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Abstract 

Field studies and computer modeling (REDEQL2) were used to 

investigate the· transport of copper, nickel, cobalt and zinc 

through a bog-creek system receiving water impacted by mining op

erations e Field studies indicated that transport of nickel was 

greater than copper through both the bog (10-70% vs. 0-14%) 

and the stream (60-100% VSe 26-51%) e Aqueous and solid phase 

analyses indicate that metal removal resulted from adsorption 

onto peat, organic stream banks, and elastic sediments. Computer 

results are consistent with field results and further suggest that 

zinc would behave similar to nickel, and cobalt similar to copper .. 
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1. INTRODUCTION 

The transport of copper, nickel, and sulfate along a 4.3 km 

creek (Unnamed Creek) was studied using water quality samples, 

sedi.ment analyses, bog sampling and chemical equilibrium modeling. 

The study was conducted at the Erie Mining Company Dunka Site in 

northeastern Minnesota from July 1976 through August 1977 (Figure 1) .. 

Data collection continues in a joint program conducted by Erie 

Mining Company and the Minnesota Department of Natural Resources. 

Related information regarding regional background data, gabbro 

leaching, chemical·transport, stockpile hydrology, and stockpile 

revegetation is available in other references (1-12) . 

Trace metals in aquatic systems may be transported as free 

metals, or as inorganic or organic complexes., They may be chemically 

removed from solution by precipitation, coprecipitation, by adsorp-

tion onto inorganic or organic solids (Figure 2) , and by inorganic 

exchange reactions. Precipitating iron oxides may coprecipitate 

other trace metals by incorporating them into the solid matrix 

(21, 22).. Inorganic adsorptive surfaces include Si02 (13-18)" Mn02 

(19), Ti.02 (16, 17), and FeOx (20). The sequestration of aqueous 

trace metals by organic surfaces such as peat has also been documented 

in field (28-30) and laboratory studies (31-43). Aqueous trace 

metals can also exchange with metals present as sulfides of greater 

solubility (23-27), e g. 

~~ 2+ CuL ·(aq) + ZnS(s) = CuS(s) + Zn (1) 

1 
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2. 

Tt1e presence of soluble organics may increase or decrease 

trace metal adsorption (20)"' rrrace metal-organic interaction 

has been extensively studied and reviewed (44-46). The extent of 

reaction is dependent in part on pH and hardness (47,48). 

Researchers have attempted to model the chemistry of natural 

waters using laboratory experiments ( 49), and empirical and 

conceptual models (50, 51). Computer equilibrium models such as 

WATEQ2 (52), GEOCHEM (53), and REDEQL2 {54, 56) have also been 

employed, and the predictions of these programs compared (55). 

METHODS 

2 .. l Description of field study 

The inputs and creek monitoring stations along Unnamed Creek 

I 

• • 
IJ 
I 
11 

• 
I 
~ 

and characteristic data are presented in Figure 3, with more detailed IJ 
data in rrable 1.. The inputs included two waste rock pile seepages 

(EM-8, Seep 1), one lean ore pile seepage (Seep 3), two mine 

dewatering discharges (011, 012) and runoff from the watershed. 

The inputs flowed directly into the creek with the exception of 

the lean ore stockpile seepage (Seep 3) which first passed through 

a bog. The monitoring stations (EM-5, EM-3, EM-1) divided the 

creek into three segments prior to its discharge into Bob Bay of 

Birch Lake (Figures l, 3). 

Water quality was analyzed and flow measured at 11 sites 

along Unnamed Creek (Figure l). Routine water quality samples 

were collected biweekly-, although several special tudies were 

c·:mducted which required more intensive sampling ·;pendices II, 

IV). Continuous flow records were obtained for E EM3, EMS, 

and the 011 and 012 discharges. Staff readings w 

lea.r;.;t once e"...,'Cry two 'vveeks at the other sit.es. 
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Table 1. Me<lia."1 Values At Erie Sites, 1976-19771 

Site Q N S04 N 0..A N Ni N Co N z.., N pH N DOC N DIC N TALK N 

0112 n 14 0.004 14 0.005 14 
·,; 

EM-6 26.63 19 106 11 0.004 19 (}. 005 14 o.ooz l 0.003 1 7.70 19 9.4 14 17.9 13 94 18 

EM-8 4.82 34 1140 24 0.019 33· l.18 33 0.015 B 0.020 10 7 .29 ' 34 20.l 22 24.7 22 142 33 

EM-S 31.4 21 122 19 0.005 21 0.051 21 0.005 5 0.009 3 7.63 21 12.2 12 20.l 11 101 21 

Seep 3 2.10 25 1420 17 0.617 24 19.0 24 o.910 a 0.331 12 7.16 24 19.0 14 28.2 14 109 24 

™-3 93.4 26 155 25 0.003 28 0.110 27 0.002 3 0.009 2 7.65 27 10.S 17 19.8 16 96 27 

Seep 1 1.15 26 2470 20 0.018 27 1.10 27 0.130 9 0.249 13 6.95 27 28.0 16 25.2 15 98.8 27 

O'i 0122 250 7 <0.003 7 0.002 7 

f:M-4 4 14.Z 8 77.0 3 0.002 8 0.003 4 - 0 - 0 6.46 8 20.3 7 4.3 7 14.l 8 

B-1-2 2.62 14 335 13 0.005 14 0.042 14 0.002 l - 0 7.60 13 11.0 10 16.6 10 96.6 14 

FM-1 110 37 159 35 0.002 37 0.087 35 0.002 5 0.010 2 7.50 38 12.7 19 18.S 19 88.0 36 

l Q in liters/sec, concentrations in mg/l, DOC and DIC in mg/l as C, TALK in mg/t as Ca C03 

2 Data from Erie Mining Company 

3 Cala.ilated from data at :EM-8 and &i-5 

4 Serre sarples were influenced by the main stream flatr and may not be representat.i. '\ie 

·~ ·r .8' ·~ ·~ _. ,~ WM tm W!I "9 W!!! ·~ ~ .!!!f!, ~ ·~ W!!I .. ~ 
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elastic sediment samples were taken at four sites along 

the creek and at one site on the EM-2 tributary (Figure 4) . Or-

ganic samples were taken from the banks and bottom of the creek 

and its tributaries (Figure 3) and from the bog through which 

Seep 3 flowed (Figure 5). Methods are discussed in Appendices IX 

and X .. 

2. 2 Computer Mode ls 

I Chemical equilibrium models were generated using the REDEQL2 

1 .. · 
j 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

computer program (Morel and Morgan, 19 72; · modified by M. R. Hoffman 

of the University of Minnesota) . to investigate the chemical 

reactions involved in the transport process. The inputs included 

trace metals (Cu, Ni, Co, Zn, Fet Mn), major cations (Ca, Mg), 

inorganic ligands (C03, so 4 , Cl, OH), organic ligands (acetic, 

citric, tartaric, and phtalic acids, cysteine) and an adsorbing 

surface with the characteristics of silica. 

The chemical· composition of waters downstream from the chemical 

inputs is dependent upon: 

1) input concentrations 

2) the degree of dilution (or concentration, in the case of 

evaporation), and 

3) the net input or removal due to additional sources or 

chemical reactions~ 

Trace metals can be transported as free ions (e.g. Me 2+) or as 

inorganic or organic complexes. Removal from solution can occur 

as a result of cherni cal precipi tat.ion or adsorption on to inorganic 

(e.g. Si02) or organic (eog. peat) solid surfaces. The extent 

to which a given reaction occurs is dependent upon the chemistry 

7 
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3. 

of the individual metal, pH, alkalinity, the concentration of 

complexing organics and the 11 concentration 11 of adsorbing surfaces. 

The first two data sets considered complexation and precipi-

tation reactions but not adsorption. The input concentrations 

(Table 2) were intended to simulate conditions observed in runoff 

from was terock and lean ore stockpiles (Eger and Lapakko, 19 80) . 

Trace metal concentrations in the lean ore leachate were 16 to 80 

times that in the waste rock leachate. 

Six additional data sets were designed to simulate conditions 

downstream from a leachate input.. The model stockpile leachate 

concentrations were diluted to 1/2, 1/10, and 1/30 of their original 

JJ 

• 

values. These concentrations were input along with values characteris~ I 
tic of Unnamed Creek at EM-1 (pH 7 .. 5, CT= 100 mg/las CaC03, DOC= 14.4 

mg/l as C, pe 4.0) and an adsorbing surface (10 M2/1, Table 3). It 

was assumed that 10% of the DOC was capable of complexation (Hoffmann, 

1978).. This fraction of the DOC was divided a~ong the five model 

organics by allotting each compound an equal amount of carbon .. More 

detailed information on the computer models is presented in Appendix 

XII. 

RESULTS 

3.1 Field Results 

Mass balance calculations (Appendix II) indicated that vir

tually 100% of the sulfate, 16~~ of the nickel and 9% of the copper 

input was transported to the mouth of the Unnamed Creek (Figure 6) .. 

The bog downstream from the Seep 3 site removed the largest mass of 

10 

I 
IJ 

I 
I 
I 
I 
I 
I 

' ( 



I 
r 
I 
1; 

I, 
I 
I 
I 
I 
II 

Table 2 . REDEQL2 Input Data and Predicted 'Equilibrium Concentrations (mg/l) 

WASTE ROCK LEAN OFE 
LEACHATE LEACHATE 

INPUT 

so4 1680 
Cl 41.3 

Cu 0.053 
Ni 2.42 
Co 0.029 
Zn 0.040 

Fe 0.208 
Mn 2.85 
Cr 0 

Ca 200 
Mg 123 

DOC as c 2.09 
Ac as C * 0.42 
Cit as C * 0.42 
Tart as c * 0.42 
Cyst as C * 0.42 
Phth as C * 0.42 

Si02(m2/1)+ 0 
pH 7.4 
C03(as Ca co3) 137 
pE 4.0 

* mode 1 organics 

+ adsorbing surface 

EQUIL INPUT 

1680 2600 
41.3 56.7 

0.053 1. 71 
2.42 39.8 

0.029 2.40 
0.040 2.40 

0.096 7.19 
2.85 11.2 

0 0.123 

200 346 
123 268 

2.09 1. 88 
0.42 0.38 
0.42 0.38 
0.42 0.38 
0.42 0.38 
0.42 0.38 

0 0 
7.4 7.2 
137 79.4 
4.0 4.0 

Ac= acetic acid, Cit.= citric acid, 
tartaric acid, Phth = phthalic acid, 
cysteine 

11 

EQUIL 

2600 
56.7 

0.275 
39.8 
0.097 
2.40 

0.005 
11.2 
0.123 

346 
268 

1. 88 
0.38 
0.38 
0.38 
0.38 
0~38 

0 
7.2 

79.4 
4.0 

Tart = 
cyst = 



Table 3. Adsorption constants for REDEQL2 

ELEMENT 

Ca 

Mg 

Mn 

Cu 

llG/RT 

-12.0 

-12.0 

-13.5 

-lLO 

Isoelectric pH, ZPC = 3.0 

Dielectric con~tant of surface, 

12 

ELEMENT 

Zn 

Ni 

·Co 

Cr 

s - 4.3 

L\G/RT 

.-11. 0 

-11. 0 

-11. 0 

-11. 0 
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I 
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I 
I 
I 

m 

I 
I 
I 
1 
I 
1 
1 
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copper and nickel from solution.. Adchtional removal occurred 

in the stream due to adsorption onto elastic stream sediments, 

and organic material on the stream banks. Plant uptake probably 

provided an addi. ti on al removal mechanism. 

3.1..1 Sulfate 

Transport calculations indicate that 100% (±10%) of the sulfate 

input to the creek was transported out of the watershed (Figure 6 

and Appendix II). Sulfate inputs from natural sources were in

significant in comparison with inputs from mine dewatering and 

.stockpile seepage (Appendix III). 

3 • 1. 2 Ni eke 1 

The major source of nickel was the stockpile runoff at Seep 3, 

with other stockpile seepages (EM--81 Seep 1) as secondary sources 

(Figure 6). The mass transport was dependent upon the flow path 

with the majority of nickel removal occurring between Seep 3 

and Unnamed Creek. Aqueous nickel concentrations decreased by 

about 65% over the 300 meter flow path be:tween Seep 3 and the 

creek, the result of both dilution and removal (Figure 7). Mass 

balance calculations ( 59) indicate that 70 to 95% of the nickel 

discharged from Seep 3 was removed as flow traversed the bog, 

Analysis of water quality data collected in the bog during 

August 1977 indicated a 30% nickel removal. 

14 
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T'he major mechanism of removal was sequestration by peat, a con-

cl us ion supported by analyses of the organic solids in the bog. The 
~ ~ 

majority of trace metal complexation occurred in the top 20 cm. of 

peat and generally decreased with increasing distance from Seep 3 

(Figure 8). Metal analyses of white cedar and alder indicated that 

metals were also being accumulated in vegetation (59). 

Ni eke 1 transport from the stockpile seepage at EM- 8 was markedly 

different from that at Seep 3 since the flow did not pass through 

a bog.. No significant removal occurred from the point of seepage 

to EM-5 (See Appendix IV) e 

Nickel transport from EM-3 to EM-1 (segment 3) ranged from 

60-100% with removal occurring due to complexation and adsorption by 

organic creek bank material and adsorption by elastic sediments (Table 

4). Uptake by aquatic plants may have caused additional removal. 

Nickel concentrations in the banks along Unnamed Creek (Figure 9) 

were an order of rnagni tude higher than in unimp·acted streams, a result 

of the elevated aqueous nickel concentrations in the creek (Figure 10) . 

Nickel transport over segment 3 varied seasonally, with maximum 

transport occurring during the winter months (Figure 11) . The 

Seep 3 bog was a major nickel input to segment 3 in the winter as 

indicated by a marked increase in nickel concentration between EM-3 

and EM-5 (Appendix VIII)., Seep flow ceased in November but nickel 

concentrations remained elevated throughout the winter. During 

the summer months intermittent mine discharge (Appendix VI) caused 

flooding which resulted in additional contact of stream flow and 
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Table 4. Typical distribution coefficients from Unnamed Creek 

Kl cm3/g 

Metal Clas tics --·-
Cu 5000-8000 
Ni 1000-3000 
Co 5000-16,000 
Zn 1500-3000 

Fe 35,000-50,000 
Mn 7,000-12,000 

Kl = metal concentration in sediment (mg/g) 
metal concentration in watei (mg/cm3) 
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organic bank material.. This contact enhanced nickel sequestration 

by the bank material, thereby decreasing tcansport.. Biological 

uptake would also be enhanced during the summer months. 

3. L 3 Copper 

The accuracy of copper transport calculations was limited 

by the low aqueous concentrations of copper and the high flow volume 

from mine dewatering. 

Copper transport through the Seep 3 bog was 0-14% (most likely 

nearer the low end) and 26-51% in the stream with overall transport 

approximately 10%. Tne major sources of copper were Seep 3 (72 kg) 

and the 011 mine water dis charge ( 16 kg. , Fi·gure 6) .. Inputs from 

other mining sources were in the range of the estimated input 

fron1 natural runoff ( 1~5 kg i Appendix II) .. Removal occurred due 

to adsorption onto peat and elastic sediments. Aqueous copper 

concentrations decreased two orders of magnitude as the flow 

from Seep 3 passed through the bog (Figure 7), indicating seques-

tration by peat in the bog. Analyses of the peat indicated that 

most seque~tration occurred in the upper 20 _cm and that removal 

decreased with increasing distance from Seep 3 (Figure 12). 

Copper transport estimates in the stream ranged from 26-51% with 

a continual loss of copper occurring despite natural inputs. 

Copper concentrations in Unnamed Creek were higher than those from 

unimpacted streams with the exception of Fils.on Creek (Figure 10), 

where concentrations were elevated due to the proximity of the 

stream bed to the gabbro contact. Copper concentrations in 
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organic bank samples from Unname.d Creek, Filson Creek, and other 

streams increased with increasing aqueous copper concentrations 

(Figure 13) .. Copper concentrations in the bank samples from Unnamed 

Creek decreased slightly with the distance downstream (Figure 14), 

a trend also observed with the water quality samples (Table 1). 

Copper concentrations in elastic sedirne~ts followed a similar trend 

(Figure 15) . 

3e2 Computer results 

3~2.1 Model leachates 

Results from the model leachate programs indicated that the 

trace metal concentrations were stable with respect to chemical 

precipi ta ti on in the leachate from waste.rock but not in the lean 

ore leachate. In the waste rock leachate the dominant aqueous forms 

of copper and zinc, respectively, were complexes with citrate and 

-cysteine (Figure 16).. Nickel and cobalt existed predominantly 

as free metals. 

Copper and cobalt were predicted to precipitate from the lean 

ore leachate as Cu2 (OH) 2C03 (s) and CoC03 (s). ~Che predicted 

aqueous equilibrium concentrations of copper and cobalt were 0 .. 275 

and 0. 09 7 mg/1. Zinc and copper formed organic complexes to the 

greatest extent (Figure 17). 

3 • 2 • 2 Di 1 u ti on 

The predicted primary distribution of species for the various 

models is presented in Table 5.. The degree of trace metal transport 
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Table 5. 

Dilution 

Cu input, mg/l 
cu2+ 
ow 
co3 so= 
c14 
Cit 
Tart 
Cu2(0H)zC03(S) 
ADSI 

Ni input, mg/l 
Ni2+ 
OH-
co3 
so4 
c1-
Cit 
Cyst 
Ni(OH)z (S) 
ADSI 

Co input, mg/l 
co2+ 
ow 
co= 
so~ 

4 
c1-
Cyst 
CoC03 (S) 
ADSI 

Zn input, mg/l 
Zn2+ 
ow 
co= 
so~ 
c1-
Cyst 
7n(OH) 2 (S) 
ADSI 

REDEQLz Pr:ima1y Distribution for ~odel Wasterock and Lean Ore Leachate 
pH 7 .5 mm /1 SiOz= ADSI 
TALK 100 mg/1 as Ca C03 Complexing organics 1. 44 mg/l as C 

VALUES AS PERCE1'\JT OF METAL INPITT 
Waste rock Lean Ore 

1:2 1:10 1:30 1:2 1 :10 1:30 

0.0265 o.op53 0.0018 0.855 0.171 0.057 

2.0 4.6 7.8 1. 7 
0.6 1.1 2.3 0.6 

94.8 98.7 99.5 14.8 82.2 95.7 

76.8 
2.4 0.6 0.23 2.2 7.0 1.9 

1. 21 0.243 0.081 19.90 3.98 1.33 
46.9 26.6 14.0 57.9 59.4 51.0 

14.1 10.9 6.5 14.0 21. 7 22.3 
20.1 4.3 1.0 26.7 12.3 5.0 

6.9 20.9 32.9 0.5 2.3 11.3 
11.4 36.5 44.7 3.4 8.4 

0.24 0.7 0.8 0.6 1. 7 

D.0145 0.0029 0.0010 1.20 0.240 0.080 
40.8 3Ll 23.2 1.1 7.2 23.7 
0.6 0.5 
9.7 10.1 8.5 2.1 8.2 

27.7 8.1 2.7 0.8 2.4 3.7 

19.7 46.5 59.6 2.0 13.1 
97.7 85,8 47.5 

1.0 3.5 5.4 3.2 

0.020 0.004 0.0013 1.20 0.240 0.080 
20.2 8.2 4.9 46.0 29.3 18.9 
0.7 1.4 1.1 0.8 
3.8 2.1 1.4 7.0 6.7 5.2 
8.7 1.3 21.2 6.1 1 1.9 

65.3 86.3 91.2 23.1 53.8 68.S 

1.0 . 1.6 1.9 0.6 2.6 4.4 
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for the various stream models decreased in the order Ni >Zn>Cu>Co. 

Formation of caso 4 (s) presented the greatest potential_ for sulfate 

precipi ta.ti on, but this sol ubi li ty vrns not exceeded in the creek 

system .. 

The REDEQL2 output indicated that little nickel removal occurred, 

and that significant aqueous nickel existed as a free metal and 

complexed with OH-, co3, cysteine and citrate. The or9anic com-

. plexes dominated at the lower nickel concentrations, but their 

influence decreased with increasin9 nickel input. For input con

centrations greate~ than 1 mg/l the dominant aqueous form was Ni 2+ 

(Figure 18) .. 

Adsorption was the major removal me.chanism for input copper 

concentrations less than 0.2 mg/l, but removal was less than 7%4 

Precipitation of malachite, Cu2(0H)2C03(s) was predicted for a 

copper input of 0. 855 rng/l ( resulting in an aqueous copper con

centration of 0.17 mg/l (Figure 19). The dominant form of aqueous 

copper was as a complex with citrate. 

At low input cobalt concentrations (Co 2- 0 .. 015 mg/l) predicted 

removal from solution was less than 5.4% of the input and was the 

result of adsorption. As the input concentration increased pre-

cipi tation of CoC03 (s) became the dominant removal mechanism 

(Figure 20) . The dominant forms of aqueous cobalt are CoCyst 

( 2 0- 6 O % ) , co 2 + ( 2 o - 40 % ) , cos o 4 ( 3- 3 O % ) and coco 3 ( ~ 1 O % ) • 
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The only zinc removal predicted was the result of adsorption, 

and in all cases was less than 4.5%. The dominant aqueous forms 

were a zinc cysteine complex at low input concentrations and zn2+ 

at higher inputs (Figure 21). 

The concentrations in the 1:10 and 1:30 dilutions of the 

model waste rock leachate were similar to those observed at the 

mouth of the Unnamed Creek (Table 6) . The results indicated that the 

.model organics and the adsorptive surface influenced the speciation 

i.n the creek. Citrate was the most reactive of the model organics 

and was dominant in the complexation of copper. Cysteine was also 

quite reactive, playing a major role in the speciation of nickel, 

cobalt, and zinc (Tables 7, 8)., Adsorption onto ADSI decreased 

in the order Ca>Mg>Mn>Ni, al though the majority of the a.dsorpti ve 

surface was in, the "free 11 form. 

3. 3 Comparison of field and computer results 

The field data and computer predictions agreed fairly well on 

the high mobility o_f aqueous nickel in Unnamed Creek, but a slight 

discrepancy exists ori transport through the bog. REDEQL2 output 

predicted greater than 9 8% transport in· all cases, with removal 

due to adsorption. Field data indicated 100% transport from EM-8 

to EM-5 and 60-100% from EM-3 to EM-L whereas transport through 

the bog was less than 70%. 

The discrepancies are most likely the result of adsorptive sur

faces not considered in the equilibrium program (e .. g. FeOOH, l.'finOx, 

organic surfaces) and biological uptake. In a field - computer 
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Table 6. REDEQL2 Speciation of Unnamed Creek at EM-1 

Input Data and Predicted Equilibrium Concentrations, mg/l I 
Unnamed Creek At FM-1 

INPUT EQUIL INPUT EQUIL EM-la 
,, 

S04 168 168 56.1 56.1 159 
Cl 4.13 4.13 1.38 1.38 

Cu 0.0053 0.00526 0.0018 0.0018 

25.2 

I 0.002 
Ni 0.242 0.240 0.081 0.080 0.087 
Co 0.0029 0.0028 0.00096 0.00091 0.002 
Zn 0.0040 0.0039 0.0013 0.00128 

Fe 0.021 0.021 0.0069 0.0069 

0.010 'J 
0.13 

Mn 0.28 0.0196 0.095 0.00051 0.052 

Ca 20.0 19.5 6.67 6.02 
Mg 12.3 12.2 4.10 3.94 

45.9 f 34.7 

roe as c 1.40 1.40 1.40 1.40 
Ac as C 0.28 0.28 0.28 0.28 
Cit as C 0.28 0.28 0.28 0.28 

12.7 ii 
Tart as C 0.28 0.28 0.28 0.28 
Cyst as C 0.28 0.28 0.28 0.28 
Ph,th as C 0.28 0.28 0.28 0.28 

Si0z(m2/1) 10 10 10 10 f 
pH 7.5 7.5 7.5 '7 .5 
co3 (as Ca C03) 100 100 100 100 
pE 4.0 4.0 4.0 4.0 

7.5 
is4b 

~ 

a. median observed concentration I 
b. from DIC data 

1 

'J 

t 
l 
t 
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Table 7. 

Free Met C03-
(3.000) 1 

Free Lig 5.70 

CA (3.302)1 3.39 5.23 

· MG (3. 296) 3.39 5.21 

FE3 (6.430) 20.00 **** 

FEZ (9.000) 11.37 **** 
~1N (5. 285) 6.52 7.90 

CU2+ (7.078) 10.62 9.90 

ZN (7. 213) 8.30 8.89 

NI (5.385) 5.96 6.35 

C02+ (7,310) 7.82 8.30 

HYDROGEN (7.50) 7.50 3.01 

l Nuir~ers i.n parentheses are input values 

2 Blan..k implies negligible concentration 

3 pC = - log C 

REDEQL2 

S04 
(2.757) 

2.80 

4.17 

4.07 

19.20 

12.26 

7.31 

11.41 

9.09 

6.75 

8.40 

8.44 

-7~-;~ - ~ ·u.~.9 - ·~ -
speciation of waster~ck leac.liate model, 1: 10 dilution 

All values as pC~ 

CL AC CIT TART CYST PH1H ADSI OH 
(3. 934) (4.921) (5. 398) (5.222) (5.097) (5.523) (3,000) I (6.500) 

3.93 4.93 15.84 5.29 9.74 5.57 3.34 6.39 

****2 7.46 5.61 6.17 1'*** 6.55 4.92 8.16 

**** 7.36 6.41 6.67 9.21 **** 5.30 7.16 

22.65 20.94 8.67 **** 6.43 **** **** 10.87 

14.55 12.75 10.23 **** 9.20 **** **** 12.54 

9.50 10.50 8.94 **** 11.85 **** 5.32 9.19 

12.06 13.50 7.08 11.90 **** 12.28 9.27 9.39 

10.93 11.57 11.36 10.38 7.28 10.86 9.01 9.70 

9.54 9.84 6.07 **** 5.82 8.62 7.55 8.43 

10.SO 11.29 24.84 10.20 7.64 14.05 8. 77 9.58 

**** 7.49 6. 72 8.43 5.38 7. 71 



., 
Table 8. REDEQL2 speciation of wasterock leachate model, 1:30 dilution 

All values as pe3 

Free Met C03- S04 CL AC CIT TART CYST PHIB .ADSI OH 
(3.000) (3.234) (4.411) (4.921) (5. 398) (5.222) (5.097) (S.523) (3.000) (6.500) 

Free Lig 5.74 3.25 4.41 4.92 15.50 5.25 9.60 5.55 3.40 6.39 

CA (3.779)1 3.87 5.67 5.01 **1''*2 7.89 5.59 6.51 **** 6.90 4.79 8,61 

MG (3.773) 3.84 5.62 4.88 **** 7.76 6.35 6.98 9.43 ;l;'fr::fo;it 5.20 7.58 

FE3 (6.907) 20.92 **** 20.46 23.98 21. 79 9.04 **** 6.91 **** **** 11.71 

FE2 (9.477) 12.29 :'!*** 13.54 15.90 13.62 10.68 **** 9.89 **** **** 13.43 

MN (5. 762) 7.39 8.73 8.54 10.81 11.32 9.31 **** 12.49 **** 5.77 10.03 

OJ2+ (7. 555) 11. 57 10.79 12.71 13.42 14.39 7.56 12.71 **** 13.10 10.20 10.31 

ZN (7.690) 9.00 9.54 10.14 12.06 12.22 11.59 10.94 7.73 11.44 9.42 10.37 
"'.'.:'.:.. 
0 NT (5.862) 6. 72 7.05 7.86 10.73 10.54 6.34 **** 6.21 9.25 7.94 9.15 

C02+ (7.787) 8.42 8.86 9.36 11. 53 11.84 24.94 10.66 8.01 14.50 9.06 10.15 

HYDROGEi\I (7. SO) 7.50 3,00 8.84 **** 7.46 6.31 8.34 5.19 7 .64 **** 

1 Nurnbers in parentheses are input values 

2 Blank implies negligible concentration 

3 pC ~= - log C 

~ ....... ......... ~ '~ ,__. ~ ........ ......... ~ ,._, 
~ .........,, ~ ~ ·~ ~--......... 4" 



study of heavy metal attenuation by soil.:::; (trheis and Richter, 1979) 

it was concluded that nickel (and zinc) were "attenuated predominantly 

by adsorption onto the iron oxide, mangar1ese oxide playing a lesser 

role". Based on the high concentrations of iron and manganese in 

the creek sediments, it is likely that these surfaces were present .. 

The elevated nickel concentrations in organic bank samples 

and peat from the Seep 3 bog indicated that nickel was being se-

questered by organic solids.. Research by Guy et aL (1975) indicated 

that the interaction of Cu, Zn, and Cd with solid humic acid was 

similar to that with soluble hurnic acid.. Thus, the computer 

predicted tendency of nickel to form organic complexes (citrate, 

cysteine) in solution may serve as an indicator of its tendency for 

sequestration by solid organics. 

Th:ere was reasonable agreement between the computer predictions 

and field data on copper transport., The computer output indicated 

that copper would be removed by adsorption or precipitation, with 

copper-citrate being the dominant aqueous form. Field data indicated 

that copper transport through the Seep 3 bog was on the lower end of 

0-14% and was between 26 and 51% in the streame 

The lower transport through the bog, compared to the stream, 

is cons is tent with the behavior of nickel and can be 1?-xplained by 

a similar argument.. The results from REDEQL2 i.ndi c;:c t-hat copper 

has a greater tendency than nickel to form organic c · lexes in 

solution. This is consistent with the greater remov<Jl of aqueous 

copper (compared to nickel). due to sequestration by peat and or-· 

ganic bank materials. The predicted adsorption is also consistent 

with elevated copper concentrations in the elastic sediments. 
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4., Summary 

The results of field and computer studies indicate that nickel 

and zinc tend to be more readi'iy transported than copper and cobalt 

under stream conditions common to Unnamed Creek (pH 7. 5, Crr l"\.1 100 ·mg/l 

as Caco 3 , DOC~l4 mg/las C, ps4}w Results would be subject to 

change given different stream conditions.. Results also indicate 

t 

that trace metal transport can be significantly inhibited by contact J 

with peat, such as in the case of the Seep 3 bog. 

Copper (0-14%) and nickel (10-70~&) transport through the Seep 

3 bog was limited by peat sequestration and vegetative uptake.. In 

the creek copper transport (26-51%) '"ras also less than that of 

nickel (60-100%), with metal removal occurring due to sequestration 

by organic bank material and elastic sediments, and probably bio-

logical uptake .. 

Computer results are consistent with the field results,, They 

predict that copper will be more readily removed from solution by 

inorganic precipitation ( Cu2 (OH) 2co 3 ) , adsorption, and sequestration 

by peat.. The tendency for organic cornplexation is assu.lled to 

parallel the tendency for sequestration by peat.. The computer 

results further suggest that zinc transport would be similar to 

that of nickel, and cobalt transport similar to copper. 
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