229 

Each image object has numerous associated attributes derived from the imagery, DEM, and other 230 

ancillary data sets. These attributes, along with the training data, were used to create a classification 231 

model using the randomForest package in R (R Development Core Team 2011; Breiman 2001). All image 232 

objects were also assigned a unique identification number so that the classification model results could 233 

be linked back to the image objects. 234 

Manual Components 235 

A 750-meter square grid system (enabling the interpreter to completely view an image section on a 236 

monitor at 1:3,000) overlaid on each image was used to systematically guide image-interpretation 237 

efforts and ensure complete interpretation of each image. Interpreters viewed the classified image 238 

segmentation data superimposed over the spring imagery to identify and categorize wetlands. 239 

Additional ancillary data were used during the interpretation process when needed, including; summer 240 

imagery from 2008-2010, SSURGO soils derived products, the DEM, and DEM derived products. The 241 

interpreters could use the segmentation derived boundary without modification, manually edit the 242 

polygon boundary, or discard the segmentation based boundary to manually digitize a new boundary. 243 
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Adjacent wetland polygons of the same class were merged. All automated wetland classification values 244 

were either confirmed or manually reclassified by a human interpreter. As with the field data, all 245 

mapped wetland polygons were classified according to the Cowardin classification system (Table 1). 246 

Validation Data  247 

Two sets of independent validation data were created using field checks and independent image-248 

interpretation, respectively. The validation data were not made available to the image analysts. These 249 

data were reserved to make a post-processing accuracy assessment of the updated wetland inventory 250 

maps. 251 

We created a set of 951 validation points through field checks and another set of 901 validation points 252 

through independent image-interpretation. All points were initially selected using a stratified-random 253 

sampling process with the strata defined by a recently developed land cover dataset from the 254 

Minnesota wetland status and trends monitoring program (Kloiber et al. 2012). The stratification was 255 

designed to place 75% of the selected points in wetlands and 25% in uplands. We used this sampling 256 

scheme in an attempt to ensure that all wetland classes were well represented in the validation data. 257 

Field validation points were evaluated by crews making ground-level assessments of wetland class 258 

between May and September of 2010. Geographic coordinates were acquired at each observation site 259 

using a Trimble Juno GPS data logger and the data were differentially corrected to improve positional 260 

accuracy. Image-interpretation validation points were classified using image-interpretation of high-261 

resolution, digital stereo imagery, lidar-derived digital elevation models, and other ancillary data. Digital 262 

stereo imagery was viewed using a stereo-photogrammetry workstation equipped with StereoAnalyst 263 

software for ArcGIS (ERDAS 2010) and a Planar SD1710 stereo-mirror monitor. 264 

The mapped wetland class was associated with the validation reference class using a spatial join process 265 

in ArcGIS. Distances to the wetland feature and class boundaries were computed. To address potential 266 
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confusion between classification accuracy and positional accuracy, image-interpreted points that fell 267 

within the 95% confidence interval for the positional accuracy of the imagery (1.53 meters) of a wetland 268 

feature or class boundary were excluded from analysis. Field points that fell within the combined 95% 269 

confidence interval for the positional accuracy of the imagery and the GPS (5.64 meters) of a wetland 270 

feature or class boundary were also excluded. 271 

The data were compared at two levels: agreement for a simple two-category system of wetland-upland 272 

features, and agreement for the wetland class-level. The producer's accuracy, the user's accuracy, and 273 

the overall accuracy were calculated (Congalton and Green 2008). The producer’s accuracy is equal to 274 

the complement to the omission error rate for the map, whereas the user’s accuracy is equal to the 275 

complement to the commission error rate. Mixed classes occur occasionally in the mapped data due to 276 

spatial scale limitations. Wetland features that consist of highly interspersed classes are impractical to 277 

separate and classify at the map scale. However, mixed classes did not occur in the validation data. For 278 

the purposes of the accuracy assessment, if the field class matched either of the classes in a mixed class 279 

map unit, it was counted as a match. 280 

RESULTS 281 

Intermediate Automated Classification Results 282 

Initial image segmentation efforts resulted in many small image objects, requiring significant time spent 283 

merging, classifying, and editing features (Figure 2). However, feedback from the photo-interpreters was 284 

incorporated into a refined image segmentation rule set to provide image objects which more closely 285 

represented the wetland features of interest. Initially, the typical number of image objects per quarter 286 

quad tile was about 96,000; after refining the segmentation rules the per-tile average object count was 287 

about 4,300. The refined segmentation rules aggregated image objects resulting in an increase in the 288 
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mean object size of 430 m2 to 1,600 m2. The minimum object area stayed roughly the same, while the 289 

maximum object area went from 8,900 m2 to 57,000 m2.  290 

The subsequent random forest classification had an overall bootstrapped accuracy of 92% for separating 291 

wetlands from uplands and an overall bootstrapped accuracy of 69% for wetland class assignment. 292 

These values should be treated with some degree of caution, as the bootstrapped accuracy results are 293 

not directly comparable to the final accuracy assessment using the independent validation data. 294 

Nonetheless, these results do support the notion that the automated classification component 295 

significantly reduces the work load of the manual photo-interpreter by providing a reasonably accurate 296 

intermediate product.  297 

Final Product Accuracy Assessment 298 

There were 743 field validation data points after excluding points within the positional uncertainty of a 299 

mapped wetland boundary. The overall field accuracy for discriminating between wetland and upland 300 

was 90%. The wetland producer’s accuracy was 90% and the user’s accuracy was 96% (Table 2). 301 

The overall accuracy at the wetland class-level was 72% (Table 3) when compared to the field validation 302 

data. Many of the discrepancies between the field class and the mapped class were the result of 303 

confusion between the limnetic (L1) and littoral (L2) systems as well as confusion between the aquatic 304 

bed (AB) and unconsolidated bottom (UB) classes. 305 

There were 891 validation points in the image-interpreted dataset after excluding points within the 306 

positional uncertainty of the imagery of a mapped wetland boundary. The overall image-interpretation 307 

accuracy for discriminating between wetland and upland was 93% (Table 4). The wetland producer’s 308 

accuracy was 93% and the user’s accuracy was 98%. 309 

The overall accuracy at the wetland class-level was 78% (Table 5) when compared to the image-310 

interpretation validation data. As with the assessment using field data, many of the classification 311 
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discrepancies were associated with confusion between the limnetic and littoral subsystems as well as 312 

confusion between the aquatic bed and unconsolidated bottom classes. 313 

Comparison to Original NWI 314 

The original NWI data for the 13-county project area has 125,586 wetland class features with a total 315 

surface area of 2,958 square kilometers. Whereas, the updated NWI data for the same area includes 316 

195,983 wetland class features with a total surface area of 3,104 square kilometers; an increase of 56% 317 

for the number of wetland class features and an increase of 4.9% in wetland area. The increase in the 318 

number of individual wetland class features suggests that the updated NWI was better able to 319 

distinguish between wetland habitat classes within wetland complexes, identifying more wetland 320 

polygons with less cross-class aggregation. However, an increase of total wetland area of 4.9% over a 321 

period where urban development is widely believed to have resulted in wetland loss suggests that the 322 

updated wetland inventory also mapped many wetlands that were missed in the original inventory. A 323 

visual comparison of the results also supports this conclusion as well as clearly showing a more precise 324 

boundary placement (Figure 3).  325 

Using our validation data, we found that present-day feature-level accuracy of the original NWI is 76% 326 

based on the image-interpreted validation data and 75% based on the field validation data (Table 6). The 327 

updated wetland inventory described here has significantly better accuracy for upland-wetland 328 

discrimination for present-day users. Likewise, the class-level accuracy for the updated NWI is also 329 

better than the original NWI for present-day users. The class-level accuracy increased by 19% based on 330 

the field validation data while it increased by 26% based on the image-interpreted validation data. To be 331 

fair, we recognize that the original NWI has a much lower accuracy at the present time in large part due 332 

to its age as well as from differences in the technical mapping approach.  333 



 

16 
 

DISCUSSION 334 

Automation Efforts 335 

Past efforts using automated classification of remote sensing data for the NWI have largely focused on 336 

the use of relatively coarse resolution, optical satellite imagery data (Tiner 1990; FGDC 1999; Ozesmi 337 

and Bauer 2002). Mapping and classifying wetlands to the Cowardin classification system used in the 338 

NWI is inherently difficult due to the number of classes, sub-classes and modifiers and the temporal 339 

variability associated with wetlands. Therefore, we opted not to attempt to fully automate the 340 

classification process; instead we designed the automation strategy around making the human image 341 

interpretation process more efficient. By automating the most time-consuming part of the image 342 

interpretations, initial delineation of boundaries and identifying broad wetland classes, we were able to 343 

allow the image interpreters to focus more of their efforts on the most difficult components of the 344 

process, such as the assignment of detailed wetland classes and modifiers. 345 

A significant task during this project was adapting automation techniques developed in a research 346 

setting (Corcoran et al. 2011, Knight et al. 2013, Corcoran et al. 2013, Rampi et al. 2014a) for use in 347 

production over a large area. The effort allocated to building, testing and refining the automation steps 348 

required an up-front investment, but the labor saved during the image interpretation process resulted in 349 

a net gain in efficiency. Rampi et al. (2014a) used a similar automated method for a simple four-class 350 

map without subsequent manual photo-interpretation, achieving overall accuracies for wetlands in the 351 

range of 96-98 percent. These results support our assertion that the initial wetland mapping steps can 352 

be partially automated, while leaving the more detailed classification steps to human photo-353 

interpreters. This strategy provides improvements in overall efficiency while still maintaining high 354 

standards for spatial resolution, classification detail, and accuracy. 355 

Accuracy Assessment 356 
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The federal wetland mapping standard provides recommendations on map accuracy goals but little 357 

specific guidance on how to conduct wetland mapping accuracy assessments. There are many design 358 

decisions involved in developing an accuracy assessment method for a remote sensing wetland 359 

inventory that can influence the results. We used two different validation data sets with different 360 

methods of acquisition, one using field data and another using image-interpreted data. Simply changing 361 

the data acquisition method resulted in a difference in the overall accuracy of 3% at the feature level 362 

and 6% at the class-level. Changes in a number of other variables such as the distribution across the 363 

sampling strata or the threshold used for screening out the effects of position uncertainty would affect 364 

the calculation of final map accuracy values. Comparing accuracy results from one project to the next 365 

will be difficult without some additional standardization for the accuracy assessment method. 366 

The federal wetland mapping standard does not address errors of commission. The standard states that 367 

98% of all wetlands “visible on an image” and larger than 0.2 ha shall be mapped (FGDC 2009). Based on 368 

this, the producer’s accuracy for this project fell 5% short of the requirement. However, the federal 369 

wetland mapping standard only specifies a threshold for errors of omission and not errors of 370 

commission. A user’s accuracy of 98% carries no weight with respect to the federal wetland mapping 371 

standard, but clearly it is an important consideration for the end users of the data. Without specific 372 

quantification of commission errors, it is possible to bias a mapping project toward meeting the federal 373 

standards by intentionally over-classifying upland features as wetlands. The federal standard also calls 374 

for 85% attribute accuracy for wetland classes, but it is not clear whether this is intended to be a 375 

standard for the overall class accuracy or the user’s or producer’s accuracy on individual wetland 376 

classes.  377 

There is an important relationship between class accuracy, the number of classes mapped, and how 378 

distinct these classes are. In the present case, the overall class accuracy for this project is 78%, but some 379 

of the observed classification error is certainly due to confusion between highly similar or temporally 380 
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variable wetland classes. For example, the distinction between the limnetic and littoral systems is 381 

primarily based on water depth. The portion of a lacustrine system deeper than 2 meters is defined as 382 

limnetic; whereas the portion shallower than 2 meters is defined as littoral (Cowardin et al. 1979). 383 

Accurate classification of limnetic and littoral areas is very difficult without bathymetric survey data 384 

(Irish and Lillycrop 1999; Dost and Mannaerts 2008). Not only are the optical imagery, near-infrared 385 

lidar, and radar data used in this mapping effort limited in their ability to assess water depth, but also, 386 

the field validation data were acquired from shore. As a result, it is difficult to determine whether the 387 

error lies within the field data or the map data. In another example, the distinction between aquatic bed 388 

and unconsolidated bottom wetland classes is defined by the presence or absence of rooted aquatic 389 

vegetation. The confusion between these classes likely arises in large part due to the dynamic nature of 390 

aquatic vegetation. Aquatic vegetation may be present in one part of the wetland in a given year (or 391 

season within a year) and then appear in a different part of the same wetland in another year. Given the 392 

expense and difficulty associated with separating out some of the wetland classes in the Cowardin 393 

system, if a high level of accuracy for individual wetland classes is desired, it would be preferable to 394 

simplify the classification by aggregating some classes. 395 

This mapping effort exceeded many of the input data requirements of the federal wetland mapping 396 

standard. The base imagery exceeded both the spectral and spatial resolution requirements as well as 397 

the positional accuracy requirement. The input data requirements were also exceeded by including 398 

datasets like lidar, radar, and multi-temporal imagery. Given the unusually high quality and richness of 399 

the source data used in this project, the results raise the question whether it is practically feasible to 400 

achieve the federal wetland mapping standard in large scale wetland mapping projects.  401 

In addition to the above observations about issues with the interpretation and application of the federal 402 

wetland mapping standard, another key result from this work was to quantify the overall improvement 403 

in accuracy resulting from the update of the wetland inventory. Our results showed that when 404 
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compared to current field data we achieved a 15% increase in wetland-upland discrimination and a 19% 405 

increase in wetland class accuracy. We have previously noted that this was not meant to be an 406 

assessment of the accuracy of the original NWI at the time of its creation. It seems likely that the original 407 

NWI had a higher accuracy at the time it was created. However, it is also important to note that in the 408 

absence of an updated wetland inventory, people will continue to use the original NWI to assess current 409 

conditions. Continuing to use inaccurate and outdated data results is likely to result in unnecessary 410 

effort or inadequate wetland protection. The updated NWI provides a better source of information from 411 

which to base present day natural resource management decisions.  412 

In conclusion, we believe these results show that it is possible to produce high quality wetland 413 

inventories using a semi-automated process that will meet many, if not all, of the needs stated in the 414 

beginning of this paper. With the limited funding for these types of mapping efforts, additional work is 415 

needed to continue to increase the efficiency of wetland mapping, while at the same time producing 416 

results that meet the needs of the resource managers. Also, there is a need to refine and standardize 417 

wetland mapping accuracy assessment methods. Furthermore, detailed accuracy assessment results, 418 

such as presented here, provide important information to users who seek to understand the potential 419 

limitations of remotely sensed wetland inventory data. 420 
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TABLES 
 

Table 1 

Class Code Class Description 

L1UB Lacustrine Limnetic Unconsolidated Bottom 

L2AB Lacustrine Littoral Aquatic Bed 

L2EM Lacustrine Littoral Emergent 

L2UB Lacustrine Littoral Unconsolidated Bottom 

L2US Lacustrine Littoral Unconsolidated Shore 

PAB Palustrine Aquatic Bed 

PEM Palustrine Emergent 

PFO Palustrine Forested 

PSS Palustrine Scrub-Shrub 

PUB Palustrine Unconsolidated Bottom 

R2AB Riverine Lower Perennial Aquatic Bed 

R2UB Riverine Lower Perennial Unconsolidated Bottom 

R2US Riverine Lower Perennial Unconsolidated Shore 

UPL Upland 
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Table 2 

 
Map Determination 

Reference Determination Upland Wetland Total 

Upland 201 18 219 

Wetland 54 470 524 

Total 255 488 743 

    Overall Accuracy 90% 
  Wetland Producer’s Accuracy 90% 
  Wetland User’s Accuracy 96% 
   

Table 3 

 
Map Class 

Reference Class L1UB L2AB L2EM L2UB PAB PEM PFO PSS PUB R2AB R2UB UPL  Total 

L1UB 1 
           

1 

L2AB 2 14 2 
 

2 
     

1 
 

21 

L2EM 
  

  
         

0 

L2UB 2 
  

21 
      

1 
 

24 

PAB 
 

7 
 

2 24 3 
  

27 
  

5 68 

PEM 
 

1 
  

3 130 1 3 6 
 

1 37 182 

PFO 
     

2 22 6 
   

24 54 

PSS 
     

8 6 18 
   

13 45 

PUB 
   

1 3 
   

27 
  

3 34 

R2AB 
         

  2 
 

2 

R2UB 
          

12 3 15 

UPL 
     

6 7 
 

1 
  

223 237 

Total 5 22 2 24 32 149 36 27 61 0 17 308 683 
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Table 4 

 
Map Determination 

Reference Determination Upland Wetland Total 

Upland 208 12 220 

Wetland 47 624 671 

Total 255 636 891 

    Overall Accuracy 93% 
  Wetland Producer’s Accuracy 93% 
  Wetland User’s Accuracy 98% 
   

Table 5 

 
Map Class 

Reference Class L1UB L2AB L2EM L2UB L2US PAB PEM PFO PSS PUB R2AB R2UB R2US UPL  Total 

L1UB 39 
  

5 
       

8 
  

52 

L2AB 2 26 9 3 
 

1 4 
       

45 

L2EM 
  

  
           

0 

L2UB 5 3 3 31 
       

3 
  

45 

L2US 
    

1 
         

1 

PAB 
     

21 5 
  

11 1 1 
  

39 

PEM 
     

2 99 2 1 1 
   

18 123 

PFO 
      

1 30 3 
    

19 53 

PSS 
      

13 2 20 
  

1 
 

7 43 

PUB 
 

1 
 

1 
 

22 7 1 1 142 
   

5 180 

R2AB 
          

  
   

0 

R2UB 
     

2 2 
    

58 
  

62 

R2US 
      

1 1 
   

6 6 
 

14 

UPL 
      

5 5 
   

1 
 

208 219 

Total 46 30 12 40 1 48 137 41 25 154 1 78 6 257 876 
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Table 6 

 Original NWI Updated NWI 

Feature Accuracy   

Field 75% 90% 

Image-interpreted 76% 93% 

Class Accuracy   

Field 53% 72% 

Image-interpreted 52% 78% 
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TABLE CAPTIONS 

Table 1: Wetland class codes and associated descriptions from Cowardin et al. (1979) applicable to the 

study area. 

Table 2: Accuracy comparison for wetland-upland discrimination using field validation data. Class 

agreement between the two datasets is indicated by the shaded cells in the table 

Table 3: Accuracy comparison between the field validation class and the mapped wetland class in the 

updated NWI data. Class agreement between the two datasets is indicated by the shaded cells in the 

table. 

Table 4: Accuracy comparison for wetland-upland discrimination using photo-interpreted validation 

data. Class agreement between the two datasets is indicated by the shaded cells in the table. 

Table 5: Accuracy comparison between the image-interpreted validation class and the mapped wetland 

class in the updated NWI data. Class agreement between the two datasets is indicated by the shaded 

cells in the table. 

Table 6: Comparison of present-day accuracy of the original NWI to the accuracy of the updated NWI. 
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FIGURE CAPTIONS 

Figure 1: The project area includes thirteen counties in east-central Minnesota, USA. 

Figure 2: Illustration of the image classification process showing (a) the infrared band from the spring 

imagery, (b) the lidar hillshade DEM, (c) initial image objects, (d) refined multi-resolution objects, and (e) 

the final wetland inventory map.  

Figure 3: A comparison of the original NWI wetland boundaries (dashed black line) to the updated 

wetland boundaries (white line) shown on top of a lidar hillshade layer.  

Figure 4 (electronic supplemental material - online only): A comparison of the original NWI wetland 

boundaries (green) to the updated wetland boundaries (blue) shown on top of a false color-infrared 

aerial image. 
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Figure 1: The project area includes thirteen counties in east-central Minnesota, USA. 
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Figure 2: Illustration of the image classification process showing (a) the infrared band from the spring imagery, (b) the lidar hillshade DEM, (c) 
initial image objects, (d) refined multi-resolution objects, and (e) the final wetland inventory map.
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Figure 3: A comparison of the original NWI wetland boundaries (dashed black line) to the updated 
wetland boundaries (white line) shown on top of a lidar hillshade layer.  

 

Figure 4 (electronic supplemental material - online only): A comparison of the original NWI wetland 
boundaries (green) to the updated wetland boundaries (blue) shown on top of a false color-infrared 
aerial image. 
 

 



Wetland Mapping in the Upper Midwest United 
States: An Object-Based Approach Integrating

Lidar and Imagery Data
Lian P. Rampi, Joseph F. Knight, and Keith C. Pelletier

Abstract 
This study investigated the effectiveness of using high resolu-
tion data to map wetlands in three ecoregions in Minnesota. 
High resolution data included multispectral leaf-off aerial 
imagery and lidar elevation data. These data were integrated 
using an Object-Based Image Analysis (OBIA) approach. 
Results for each study area were compared against field and 
image interpreted reference data using error matrices, accu-
racy estimates, and the kappa statistic. Producer’s and user’s 
accuracies were in the range of 92 to 96 percent and 91 to 
96 percent, respectively, and overall accuracies ranged from 
96-98 percent for wetlands larger than 0.20 ha (0.5 acres). The 
results of this study may allow for increased accuracy of map-
ping wetlands efforts over traditional remote sensing methods. 

Introduction
Wetlands are naturally dynamic systems of important value 
to the environment and society. The US Army Corps of 
Engineers (USACE) in cooperation with the US Environmental 
Protection Agency (EPA) have defined wetlands, incorporating 
technical and policy considerations, as “…those areas that 
are inundated or saturated by surface or ground water at a 
frequency and duration to support and under normal cir-
cumstances do support, a prevalence of vegetation typically 
adapted for life in saturated soil conditions” (Federal Register, 
1980 and 1982). Wetlands can reduce some of the negative 
effects of flooding and recharge groundwater by gradually re-
leasing flood water and snow melt. Wetlands offer habitat that 
supports wildlife and fishing activities. Wetlands also provide 
ecosystem services, including educational, aesthetic, and eco-
nomic opportunities. For example, intact freshwater marshes 
in Canada have a total economic value of approximately 5,800 
USD per hectare compared to 2,400 USD when those lands are 
drained and used for agriculture (Millennium Ecosystem As-
sessment, 2005; Turner et al., 2000).

Due to wetland loss and degradation, many of the preced-
ing benefits have been reduced and are increasingly impacted. 
About 215 million acres of wetlands existed in the United 
States at the time of European settlement. However, by the mid-
1970s, only 99 million acres of the original wetlands remained. 
Many of the lost wetlands were drained and are currently used 
for agriculture, resource extraction, urbanization, and other 
commercial purposes (Dahl and Johnson, 1991; Frayer et al., 
1983; Stedman and Dahl, 2008). Minnesota is not an excep-
tion to this large national wetland loss. Nearly half of Minne-
sota’s original wetlands were lost due to extensive agricultural 
drainage and urban development. According to the Minnesota 
Pollution Control Agency (MPCA) (2006), many original natural 

wetlands were changed into local storm-water ponds to make 
additional land available for urban development. 

Currently in Minnesota only a few cities have updated wet-
land inventories. For the rest of Minnesota the only wetland in-
ventory available is the National Wetlands Inventory (NWI). The 
Minnesota NWI maps were completed in the late 1980s using 
aerial photos (some black and white) collected between 1979 
and 1988 (LMIC, 2007). Several 7.5’ quadrangles in northwest-
ern Minnesota and a much larger area in northeastern Minneso-
ta were mapped based on 1970s 1:80 000 scale black-and-white 
photos (MPCA, 2006). Changes in the landscape have occurred 
which limit the use of the NWI maps due to the outdated data 
and techniques used to create them. Thus, there is a need to 
update wetland inventories with accurate boundaries and 
improved delineation of smaller wetlands. An updated wetland 
inventory would provide information that could be used to 
make accurate decisions for the conservation, protection, 
and restoration of wetlands. Although a Minnesota statewide 
update is underway, it is a heavily image interpretation-based 
project that is not expected to be completed until 2020. Thus, 
more automated techniques may be useful in the near term.

A fast and effective method to identify accurate wetland 
boundaries involves the use of remote sensing data and 
techniques (Butera, 1983; Corcoran et al., 2011; Knight et al., 
2013). To the present time, the majority of wetland mapping 
efforts using remote sensing data and techniques has been 
focused on evaluating traditional pixel-methods with medium 
to coarse resolution data. In many cases, the use of remote 
sensing for wetland mapping has resulted in low accuracy 
estimates, often due to mixed pixels and insufficient spectral 
resolution (Grenier et al., 2007; Fournier et al., 2007; Lunetta 
and Balogh, 1999; Ozesmi and Bauer, 2002). Integration of 
high resolution optical and elevation data has been shown 
to reduce the mixed pixel problem (Frohn et al., 2009; Maxa 
and Bolstad, 2009). Some studies have integrated optical 
and elevation data to map wetlands using traditional pixel-
based methods. However, their accuracy results were low for 
wetland classification due to the use of low to medium spatial 
resolution data and pixel-based techniques (Baker et al., 2006; 
Ozesmi and Bauer, 2002). 

An object-based approach may be a better option to inte-
grate high resolution data and overcome some limitations, 
including the mixed pixel problem and salt-and-pepper effect 
of traditional pixel-based techniques (Myint et al., 2011; Zhou 
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and Troy, 2008). Object Based Image Analysis (OBIA) segmen-
tation and classification techniques have been considered as 
an alternative to pixel-based methods since the late-1990s 
because of their ability to include contextual information, 
human knowledge, and experience to interpret the objects of 
interest (Baatz et al., 2008; Blaschke, 2003; Blaschke, 2010). 
The foundation of the OBIA approach is an initial image seg-
mentation that uses pixel-based features to create statistically 
homogeneous image objects (Benz et al., 2004; Fournier et al., 
2007). These homogenous objects, also called geo-objects or 
segments, can be classified into land-cover classes using attri-
butes of the objects such as spectral, textural, contextual and 
shape characteristics (Burnett and Blaschke, 2003; Bruzzone 
and Carlin, 2006; Hay and Castilla, 2008). The OBIA approach 
can be used to generate vector polygons from the classification 
and directly incorporate them into a geographic information 
system (GIS) (Castilla, et al., 2008; O’Neil-Dunne et al., 2012).

The aim of this research was to investigate the effective-
ness of using high resolution leaf-off aerial imagery and lidar 
data to map wetlands in three different ecoregion study areas 
in Minnesota. 

Study Area and Data
Study Area Description
Due to the complexity and variety of wetlands in Minnesota, 
we selected three study areas to evaluate the OBIA approach to 
map wetlands. The first study area was the Minnesota River 
Headwaters watershed located in the Northern Glaciated 
Plains ecoregion and within Big Stone, Traverse, and Stevens 
counties (Figure 1). This watershed is 717 km² in size and the 
main land use is agriculture. A large portion of the watershed 
is characterized by a rolling prairie of till plain, clay loam soils 
and a combination of poorly and well drained soils (Minnesota 

Department of Natural Resources, 2006). The average precipi-
tation is 640 mm/year and 360 mm during the growing season 
(May to September). Many shallow lakes and wetlands are 
common features of the landscape in this watershed. These 
lakes and wetlands are perfect settings to support and nurture 
wildlife habitat and viewing opportunities for a variety of bird 
and duck species (Midwest Community Planning LLC, 2012). 

The second study area was the Swan Lake watershed 
located in the Western Corn Belt Plains ecoregion and within 
Nicollet County (Figure 1). It has an area of 204 km², and the 
main land use is agriculture. A large portion of the watershed 
consists of glacial till plain with level to gently rolling prairie 
uplands. This area is characterized by clay loam soils and 
fertile deep soils with a high level of organic matter (Min-
nesota Department of Natural Resources, 2006). The average 
precipitation is 740 mm/year and 460 mm during the growing 
season (May to September). This watershed has one of the 
biggest prairie pothole marshes in the United States, provid-
ing habitat for different species, storm water retention and 
education opportunities (Nicollet County, 2008). 

The third study area is the Thompson Reservoir St. Louis 
River watershed located in the Northern Lakes and Forest, 
between St. Louis and Carlton counties (Figure 1). It is 53 km² 
in size and the main land use is forested land. A large portion 
of the watershed is characterized by drumlins covered with 
forest, poorly drained wetland depressions, and fine sandy 
loam soils. The average precipitation is 710 mm/year and 
440 mm during the growing season (May to September). 

Data Acquisition
We used two data sources to investigate the effectiveness of 
integrating multiple datasets to map wetlands in the three 
study areas. These sources included lidar data and orthorecti-
fied digital aerial photography (0.5 m). The half-meter ortho-
rectified imagery used for Swan Lake and the Minnesota River 

Figure 1. Location of the three watershed study areas in the state of Minnesota, USA. 
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Headwaters was collected by Surdex Corporation between 12 
April 2011 and 16 May 2011. This imagery was provided by 
the vendor to the Minnesota Department of Natural Resources 
(MDNR) as a radiometric/orthorectified ready product. The 
Minnesota Department of Transportation (MnDOT) separately 
tested the horizontal positional accuracy of this imagery and 
obtained a root mean square error (RMSE) of 0.819 m with an 
NSSDA of 1.418 m (95 percent confidence level). This imag-
ery was acquired with an Intergraph DMC® (digital mapping 
camera) from an altitude of about 3,000 m, capturing four 
multispectral bands (red, green, blue, and near infrared). The 
half-meter orthorectified imagery used for the Thompson Res-
ervoir St. Louis River watershed was collected by Keystone 
Aerial Surveys, Inc. in May 2009. This imagery was provided 
by the vendor to the DNR as a radiometric/orthorectified ready 
product. The DNR separately tested the horizontal positional 
accuracy of this imagery and obtained an RMSE of 2 m with 
an NSSDA of 3.5 m (95 percent confidence level). This imag-
ery was acquired with a Vexcel UltraCamX® camera from an 
altitude of about 7,300 m, capturing four multispectral bands 
(red, green, blue, and near infrared). 

The lidar data (point cloud data, lidar DEM, and lidar hy-
brid intensity) used for the Minnesota River Headwaters study 
area was obtained through the International Water Institute 
(IWI) lidar download portal. The lidar data for the Minnesota 
River Headwaters was collected in the spring of 2010 during 
leaf-off conditions by Fugro Horizons, Inc. The data were col-
lected with a Leica sensor ALS50-II MPiA® (Multiple Pulses 
in Air), at an altitude of 2,400 m above mean terrain (AMT), 
and with an average post spacing of 1.35m. The horizontal 
accuracy for these data was of ±1 m (95 percent confidence 
level), and a vertical accuracy RMSE of 15.0 cm. For this study 
area, we used the 1 m DEM and hybrid intensity images pro-
vided by the IWI. The DEM was produced by interpolating the 
bare earth LAS files delivered by the vendor using the “Raster 
to ASCII” command in ArcGIS® 10.1. The hybrid intensity 
layers were created from lidar intensity and raw lidar/hill-
shade by the vendor. Hybrid intensity images were created 
by interpolating the infrared reflectance value attributed for 
each point. The lidar data (point cloud data, lidar DEM and 
lidar intensity) used for Swan Lake and Thompson Reservoir 
St. Louis River watershed were acquired from the Minnesota 
Geospatial Information Office (MnGeo) FTP site. 

The lidar data for the Swan Lake study area was collected 
between 26 April and 28 April 2010 by AeroMetric, Inc. The 
data were collected using a multiple fixed wing aircraft lidar 
system at an altitude of 1,700 m AMT, and an average post 
spacing of 1.3 m. The horizontal accuracy for these data was of 
±0.3 m (95 percent confidence level), and a vertical accuracy 
RMSE of 10.0 cm. The lidar data collected for the Thompson 
Reservoir St. Louis River study area was collected between 
03 May and 05 May 2011 by Woolpert, Inc. The data were 
collected at an altitude of about 2,400 m AMT with an average 
post spacing of 1.5 m. The horizontal accuracy for these data 
was ±1.2 m (95 percent confidence level), and vertical accura-
cy RMSE was 5 cm. In this study we used the 1 m DEM provided 
by the Minnesota DNR, which produced the DEM by extracting 
bare earth points from the point cloud data. The DEM was also 
hydro flattened using the edge of the water breaklines.

Methods
We mapped wetlands by using an OBIA approach through the 
creation of rule sets for each study area. We used the Cogni-
tion Network Language (CNL) within the software package 
Definiens eCognition® Developer version 8.8.0 to develop 
the three rule sets. The eCognition Server 64-bit package was 
used to execute in a batch mode all the tile stacks for each 
study area. The first subsection of the methods used in this 

study describes the data preparation performed for each study 
area. The next subsection explains the design of the rule set 
created for each study area. Finally, the last subsection ad-
dresses the accuracy assessment procedures used to evaluate 
results in each study area. 

Data Preparation
Before the creation of the three rule set, we performed four 
data preparation steps needed prior to develop the OBIA ap-
proach. First, we generated several raster layers from the lidar 
point cloud data and DEM. The raster layers included: a digital 
surface model (DSM), a lidar intensity layer, the compound 
topographic index (CTI). These raster layers were chosen 
because of their topographic information, which is useful to 
differentiate wetland from other cover classes. We used Quick 
Terrain (QT) Modeler® version 7.1.6 to generate the 3 m DSM 
raster layer using the point cloud data for each study area. 
The natural-neighbor interpolation algorithm method, the 
maximum Z value of the first return for all the classes were 
used to create the DSM layer. We exported the DSM into a raster 
GeoTIFF file with 3 m spatial resolution. 

The lidar intensity images for Swan Lake and the Thomp-
son Reservoir St. Louis River study areas were also generated 
in QT Modeler with the grid statistic tool, using the mean 
intensity values of all the lidar returns. We exported the 
intensity grid layer into a raster GeoTIFF file with 3 m spatial 
resolution. The lidar intensity image for the Minnesota River 
Headwaters study area was obtained directly from the IWI 
download website. 

The CTI layers for each study area were created using the 
DEM layer for each study area. We used the following formula 
to compute the CTI given by Beven and Kirkby (1979) study: 
CTI = ln [(α)/ (tan (β)]. In this equation α represents the local 
upslope area draining through each cell, and β represents the 
local slope gradient. The CTI represents the potential distribu-
tion of the water movement and water accumulation across 
the landscape (Moore et al., 1991). The CTI is used to identify 
parts of the landscape where sufficient wetness could allow 
for the formation of wetlands (Rodhe and Seibert, 1999). 

Figure 2 shows a map of the Minnesota River-Headwaters 
study area representing CTI values, where higher CTI values 
represent water accumulation (potential wetland formation), 
and lower CTI values represent dryness or steep places where 
water would not likely accumulate based on topography. 
The choice of the flow direction algorithm used to calculate 
α (local upslope area) can affect the accuracy of the CTI. For 
example, single flow direction algorithms allow flow to pass 
only to one neighboring downslope cell while multiple flow 
direction algorithms allow water to flow into multiple neigh-
boring cells. This multidirectional flow effect creates more 
realistic water flow patterns in different topographic settings, 
including convex and concave hillslopes (Erskine et al., 2006; 
Gruber and Peckham, 2008; Wilson et al., 2008). Thus, in this 
study we used the triangular multiple flow direction algo-
rithm proposed by Seibert and McGlynn (2007) to compute 
the local upslope area. We used the Whitebox open-source 
software version 1.0.7 to calculate the contributing area (lo-
cal upslope area) and local slope layers needed for the CTI. 
The slope layer was modified by adding a minimum value of 
0.0001 to avoid division by zero for CTI calculations. 

It is important to clarify that the DEM for the Swan Lake 
and Thompson Reservoir St. Louis River areas was obtained 
directly as a raster layer, already mosaicked, from the MnGeo 
FTP site. However, for the Minnesota River Headwaters areas, 
we had to mosaic each DEM and hybrid intensity tile con-
tained within this area. Mosaicking was necessary because 
these data were provided by the IWI in raster tiles of 2,000 
m by 2,000 m. We used ERDAS Image® 2011 to mosaic and 
exported the DEM and intensity layers as GeoTIFF files. We also 
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exported the DEM for the Swan Lakes and the Thompson Res-
ervoir St. Louis River study areas to GeoTIFF format. 

Second, after calculating all the lidar layers, we used the 
MosaicPro tool from the ERDAS Image 2011 software to mosaic 
the orthorectified aerial imagery for each study area.

Third, once all the previous lidar and imagery layers were 
prepared, we used a watershed boundary shapefile layer for 
each study area to subset all the raster layers in ERDAS Image 
version 2011. The watershed boundaries were obtained from 
the Minnesota Department of Natural Resources (DNR). Finally, 
we produced a tile generation for each study area. The tile gen-
eration was carried out in ERDAS Image version 2011, using 
the Dice tool with the following parameters: tile size of 3,000 
m × 3,000 m and an overlap of 300 m between adjacent tiles 
on all four sides. Each study area had a tile stack of four lidar 
product layers (DEM, DSM, CTI, and Intensity) and four bands 
of imagery layers (Figure 3). The following tile stacks were 
created: 224 for the Minnesota River Headwaters, 49 for Swan 
Lake, and 20 for the Thompson Reservoir St. Louis River.

Rule set Creation and Classification
Before the creation of rule sets for each study area, we devel-
oped a customized import routine in eCognition developer 
software to import all the tile stacks of layers for each study 
area. Each rule set was developed through a trial and error 
process using small subset areas (500 × 500 pixels). We used 
a divide and conquer approach (Quinlan, 1990; O’Neil-Dunne 
et al., 2012), which is a multiscale iterative method where 
objects vary in size, shape, and spectral attributes. While the 
two major steps performed in the rule set development were 
the creation of objects and the classification of those objects, 
further steps were required for the classification of each object 
to be assigned to the class of interest (wetland class versus 
non-wetland class). Each rule set consisted of four main com-
ponents: (a) image processing, (b) segmentation and classifica-
tion, (c) export operation, and (d) cleanup operation. 

In the image processing phase, we carried out the follow-
ing tasks: calculation of the normalized Digital Surface Model 
(nDSM) = DSM − DEM, and application of a median filter to the 
nDSM and intensity layers, and computation of the Green Ratio 
Vegetation Index (GRVI) using the eCognition developer soft-
ware tools for object features. The GRVI was computed using 

the NIR and green bands of the aerial imagery as the ratio of 
the NIR divided by the green band (Sripada et al., 2006).

This index was chosen for two reasons: first, it is known 
that vegetation indices such as the Normalized Difference 
Vegetation Index (NDVI) can be useful for discriminating wet-
lands from other upland classes (Hodgson et al., 1987, Wright 
and Gallant, 2007). Second, after testing several vegetation 
indices including the NDVI, the Green Normalized Difference 
Vegetation Index (GNDVI), the Difference Vegetation Index 
(DVI), and the GRVI to determine which index would be more 
helpful in differentiating wetland features from non-wetland 
features. Our unpublished results indicated that the GRVI 
was more accurate than the other indices to differentiate and 
exclude areas that were topographically suitable for wetlands 
but contain impervious cover (non-vegetated).

In the segmentation and classification phase, we performed 
the following tasks: we created preliminary objects using the 
multi-resolution segmentation algorithm (Baatz and Schape, 
2000) with the following parameter values: scale 30, shape 
0.3, and compactness 0.5. A weight value of 1 was given to 
the three visible optical bands and a weight value of 2 to 
the NIR band. The scale value of 30 was chosen because we 
wanted medium size preliminary objects. The shape value of 
0.3 was chosen because more weight was given to the influ-
ence of color on the segmentation process. The NIR band was 
given a higher weight value because of its ability to spectrally 
separate potential non-water objects from water objects. 

After creating the preliminary objects, the second step was 
to refine those objects by applying a spectral difference seg-
mentation algorithm, based on a maximum spectral difference 
value. The spectral difference algorithm merges neighboring 
objects based on a maximum spectral difference value param-
eter (Definiens Imaging, 2009). A value of 14 was chosen as 
the maximum spectral difference parameter for this difference 
segmentation. This value was chosen after visually assessing 
different values.

The third step was to classify the preliminary objects into 
temporary classes, including wet versus dry, bright versus 
dark, and short versus tall. We used the following attributes 
of each dataset to create the temporary classes: min, max, and 
mean threshold values of the CTI, nDSM, intensity, NIR band, 
imagery brightness, and GRVI. 

Figure 2. CTI index for Minnesota River-Headwaters study area.
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algorithm with the following parameters: a minimum threshold 
value of 2, a max threshold value of 5, and a step size of 1. Pre-
vious parameters were determined after several trial-and-error 
experiments and a detailed visual assessment for separating 
bright versus dark classes and short versus tall classes.

Finally, we used contextual information from the different 
temporary classes to achieve the final desired classes. Final 
classes included wetlands, agriculture, forest, and urban 
classes. These classes were chosen to allow for easier discrim-
ination between wetland boundaries and upland boundaries 
due to the spectral, contextual, and shape differences between 
classes. The contextual information was based on the spatial 
relationships of an individual object to neighboring objects. 
For example, small bright objects located in the middle of 
agriculture fields (unlikely to be impervious surfaces) were 
reclassified as agriculture classes based on contextual infor-
mation (neighboring relationship). 

In the export operation phase, we exported the final classes 
into raster and vector formats. In addition, we improved the 
wetland polygon’s appearance by applying the smoothing and 
generalizing tools from the advanced editing toolbar in the 
ArcGIS software. 

Accuracy Assessment 
We assessed the classification results for the three study areas 
using a single pixel based approach based on the analysis of 
the error matrix (Congalton and Green, 2009). The following 
accuracy assessment estimators were computed in ERDAS 
Imagine for each study area: overall accuracies, producer’s 
accuracy, user’s accuracy, and kappa coefficient. 

The classification results were evaluated using independent 
stratified randomly generated points for each study area. Each 
sample point was interpreted by a trained analyst, who gave 
the point a value of forest, agriculture, impervious, or wetland. 
The analyst used aerial photos and field data. In the summer of 
2009 and 2011, a team from the Remote Sensing and Geospatial 
Analysis Laboratory at the University of Minnesota collected 
field reference data of independent randomly selected points 
of wetland/upland from different parts of Minnesota including 
the three study areas used in this study. The field data collect-
ed contained the following information: Plant type and percent 
coverage, land-cover/land-use type, UTM coordinates, five to six 
photos of the area, and Cowardin wetland type (Cowardin et 
al., 1974). Upland types included crop fields, other agriculture, 
forests, grasslands, urban areas, construction areas, bare areas, 
and others. We generated 289 reference data points for the Min-
nesota River Headwaters: 118 for Swan Lake and 117 for the 
Thompson Reservoir St. Louis River study areas. 

Results 
Results for the three study areas are summarized in Tables 
1 through 5, Plate 1, and Figure 4. Overall accuracy results 
for the OBIA classification were consistently high (90 to 93 
percent), throughout the three study areas, with little con-
fusion between the four classes. Within the classification 
scheme of the four classes, we obtained producer and user 
accuracies of 92 to 96 percent respectively for the wetland 
class that included wetlands larger than 0.20 ha (0.5 acres) 
across the three ecoregions. In addition to the OBIA accuracy 
assessment classification, a comparison assessment was per-
formed to compare the accuracy of the original NWI and the 
OBIA classification using only two classes (wetland/upland) 
for the same study areas. It is important to acknowledge that 
this comparison of the NWI results and our OBIA results is not 
a direct and fair comparison. The temporal and methodologi-
cal differences between the two datasets are significant. Thus, 
our main objective was to offer an alternative method (OBIA) 
that will allow for improvements to the accuracy of wetland 

Figure 3. Tile stack of the dataset used for the obia approach.

The CTI, GRVI, and NIR layers were specifically used to 
separate wet versus dry classes with the following threshold 
values: NIR ≤45, GRVI ≤0.9, and CTI ≥10.78. These threshold 
parameters were determined through a series of trial-and-
error efforts in combination with photo-interpretation to 
determine whether different “wet classes” (potential wetland 
classes) across the three different ecoregions were sufficiently 
separated from dry classes (potential non-wetland classes). 
The threshold of 10.78 resulted after testing several threshold 
values at different DEM resolutions including 3 m lidar data. 
Our unpublished results indicated that the most accurate CTI 
threshold values to separate wetness (potential wetland) from 
dryness (upland) was the mean plus one-half standard devia-
tion of the CTI range of values. Also, this CTI threshold value 
of 10.78 agrees with the value that Galzki et al., (2008) found 
in their study based on field work. 

The imagery brightness, intensity, and GRVI layer were used 
to classify bright versus dark objects using the spectral differ-
ence segmentation algorithm with a maximum spectral dif-
ference parameter of 12. The nDSM layer was used to separate 
short versus tall objects using the contrast split segmentation 
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Figure 4. Comparison map of the original nwi polygons and obia poly-
gons for a small portion of the Minnesota River-Headwaters with a 
background of an aerial image.

Table 1. obia ClassifiCaTion error MaTrix for MinnesoTa river-HeadwaTer 
sTudy area

Reference Data

M
ap

 d
at

a

Wetlands Agriculture Forest Urban
Row 
Total

User’s 
Accuracy

Wetlands 47 4 0 0 51 92%

Agriculture 2 148 1 5 156 95%

Forest 1 10 31 0 42 74%

Urban 1 5 0 34 40 85%

Column  
Total

51 167 32 39 289
Overall 
Accuracy

Producer’s 
Accuracy

92% 89% 97% 87% 90 %

Overall Kappa Statistic: 0.84

Table 2. obia ClassifiCaTion error MaTrix for swan lake sTudy area

Reference Data

M
ap

 d
at

a

Wetlands Agriculture Forest Urban
Row 
Total

User’s  
Accuracy

Wetlands 27 1 0 0 28 96%

Agriculture 1 46 0 0 47 98%

Forest 0 0 23 0 23 100%

Urban 0 5 1 14 20 70%

Column 
Total

28 52 24 14 118
Overall  
Accuracy

Producer’s  
Accuracy

96% 88% 96% 100% 93%

Overall Kappa Statistic: 0.90

Table 3. obia ClassifiCaTion error MaTrix for THoMpson reservoir sT. louis 
river sTudy area

Reference Data

M
ap

 d
at

a

Wet-
lands

Agriculture Forest Urban
Row 
Total

User’s  
Accuracy

Wetlands 32 0 2 0 34 94

Agriculture 1 20 3 0 24 83

Forest 2 0 37 0 39 95

Urban 0 2 1 17 20 85

Column 
Total

35 22 43 17 117
Overall  
Accuracy

Producer’s  
Accuracy

91% 92% 86% 100% 91%

Overall Kappa Statistic: 0.87

classification boundaries compared to current wetland bound-
aries. Updated accurate boundaries of wetlands are necessary, 
particularly for organizations that currently use older NWI 
maps as a tool to monitor and regulate wetland management 
and conservation.

The comparison assessment was done using the kappa-
based Z-statistic test described in Congalton and Green (2009). 
Additionally, the overall accuracy, user’s accuracy, and 
producer’s accuracies for wetland and upland classes were 
computed for both classifications. These comparison results 
demonstrated that there was a statistically significant differ-
ence between the OBIA and the NWI classification at an alpha 
level of 0.05. For this classification scheme of two classes, the 
comparison results also indicated that the OBIA wetland class 
always had a higher user’s accuracy (92 to 94 percent) and pro-
ducer’s accuracy (91 to 96 percent) across the three study areas 
compared to the NWI user’s accuracy (56 to 71 percent) and 
producer’s accuracy (57 to 79 percent) for the wetland class.

Table 1 shows a full error matrix and accuracy estimates of 
the four classes in the Minnesota River-Headwater study area 
using the OBIA method. The overall accuracy was 90 percent, 
with a kappa score of 0.84 and low errors of commission and 
omission. The wetland class was accurately identified with 
producer’s and user’s accuracies values at 92 percent. Plate 1a 
shows a final OBIA classification map with four classes for the 
Minnesota River-Headwater study area. 

Table 2 shows a full error matrix and accuracy estimates 
of the four classes for the Swan Lake study area. The overall 
accuracy was 93 percent with a kappa score of 0.90, and with 
low errors of commission and omissions for the majority of the 
classes. Plate 1c displays a final OBIA classification map with 
four classes for this study area. The wetland class in this study 
area was the least confused compared to other classes (Table 
2). Overall, the most confused class pair was agriculture and 
urban because these classes can be relatively similar spectrally 
and spatially close in proximity to each other (e.g., an un-
paved road bordering or in the middle of an agricultural field). 

Table 3 shows a full error matrix and accuracy estimates of 
the four classes for the Thompson Reservoir St. Louis River 
study area. The overall accuracy was 91 percent with a kappa 
value of 0.87, and with low errors of commission and omis-
sions for all the classes. Plate 1b displays a final OBIA classifi-
cation map with four classes for the third study area.  

Table 4 shows accuracy estimators of the NWI classification 
and OBIA classification with two classes (upland versus wet-
land) for the three study areas, indicating a higher overall ac-
curacy for the OBIA classifications (97 to 98 percent) compared 
to the NWI classification (74 to 85 percent). In addition, the 
total amount (hectares) of wetlands for the Minnesota River-
Headwaters area, revealed an underestimation of wetlands 
within the NWI classification. This underestimation also is 
confirmed by the wetland omission error (43 percent) and low 
wetland producer’s accuracy (57 percent) obtained for the NWI 
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Plate 1. obia classification maps for (a) Minnesota River-Headwaters, (b) Thompson Reservoir St. Louis River, and (c) Swan Lake. Compari-
son of layers for a small portion of the Thompson Reservoir St Louis River study area, top left visible bands, top right nir band, bottom left 
CTi, and (d) bottom right obia classes (wetland/upland).

Table 4. overall aCCuraCy and weTland user’s and produCer’s aCCuraCy for Two Mapping ClassifiCaTion resulTs (ClassifiCaTion sCHeMe: weTland/upland)

Land cover classification
Overall  

accuracy
Wetland user’s  

accuracy
Wetland producer’s 

 accuracy
Total area for  

wetlands in ha

OBIA-Minnesota River-Headwaters 97% 92% 92% 7,620.90

NWI-Minnesota River-Headwaters 88% 71% 57% 6,526.38

OBIA-Swan Lake 98% 96% 96% 4,794.52

NWI-Swan Lake 85% 65% 79% 5,812.04

OBIA- Thompson Reservoir St. Louis River 96% 94% 91% 1,927.29

NWI-Thompson Reservoir St. Louis River 74% 56% 66% 2,233.42
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wetland class in this area. The total amount (hectares) of wet-
lands for the Swan Lake and Thompson Reservoir St. Louis 
River areas exposed an overestimation of the current amount 
of wetlands compared to the total area amount of wetlands 
within the NWI classification. This overestimation also is 
confirmed by the wetland commission error (35 to 44 percent) 
and low wetland user’s accuracy (56 to 65 percent) estimators 
obtained for the NWI wetland class in these areas.

Table 5 shows the significance test (Z-test) comparison of 
the two classification methods for each study area; the results 
were found to be statistically different in each study area at a 
95 percent confidence level. Figure 4 shows a comparison of 
the NWI polygons and OBIA polygons for a small portion of the 
Minnesota River-Headwaters area. This figure exposes signifi-
cant differences between NWI and OBIA wetland boundaries, 
revealing greater amount of wetland omission area for the NWI 
classification. Although this comparison may be unfair be-
tween the NWI and our OBIA results, this comparison confirms 
the assumption that NWI maps are of limited utility due to 
their inaccuracy in wetlands versus upland boundaries.

Discussion and Conclusions
In this study, we have evaluated an OBIA approach to map and 
differentiate wetlands from other classes through the design of 
a rule set for each study area. The OBIA approach used in this 
study, across three different ecoregions, provided an adequate 
platform to integrate different types of high resolution data for 
accurately detecting wetlands that were greater than 0.20 ha 
(0.5 acres). OBIA classification maps corresponded well with 
the reference data for each study area, obtaining high overall 
accuracy percentages between 90 to 93 percent for the four 
classes. The results of this study reinforced previous findings 
regarding the value and importance of high resolution data 
to improve wetland classification accuracy. Previous stud-
ies have concluded that high resolution data including lidar, 
aerial, and satellite imagery are very advantageous to distin-
guish between wetlands and non-wetlands classes. These 
studies have found less confusion between wetlands and 
upland classes due to the reduction in mixed pixels and ad-
dition of high resolution elevation data to separate wetlands 
from uplands (Everitt et al., 2004; Huan and Zhang 2008; Laba 
et al., 2008). 

The integration of high resolution imagery and lidar data 
helped to improve classification of wetlands in two ways. 
First, the use of high resolution data including optical and 
lidar through an OBIA approach helped to improve the ac-
curacy of wetland classification over traditional pixel-based 
techniques. For example, Corcoran et al. (2011) integrated 
high resolution imagery with coarse topographic data using 
a decision-tree classifier to map wetlands, in a similar area to 
our third study area in the Northern lakes and forest ecore-
gion area in Minnesota. The Corcoran et al. (2011) results 

were lower in overall accuracy (72 percent) for wetland/
upland classification compared to our OBIA results for wet-
land/upland classification (96 percent). Sader et al., (1995) 
compared four satellite image classification methods, includ-
ing a GIS rule-based model to delineate forest wetlands and 
other wetlands in Maine. Their results were lower in overall 
accuracy, ranging from 72 percent to 82 percent for their two 
study areas. Similarly, other studies have used coarse resolu-
tion imagery data including satellite data to map wetlands, 
but obtained low accuracy estimates for wetland classifica-
tion because of mixed pixels with similar spectral reflectance 
(Jensen et al., 1993; Lunetta and Balogh, 1999). 

Our study demonstrated that an OBIA approach is more 
suitable than traditional pixel-based methods to take advan-
tage of the high resolution data available to map wetlands 
(Dechka et al., 2002; Halabisky et al., 2011; Knight et al., 
2013; Maxa and Bolstad, 2009). The OBIA approach used in 
this study incorporated contextual, spectral, and shape infor-
mation that came from homogenous objects instead of pixel 
units. It is important to note that all the high resolution data 
used in this study were available to the public free of charge. 
This free high resolution data can be advantageous to many 
governmental and non-governmental organizations interested 
in wetland conservation and protection. 

Second, the integration of high resolution imagery and li-
dar data helped to improve classification of wetlands because 
of the use of high resolution lidar to calculate derivatives such 
as the CTI. In a qualitative visual assessment of all the data 
layer inputs, the CTI layer provided additional discrimina-
tion between wetland and other non-wetland classes because 
of its ability to separate low terrain areas from steep terrain 
areas based on topography (Figure 4). For example, forested 
vegetation in local low areas were often confused spectrally 
with forested vegetation in upland areas, but were easier to 
separate with the addition of the CTI data layer. Other studies 
have shown similar results when adding topographic data and 
optical data, resulting in a greater improvement of the wetland 
accuracy classification. For example, in a study by Knight et 
al. (2013), in an area similar to our third study area, different 
input datasets including optical and topographic data were 
evaluated to determine if the addition of different data types 
would improve the accuracy of wetland classification. The 
Knight et al. (2013), results indicated that topographic data 
and derivatives including the CTI helped to significantly im-
prove the accuracy of wetland/upland classification compared 
to other data type scenarios including radar and optical data. 
That and other similar studies (e.g., Baker et al., 2006; Mur-
phy et al., 2007) reinforce our results regarding the value of 
using topographic data, which can be categorized as one of the 
major factors to determine and accurately predict the potential 
location of wetlands across different ecoregions settings. 

It is important to acknowledge that most existing research 
(e.g., Frohn et al., 2009; Moffett and Gorelick, 2013) using 

Table 5. signifiCanCe TesT (Z-TesT) for CoMparing Two Mapping ClassifiCaTion sCHeMe (weTland/upland) using 
THe saMe independenT referenCe daTa poinTs for eaCH sTudy area

Land cover classification
Kappa1 versus  

Kappa2
Z-Value

OBIA versus NWI for Minnesota River-Headwaters 0.91 versus 0.56 4.61*

OBIA versus NWI for Swan Lake 0.98 versus 0.61 3.88*

OBIA versus NWI for Thompson Reservoir St. Louis River 0.90 versus 0.42 4.83*

* A Z-value over 1.96 indicates that there is a significant difference at 95% confidence level.
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an OBIA approach to classify wetlands and other land cover 
has focused more on segmentation techniques, while our 
study focused more on the development of a customized rule 
set appropriate to each specific ecoregion setting. The OBIA 
multiscale iterative approach used in this study involved the 
design of a customized rule set, allowing us the incorpora-
tion of contextual and expert knowledge information through 
the CNL in the eCognition Developer software. Rule sets 
can be complex and unique to each area; however, they are 
adaptable with newer data and transferable to similar areas. 
Despite the fact that traditional pixel-based techniques are 
often preferred to study wetlands because of the reduction in 
analyst time over the classification process, OBIA offers a way 
to combine the experience and knowledge of the analyst with 
computer assistance to classify wetlands more accurately in 
a semi-automated way. Experience and expert knowledge are 
critical for mapping wetlands, because these ecosystems tend 
to have a high variability of physical properties. In addition, 
this experience and knowledge were necessary in our study 
to obtain and develop crucial contextual information that was 
not available through traditional pixel-based techniques. In 
addition to the high accuracy of the results, the output maps 
were more aesthetically pleasing than pixel-based maps. 

Our OBIA results were significantly improved over the orig-
inal NWI for the three study areas, with lower rates of wetland 
omissions. Though it is not fair to make a direct comparison 
between the NWI and the OBIA results, the OBIA approach used 
in this study suggests an alternative technique to improve the 
accuracy of wetlands boundaries.

Results from this study included a land-cover classification 
map with four classes and wetlands polygons for each study 
area. Lidar data in combination with high resolution imagery 
significantly improved the accuracy of wetland classification 
across the three different ecoregions in Minnesota. Our results 
provide evidence that diverse ecosystems such as wetlands 
of different sizes can be identified and classified accurately 
using an OBIA approach with high resolution data across the 
three different ecoregions studied in this paper. These results 
are encouraging and useful as an initial classification of 
wetland habitats but further research is encouraged to classify 
wetland types, using recently acquired remote sensing data 
and OBIA rule sets techniques. The OBIA approach presented 
here to map wetlands offers an alternative, semi-automated 
and improved method over traditional pixel based techniques 
and the original NWI. Furthermore, this OBIA approach may 
be suitable for extension to a larger range of wetlands located 
in areas such as the ones used in this study, with similar land-
use, topography and ecoregion. 
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