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Executive Summary 
Managed lanes have been implemented across the nation in various forms in an effort to 
increase efficiency and mobility on existing roadway networks. Depending on the type of 
restrictions implemented, managed lanes include exclusive lanes like bus or truck lanes, 
separation or bypass lanes, dual-use lanes, High Occupancy Vehicle (HOV) lanes, and value 
price or High Occupancy Toll (HOT) lanes. Under the context of HOV and HOT, a more 
concise way to describe these managed lanes is as a freeway within a freeway where lanes 
are reserved for particular groups of vehicles and are separated by the other General 
Purpose Lanes (GPLs). Dynamically priced HOT lanes have been recently added to the 
traffic operations arsenal in an attempt to preserve infrastructure investment in the future 
by maintaining a control on demand. 

This study focuses on operational and design features of HOT lanes. HOT lanes’ mobility 
and safety are heavily contingent on the design of zones (“gates”) that drivers use to merge 
in or out of the facility.  This can be attributed to the large speed differential that is 
observed between the HOT lane and its adjacent lane during traffic peak periods. Existing 
methodologies for the design of access zones are limited to engineering judgment or 
studies that take into consideration undersized amount of observations. Case in point is the 
fact that the design philosophes between the two HOT facilities in Minnesota are 
diametrically opposed. Specifically, the I-394 freeway, the first dynamically priced HOT 
lane, was designed with a closed access philosophy, meaning that for the greater length of 
the roadway access to the HOT lane is restricted with only specific short-length sections 
where access is allowed. In contrast I-35W, the second HOT corridor, was designed with an 
open access philosophy where lane changes between the HOT and the GPLs are allowed 
everywhere except for a few specific locations. Naturally this contradiction generated 
questions as to which design method is better and more importantly what are the safety 
and mobility considerations in each case. 

This project was established to investigate these considerations, and since the two 
philosophes are different cases based on design preference, mainly to the level of service 
the facility owner wants to provide to the users, the second objective of the study was the 
creation of separate design tools for each alternative. In both cases, the approach was to 
decompose the studied phenomena in a manner that closely approximates reality. 
Shockwave characteristics were utilized as surrogates of both safety and mobility. 
Shockwave length was selected as a surrogate of safety and shockwave frequency as a 
surrogate for mobility. 

The two facilities of I-394 and I-35W have been operating with no great safety or 
operational concerns; therefore, this study looked deeper into patterns of shockwave 
activity to uncover differences between the two design philosophies and potentially 
uncover areas of improvement now or in the future. With the help of MnDOT’s Regional 
Traffic Management Center surveillance infrastructure combined with the advanced 
detection and measurement capabilities of the Minnesota Traffic Observatory (MTO) the 
length and breadth of the two corridors was observed and analyzed. For brevity, this report 

 
 



concentrates only on the locations where mobility and safety patterns of interest were 
observed. These included four locations on I-35W and one location on I-394.  

The first area of interest is on I-35W northbound between the Burnsville Pkwy and Cliff 
Road interchanges. This area is experiencing severe recurring congestion on the GPLs and 
has a large proportion of the entrance ramp volume heading for the HOT. Given the existing 
utilization on the HOT, the shockwaves observed, although large, have not generated any 
crashes. This can change if the utilization of the HOT lane increases following changes in 
the pricing algorithm or on the market characteristics of HOT demand. In addition, 
aggressive behavior by the commuter buses entering the freeway in this location accounts 
for a large number of the inappropriate lane changes observed. Considering mitigation 
strategies for this location, keeping in mind that they are not immediately needed, a first 
suggestion is to target bus driver behavior, requesting that bus drivers join the HOT less 
aggressively or a little later (after the Cliff Road bottleneck).  Given that the demand on the 
intersecting roadways will not decline in the future, if the utilization of the HOT increases, 
there may be a need to restrict access to the HOT lane between TH-13 and Black Dog Road. 
This will hurt the service offered by the HOT so it should be considered only if conditions 
deteriorate significantly. 

The second area of interest in northbound I-35W lies between 46th Street and 42nd Street 
closer to downtown Minneapolis. This last segment of open access delivered a very large 
amount of flow breakdowns numerically as well as a percent of the general lane change 
activity. This area is the last chance for vehicles to join the HOT and is an area where it 
would be very difficult to further restrict access. Specifically a large portion of the HOT 
traffic in the afternoon originates from the 46th Street ramp, which is already in the midst 
of the problem. If a closed access design were followed, there would still be the need for a 
gate north of 46th Street, generating the same issues we observe today. Restricting access 
south of 46th Street will not change the outlook much. A closer study of the origins of the 
demand on the HOT at this point could reveal some possible compromises.  

On the southbound direction of I-35W there are two areas that could compromise safety 
and mobility.  One is in the area of 98th Street and the other is the area of Blackdog Road.  
Although the congestion observed south of 98th Street (location 6101 SB) is a rare 
occurrence, it happens and when it does it generates quantifiable issues on the HOT.  As 
seen in the following figure, it generated some of the biggest shockwaves among all 
locations on I-35W during all of the observed days.  For the foreseeable future this is a 
location that needs to be watched for signs of deterioration.  The areas close to the start of 
the open access south of I-494 (locations 6131 SB and 6130 SB) are operating fine today 
but are a good example of how the situation can change with the addition of just a few 
more vehicles in the HOT. The absolute values of the lengths of the waves signal a good 
standing in terms of safety, but if we take into account the high lane change activity of this 
segment, a future increase of vehicles on the HOT facility could result in greater 
disturbances.  

The allowed access area around Louisiana Ave on the eastbound is the only area of 
interesting activity on I-394. This is the second to last gate before the HOT enters the 

 
 



barrier separated reversible section.  As it is characteristic of closed access design the 
“gates” experience very high lane changing activity.  The average observed values reach 
100 vehicles per 15 minute intervals during the morning peak hours and over 60 in the 
evening peak hours.  The statistical characteristics of the observed flow breakdowns are on 
the higher end.   The lengths of the recorded flow breakdowns reached a median value of 4 
vehicles while the most extreme value was 12 vehicles.  Despite the conservative design of 
the access segments on the HOT and the generally lower demand levels, very long 
shockwaves were generated due to the high speed differential, between the HOT and the 
adjacent GPL, at this part of the freeway. 

It is difficult to compare the two design philosophies because they were devised to serve 
the needs of the two distinct roadways. I-394 is operating very well with the closed access 
design mainly because the majority of the demand originates from three distinct 
interchanges, I-494, TH-169, and TH-100. The rest of the ramps comparatively speaking 
have much lower demand. As illustrated in this report, this is not the case on I-35W. The 
interchange density is much higher with entrance ramps very closely spaced and with the 
majority of those ramps carrying large demands of HOT eligible vehicles. It would have 
been very difficult to follow a closed access design on I-35W, and given the results 
presented in this report, it would had made little difference in terms of mobility and safety. 

Comparisons of shockwave characteristics of the four discussed zones are shown in the 
following figure.  Although the volumes involved are different, the shockwave lengths 
observed are comparable signaling no difference in terms of safety between the two design 
philosophies. 

 

 
 



Following the assessment of the effect MnPASS has on the current mobility and safety of 
the HOT lane operations, this study continued with the development of two methodologies, 
which address design issues related to forthcoming and existing HOT facilities. The first 
methodology targeted forthcoming HOT facilities that adopt a closed access philosophy and 
derived a software tool capable of defining the Optimal Lane Changing Regions (OLCRs). 
The proposed methodology is capable of defining the OLCRs on forthcoming HOT facilities 
with respect to the positions of entrance or exit ramps.  

Trajectories of vehicles merging from the entrance ramp to the freeway and moving toward 
the HOT lane were collected at a freeway segment of I-35W. A microscopic simulation 
model exploiting Monte Carlo techniques was developed and tested for its ability to capture 
the observed trajectory lengths. After the model’s ability to regenerate realistic trajectories 
of vehicles was validated, the proposed methodology was compared to other commonly 
used practices. The main advantage of the proposed methodology is that it takes into 
account the traffic conditions on each lane between the entrance ramp and the HOT. This 
way the proposed model will design the OLCR at the location that the demand is expected 
to arrive. On the other hand, existing practices tend to overestimate the OLCR and place the 
gate up to 2000 feet further downstream than the vehicles are expected to arrive to the 
adjacent to the HOT lane.  

The second methodology, proposed in this project, aims to support engineer decisions for 
planning access restrictions on existing HOT facilities; the core is a developed model 
capable of emulating shockwave propagation on the HOT lane given target densities and 
speed differential between the HOT and the adjacent GPL. This methodology and 
subsequent tool was focused on HOT facilities that follow an open access philosophy, and 
the outcome of this process can support the decision of engineers to restrict access for 
locations that will reach their operational limit in the future either as a result of increased 
demand or as a result of changes in the pricing strategy. 

In particular, a shockwave propagation model was developed and captured the shockwave 
activity on three selected locations of interest on I-35W. After the model was calibrated to 
reproduce shockwave activity (shockwave lengths) at current traffic conditions, the same 
activity was reproduced for future demand levels until the examined facilities reached their 
operational boundary. The results support the validity of the process as the model 
replicated the distributions of shockwave lengths even at a 90% confidence interval. The 
developed mechanism was able to force the examined locations up to operational capacity 
by increasing the density of the simulated streams. The capacity was identified as the point 
in the density domain that the entire simulated stream experienced a disturbance after it 
was introduced. 

In summary, the developed methodologies were derived so that their transferability is not 
affected and hence they can potentially be used by agencies to design HOT lanes without 
compromising mobility or safety. Both methodologies were driven by an extensive and 
diverse data collection process and validated against actual observations. 

 
 



1. Introduction 
Managed lanes have been implemented across the nation in various forms in an effort to 
increase efficiency and mobility on existing roadway networks. Depending on the type of 
restrictions implemented, Managed Lanes include exclusive lanes like bus or truck lanes, 
separation or bypass lanes, dual-use lanes, High Occupancy Vehicle (HOV) lanes, and value 
price or High Occupancy Toll (HOT) lanes (Kuhn et al. 2005). Under the context of HOV and 
HOT, a more concise way to describe these Managed Lanes is as a freeway within a freeway 
where lanes are reserved for particular groups of vehicles and are separated from the other 
General Purpose Lanes (GPLs). 

HOT lanes have been recently added to the traffic operations arsenal in an attempt to 
preserve infrastructure investment in the future by maintaining a control on demand; in 
most cases they are conversions of existing HOV lanes. HOT lanes are “oases” of free-flow 
conditions within congested freeways. Observations support the benefits of implementing 
HOT and HOV lanes, which in many cases can carry up to half of the people carried on the 
entire freeway.   

This study focuses on operational and design features of HOT lanes. HOT lanes’ mobility 
and safety are heavily contingent on the design of zones (“gates”) that drivers can use to 
merge in or out of the facility.  This can be attributed to the large speed differential that are 
observed between the HOT lane and its adjacent lane during peak traffic periods. Existing 
methodologies for the design of access zones are limited to engineering judgment or 
studies that take into consideration undersized observation samples. Case in point is the 
fact that the design philosophes between the two HOT facilities in Minnesota are 
diametrically opposed. Specifically, the I-394 freeway, the first dynamically priced HOT 
lane, was designed with a closed access philosophy, meaning that for the majority of the 
length of the roadway access to the HOT lane is restricted with only specific short sections 
where access is allowed. In contrast, I-35W, the second HOT corridor, was designed with an 
open access philosophy where lane changes between the HOT and the General Purpose 
Lanes (GPL) are allowed everywhere except a few specific locations. Naturally this 
contradiction generated questions as to which design method is better and, more 
importantly, what the safety and mobility considerations are in each case. This project was 
established to investigate these considerations and to develop a methodology to design the 
proper access depending on site characteristics. While evaluating the current state of each 
of the two sites in terms of mobility and safety, it became clear that the two philosophes are 
not the opposite ends of a continuum but different cases based on design preference and 
the level of service the facility owner wants to provide to the users. The objective of the 
study changed to include the creation of design tools for each alternative separately. In 
both cases an approach was taken that aimed at decomposing the studied phenomena in a 
manner that closely approximates reality. Shockwave characteristics were utilized as 
surrogates of both safety and mobility. Shockwave length was selected as a surrogate of 
safety and shockwave frequency as a surrogate for mobility. 

This report is divided into two main parts. The first part is the evaluation of the existing 
facilities, in terms of mobility and safety, in their present form and demand patterns. The 
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second part of the report describes the development of two new design tools. The first tool, 
targeting closed access facilities, utilizes historical or simulation based traffic 
measurements to design the optimal location and size of allowed access sections. The 
second tool, targeting open access facilities, utilizes similar information to identify sections 
where access should be restricted in order to preserve mobility and safety. 

Traffic shockwave propagation and lane changing activity were decomposed to their 
fundamental components to emulate reality. The stochastic nature of the examined 
phenomena was incorporated in the developed models by implementing Monte Carlo 
techniques.  

This effort opens the doors for a systematic treatment of access zones. It incorporates 
knowledge obtained from extensive periods of observations to the design of the Optimal 
Lane Changing Regions (OLCR) on forthcoming facilities and to the preservation of the 
quality of service on existing HOT lanes. This study was guided by an extensive and diverse 
data collection process capturing various traffic conditions. The constructed datasets 
provided all the necessary tools and insight for developing the constructed models. 
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2. Background 
Managed Lanes 
Managed lanes have been implemented on congested freeways as a strategy to balance the 
increase in the total number of vehicle miles traveled and slow highway capacity growth. 
Even though the total vehicle miles traveled in the United States have increased more than 
70 % over the past 20 years, the corresponding increase in Highway capacity does not 
exceed 0.3 % (FHWA 2008). To address this issue agencies have implemented various 
types of managed lanes so that the person and freight moving capability of the highways 
could be increased. 

Texas Department of Transportation defines a managed lane facility as one that increases 
highway efficiency by aggregating operational and design actions (Kuhn et al. 2005). 
Depending on the objective several types of managed lanes have been implemented in 
recent years including exclusive lanes, like bus or truck lanes, separation or bypass lanes, 
dual-use lanes, HOV lanes, and value price or HOT lanes (Kuhn et al. 2005).  The most 
common operational strategies for managed lanes include: 

• Pricing 
• Access Control 
• Eligibility 

This study was centered around the HOT facilities in the State of Minnesota on Interstate 
394 and Interstate 35W. The complexity of actively managing HOT lanes places them 
among the most demanding facilities to operate because of the dynamic character of their 
operational strategies. They not only have to be responsive to the changes in traffic 
demand for the facility but also need to account for a targeted level of service for users of 
the managed lane. Figure 1 was included in a report of the United States Department of 
Transportation in an effort to capture the management strategies that are related to the 
managed lanes. 

3 
 



 
Figure 2. Interstate 394, Minneapolis, MN 

 
Figure 1. Active management strategies with varying goals and complexity (FHWA 

2008) 

HOV lanes are reserved lanes targeting vehicles with specified occupancy. In an attempt to 
preserve infrastructure investment in the future by maintaining a control on demand, HOT 
lanes have been implemented on exiting HOV facilities that were generally underutilized. 
The mobility and safety on the HOT/HOV facilities heavily relies on their interaction with 
their adjacent general purpose lanes. Different types of separating the HOT lane and its 
adjacent lane have been applied across the United States.  

HOT lanes allow vehicles with lesser occupancy than the predefined to use the HOV facility. 
The HOT/HOV lanes are separated by either physical barriers (e.g. Interstate 394 
Minneapolis, MN (Figure 2)) or a painted buffer (e.g. Interstate 35 W Minneapolis, MN, 
(Figure 3)) 
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Figure 3. Interstate 35W, Minneapolis, MN 

Regarding the HOT lane on Interstate 394, there is a reversible section that accommodates 
inbound traffic during morning peak hours and outbound traffic for evening peak hours so 
that the maximum utilization of the lane can be achieved. Another example of a facility that 
utilizes a reversible section is that of Interstate 10 in Houston, TX (Figure 4). Facilities like 
I-394 and I-10 follow a closed access philosophy in their design and aim in minimizing the 
interaction between the HOT lane and its adjacent General Purpose Lane. 

 
Figure 4. Interstate 10, Houston, TX 

Design Guidelines 
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Several studies available in the literature were focused on the interaction between the 
HOT/HOV lane and the general purpose lanes of the freeway. Menendez and Daganzo 
(2007) simulated the interaction between GPLs and HOVs and provided results supporting 
the smoothing effect of HOV lanes on discharge flow rates at isolated interactions. This 



positive effect was also supported by Cassidy et al. (2006).  Even though the objective of 
those studies is not aligned with the main goal of the developed methodology, they share 
commonalities and were influential along the modeling efforts of this research.  

Liu et al. (2012) measured the effect of lane changing activity between the HOT lane and 
the general purpose lanes using the VISSIM simulator and provided evidence about the 
negative effect of lane changing demand on the networks capacity. More factors connected 
to the frictional effect between the HOT and the GPL were identified by Liu et al. (2011).  
Two key factors include the tolling strategy and the separation type. The main objective 
here was not to derive design guidelines but to evaluate the performance of existing 
facilities and quantify the interaction between HOT/HOV lane and its adjacent lane and 
draws parallels with the model of this study. The amount of data that were used to 
calibrate the VISSIM simulation models was limited and difficult to obtain when designing a 
forthcoming facility.  

As stated previously, the design aspects of HOV/HOT lanes that require the greatest 
amount of attention are the ones associated with the lane changing regions characteristics. 
The literature on this subject is limited and this is the point that this study aims in making a 
valuable contribution. The key characteristics of the proposed methodology for 
forthcoming closed access facilities aim in defining the distance of the merging area from 
the nearest entrance ramp as well as the length of the merging area. 

Various efforts to derive methodologies for creating step wise processes with the potential 
of defining the length and the position of the OLCR are available in the literature and are 
presented below. In all cases the findings were based on either engineering judgment or 
simulation experiments that were calibrated at a level that was not able to capture 
individual driver behavior and vehicles’ interactions.  

Figure 5 presents the quantities of interest for the design process; L1 denotes the distance 
between the beginning of the entrance (or exit ramp in another scenario), L2 denotes the 
length of the merging area and Ltotal is the distance between the beginning of the entrance 
(or exit) ramp and the end of the proposed gate. 
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Figure 5. Design features of interest 
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The HOV Systems Manual (Texas Transportation Institute, 1998) proposes a distance of 
Ltotal equal to 2500 feet regardless of the number of General purpose lanes. This approach 
delivers a conservative design which in most cases would is able to accommodate the users 
of the HOV/HOT lane. It does not, however, take into consideration cases where the 
interaction between the HOT and its adjacent lane need to be minimized. In addition, traffic 
conditions and traffic patterns on the GPLs are not instilled in the design process.  

Fuhs (1990) proposed a methodology that takes into account the number of lane changes 
that are necessary for vehicles to merge to the HOT lane after merging to the freeway from 
the nearest entrance ramp or vehicles that need to exit to the exit ramp downstream. The 
minimum proposed value for Ltotal was set to 500 feet for each lane change and the 
recommended value was equal to 1000 feet. In a similar vein, the California department of 
Transportation (1991) proposed a minimum distance of 660 feet per lane change. 
Regarding the length of the opening length, several values, which range from 900 feet to 
1500 feet, have been proposed in an effort to accommodate the weaving demand of users 
of the facility (Fuhs (1990), Yang et al. (2011) , ASSHTO (2004) , Kuhn et al. (2005) ). 

Yang et al. (2011)  proposed a probabilistic approach towards quantifying advisory designs 
utilizing gap acceptance theory. The core of their methodology was an analytical 
formulation that derives the probability that a weaving vehicle with critical gap equal to T 
will complete its weave successfully given the number of GPLs and Ltotal (Equation 1). 
E[D(q)] denotes the vehicles expected time for merging. s and sw represent the speed of 
the target lane and the speed of the subject vehicle respectively. The proposed model was 
calibrated based on the lane changing demand for zones that resulted after segmenting 
existing merging areas on Interstate 635 in Dallas, Texas. 

𝑷(𝑵,𝑳𝒕𝒐𝒕𝒂𝒍) = 𝟏 − ∑
�

𝑳𝒕𝒐𝒕𝒂𝒍
𝑺𝒘  𝒎𝒊𝒏𝑬[𝑫(𝒒)]�

𝒌
𝒆

𝑳𝒕𝒐𝒕𝒂𝒍
𝑺𝒘  𝒎𝒊𝒏𝑬[𝑫(𝒒)]

𝒌 ! 
𝑵−𝟏
𝒌=𝟎     (Eq. 1) 



Even though the proposed methodology by Yang derived results that were tailored to the 
characteristics of a potentially examined location its transferability is questionable because 
of the complex and time consuming data collection that is required for the calibration of the 
model. The results of the proposed methodology with respect to the length of the gate and 
Ltotal are summarized in Table 1. The advisory gate lengths varied between 900 and 1400 
feet and were contingent to the weaving demand. 

Table 1. Yang et al. (2011) design guidelines 

Free Flow speed 
(miles/hour) 

Minimum Ltotal for Number 
of GPLs 

Desired Ltotal for Number 
of GPLs 

 3 4 5 3 4 5 
55 2,000 2,500 3,000 2,400 2,900 3,500 
60 2,100 2,600 3,100 2,500 3,000 3,600 
65 2,300 2,800 3,400 2,700 3,300 3,900 
70 2,400 3,100 3,700 2,900 3,600 4,200 
 

Using data from I-635 in Houston Texas, Williams et al. (2010) developed a set of design 
guidelines based on the results of a simulation methodology developed in VISSIM 
simulator. The advisory lengths derived from the proposed process are summarized in 
Table 2 and rely once again on the merging demand for the HOT. The types of data that 
need to be harvested in this case are once again difficult to obtain and this was indeed the 
weak point of their methodology. 

Table 2. Williams et al. (2010) design guidelines 

Weaving demand (vehicle/hour) Minimum Weaving distance per GPL 
200 500 
300 625 
400 750 
400 875 

 

Wave Propagation 
The second methodology developed in this study aims in access restriction on existing HOT 
lanes and was based on shockwave propagation on the HOT lane. The lane changing 
interaction between HOT and GPLs is the cause of flow breakdowns (shockwaves) on the 
HOT lane. Shockwaves create inconvenience to the commuters by forcing the traffic 
conditions of the HOT into transient congested traffic states. “Shockwaves are a boundary 
that shows discontinuity in the flow-density domain” (May, 1990); their propagation and 
the corresponding number of vehicles affected are surrogates for safety and mobility.  

Traffic shockwaves have captured a great amount of research attention starting in 1950’s 
when Lighthill and Whitham (1955) introduced the hydrodynamic theory in traffic. 
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Realistic wave propagation has been the main goal of many traffic flow models. In lower 
order models (e.g. Newell, 2002) waves propagate as a simple random walk as supported 
by empirical findings from Windover and Cassidy (2001) for congested states. Models that 
influenced this study will be presented in a slightly higher detail even though the target 
was not to advance the car-following theory. 

Car following models proposed by Gazis, et al. (1961), Gipps (1981) and Newell (2002) are 
among the most commonly used by commercial traffic simulation software. In the model 
proposed by Newel vehicle trajectories are approximated by piecewise linear 
extrapolations as presented in Figure 6. Vehicles will respond to their leader’s deceleration 
if a minimum distance threshold is violated. Newell’s model has been also verified by later 
studies using data from signalized intersections by Ahn, et al. (2004). 

 
Figure 6. Piecewise linear trajectories in Newell’s model (Ahn et al. (2004)) 
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Vehicles in Gipps’ (1981) model are assigned a desired speed Un which they do not exceed; 
Un is achieved at an acceleration rate that increases with speed and after Un is achieved the 
acceleration becomes zero. Equation 2 describes the speed of vehicle n at time t + T, where 
T is the driver’s reaction time. 

𝑢𝑛(𝑡 + 𝑇) = min�𝑢𝑛(𝑡) + 2.5 ∗ 𝑎𝑛 ∗ 𝑇 ∗ �1 −
𝑢𝑛(𝑡)
𝑈𝑛

� ∗  �0.025 +
𝑢𝑛(𝑡)
𝑈𝑛

,

−𝑏 ∗ 𝑇

+  �𝑏2 ∗ 𝑇2 + 𝑏{2 ∗ [𝑥𝑛−1(𝑡) − 𝐿𝑛−1 − 𝑥𝑛(𝑡)] − 𝑢𝑛(𝑡) ∗ 𝑇 +
𝑢𝑛−1(𝑡)2

𝑏′
 � 

(Eq. 2) 

Where, 𝑢𝑛(𝑡) = speed of vehicle n 

 𝑎𝑛 = maximum desired acceleration of vehicle n 



 T = reaction time 

 𝑈𝑛 = desired speed of vehicle n 

 b,b’ = deceleration parameters 

 𝐿𝑛−1 = length of vehicle n 

 𝑥𝑛(𝑡) = position of vehicle n at time t 

The General Motors Nonlinear Model proposed by Gazis, et al. (1961) is shown in Equation 
3. α, β and γ are parameters of the model and the response is proportional to the speed of 
vehicle n at time and inversely proportional to the space headway. τn is the driver’s 
reaction time while the speed difference is the stimulus for the implemented acceleration 
or deceleration. The model’s connection to the Fundamental Diagram proposed by 
Greenshields, et al. (1935) is revealed by setting β equal to 0 and γ equal to 2. Chandler’s 
model was the first car-following model and constitutes a special case of Gazis’ model. 
Chandler’s model is presented in Equation 4. 

𝜐̇𝑛(𝑡) = 𝛼 ∗ 𝑈𝑛
𝛽(𝑡) 

𝛥𝑋𝑛
𝛾(𝑡−𝜏𝑛) ∗ 𝛥𝑈𝑛

𝑓𝑟𝑜𝑛𝑡(𝑡 − 𝜏𝑛)       (Eq. 3) 

𝜐̇𝑛(𝑡) = 𝛼 ∗ 𝛥𝑈𝑛
𝑓𝑟𝑜𝑛𝑡(𝑡 − 𝜏𝑛)        (Eq. 4) 

Other models describing wave propagation at a car-following level were also proposed by 
Castillo (2001) or Kim and Zhang (2008) in a stochastic framework.  In a stochastic manner 
wave propagation is also captured by traffic flow models proposed by Jabari and Liu 
(2012), Kuhne and Michalopoulos (1997) and Daganzo (1994). The latter (Cell 
Transmission Model) was the modeling base for multiple models that followed and utilizes 
the Godunov’s scheme (Godunov 1959) to provide numerical solutions to the heat transfer 
equation capturing shockwaves and rarefactions. The aforementioned stochastic models 
deviate from the framework of this study and were presented briefly since they provided 
valuable insight for the modeling efforts of this research. 

The aforementioned models could serve the purposes of this study but they come with 
complications which hamper the goal of the present study; a simpler and straight forward 
approach was therefore followed. Another reason for not implementing existing car 
following models was the fact that they do not ensure that the initial conditions of a 
potential car-following experiment will be preserved until a disturbance is introduced. 
Thus, the platoon formation of the examined stream would be reshaped until a shockwave 
initiates. Finally, the behavior that was mainly targeted was the variation of drivers’ 
response as they exceed a threshold that describes their willingness to approach their 
leader. After this threshold is violated vehicles implement the highest possible deceleration 
and this was incorporated in the proposed model. 
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3. Description of Sites 
This chapter offers a primer on the HOT lane facilities on Interstates 35W and 394. The 
objective is to present information about the facilities and their characteristics as well as 
provide further details for the selected segments used for developing and testing the 
models of this study. Both Interstate 394 and Interstate 35 W were examined for their 
potential in providing the necessary measurements; it was concluded that the I-35W 
corridor was more consistent with the objectives of this effort in terms of data collection 
while 394 was used to test the optimal lane changing region methodology. 

I-394 
The I-394 is a 9.5-mile freeway that serves as a major link connecting the western 
suburban communities and downtown Minneapolis.  With an average three lanes in each 
direction, it carries an annual average daily traffic (AADT) of up to 151,000 vehicles 
(Cambridge Systematics, Inc. 2006).  The posted speed limit is 55 mph. From its inception 
the freeway included an HOV lane in each direction.  The I-394 MnPASS program was 
opened and became the first HOT lane in Minnesota in May 2005 (Cambridge Systematics, 
Inc. 2006).  It converted the historical high-occupancy vehicle lanes into HOT lanes by 
equipping the lanes with sensors and leasing transponders to single occupancy vehicle 
(SOV) drivers.  MnPASS Express lanes, designed as HOT lanes, provide up to two additional 
designated lanes on the I-394 between Wayzata and downtown Minneapolis. The general 
purpose lane (GPL) configuration remained unchanged.  Figure 7 illustrates the schematic 
of I-394 Express lanes.  The MnPASS lanes include two types of designs. From I-494 to 
Highway 100, the toll lanes were designed as diamond lanes (one lane per direction) 
following a closed access design. These lanes are separated from GPLs by double white 
lines and painted with diamond marks.  The segment has designated access points that are 
controlled primarily by lane striping.  There are 4 access points on the eastbound direction 
and 3 on the westbound. On the segment from Highway 100 to Downtown, two reversible 
lanes are present alongside the freeway separated from the GPLs by a concrete barrier.
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Figure 7. I-394 MnPASS map (MnDOT) 
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According to the MnPASS website (http://www.mnpass.org/), the current operation time 
for the HOT lanes is as follows.  The eastbound of I-394 diamond lane section is operated 
Monday through Friday from 6 a.m. to 10 a.m.  The westbound of I-394 diamond lane 
section is operated Monday through Friday from 2 p.m. to 7 p.m.  Both eastbound and 
westbound lanes are open to general traffic for the rest of the day and on weekends.  The 
eastbound of I-394 reversible section is operated from 6 a.m. to 1 p.m.  The reversible lanes 
are closed from 1 p.m. to 2 p.m. for directional change.  The westbound of I-394 reversible 
section is operated from 2 p.m. to 5 a.m. The reversible lanes are closed from 5 a.m. to 6 
a.m. for directional change. 

I-35W 
I-35W is an Interstate Highway in the U.S. state of Minnesota, passing through downtown 
Minneapolis. It is one of two through routes for Interstate 35 through the Twin Cities of 
Minneapolis and Saint Paul, the other being Interstate 35E through downtown Saint Paul. I-
35 splits into two branch routes: I-35W, which serves Minneapolis, and I-35E, which serves 
Saint Paul. 

Traveling north, I-35 splits at Burnsville, where the I-35W route runs north for 41 miles, 
carrying its own separate sequence of exit numbers. I-35W runs through the city of 
Minneapolis before rejoining with I-35E to re-form I-35 in Columbus near Forest Lake. I-
35W supplanted sections of old U.S. Highway 8 northeast of Minneapolis and old U.S. 
Highway 65 south of Minneapolis that have since been removed from the U.S. highway 
system. Following the implementation of HOT lanes on I-394, the MnPASS Lanes opened on 
I-35W on September 30, 2009. The project’s goals were: 

• Reduce congestion 
• Improve transit service 
• Increase attractiveness of transit service 
• Provide alternatives to commuters to avoid congestion 

The length of the HOT lanes on I-35W is 14 miles on the Northbound and 11.5 miles on the 
southbound. In both cases the HOT lanes are separated from the rest of the network using 
stripped lines. The northbound and southbound sections of I-35W south of I494 and the 
northbound section of I-35W at 42nd street are tolled during the following hours: 

• Northbound from TH 13 to Hyw.62 from 6 a.m. to 10 a.m. 
• Northbound from 42nd Street to downtown is always tolled when opened to traffic 
• Southbound from I494 to TH 13 from 2 p.m. to 7 p.m. 
• Lastly during off peak hours the lanes are not tolled and are open to general traffic 

with the exception of northbound from 42ne Street to downtown. 

The I-35W MnPASS lanes follow the open access design philosophy. This means that lane 
changes between the HOT lane and the GPLs are allowed for most of the length of the 
facility (see Figure 8 below).
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Figure 8. I-35W MnPASS map (MnDOT) 
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4. Evaluating Safety and Mobility under Present 
Demand Conditions 

One of the original objectives of this project was to evaluate the two HOT lane designs and 
compare them in terms of safety and mobility. This step, in addition of being necessary in 
order to proceed in formalizing a methodology and/or general design guidelines, offers 
specific location evaluations and hopefully useful recommendations on where and when 
interventions are necessary to maintain the current, very successful, operation in both 
facilities. It is important to note that in this work there was no evaluation of the level of 
access to the HOT, meaning we did not evaluate the ability of the road users to reach the 
HOT as soon as they would like. Such evaluation would only apply to I-394 and to the best 
of knowledge other studies on that corridor have shown that this is not an issue. 

The objective is accomplished by collecting observations of the current HOT lane facilities, 
extracting quantifiable measures of the level of interaction between HOT and GP lanes, and 
utilizing these measurements in judging current operations as well as estimating mobility 
and safety performance levels in the future. The following section describes the data 
collection effort. 

Description of video data collection methodology 
The first part of the video collection process started on June 21st 2011. During the first 
week camera operators got familiarized with the setup of the network as well as the 
capabilities of the RTMC cameras. Four people were responsible for completing the initial 
data collection task. They were trained by RTMC engineers on manipulating the RTMC 
cameras without affecting the incident detection procedures that take place. Cameras 
capable of providing intense lane changing activity were selected and transmitted back to 
the MTO.  Once again, decisions were based upon the traffic conditions (congestion) for the 
selected segments and a set up for the cameras was selected so that it is as clear as possible 
the number of vehicles that are forced to decelerate when a vehicle enters or exits the HOT 
lane. Figure 9 through Figure 12 below present the locations and codes of MnDOT cameras 
used. 

 

 
Figure 9. Location codes on I-35W 
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Figure 10. Location codes on I-35W 

 

Figure 11. Location codes on I-394 

Figure 12. Location codes on I-394 

Blind spot investigation 

identify the traffic conditions differences between the two. Table 4 aggregates the list of 
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RTMC cameras that we used for I-394 and I-35W while Figure 13 presents several sample 
camera views for both I-35W and I-394. 

Table 3. Video recording days in summer 2011 

June 2011 July 2011 August 2011 

Tuesday 21st Thursday 23rd Tuesday 16th 

Wednesday 
23rd 

Tuesday 26th Wednesday 
17th 

Thursday 24th Wednesday 
27th 

Thursday 18th 

Monday 27th Thursday 28th Tuesday 23rd 

Tuesday 28th  Wednesday 
24th 

Wednesday 29th  Thursday 25th 

Thursday 30th  Friday 26th 

  Tuesday 29rd 

  Wednesday 
30th 

  Thursday 31st 

 

 

Table 4. Cameras utilized in I-394 and I-35W 

I-394 608 609 6091 610 6101 611 6130 6131 613 616 618 619 620 621 

I-35W 904 905 906 907 908 909 910 911 912      
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Figure 13. Sample camera views video was recorded 

The goal in aiming the cameras was to balance the need from observing as much of the 
freeway segments as possible while being able to visually identify the signs of unsafe lane 
changes between the HOT lane and the general purpose lanes. These two goals are 
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Table 5. Example of data collected for a fifteen minute time block 

Video File Camera  Time Block Dir Dir2 Lane Changes into the HOV Lane Changes out of HOV 

DVR4-Cam3-Aug-31 at 17-02.avi 619 17:00-17:15 S NB 6 3 

DVR4-Cam3-Aug-31 at 17-02.avi 619 17:00-17:15 S SB 3 4 

Table 6. Example of a documented shockwave 

File name 

Camera Code 
(could be more 
than one within a 
single video file) 
[6xxx_I-35W/xxx 
xxx x] 

Date 
(YYYYMMDD) 

Complete 
(indicate if it is 
the last lane 
change 
contained in the 
file you are 
working on by 
L, otherwise 
NL)) 

Time (Use the 
time stamp in 
the title of the 
video file and 
add the time of 
the video so 
far-24h) 

Direction 
(observe changes 
in the digital 
compass of the 
camera) 

DVR3-Cam2-Aug-31 at 08-00 608 20110831 NL 8:27:43 N 
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Bound (NB/SB) 

Vehicles Affected 
on the 
HOV(leader 
included) 

Vehicles 
affected on 
the adjacent 
lane when the 
adjacent lane 
is the 
receiving lane 
(leader 
included) 

Entering or 
Exiting 
HOV Lane 
(N/X) 

Clip Name [freeway_ exit or entering the 
HOV(EN/EX)_Camera code_(3 or 4 digit code)_How 
many vehicles were forced to decelerate on the HOV 
lane including the vehicle that changed 
lane_Date(YYYYMMDD)_Time(start[24H])] 

NB 4 0 N I-35W_EN-608_4_20110831_082743.avi 
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5. Evaluation Results  
For brevity this report focuses only on locations that there was interaction and friction 
between the HOT and GP lanes. A mid project deliverable presented preliminary results for 
all locations along the two freeways. To get a clear idea of how the designs on a whole are 
operating in comparison, cameras are grouped together into Zones.  On I-35W there were 
three Zones under analysis.  Zone 1 consists of NB traffic as viewed by cameras 608, 609, 
6090, and 6091; Zone 4 consists of NB traffic as viewed by cameras 616, 6161, 617, 618, 
619, 620, and 621; and Zone 7 consists of SB traffic as viewed by cameras 6131, 6130, 613, 
612, 611, 6101, 610, and 6091.  On I-394 Zone EB 4 is the only Zone under analysis and 
consists of cameras 908 and 909.  The other Zones of I-35W and I-394 are not presented in 
this report as the data from these Zones yielded little interest. In this report results are 
drawn from the analysis of nine days of collected data, with at least four days of data for 
each Zone. All Zones of I-35W are represented by the dates Aug 31st, 30th, 25th, 24th, and 
23rd as well as June 29th for Zone 1 only.  EB 4 of I-394 is represented by the dates Aug 
31st and 30th as well as July 27th and 26th.  These dates have the most complete video 
coverage of their respective Zones, thus minimizing the amount of blind spots.  

Lane Changing Frequency-Flow Breakdown Lengths 
This section of the report provides findings from the analysis of all the aforementioned 
days of footage. The results obtained are presented for I-35W North, South, and I-394 East 
in that order. A comparison between locations on both facilities is provided in the end of 
this section. 

Graphs of the inappropriate lane changes, as compared to total lane changes (TLCs) and 
volume of the HOT, for each specified Zone are provided, followed by an estimated 
percentage of vehicles in the HOT that experienced a shockwave.  Box-plots presenting the 
observed lengths of the generated shockwaves are also provided. On each box, the central 
mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers 
extend to the most extreme data points not considering outliers, and outliers are plotted 
individually and are represented by red crosses. Based on this information, suggestions for 
improvement are discussed, motivated by results and the research’s team observations 
during the data collection period. Finally, a comparison among all the examined Zones is 
presented identifying locations that may need further attention in the near future while 
Zones between the two facilities are compared based on the proportion of analyzed data. 

Interstate 35 W Northbound 
Contour plots are presented, providing information about the congested parts of the 
freeway during morning peak hours for the northbound direction (Figure 14 through 
Figure 19). The purpose of providing these plots is to support the identification of locations 
that require attention. I-35W North has two major bottlenecks and a third one which is less 
severe. Moving with the direction of traffic the first major bottleneck is on the Cliff Road 
interchange. The bottleneck seems to be the result of large inflows from closely spaced 
successive ramps from Burnsville Pkwy, TH-13, and Cliff Road. This bottleneck is in an 
Allowed Access segment of the HOT. Access is restricted about a half mile later at Black Dog 

23 
 



Road. At the interchange with I-494 a weak bottleneck is observed mainly affecting the 
rightmost lane but also due to the inflow and weaving from the I-494 ramps this location is 
under Restricted Access (double white line). The second major bottleneck is at 46th Street 
assisted by congestion from the downtown end of the roadway. This location is the 
beginning of the Priced Dynamic Shoulder Lane (PDSL) which is all restricted access north 
of 38th street. 
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Figure 14. Speed contour plot June 29th Northbound direction 
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Figure 15. Speed contour plot August 23rd Northbound direction 
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Figure 16. Speed contour plot August 24th Northbound direction 

Figure 17. Speed contour plot August 25th Northbound direction 
 



 

 

  

Figure 18. Speed contour plot August 30th Northbound direction 
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Figure 19. Speed contour plot August 31st Northbound direction 



Zone 1: I-35W Northbound {Burnsville Pkwy to Black Dog Rd} 
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Figure 20. Location 608, example camera view facing north 

Zone 1 is mainly an entrance point to the HOT lane since, in 2011, it was the beginning of 
the HOV lane. The primary point of activity is at the location of camera 608 (see Figure 20 
above) at the major interchange of I-35W with TH 13. This can be seen in Figure 21 which 
presents the average amount of ILCs observed per day of data, as seen by each camera.  Our 
observations are in accordance with the period that this particular section is tolled 
(morning peak). During the preliminary investigation of the network, this part was 
identified as one of the zones that would require a great amount of attention. This can be 
attributed to two reasons; first because of the large speed differential between the HOT and 
the adjacent GPL and second because of the entrance from TH 13 to I-35W which 
introduces into the stream a lot of vehicles destined to the HOT.  

Data for six morning peaks were analyzed for this location during six typical weekdays on 
June 29th and August 23rd, 24th, 25th, 30th, and 31st 2011. Figure 22 presents the 
observed inappropriate lane changing activity as a percentage of total lane changes 
separated in 15 minute time blocks with respect to the time that they occurred.  The graph 
displays the average percent of inappropriate lane changes over all the days of data at each 
15 minute period as well as one standard deviation above and below the average.  This 
figure along with Figure 23 support the fact that the segment around TH-13, camera 608, is 
mainly an entrance to the HOT since high peaks are observed for ILCs as well as ILCs per 
total lane changes. 



 

0

10

20

30

40

50

60

70

608 609 6090 6091

IL
Cs

 p
er

 D
ay

 

Camera 

Zone 1 Average Inappropriate Lane Changes per Day 

Figure 21. Average inappropriate lane changes from all days by observed camera 
 
 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

6 7 8 9 10

Pe
rc

en
ta

ge
 o

f I
LC

s /
15

 m
in

ut
es

 

time 

Zone 1 Average Inappropriate Lane Changes per Total Lane Changes  
±1 Standard Deviation 

Figure 22. Inappropriate lane changes as a percentage of total lane changes 

 

29 
 



F
to

igu
 th

re 23 and Figure

plotted
e v

 w
olu

ith
m

 r
e o

es
n th
pect to

e 
 24
HOT

 p

 the tim
 
r
ag
es

g
ent th
r
e o
egated

e num er

f ay
 o
 th
nc

b
e ag

 o
a
f

 d at they
in in 1
 the recorded flow b

 occu
5
rr

 m
ed

inu
.  A

te b
s pr

l
ev
ock

r
s
ea
.  O

kd
b
o
s
w
er

ns
vatio

 in r
ns
el

 ar
atio

e 
n 

g
v

ath
olum

er
e d
 the d

ata 
ata,
we

 f
re

o
 
r
c
 th
ollected from MnD

iously mentioned, the 

downstream of the zo
is
nes

 zo
’ m
ne and

ost sig
 all oth

OT
er

 l
s
o
 th
op

at w
 detec

ill b
to

e d
rs.

is
  T

c
h
u

e d
ssed

etec
 later

tor
,
s
 w
 th

er
at w

e ju
er
st 

e used to 

p
lo

r
o
o
k
p
 at th
ortio

e m
n of

o
 d
b

r
il
iv
ity

er
 o
s in
f th

 th
e Zo

e H
ne 1
OT 

.
th

nif
at h

ic
av
ant ar

e co
e
m
a o

m
f
itted
 activ

 figure we see th
 a 

ity
IL

.

  In this e p
C
  F

.  
i
F
gu

igu
re

re
 23

 24
 d

 
is
giv

pl
es
ay

 u
s th

s th
e 

e best 

ex
veh

per
icl

ienc
es w

ed
as

 a f
 ac

l
c
o
u
w
m

 b
u

r
lat
eak

ed
d
 b
ow

y s
n 
u
w
m

h
m
il

ing
e in th

 the s
e H

iz
OT
e o

 
f
th
 al

r
ercentage

l
o
 s
u
h
g
o
h
c
 th
kw

e z
av

o
es
ne.

 th
  T

at b
he to

 of v
tal
eh

 nu
icles

m
 th
ber

at 

egan in th
 of 

sp
c
ec

e 

v
ac

eh
o
ic
u
if

nted
ied tim

 for
e b
, and

loc
 m
k.  V

ay
eh

les traveling on th
 
e 
b

H
e d
icles

o
 th

OT
u
 t

b
hr

l
at w
e cou

er
nted

e inv
.  A

ol

ough Zone 1
s
v
 s
ed in multiple shockwaves were not 

 ex
een in and
perience a f

 F
l
i
o
gu
w

re
 b

 24
reak

, n
d
e
o
a
w
rl

n d
y 1

u
5%
ring

 o
 th
f 

e 
height of the morning peak on average. 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

6 7 8 9 10

IL
Cs

 p
er

 V
ol

um
e/

15
 m

in
ut

es
 

time 

Zone 1 Average Inappropriate Lane Changes per Volume  
±1 Standard Deviation 

Figure 23. ILC activity as a proportion of the HOT volume 

30 
 



 
Figure 24. Average percent of vehicles affected by a shockwave through the zone 

Shockwaves observed on this location were comparatively large in length with a median 
value of 3 vehicles and an extreme value of the constructed dataset reaching 9 vehicles. 

observations were collected was close to zero.  This holds true for all the zones that will be 
discussed in this report. 

 
Figure 25. Box-plot of HOT Shockwave lengths on Zone 1 
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A closer look at the isolated ILC clips revealed that a great portion of the lane changes 
generating flow breakdowns on the HOT are a result of buses merging aggressively. An 
example of an observed situation involving two buses can be seen in Figure 26. The first 
bus performed a ILC generating a shockwave and immediately afterwards it reduced speed 
to allow for the second bus to change lanes. One effective solution that would improve the 
safety and mobility of the HOT at Zone 1 could simply be to instruct bus drivers to be less 
aggressive when merging to the HOT near TH-13. 

  
Figure 26. Example of bus ILC on location 608 
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The situation on northbound 35W near camera 608, which spans from the on ramp from 
Cliff Road to upstream of the TH-13 interchange, is in need of attention. Although it is not 
the location of the biggest shockwaves observed they are consistent and there is no reason 
to believe that it would improve with time. Excluding the cases involving buses, there is no 
need for immediate action since the disruptions are not extreme and there have been no 
actual crashes on record. Given the current rate of utilization of the HOT the situation is 
stable but if that rate increases the condition could deteriorate.  

This location is a candidate for reducing the amount of access to the HOT with the 
introduction of a double white line. Such change will come with a price. As the figures 
illustrate the inbound flow to the HOT is high in this location and therefore restricting it 
will reduce the overall benefit from the HOT. To sufficiently suppress a future ILC issue the 
Restricted Access would have to start downstream of Burnsville Pkwy and extend to Black 
Dog Road. 

It is interesting to note that if the Closed Access design found on I-394 was followed; given 
the demand from TH-13 for the HOT a gate would have been located there generating the 
same issues. 

  



Zone 4: I-35W Northbound {Highway 62 – 38th street} 
 

 
Figure 27. Location 620, example camera view facing north 

Zone 4 is the last open area on northbound I-35W before downtown Minneapolis.  Camera 
620 provides footage for the segment between 46th street and 42nd street (see Figure 27 
above), which has the most activity. This location is just upstream of the start of the PDSL 
segment of MnPASS and in extent the last area that drivers can join the HOT. The 
uniqueness of this location lies in the fact that it is at a segment where several streams 
merge; two entrance and one exit ramps are present downstream. The existence of the 
aforementioned ramps results in the initiation of many shockwaves which propagate 
upstream to the segment that camera 620 is covering. This creates unstable traffic 
conditions for all the GPLs and inevitably affecting the HOT as well. The presented results 
are drawn from five days of observation: August 23rd, 24th, 25th, 30th, and 31st.  The 
observations indicate a location of severe lane changing activity with a great number of 
shockwaves generated on the HOT facility near camera 620. 

The average inappropriate lane changing activity for the AM and PM peaks is shown on 
Figure 28 and Figure 29.  This shows that the bulk of inappropriate lane changing activity 
in Zone 4 is occurring between 46th street and 42nd street.  Figure 30 and Figure 31 show 
the percentage of ILCs per TLCs for the morning and evening peaks respectively.  As seen in 
Figure 30, the average peak reaches over 30%.  This is the highest percent of ILC per TLC 
observed in any of the four zones.   
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Figure 28. Average daily inappropriate lane changing activity for Zone 4 morning 
peak 

 

 
Figure 29. Average daily inappropriate lane changing activity for Zone 4 evening 

peak  

0

5

10

15

20

25

30

35

40

45

50

616 6161 617 618 619 620 621

IL
Cs

 p
er

 D
ay

 

Camera 

Zone 4 Average Inappropriate Lane Changes per Day - PM 

34 
 



Figure 30. Average proportion of ILC of TLC for all days of Zone 4 during morning 
peak 
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Figure 31. Average percentage of ILC per TLC for all days of Zone 4 during evening 
peak 

 

However, Figure 32 and Figure 33 show that the ILC as a percent of the HOT volume is 
comparable to that of the other zones. 
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Figure 32. Average ILCs per HOT volume morning peak 
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Figure 33. Average ILCs per HOT volume evening peak 

Figure 34 and Figure 35 show the percent of vehicles that experience a breakdown in the 
flow of traffic.  The values presented in the figures are on par with the values seen by the 
other zones.  The standard deviations presented are a bit higher, but this is due to a handful 
of extreme outliers. 
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The median observed shockwave in this zone was also 3 vehicles.  The extreme value was 
slightly larger than that of zone 1 at 12 vehicles.  The statistical characteristics of observed 
shockwaves in zone 4 can be seen in Figure 36.  Again, there were very few disturbances in 
the adjacent GPL due to the speed of the lane being close to zero. 
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Figure 34. Percent of vehicles that experience a breakdown of flow during morning 
peak 

 

 
Figure 35. Percent of vehicles that experience a breakdown of flow during evening 

peak 
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Figure 36. Statistical characteristics of observed shockwaves for Zone 4 

In order to formulate an opinion as to potential changes in access for this location it was 
deemed important to understand what percent of the HOT traffic originates from 46th St. 
Although not offering a precise assessment, data from two consecutive loop detectors in 
the HOT are compared in Figure 37. Specifically the figure presents volume measurements 
for August 31st for two detectors on the HOT; D5967 before 46th street and D6792 at 38th 
street. In the morning very little traffic seems to originate from 46th St but in the peak of 
the afternoon period around 50% of the traffic of the HOT joins between 46th and 38th. 
This proportion renders difficult restricting access north of 46th St. If a Closed Access 
design was followed there would still be the need for a gate north of 46th St generating the 
same issues we observe today. Restricting access south of 46th St will not change the 
outlook much as it will be discussed in the next section.  
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Figure 37. HOT detector data comparison 
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Figure 38. Speed contour plot August 23rd South direction 

 

 
Figure 39. Speed contour plot August 24th South direction 
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Figure 40. Speed contour plot August 25th South direction 

 

 
Figure 41. Speed contour plot August 30th South direction 
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Figure 42. Speed contour plot August 31st South direction 
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Zone 7: I-35W Southbound (82nd Street – Cliff Road) 

 
Figure 43. Location 6091 example of camera view facing south 

Zone 7 has a segment of flow breakdown that once again is located between Cliff Road and 
Black Dog Road.  It was primarily observed this time by camera 6091 facing south, which is 
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As previously mentioned, location 6131 had the second highest average amount of daily 
shockwaves.  Location 6131 captures data for the segment between 82nd and 85th street 
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small in length.  The activity experienced at these locations is largely affected by 
slowdowns from TH-13.  
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Figure 44. Average daily inappropriate lane changing activity for Zone 7 

For the five afternoon peaks analyzed the ILCs per TLCs achieved relatively lower values 
zone wide compared to the other zones on I-35W with observations shown on Figure 45.   
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Figure 45. Average percentage of ILC per TLC for all days of Zone 7 during evening 
peak 
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Figure 46. ILCs per HOT volume of zone 7 
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Figure 47. Percent of vehicles that experience a breakdown of flow 

The characteristics of the observed shockwaves are shown in Figure 48. The figure shows 
that the shockwaves of this zone are smaller but comparable to those observed in zone 4.  
As with the two previously described zones the median observed shockwave length is 3 
vehicles.  The extreme value of 11 was slightly less than that of zone 4, and the 75th 
percentile value 5 was equal to that of zone 1. 

46 
 



 
Figure 48. Statistical characteristics of observed shockwaves for Zone 7 
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I-35W safety and mobility assessment 
This document so far presented our observations of the lane change activity on the I-35W 
MnPASS HOT Lane facility. On each location researched, evidence directing an assessment 
of the operations of the HOT in terms of safety and mobility were presented. Traffic flow 
interruptions (shockwaves) are undesirable since they affect both safety and mobility. The 
frequency of shockwaves eventually affects mobility since it increases density while 
lowering overall speeds. Such occurrences cause the price of the HOT to increase even if 
the overall demand is not high. Shockwaves are the instances where drivers are required to 
react to avoid collision. Due to the delay in human reaction, the larger the shockwave the 
higher the required deceleration required (assuming equally spaced vehicles). Therefore 
the larger the shockwaves in number of vehicles affected the greater the chances for a 
collision. This document cannot present a definite assessment of safety since this site has 
not been in operation long enough, but utilizes the size of the observed shockwaves as a 
surrogate in evaluating the safety of the different locations on the HOT. It is important to 
note that this research focused on the allowed access segments of the roadway. As 
mentioned in the earlier report of Task 4, there was one isolated case, 6130 NB, where an 
area with restricted access was covered, several violations of the double white line were 
noted and they generated shockwaves. This may be an isolated phenomenon or not. The 
way this research was conducted does not allow us to generalize. 

In the northbound direction of I-35W two areas of concern were presented. The first area is 
between the Burnsville Pkwy and Cliff Road interchanges on zone 1. This area is 
experiencing severe recurring congestion on the GPLs and has a large proportion of the 
entrance ramp volume heading for the HOT facility. Given the existing utilization on the 
HOT, the shockwaves observed, although large, have not generated any crashes. This can 
change if the utilization of the HOT increases following changes in the pricing algorithm or 
on the market characteristics of the HOT demand. In addition, aggressive behavior by the 
commuter buses entering the freeway in this location attributes for a large number of the 
Inappropriate Lane Changes observed. Considering mitigation strategies for this location, 
keeping in mind that they are not immediately needed, we would first suggest targeting the 
bus driver behavior, requesting that they join the HOT less aggressively or a little later 
(after the Cliff Road bottleneck).  Given that the demand on the intersecting roadways will 
not reduce in the future, if the utilization of the HOT increases there may be a need of 
restricting access to the HOT between TH-13 and Black Dog Road. This will hurt the service 
offered by the HOT so it should be considered only if conditions deteriorate significantly.  

Since this project is also tasked to formulate an opinion regarding the comparison of the 
Close Access design used on I-394 with the generally Open Access design of I-35W an 
engineering assessment on that subject can be made for each location of interest. The 
access on I-394 is strategically located at the areas of high demand for the HOT. For the 
aforementioned area, given the importance and demand on the joining roadways, an open 
access “gate” would have been located there anyway. As we will see later on when 
observations on I-394 are presented, such “gates” experience comparable shockwave 
characteristics and therefore the issue discussed would have been the same. Closing access 
anywhere else around this area would have no effect in the safety and mobility of the HOT.  
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The second area of interest in northbound I-35W lies between 46th street and 42nd street 
in zone 7 closer to the downtown area of Minneapolis. This last segment of open access 
delivered a very large amount of flow breakdowns numerically as well as a percent of the 
general lane change activity. As discussed in the relevant section, this area is the last 
chance for vehicles to join the HOT and in extent an area where it would be very difficult to 
further restrict access. Specifically a large portion of the HOT traffic in the afternoon 
originates from the 46th St ramp which is already in the midst of the problem. If a Closed 
Access design was followed there would still be the need for a gate north of 46th St 
generating the same issues we observe today. Restricting access south of 46th St will not 
change the outlook much. A closer study of the demand of the origins of the demand on the 
HOT at this point may reveal some possible compromises.  

On the southbound direction of I-35W there are two areas that could compromise safety 
and mobility.  One is in the area of 98th St and the other is the area of Blackdog Road.  
Although the congestion observed south of 98th St (location 6101 SB) is a rare occurrence 
it happens and when it does it generates quantifiable issues on the HOT.  As seen in the 
following figures it generated some of the biggest shockwaves among all locations on I-
35W during all of the observed days.  For the foreseeable future this is a location that needs 
to be watched for signs of deterioration.  The areas close to the start of the open access 
south of I-494 (locations 6131 SB and 6130 SB) are operating fine today but are a good 
example of how the situation can change with the addition of just a few more vehicles in 
the HOT. The absolute values of the lengths of the waves signal a good standing in terms of 
safety but if we take into account the high LC activity of this segment, a future increase of 
vehicles on the HOT facility could result in greater disturbances.  

Later in this report a tool aimed in forecasting at which level of HOT facility utilization the 
aforementioned areas will have to be mitigated is presented. The tool and methodology 
developed can guide mitigation strategies in terms of both access and control of the pricing 
of the HOT lane to keep the demand below the threshold at which this roadway geometry 
will start to experience serious problems. 

As a closing note on I-35W, an assessment of the impact on the adjacent lane was made. For 
almost all the examined locations, our observations are very close to null values; the low 
speeds on the adjacent lane do not force drivers to decelerate during the LC activity which 
explains the observed small lengths of shockwaves.
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Figure 49. Observed flow breakdowns on the HOT 
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Figure 50. Observed flow breakdowns on the adjacent GPL 
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Figure 51. Average lane changing activity of I-35W 
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Interstate 394 
The collected observations for interstate 394 are limited as compared to I-35W. I-394 in 
general has a lot less demand and congestion as compared to I-35W. In addition I-394 
follows a Closed Access design with allowed access in the form of “gates” (areas of limited 
length) located strategically around the four major interchanges intersecting this roadway.   

Following the same methodology as in I-35W, further investigation was only carried out on 
a single location of the eastbound direction. This is the only location with congestion in the 
GPLs.  The objective is to assess the possible difference in safety and mobility of the Closed 
Access design paradigm.  Four days of footage from I-394 have been analyzed and the 
collected observations will be presented in a subsequent report.  

Access Eastbound 4: I-394 EB (Louisiana Avenue) 

 
Figure 52. Location 908 example camera view facing east 
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Figure 53. Location 909 example camera view facing west 

Access EB 4 is the second to last gate before the HOT enters the barrier separated 
reversible section.  The gate is viewed by camera 908 for west of the Louisiana Ave bridge 
(see Figure 52), and camera 909 for east of the bridge (see Figure 53).  This gate was 
identified as one of the most important for the I-394 corridor during the video collection 
task. As it is characteristic of Closed Access design the “gates” experience a very high lane 
changing activity.  The average observed values reach 100 vehicles per 15 minute intervals 
during the morning peak hours (Figure 54) and over 60 in the evening peak hours (Figure 
55).  The statistical characteristics of the observed flow breakdowns (Figure 62) are on the 
higher end.   The lengths of the recorded flow breakdowns reached a median value of 4 
vehicles while the most extreme value was 12 vehicles.  Despite the conservative design of 
the access segments on the HOT and the generally lower demand levels, very long 
shockwaves were generated due to the high speed differential, between the HOT and the 
adjacent GPL, at this part of the freeway. 

Once again, the assumption that the optimal design should correspond to the individual 
needs of each segment is supported and that the individual lane changing characteristics 
should be taken into account in order to decide about the locations and lengths of the gates.  



 
Figure 54. Average total lane changing activity Access EB 4 AM 
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Figure 55. Average total lane changing activity Access EB 4 PM 
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Figure 56. Average percentage of ILC per TLC for all days of Access EB 4 during 

morning peak 
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Figure 57. Average percentage of ILC per TLC for all days of Access EB 4 during 
evening peak 
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Figure 58. Total lane changing activity August 30th location 909 AM 
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Figure 60. Average percent of vehicles that experience a breakdown of flow AM 
 

 
Figure 61. Average percent of vehicles that experience a breakdown of flow PM 
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Figure 62. Statistical characteristics of observed shockwaves for Access EB 4 
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Figure 63. Comparison between facilities on I-394 and I-35W 
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6. Development of HOT lane design tools 
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roadway. The locations that headway measurements were extracted are presented in Table 
7 along with the periods of data collection. 

Table 7. Video data collection for headway extraction 
Camera December 22nd 2011 January 12th 2012 
 Northbound Southbound Northbound Southbound 
619 + + + + 
6091 + + + + 
6101 + +   
6130 + + + + 
6141 + + + + 
6161 + + + + 
6181 + + + + 
6211 + + + + 
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Platoon characteristics and the process of platoon formation are key components towards 
a better understanding of traffic flow on any given site. Platoons were defined by Athol 
(1965) as the stable portion of traffic throughout the spectrum of traffic behavior. A later 
definition in the Highway Capacity Manual (2000) defines a vehicle platoon as a group of 
vehicles moving together. Several studies in the past have made an effort to categorize 
vehicles in groups. In most cases a critical headway was defined in order to separate 
drivers in followers and leaders and derive the platoon size distribution (Athol, 1965). The 
headway measurements were categorized based on those values. Gaur and Mirchandani 
(2001) used second-by-second loop detector density data to identify vehicle platoons. 

Using a time threshold in platoon separation is an effective technique; though it does not 
capture the individual speed selection. In a more recent study Benekohal, et al. (2004) 
proposed a dual threshold of either a time headway of less than 4 seconds or a space 
headway of less than 250 feet as platooning criteria. Using the critical spacing in 
conjunction with speed data, fluctuations of higher resolution can be captured and different 
traffic states can be represented effectively using the same separation threshold. 

Following the creations of the headway/speed/density data sets, they were processed to 
separate headways of platoon followers and leaders based on a predefined distance of 250 
feet or a predefined time threshold of 4 seconds, taking into account prevailing speed 
conditions (Figure 65) the threshold is suggested in the literature.  

 
Figure 65. Vehicles separation in platoon leaders and followers 

For the follower headways relatively small values were observed. Drivers decide to follow 
their leading vehicles at close distances because they do not have to be concerned with lane 
changing activities from both sides. Another reason could be attributed to the speed 
differential between the HOT and the GPL. Drivers decide to close the distances between 
them so that they do not give the opportunity to vehicles from the GPL to merge and cause 
them inconvenience. Finally, from the platoon size histogram we can observe that platoons 
on the HOT are short in length (approximately 1-3 vehicles) while the longer the platoon 
the smaller the probability of its formation. The platoon formation characteristics are 
presented separately for each site. For reasons explained later headway data were 
collected only on I-35W. 

I-35W NB at Cliff road. 
Figure 66 presents the platoon formation characteristics harvested on December 22nd, 
2011 and January 12th, 2012 for the segment of I-35W between TH13 and Cliff Road. For 
this location, 45% of the collected observations corresponded to single vehicles; a fact that 
underlines the underutilization of the I-35W HOT. Furthermore, as in all the examined 
cases, the shape of the histogram of leader headways is governed by the choice of drivers 
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not to join a platoon and could be described by an exponential distribution. Finally, the 
peak of the histogram for follower headways for both days is between 0.75 and 1.15 
seconds. This indicates that drivers tend to follow their leaders at relatively short 
distances. It is possible that drivers in the HOT in order to prevent slower moving vehicles 
joining from the GP lane decrease their following distances.  

 

 
Figure 66. Platoon formation characteristics 1 
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Figure 67. Platoon formation characteristics 2 
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distribution. The peak of the histogram for follower headways for both days (Figure 68) 
was between 0.85 and 1.15 seconds. 

  

 
 

 
Figure 68. Platoon formation characteristics 3 

      

Lane Change Trajectory Dataset  
The lane change trajectory dataset required for the development the OLCR model was build 
based on measurements and observation from the segment of I-35W northbound between 
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46th street and 41st street. The location of interest is a 2000 feet freeway segment of I-
35W Northbound.  The segment of interest contains four general purpose lanes and one 
HOV/ HOT lane with an entrance ramp located at 46th Street as presented in Figure 69.   

This segment of the freeway was identified as one that would be capable of providing a 
large sample of vehicle high resolution trajectories for drivers merging to the freeway from 
the entrance ramp of 46th street and moving all the way to the HOT. In that way, all the 
steps of the lane changing process would be captured so that all the necessary parameters 
of developing the OLCR model. 

Ideally trajectories would have been collected for vehicles merging out of the HOT facility 
as well and several potential locations were examined for that reason on both I-35W and I-
394. In the case of I-35W the great length of the merging areas to the HOT lane made it 
difficult to identify such a location where a large amount of vehicle trajectories for vehicles 
merging out of the freeway could be extracted.  

 
Figure 69. Freeway segment for trajectory extraction 
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In order to develop the optimal lane changing region tool observations of all the steps of 
the lane changing process after a vehicle merged in the freeway from the 46th street 
entrance ramp and all the way to the HOT lane were necessary along with the decisions 
associated with each step. For the construction of this dataset the analysis of three days’ 
worth of data (October 30th 2012 to November 1st 2012) was sufficient to provide 50 
accurate vehicle trajectories. For the three days of interest lane changing activity was 
investigated for the time period between 08:00 am and 10:00. This decision can be 
explained by the following considerations: 

• For this time period the density fluctuated between congested states and free flow, 
providing a broad spectrum of density values for each lane. 

• Lighting conditions were able to provide a clear view of the highway’s lane dividers 
which was essential for measuring the quantities of interest.  

The following measurements for each lane change were captured, along with the time 
increments that drivers spent on each lane as well as between the lanes: 

• The exact location of the merging point to the freeway. 
• Gap sizes (accepted and rejected lead and lag gaps) and vehicle lengths. 
• Prevailing speed on the target lane and speeds of subject vehicles that desire to 

change lane. 

This process began by developing a script that enables simultaneous viewing of the six 
different videos recorded from the location of interest as shown in Figure 70.  

 
Figure 70. Trajectory extraction working environment 
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The first step was to synchronize the cameras so that a subject vehicle could be tracked 
through the series of cameras. Time stamps for individual cameras were not perfectly 
synchronized and a calibration step had to take place before extracting measurements. This 
was done by adjusting the offsets of each camera utilizing a feature of the written script. 
The optimal configuration was obtained through a trial and error process until the time 
stamps for all cameras were perfectly synchronized.   

To obtain vehicle trajectories, lane changes were identified from the first camera (Camera 
1) and then high resolution video data of the subsequent cameras was analyzed for 
measuring the necessary quantities. Vehicles desiring to merge to the HOT would use their 
indicator light after merging to the freeway in order to signal their intension to change 
lanes. Considering the lane dividers length and the spacing between them, traced the 
position of the subject vehicle while successively changing lanes.   

Establishing a zero foot reference point, which is shown by the red line in Figure 71, was 
essential for recording the distances from the entering point.  One example is illustrated in 
Figure 71 presenting a vehicle merging to the first lane after approximately 132 feet from 
the predefined position.   

Vehicles were classified in two different types in order to establish vehicle lengths. Vehicle 
lengths were determined to be 17 feet for SUVs, vans or trucks and 14 foot length for cars.  
These assumptions were made from researching dimensions of different makes and 
models of vehicles.  The accepted gap was derived by adding the lag gap, the lead gap and 
the vehicle’s length.  

 
Figure 71. Defining the zero reference point 

Figure 72 presents the moment that a subject vehicle is changing lane; the lag and lead gaps 
were measured at this point.  In addition, the number and lengths of rejected gaps had to be 
measured as well.  
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Figure 72. Lead and lag gap 

The last piece of information collected was the speeds of vehicles participating in the lane 
changing process.  In order to accomplish this, it was necessary to use a fixed length on the 
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Figure 73. Obtaining speed estimates 

Along the analysis process several difficulties were identified and were addressed. Video 
footage for the time period between 05:00am to 08:00am was discarded due to poor 

changes lies in the limitation of gap acceptance models to accommodate this phenomenon. 
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Figure 74. Time increments' box plots 

Separating the time vehicles spent on each lane based on a threshold in speed is presented 
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each lane if speed is controlled.  

 
Figure 75. Time increments' box plots for speeds over 30 MPH 
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Figure 76. Time increments' box plots for speeds less than 30 MPH 

Furthermore, Figure 77 presents the distance that vehicles cover on each lane in their 
effort to merge to the lane on their left. Figure 77 is derived from Figure 74 by 
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Figure 77. Distance covered on each lane  

Separating distance vehicles cover on each lane is based on a threshold in speed of 30 mph 
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74 
 



 
Figure 78. Distance covered on each lane for speeds over 30 MPH 

 

 
Figure 79. Distance covered on each lane for speeds less than 30 MPH 

 

Finally, Figure 80 presents two boxplots of the gaps that drivers rejected or accepted in 
their effort to join the HOT lane after merging to the highway from the 46th street entrance 
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Figure 80. Accepted and rejected gaps 
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response variables can be described by a distribution other than the normal. The 
distribution describing the response variable for this modeling effort is binomial (Bernoulli 
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since the gaps are either accepted or rejected). The following equation describes the 
probability of accepting a gap given a set of explanatory variables X and their 
corresponding fitted parameters β in logistic regression. 

Pr(𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒|𝐗) = 𝑒(𝛃𝚾)

1 + 𝑒(𝛃𝚾)        (Eq. 5)  

The first step was to decide about the parameters that have a significant effect on the shape 
of the response variable and then evaluate several proper link functions to describe the 
data before concluding that the logit function derives the best fit. Using R software, a first 
attempt to describe the collected binary decisions using all the collected explanatory 
variables was conducted. Table 8 presents the fitting results for this first approach taking 
account of all the collected explanatory variables. It can be concluded based on the 
obtained p-values that three parameters have a statistically significant effect on describing 
the binary dataset; the speed of the subject vehicle, the prevailing speed on the target lane 
and the size of the lag gap. 

Table 8. Fitting results for all the available parameters 

Parameter Value Standard Error z value Pr(>|z|) 
β0 (Intercept) -1.391 2.272 -0.612 0.540 
β1 (Lag Gap) 0.054 0.012 4.494 0.000 
β2 (Lead Gap) 0.002 0.007 0.257 0.798 
β3 (Target Lane Speed) -0.088 0.042 -2.098 0.036 
β4 (Subject Speed) 0.120 0.044 2.722 0.007 
β5 (Vehicle Length) -0.014 0.125 -0.108 0.914 
AIC 172.61    

 

The size of the leading gap was proven to be statistically insignificant and this can also be 
explained intuitively. When a driver evaluates gaps in order to join the target lane, the 
leading gap is less important than the lag gap because the vehicles speed can be adjusted to 
match the leaders speed while evaluating constantly its reactions (acceleration, 
deceleration). In the case of the lag gap estimating the following vehicle’s reactions and 
speed is more challenging and more difficult to adjust the subject vehicle’s speed so that a 
“safe” transition to the target lane can be achieved. Thus the lag gap has a greater effect on 
the shape of the decision. It can also be shown from the sign of the corresponding 
parameter that the greater the length of the lag gap, the higher is the probability of being 
accepted. 

It can also be seen that the length of the vehicle does not have a significant effect either. 
This can be attributed to the fact that the plethora of the harvested observations 
corresponded to vehicles that their length were either 14 feet (car) or 17 feet (SUV) and 
very few observations corresponded to buses. In that way most of small difference in 
vehicle’s length (3 feet) was not reflected in the value that the predicted response obtained.  
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Furthermore, the sign of the parameter corresponding to the target lane was negative. As 
such, the faster the target lane moves the lower the probability of accepting a gap. In most 
cases the speed of the target lane was higher than of the speed of the subject vehicle and 
thus the observed speed difference makes a gap on the target lane less attractive for a 
driver.  Finally the sign of the parameter for the subject vehicle’s speed is positive 
and opposite from the one of the target lane’s parameter. The two observations combined 
reveal the aforementioned effect of the speed difference in the probability of accepting a 
gap.  

The logit model that was selected presents the probability of accepting a gap given the 
subject vehicle’s speed, the target lane’s speed and the size of the leading gap. The fitting 
details are presented in Table 9.  

Pr(𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒|𝐺𝑎𝑝𝑙𝑎𝑔,𝑉𝑡𝑎𝑟𝑔𝑒𝑡,𝑉𝑠𝑢𝑏𝑗𝑒𝑐𝑡) = 𝑒(−1.49 + 0.05∗𝐺𝑎𝑝𝑙𝑎𝑔  − 0.09∗𝑉𝑡𝑎𝑟𝑔𝑒𝑡 +0.12∗𝑉𝑠𝑢𝑏𝑗𝑒𝑐𝑡 )

1 + 𝑒(−1.49 + 0.05∗𝐺𝑎𝑝𝑙𝑎𝑔 − 0.09∗𝑉𝑡𝑎𝑟𝑔𝑒𝑡 +0.12∗𝑉𝑠𝑢𝑏𝑗𝑒𝑐𝑡) (Eq. 6) 

where Gaplag  is the size of the lag gap in feet,  

   Vtarget is the speed of the target lane in miles/hour and  

    Vsubject is the speed of the subject vehicle in miles/hour. 

 

Table 9. Fitting results using a Logit link function 

Parameter Value Standard Error z value Pr(>|z|) 
β0 (Intercept) -1.493 0.736 -2.027 0.043 
β1 (Lag Gap) 0.054 0.011 4.676 0.000 
β3 (Subject Speed) 0.119 0.043 2.748 0.006 
β4 (Target Lane Speed) -0.088 0.041 -2.163 0.031 
AIC 166.71    
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though for density levels exceeding the critical density of the facility by relaxing the 
condition of independent selection of headways as will be demonstrated in a later section. 
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Based on the harvested trajectory measurements, it was shown that working with densities 
below the critical density does not affect the value of the results significantly. Figure 81 
presents two boxplots, one for observed trajectory lengths for traffic conditions below 
capacity and another for traffic conditions exceeding capacity. As observed, the ranges of 
the two sub-datasets as well as the 75th percentiles are equal while the 25th percentile for 
the distances harvested for prevailing conditions above the critical density is significantly 
lower than for the cases corresponding to traffic conditions below the critical density.  

Therefore, the difference between the two conditions can be overseen since this 
discrepancy will result in vehicles merging before the proposed position of the gate for 
traffic conditions above the critical density. Thus, drivers will reach the adjacent lane to the 
HOT before the proposed gate and they will be able to merge as soon as an opening 
becomes available. Figure 82 presents the Cumulative Distribution Function of the 
constructed dataset and will be later used to evaluate the output of the OLCR model.  
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Figure 81. Comparison between trajectory lengths for cases above and below 

capacity 
 

 
Figure 82. Cumulative distribution function for of the harvested trajectory lengths 



Fundamental Diagram investigation 
As mentioned above, a fundamental diagram investigation first took place in order to 
define quantities such as free flow speed and jam density for each lane. The bell-shaped FD 
proposed by Greenshields, et al. (1935) was fitted to data extracted for each lane of the 
examined freeway segment. The decision for using Greenshield’s model instead of another 
FD, such as the Triangular shaped FD (Newell, 2002), was motivated by the fact that a mild 
speed differential was desired between the general purpose lanes. Using the triangular 
shaped FD would assign only the free flow speed to the simulated streams and thus a 
miniscule speed differential would be achieved between the GPLs; the modeling efforts of 
this study are mainly bounded by the capacity of each lane. Figure 83 demonstrates the 
aforementioned speed-density, flow-density and speed flow relationships for the FD 
proposed by Greenshield’s.  
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Figure 83. Fundamental relationships (Immers and Logghe 2002) 

For Greenshield’s model the speed – density relationship is described by Equation 7, while 
the flow – density and flow-speed relationships are presented in Equations 8 and 9. 

 𝑢 = 𝑈𝑒(𝑘) = 𝑢
𝑘
𝑓 (𝑘𝑗 − 𝑘)       (Eq. 7) 

 𝑞 = 𝑄

𝑗

𝑒(𝑘) = 𝑢
𝑘
𝑓

𝑗
𝑘(𝑘𝑗 − 𝑘)       (Eq. 8) 

−1 𝑢 𝑞 = 𝑈𝑒(𝑞) = 𝑘𝑗𝑢 �1 −
𝑢𝑓
�      (Eq. 9) 



The fitted parameters for the FD of each lane are presented in Table 10 while Figure 84 to 
Figure 87 present the fitted curves with the harvested data being superimposed. As shown 
a very high R Squared value was achieved in all cases with the lowest being close to 86 %. 
The lowest value was achieved for the most right lane and stems from the larger amount of 
congestion that this lane experienced compared to the rest four lanes. This lead to a more 
disperse scatter in the right side of the parabola. For the rest of the lanes the R2 value 
obtained was over 90 % capturing the collected data with high accuracy. The fitted curves 
were used instead of raw data to derive the corresponding speed and flow given the 
desired value of density.  

Table 10. Fundamental diagram fitted parameters 

Lane 𝒖𝒇 (𝒎𝒊𝒍𝒆𝒔/𝒉𝒐𝒖𝒓)  𝒌𝒋 (𝒗𝒆𝒉𝒊𝒍𝒆𝒔/ 𝒎𝒊𝒍𝒆)  R2 (%) 
1 70.6 102.7 86.4 
2 69.2 112.1 99.5 
3 72.3 99.4 90.3 
4 77 101.2 99.6 

 

 
Figure 84. Fitted fundamental diagram lane 1 

 
Figure 85. Fitted fundamental diagram lane 2 
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Figure 86. Fitted fundamental diagram lane 3 

 

 
Figure 87. Fitted fundamental diagram lane 4 

To address what is the most appropriate distribution for describing the collected headway 
measurements, several distributions were tested including the Exponential, the Normal the 

example of the aforementioned sup-norm. 
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 ‖𝐹𝑛 − 𝐹‖∞ = sup𝑥∈ℝ+|𝐹𝑛(𝑥) − 𝐹(𝑥)|      (Eq. 10) 

 

 
Figure 88. Sup-Norm 

In the following formulation the boundaries between subsequent partitions are denoted by 
𝑢 , the number of partitions is denoted by N with Nmax being the maximum number of 

between the two distributions.  
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Deciding about the optimal number of partitions was conducted by interpreting the output 
of the algorithm. Specifically, after optimal values for the boundaries of each number of 
partitions were obtained, a weighted sum of the sup-norms for the different subsets of each 
partition was computed. The partition with the minimum value for the sup-norm was the 
solution to the problem. Despite the simple formulation and the limitations of the 
optimization toolbox a decrease in the sup-norm was observed and finally the optimal 
partitioning was concluded to correspond to two regions with a breakpoint in the density 
domain at 29.6 vehicles/mile. The corresponding value for the sup-norm was 2.1 % (Table 
11). The largest number of partitions tested was 5 due to high computational effort that 
was required. Figure 89 presents the comparison between the estimated and the empirical 
cumulative distribution function for the two selected regions with a very accurate fit being 
achieved. 

Table 11. Optimal Sup-Norm values for various partitions 

Number of Partitions Sup-norm (percentage) 
1 3 
2 2.1 
3 3.4 
4 3.3 
5 3.8 

 

 
Figure 89. Comparison for optimal partitioning between estimated and observed 

CDFs 

Under the assumption that headways are independent and identically distributed, a 
random number generator following a lognormal surface of distributions was responsible 

relationship between flow and density as derived from Greenshield’s FD the mean value for 
the headway sample is presented in Equation 11 as the inverse of flow:  

85 
 

f
h
o
ead
r rec

w
o
ay

ns
 s

tr
am

uc
p
ting
le h

 th
ad

e 
 to

d
 v
es

ar
ir

y
ed
, r

 h
ef

ead
lecting

way
 th
 seq

e f
u
lu
enc

ctu
es
atio

. Th
ns

e m
 in d

ean v
ens

al
ity

u
.
e o
 Giv

f th
en th

e g
e F
ener

und
ated

am
 
ental 



ℎ� = �𝑢𝑓 ∗ 𝑘 ∗ �1 − 𝑘
𝑘𝑗
��

−1

      (Eq. 11) 

The second parameter that had to be computed was the standard deviation of the 
simulated sample; this step utilized the findings of the partitioning problem. The 
Coefficient of Variation (CV) for each region was computed in an effort to connect the mean 
of the distribution with its variance based on the collected data. Equation 12 presents the 
estimator that derives the CV based on the standard deviation of the two samples 
(Koopmans, et al. 1964).  

𝐶𝑣𝑙𝑛� = �𝑒𝑠𝑙𝑛2 − 1        (Eq. 12) 

where 𝑆𝑙𝑛 is the sample standard deviation of the data after a natural log transformation. 

For the density region between 0 and 29.6 vehicles the samples estimated CV was 0.98 and 
for the region between 29.6 vehicles/mile and 51 vehicles/mile (critical density) was equal 
to 0.82. The CV used for computing the standard deviation of the sample was decided to be 
equal to the average of the two computed values (0.88). Equation 13 gives the standard 
deviation for a selected mean value given the CV. 

𝑠𝑡𝑑𝑒𝑣� = ℎ� ∗ 𝐶𝑣𝑙𝑛�         (Eq. 13) 

Thus, for the given mean and the estimated standard deviation, the parameters for the 
Lognormal distribution were computed by Equations 14 and 15. 

𝑚𝑢 = ln � ℎ�

�𝑠𝑡𝑑𝑒𝑣� +ℎ�2  
�            (Eq. 14) 

𝑠𝑖𝑔𝑚𝑎 =  �ln �𝑠𝑡𝑑𝑒𝑣
�

ℎ�2+1
�        (Eq. 15) 

Figure 90 presents the surface of probability density functions for the range of the 
examined traffic conditions based on the results of this investigation. The presented 
surface covers the whole spectrum of density that this step covers ranging between 5 
vehicles/mile and 51 vehicles/mile. It can be seen that as density values increase, the mode 
of the distribution is shifting to the right delivering larger headway values. This is 
intuitively explained by considering that vehicles follow their leaders in shorter distances 
as density increases. 
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Figure 90. Surface of lognormal distributions for headway sequence reconstruction 

The assumption of independence was tested empirically using Autocorrelation functions 
(Box, et al. 2011) for a number of different sequences of observed headways. One example 
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Figure 91. Autocorrelation function for headway time series with 95% confidence 

intervals 
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platoon leaders while Figure 93 presents a boxplot in an effort to present the 
characteristics of the follower headways sample. 

 
Figure 92. Follower and leader headway histograms 

 

 
Figure 93. Follower headways boxplot 
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To replicate drivers’ willingness to approach their leader a stochastic threshold was used 
for each driver of the simulated stream. In particular, using the 25th percentile of the 
followers’ headways as the mean of an exponential distribution the aforementioned 
threshold was sampled for each vehicle. If the followers moved at a higher speed than their 
leaders and the headway threshold was violated, then followers would match the speed of 
their leaders. 

Individual vehicle speeds were derived by sampling from a normal distribution with a 
mean equal to the prevailing speed of the GPL and a standard deviation equal to 3 
feet/second. The reason supporting this desired variation in speed was based on the need 
for gaps to fluctuate over time. Figure 94 presents generated trajectories for a 5 minute 
interval for the most right lane, while Figure 95 presents the multilevel field of trajectories 
for all the GPLs participating in the experiment.  

 
Figure 94. Sample vehicle trajectories for lane 3 

 

 
Figure 95. Sample multilevel vehicle trajectories for the 4 GPLs of the examined 

network 
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Modeling duration of drivers movement between lanes 
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that were tested, the normal best fit to the data based on the log-likelihood of each 
estimated distribution. The fitting results are summarized in Table 12. 

 
Figure 96. Distribution fitting results for the time drivers spend between lanes 

 

Table 12. Distribution fitting results for the time that drivers spend between lanes 

Distribution: Normal 
Log Likelihood -136.7 
Sample's Mean: 2.79 
Sample's variance: 0.36 
Parameter Estimate Std. Error 
mu 2.79 0.05 
sigma 0.60 0.04 
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processing toolbox offered in MATLAB. In that way, it is easier to visualize the output of the 
simulation. First, an image of the segment of interest along with two reference points on 
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Figure 97. Schematic methodology of defining the OLCRs 

 

 
Figure 98. Visualizing the output of the proposed methodology 

Experiment  
E
der

val
iv
u
ed
ating

 fro
 th
m th

e o
e c
utp

o
u
rr

t o
es

f
p
 th
ond

e c

ol
ing
onstructed

ev ution for the days between O
 ind
cto

u
b
c
er
tiv

 m l

 3
e l

ethodo ogy was based

0th
oo

 and
p detec

 Nov
to
em

rs
b
. M

er
o
 1
r
s
e s
t w

p
 o
ec
n th

ific
e d
ally

em
, th

and
e d

 inp
ens

u
ity

t 
 

b
th

etw
at m

een 0
ost o

8
f
:
 th
00

e o
am

b
 and
serv

 0
atio
9:0

ns
0am

 wer
 using 5 minute intervals; this is in ac

as u
co

sed
rdanc

 for
e w
 the time 

e cap
ith the fact 

into
prev

 ac
iou

co
s s

unt at th
ection d

is
ens
 fir

it
st

y
 s
 v
tep
alu

. 
es
 

 exceeding
tur

 th
ed d

e c
u
r
r
itic
ing

al
 th

 d
is
ens
 tim

ity
e p

 o
er
f eac

iod
h
. A
 lane w

s stated
ere no

 in a 
t taken 

Given the density evolution, trajectories corresponding to the prevailing density conditions 
were generated for all the GPLs. Following the steps of the developed methodology, 
trajectories of vehicles entering the freeway form the entrance ramp and moving all the 
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way to the HOT lane were simulated in response to the given traffic conditions. The main 
quantity of interest was the total distance that vehicles traveled along the freeway.  

Simulation results 
After the information described in previous section were incorporated in the process a 
comparison between the harvested trajectory lengths and the simulated trajectory lengths 
was necessary in order to conclude about the validity of the developed methodology. The 
comparison between the simulated and the observed data is presented through their 
corresponding Cumulative Distribution Functions (CDFs) as well as Probability Density 
Functions (PDFs). Since the harvested dataset was limited to 50 vehicle trajectories it was 
decided to use 95% Confidence Intervals (CI) around the empirical CDF for the collected 
data in an effort to take into consideration unobserved trajectories. Specifically, the 95% 
CIs were computed based on Greenwood’s formula (Greenwood, 1926).  

The first effort to replicate the observed trajectory lengths was not successful and the 
simulated vehicles reached the HOT lane long before they did in reality. Figure 99 presents 
the CDF of the simulated trajectory lengths (red color), the CDF of the collected trajectory 
lengths (blue color) and the 95% CI corresponding to the empirical CDF of the collected 
observations (green color).  

This observation underlined the need of incorporating the Traffic Assessment Parameter 
(TAP) in the process as described in an earlier section of this Chapter. TAP is an 
unobserved behavioral parameter that describes the time that drives spend on the lane 
they have just joined evaluating the conditions of the lane before they try to find an 
appropriate gap and merge to the lane on their left.  
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Figure 99. CDF comparison between observed and simulated trajectory lengths with 

95 % confidence intervals without TAP 

The first step towards identifying the characteristics of this unobserved parameter was to 
assume that it is constant for all drivers and observe the impact of this assumption to the 
results of the simulation. Specifically, TAP was assumed to be equal to 0.9 seconds for all 
drivers. The results of the simulation experiment under this assumption are presented in 
Figure 100. Even though the gap between the two CDFs was decreased the need of a larger 
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Figure 100. CDF comparison between observed and simulated trajectory lengths 

with 95% confidence intervals with constant TAP = 0.9 seconds 

The next step was to sample values for TAP from a unimodal distribution (a truncated 
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Figure 101. CDF comparison between observed and simulated trajectory lengths 

with 95% confidence intervals with sotchastic TAP 
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It can be seen that for the whole spectrum of the observed data the simulation results are 
within the region that the CI define. Especially for outputs that exceed 1300 feet in length, 
the model captures the character of the observed distances with great accuracy. 

To support this observation, both the collected and the simulated trajectories were 
separated based on the threshold of 1300 feet. For the resulting subgroups a comparison 
based on their estimated kernel smoothed density is illustrated in Figure 102 and Figure 
103.  The estimate is based on a normal kernel function, and is evaluated at 100 equally 
spaced points that cover the range of the given vector each time. Figure 102 presents the 
comparison for the group of simulated and collected trajectories exceeding 1300 feet in 
length. Clearly, the model closely captured the character of the collected data in great 
detail. 
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Figure 102. PDF comparison between the observed and the simulated Kernel 

smoothed density of trajectory lengths for lengths over 1300 feet 

For trajectories that are below the threshold of 1300 feet the performance of the proposed 
methodology is not as accurate as in the previous case. While experimenting with the 
developed model, it was observed that short trajectories in length are likely to be 
reproduced for traffic conditions close to the critical density. The modeling efforts are 
bounded by the critical density and thus lower speeds than 35 miles/hour cannot be 
simulated.  

Figure 103 presents a PDF comparison between the observed and simulated trajectories 
that are lesser than 1300 feet. Even though the model is not performing accurately for this 
region, simulated vehicles will reach the HOT lane later compared to what has been 
observed in reality. In a hypothetical design based on the output of the model this will 
result in vehicles reaching the adjacent lane to HOT lane earlier than the “gate” and thus 
they will have the opportunity to merge as soon as they are beside the proposed access 
zone. Once again the 95 % CIs presented in Figure 104 support the fact that the simulated 
trajectories are within an acceptable region for this group as well.  



 
Figure 103. PDF comparison between the observed and the simulated Kernel 

smoothed density of trajectory lengths for lengths less than 1300 feet 
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Expanding this simulation to densities exceeding the critical density 
In an effort to examine the model’s behavior at densities exceeding the critical density, 
detector signal for the dates that the trajectory extraction took place were used but this 
time signal was used for the desired traffic conditions. The trajectory lengths that were 
used to validate the models output in this step corresponded to the same traffic conditions 
as the ones used in the input of this experiment; densities over 75 vehicles/mile were not 
used since attractive gaps are not available and thus drivers need to cooperate with 
vehicles on the lane that they wish to join. 

First, headways were partitioned in two regions using the same optimization formulation 
described earlier in this chapter. The optimal partitioning was obtained for separating 
headways in two groups with a break point at 18.5 vehicles/mile. The same process was 
followed to obtain the corresponding CV as well as the new surface of distributions used in 
the experiment. Figure 104 presents the output of the model for the selected input as well 
as the corresponding trajectory lengths harvested for the aforementioned density levels 
with 95 % confidence intervals. Once again the models performance is supported by field 
observations. 



 
Figure 104. CDF comparison between observed and simulated trajectory lengths 

with 95% confidence intervals with stochastic TAP 
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Figure 105. Test Site 
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Several studies in the past have derived guidelines to define the aforementioned quantities 
of interest. A discussion can be found in the background chapter; their findings with 
respect to the quantities of interest are briefly repeated. Specifically, the HOV Systems 
Manual (National Research Council, 1998) proposes a distance of Ltotal equal to 2500 feet 
regardless of the number of General purpose lanes. Two limitations were identified in this 
approach; it does not take into account cases that the interaction between the HOT and its 
adjacent lane need to be minimized and traffic conditions and traffic patterns of the GPLs 
are not instilled in the design process.  

Fuhs (1990) proposed a methodology that accounts for the number of lane changes that 
are necessary for vehicles to merge to the HOT lane after merging to the freeway from the 
nearest entrance ramp or vehicles that need to exit to the exit ramp downstream. The 
minimum proposed value for Ltotal was set to 500 feet for each lane change and the 
recommended value was equal to 1000 feet. In a similar framework the California 
department of Transportation (1991) proposed a minimum distance of 660 feet per lane 
change. Regarding the length of the opening length several values have been proposed in 
an effort to accommodate the weaving demand of users of the facility and all range 
between 900 feet and 1500 feet (Fuhs (1990), Yang et al. (2011), ASSHTO (FHWA, (2004)), 
Kuhn et al. (2005)). 

Yang et al. (2011) proposed a probabilistic approach towards quantifying advisory designs 
utilizing gap acceptance theory. The results of the proposed methodology with respect to 
the length of the gate and Ltotal varied between 2000 feet and 4200 feet depending on the 
free flow speed of the GPLs and their number. The advisory gate lengths varied between 
900 feet and 1400 feet and were contingent to the weaving demand.  

Using data from I-635 in Houston Texas Williams et al. (2010) developed a set of design 
guidelines based on the results of a simulation methodology developed in VISSIM 
simulator. The advisory lengths derived from the proposed process are varied between 500 
feet per GPL and 875 feet per GPL depending on the weaving demand. 

The limitations of the aforementioned processes are either based on the fact that are very 
generic or require data that are difficult to obtain for their implementation. An effort to 
compare the OLCRs resulting from the proposed methodology with the results of the 
methodologies available in the literature is presented. For the designs that provide 
minimum and recommended lengths two hypothetical designs will be derived for each one 
of them. Table 13 summarizes the findings of this investigation and will be the foundation 
for the ensuing discussion. 
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Table 13. Comparison of the proposed methodology to common practices 
 Ltotal (feet) L2 (feet) L1 (feet) 
HOV Systems Manual 2500 1300 (Kuhn et al. 2005) 1200 
Fuhs 2000 - 4000 900 - 1400 1100 - 3100 
California DOT 2640 1300 (Kuhn et al.2005) 1140 
Yang 2500 - 3600 900 - 1400 1600 - 2700 
OLCR Model 1800 700 1100 
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and the entrance ramp to the freeway is approximately 2200 feet. 

 
Figure 106. Test Site on I-394 

In order to demonstrate the potential of the proposed tool, Fundamental Diagram 
characteristics were identified for the examined location following the same procedure 
described for the validation experiments. Tab
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le 14 summarizes the FD characteristics for 

 



the examined location. Accounting for the delay that selecting a gap on the HOT lane when 
desiring to merge from its adjacent lane is infused in the process by including the particular 
lane change in the process as well.  

Table 14. Fundamental diagram parameters GPLs on test site 

Lane 𝒖𝒇 (𝒎𝒊𝒍𝒆𝒔/𝒉𝒐𝒖𝒓) 𝒌𝒋 (𝒗𝒆𝒉𝒊𝒍𝒆𝒔/ 𝒎𝒊𝒍𝒆) 
1 63.78 130.9382 
2 71.52 112.1531 
3 71.29 134.3067 
4 69.48 111.6145 

  

Drivers will need to perform three lane changes to reach the HOT lane and this three-step 
process was simulated to define the optimal location of the gate. Data for 10 typical 
weekdays were extracted representing both winter days as well as summer days were used 
to conclude about the optimal gate design. Specifically, the density evolution for 5 morning 
peak periods (07:00am - 09:30am) was used as the input to the experiment; the objective 
was to capture a large number of traffic patterns so that the design can accommodate a 
broad range of traffic conditions. 

The developed tool suggests the starting point of the examined gate should be placed 750 
feet after the entrance ramp to the freeway so that 95% of the users can receive access to 
the HOT lane; this is significantly different to the implemented design. The difference 
between the OLCR tool design and the implemented design is 1450 feet. Figure 107 
presents the resulting histogram of the simulated distance that vehicles covered between 
the entrance ramp and the HOT lane. The proposed starting point as derived from the OLCR 
tool as well as the implemented design is also illustrated in Figure 108. 

 
Figure 107. Simulated trajectory lengths 

The suggested length for the OLCR is 1100 feet. For the examined case, a comparison for 
the length of the gate cannot be made since th
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e reversible segment of the HOT lane starts 

 



exactly after this gate. The results of this example support the claim that existing 
methodologies suggest OLCR designs downstream of the location that the actual need for 
merging is expected to appear. 

 

Figure 108. Proposed design 

Figure 109 presents flow (vehicles/hour) evolution for a typical weekday for the detectors 
on the adjacent to the HOT lane at the examined segment; one prior to the entrance ramp 

Using the proposed methodology this pattern between the detector signals would not have 
been observed since drivers would get service at the location that they need it. 

 
Figure 109. Detector signal comparison - flow (vehicles/hour) 

Proposed implementation 

OLCR methodology is to fit a set of Fundamental diagrams to the GPLs of the examined 
network and identify their parameters. Once the parameters are defined, the proposed 
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implementation methodology requires the demand signal for typical weekdays during peak 
hours. In a more refined implementation of the model demand signal derived from a 
simulation experiment would take into account the expected density reduction of the GPLs 
in response to the HOT lane’s implementation. This process lies heavily on the selection of 
the demand input provided to the model in order to output advisory designs. A large 
number of typical weekdays should be used in the input matrix of this methodology so that 
a broad spectrum of traffic patterns can be considered towards defining the OLCR. Finally, 
after the input is defined and the simulation is performed engineers will need to provide a 
desired percentage of the drivers sample that they aim in providing service for. 
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Figure 110. Monte Carlo sampling methodology 

Sampling distributions 
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Each vehicle in the sequence was assigned a random set of driver characteristics. 
Distributions for these were derived either from the literature or from observations. Table 
15 summarizes the selected distributions. 
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Table 15. Sampling distributions 

Parameter Distribution 
Follower Empirical distribution for the examined 
headway location 
Leader Empirical distribution for the examined 
headway location 
Platoon size Empirical distribution for the examined 

location 
Reaction time Truncated Normal (1.01,0.37) seconds 

 (Johansson et al. (1971)) 
Acceleration Normal (5.6,1) feet/sec^2 
rate  (Gipps (1981)) 
Deceleration 2 * Acceleration rate 
rate (Gipps (1981)) 
CDP Normal(35,2.25) feet 

(observation) 
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representation of the model is presented in Figure 111. 

 
Figure 111. Shockwave propagation model structure 
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was satisfied. If the sampling process did not result in a traffic stream with corresponding 
density within the desired region, the step was repeated until the condition was satisfied.  
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Figure 112. Example space and speed trajectories for seven vehicles 
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From the set of collected gaps for each driver, it rejected all but one, the one that was finally 
accepted. In this study the turn light indicator was used to signal the intention of the driver 
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to make a lane change. Therefore, all gaps after the indicator light started flashing are 
considered gaps of interest.  Following all the rejected gaps, the final one was accepted and 
the driver joined traffic on the HOT. Gaps were measured each time between the rear of the 
front vehicle and the rear of the following vehicle. In that way, each time one vehicle length 
was included.  

The measured gaps were the ones related to the lane changing maneuver and included 
gaps that the driver rejected before changing lane and finally the gap that he accepted and 
joined traffic on the HOT lane. The clips that were analyzed only included cases that 
vehicles joined the traffic on the HOT lane. Totally 116 gaps were measured and 55 of them 
were accepted. Additionally, the relative speeds of the subject vehicle as well as the speed 
of the vehicles on the HOT were extracted.  

The selected model is a logit model and the steps of selecting are following the process 
described in Chapter 6. After interpreting the fitting results for this model the number of 
rejected gaps was proved to be statistically insignificant as can also be seen from Table 16. 
Intuitively this can be explained from the fact that in the examined cases drivers decide not 
to allow their impatience to affect the risk of their selection and could be attributed to the 
high speed differential between the HOT lane and the adjacent lane. 

Table 16. Fitting results for the 1 model 

 Estimate Std. Error z value Pr(>|z|) 
(Intercept) -3.0885 1.07851 -2.864 0.00419 
gap 1.89607 0.35074 5.406 6.45E-08 
Rejected before 0.23141 0.34389 0.673 0.50099 
Relative speed -0.0831 0.02926 -2.839 0.00453 

 

Since the number of rejected gaps was not statistically significant the fitted model is 
described by Equation 16 while the results of the fitting process are aggregated in Table 17. 
After removing the third parameter of the model it can be seen that the coefficients that 
correspond to the other two parameters of the model experienced a minor change. Figure 
113 presents the surface described by the fitted model. 

Pr�𝑔𝑎𝑝 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑�𝑔𝑎𝑝, 𝑣𝑑𝑖𝑓) = 𝑒(−2.895+1.925∗𝑔𝑎𝑝−0.085∗𝑣𝑑𝑖𝑓)

1 + 𝑒(−2.895+1.925∗𝑔𝑎𝑝−0.085∗𝑣𝑑𝑖𝑓)        (Eq. 16) 

Table 17. Fitting results for the gap acceptance model 

 Estimate Std. Error z 
value 

Pr(>|z|) 

(Intercept) -2.895 1.01128 -2.863 0.0042 
gap 1.92532 0.35553 5.415 6.12E-08 
relative.speed -0.085 0.02944 -2.888 0.00388 
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It can also be seen that the parameter β1 that corresponds to the size of the gap has a 
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Figure 113. Surface plot of gap acceptance model 
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describes the speed drop while the constraints were derived from the collected video 
recordings. The resulting formulation is: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝜇,𝜎)        𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐, 

𝐿𝑏𝜇 ≤ 𝜇 ≤ 𝑈𝑏𝜇 

𝐿𝑏𝜎 ≤ 𝜎 ≤ 𝑈𝑏𝜎  

where f(μ,σ) is the resulting test statistic for a given mean μ and variance σ of the 
distribution describing the speed drop.  

Other parameters of the model such as the Comfort Deceleration Parameter, the 
deceleration rate and the amount of additional deceleration that drivers implement after 
the Comfort deceleration Parameter is violated, were calibrated based on observations and 
the process did not appear to be very sensitive to their selection.  

The Comfort Deceleration Parameter is stochastic and was assumed to be normally 
distributed with a mean of 35 feet and a variance of 2.25. The parameters of the 
distribution were based on observations obtained during the two days in December 2011 
and January 2012 and can be considered as part of the calibration process.  

The acceleration is deterministic and is derived from the average acceleration capabilities 
of a vehicle, as used in previous simulation experiments. Finally, the amount of additional 
deceleration was 50 % higher than the one assigned originally. The increase by 50 % was 
once again based on observations as derived from the recordings in December and January. 

In the case of speed drop, calibrating the parameters of the distribution was based on the 
described optimization problem. The results of this simulation experiment were sensitive 
even to the slightest changes in the speed drop distribution and this justifies the additional 
amount of effort placed on the calibration of the used distribution. 

The problem was solved in MATLAB using the command fmincon of the optimization 
toolbox. fmincon(fun,x0,A,b) starts at x0 and finds a minimum x to the function described 
in fun subject to the linear inequalities A*x <= b. For the problem described above the 
resulting matrices A and b are: 

𝐴 =  �

−1 0
1 0
0 −1
0 1

� , 𝑏 =  

⎝

⎛

−𝐿𝑏𝜇
𝑈𝑏𝜇
−𝐿𝑏𝜎
𝑈𝑏𝜎 ⎠

⎞ 

while x0 is a vector with our initial guesses for the mean and the variance of the 
distribution which were a result of a trial and error process. The results obtained for the 
parameters of the speed drop distribution are summarized in Table 18. 
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Table 18. Speed drop calibrated parameters 

Segment Mean (miles/hour) Variance (miles/hour) 
6091|608 NB 38.7 4.5 
6130 SB 34 4.9 
6101 SB 37 2.45 

Achieving increased demand levels 
After the proposed model was successfully calibrated to describe shockwave propagation 
on all the selected locations, an investigation of wave propagation at artificially increased 
density levels was conducted. The purpose of this task was to evaluate safety conditions on 
the HOT lane for scenarios that the operation strategy of the HOT lane allowed more 
vehicles in the facility or operated for a longer period of time at the predefined density 
boundary of the pricing algorithm.  

The operation strategy on the examined location is controlled by a pricing algorithm that is 
designed so that traffic on the HOT lane is kept below a threshold density level by changing 
the cost of use for the HOT lane. In that way, for more than 90 % of the time of lane 
operation time speeds are larger than 45 miles per hour. In this section, an estimate of 
shockwave length distributions will be produced for density levels slightly over 29 vehicles 
per mile so that the behavior of the network at the limit can be described. 

First a mechanism was developed in order to create a realistic traffic flow representation at 
the desired demand levels. Starting with headways corresponding to uninterrupted 
conditions (between 15 and 25 vehicles per mile) a sequence of 100 vehicles was created 
with the same sampling process as described in a previous section. Once again the 
simulated sequence had to fulfill the density region condition and the corresponding 
density had to be within the region of 15 and 25 vpm.  

The difference between the corresponding density of the sequence and the target density 
was then transformed into a desired reduction in seconds based on the speed of the 
sequence. In that way, the aggregated reduction for the sampled headways was computed. 
The corresponding speed of the increased density levels was assigned to all the vehicles of 
the stream. 

The mechanism that was developed for this task was simple yet effective and was based on 
a scoring system that achieved the desired aggregated reduction iteratively. After 
implementing a uniform decrease by 10% in all headways of the sequence, their “score” 
was computed by assigning 5 points for each second of the headway size and subtracting 2 
points for each vehicle ahead of the selected headway in the platoon. After the “score” for 
all the headways in the sequence was computed the headway with the maximum score was 
reduced by 10 % and after that the “score” was again computed for all headways. This 
process was repeated until the desired density was achieved. 
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Results 
In this section results of all the steps describ
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Figure 114. Validation results 
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Figure 115. Shockwave length histogram and density region validation 

Figure 116, Figure 117, Figure 118 and Figure 119 present the obtained histograms for the 
various density levels that the location was tested for. In that way first the density region 
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of the region. The same process was also repeated for an increase of 75 %, 100 % and 150 
%. 

 
Figure 116. Resulting shockwave histogram for 50 % increase in density 
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Figure 117. Resulting shockwave histogram for 75 % increase in density 

 

 
Figure 118. Resulting shockwave histogram for 100 % increase in density 

 

 
Figure 119. Resulting shockwave histogram for 150 % increase in density 
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It can be seen that for the uninterrupted initial conditions and the smallest of the tested 
increased demand levels (50 %), the resulting histograms depict an exponential 
distribution governed by the random character of the event. By further increasing the 
demand and shrinking the car-following distances a second peak in the distribution can be 
seen in the range of 30 to 50 vehicles. This is a concerning observation since shockwaves 
that are great in length have a great probability in resulting in a crash.  

The observed peak is achieved at densities in the region of 35 vpm (LOS D) which cannot 
be reached under the current operational strategies. Another interesting observation is 
that by operating the facility for longer time at the boundary (29 vpm) would not affect 
safety significantly, a fact that can also be supported by observing Figure 116, Figure 117 
and Figure 118. Finally, after density obtains values of 40 vpm the facility exceeds its 
boundary and all vehicles in the stream experience the disturbance (Figure 119). 

The comparison between the various levels is illustrated in Figure 120 and Figure 121 by 
comparing the corresponding cumulative distribution function and the corresponding 
boxplots. It can be seen that for small increases reaching the operational boundary of the 
facility the length of the shockwaves does not reach concerning values while after the 
boundary it appears to become unstable and this results in the observed second peak of the 
simulated distributions.
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Figure 120. Boxplots of simulated shockwave lengths 

116 
 



 
Figure 121. Cumulative distribution functions of simulated shockwave lengths 
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Southbound between 82nd and 86th and between 86th and 90th 
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the simulated wave lengths and the density region validation. Once again in order to make 
conclusions about the simulated results the two sample Kolmogorov Smirnov was used. 

 
Figure 122. Validation results 

 

 
Figure 123. Shockwave length histogram and density region validation 

 

Figure 124, Figure 125, Figure 126 and Figure 127 present the obtained histograms for the 

Most of the simulated streams had a corresponding density closer to the lower bound of 
the region. 
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Figure 124. Resulting shockwave histogram for 50 % increase in density 

 
Figure 125. Resulting shockwave histogram for 75 % increase in density 

 
Figure 126. Resulting shockwave histogram for 100 % increase in density 
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Figure 127. Resulting shockwave histogram for 150 % increase in density 
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Figure 128. Boxplots of simulated shockwave lengths 
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Figure 129. Cumulative distribution functions of simulated shockwave lengths 
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lengths at a 90% confidence interval but it was concluded that the ability of the model to 
describe the observations was satisfactory. 

 
Figure 130. Validation results 

 

 
Figure 131. Shockwave length histogram and density region validation 
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Figure 132. Resulting shockwave histogram for 50 % increase in density 

 

 
Figure 133. Resulting shockwave histogram for 75 % increase in density 
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Figure 134. Resulting shockwave histogram for 100 % increase in density 

 

It can be seen that the resulting histograms, for the uninterrupted initial conditions and the 
smallest of the tested increased demand levels (50 %), result in an exponential shape 
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Figure 135. Boxplots of simulated shockwave lengths 
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Figure 136. Cumulative Distribution Functions of simulated shockwave lengths 
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9. Conclusion 
This study focused on operational and design features of HOT lanes. HOT lanes’ mobility 
and safety are heavily contingent on the design of zones (“gates”) that drivers can use to 
merge in or out of the facility.  During high demand periods, due to the increased friction in 
these locations, a large speed differential can be observed between the HOT lane and its 
adjacent lane. Existing methodologies for the design of access zones are limited to 
engineering judgment or studies that take into consideration an undersized sample of 
observations. Case in point is the fact that the design philosophes between the two HOT 
facilities in Minnesota are diametrically opposed. Specifically, the I-394 freeway, the first 
dynamically priced HOT lane, was designed with a closed access philosophy, meaning that 
for the greater length of the roadway access to the HOT lane is restricted with only specific 
short-length sections where access is allowed. In contrast I-35W, the second HOT corridor, 
was designed with an open access philosophy where lane changes between the HOT and 
the GPLs are allowed everywhere except for a few specific locations. Naturally this 
contradiction generates questions as to which design method is better and more 
importantly what are the safety and mobility considerations in each case. 

This project was established to investigate these considerations. The approach followed 
aimed to observe traffic patterns, selecting ones that can serve as quantifying 
measurements for mobility and safety. Shockwaves were selected to serve as these 
surrogate measures. Specifically, shockwave characteristics like frequency and length were 
utilized as surrogates for mobility and safety. Shockwave length was selected as a 
surrogate of safety based on the assumption that the more vehicles involved in a slow-and-
go maneuver, the higher the possibility a driver will fail to react in a timely manner. 
Shockwave frequency was selected as a surrogate for mobility under the assumption that 
the more frequent such cycles are, the greater the impact on the HOT lanes average speed 
and travel time. 

The two facilities of I-394 and I-35W have been operating with no great safety or 
operational concerns; therefore, this study utilized the patterns of shockwave activity to 
uncover differences between the two design philosophies and potentially uncover areas of 
improvement now or in the future. With the help of MnDOT’s Regional Traffic Management 
Center surveillance infrastructure combined with the advanced detection and 
measurement capabilities of the Minnesota Traffic Observatory (MTO), the length and 
breadth of the two corridors was observed and analyzed. Finally focusing on specific 
locations of interest, this study showed that traffic on both HOT facilities can be disrupted 
by deteriorating conditions on the adjacent GPL although in the current levels of HOT lane 
utilization such disruptions are minimal. Specifically, the average size of observed 
shockwaves in any location did not exceed four vehicles with maximums not exceeding 15 
vehicles. Although not directly related, observations on the high crash area on I-94 have 
shown that for the probability of crash to increase to levels requiring attention, 
shockwaves of 25 vehicles or more are needed. 

It is difficult to compare the two design philosophies because they were designed to serve 
the needs of two distinct roadways. I-394 is operating very well with the closed access 
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design mainly because the majority of the demand originates from three specific 
interchanges, I-494, TH-169, and TH-100. The rest of the ramps, comparatively speaking, 
have much lower demands. As illustrated in this report, this is not the case on I-35W. The 
interchange density is much higher with entrance ramps very closely spaced and with the 
majority of those ramps carrying large numbers of HOT eligible vehicles. It would have 
been very difficult to follow a closed access design on I-35W and preserve the current level 
of service to the users. Therefore, given the results presented in this report, it would have 
made little difference in terms of mobility and safety. 

The second objective of this study was to develop methodologies that address design issues 
related to forthcoming and existing HOT facilities. Two such methodologies were 
developed.  The first methodology targeted forthcoming HOT facilities that adopt a closed 
access philosophy and formed the basis for a software tool capable of defining the OLCRs. 
The methodology is capable of defining the OLCRs on forthcoming HOT facilities with 
respect to the positions of entrance or exit ramps. Although the OLCR methodology and 
tool is primarily useful during the design stage of a HOT, the second tool focuses on existing 
HOT facilities that follow an open access philosophy and supports operational decisions to 
allow or restrict access for locations that have been or will reach their operational 
boundary in the near future. In particular, a shockwave propagation model was developed 
and captured the shockwave activity on three selected locations of interest on I-35W. After 
the model was calibrated to reproduce shockwave activity (shockwave lengths) at current 
traffic conditions, the same activity was reproduced for future demand levels until the 
examined facilities reached their operational boundary. The results support the validity of 
the process as the model replicated the distributions of shockwave lengths even at a 90% 
confidence interval. The developed mechanism was able to force the examined locations up 
to the boundary by increasing the density of the simulated streams. The boundary was 
identified as the point in the density domain that the entire simulated stream experienced a 
disturbance after it was introduced. 

The developed methodologies were derived so that their transferability is not affected, and 
hence they can potentially be used by agencies to design HOT lanes without compromising 
mobility or safety. Both methodologies were driven by an extensive and diverse data 
collection process and validated against actual observations. 
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The following Matlab code represents the tool for the optimal lane changing region 
estimation.  Two sets of data are required input: 1) time series information for each lane of 
the section starting about 500 feet upstream of the merge area describing the evolution of 
density in 5-minute increments, and 2) the parameters of a Greenshields fitted 
fundamental diagram for each lane based on several days’ worth of volume and density 
measurements.  After these two sets of data are read in, the script iterates internally to 
generate traffic streams and create trajectories for vehicles seeking to enter the HOT lane.  
The script terminates when sufficient sample trajectories have been generated such that 
the distribution of trajectory lengths is stable. The function outputs histogram data of 
trajectory lengths.  All simulated trajectories are binned into 50-foot groups up to roughly 1 
mile in length. 

% Code for determining gate locations for closed access design 
% ----------------------------------------------------------------------------- 
% Inputs to the program: 
% LaneDensityTimeSeries.xlsx – Density (veh/mi/lane) for each lane in 5-minute blocks 
% FDparam.xlsx – Fundamental diagram parameters for each lane: freeflow speed and jam density 
% ----------------------------------------------------------------------------- 
 
% Create Blocks of iterations and check with the two sample Kolmogorov- 
% Smirnov Test about the stability of the outputted distribution 
total = 0; 
blockiter = 0; 
densevol1 = xlsread(‘LaneDensityTimeSeries.xlsx'); 
serend = length(densevol1); 
kappa = 1; 
 
for kappa = 1:max(serend) 
    h = 1;  
    clearvars blockiter 
    blockiter = 0; 
    while h > 0; 
        blockiter = blockiter + 1;    
        % Load Fundamental diagram parameters 
        fdparam = xlsread('FDparam.xlsx'); 
        fdparam1 = fdparam(1,:); 
        fdparam2 = fdparam(2,:); 
        fdparam3 = fdparam(3,:); 
        fdparam4 = fdparam(4,:); 
        fdparamhot = fdparam(5,:); 
        % Constructing the other lanes time series and rimming the over capacity states 
        density(:,1:5) = densevol1(kappa,1:5); 
 
        % Trimming the over capacity values && Define speeds for all intervals 
        a = 1; 
        b = 3000; 
        dso = size(density); 
        for i = 1:dso(1) 
            for f = a:b; 
                speeds(f,1) = 1.4667*(fdparam1(1,1) - fdparam1(1,1)/fdparam1(1,2)* density(i,1)); 
            end 
            a = a + 3000; 
            b = b + 3000; 
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        end 
        a = 1; 
        b = 3000; 
        for i = 1:1:dso(1) 
            for f = a:b; 
                speeds(f,2) = 1.4667 * (fdparam2(1,1) - fdparam2(1,1)/fdparam2(1,2)* density(i,2)); 
            end 
            a = a + 3000; 
            b = b + 3000; 
        end 
        a = 1; 
        b = 3000; 
        for i = 1:1:dso(1) 
            for f = a:b; 
                speeds(f,3) = 1.4667 * (fdparam3(1,1) - fdparam3(1,1)/fdparam3(1,2)* density(i,3)); 
            end 
            a = a + 3000; 
            b = b + 3000; 
        end 
        a = 1; 
        b = 3000; 
        for i = 1:1:dso(1) 
            for f = a:b; 
                speeds(f,4) = 1.4667 * (fdparam4(1,1) - fdparam4(1,1)/fdparam4(1,2) * density(i,4)); 
            end 
            a = a + 3000; 
            b = b + 3000; 
        end 
        a = 1; 
        b = 3000; 
        for i = 1:1:dso(1) 
            for f = a:b; 
                speeds(f,5) = 1.4667*(fdparamhot(1,1) - fdparamhot(1,1)/fdparamhot(1,2)* density(i,5)); 
            end 
            a = a + 3000; 
            b = b + 3000; 
        end 
 
        % set the counters for matrix construction 
        residtrim = zeros(5,1); 
        legbeg = ones(5,1); 
        legennd = zeros(5,1); 
        timecount = zeros(5,1); 
 
        % Generate headways for the whole time series 
        for i = 1:dso(1) 
            %Lane1 
            intervln1 = procdecfun(density(i,1),residtrim(1,1),fdparam1); 
            legennd(1,1) = legennd(1,1) + length(intervln1) - 1; 
            headway(legbeg(1,1):legennd(1,1),1,1) = round(intervln1(1:(end-1),1)*10)/10; 
            legbeg(1,1) = legennd(1,1) + 1; 
            residtrim(1,1) = intervln1(end,1); 
 
            %Lane2 
            intervln2 = procdecfun(density(i,2),residtrim(2,1),fdparam2); 
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            legennd(2,1) = legennd(2,1) + length(intervln2) - 1; 
            headway(legbeg(2,1):legennd(2,1),2,1) = round(intervln2(1:(end-1),1)*10)/10; 
            legbeg(2,1) = legennd(2,1) + 1; 
            residtrim(2,1) = intervln2(end,1); 
 
            %Lane3 
            intervln3 = procdecfun(density(i,3),residtrim(3,1),fdparam3); 
            legennd(3,1) = legennd(3,1) + length(intervln3) - 1; 
            headway(legbeg(3,1):legennd(3,1),3,1) = round(intervln3(1:(end-1),1)*10)/10; 
            legbeg(3,1) = legennd(3,1) + 1; 
            residtrim(3,1) = intervln3(end,1); 
 
            %Lane4 
            intervln4 = procdecfun(density(i,4),residtrim(4,1),fdparam4); 
            legennd(4,1) = legennd(4,1) + length(intervln4) - 1; 
            headway(legbeg(4,1):legennd(4,1),4,1) = round(intervln4(1:(end-1),1)*10)/10; 
            legbeg(4,1) = legennd(4,1) + 1; 
            residtrim(4,1) = intervln4(end,1); 
 
            %Lane5 
            intervln5 = procdecfun(density(i,5),residtrim(5,1),fdparamhot); 
            legennd(5,1) = legennd(5,1) + length(intervln5) - 1; 
            headway(legbeg(5,1):legennd(5,1),5,1) = round(intervln5(1:(end-1),1)*10)/10; 
            legbeg(5,1) = legennd(5,1) + 1; 
            residtrim(5,1) = intervln5(end,1); 
        end 
        % After the initial conditions are defined create a sequence and assign a time stamp 
        timedim = cumsum(headway)*10; 
        timedim = round(timedim); 
        stdev1 = 3; 
        horiz = 5*60*10;% define the length of the time 
        timecount = 0; 
        thres = exprnd(1,[1000,5]); 
 
        % Lane 1 massive trajectory generation 
        b = 1; 
        for i = timedim(1,1):(horiz-200) 
            if timedim(b,1) == i 
                Xone(i-1,b,1) = 10; 
                speed1(1,b) = speeds(i,1) + 10; 
                % Select a region around the macro speed and let the individual speeds fluctuate around it. 
                while (speed1(1,b) >= speeds(i,1) + stdev1 || speed1(1,b) <= speeds(i,1) - stdev1) 
                    speed1(1,b) = normrnd(speeds(i,1),3); 
                end     
                b = b + 1;  
            end 
            % update the X matrix based on the assigned speeds 
            dimone = size(Xone); 
            Xone(i,:,1) = Xone(i-1,:,1) + 0.1 * speed1(1,:); 
 
            % match the speed of the proceeding vehicles if we have the chance of a collision 
            for kl = 2:(dimone(2)) 
                if abs(Xone(i,kl,1) - Xone(i,kl-1,1)) <= thres(kl,1) * (speed1(1,kl)+speed1(1,kl-1))/2; 
                    speed1(1,kl) = speed1(1,kl-1); 
                end 
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            end 
        end 
 
        % Lane 2 massive trajectory generation 
        b = 1; 
        for i = timedim(1,2):(horiz-200) 
            if timedim(b,2) == i 
                Xtwo(i-1,b,1) = 0; 
                speed2(1,b) = speeds(i,2) + 10; 
                    % Select a region around the macro speed and let the individual speeds fluctuate around it. 
                while (speed2(1,b) >= speeds(i,2) + stdev1 || speed2(1,b) <= speeds(i,2) - stdev1) 
                        speed2(1,b) = normrnd(speeds(i,2),3); 
                    end     
                b = b + 1; 
            end 
            % update the X matrix based on the assigned speeds 
            dimone = size(Xtwo); 
                    Xtwo(i,:,1) = Xtwo(i-1,:,1) + 0.1 * speed2(1,:); 
 
                % match the speed of the proceeding vehicles if we have the chance of a collision 
                for kl = 2:(dimone(2)) 
                    if abs(Xtwo(i,kl,1) - Xtwo(i,kl-1,1)) <= thres(kl,2) *(speed2(1,kl)+speed2(1,kl-1))/2; 
                        speed2(1,kl) = speed2(1,kl-1); 
                    end 
                end 
        end 
 
        % Lane 3 massive trajectory generation 
        b = 1; 
        for i = timedim(1,3):(horiz-200) 
            if timedim(b,3) == i 
                Xthree(i-1,b,1) = 0; 
                speed3(1,b) = speeds(i,3) + 10; 
                % Select a region around the macro speed and let the individual speeds fluctuate around it. 
                while (speed3(1,b) >= speeds(i,3) + stdev1 || speed3(1,b) <= speeds(i,3) - stdev1) 
                    speed3(1,b) = normrnd(speeds(i,3),3); 
                end     
                b = b + 1; 
            end 
            % update the X matrix based on the assigned speeds 
            dimone = size(Xthree); 
                    Xthree(i,:,1) = Xthree(i-1,:,1) + 0.1 * speed3(1,:); 
 
                % match the speed of the proceeding vehicles if we have the chance of a collision 
                for kl = 2:(dimone(2)) 
                    if abs(Xthree(i,kl,1) - Xthree(i,kl-1,1)) <= thres(kl,3) *(speed3(1,kl)+speed3(1,kl-1))/2; 
                        speed3(1,kl) = speed3(1,kl-1); 
                    end 
                end 
        end 
 
        % Lane 4 massive trajectory generation 
        b = 1; 
        for i = timedim(1,4):(horiz-200) 
            if timedim(b,4) == i 
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                Xfour(i-1,b,1) = 0; 
                speed4(1,b) = speeds(i,4) + 10; 
                    % Select a region around the macro speed and let the individual speeds fluctuate around it. 
                    while (speed4(1,b) >= speeds(i,4) + stdev1 || speed4(1,b) <= speeds(i,4) - stdev1) 
                    speed4(1,b) = normrnd(speeds(i,4),3); 
                    end     
                b = b + 1; 
            end 
            % update the X matrix based on the assigned speeds 
            dimone = size(Xfour); 
                    Xfour(i,:,1) = Xfour(i-1,:,1) + 0.1 * speed4(1,:); 
 
                % match the speed of the proceeding vehicles if we have the chance of a collision 
                for kl = 2:(dimone(2)) 
                    if abs(Xfour(i,kl,1) - Xfour(i,kl-1,1)) <= thres(kl,4) *(speed4(1,kl)+speed4(1,kl-1))/2; 
                        speed4(1,kl) = speed4(1,kl-1); 
                    end 
                end 
        end 
 
        % Lane 5 massive trajectory generation 
        b = 1; 
        for i = timedim(1,5):(horiz-200) 
            if timedim(b,5) == i 
                Xfive(i-1,b,1) = 0; 
                speed5(1,b) = speeds(i,5) + 10; 
                    % Select a region around the macro speed and let the individual speeds fluctuate around it. 
                    while (speed5(1,b) >= speeds(i,5) + stdev1 || speed5(1,b) <= speeds(i,5) - stdev1) 
                    speed5(1,b) = normrnd(speeds(i,5),3); 
                    end     
                b = b + 1; 
            end 
            % update the X matrix based on the assigned speeds 
            dimone = size(Xfive); 
                    Xfive(i,:,1) = Xfive(i-1,:,1) + 0.1 * speed5(1,:); 
 
                % match the speed of the proceeding vehicles if we have the chance of a collision 
                for kl = 2:(dimone(2)) 
                    if abs(Xfive(i,kl,1) - Xfive(i,kl-1,1)) <= thres(kl,5) *(speed5(1,kl)+speed5(1,kl-1))/2; 
                        speed5(1,kl) = speed5(1,kl-1); 
                    end 
                end 
        end 
        disp('General Purpose lanes trajectory extraction completed') 
 
        %% start dropping vehicles from the ramp 
        a = 1; 
        b = 1; 
        Tveh1(200,1) = 1; 
        Tveh2(199,1) = 300; 
        tou = zeros(5,5000); 
        testspeed(2:6,1) = speeds(1,1:5) + 10; 
        % Select a region around the macro speed and let the individual speeds fluctuate around it. 
        for i = 2:6 

A-5 
 



            while (testspeed(i,1) >= (speeds(200,i-1) + stdev1) || testspeed(i,1) <= speeds(200,i-1) - stdev1 && 
testspeed(i,1) >= speeds(200,i-1)) 
                testspeed(i,1) = normrnd(speeds(200,i-1),2); 
            end     
        end 
 
        % Unimodal TAP 
        flat = [-1;-1;-1;-1;-1]; 
        while flat <= 1 
            flat = normrnd(0,2.2,[5,1]); 
        end 
 
        reac(1:5,1) = round(flat * 10); 
 
        % Sample a vehicle length for the test vehicle 
        g = randi([1 100]); 
        perclan = [52 95 100]; 
        if g <= perclan(1); 
            testlength(1) = 14; 
        elseif perclan(1) < g <= perclan(2); 
            testlength(1)= 17; 
        elseif  perclan(2) < g <= perclan(3) 
            testlength(1) = 40; 
        end 
 
        upbod(1) = testspeed(2,1); 
        testspeed(1,1) = 10 * 1.4667; 
 
        for i = 200:(horiz-200) 
            for k = a:b;  
                clear targpos gap 
 
                % Time on lane 0 
                if (Tveh1(i,k) == 1 && tou(1,k) == 0) 
                    if testspeed(1,k) >= upbod(k) 
                    Tveh2(i,k) = Tveh2(i-1,k) + testspeed(1,k) * 0.1; 
                    else  
                        Tveh2(i,k) = Tveh2(i-1,k) + testspeed(1,k) * 0.1 + 0.5 * 7 * 0.01; 
                        testspeed(1,k) = testspeed(1,k) + 0.1 * 7;   
                    end 
                    targpos(:,1) = Xone(i,:)'; 
                    targpos(targpos == 0) = []; 
                    gap = leadlag(targpos,Tveh2(i,k),testlength(k)); 
                        % Gap acceptance for lane 1 
                            gappacc = gapeval(gap,speeds(i,1)/1.4667,testspeed(1,k)/1.4667); 
                            % If the gap is accepted 
                            if gappacc >= 0.5; 
                               % Find the time that the lane change will take after the driver accepts a gap. 
                               lagt = 20; 
                               while (lagt >= 10 || lagt<=1); 
                               lagt = normrnd(2.8,0.6); 
                               end 
                               lagt = round(lagt*10); 
                               for p = 1:lagt 
                                   Tveh1(i+p,k) = 1; 
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                                   Tveh2(i+p,k) = Tveh2(i+p-1,k) + 0.1 * testspeed(1,k); 
                               end 
                               tou(1,k) = 1; 
                               Tveh1(i+p+1,k) = 2; 
                            else Tveh1(i+1,k) = 1; 
                            end 
 
                % Time on lane 1 
                elseif  (Tveh1(i,k) == 2 && tou(2,k)==0); 
                    Tveh2(i,k) = Tveh2(i-1,k) + testspeed(2,k) * 0.1; 
                    targpos(:,1) = Xtwo(i,:); 
                    targpos(targpos == 0) = []; 
                    gap = leadlag(targpos,Tveh2(i,k),testlength(k)); 
                        % Gap acceptance for lane 2 
                            gappacc = gapeval(gap,speeds(i,2)/1.4667,testspeed(2,k)/1.4667); 
                            % Hold the vehicle for one reaction time before looking for a gap 
                            lad = Tveh1(:,k); 
                            lad = lad(lad == 2); 
                            if length(lad)<=reac(2,k) 
                                gappacc = 0; 
                            end 
                            % If the gap is accepted 
                            if gappacc >= 0.5; 
                               lagt = 20; 
                               while (lagt >= 10 || lagt <= 1); 
                               lagt = normrnd(2.8,0.6); 
                               end 
                               lagt = round(lagt*10); 
                               for p = 1:lagt 
                                   Tveh1(i+p,k) = 2; 
                                   Tveh2(i+p,k) = Tveh2(i+p-1,k) + 0.1 * testspeed(2,k); 
                               end 
                               tou(2,k) = 1; 
                               Tveh1(i+p+1,k) = 3; 
                            else Tveh1(i+1,k) = 2; 
                            end            
                % Time on lane 2            
                elseif  (Tveh1(i,k) == 3 && tou(3,k)==0); 
                    Tveh2(i,k) = Tveh2(i-1,k) + testspeed(3,k) * 0.1; 
                    targpos(:,1) = Xthree(i,:); 
                    targpos(targpos == 0) = []; 
                    gap = leadlag(targpos,Tveh2(i,k),testlength(k)); 
                        % Gap acceptance for lane 1 
                            gappacc = gapeval(gap,speeds(i,3)/1.4667,testspeed(3,k)/1.4667); 
                            % Hold the vehicle for one reaction time before looking for a gap 
                            lad = Tveh1(:,k); 
                            lad = lad(lad == 3); 
                            if length(lad) <= reac(3,k) 
                                gappacc = 0; 
                            end 
                            % If the gap is accepted 
                            if gappacc >=0.5; 
                               lagt = 20; 
                               while (lagt >= 10 || lagt<=1); 
                               lagt = normrnd(2.8,0.6); 
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                               end 
                               lagt = round(lagt*10); 
                               for p = 1:lagt 
                                   Tveh1(i+p,k) = 3; 
                                   Tveh2(i+p,k) = Tveh2(i+p-1,k) + 0.1 * testspeed(3,k); 
                               end 
                               tou(3,k) = 1; 
                               Tveh1(i+p+1,k) = 4; 
                            else Tveh1(i+1,k) = 3; 
                            end                     
                % Time on lane 3             
                elseif  (Tveh1(i,k) == 4 && tou(4,k)==0); 
                    Tveh2(i,k) = Tveh2(i-1,k) + testspeed(4,k)* 0.1; 
                    targpos(:,1) = Xfour(i,:); 
                    targpos(targpos == 0) = []; 
                    gap = leadlag(targpos,Tveh2(i,k),testlength(k)); 
                        % Gap acceptance for lane 1 
                            gappacc = gapeval(gap,speeds(i,4)/1.4667,testspeed(4,k)/1.4667); 
                            % Hold the vehicle for one reaction time before looking for a gap 
                            lad = Tveh1(:,k); 
                            lad = lad(lad == 4); 
                            if length(lad) <= reac(4,k) 
                                gappacc = 0; 
                            end 
                            % If the gap is accepted 
                            if gappacc >= 0.5; 
                               lagt = 20; 
                               while (lagt >= 10 || lagt<=1); 
                               lagt = normrnd(2.8,0.6); 
                               end 
                               lagt = round(lagt*10); 
                               for p = 1:lagt 
                                   Tveh1(i+p,k) = 4; 
                                   Tveh2(i+p,k) = Tveh2(i+p-1,k) + 0.1 * testspeed(4,k); 
                               end 
                               tou(4,k) = 1; 
                               Tveh1(i+p+1,k) = 5; 
                            else Tveh1(i+1,k) = 4; 
                            end     
                % Time on lane 4            
                elseif  (Tveh1(i,k) == 5 && tou(5,k)==0); 
                    Tveh2(i,k) = Tveh2(i-1,k) + testspeed(5,k)* 0.1; 
                    targpos(:,1) = Xfive(i,:); 
                    targpos(targpos == 0) = []; 
                    gap = leadlag(targpos,Tveh2(i,k),testlength(k)); 
                        % Gap acceptance for lane 1 
                            gappacc = gapeval(gap,speeds(i,5)/1.4667,testspeed(5,k)/1.4667); 
                            % Hold the vehicle for one reaction time before looking for a gap 
                            lad = Tveh1(:,k); 
                            lad = lad(lad == 5); 
                            if length(lad) <= reac(5,k) 
                                gappacc = 0; 
                            end 
                            % If the gap is accepted 
                            if gappacc >= 0.5; 
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                               lagt = 20; 
                               while (lagt >= 10 || lagt<=1); 
                               lagt = normrnd(2.8,0.6); 
                               end 
                               lagt = round(lagt*10); 
                               for p = 1:lagt 
                                   Tveh1(i+p,k) = 5; 
                                   Tveh2(i+p,k) = Tveh2(i+p-1,k) + 0.1 * testspeed(4,k); 
                               end 
                               tou(5,k) = 1; 
                               Tveh1(i+p+1,k) = 6; 
                            else Tveh1(i+1,k) = 5; 
                            end     
                % Reset the counters 
                elseif Tveh1(i,a) == 6 
                       a = a + 1; 
                end 
            end 
 
            if Tveh2(i-1,k) >= 500; 
                   b = b + 1; 
                   Tveh1(i+1,b) = 1; 
                   Tveh2(i,b) = 300; 
                   testspeed(2:6,b) = speeds(i,1:5) + 10; 
                   % Assign speed to the new vehicle for all the lanes 
                       for u = 2:6 
                           while (testspeed(u,b) >= (speeds(i,u-1) + stdev1) || testspeed(u,b) <= speeds(i,u-1) - stdev1 && 
testspeed(u,b) >= speeds(i,u-1)) 
                                  testspeed(u,b) = normrnd(speeds(i,u-1),2); 
                           end     
                       end 
                       upbod(b) = testspeed(2,b); 
                       testspeed(1,b) = 10 * 1.4667; 
 
                        % Unimodal TAP 
                       flat = [-1;-1;-1;-1;-1]; 
                                while flat <= 1 
                                flat = normrnd(0,2.2,[5,1]); 
                                end  
                       reac(1:5,b) = round(flat * 10); 
 
                   % Assign vehicle length 
                   g = randi([1 100]); 
                   perclan = [52 95 100]; 
                        if g <= perclan(1); 
                            testlength(b) = 14; 
                        elseif perclan(1) < g <= perclan(2); 
                            testlength(b)= 20; 
                        elseif  perclan(2) < g <= perclan(3) 
                            testlength(b) = 40; 
                        end 
           end 
        end 
 
        %% Counting the time spent on each lane 
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        marg = size(Tveh1); 
        a = 1; 
        for i = 1:marg(2) 
            totaldist(i,1) = max(Tveh2(:,i)) - 300; 
        testtraj = Tveh1(:,i); 
        testtraj(testtraj == 0) = []; 
            b = 0; 
            if max(testtraj) == 6; 
                for h = 1:length(testtraj) 
                  if testtraj(h,1) == a 
                     b = b + 1;   
                  else a = a + 1;  
                       increm(a-1,i) = b; 
                       b = 1; 
                  end  
                end 
            end 
            % Reset the counter 
            if a == 6; 
               a = 1; 
            end 
            clear testtraj 
        end 
        disp('End of Block')  
        disp(blockiter) 
        base = total(:,kappa); 
        base(base == 0) = []; 
        % Perform the 2 sample Kolmogorov Smirnov Test 
                if blockiter >= 2 
                    h = kstest2(base,[base;totaldist],0.95); 
                end 
                dim = length(totaldist) + length(base); 
        total(1:dim,kappa) = [base;totaldist]; 
        clearvars -except total h blockiter densevol1 kappa serend 
    end% end of while 
    clc 
    total = [total zeros(length(total),1)]; 
end % of second while 
 
final_list = total(:); 
out_data = histc(final_list,[50:50:5300]); 
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This second set of code covers the tool replicating shockwave generation at open access 
facilities.  Four sets of data are needed at the start: a sample list of platoon sizes 
representative of the HOV lane, a sample list of follower headways for vehicles within those 
platoons, and a sample list of leader headways for those platoons.  Using these lists of 
characteristics, traffic streams will be generated within the HOV lane. The fourth set of data 
is speed measurements on the HOT and the Adjacent PGL to identify the speed drop during 
the lane change.  Based on a gap acceptance model, a vehicle is inserted into the HOV lane 
to generate a shockwave.  The vehicles upstream react using kinematic relationships and 
the shockwave is tracked.  The function outputs histogram data based on the shockwaves 
observed, with counts for every shockwave length from 1 up to the maximum observed 
shockwave. 

% Code for determining high shockwave activity within open access system 
% ----------------------------------------------------------------------------- 
% Inputs to the program: 
% platoonsize.xlsx – List of platoon sizes representative of the HOV lane 
%  followerheadways.xlsx – List of headways for followers 
%  leaderheadways.xlsx – List of leader headways for platoons 
% speeddata.xlsx – List of speed measurements on the HOV and adjacent lanes when lane changes  
%    occur 
%  
% Outputs: 
% out_data – Histogram data of shockwave lengths  
% ----------------------------------------------------------------------------- 
 
% Code for estimating the length that a shockwave will propagate based on  
% empirical distributions. A Monte Carlo sampling process constructs a  
% sequence of vehicles based on the collected observations for the platoon  
% sizes and headways with respect to the platoon sizes. Kinematic equations  
% are the core of the experiment used in a new car following model. 
 
% Panagiotis Stanitsas / John Hourdos 
% University of Minnesota 
 
count = input('How many iterations would you like?           '); 
  
[~,~,all1] = xlsread('platoonsize.xlsx'); 
[~,~,all2] = xlsread('followerheadways.xlsx');  
[~,~,all3] = xlsread('leaderheadways.xlsx'); 
[~,~,all4] = xlsread('speeddata.xlsx'); 
  
for i = 1:length(all1); 
    platoonsize(i,1) = all1{i,1}; 
end 
 
for i = 1:length(all2); 
    for j = 1:7 
        sepfolhead(i,j) = all2{i,j}; 
    end 
end 
 
for i = 1:length(all3); 
    leaderheadway(i,1) = all3{i,1}; 
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end 
 
leaderheadway(leaderheadway == 0) = []; 
platoonsize(platoonsize > 7) = []; 
 
% The loop will terminate if one vehicle is not forced to decelerate. 
kkk = 2; 
test = 1; 
mntcr = 1; 
while test > 0; 
    b = 100; 
    disp(mntcr) 
    sequencelength = 0; 
    while b > 90; 
        b = normrnd(57,6); 
    end 
    gapthreshold(mntcr) = normrnd(0.8,0.05); 
    % Creating the initial matrices of zero to increase the speed of the experiment 
    hd = zeros(1,1); 
    maxacc = zeros(100,1); 
    maxdec = zeros(100,1); 
  
    vehlen = zeros(100,1); 
    X = zeros(1000,100); 
    V = zeros(1000,100); 
    decstoppoint = zeros(100,1); 
    accstoppoint = zeros(100,1); 
    rt = zeros(100,1); 
    rcomp = zeros(100,1); 
 
    %% Generating values for the model variables using distribution number generators 
    for i=1:100; 
        maxacc(i) = normrnd(5.6,0.3^2); 
        maxdec(i) = 2 * maxacc(i); 
        vehlen(i) = normrnd(18,1.5^2); 
        while rt(i) < 0.5 
            rt(i) = normrnd(1,0.3); 
        end 
        rcomp(i) = normrnd(35,1.5^2); 
    end 
  
    %% Sampling from the empirical distribution for proper headways and  
    % Creating the sequence of different platoons and assigning leader headways 
    sum = 1; 
    j = 1; 
    while sum <= 93; 
       plindex = randi(length(platoonsize),1,1); 
       platoon(j,1) = platoonsize(plindex,1); 
       ldhdindex = randi(length(leaderheadway),1,1); 
       hd(sum,1) = leaderheadway(ldhdindex,1); 
       if platoon(j,1) > 1; 
           for i = 2:platoon(j,1); 
               folheadcol = sepfolhead(:,i); 
               folheadcol(folheadcol == 0) = []; 
               flhdindex = randi(length(folheadcol),1,1); 
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               hd(sum + i-1,1) = folheadcol(flhdindex); 
           end 
       end 
       sum = sum + platoon(j,1); 
       j = j + 1; 
    end 
  
    % Aggregating headways 
    go = 0; 
    for i =1:length(hd) 
        go = go + hd(i,1); 
    end 
  
    % Corresponding macro measurements 
    flow = 3600 * length(hd) / go; 
    spacmeanspeed = 65 / 1.02; 
    density = flow / spacmeanspeed; 
     
    %% Introducing the disturbance at a point that is derived based on the gap selection model 
    accprob = 0; 
    kk = 0; 
    while accprob < gapthreshold; 
        kk = kk + 1; 
        accprob = gapacc(hd(kk),kk-1,b); 
    end 
  
    hd = hd(kk:length(hd),1); 
  
    %% Validating the sequence 
    if (density < 25 && density > 15) 
        %% Creating the leader's trajectory 
        densitystored(mntcr,1) = density; 
        densitystored(mntcr,2) = 15; 
        densitystored(mntcr,3) = 25; 
        X(1,1) = 1000; 
        V(1,1) = 95.3355; 
        % Point obtaining the minimum speed 
        minspeed = sampleSpeeds(all4); 
        decstoppoint(1) = round(10 * b/(0.5 * maxdec(1))); 
        accstoppoint(1) = round(10 * b/(maxacc(1))); 
  
        for i=2:1000; 
            % First 0.5 secs of undisturbed movement 
            if (i >= 1 && i <= 50); 
                    V(i,1)= V(1,1); 
            X(i,1)= X(i-1,1) + V(i-1,1)*0.1; 
            end 
            % Decelerating part 
            if (i > 50 && i <= 50 + decstoppoint(1)); 
                V(i,1) = V(i-1,1) - 0.5 * maxdec(1)*0.1; 
                X(i,1) = X(i-1,1) + V(i-1,1) * 0.1 - 0.5 * 0.5 * maxdec(1) * 0.1^2; 
            end 
            % Acelerating part 
            if (i > (50 + decstoppoint(1)) && i <= (50 + decstoppoint(1) + accstoppoint(1))); 
                V(i,1) = V(i-1,1) + maxacc(1)*0.1; 
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                X(i,1) = X(i-1,1) + V(i-1,1) * 0.1 + 0.5 * maxacc(1) * 0.1^2; 
            end 
            % Second linear part 
            if (i > 50 + decstoppoint(1) + accstoppoint(1)) 
                V(i,1) = V(i-1,1); 
                X(i,1) = X(i-1,1) + V(i-1,1)*0.1; 
            end  
        end 
 
        %% Creating the following vehicles trajectories according to kinematic equations. 
        agrt = 0; 
        h3 = 0; 
        i = 2; 
        while i < sum; 
            h1 = 0; 
            h2 = 0; 
            % Initial position for the following vehicle 
            V(1,i) = 95.3355; 
            X(1,i) = X(1,i-1) - hd(i) * 95.3355; 
            agrt = agrt + rt(i);    
            % 1st part of undisturbed movement 
            for j = 2:round(50 + agrt * 10);     
                V(j,i) = V(1,i); 
                X(j,i) = X(j-1,i) + V(j-1,i)*0.1; 
            end 
            % position at this point 
            secondvehpos = X(round(50 + agrt * 10),i);  
            % car following part beginning 
            decthres = maxdec(i-1); 
            for j = (round(50 + agrt * 10)+1):1000; 
                % Estimated position of the leader given the speed at the previous interval; 
                estposleader = X(j-1,i-1) + V(j-1,i-1) * 0.1; 
                estposfol = X(j-1,i) + V(j-1,i)*0.1; 
                % Implement the threshold deceleration 
                V(j,i) = V(j-1,i); 
                X(j,i) = X(j-1,i) + V(j-1,i) * 0.1; 
                % check if the follower needs to decelerate or accelerate; 
                if (estposleader-estposfol <= 3*rcomp(i) && estposleader-estposfol > rcomp(i) && V(j,i) > (V(j,i-1))); 
                    V(j,i) = V(j-1,i) - decthres * 0.1; 
                    X(j,i) = X(j-1,i) + V(j-1,i) * 0.1 - 0.5 * decthres * 0.1^2; 
                    h1 = 1; 
                elseif (estposleader - estposfol <= rcomp(i) && V(j,i) > (V(j,i-1)))  ; 
                    V(j,i) = V(j-1,i) - maxdec(i) * 0.1; 
                    X(j,i) = X(j-1,i) + V(j-1,i) * 0.1 - 0.5 * 1.5 * maxdec(i) * 0.1^2; 
                    h2 = 1; 
                % else check if the follower needs to accelerate 
                elseif (estposleader - estposfol > rcomp(i) && V(j,i) < (V(j,i-1))); 
                    V(j,i) = V(j-1,i) + maxacc(1) * 0.1; 
                    X(j,i) = X(j-1,i) + V(j-1,i) * 0.1 + 0.5 * maxacc(1) * 0.1^2; 
                elseif (V(j-1,i) >= V(1,1));  
                    V(j,i) = V(1,1); 
                    X(j,i) = X(j-1,i) + V(j-1,i) * 0.1;  
                end 
            end 
            i = i + 1; 
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            j = i; 
            if (h1 == 0 && h2 == 0) 
                wavelength(mntcr,1) = j-1; 
                meanwavelength(mntcr,1) = mean(wavelength); 
                i = sum + 1; 
            end 
        end 
 
        mntcr = mntcr + 1; 
        if mntcr == kkk * 300; 
            x1 = wavelength(1:(kkk-1)*300,1); 
            x2 = wavelength(:,1); 
            test = kstest2(x1,x2,0.95); 
            kkk = kkk + 1; 
            test = + test; 
        end 
    end 
end 
 
out_data = histc(wavelength,[0:(max(wavelength)+1)]); 
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