

Report 280

Regional Survey of Buried Glacial Drift, Saprolite, and Precambrian Bedrock in Lake of the Woods County, Minnesota

This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. <u>http://www.leg.state.mn.us/lrl/lrl.asp</u>

(Funding for document digitization was provided, in part, by a grant from the Minnesota Historical & Cultural Heritage Program.)

Minnesota Department of Natural Resources Division of Minerals William C. Brice, Director

Report 280

Regional Survey of Buried Glacial Drift, Saprolite, and Precambrian Bedrock in Lake of the Woods County, Minnesota

ECEL MAK 9 1993 LEGISLATIVE REFERENCE LIBRARY STATE CAPITOL ST. PAUL, MN. 55155

By: D. P. Martin¹, D. A. Dahl¹, D. F. Cartwright¹, and G. N. Meyer²

A Minerals Diversification Project

¹ Minnesota Department of Natural Resources

² Minnesota Geological Survey

Publication Notification

Equal opportunity to participate in and benefit from programs of the Minnesota Department of Natural Resources is available to all individuals regardless of race. color, national origin, sex, age or disability. Discrimination inquiries should be sent to MN-DNR, 500 Lafayette Road, St. Paul, MN 55155-4049 or the Equal Opportunity Office, Department of the Interior, Washington, D.C. 20240.

This report is available at selected libraries in Minnesota. It may be purchased at the Hibbing Office, DNR Minerals Division. For further information contact Minerals Resource Geologist at (218) 262-6767.

Neither the State of Minnesota nor the Department of Natural Resources. nor any of their employees, nor any of their contractors, subcontractors, nor their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe on privately owned rights.

Reference to a Company or Product name does not imply approval or recommendation of the product by the State of Minnesota or the Department of Natural Resources to the exclusion of others that may meet specifications.

Glossary

Attribute: Any physical or chemical property of a sample; especially refers to the quantitative measurements of sample fractions that are listed in the database.

Base of Quaternary Section: The contact, observed in drill core, between Quaternary glacial deposits and older materials. The older materials were commonly sound bedrock or saprolite, but in one case (OB-503) was Cretaceous marine marginal sands.

Dispersal Scale: "Dispersal can occur at a variety of scales ranging from continental (hundreds of kilometres), to regional (hundreds to tens of kilometres), to local (less than ten kilometres), to small-scale (final stages of mineral exploration in the hundreds to tens of metres) (Shilts 1984a)... Other examples of major glacial dispersal patterns include those documented by (Coker & DiLabio, 1988, p. 337)

Dispersal Train: Debris excavated from a source unit by glacial movement is dispersed in a down-ice direction to produce a ribbon- or fan-shaped dispersal feature. Detectable dispersal trains in till have chemical, mineralogical, or other properties that stand out in contrast to nearby background levels. Shilts (1976) has demonstrated that the material being dispersed quickly becomes diluted to background levels, following essentially a negative exponential decay curve. The concentration of the dispersing material is highest near its source, declining rapidly (exponentially) in a down-ice direction. Gradients along the lateral edges of dispersal trains are often sharp, falling to background values much more quickly than in the down-ice direction. Tails of dispersal trains are typically much larger and more dilute than heads. It is often the tails that are first recognized during till sampling programs. Coker and DiLabio (1988) report that dispersal trains of debris related to mineralization (ore boulders, ore-related minerals, trace elements, and magnetic or radioactive components) may enhance the size of mineral exploration targets by several orders of magnitude (Fig. 1).

Geochemical Province: Bolviken and others (1990) describe geochemical provinces as regions (square kilometers to thousands of square kilometers) of abnormal spatial distribution of elements or combinations of elements. The use of regional geochemical surveys to resolve the distribution of chemical elements in relation to mineral deposits has been used successfully during recent exploration in Finland and other areas. A typical Archean gold geochemical province might be 75 square kilometers or larger in size. All nine existing ore deposits in Fennoscandia were found to lie within geochemical provinces (op. cit.). Since geochemical provinces can be identified earlier in an exploration program than metallogenic (metal mineralization) provinces, their importance in the early phases of exploration is becoming more often recognized (see also Averill, 1988).

Keewatin: Keewatin provenance glacial drift is named for the Keewatin sector of the late-Wisconsinan ice sheet, centered near Manitoba, Canada.

Labradorean: Labradorean provenance glacial drift is named for the Labradorean sector of the late-Wisconsinan ice sheet, centered near Labrador, Canada.

Mining camp: A cluster of gold deposits in the Superior province bedrock terrane of the Canadian Shield. This is described by Colvine and Stewart (1984), "Gold mineralization is not uniformly distributed along these zones, but is focused in individual mining camps up to tens of kilometers long and normally less than ten kilometers wide." Such a cluster of gold deposits, along with associated uneconomic occurrences, are proposed to provide sources of gold to the tills. The terms mining-camp scale or township-sized are used synonymously here to describe an area on the order of 100 square kilometers.

Pathfinder: In geochemical exploration, a relatively mobile element that occurs in close association with an element or commodity being sought, but can be more easily found because it forms a broader halo or can be detected more readily by analytical methods. A pathfinder serves to lead investigators to a deposit of a desired substance.

Till Composition: "The composition of a till sample may be the composite of many overlapping dispersal trains. The blending of trains derived from different up-ice sources produces the mixed lithology that is a normal feature of till. Most of the individual dispersal trains are not identifiable, however, because they are too small or are composed of rocks or minerals that are not distinctive." (Coker & DiLabio, 1988, p. 337)

Executive Summary

The Archean greenstone belts of northern Minnesota are a geologic setting that could contain world-class gold camps of > 500 tonnes gold. In the Baudette area of northern Minnesota, where glacial overburden is often more than 30 m (100 ft) thick and composed of two or more glacial drift sequences, no surface sample media have yet been demonstrated to be effective for gold exploration. Buried tills are present in the area and could provide a prime sampling medium for detecting metal-bearing geochemical provinces¹, provided that the regional stratigraphic framework and regionalscale chemical-mineralogical background levels of the tills are established. The program goal is to establish such a framework and background levels in order to search for a township-size gold geochemical province.

In this project, we have used rotasonic overburden core drilling to collect twenty profiles of Baudette area glacial drift, saprolite, and bedrock; and have constructed a buried landscape model to explain and correlate the stratigraphic units found in the cores. We have also analyzed the buried tills in order to establish the regional background levels of gold grain content, heavy mineral mineralogychemistry, silt-clay chemistry, pebble lithology, matrix texture, and assorted physical properties. The glacial stratigraphy expertise of the Minnesota Geological Survey staff, and the bedrock and heavy mineral expertise of the United States Geological Survey staff have been of invaluable assistance.

The drilling results show that the Baudette area contains two distinctive landscapes. In the eastern portion, beneath the blanket of exotic Koochiching drift, a pervasive till sheet (Rainy till) exists in contact with saprolite or bedrock in most localities. An older Labradorean till² was found beneath the Rainy till in two paleo-topographic lows. Deep saprolite profiles exist in shear zones, and thinner saprolite sections are preserved on the protected flanks off bedrock topographic highs. Paleo-drainage is to the northeast toward a paleotopographic low that contains an unlithified Cretaceous quartz-kaolin sedimentary deposit. The western portion of the Baudette area is generally

more complex, containing older northwestern provenance (Keewatin) morainal sediments interbedded with the Labradorean drift. The till stratigraphy in the western portion is also complex, because the Labradorean tills begin to display some of the characteristics of the exotic Keewatin sediments they override. Paleo-drainage is to the west-northwest. Saprolite is less pervasive in the buried bedrock uplands in the western portion of the field area. Bedrock was recovered from eighteen of the twenty boreholes in the Baudette area. Metamorphosed mylonites, felsic-intermediate volcanics and intrusives, basalts and gabbros, graywackes, massive sulfide, and granitoids were recovered for use in U.S. Geological Survey CUSMAP mapping of the Roseau 1 x 2 degree map sheet.

Regional background levels for gold grains, pathfinder elements, and pathfinder mineral grains are very low compared to other areas of the state. Some of the regional background levels increase or decrease across the field area, reflecting addition of Keewatin sediments in the western portion of the Baudette area. Hg in the nonmagnetic heavy mineral fraction provides the highest contrast till provenance indicator, showing a ten-fold higher background level in Keewatin provenance sediments than in Labradorean provenance sediments. The source and mineralogy of the Hg in the Keewatin provenance sediments is not well understood. As, Ni, Sb, and Sr also show some provenance distinctions. K in the silt-clay fraction is partly able to discriminate Rainy till from older Labradorean tills. A plot of Hg versus K clearly resolves the three types of buried till, even to the point of being able to distinguish mixing of Keewatin sediments into overriding Labradorean tills in the western portion of the field area.

Low level enrichments of gold grains, galena, native copper, zinc spinel, scheelite, molybdenite, kyanite, and Au, Ag, Hg, Zn, W, Cu, Pb, Ba, Ce, Cs, Bi, Th, and Ni are present in the tills. Low level enrichments of gold grains, gold assays, and five pathfinder elements-minerals are observed in the Rainy till in the eastern portion of the field area, in the vicinity of the Baudette fault system (boreholes 502, 503, and 506) and nearby magnetic felsic intrusions. Other notes include low levels of gold and zinc spinel in the basal till sample of borehole 517, galena in the saprolite of boreholes 508 and 520, kyanite and bedrock massive sulfide in borehole 513, and a kaolin-quartz sand unit in borehole 503. The galena appears to have been

¹ See glossary.

² See glossary.

associated with vein settings. The kyanite may represent an unusual or extreme bedrock alteration. The barren massive sulfide in the bedrock of borehole 513 is predominantly pyrrhotite. The kaolin-quartz sand unit (Cretaceous age) leads to speculative hypotheses about where the winnowed kaolin might have been deposited (see Mineral Potential Section).

A sufficient understanding of the regional stratigraphic framework and regional chemicalmineralogical background levels now exists to efficiently test the Baudette area for gold miningcamp-scale geochemical provinces. Follow up work should use rotasonic coring to test selected townships of the Baudette area to a sampling density of 25 sq. km (four samples per township). Gold grains, heavy minerals, and heavy mineral assays for gold and other pathfinder elements will provide the best indicators of buried mining-campscale mineralization. The heavy minerals provide unique tracers that can probably be followed across incomplete glacial stratigraphic sections. Silt-clay chemistry, texture, pebbles, and physical properties can provide additional in-depth information to solve local stratigraphic problems that arise.

Recommendations

Recommendations are directed at users of the data or methods and at future Minerals Division programs (Tables 1a and 1b).

To potential users of the data or methods, there is considerable information available at the Hibbing office regarding the geochemical database, samples, and customized design options. The complete dataset is available in an ASCII format on 3 1/2" or 5 1/4" disks. Core samples, heavy mineral fractions, or assay subsamples are available for observation, education, or assay purposes. The authors are available to discuss the many possible design options and methodology to use till samples at your choice of cost/risk analysis and applied to your target area(s) and scale.

Regarding future programs, the two categories of general program direction and specific methods are discussed. Regarding direction, infill drilling to complete the project goal in the Effie area is recommended over the Lake of the Woods area, due to a perceived higher gold potential there. Since nine case examples of ore deposits occurring within geochemical provinces have been cited by Bolviken and others (1991), the program goal for deep overburden regions in Minnesota should remain the search for such geochemical provinces (Fig. 2). Background values must be identified to define the contrast of a geochemical province, and appropriate sample density is also required. Thus, infill drilling is a necessity to fulfill the goal. The Effie infill drilling can be delimited by the new Koochibel MGS bedrock map showing the supracrustal rocks, appropriate ore deposit models and geological features, and the previous Effie area results (Martin and others, 1988).

Regarding specific methods, only the three most important are discussed. First, the drilling method should not grind up clasts to create a modified matrix composition and, hence, an artificial background value. Secondly, less expensive overburden core drilling methods should continue to Since development seems to be be tested. happening at levels from the individual driller to manufacturing suppliers on such drill methods and equipment, an organized focus group should be considered. Thirdly, advanced mineral and chemical analysis methods need to be tested, for example, on mid-density heavy minerals and for very fine-grained gold. The mid-density heavy mineral fractions are available as a by-product from the ODM Lab separation method, and perhaps contain cheap, useful tracers as ore minerals or pathfinders. The background value for gold in the fine fraction of till has not worked well for application to a geochemical province for two reasons--the nugget effect and an inadequate detection limit. Research in Finland (Kontas, 1991) permits a new hypothesis and subsequent methodology to resolve this problem. Gold grains are abraded by quartz grains during glacial erosion, transport, deposition, and sample screening resulting in a very large population of quartz grains having an "abraded or atomic" gold coating (op. cit.). Such gold is readily extractable by a partial leach (Heikki Niskanen, pers. communication) that excludes gold grains or nuggets. Such a method should be tested to identify a gold geochemical province.

Acknowledgements

Numerous individuals have contributed their talents during the course of this project. The management structure at DNR has contributed considerably by allowing the authors to approach the project with much flexibility and freedom. This has been of substantial help.

iii

Doug Rosneau, Alan Dzuck, Mike Ellett, Darold Riihiluoma, Mike Lubotina, and Pat Geiselman handled and archived a proverbial mountain of core samples and subcomponent splits. Pat Geiselman, in particular, contributed many energetic and diligent hours during the drilling, sampling, and shipping phases of the project. Earl Mailhot, Greg Walsh, Pat Geiselman, Darold Riihiluoma, and Joe Fink contributed their drafting services. Rick Ruhanen and Jacki Jiran competently addressed the thankless but essential task of keeping our computer resources up and running.

Jean Drotts and Al Klaysmat of the DNR, Tim Elliot of Bondar-Clegg, and Remy Humealt of Overburden Drilling Management managed to wade through the barrage of samples sent their way. Gene Miller and Karl Keihn provided opinions on land ownership, and Gene Karel, Agnes Bates, and Phil Pippo expedited much of the contract and administrative work. Diane Melchert, Coleen Keppel, Sue Saban, Helen Koslucher, and Dorothy Cencich contributed word-processing and data entry skills.

Steve Sutley, Paul Theobald, and Dick Tripp of the U.S. Geological Survey in Denver provided indispensable instruction and guidance on heavy mineral processing and identification. Terry Klein, also of the U.S. Geological Survey, in Reston, Virginia, provided valuable observations of the petrography of the bedrock core.

Ken Harris, Howard Mooers, and Val Chandler of the Minnesota Geological Survey, and Barry Frey, Tom Lawler, and J.D. Lehr of the DNR all contributed to discussions of the buried rocks in Lake of the Woods County. Finally, comments made by three reviewers improved the initial manuscript significantly.

Table of Contents

Ð

T

Q

D

Ð

D

Ð

D

D

D

D

4

.

Executive Summary	. ii
Recommendations	iii
Acknowledgements	iii
Table of Contents	v
Introduction	
Background	. 1
Problem Statement	. 1
Significance of the Problem	. 1
Project Scope and Progress	1
j	
Location, Geological Setting, and Exploration History	2
Project Design and Methods	4
	5
	J
Stratigraphy and Buried Landscape	0
Gold Grain Counts	11
Heavy Mineral Mineralogy	. 11
Heavy Mineral Chemistry	12
Silt-Clay Chemistry	12
Pebbles	. 13
Physical Properties	14
Matrix Texture	14
Saprolite and Bedrock Results	. 14
Summary of Results	. 15
Discussion	16
Geochemical Province	16
Sanzolite Clocial Stratigraphy and Puriod Landsonn	10
Minaral Detertial	10
	19
Environmental Geology	. 20
Subsample Fractions and Physical Properties	21
Design	. 22
Conclusion	22
References	. 23
Figures	. 28
Tables	. 49
Марѕ	. 61
•	
Appendices	A-1
- FF	

- Figure 1. Idealized glacial dispersal model.
- Figure 2. Sketch showing a profile with a geochemical province and three geochemical anomalies caused by ore deposits of which one (A) is outside the geochemical province and two (B and C) are inside. The horizontal distance is anywhere from the order of kilometers and upward. Most mineral deposits of economic interest are assumed to belong to types B and C (Bolviken and others, 1990).

Ì

- Figure 3. Schematic summary of the geologic history of the Baudette area.
- Figure 4. Sample fractions analyzed. The total composition was subdivided into matrix and clasts, for quantitative analysis.
- Figure 5. Time-distance diagram showing relative timing and extent of glacial events in the Baudette area.
- Figure 6. Landscape near Baudette, Minnesota, at the time of Rainy lobe ice advance. Sediment cover varies on a much smaller scale than depicted. This reconstruction is based on available drillhole data.
- Figure 7. Rainy lobe moraines in the Baudette area.
- Figure 8. Summary of regional stratigraphic composition and case examples of mixing. Mixing is inferred to occur at all scales, primarily by incorporation of available underlying materials.
- Figure 9. Generalized saprolite stratigraphy in the Baudette area.

Figure 10. Sample prep flow sheet for Baudette area samples.

- Figure 11a. Plot of gold assays in the nmHMC fraction of till and nontill samples in the Baudette area.
- Figure 11b. Plot of boron sassays in the -2um fraction of till and nontill samples in the Baudette area.
- Figure 11c. Plot of mercury assays in the nmHMC fraction of till and nontill samples in the Baudette area.
- Figure 11d. Plot of potassium assays in the -2um fraction of till and nontill samples in the Baudette area.
- Figure 11e. Plot of copper assays in the -2um fraction of till and nontill samples in the Baudette area.
- Figure 12a. Plot of mercury vs. potassium assays in Baudette area tills and saprolite.
- Figure 12b. Plot of matrix soluble vs. arsenic assays in Baudette area tills and saprolite.
- Figure 12c. Plot of matrix soluble vs. potassium assays in Baudette area tills and saprolite.
- Figure 13. Regional variations in pebble content of tills in the Baudette area.
- Figure 14a. Dispersal train model used for interpretation of two geochemical patterns--a recognizable, contrasting, single-lithology dominated composition (traceable head lithology) vs. anomalous pathfinder values. Scale of both axes varies.

Figure 14b. Legend.

List of Tables

- Table 1a.Options of methodology and strategy applied to site-specific investigations.
- Table 1b.Recommendations for Minerals Division infill drilling.
- Table 2. Analytical measurements showing regional baseline changes in the Baudette area.
- Table 3.Data manipulation and interpretation flow chart.
- Table 4.
 Analytical measurements useful for resolving regional till stratigraphic questions.
- Table 5. An interpretation of glacial dispersal for the samples bearing significant pathfinders.
- Table 6.A list of till samples which exceed the regional-stratigraphic median by >3x for seven selected
elements.
- Table 7.A list of magnetic fraction till and saprolite samples that exceed the regional-stratigraphic
median by \geq 3x median for elements listed.
- Table 8.Regional-stratigraphic till median values (ppm).
- Table 9. Observed attributes usable as tracers to specific sources in the Baudette area.
- Table 10. A snythesis of observations and conclusions regarding till composition and variability.

List of Maps

E

Ì

Î

- Map 1. Location of the Baudette area in Lake of the Woods County, Minnesota.
- Map 2. Surficial features and general topography of the Baudette area.
- Map 3. Past and present overburden drilling projects in relation to regional glacial drift thickness.
- Map 4. Sources of subsurface geological information for the Baudette Area.
- Map 5a. Regional contour map of bedrock and surface elevations.
- Map 5b. Aeromagnetic shaded relief map of the Baudette area.
- Map 5c. Aeromagnetic interpreted pseudomap.
- Map 5d. Simple Bouguer gravity map of the Baudette area.
- Map 6. Regional contour map of glacial drift and saprolite thickness.
- Map 7. Isopach maps of Koochiching lobe sediment.
- Map 8. Isopach maps of Rainy lobe sediment.
- Map 9. Isopach maps of Winnipeg lobe sediment.
- Map 10. Isopach maps of Old Rainy lobe sediment.
- Map 11. Isopach maps of saprolite.
- Map 12a. Bedrock geology map.
- Map 12b. Bedrock geology map, description and location.

List of Appendices

Appendix 280-A.	Synopsis of Baudette ar	ea drill information.	Map scales are 1:24,000.
-----------------	-------------------------	-----------------------	--------------------------

Appendix 280-B. Descriptive logs of Baudette area drill core.

Appendix 280-C. Sampling and analytical methods.

TÍ.

- IÇ

ų

ТÇ

-ų

Ĩ

- Ú

1

- Appendix 280-D. Precision and accuracy of assay methods.
- Appendix 280-E. Variation maps for the Baudette area.
- Appendix 280-F. Master index for Baudette area samples.
- Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.
- Appendix 280-H. Baudette area assays. Magnetic heavy mineral concentrate samples from tills and saprolite.
- Appendix 280-I. Baudette area bedrock and saprolite samples analyzed as bedrock. Trace element and oxide assays.
- Appendix 280-J. Baudette area sample component weights and percents reported by contract laboratory.
- Appendix 280-K. Physical properties of Baudette area samples.
- Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.
- Appendix 280-M. Baudette area pebble counts. Super-category counts per 10 kg sample by size fraction.
- Appendix 280-N. Baudette area pebble counts, +1/4" 3/8" pebbles.
- Appendix 280-O. X-ray diffraction results for 14 selected Baudette area till and saprolite samples.
- Appendix 280-P. Baudette area gold data summary.

F . 9 · .

Background

This survey of part of Lake of the Woods County (the Baudette area) in northern Minnesota represents a westward expansion of the deepoverburden characterization (glacial till sampling) program begun by the Department of Natural Resources in 1985. The goals of the program are to detect regional-scale anomalies of gold and other metals in the glacial overburden, and to develop the stratigraphic framework for understanding those anomalies. The Baudette area, near Lake of the Woods on the Canadian border, is covered by deep glacial overburden (>100 feet), and is underlain by an attractive, but relatively unexplored, gold terrane made up of structurally-deformed, volcanicassociated rocks of the Wabigoon granitegreenstone belt. The deep overburden hides the bedrock and hinders mineral potential evaluation of state lands.

Problem Statement

The granite-greenstone terrane in the Baudette area is concealed by deep, unmapped overburden which masks the Precambrian bedrock and hinders assessment for areas of bedrock mineralization.

Significance of the Problem

The State of Minnesota is in global competition to attract the private assets used to explore for, identify, and develop mineral resources. Overburden is considered a hindrance to exploration and resource assessment by most exploration companies. The State, through legislative action, is making a commitment to help Minnesota's mineral economy diversify and compete on this worldwide basis. Overburden investigations are a part of this work. The legislature is encouraging regional-scale investigations to delineate the geologic framework and mineral potential of the state, and is sponsoring characterization studies of industrial mineral commodities, and encouraging cooperative and supporting research to enhance the value of Minnesota iron ore

⁴ See glossary.

products. The geologic framework investigations sponsored by the state are designed to detect mining-camp-scale³ areas for exploration investment and to delineate geologic features amenable to mineralization. The deep-overburden program provides a means for detecting areas within the state that contain regionally anomalous concentrations of gold or other metals.

While it is true that the overburden in Minnesota hides the granite-greenstone terrane and does hinder traditional drilling exploration programs, it can also provide an exploration media for detecting and tracing buried mineralized bedrock, if it is properly utilized. In many instances, the glacial overburden that hides the bedrock terrane also preserves mineralized rock fragments that have been excavated and redeposited by glacial activity. The excavated fragments, or "dispersal trains"⁴, can exist as property features (less than ten square kilometers), township features (up to a hundred square kilometers), regional features (up to hundreds or thousands of square kilometers), or even continental features (tens or hundreds of thousands of square kilometers). Dispersal trains are generally much larger than the bedrock source they are dispersed from, and can leave chemical, mineral, textural, electromagnetic, or radiometric signatures in the overburden. If elevated background levels associated with a miningcamp can be detected, then the overburden becomes an effective tool for reconnaissance evaluation of mineral potential.

The Department of Natural Resources pursues this work of sorting out favorable from unfavorable mineral lands because it is charged with managing "for the benefit and pleasure of present and future generations" the public acreage which includes extensive, potentially mineral-rich lands in the northern part of the state. Fifty-nine percent of the land surface in Lake of the Woods County is publicly owned, and the State holds in public trust 438,600 acres (1983 data). Governmental activities in Canada and Minnesota, and the new tectonic model for the origin of Canadian shield crust segments (Percival and Williams, 1989; Williams, 1990; Davis and others, 1989) indicate that the mineral potential of the Wabigoon belt in Lake of the Woods County might be worth a closer look.

Project Scope and Progress

The objectives of the Baudette area project are to establish the regional-scale stratigraphic framework and chemical-mineralogical background

³ See glossary.

levels of the glacial overburden in the twenty-one townships that encompasses most of the Wabigoon belt within Lake of the Woods County. The steps that must be taken to accomplish these objectives are:

- 1. <u>Obtain</u> representative samples of glacial overburden, saprolite, and solid bedrock from the subsurface of the Baudette area. (Objective completed November, 1989.)
- 2. <u>Describe, measure, and log</u> stratigraphic units within the glacial overburden and saprolite cores. (Objective completed January, 1990.)
- 3. <u>Establish</u> a regional-scale stratigraphy for the glacial overburden in the Baudette area, based on the cored materials. (Objective completed February, 1991.)
- 4. <u>Identify</u> chemical, mineralogical, textural, and physical properties of the glacial overburden, saprolite, and bedrock that may have use in resolving the framework stratigraphy and bedrock mineralization potential of the Baudette area. (Objective completed April, 1991.)
- 5. <u>Summarize</u> any anomalous values that have been detected to this point. (Objective completed April, 1991.)
- 6. <u>Disseminate</u> this information. (Objective completed June, 1991.)

Completion of the project should provide the information needed to conduct infill drilling.

Location, Geological Setting, and Exploration History

Location

The Baudette area encompasses 21 townships (2100 sq. km) west and south of Baudette in the southern half of Lake of the Woods County (Map 1). Highway 71, running south from Baudette, forms the eastern edge of the field area. Major drainages flow to the northeast, parallel to raisedbeach strandlines of former glacial Lake Agassiz or along the periphery of the buried Vermilion Moraine (otherwise known as Beltrami Island). These drainage systems join with the Rainy River at the northeastern edge of the field area. Roseau flowage, on the western edge of the field area, is an exception, and flows northwesterly to join the Red River of the North.

Vegetative cover and land utilization reflect the permeability and topography of features reworked by glacial Lake Agassiz (Map 2). Lowlands are occupied by poorly-drained organic peatlands and black spruce forests. The sandy, narrow, laterally continuous raised-beaches contain upland conifers and deciduous varieties like aspen and birch. Better-drained surfaces in the northern part of the field area are utilized for large-scale agricultural activities. There are four peatlands of ecologic significance that occur within the Baudette field area. Drilling access in the summertime is limited by poor drainage and the sparse road network, which is confined mostly to the better-drained lands.

Geological Setting

A few gross aspects of subsurface geology are reflected in surficial landforms, but little is directly known of the composition and history of the sediments and bedrock buried beneath the most recent of the glacial deposits. A partial framework can be sketched based on data from the surrounding region. The Baudette area is thought to primarily contain Pleistocene drift and Precambrian (Archean) basement rocks. Marine and marine marginal strata of Mesozoic and Paleozoic age have been identified west and northwest of the field area but have not been detected in the Baudette area. Four glacial sequences have been identified in the region. Beneath the glacial drift are volcanics, sediments, and igneous intrusions that record at least one episode of regional metamorphism and shearing during the Precambrian. The unconformity between the Precambrian and Pleistocene units is known to have undergone significant weathering at one or more times since the early Proterozoic. Figure 3 summarizes the known events that may have helped to concentrate or redistribute gold and other metals in the Baudette area.

The Baudette area is underlain by a portion of the Wabigoon subprovince of the Superior province. The Quetico metasedimentary subprovince is present at the southern edge of the field area, on the south side of the Vermilion fault. Bedrock is not exposed anywhere in the Baudette area.

Day and Klein (1990) and Frey and Venzke (1991) describe the structural-stratigraphic fabric of the Baudette area as northeast-southwest. Major fault systems include the Vermilion, Quetico, Baudette, Border, and Fourtown.

Where exposed in other areas, the Wabigoon belt is a typical granite-greenstone terrane made up of variably deformed and metamorphosed volcanic and sedimentary supracrustals intruded by mafic to felsic intrusions (Frey and Venzke, 1991). Mafic to felsic cycles of bimodal volcanism and associated volcanogenic massive sulfide deposits have been recognized in other portions of the Wabigoon belt (op. cit.). Metamorphism is generally upper greenschist to lower amphibolite facies (op. cit.).

The subsurface portion of the Baudette area is penetrated by thirty recorded water wells, by eleven scattered scientific drill holes, by twenty deep overburden boreholes (present project) and fortythree bedrock drill holes drilled in search of base metals along a laterally extensive conductor, for gold near zones of regional structural shear, and for gold perhaps associated with chemical sediments. Each of the trends follows aeromagnetic anomalies identified in the 1960's. Maps 3, 4 and 5a-d summarize available geologic information for the area.

Exploration History

More geological information has become available about the character of the Wabigoon greenstone belt underlying Lake of the Woods County in the past four years than in perhaps the previous twenty. The United States Geological Survey (USGS), the Minnesota Geological Survey (MGS), the Minnesota Department of Natural Resources (MnDNR), and the United States Soil Conservation Service (SCS) have all been active in the area recently, and just across the border the Ontario Geological Survey (OGS) has been conducting regional-scale geologic mapping and geochemical sampling programs. Eight exploration leases are currently held in Lake of the Woods County, four within the Baudette area. Figure 3 provides a synopsis of available geologic coverage.

Historical records indicate that Precambrian bedrock exposed along the Rainy River and the shores of Lake of the Woods received early reconnaissance attention for gold (Winchel, 1899) and for uranium (Grout, 1927). Significant quantities of neither were located. In the early 1950's, the area around and east of Baudette was reviewed for potential wildcat iron ore occurrences. Exploration drilling along aeromagnetic anomalies

reached as far as western Koochiching County (just east of the Baudette area), tracing an iron formation striking southwesterly out of Emo, Ontario, but no holes were spud in Lake of the Woods County. In the 1960's, aerogeophysical surveys were being used to detect base metal occurrences in Canada and the U.S., but it was 1969 before the first exploration drill hole was put down on a geophysical anomaly in the Baudette area. Between 1969 and 1986, three geophysical exploration plays served to generate a total of fortythree exploration drill holes that in places penetrated pyrrhotite, graphite, and iron formation, but identified no subeconomic or economic deposits of base or precious metals. Governmental work up through 1986 produced low resolution aeromagnetic, gravity, and interpretive bedrock maps (Meuschke and others, 1957; McGinnis and others, 1973; Sims and Ojakangas, 1973) and geologic maps of surfacesubsurface features in Lake of the Woods and Koochiching counties (Helgesen and others, 1975; Ojakangas and others, 1977; Eng, 1979; Eng, unpublished maps; Meyer, unpublished maps).

Recent activities (since 1986) in the Baudette area have been primarily by governmental agencies. The U.S. Geological Survey is completing a substantial reconnaissance project over a larger region that includes the Baudette area, under the Conterminous United States Mineral Resource Assessment Program (CUSMAP). Aeromagnetic surveying and scientific drilling form the basis for this work (Braken & Godson, 1988; Klein and Day, 1989; Bracken and others, 1991). The USGS has also completed a reconnaissance-level geochemical survey of B-horizon soils survey in parts of Lake of the Woods and Koochiching counties (Clark and others, 1990). The B-horizon soil survey detected patterns indicative of quartz/chlorite/carbonate shear zones were detected south of Baudette.

The Minnesota Geological Survey has completed a scientific drilling program (Mills and others, 1987) placing eleven bedrock control points in the Baudette area and giving some indication of overburden composition. The scientific drilling in Lake of the Woods County was conducted to support CUSMAP efforts by the USGS. Horton and Chandler (1988) have recently assembled an update for the gravity data of McGinnis and others (1973).

The Minnesota Department of Natural Resources is completing two projects, in addition to this survey, that are directed at better resolving the metallic mineral potential of the Precambrian

bedrock in the Baudette area (Frey and Venzke, 1991; Lawler and Venzke, 1991). Results from two previous overburden characterization surveys are also available for comparing and evaluating Baudette area results. These reports cover the Effie and Orr-Littlefork areas located east and south of the Baudette area (Martin and others, 1988; Martin and others, 1989).

In other developments, the Ontario Geological Survey recently completed a mapping and sampling program of overburden overlying a portion of the Wabigoon belt just across the Rainy River to the north and east of the Baudette area (Bajc and others, 1990). Four private mineral exploration developments are in progress as a result of that work. Subsurface glacial drift investigations have also been completed in southeastern Manitoba (Teller and Fenton, 1980). Meanwhile, the United States Soil Conservation Service is currently working on soil survey maps for Lake of the Woods County. Unpublished maps are available from the Soil Conservation Service⁵. Finally, eight exploration leases are currently held in Lake of the Woods County, four within the Baudette field area.

Project Design and Methods

Nine factors influence the design and outcome of a deep-overburden survey: drilling pattern, borehole density, drilling method, constraints on the placement of drill sites, sampling strategy, subsampling strategy, analytical methods, strategy for data handling (Table 3), and interpretive approach.

Drilling patterns are generally designed as grid-based or feature-based arrangements. Gridbased patterns are used to provide unbiased, model unspecific information about subsurface geology. Grid patterns work well to eliminate bias, but tend to waste important organizational resources because most of the critical geology in an area occupies 10% or less of the field area. Feature-based drilling, on the other hand, can provide a wealth of information about specific geologic features. Feature-based patterns work well for elucidating the geology of features already detected or hypothesized, but they do a poor job of resolving geologic features that are undetected or unhypothesized in an area. Featurebased drilling patterns to a large extent eliminate the opportunity for chance discovery. Chance

discovery, or serendipity, is too often discounted during the design phase of projects, the end result being that project work serves merely to retrench existing ideas rather than shed light on very imperfectly resolved subsurface geology.

Since Baudette area overburden is largely unknown, and the underlying bedrock geology is very poorly constrained, a grid base is needed to ensure regional, relatively unbiased coverage, and to provide maximum opportunity for the chance discovery of geologic features not encompassed by current models or ideas. However, in order to best optimize the overall return of geologic information from each drill hole, some component of featurebased drilling also needs to be incorporated in the design so that a few of the geophysically detected, untested bedrock features present in the area can be evaluated.

The Baudette area drilling pattern is based on a grid of township-sized cells in which individual drill holes are constrained within cell boundaries, but are sited to test geophysically detected bedrock features. This ensures that the regional-scale overburden survey design is retained, and that a significant number of high quality bedrock control points can be placed to assist bedrock mapping projects being conducted in the area. Drill sites 501, 502, 505, 514, 515, 518, 519 and 520 were placed to test geophysical bedrock features outlined by CUSMAP efforts.

Borehole density in the Baudette area, like that of preceding deep-overburden survey projects in Minnesota, is designed as four boreholes per township (one borehole per 25 square kilometers), dense enough to detect and confirm the presence or absence of Archean gold geochemical province sized The drilling density in the present anomalies. project, which is reconnaissance work for the actual survey, is one borehole per 100 square kilometers, dense enough to establish the regional-scale stratigraphic framework and background levels in the area and dense enough to identify prospective till sheets, but not dense enough to determine the presence or absence of township-sized gold (or other metal) anomalies.

The rotasonic coring technique was selected for its ability to penetrate boulders and solid bedrock, to deliver large diameter undisturbed core of unlithified sediments, and to deliver uncontaminated samples of till, saprolite, and other overburden materials. These advantages increase the quality of the sampled materials and lend a

⁵ P.O. Box 217, Baudette, MN 56623

greater degree of confidence to the results.

Geological and non-geological criteria constrain the placement of borehole sites. Geological criteria were: drill sites should be located "down ice" from known and inferred zones of structural deformation or geologic contact so that "down ice" dispersals from these occurrences can be intersected, but drill sites should not be located where depth to sound bedrock exceeds 300 feet as indicated by available drill hole and geophysical data (300 feet is the practical depth limit for the rotasonic technique). If possible, sites should be located to support existing bedrock mapping projects. Drill sites should be located to maximize the likelyhood that till units will be encountered, avoiding, if possible, terminal moraines, eskers, and major fluvial/glacio-fluvial deposits. Non-geological constraints that influenced drill site placement were: first, a limit of one continuous core rotasonic drill hole per township with location restricted to land parcels containing state-owned surface and mineral rights. Drilling sites need summer access and, if possible, a minimum of trail/site preparation. Logging trail margins, log landings, and natural clearings were preferred drilling sites. For safety reasons, drill sites should not be placed within 100 feet of road right-of-ways, power lines, buried cables, and pipelines. Drilling sites should also be located outside the exclusion areas of designated peatlands. Finally, drill sites should be located in context of any applicable exploratory boring regulations and with approvals of local wildlife managers.

Detailed descriptions of the cored materials were used to select intervals of till and saprolite for analysis. Since the rotasonic technique yields large diameter core (3.7 inches), a high-precision sampling strategy can be employed. Ten kilogram samples can be collected from intervals as short as five feet, still leaving enough core intact for future stratigraphic reference. Ten foot samples are ideal. Appendix 280-C lists details of the procedures used to sample Baudette area core. The sub-sampling strategy for Baudette area core samples was to start with the analysis of the most direct indicators of gold mineralization (gold grain counts and gold assays) and work progressively toward more indirect mineralization indicators as time permitted. Subsampled fractions include gold grains, heavy mineral concentrates (mineralogy of the nonmagnetic sub-fraction and chemistry of magnetic and non-magnetic sub-fractions), silt-clay matrix (chemistry), pebbles (lithology), matrix texture (sand, silt, and clay), then physical properties

(magnetic susceptibility, bulk density, pH, etc.) (Fig. 4).

The measurements on Baudette area cores help to elucidate either the regional background levels of mineralization pathfinders or the provenance attributes of glacial stratigraphic units. Appendix 280-C lists the chemical, mineral, textural, and physical properties made on the core samples.

The strategy for evaluating the approximately two-hundred chemical, mineralogical and other properties in the data set (Table 3) is to plot all of the attributes showing precision better than 15%, and display the data by location and depth, keyed to preliminary stratigraphic assignments. The data are evaluated for regional-baseline changes either within stratigraphic units or independent of stratigraphic units, and are checked for data spikes (anomalies). The surviving attributes are then used to re-evaluate stratigraphic assignments and make preliminary statements about regional glacial stratigraphy and background levels of measured attributes.

Baudette Area Survey Results

Project work took place during the period July 1, 1989 to June 30, 1991. Appropriations totaled \$196,000, including \$134,000 for drill coring and sample collection, \$32,000 for sample preparation and analysis, and \$30,000 for field crew expense, data analysis, report preparation, technique development, and information dissemination. Drilling sites were selected and checked in the summer of 1989. Coring work commenced in the fall of 1989 and was completed before first snowfall. Detailed logging and sampling of core was completed by spring of 1990, and data collectioncompilation-analysis were wrapped up by spring of 1991. The data synthesis and report writing portions of the project were completed by early summer, 1991.

Twenty of the twenty-one sites selected for continuous coring were drilled during the fall of 1989. The remaining, lowest priority drill site, which sits atop the Quetico metasedimentary Subprovince (drill site 504), was eliminated from the drilling schedule after total budgeted drilling footage was reached at the twentieth drill site. Drilled depths ranged from 61 feet to 329 feet. Each of the drill holes penetrated the entire glacial overburden package, which ranged from 54 to 299 feet thick. Seventeen drill holes penetrated far enough to recover solid bedrock. Overall, core recovery was

92%.

Drilling operations intersected glacial till, layers of sand and gravel, silt-clay lacustrine sediments, saprolite, and solid bedrock. Bedrock lithologies recovered include metamorphosed Precambrian volcanic, sedimentary, and intrusive units. Silt-clay beds were frequently encountered between till units in the eastern portion of the field area, but sand and gravel were the dominant intertill units in the western portion of the field area. Paleozoic strata (dolomite-limestone-chert bedrock) were not intersected in any of the 20 boreholes, but an unpredicted Cretaceous sedimentary unit was penetrated in a paleo-topographic low in the northeastern corner of the field area. Saprolite was encountered in 14 boreholes. Eleven of the saprolite profiles were more than ten feet thick.

4,247 feet of continuous core were drilled, broken to four-foot lengths, boxed, numbered, and loaded for transport, logging, and sampling as a result of the drilling operations. At the drill core library facilities in Hibbing, Mn, cores were measured, described, sampled, and archived for future reference. Appendix 280-A summarizes drill site locations, elevations, drift thickness, saprolite thickness, number of feet of solid bedrock drilled, total depth drilled, and overall recovery percentage. Appendix 280-A also summarizes the number of till, non-till, and solid bedrock samples taken from each drill core. Descriptions of core (and other measured parameters discussed later) are collected in Appendix 280-B.

Stratigraphy and Buried Landscape

In overview, there are four different glacial units named here, with the name only implying relative age and continental-scale provenance. Map 6 summarizes the distribution of glacial drift and weathered bedrock encountered in the Baudette area, and Map 5a shows the elevation of sound bedrock and basal Quaternary contacts. Summary maps of the four glacial stratigraphic packages are shown in Maps 7 through 10. Starting from the youngest, the late-Wisconsinan surface or Koochiching lobe deposits overlie the Rainy lobe deposits. Beneath them are the pre-late Wisconsinan (older) deposits of the Winnipeg lobe and the Old Rainy lobe. The pair of Koochiching lobe and Rainy lobe ice advances were both associated with the late Wisconsinan Laurentide ice sheet. The older tills have many similarities to this pair of younger tills; hence, the inference of

repetitions of such pairing for the older till strata. However, no means of correlating such older till pairs was found. Note the preservation of six older tills identified by descriptive logging (Fig. 5). The six older tills are not present in any single borehole, but evidence from outside the area supports such multiple older events. In this regional survey, the older till samples of Keewatin provenance are hereafter classified as Winnipeg lobe tills--not Upper, Middle, or Lower Winnipeg--since so few samples of each exist. The same is true for Old Rainy lobe till samples.

A description of each unit and observations on variability are presented in the following sections. The variability is affected by the pre-glacial landscape and the spatial distribution of each subsequent glacial unit.

-

.

At least three factors of the pre-glacial landscape; the topography, saprolite thickness and composition, and bedrock lithology are major controls on subsequent till compositions. These factors make up the buried landscape, which can be reconstructed at a regional scale, primarily from the elevation data of preserved pre-glacial materials (Fig. 9 and Map 5a and 7-11). Summarizing the pre-glacial topography, the sound bedrock surface has a regional slope down of >100 feet from the central portion towards Baudette in the northeast. Diagonally crossing this and apparently following a major bedrock structure is a regional bedrock high that appears to be the major control upon glacial drift processes. The regional surface topography does not directly mimic the bedrock topography here. Moving up the stratigraphic column, saprolite appears to be regionally preserved off the bedrock topographic highs (>100 ft. drift) and where protected from the subsequent erosive Labradorean ice advances. Continuing up the column, the total glacial drift thickness is similar east to west, but the stratigraphy is not (Fig. 5). The late-Wisconsin events dominate the column in the eastern portion, whereas, both late-Wisconsin and older events are preserved in the western portion. This has a significant effect upon the till matrix compositions, discussed later. The other two factors regarding saprolite and bedrock are also described in later sections and presented on maps (Maps 6 & 5a).

Koochiching Lobe Deposits

Both inside and outside the Baudette area, where Koochiching drift makes up the surficial deposits in all or part of Koochiching, Lake of the Woods, Beltrami and Itasca counties, it displays some common characteristics. The clasts and matrix are rich in Paleozoic limestone, dolostone, chert, and Cretaceous Pierre shale, clearly of a southeastern Manitoba-northwestern North Dakota provenance. The matrix becomes progressively more silty and clayey to the east, as the till overrode its own proglacial lake sediment. Glacial striae and clast fabric orientations measured at nearby Pinewood, Ontario, yield a flow direction of nearly due east.

The surficial deposits of glacial drift in the Baudette area are all made up of Koochiching lobe drift (Map 3, Surficial Geology) and Fig. 5; see also Martin and others, 1988). These deposits are described in terms of distribution, flow path direction, physical character, internal stratigraphic features, and variation in till composition across the region. The Koochiching tills have been described elsewhere as poor sample media for geochemical prospecting (Martin and others, 1988). Because of that and since these deposits are vertically farthest removed from bedrock, very few Koochiching till samples were analyzed.

The Koochiching tills were found in 19 of 20 boreholes, and the till thickness ranged from 11 to 102 feet. The deposits contain up to three separate till beds. The eastern portion of the area has consistently thicker Koochiching deposits, 76 to 166 ft.

The Koochiching lobe deposits have a complex internal stratigraphy. Evidence for three distinct phases of the Koochiching lobe are present across the northern portion of the study area. The first two phases correlate with two Koochiching tills separated by lake sediment noted to the east (Martin and others, 1988) and southeast (Martin and others, 1989). The upper till across northern Lake of the Woods County was laid down by the last readvance of the Koochiching lobe which apparently did not extend much further east. All three phases of the lobe were fronted by a large glacial lake during both advance and retreat across the county. Sediment deposited in the lake here is generally coarser than to the east where clay dominates the lacustrine sections. Likewise, subglacial Koochiching till where composed largely of reworked lake sediment in the Lake of the Woods area is rich in silt and fine sand, as opposed to the very clayey tills found to the east in Koochiching County.

Incorporation of underlying till and lake

sediment accounts for the large textural variation of the Koochiching tills, particularly the till of the first phase, which plucked up both lake clay and sandy till of the Rainy lobe. Extensive incorporation of Rainy lobe sediment by the first advance of the Koochiching lobe is thought to account for the general lack of Cretaceous shale indicator clasts and the lower carbonate content of the lower Koochiching till, which was also noted in the Effie area (Martin and others, 1989, p. 22). Common to abundant shale clasts in till of the second Koochiching advance indicate a significant change in flow direction from the first; while reduced shale and more abundant carbonate in the uppermost till indicate a shift back to a more north-of-west source for the final advance of the Koochiching lobe. The upper Koochiching till probably correlates with the Falconer Formation of northwestern Minnesota (Harris and others, 1974), and the Whitemouth Lake Formation of southeastern Manitoba (Teller and Fenton, 1980). The lower two tills of the Koochiching lobe probably correlate with the upper and lower Red Lake Falls Formation (Minnesota) and the Roseau Formation (Manitoba), and the Rainy lobe till correlates with the Marcoux (Minnesota) and the Senkiw and Whiteshell formations (Manitoba). The first and third Koochiching lobe advances across Lake of the Woods County probably flowed about sixty to seventy degrees east of south (with reference to the bedrock of southeastern Manitoba; McRitchie, 1980); whereas, the second advance flowed almost due east. The increasing percentage of quartz and pisoliths in the very coarse sand fraction from the upper to lower Koochiching tills indicates progressively more local rock (Precambrian versus Paleozoic) down section, which in turn indicates progressively more incorporation of Rainy lobe sediment. In fact, the bulk of Precambrian clasts within Koochiching till in the study area was probably derived from Rainy lobe sediment. Thus, although usually not the till immediately above bedrock, the lower Koochiching till, particularly in areas of thin Rainy till over bedrock, should still be considered for prospecting purposes.

Rainy lobe Deposits

Rainy lobe deposits are very different from those of the Koochiching lobe in terms of distribution, flow path direction, physical character, variation in till composition across the region, and bedded sediment features. The Rainy lobe tills have been described elsewhere as good sample media for geochemical prospecting (Martin and

others, 1988), and also appear to be in the eastern portion of the Baudette area.

Rainy drift was found in 18 of the 20 boreholes, but its till is commonly thin, 3 to 42 feet thick, averaging 17 ft. (Map 8 isopach). Thick sequences of Rainy drift are associated with the inferred, buried Vermilion moraine that crosses this region (Fig. 7), and associated proglacial lake deposits. The lack of Rainy till in OB-512 and 516 appears to be related to the regional bedrock high.

Glacial striae north and east of the study area (Bajc and Gray, 1987; Fig. 7) indicate a south-southwesterly (roughly 210[•] near Pinewood, Ontario, op. cit.) flow path for the late Wisconsinan Rainy lobe. Variations in striae direction from almost due south to seventy degrees west of south may be due to local variations in the sub-ice topography, or possibly they represent different phases in the ice advance. The flow path of the Rainy lobe may have been nearly due south as the ice stood at the Vermilion moraine, for example, across central Lake of the Woods County (Fig. 7); whereas earlier, the flowpath would have been more southwesterly across the southern part of the county. Not only does the underlying bedrock topography control the path of flow, it also helps to determine transport distance of entrained debris (Clark, 1987). In general, subglacial transport carries sediment toward topographic lows, and transport distances through valleys or bedrock lows are longer than across intervening highs. Flowpaths of earlier advances of the Rainy lobe can be expected to have been similarly altered by the bedrock high in central Lake of the Woods County.

The physical character of the Rainy lobe drift is dominated by an abundant assemblage of Precambrian rock clasts incorporated during the lobes advance across the Canadian Shield. Rainy lobe till is gray to greenish gray in its typically unoxidized state. The matrix is usually a sandy loam with very low carbonate content and low total matrix solubility (Appendix J). The matrix heavy minerals commonly contain pyrite. The magnetic susceptibility seems generally higher for Rainy tills than others, probably reflecting the higher content of unweathered magnetic pebbles. The true or proto-till character is difficult to assign, due to variability discussed below.

The variation in Rainy till composition displays regional, local?>, and property-scale trends due to

at least the two factors of underlying material character (see Figs. 8 & 6) and bedrock topography. The regional trend is best displayed by increased carbonate content in the western portion, where the Rainy lobe advanced over Winnipeg lobe deposits. The local scale variation is best displayed by the increased sound Precambrian bedrock content over a local bedrock high (OB-509) or conversely increased saprolite content over a local bedrock low (OB-506). The property-scale variation is the most common type, often occurring at the bottom of the till, nearest underlying material, as in OB-501. The most significant variation is the regional change that affects both the Rainy till clasts and matrix composition.

The Rainy lobe bedded sediment contains two widespread features--a marker zone of brown clay and thick sequences related to the Vermilion moraine. A marker zone of brown to reddishbrown clay laminae, noted in previous drilling across southern Koochiching County and into St. Louis County (Martin and others, 1988, 1989), was encountered in holes OB-501, OB-502, OB-505, and OB-506 in the eastern part of the study area. Reddish-brown clay incorporated in basal Koochiching lobe till in hole OB-509 was derived from this marker bed. These occurrences further extend the known boundaries of the proglacial lake that fronted the Rainy lobe during its standstill at the Vermilion moraine (Fig. 7). The reddish clay originated either from a large glacial lake dammed by the Superior lobe south of the Mesabi Range, or from meltwater issuing from ice at the Highland moraine in Lake County (Hobbs and Goebel, 1982). Interbedded calcareous sediments indicate greater proximity to the Koochiching lobe in the Lake of the Woods end of the lake. Thick sequences of bedded sediment present in holes OB-508, OB-515, OB-518, and OB-519 were laid down as the Rainy lobe retreated to the position of the Vermilion moraine. The Rainy till bed within lake sediment in hole OB-508 represents a local readvance of the Rainy, and it may correlate with a similar sequence found in southwestern Koochiching County (Martin and others, 1989, p. 22).

The surface expression--and possibly the deposits--of the Vermilion moraine was obliterated by the Koochiching lobe and its proglacial lakes across Lake of the Woods and northwestern Koochiching counties. However, the position of the moraine across this area can be approximated (Fig. 7) by reference to the trend of the moraine in St. Louis County and the trend of strings of Rainy lobe kames at the surface across northern Koochiching

(Horton and others, 1989) and eastern Roseau counties, southwestern Ontario (Bajc and Gray, 1987), and southeastern Manitoba (Nielsen and others, 1981). The north thirty degrees west trend of the moraine appears to continue from the point of burial west of Orr to central Lake of the Woods County, where it is thought to bend to the west, and then in Roseau County back to the north. The bend in Lake of the Woods County is believed analogous to that noted in the Effie moraine (Martin and others, 1989, p. 23), which was caused by a bedrock high in the Deer Lake area. A similar bedrock high (Map 5a) is present in Lake of the Woods County. During retreat of the Rainy lobe, the ice over the bedrock high would have been thinner and thus melted back faster. Anv readvances would also be obstructed by the bedrock high. The Effie moraine may coalesce with the Vermilion in western Lake of the Woods County, forming the western end of the lake bounded by the two moraines.

To summarize, the Rainy lobe tills appear to have a major component of sound Precambrian bedrock, which is modified by regional \pm local \pm property - scale components. In general, the chemistry data strongly supports this observation (Fig. 8).

Winnipeg Lobe Deposits

Winnipeg lobe deposits are similar to the Koochiching in terms of continental provenance, but are older. The Winnipeg lobe will also be described in terms of distribution, internal stratigraphy, flow path direction, physical character, variation in composition for comparison to the other units. These tills vary in usefulness for prospecting from a completely exotic composition (518-05) to a useful, property-scale composition (518-08).

Outside the Baudette area, buried Winnipeg lobe deposits were identified from cores in southern Koochiching and northern Itasca counties (Martin and others, 1989). A clayey, carbonate-poor till of Keewatin provenance has been recognized in northwestern Wisconsin (Johnson, 1986), far down ice but along a reasonable flow path from Lake of the Woods (see carbonate-poor till below).

The internal stratigraphy of the Winnipeg lobe deposits is complex. Glacial sediment from three separate advances of the Winnipeg lobe are recognized in the Baudette area (Fig. 5). Till of the upper and lower advances, unlike the middle advance or Winnipeg till studied elsewhere in Minnesota (Martin and others, 1989; Meyer, 1986), has only moderate amounts of carbonate. The high clay content of Winnipeg lobe till is believed due to the incorporation of Cretaceous marine and nonmarine (reworked saprolite) sediment as the ice moved across southeastern Manitoba. Charcoal from a sandy silt bed between the upper and middle Winnipeg tills yielded a radiocarbon date of greater than 40,400 years B.P. No direct proof was available to indicate a pre-late Wisconsinan age for the upper Winnipeg till; it was simply noted to be stratigraphically below sediment from the last Rainy lobe advance.

Till-clast lithology must be used to estimate the flow paths for Winnipeg hole advances, because related landforms and glacial striae have been buried or obliterated. The first and third carbonate-poor Winnipeg advances probably had a flow path twenty to thirty degrees east of south, whereas the second and carbonate-rich advance probably flowed about due southeast.

The physical character of these deposits is dominated by the abundant limestone and dolostone. Winnipeg lobe till is typically gray to dark gray in contrast to the greenish-gray color of Rainy lobe till. The lower Winnipeg till in the study area is oxidized grayish brown in all five holes in which it was encountered; this serves as a useful marker bed in the subsurface. The matrix is usually a silt loam, with much more clay than the Rainy or Old Rainy, and with very high matrix solubility (Appendix J). The matrix heavy mineral weight is significantly lower than the Rainy or Old Rainy. Limonite pisoliths are common in the heavy mineral fraction of these tills and uncommon in the others. Paleozoic pebbles dominate the clasts. There are clear trends in the matrix chemistry for this stratigraphic unit, such as for Hg, K, Cu, B, & As (see Results Chemistry).

There are definite variations in Winnipeg deposits, inferred to be from mixing of underlying materials (Fig. 8). This is particularly true for the oxidized, lower till. In four of the five holes, this till lies directly over saprolite or bedrock, clasts of which were clearly incorporated by Winnipeg lobe ice. Visual evidence was verified by pebble and sand counts (Table 4 & App. M). Similar dilution occurs in the middle till in a few cases where it is very low in the Quaternary section.

In summary, the Winnipeg lobe deposits are very different from the Rainy or Old Rainy tills.

They are useful as a prospecting media only where they occur at the base of the Quaternary section, but even then retain an identifiable Winnipeg fingerprint.

Old Rainy Lobe Deposits

The Old Rainy lobe deposits will also be presented in terms of distribution. The Old Rainy lobe deposits distribution is unusual in terms of its elevation and thickness across six boreholes where it is preserved (see Map 10). Regarding elevation, it occurs in two boreholes in the eastern portion, only in topographic lows where the top is below 990 feet elevation. In contrast, in two boreholes in the western portion, it creates a topographic high where the top is 1145 feet elevation (OB-520). Moreover, it is thicker in the western portion, up to 193 feet thick in OB-520. In all of these cases, it is the stratigraphically lowest till in the Quaternary section. Note that in OB-521, sediment from two Old Rainy advances is separated by Winnipeg lobe deposits.

The physical character of the Old Rainy tills is dominated by relatively more saprolite, an abundance of Precambrian rock clasts, and variable Paleozoic carbonate content. Even where rich in carbonates, it is distinguished from Winnipeg lobe till by its sandy texture, greenish color, and low clay mineral content (Table 5, Table 4, App. K & App. J). In OB-507, where Rainy lobe till rests on Old Rainy till, the Older till is oxidized pale brown in color. Without the oxidized zone, the contrast of greater compactness, somewhat higher clay content, and higher matrix carbonate distinguishes the Older till. Many distinctions in element composition, such as K, Ti, Na, B, and Hg also are recognized. The Old Rainy tills also contain a higher siderite weight in the matrix heavy mineral fraction.

The continental-scale flow paths of Old Rainy lobe advances cannot be defined yet by direct indicators, so must be inferred on the basis of till composition. Based upon gross composition, the continental flow paths of the Old Rainy are similar to Rainy lobe advances. One difference is the higher matrix carbonate content and it suggests two hypotheses. One is incorporation of older Keewatin tills, the other is a Hudson Bay lowland carbonate source for the Old Rainy tills (see Dredge and Cowan, 1989).

To compare the Old Rainy deposits to those outside the Baudette area is difficult, since the

subsurface record is fragmentary. Correlation between holes within this area is not clear-cut, and correlation with the two advances recognized in the Effie area to the southeast (Martin and others, 1989) is not attempted. Old Rainy till sampled in the Effie area averaged more silt, less sand, and a little less clay than Old Rainy till sampled in Lake of the Woods County (App. J). Assuming much of the silt content in Rainy till is rock flour from glacial abrasion of crystalline rocks, till from the Lake of the Woods area may be derived from a rock source slightly more saprolitic than fresh, as compared to Old Rainy till in the Effie area.

In summary with regard to prospecting, the Old Rainy lobe till compositions suggest that local and property-scale incorporation of underlying saprolite and bedrock commonly occurs. Moreover, the generally depleted values of many elements in saprolite offers good geochemical contrast.

Saprolite Deposits

Saprolite deposits are very different from glacial drift deposits in terms of distribution, physical character and variation. Because of its wide distribution in the Baudette area and the pathfinder element accumulations, it has good potential as a prospecting media (DaCosta and others, 1991).

Fourteen holes in the Baudette area contained saprolite, with the thickest section of 124 ft in drill hole 508, and the thinnest section in drill hole 512 containing 2 ft. A few holes contained 1-2 ft. sections of reworked saprolite and a thicker section of Cretaceous sand in drill hole 503 at the saprolite/drift interface. Kaolinitic saprolite was encountered in six drill holes: 501, 503, 506, 507, 508, and 520. Most drill holes contained varying thicknesses of chloritic saprolite except for drill hole 519 which contained only grus. Drill holes 505 and 511 contained grus directly above bedrock.

A hypothetical weathering profile is made up of lateritic duracrust, reworked saprolite, kaolinitic saprolite, and chloritic saprolite (Smith, 1987; Parham, 1970) (see Fig. 9). In the Baudette area, the lateritic duracrust was not encountered in our boreholes. Reworked saprolite typically occurs in the first few feet of the saprolite, it is characterized by disturbed structures and the presence of foreign rounded pebbles and sand. In drill hole 503, there is a 58 foot section of Cretaceous sand (reworked saprolite). This sand is 99% angular quartz grains

that range from fine to coarse grained. This unit is also reported by the OGS across the border in Kaolinitic saprolite is Ontario (Bajc, 1989). characterized by light greenish gray to white color, high kaolinite content and has a low bulk density. Chloritic saprolite is characterized by a darker greenish gray color, high chlorite content and a higher bulk density than kaolinitic saprolite. Grus is less weathered and more dense than saprolite; it is characterized by grainy texture caused by the breakdown of bonds between individual mineral grains (Appendices 280-B&K). All saprolite samples measured have high pH values (Appendix 280-K).

Bedrock type has some control over saprolite variation. It appears that the ferromagnesian mineral content of the protolith controls the kaolinite:smectite ratio, with more kaolin over feldspar rich protoliths (Appendix 280-0).

Gold Grain Counts

The median gold grain count for Baudette area tills is zero gold grains per 10 kg sample. Five boreholes in the eastern portion of the field area show elevated gold grain values in the Rainy till. In three of these boreholes the gold grain counts are anomalous compared to the regional median value (Table 5). The gold grain values fall off to background levels beyond drill hole 502 (see map in Appendix 280-E). With the regional-scale drilling density used in the current project, the data are inadequate to isolate a unique township source, but they are adequate to determine a regional trend for the gold grain dispersal, pointing to a regional source area in the vicinity of the newly recognized Baudette fault system, or in the vicinity of the magnetic felsic intrusions (magnetite tonalites? based on pebbles) located near the Baudette fault system. Till in drill holes 517 and 520 also display weak gold grain anomalies. Saprolite in the Baudette area does not display elevated gold grain counts for any of the samples analyzed.

The gold grain counts for all of the Baudette area samples are listed by sample number in Appendix 280-F, and are listed with gold assay information in Appendix 280-P.

Heavy Mineral Mineralogy

Heavy minerals provide a second means of detecting and tracing glacial dispersal of gold and

other metals. Fifty-seven of the 103 Baudette area till samples were selected for intensive mineralogical examination. The samples selected exhibited anomalous or unusual assay results that suggest the presence of distinctive heavy mineral varieties. All of the 103 heavy mineral samples were eventually checked for siderite and limonite pisolith content in order to test the stratigraphic utility of those minerals.

Before making the mineralogy examinations, the nonmagnetic fraction of the Heavy Mineral Concentrates (nmHMC) obtained from the processing laboratory (the 1/4 split not sent for assay) was further refined at the heavy mineral facilities of the U.S. Geological Survey in Denver, Colorado. The further processing yielded nmHMC-C3 (very nonmagnetic) and nmHMC-C2 (paramagnetic) sub-fractions. The intensive grain mineralogy work was done on the C3 sub-fraction. Siderite and limonite pisolith contents were visually estimated in the C2 sub-fraction (Fig. 10).

Gold, galena, molybdenite, native copper, scheelite, corundum, kyanite, and gahnite (zinc spinel) appear to be distinctive mineral varieties in the C3 fraction of Baudette area tills. The limonite pisoliths appear to be prevalent in Keewatin provenance deposits (Winnipeg tills). The siderite content is not stratigraphically controlled, but appears to correlate with saprolite incorporation into the tills.

Some of the more interesting pathfinder mineral varieties identified during examination include blue-gray scaly and/or hexagonal flakes of molybdenite (boreholes 512 and 505), native copper (seven boreholes in the eastern half of the field area, and in one large clear quartz cobble in borehole 503), and chalcopyrite (boreholes 502 and 520). Scheelite is present in many of the boreholes, with zero to five grains noted per borehole. Light blue corundum was noted in boreholes 507, 509, 517, and 521. Specimens of the corundum are being evaluated to test for possible gem quality. Gahnite, the zinc spinel, was identified in the basal (Old Rainy) till sample in borehole 517. The gahnite occurrence is coincident with the weak gold grain and scheelite anomaly also present in the basal till in 517 (Todd, 1991). SEM-EDS analysis of individual grains by Hanna Research Labs confirmed the identities of galena, chalcopyrite, corundum, arsenopyrite, and gahnite.

Heavy mineral examination results are summarized by sample number in Appendix 280-L.

Remarks from the initial heavy mineral examinations at the processing laboratory are listed in Appendix 280-P.

Heavy Mineral Chemistry

Assay results for the nonmagnetic (nmHMC) and magnetic (magHMC) fractions of heavy mineral concentrates (>3.3 specific gravity) exhibit four types of variation: some display invariant (unresolvable?) regional baselines, some exhibit sloping regional baselines, some display distinct stratigraphic signatures superposed on either invariant or sloping regional baselines, and some assayed elements show distinct enrichments or anomalous values in particular samples. Figs. 11 and 12 illustrate how these types of variation appear on graphic plots. By way of example, mercury (Fig. 11c) exhibits a sloping regional baseline that is independent of stratigraphy, displays a diagnostic stratigraphic signature, and shows some anomalous values.

Eleven nmHMC assayed elements show regional baseline changes that are independent of stratigraphy. Eight of these elements show regional increase to the west-northwest. They are: Ag, As, Cr, Hg, Lu^{*}, Zr, Fe, and Mn. The other three elements show a regional decrease to the westnorthwest. They are: Sr, Ca, and P. The regional baseline for one magHMC element, Pb, decreases to the west-northwest.

Mercury is the most diagnostic stratigraphic tracer in the nmHMC dataset. It displays up to a ten-fold higher concentration in the northwestern provenance Winnipeg tills than in the northeastern provenance Rainy and Old Rainy tills. The contrast is sufficient to resolve till contamination of the Rainy and Old Rainy tills where they have overridden Winnipeg sediments. As, Ni, Sb, and Sr also exhibit some stratigraphic distinction, but with less resolution. Regional baselines and stratigraphic variations found in the heavy mineral assay results are summarized in Table 2.

Samples that show distinct enrichment or anomalous values are scattered throughout the analytical results. Rainy till, Old Rainy till, and saprolite display coincident subregional-scale enrichments and anomalies. Rainy till in boreholes 503 and 514 shows coincident enrichment. Borehole 503 shows enrichment or anomaly in Au^{*}, Ba, and Sr, and high Hg in the Cretaceous sediment. Borehole 514 shows enrichment or anomaly in Bi, Cu, Hg, Rb, and Th compared to regional background levels. The elevated Cu assays in the Rainy Till correlate well with native copper observations in the heavy minerals, but the elevated Cu values in borehole 521 do not match any observed native copper grains. Borehole 502 shows elevated Ag and Pb values in the magHMC fraction. Borehole 509 shows a W anomaly (244 ppm) in the nmHMC of Rainy till. The saprolite overlying the massive sulfide in borehole 513 shows enriched values for Co, Cu, Mn, Ni, Ti and Zn^{*}. Siderite content (up to 95%) in the samples probably dilutes the actual concentrations of many of the nmHMC assay results, making them only enriched, rather than anomalous.

Gold assays match predicted gold assay values that were based on the observed gold grains. Only four samples are discrepant: 501, 503, 515, and 520 Rainy or Old Rainy tills. Saprolite in 507 and 508 shows higher gold assay than the gold grain counts predicted. These samples likely contain gold in a very fine-grained form. The most pronounced enrichment of multiple elements occurs in the basal fifty feet of Old Rainy sand/till in borehole 520 and in the underlying saprolite in 520. The till and saprolite each show multiple enrichments, some up to 20x above regional till baselines, but the elements enriched The nmHMC mineralogy shows fairly differ. abundant (30 grains) galena in the saprolite in 520. Distinctly elevated trace element values in the saprolite include Ag, Ba, Bi, Ce, Cu, Eu, Ga, La, Pb, Sm, Tb, and Y. Elevated element levels in the till and sand of 520 include: Ce, Cr, Cs, Ga, Hf, La, Rb^{*}, Sn, Ta^{*}, Tb^{*}, Th, U, and Yb. Only Ga, La, and Tb are enriched or anomalous in both the till and the saprolite.

Tables 6 & 7 summarizes the distribution of detected enrichments or anomalies in the heavy mineral assays. Appendix 280-G and Appendix 280-H list samples and assay results for the nonmagnetic and magnetic heavy mineral concentrate fractions. Regional median values, calculated for each stratigraphic unit and further divided by eastern portion versus western portion, are shown in Table 8.

Silt-Clay Chemistry

The silt and clay fractions of drift samples can

^{*} Precision for this element exceeds 20%.

also be used to detect and trace glacial dispersal of gold and other metals, particularly the less-resistant mineral species, metals adsorbed onto clays during oxidation or weathering activity, and very finegrained fragments of mineralized rock. The silt-clay assay results for Baudette area samples display many of the same patterns exhibited by the nmHMC and magHMC.

Twelve elements in the silt-clay fraction show regional baseline variation. As, Sb^{*}, Zr^{*}, and Ca increase in amount in the western portion of the field area. Cr, Cu, V, Al, Fe, K, Na, and P decrease in abundance in the western portion of the field area. Six of the twelve elements are rockforming major elements. Aluminum, potassium, and sodium show regional baseline changes in the silt-clay assays that are not reflected in the heavy mineral assay data. K and Ti display some stratigraphic variation, discriminating between Rainy and Old Rainy tills, probably reflecting a larger saprolite content incorporated into the Old Rainy till.

Several silt-clay fraction samples show enriched or anomalous values. Many of the silt-clay enriched values are coincident with nmHMC enriched values. The Labradorean tills in borehole 507, both the Rainy and the Old Rainy, are enriched in Ag. High Au values in the silt-clay fraction are confined entirely to the Rainy till, with Au data spikes showing up in boreholes 503, 506, 509, 514, and 515. Saprolite in borehole 520 contains elevated assay values for many of the same elements that were enriched in the nmHMC fraction: Ag, As, Be, Ce, Co, Ga, La, Nb, Pb, Sb, W, and Y. Some of the elevated values are enriched more than 10x over the regional background. Saprolite sections in boreholes 505 and 506 are also enriched in a number of elements, including Sr, Sc, Rb, Ni, Ga, Au, Y, and Zn. The enrichment in Zn in the siltclay fraction is much less prominent than in the nmHMC fraction.

Table 2 summarizes the characteristics assayed in the silt-clay fraction and displays the regional baseline changes or stratigraphic differences found. Table 6 lists silt-clay fraction assay results that have anomalous values compared to regional baselines. Silt-clay fraction assay results are listed in Appendix 280-G, along with the nmHMC assay results. Regional median values, listed by stratigraphic unit and further divided into eastern portion versus western portion are shown in Table 8.

Pebbles

The lithologies of pebble clasts in tills give some opportunity to trace regional bedrock lithologies and provide some correlation of elevated chemical baseline levels to regional bedrock sources. In the 9.4 cm diameter rotasonic core, the larger pebble clasts are difficult to evaluate because they undergo mechanical abrasion and fracturing during the coring operation and are more likely to display sampling errors due to till heterogeneity. Smaller clasts provide more consistent indications of regional trends. The largest pebble class in the rotasonic core to yield reliable results is the 1/4 -3/8" (0.64 - 0.95 cm) size class. Appendix 280-M shows how limestone-dolomite-chert, coarse grained granitoid, and supracrustal pebble clasts are distributed by size in the 103 Baudette area till samples.

Limestone-dolomite-chert is present in the western portion of the field area, and displays a regional baseline pattern of increasing carbonatechert toward the northwestern edge of the field area (Fig. 13). The carbonate-chert appears to be exotic since no drilling in the Baudette area has penetrated carbonate-chert strata. In the eastern portion of the field area, little or no carbonate-chert is present in the tills. In the western portion of the field area all of the tills contain some carbonate-chert. The regional increase in limestone-dolomite-chert in the western tills (up to 45% in Rainy/Old Rainy tills) reflects both the transport of carbonate-chert into the Baudette area (in the case of the Winnipeg tills), and the incorporation of Winnipeg provenance glacial sediments into the overriding Rainy and Old Rainy tills (Dahl and Cartwright, 1990). Granitoid content in the pebble samples mimics the carbonate-chert pattern, but is difficult to resolve because of dilution effects caused by granitoid content in the Labradorean tills.

Pebble counts of the 1/4 - 3/8" supracrustal pebbles (Appendix 280-N) show that graywacke displays regional variation similar to the carbonatechert and granitoid of the Winnipeg tills, increasing in abundance to the northwest. Amphibolitic pebbles in the Rainy till decrease to the west. Sub -regional elevated values include mafic plutonic and magnetic pebbles (50%) in the basal till sample of borehole 515, felsic-intermediate hypabyssal pebbles in the basal till sample of borehole 513, sulfide the basal till sample of borehole 511, fine-grained

Precision for this element exceeds 20%.

grains in metasediments in the Old Rainy till in boreholes 517 and 520. The supracrustal pebbles do not show distinct associations with underlying bedrock.

Magnetic tonalite clasts noted in boreholes 502, 505, 506, and 508 correlate well with the gold grain dispersal trend and the magnetic susceptibility of Rainy till. That clast type may be useful as a subregional lithologic tracer.

Physical Properties

Bulk density increases downhole in most of the saprolite and bedrock profiles. Bulk density readings for 9 of the 13 boreholes measured show an increase in density down the hole. Six selected till samples range from 1.5 to 2.3 g/cm3. Forty saprolite samples range from 1.5 to 2.3 g/cm3, and six bedrock and weathered bedrock samples range from 2.0 to 2.8 g/cm3. Appendix 280-K lists results for individual samples.

Forty-eight saprolite samples from 14 boreholes were measured for pH. All of the boreholes had high pH readings. pH measurements ranged from 5.7 to 9.8. Results for individual samples are listed in Appendix 280-K.

Mean magnetic susceptibility of sampled intervals shows an area of Rainy till with elevated magnetic susceptibility levels. These elevated levels are five to ten times higher than the magnetic susceptibilities of Rainy till in other parts of the field area. The elevated Rainy till values are found in boreholes 502, 505, 506, and 508.

Till compactness, in the recovered rotasonic core, does not appear to be diagnostic of stratigraphic types. Most of the till samples are moderately compact to compact. A few of the Old Rainy and Winnipeg tills are very compact.

Maxtrix Texture

On average, Winnipeg tills are less sandy than Old Rainy and Rainy tills. Old Rainy is slightly more silty than Rainy till in selected boreholes. The difference is not diagnostic for Winnipeg, Rainy, and Old Rainy tills because the ranges overlap significantly. Borehole 517 shows the best resolution of stratigraphy, separating Keewatin provenance from Labradorean provenance units.

Bedrock and Saprolite Results

Bedrock profiles recovered during coring operations were described petrologically and petrographically by T. Klein of the U.S. Geological Survey in Reston, Virginia (Klein, 1991). Fifteen bedrock samples selected from 14 boreholes were analyzed for major elements, and ten saprolite and bedrock samples were analyzed for trace elements. Frey and Venzske, 1991 describe in detail the analytical results for a great many more bedrock samples. These results can be compared to the analysis results listed in Appendix 280-I. Descriptions of the bedrock profiles are listed by borehole in Appendix 280-B. These analyses provide some basis for evaluating the regional influence of major rock types (see for instance the semi-massive sulfide and overlying saprolite in borehole 513; mylonites in boreholes 503, 506, 517, 521); graywacke in boreholes 512; gabbro in borehole 509; basalt in borehole 514; and syenite in borehole 502).

Seven boreholes contain bedrock analyses worthy of review. The highest bedrock gold assay, 30 ppb, occurs in association with Bi, 11 ppm, in a barren semi-massive sulfide (17.9% S) in OB-513. Borehole OB-503, a mylonite near the Baudette fault, contains the highest B, 222 ppm, and Hg, 18 ppb, and calcite metasomatism. Borehole 517, a mafic mylonite, contains 11.5% MgO, 239 ppm Ni, and 567 ppm Cr and could have been a komatiitic basalt protolith. Borehole 521, a mylonite with locally present mafic volcanic breccia clasts, appears to be enriched in K₂O, 5.55%, and depleted in NA₂O, 0.43%. Borehole 501, a weathered quartz monzonite contains the highest Zn, 989 ppm. Borehole 519, a hornblende tonalite, contains the highest Cu, 447 ppm. Three of the above observations are corroborated by other drill core from this area (see Frey and Venzke, 1991): 1) an apparent Au with Bi association; 2) the presence of komatiites is confirmed in the western portion of the area; and 3) elevated Cu and Zn values in tonalite-monzonite intrusives.

Significant new data on saprolite composition has been obtained for the Baudette area. In addition to the ten saprolite samples analyzed on a bulk sample basis, 15 other saprolite intervals were analyzed using the same geochemical fractions as for the till samples. A summary of those results follows.

In the Baudette area, the common minerals found in the saprolite include: quartz, kaolinite,

muscovite, siderite, and varying amounts of illite and smectite. Saprolite mineralogy is generally characterized by quartz, kaolinite, muscovite, and chlorite (Davy and El-Ansary, 1986). Oriented clay XRD results show relative amounts of kaolinite, chlorite, illite, and smectite from six selected Baudette area saprolite samples (Appendix 280-O).

Saprolite samples contain a surprising range of weight, 8 g/10kg to 410 g/10kg, of heavy minerals. Native copper, galena, zircon, corundum, siderite, rutile, ilmenite, garnet, and quartz seem to be fairly resistant to weathering processes. They remain in considerable numbers in saprolite heavy mineral samples. Siderite, which is ubiquitous in the saprolite, contributes very high weights to some heavy mineral concentrates. Pyrite, scheelite, epidote, pyroxene, and amphibole are moderately resistant, and chalcopyrite and sphene are fairly nonresistant to weathering processes.

Five drill holes contain pathfinder minerals in the saprolite including: galena, gold, corundum, native copper, and scheelite. Drill holes 508 and 520 contain considerable amounts of galena. Thirty grains were counted in drill hole 520 and ten grains were counted in drill hole 508. Galena grains are in cube and cube-like forms and range from <.1 mm to 1 mm. Drill holes 503 and 507 each contain one gold grain in the saprolite. Corundum is identified (SEM/EDS) in the saprolite in drill hole 501. Four grains of corundum are also found in the saprolite in drill hole 507. One grain of native copper is found in the saprolite in drill hole 508, and scheelite is identified in the saprolite in drill holes 501 and 503.

Magnetite is destroyed during the weathering process that forms saprolite. Both the low magnetic susceptibility readings (see App. B) and low weight recovery of magnetic fraction (see App. J) verify this. However, before complete destruction of a magnetic grain occurs, the outer rim of hydrous iron oxides accumulates available Cu, Pb, Zn, Co, MgO, V, MgO, V, Mn, Cr, or TiO2. Thus, the weathering process has an effect on concentration and depletion of elements even in the magnetic fraction.

Saprolite samples contain elevated MgO (3x median), Co (9x median), Cr (3x median), Cu (17x median), Pb (3x median), and Zn (6x median) in this fraction (see Table 7). Note the high Cu in drill hole 520 and the high Zn in drill hole 507. The saprolite samples contain a very small weight of magnetic fraction material, but that fraction can scavenge available metals cations.

Nonmagnetic heavy mineral concentrate and silt/clay analysis for saprolite samples are listed in Appendix 280-G and show significant enrichment in certain elements. Elements which are enriched by \geq 3x median in the nmHMC fraction of the saprolite over bedrock include: Ba, Ce, Co, Cu, K, Mn, Ni, Pb, Ti, V, W, Y, and Zn. Elements enriched by \geq 3x median in the -2 um fraction of the saprolite include: Ag, Ce, Co, Mn, Nb, Pb, V, Y, and Zn.

In summary, this new saprolite composition data combined with the saprolite stratigraphy results (see Stratigraphy and Buried Landscape) will permit more confident evaluation of this ample media in future geochemical prospecting.

Summary of Results

In sum, many patterns are evident in the observations regarding the stratigraphic units and regional variation (Table 10). Superimposed upon these patterns are the proposed anomalous values that could relate to mineralization.

Within the stratigraphic units, four factors related to till composition are observed. The factors include: 1) the presence of tills deposited by subglacial vs. supraglacial processes; 2) the presence of head vs. tail of dispersal trains; 3) the incorporation of underlying material into till; and 4) the characteristic content of certain elements (Hg, K, B, As, Ca, Na, or P) in each stratigraphic unit. Regarding regional variation, basically a regional slope east to west, three factors are noted. They include high exotic carbonate clast content and high matrix carbonate content in the west, and variation in 11 elements in the matrix clay fraction. Of those 11 elements, only Ca is higher in the west.

Numerous anomalous geochemical (3x median) values have been pointed out within the separate sample fractions of tills. They are listed in Table 9 and on map in App. E. Briefly summarizing prior to interpretation:

- 1) low, but anomalous, levels of gold with pathfinders are found in OB-503, 506, 509, 514, and 517;
- potential pathfinders are found in OB-505 (molybdenite, Zn, Ni), 512 (molybdenite), and 513 (kyanite);
- low, but anomalous, levels of gold without pathfinders are found in OB-502, 515, 518, 519, 520, and 521; and
- 4) anomalous native copper grain counts are

reported for OB-508, 514, and 511.

Moreover, a few pathfinder mineral occurrences were found in place in saprolite or bedrock:

- 5) low level Au and Bi occur in OB-513; and
- 6) potential pathfinders occur in OB-501 (Zn), 503 (scheelite, Hg, & B), 508 (galena and native copper), and 520 (galena and Cu).

Discussion

Geochemical Province

The model most significant to this project involves a geochemical province⁶. The geochemical province concept is fundamental to the design of this survey. The total dispersal could create a geochemical province in the overburden if the country rock contains abnormal abundances of gold along one large source zone or many small dispersed zones. It is appropriate here to note the conclusions of Bolviken and others (1990) (Fig. 2). "At this stage, three empirical facts appear to be established:

- Geochemical provinces can be disclosed not only through analysis of certain grain-size fractions of overburden material, but also through analysis of water (Bolviken and others, 1990b), heavy mineral fractions and organic samples.
- 2) Both ore and non-ore elements produce geochemical provinces that possibly are associated with ore mineralization.
- 3) The determination of total contents of elements is not always the best procedure for outlining an interesting geochemical province. Acid-extractable elements are often more indicative."

It is suggested here that a gold geochemical province of roughly 75 square kilometers has been identified about 40 kilometers east of Baudette by an Ontario Geological Survey glacial drift geochemistry project (Bajc, 1988). Two additional gold geochemical provinces appear in Thorleifson and Kristjansson, 1988, in the Beardmore-Geraldton, Ontario, area. These above three interpretations are based upon gold grain counts and assays from tills. Two gold(?) geochemical provinces of 89 km² and 77 km² have recently been reported in northeastern Minnesota (Alminas and others, 1991). These gold enrichments are reported from A-horizon soils developed on glacial deposits. All of these occurrences are in Archean Superior Province bedrock terrane, similar to Baudette area bedrock. Examples of other probable geochemical provinces across the Canadian shield, as defined by gold grain counts in till, are presented by Averill (1988).

Using these gold geochemical provinces as a model for similar Archean terranes in Minnesota, a minimum sample pattern for recognition of a gold geochemical province can be established. A gold province is likely to be 75 km² in area or larger, and associated with a major structure, hydrothermal system, or stratigraphy. This size province could be identified by a borehole density of 1 per 25 km^2 . Coincident pathfinder anomalies in multiple forms, in elements, sample fractions, samples, or stratigraphic units would increase the significance of the occurrence. Furthermore, anomalies in either a dispersal train head (threshold of 10x median or 10 gold grains) or a tail (threshold of 3x median or 3 gold grains here) should be considered. A successful identification of a gold province is unlikely at a drilling density of greater than 25 km^2 , that is, prior to the infill drilling.

Saprolite, Glacial Stratigraphy, and Buried Landscape

Before this survey, little was known about the saprolite in the Baudette area. Descriptive logging, heavy mineral mineralogy, clay mineralogy, and chemistry are providing a better understanding.

Fig. 9 shows the generalized stratigraphy within the saprolite in the Baudette area. Reworked saprolite, kaolinitic saprolite, chloritic saprolite, and grus are present, though not in every drill hole. In most profiles, the upper portion of the saprolite section has been removed probably by glacial erosion. In other cases, the entire saprolite profile has been removed.

The Cretaceous sand (reworked saprolite) found in drill hole 503 is unlike other sediments found in the Baudette area. This 54 foot section of unlithified, angular quartz sand and kaolin has not been reported in Minnesota before. It may be an important aquifer near Baudette. The same kind of unit is reported by the Ontario Geological Survey in a borehole sited about five kilometers to the northeast of Baudette. Palynology results on their samples give a Cretaceous age (Zippi and Bajc,

⁶ See glossary

1990).

Grus is present in three drill holes in the Baudette area, 505, 511, and 519. Grus is slightly weathered granitic rock. Only the bonds between individual mineral grains in a granite have broken down, thus leaving a disintegrated rock (see App. 280-B).

Resistant and secondary economic minerals are present in the saprolite. Galena, gold, corundum, and native copper are all found in the saprolite in the Baudette area (see App. 280-L). These can be useful tracers to bedrock mineralization. Botryodal siderite in saprolite is also useful. This same siderite is found in the tills above the saprolite, providing a measure of the amount of incorporation of saprolite into till (see App. 280-J).

Bedrock type seems to control clay mineral content in the overlying saprolite. Granitoids produce saprolite with high kaolinite content. Ferromagnesian-rich bedrock units produce saprolite with high chlorite content (see App. 280-O & B).

The magnetic and nonmagnetic HMC fractions of the saprolite are enriched in certain elements. Assemblages of these enriched elements may permit the tracing of till sources and may be useful for prospecting directly in the saprolite.

Identification of stratigraphic units from core samples is best done by an experienced glacial geologist using key matrix chemistry data. The most important stratigraphic assignment of Keewatin vs. Labradorean provenance can be confidently defined using matrix chemistry data. Even with such data, the stratigraphy in OB-521, which provides the only evidence for the 5th and 6th older till units here, is ambiguous due to conflicting data in one or two samples. Mixing has been demonstrated, at both the regional- and small-scale, to alter the typical stratigraphic composition of tills. Such mixing may be the cause of the problem in OB-521. A less important distinction, that of younger vs. Older Labradorean tills, can also usually be resolved by matrix chemistry.

Critical review of this new body of information on stratigraphy should be encouraged. Additional or alternative inexpensive stratigraphic identification tools (see Table 10) should be sought. The descriptive logs supported by the matrix chemistry

and pebble counts yield strong characterizations, however, the interpretation of the causative glacial processes needs additional work.

On a more detailed note, there are perhaps three Winnipeg lobe ice advances represented within the stratigraphy here⁷. Limonite pisolites are present in most, but not all, Winnipeg till samples. Unusual element variation, such as in OB-517 for Ce, Zn, and Zr (see App. G), are observed within the Winnipeg tills. Such fingerprints may be useful enough to correlate internal Winnipeg till units and the link between the pisoliths and composition might be better resolved.

Accurate knowledge of glacial stratigraphy improves the ability to trace bedrock sources within a geochemical province, and also improves the effectiveness of geophysical conductivity surveys. A brief digression from our regional survey discussion is appropriate here. Most important to prospecting is the ability to find a buried geochemical anomaly and to be able to trace it. This requires a pathfinder, a unique tracer, an estimate of flow path direction and transport distance. Property-scale flow paths can be readily measured in the future under two conditions: 1) first a tracer element, mineral, or pebble is identified and 2) closelyspaced drilling. Examples from outside this area suggest that property-scale flow paths will vary significantly across the region. Pertinent examples of transport distance should be sought from the Labradorean till data of Bajc (1988) from 40 kilometers to the east. Since we cannot reliably predict a specific flow path direction at a site, or the presence of the best till overlying bedrock, we present tools and methods to use the available samples to the maximum extent possible. Some geophysical surveys are degraded by the presence of conductive clays. The bedded sediments, including clays, described in the logs (App. B) and summarized in Maps 7-11, should be considered for this problem, as well as the clays present in the saprolite.

Based upon the till geochemical patterns described in the summary of results, a working hypothesis for "unmixing" the till compositions was developed. The hypothesis, presented in Table 11, is that each stratigraphic unit has a fundamental composition, that can be modified by one or more

⁷ A designation of upper, middle, or lower is listed for every Winnipeg till sample, as interpreted by Gary Meyer, and is available from the DNR project file.

factors. When modified, the composition may be significantly different. The three first-order modifying factors are basal ice mechanics and velocity, buried topography, and underlying materials. The presence of exotic carbonate, Winnipeg lobe deposits, as the underlying materials in the western portion of the Baudette area is suggested to cause the dramatic regional variation of 11 elements in the Labradorean tills. Such a hypothesis ties together the observations from the individual datasets, and explains the x-y plots by stratigraphic units. Such x-y plots have a cluster or central tendency with outliers when modified by the above factors (Figs. 12a-c).

In summary, it is suggested that glacial till composition on a regional scale has been defined by many attributes, resulting in a Western vs. Eastern The buried landscape and underlying portion. materials were major controls. The dilution effect caused by the incorporation of exotic carbonate materials of Keewatin provenance is proposed to create the observed dramatic regional variation. In a broader perspective, the interpretation of the anomalous values in this dataset would be improved by better recognition of two factors. One is the recognition of the head vs. tail of a dispersal train. The second is the mixing caused by different dispersal scales⁸. The effect of both factors is to change the appropriate background value to apply an anomaly threshold value.

The reconstruction of the Baudette area buried landscape is appropriate to understanding the total geochemical dispersal here. That total dispersal is proposed to be the sum of glacial processes plus laterite processes. The observed regional till variations of Western vs. Eastern portion, and smaller scale variations, are attributed to the influence of the buried landscape. These topics are briefly summarized and a proposed landscape description is presented.

First, the laterite concentration of supergene enrichment is inferred to create short transport, tens to a thousand meters (DaCosta and others, 1991). Different profiles develop under various elevation and slope conditions (Smith, 1987). Preservation of the saprolite is probably a complex function of protection from erosive Labradorean ice advances. In summary, the possible supergene enrichment due to laterite processes is attractive in terms of both a higher grader ore, such as at Ladysmith, Wisconsin, and a larger target.

Secondly, glacial dispersal is regionally affected by the bedrock topography in the central part of the area, judging by the distribution of Winnipeg tills (Western portion) and the Rainy lobe post-glacial lake sediments (southeastern portion). The result is a major landscape boundary, as evidenced by till compositions. Thus, the two major compositional controls on till are the substrate and the buried topography in the up-ice direction, which in combination are referred to simply as the buried landscape.

Regarding glacial dispersal on smaller scales, it is inferred to be hundreds to thousands of meters in the head and kilometers in the tail of specific dispersal trains in this area. That conclusion is based upon the many different single-lithology dominated, or head of dispersal trains observed at the base of our boreholes spaced six miles apart. The third dimension, height above the Quaternary base, offers for a regional survey useful samples of mixed lithologies, or tails of dispersal trains, probably with transport of a mile or more. For example, seven of the samples on the summary pathfinder map are not the bottom till samples, vs. three that are. Two additional cases, which do not contain pathfinders, should be noted here. In sample 515-01, the very high siderite content (App. F) suggests that much saprolite has been incorporate into this till which is 70 ft. above the base of the Quaternary. They serve to point with caution to the use of pebble counts as a means to characterize a till sample in an area with saprolite. That is, the saprolite may dominate the matrix composition, yet not be reflected in the pebble counts.

Regarding the multiple glacial advances, each could erode and incorporate more of an ore-bearing source and/or the previous dispersal train deposits. In the latter case, the younger till deposits could have an unusual mixed lithology composition and a dispersed, diluted anomaly. The multiple glacial dispersal increases the chances of success for this regional survey by broadening and homogenizing the geochemical province.

The buried landscape can be described using data from various sources, such as previous drilling data, structures inferred from aeromagnetic data, and nearby terranes not deeply buried (e.g. Echo Lake Quadrangle, St. Louis County). The results are presented in a regional scale (Fig. 6, schematic, and Map 5a, elevation map), and a local scale can

⁸ See glossary

be hypothesized. The bedrock surface may be described as gently-sloped, low relief tablelands, cut sharply by high relief, angular valleys controlled by bedrock structural or lithological features. In T157N-R34W, near the Vermilion fault system, occurs the greatest known (200 ft.) bedrock relief in the Baudette area, in contrast to the 100 ft. of relief associated with the local-scale topographic highs. The paleo drainage was probably controlled by bedrock features. The saprolite is much thicker in the valleys, due to both deeper weathering and better preservation. The buried landscape probably has the most readily observed impact upon property-scale dispersal.

Concluding on a practical level, the regional buried landscape also affects drilling depth, hence cost, and sample type (preferred tills--Labradorean rather than Keewatin) for the bottom of the Quaternary section and till composition.

The interpretation of this data remains a subjective and evolving process. The goal of this section has been to highlight significant observed factors and provide a springboard for further progress. This dataset is of a three-dimensional nature, and steps need to be attempted to handle and present the data in 3D. The ability to generate specific computerized maps, such as for stratigraphic unit distribution and geochemical values as proportional dot sizes, would be an improvement.

Mineral Potential

The design criteria for identifying a geochemical gold province (see Geochemical Province) suggest infill drilling is required to define one. However, it is possible at this time to review the observed pathfinders (map in Appen. E), especially the combinations, and within the new regional bedrock setting, discuss speculative resources here, plausible geochemical provinces, and also small-scale features.

The combination of pathfinders in boreholes 502, 503, 506, and 507, combined with the inferred bedrock setting, suggest that a gold province be sought here. The Baudette fault deforms the lithologies in 503 and 506 (Maps 12a & 12b). The magnetic pebbles in till overlying the syenite in 502, 60 ft. of glacial deposits with high magnetic susceptibility and the shape of the aeromagnetic feature, suggest an intrusive tonalite body. Such an intrusive may fit the description of an oxidized felsic magma (Hattori, 1987) for a source of gold-bearing

fluids. The magnetite has an unusual Pb + Ag content, perhaps analogous to the Ag-bearing magnetite found at Kirkland Lake, Ontario (Lee, 1963). In OB-503, the combination of the small individual values of gold grains, fine fraction gold assay, scheelite, Ba, Hg, Mo, and Se raises the Borehole OB-506 contains the best rating. combined gold values of all holes, with five gold grains and an anomalous fine-grained gold assay (see columnar log, sample 506-01) only 5 feet above a saprolite that had an anomalous fine-grained gold assay and high copper. The bedrock in OB-506 also has quartz + calcite veins, but the whole rock assay was only 10 ppb gold. The saprolite in OB-507 contains gold in the nmHMC and a till sample has anomalous (4) gold grains. This site is located on a proposed fault, which intersects the Baudette fault (see Spector in Lawler and Venzke, 1991). In conclusion, none of these four sites offers a direct target, but in combination they offer an appropriate setting for gold. Moreover, previous work by the U.S.G.S. (Clarke, 1990) points to anomalous soils geochemistry in this vicinity.

A geochemical copper province should be considered in future evaluations. The observed native copper grains (App. O) do not seem to be in a pattern, but they are suggested to be secondary weathering products and create a nugget problem. Other data (Frey and Venzke, 1991) from bedrock cores here support the suggestion of elevated copper values in this area.

The multi-element pathfinders in borehole OB-514 and a location near the Quetico fault are evidence for gold potential there. The coincident anomalies of fine fraction Au with Hg and Cu and depleted B in 514-02 are attractive, since this sample is interpreted as the tail of a dispersal train. That conclusion, supporting a source to the NE in the granitoids, is based upon the high granitoid pebble content, relatively high Th value, lack of saprolite component indicators in this till, and a large difference in composition from underlying basaltic saprolite.

Galena was found in the heavy minerals from saprolite in OB-520 and OB-508. In OB-520, it occurs with elevated copper, silver, cerium, europium, gallium, lanthanum, and depleted arsenic, thorium, and titanium in our deepest borehole at 310-320 ft. The elevated values in till are not the same elements as found in the underlying saprolite. No sound bedrock was reached in this hole, so the protolith is uncertain. In OB-508, the galena was found in the heavy minerals from saprolite and associated with native copper, anomalous silver, minor gold, bismuth, and manganese and depleted thorium, titanium, and uranium. A very thick saprolite, 128 ft., overlies a metagraywacke here. The site is near a splay of the Vermilion fault, and centimeter scale mylonitized shear bands are observed in the bedrock. Neither of these two occurrences seem related to chemical sediments. The possibility of galena forming from a secondary process is possible, yet the other anomalous elements support these as real occurrences. Lead and silver are reported from two occurrences in the Kenora district (Blackburn and others, 1989) and should be reviewed.

Kyanite is noted in significant amounts (App. L) from Rainy till in OB-513, which contains a barren, semi-massive sulfide. Only a trace of kyanite was noted from the saprolite in this hole. Perhaps an unusual alteration-metamorphism has occurred nearby, basically in the middle of the supracrustal belt. This mineral should provide a good tracer for backtracking.

Gahnite, a zinc spinel, is noted in the lowest till overlying a brecciated mafic mylonite in OB-571, near the Border fault. There were also four gold grains, two scheelite grains, and distinctive, very large, 1-2 mm, pyrite grains in this heavy mineral sample. Gahnite probably represents a metamorphosed form of sphalerite (Todd, 1991). Note the bedrock core here has the composition indicative of a komatilitic basalt.

In OB-505, the highest zinc values from this survey occur in an iron-rich saprolite associated with anomalous copper, lead, and nickel. The underlying bedrock here is a biotite quartz monzonite and inferred to be very near the contact with supracrustal rocks. Two molybdenite grains were found in a till 95 ft. above the saprolite and are interpreted to be from a difference source.

Corundum has been identified in saprolite in borehole from OB-501 and OB-507. It will be further evaluated regarding gem quality.

The occurrence of native copper grains in tills, and especially saprolite in this region, needs further consideration as a copper geochemical province.

Kaolin is a speculative resource in the vicinity of OB-503, where 50' of Cretaceous kaolin-bearing quartz sands are preserved in a major topographic low overlying thick saprolite. The nearby granitoid source rocks may have contributed kaolin sediments to a secondary deposit in this setting.

This database includes some physical property information that may be helpful for geophysical surveys in the region. Conductive overburden may result from the clay-rich glacial sediments listed in logs such as OB-501, OB-505, OB-511 (see Maps 7 through 11) or from a thick saprolite blanket such as OB-508. The magnetic susceptibility of all core-glacial, saprolite, and bedrock--was measured. Finally, rather crude bulk density measurements of many samples were taken (Appendix K).

In summary, the powerful tool of mineralogy has helped locate pathfinders and unique tracers in this saprolite-blanketed area. The preserved saprolite offers attractive supergene-enrichment targets. The best sub-area for gold potential appears to be in the northeast near the Baudette fault system.

Environmental Geology

There are potentially broad applications of this database to environmental geology. The two subjects perhaps most relevant are the types of deposits and the matrix composition of the overburden.

The various types of buried glacial deposits and pre-glacial deposits affect groundwater availability and flow. Significant aquifers may exist in glacial sands and gravels, such as the 200 ft. thickness in OB-521, or the pre-glacial sand, such as in OB-503. The buried regional bedrock topography probably affects the groundwater flow paths (see Map 5a and Maps 6-11). The saprolite itself probably has a low permeability.

The overburden matrix composition affects groundwater quality. The Koochiching and Winnipeg tills contain high amounts of carbonate in the matrix. The Winnipeg tills contain higher mercury and arsenic contents, which appear to be leachable during oxidation, such as inferred interglacial weathering (see OB-512 or -513).The Rainy lobe tills in OB-502 contain high phosphorus, with 2% P in the clay fraction. The saprolite may contain high iron and a high pH. More specific information on 23 elements can be found in the appendices.

Planning for specific activities that exploit the groundwater or mineral resources, involve waste disposal facilities, or deep excavations, should find the regional information here to be invaluable.

Subsample Fractions and Physical Properties

The methodologies, new applications, and implications of each subsample fraction are briefly discussed.

Characterization of the heavy mineral fraction provides the most effective way to identify the specific bedrock source of a dispersal train, and a new system is applied here to ease the mineral identification task. The mineral characterization of color, size, abrasion, morphology, composition, zoning, and other features, when combined with associated minerals, can define with very high confidence a specific bedrock source.

The new system is to combine a standard till heavy mineral concentration process to obtain gold grain counts with a modification of the U.S.G.S. heavy mineral separation method (see App. C). The result is that most of the important pathfinder minerals end up in one fraction where easily identified from the only four common accessory minerals present. Any reasonable heavy mineral concentration process, from simple panning to the Knelson concentrator, could be considered on the front end. This new system is not cheap, but it is very effective.

A specific technique within the new system, during the visual estimation of the percentage of common accessory minerals, is recommended here. The technique, used by Steve Sutley at the U.S.G.S., takes into account the total volume of each mineral phase by scanning the total sample. The problems of different grain sizes and of uneven distribution of minerals are better addressed by this technique than by counting 100 grains.

For this report, the nonmagnetic, +3.3 S.G. fraction was examined in detail. There are two specific other fractions that are available, and since they contain minerals like garnet, tourmaline, and apatite, those fractions could be useful to a specific investigation.

Silt/clay chemistry can help to resolve the contribution of weathered bedrock into till and can qualitatively help to resolve older Labradorean tills from younger Labradorean tills. Moreover, a summary report from Finland (Lehmuspelto, 1987) clearly states that the majority of dispersal trains defined there by the fine-fraction chemistry of till are only a few hundred meters long. Thus, if anomalies are found in the fine fraction, then the bedrock source may be very nearby.

Regarding the heavy mineral concentrates, since gold can occur in many mineral species, it is prudent to assay the nmHMC in addition to performing native gold grain counts. Further, during interpretation and ranking of the nmHMC anomalies, the total mass of an element should be calculated, since very high siderite contents may dilute the reported assay value.

Magnetic fraction analysis was performed to provide additional pathfinder information to mineralization (e.g. sulfidation; see also Overstreet and Gordon, 1985)) and to pursue unique tracers to identify dispersal trains within tills. The observed geochemical anomalies and unique compositions have the potential to show up when there is nothing evident in the other fractions. Costs are similar to other types of analysis, however, magnetic separation could be done cheaply without doing complete heavy mineral separation.

Pebble counts of +1/4" - 3/8" pebbles from core samples can be done quickly if a binocular microscope is available for use and a good quality light source is available to illuminate wetted pebbles. Larger clasts may be peculiarly interesting, but do not generate usable between sample comparisons on stone lithology distributions. Clasts smaller than 1/4" are more difficult to handle and display much less textural and fabric information than +1/4" clasts. If non-resistant lithologies are being counted, then inspection of unprocessed core may provide the best technique, since processing tends to disaggregate non-resistant clasts.

objective of the bulk The density measurements is to evaluate an economical way to characterize the degree of weathering of the saprolite. Although taking density readings from bedrock drill core is fairly accurate, density readings from materials like saprolite and till can be misleading. These materials can become compacted by the drill, increasing their density because of the exotic carbonates in the till and the siderite in the saprolite. Bulk density is still a more effective way to measure the degree of weathering than L.O.I., a simple chemical alteration index, matrix solubility, or pH. Although there are slight differences in pH, zones in the saprolite cannot be differentiated with pH alone.

Design

The design of this phase of the project has permitted significant progress toward attainment of the project goals and objectives. For example, new characterizations of the glacial drift stratigraphy, saprolite distribution, bedrock lithologies for mapping, and the buried landscape were only possible by the widely-spaced pattern of the 20 boreholes. Moreover, it has been demonstrated that glacial drift compositions, hence background values, should be viewed in the context of regional, local, and small-scale perspective. In summary, all the above characterizations affect the geochemistry and needed to be addressed by the design. One important limitation is that detailed, small-scale till transport distance evaluation, which is important to any follow-up work, was not possible. Brief recommendations on infill drilling, some of which reflect design, are presented in Table 1b.

Conclusion

A tool kit of specific methods, strategies, applications, case examples, and new hypotheses have been presented in this regional survey. Further, a stratigraphic and geochemical framework has been presented, providing an opportunity for improvements through future investigations. A large database, founded upon the quantification of many physical and chemical parameters, has been compiled that should enable more efficient future exploration here within a regional context.

Few exploration techniques of geophysics, geochemistry, and lithochemistry are useful in this deep overburden terrane. The character of the overburden directly affects two--geophysics and geochemistry--and indirectly affects the cost of all of them. The view that the overburden is a material that should be used productively in exploration has been expressed here. And the strategy has been to find tools (attributes) to obtain the most information from whatever case of stratigraphy is found at a given site. Significant progress toward that end has been made.

Finalization of the goal of evaluation for a gold geochemical province must await future infill drilling. In contrast, the opportunity to make a positive contribution through the citing of nine boreholes to the new U.S.G.S. bedrock map (Day and Klein, 1991) has been a gratifying, cooperative effort. Simultaneous work covering bedrock mapping, geophysical interpretation, and bedrock core logging and lithochemistry (see Previous Work) should be reviewed in conjunction with this report. For example, the bedrock in OB-520 is very deformed, but since no offset pattern is observed in the aeromagnetic map, the bedrock structure there remains ambiguous. In addition, komatiitic rocks were recently identified in available cores (Frey and Venzke, 1991) in this western belt, so perhaps the lower iron content is masking the magnetics and/or conductors. In conclusion, the time is appropriate to take a fresh look at this Baudette area.

A deep overburden drill program such as this is unlike typical geochemical surveys, since the drill samples are very costly. Thus, a broad spectrum of evaluation was done to the samples, and the results of this report include a comprehensive compilation of information for this area that is intended to foster many phases of future exploration.

References

- Aluminas, H. V., McHugh, J. B., and Perry, E. C., Jr., 1991, Geochemical evidence for near-surface preciousand base- metal disseminated and vein deposits in the west-central Vermilion district, northeastern Minnesota. In: E. E. Good, J. F. Slack, and R. K. Kotra (Editors), 1991 Program and Abstracts of the Seventh Annual V. E. McKelvey Forum on Mineral and Energy Resources, Reno, Nevada, U.S.G.S. Circular 1062.
- Averill, S. A., 1988, Regional variations in the gold content of till in Canada. In: D. R. MacDonald and K. A. Mills (Editors), Prospecting in Areas of Glaciated Terrain 1988. Canadian Institute of Mining and Metallurgy, p. 271-284.
- Bajc, A. F., 1988, Gold grains in rotasonic drill core and surface samples (1987-1988). Ontario Geological Survey, Map P. 3140, scale 1:100,000.
- Bajc, A. F. and Gray, P. A., 1987, Quaternary geology of the Rainy River area, District of Rainy River; Ontario Geological Survey, Preliminary Map P. 3065, scale 1:50,000.
- Bajc, A. F., White, T. N. and Gray, P. A., 1990, Quaternary geology, Northwest Bay area. Ontario Geological Survey, Preliminary Map P. 3138, scale 1:50,000.
- Beck, Warren and Murphy, V. R., 1982, Rb-Sr and Sm-Nd studies of Proterozoic mafic dikes in northeastern Minnesota [abs.]: Proceedings, 28th Institute on Lake Superior Geology, International Falls, Mn, p. 5.
- Blackburn, C. E., Hailstone, M. R., Delisle, P. C., and Storey, C. C., 1989, Annual report for the Kenora resident geologist's district, reprinted in Ontario Geological Survey Miscellaneous Paper 147, 40 pp.
- Bolviken, B., Kullerud, G., and Loucks, R. R., 1990, Geochemical and metallogenic provinces: A discussion initiated by results from geochemical mapping across north Fennoscandia. Journal of Geochemical Exploration, vol. 39, no. 1/2, p. 49-90.
- Bracken, R. E. and Godson, R. H., 1988, Aeromagnetic map of the northwestern part of the Hibbing 1[•] x 2[•] quadrangle, Minnesota. U. S. Geological Survey, Open-File Report 88-8, scale 1:62,500.
- Bracken, R. E., Horton, R. J., Rohret, D. H., Krizman, R. W., Thompson, C. R., Sneddon, R. A., Pierce, H. A. and Mitchell, C. M., 1991, Aeromagnetic map of the Roseau 1[•] x 2[•] quadrangle, Minnesota and Ontario, United States Geological Survey, Open File Report 89-452.
- Chandler, V. W. and Southwick, D., 1989, Shaded-relief aeromagnetic map of Minnesota. Minnesota Geological Survey and The Legislative Commission on Minnesota Resources, scale 1:2,534,400.
- Clark, P. U., 1987, Subglacial sediment dispersal and till composition. Journal of Geology, vol. 95, no. 4, p. 587-541.
- Clarke, J. R., Day, W. C., and Klein, T. L., 1990, Geochemical and geological evidence for potential lode-gold deposits near Baudette, Lake of the Woods and Koochiching counties, Minnesota: U. S. Geological Survey, Executive Announcement.
- Coker, W. B., Bird, D., Snow, R. J., Downes, M. J., and DiLabio, R. N. W., 1984, Quaternary stratigraphy and geochemistry at the Owl Creek gold mine, Timmins, Ontario. In: Till Tomorrow '84, The Canadian Institute of Mining and Metallurgy Ontario Geological Survey, Paper 12.
- Coker, W. B. and DiLabio, R. N. W., 1988, Geochemical exploration in glaciated terrain: geochemical responses. In: Exploration '87 Proceedings, p. 336-383.
- Colvine, A. C. and Stewart, J. W., 1984, Precambrian shield gold exploration trends detailed. Mining Engineering, p. 1642-1645.

-1

-1------

- Corfu, F. and Stott, G. M., 1986, U-Pb ages for late magmatism and regional deformation in the Shebandowan Belt, Superior Province, Canada. Canadian Journal of Earth Sciences, vol. 23, no. 8, p. 1075-1082.
- Corfu, F. and Wood, J., 1986, U-Pb Zircon ages in supracrustal and plutonic rocks, North Spirit Lake area, northwestern Ontario. Canadian Journal of Earth Sciences, vol. 23, no. 7, p. 967-977.
- DaCosta, M. L., Fonseca, L. R., and Costa, J. V., 1991, Pattern curves for gold contents distribution in lateritic profiles: application for geochemical exploration in tropical environments. International Geochemical Exploration Symposium Abstracts, Reno, Nevada, 70 pp.
- Dahl, D. A. and Cartwright, D. F., 1990, Carbonate in till units of Lake of the Woods County, Minnesota. In: Institute on Lake Superior Geology Proceedings, vol. 36, part 1, p. 16.
- Davey, R. and El-Ansary, M., 1986, Geochemical patterns in the laterite profile at the Boddington Gold Deposit, Western Australia, Journal of Geochemical Exploration, 26, p. 119-144.
- Davis, D. W., Blackburn, C. E., and Krogh, T. E., 1982, Zircon U-Pb ages from the Wabigoon-Manitou Lakes region, Wabigoon Subprovince, northwest Ontario, Canadian Journal of Earth Sciences, vol. 19, p. 254-266.
- Davis, D. W. and Edwards, G. R., 1986, Crustal evolution of Archean rocks in the Kakagi Lake area, Wabigoon subprovince, Ontario, as interpreted from high-precision U-Pb geochronology. Canadian Journal of Earth Sciences, vol. 23, p. 182-192.
- Davis, D. W., Poulsen, K. H., and Kamo, S. L., 1989, New insights into Archean crustal development from geochronology in the Rainy Lake area, Superior Province, Canada. Journal of Geology, vol. 97, p. 379-398.
- Day, W. C., Klein, T. L., and Schulz, K. J., 1991, Bedrock geologic map of the Roseau 1[•] by 2[•] quadrangle, Minnesota and Ontario, Canada: open-file map series, U. S. Geological Survey, Denver, Colorado.
- Dredge, L. A. and Cowan, W. R., 1989, Quaternary geology of the southwestern Canadian Shield. In: Fulton, R. J. (Editor), Quaternary Geology of Canada and Greenland. Geological Survey of Canada, p. 214-235.
- Eng, M. T., 1979, An Evaluation of the surficial geology and bog patterns of the Red Lake bog, Beltrami and Lake of the Woods counties. Minnesota Department of Natural Resources, Minerals Division, scale 1:126,720.
- Frey, B. A., Venzke, E. A., and Walker, J. S., 1991, 1990-1991 Archean drill core description and assay, Lake of the Woods County, Minnesota. Report 278, Minnesota Department of Natural Resources, Division of Minerals.
- Grout, F. F., 1927, Field note book number 150: Minnesota Geological Survey, 47 pp.
- Harris, K. L., Moran, S. R., and Clayton, L., 1974, Late Quaternary stratigraphic nomenclature, Red River Valley, North Dakota and Minnesota. North Dakota Geological Survey, Miscellaneous Series, no. 52, 47 pp.
- Hattori, K., 1987, Magnetic felsic intrusions associated with Canadian Archean gold deposits. Geology, vol. 15, no. 12, p. 1107-1111.

- Helgesen, J. O., Lindholm, G. F., and Ericson, D. W., 1975, Water resources of the Lake of the Woods watershed, north central Minnesota. U. S. Geological Survey, Hydrologic Investigations Atlas, HA-544, scale 1:500,000, 2 sheets.
- Hobbs, H. C. and Goebel, J. E., 1982, Geologic map of Minnesota, Quaternary geology. Minnesota Geological Survey, State Map Series, S-1, scale 1:500,000.
- Horton, R. J. and Chandler, V. W., 1988, Complete Bouguer gravity anomaly map of the Roseau 10 x 20 quadrangle, Minnesota and Ontario: U. S. Geological Survey Open-File Report 88-531.

- Horton, R. J., Meyer, G. N., and Bajc, A. J., 1989, Reconnaissance Quaternary geology map of the International Falls 1^o x 2^o quadrangle. U. S. Geological Survey, Open-File Report 89-654, scale 1:250,000.
- Johnson, M. D., 1986, Pleistocene geology of Barron County, Wisconsin. Wisconsin Geological and Natural History Survey, Information Circular, no. 55, 42 pp.
- Klein, T. L., 1991, Lithologic descriptions of bedrock core from the Roseau 1[•] x 2[•] quadrangle, northern Minnesota, United States Geological Survey, Open-file Report 91-35, 11 pp.
- Klein, T. L., and Day, W. C., 1989, Tabular summary of lithologic logs and geologic characteristics from diamond drill holes in the western International Falls and the Roseau 1[•] by 2[•] quadrangles, northern Minnesota: Open-File Report 89-346, United States Geological Survey, Reston, Virginia.
- Kokkola, M. and Pehkonen, E., 1976, Kangaskyla: gold in till. Journal of Geochemical Exploration, vol. 5, no. 3, p. 209-211.
- Kontas, E., 1991, Gold contamination of the fine fraction of till during sampling and sample preparation. Journal of Geochemical Exploration, vol. 39, p. 289-294.
- Lawler, T. L. and Venzke, E. A., 1991, Aeromagnetic interpretation pseudo-geologic maps, with evaluation, in Lake of the Woods and Lake counties, Minnesota. Report 290, Minnesota Department of Natural Resources, Division of Minerals.
- Lee, H. A., 1963, Glacial fans in till from the Kirkland Lake Fault: a method of gold exploration. Ottawa: Geological Survey of Canada, 36 pp.
- Lehmuspelto, P., 1987, Some case histories of the till transport distances recognized in geochemical studies in northern Finland. Geological Survey of Finland, Special Paper 3, p. 163-168.
- Martin, D. P., Meyer, G., Cartwright, D. F., Lawler, T. L., Pastika, T., Jirsa, M. A., Boerboom, T. J. and Streitz, A. R., 1989, Regional geochemical survey of glacial drift drill samples over Archean granite-greenstone terrane in the Effie area, northern Minnesota. Report 263, Minnesota Department of Natural Resources, Division of Minerals.
- Martin, D. P., Meyer, G., Lawler, T. L., Chandler, V. W., and Malmquist, K. L., 1988, Regional survey of buried glacial drift geochemistry over Archean terrane in northern Minnesota. Legislative Commission on Minnesota Resources Project, Report 252, Minnesota Department of Natural Resources, Division of Minerals.
- Mathes, S. A., Farrell, R. F., and Mackie, A. J., 1983, A microwave system for the acid dissolution of metal and mineral samples. Bureau of Mines Technical Progress Report, Report 120, 9 pp.
- McGinnis, L., Durfee, G., and Ikola, R. J., 1973, Simple Bouguer gravity map of Minnesota Roseau sheet: Minnesota Geological Survey, Miscellaneous Map Series, Map M-12, 1:250,000.

- McRitchie, W. D., 1980, Mineral map of Manitoba. Manitoba Department of Energy and Mines, Mineral Resources Division, Map, No. 80-1, scale 1:1,000,000.
- Meuschke, J. L., Books, K. G., Henderson, J. R. Jr. and Schwartz, G. M., 1957, Aeromagnetic and geologic map of northern Lake of the Woods and northeastern Roseau counties, Minnesota, United States Geological Survey, Geophysical Investigations Map GP 128, scale 1:63,360.

- at

- Meuschke, J. L., Books, K. G., Henderson, J. R. Jr. and Schwartz, G. M., 1957, Aeromagnetic and geologic map of northern Beltrami and southern Lake of the Woods counties, Minnesota, United States Geological Survey, Geophysical Investigations Map GP 129, scale 1:63,360.
- Meyer, G. N., 1986, Subsurface till stratigraphy of the Todd County area, central Minnesota. MGS, RI 34, 40 pp.
- Mills, S. J., Southwick, D. L., and Meyer, G. N., 1987, Scientific core drilling in north-central Minnesota: Summary of 1986 lithologic and geochemical results. Minnesota Geological Survey, Information Circular 24, University of Minnesota, p. 19-40.
- Mutschler, F. E. and Radtke, A. S., 1991, Word-class gold deposits--the model success story--where is the next olympic dam? International Geochemical Exploration Symposium, Reno, Nevada, Abstracts, 70 pp.
- Nielsen, E., Ringrose, S. M., Matile, G. L. D., Groom, H. D., Mihychuk, M. A., and Conley, G. G., 1981, Surficial geological map of Manitoba. Manitoba Department of Energy and Mines, Mineral Resources Division, Map 81-1, scale 1:1,000,000.
- Ojakangas, R. W., Meineke, D. G. and Listerud, W. H., 1977, Geology, sulfide mineralization and geochemistry of the Birchdale - Indus area, Koochiching County, Minnesota. Minnesota Geological Survey, Report of Investigation 17, 78 pp.
- Overstreet, W. C. and Gordon, W. D., 1985, Review of the use of magnetic concentrates in geochemical exploration. Technical record, USGS-TR-05-4, p. 1-38.
- Parham, W. E., 1970, Clay mineralogy and geology of Minnesota kaolin clays. Minnesota Geological Survey, Spec. Pap. Ser., SP-10, 142 pp.
- Pavich, M. J., Leo, G. W., Obermeier, S. F., and Estabrook, J. R., 1989, Investigations of the characteristics, origin, and residence time of the upland residual mantle of the Piedmont of Fairfax County, Virginia, U. S. Geological Survey Professional Paper 1352, 58 pp.
- Percival, J. A. and Williams, H. R., 1989, Late Archean Quetico accretionary complex, Superior Province, Canada. Geology, vol. 17, p. 23-35.
- Roberts, R. G., 1988, Ore deposit models. Geological Association of Canada, 1988 vol., 194 pp.
- Schiffelbein, P., 1987, Calculation of confidence limits for geologic measurements. In: Use and Abuse of Statistical Methods in the Earth Sciences. International Association for Mathematical Geology Studies in Mathematical Geology, p. 21-32.
- Shilts, W. W., 1976, Mineral exploration and till. In: R. F. Legget (Editor) Glacial Till. Royal Society of Canada, Special Publication 12, p. 205-224.
- Sims, P. K. and Ojakangas, R. W., 1973, Precambrian geology of the Roseau sheet, Minnesota, Minnesota Geological Survey, Open-File Map, scale 1:250,000.

- Size, W. B., 1987, Use of representative samples and sampling plans in describing geologic variability and trends. In: Use and Abuse of Statistical Methods in the Earth Sciences. International Association for Mathematical Geology Studies in Mathematical Geology, p. 3-20.
- Smith, R. E., 1987, Some conceptual models for geochemistry in areas of preglacial deep weathering. Geochemical Exploration, p. 337-352.
- Szabo, N. L., Govett, G. J. S., and Lajtai, E. Z., 1975, Dispersion trends of elements and indicator pebbles in glacial till around Mt. Pleasant, New Brunswick, Canada, Canadian Journal of Earth Sciences, vol. 12, p. 1534-1556.
- Teller, J. T. and Fenton, M. M., 1980, Late Wisconsinan glacial stratigraphy and history of southeastern Manitoba. Canadian Journal of Earth Sciences, vol. 17, p. 19-35.
- Thorleifson, L. H. and Kristjansson, F. J., 1988, Visible gold content and lithology of till from overburden drillholes, Beardmore-Geraldton area, district of Thunder Bay, northern Ontario. Geological Survey of Canada, Open File Report 1756, 21 pp.
- Todd, R. G., 1991, Characteristics of a stratabound gold/base metal deposit in an amphibolite terrane. Geological Association of Canada/Mineralogical Association of Canada, Abstracts.
- Williams, H. R., 1990, Subprovince accretion tectonics in the south-central Superior Province. Canadian Journal of Earth Sciences, vol. 27, p. 570-581.
- Winchel, N. H., 1899, The geology of Lake of the Woods County: Geology of Minnesota, 1896-1898: The Geological and Natural History Survey of Minnesota, vol. 4, p. 155.
- Zippi, P. A. and Bajc, A. F., 1990, Recognition of a Cretaceous outlier in northwestern Ontario. Canadian Journal of Earth Science, vol. 27, p. 306-311.

Ţ

Figure 2. Sketch showing a profile with a geochemical province and three geochemical anomalies caused by ore deposits of which one (A) is outside the geochemical province and two (B and C) are inside. The

Figure 2. Sketch showing a profile with a geochemical province and three geochemical anomalies caused by ore deposits of which one (A) is outside the geochemical province and two (B and C) are inside. The horizontal distance is any where from the order of kilometers and upward. Most mineral deposits of economic interest are assumed to belong to types B and C (Bolviken and others, 1990).

Figure 3. Schematic summary of the geologic history.

5. Incursion and withdrawl of marine processes and facies (advance out of the Wilkston basin (Ordovician)

6. Incursion and withdrawl of marine and marine-marginal processes and facies (advance out of the Williston basin) (Jurassic)

X

 Incursion and withdrawl of marine and marine-marginal processes and facies (advance from the west into re-entrants in the Mesozoic topography (Cretaceous)

12.

Glacial advance and retreat (Kuochiching) (Pleistucene)

4.

Emplacement of regional matic dike swarm (carly Proterozoic)

2.

10. Glacial advance and retreat (Winnipeg) (Phristocene)

Glacial advance and retreat (Winnipeg) (Pleistocene)

9

11. Glacial advance and retreat (Ramy) (Pleistocene)

¥

 Glacial advance and retreat over the heavily weathered Cretacous surface (Okl Rainy) (Pleistocene)

> Build up of volcanic piles in a shallow marine setting (Archean)

 \rightarrow

3. Regional-scale right-lateral shearing (Vermilion fault style) (ag:?)

Regional folding-faulting-metamorphism-mignatizationcontact metamorphism, and other accretion-suturing responses to absorb the compressional energy of collision and crustal abortening (bie Archean)

I. Matrix

1. Chemistry

a. -2 um fraction

(clay sized, 23 pathfinder elements)

b. -63 um fraction (Au + Ag)

c. -1700 um fraction, heavy minerals (+3.3 s.g.)

1. Nonmagnetic (gold + 23 pathfinder

elements)

- 2. Magnetic (10 pathfinder elements)
- d. Matrix solubility

(Ca, Mg, Fe, total wt% soluble)

2. Mineralogy

- a. -1700 um fraction nonmagnetic heavy minerals (+3.3 s.g.)
- b. 14 selected samples: clay identification

II. Clasts

1. Pebble counts by lithology and size

III. Bulk Sample

1. Magnetic susceptibility (all 4325 feet)

2. Oxidation state (all 4325 feet)

- 3. Color (all 4325 feet)
- 4. pH (48 selected samples)
- 5. Bulk density (52 selected samples)

Figure 4. Sample fractions analyzed. The total composition was subdivided into two major parts, matrix vs. clasts, for quantitative analysis. The attributes measured are outlined here.

LAKE OF THE WOODS AREA West East	AGE
Post-glacial	HOLOCENE
bedded sediment	NN
Koochiching lobe	NISN
Koochiching lobe	sco
Koochiching lobe	ы Мариан Мари Мари Мариан Мариан Мариан Мариан Мариан Мариан Мариан Мариан Ман
Rainy lobe	LAT
Winnipeg lobe ?	INAN
Old Rainy lobe	SN
Winnipeg lobe ?	sco
Winnipeg lobe ?	Š
Old Rainy lobe	LATE
Old Rainy lobe	PRE-

Figure 5. Time-distance diagram showing relative timing and extent of glacial events in the Baudette Area.

Provenance of glacial drift units.

<u>Name</u> Koochiching lobe deposits Rainy lobe deposits Winnipeg lobe deposits Old Rainy lobe deposits

Continental Provenance

Keewatin

Labradorean

Keewatin

Labradorean

Figure 6. Landscape near Baudette, Minnesota, at the time of Rainy lobe ice advance. Sediment cover varies on a much smaller scale than depicted. This reconstruction is based on all available drillhole data.

Figure 8. Proposed model summarizing the regional stratigraphic composition and case examples of mixing that change the composition. Mixing is inferred to occur at all scales, based upon the examples, primarily by incorporation of available underlying materials.

Saprolite on PE granite/ greenstone terrane

Í.

6.3

Examples of processes that cause mixing:	Borcholes
Case 1: RT overrides SAP - more SAP in RT	501
Case 2: RT overrides WT - more carb. in RT	517-521
Case 3: RT overrides OT - intermed. SAP + carb. in RT	5 07
Case 4: RT overrides outcrop - more sound PC in RT	5 09
Case 5: WT overrides SAP - more SAP in WT	511
Case 6: WT overrides OT - less carb. in WT	517
Case 7: WT overrides outcrop - more sound PE in WT	513 512?
Case 8: OT overrides WT - more carb. in OT	521?
Case 9: OT overrides outcrop - more sound PE in OT	515
Case 10: OT overrides SAP - more SAP in OT	5 05

Marine carbonate & shale lithotypes

Figure 9. Generalized stratigraphy within saprolite in the Baudette Area.

Pleistocene	Glacial drift	A	
Pre-late	Quartz sand		
Cretaceous ?	Reworked sap.	L • . • •	stone line
	Kaolinitic saprolite		
	Saprolite	/ /	
	Grus		
	Fresh bedrock		
		$ <\rangle$	

A. Baudette Area – Minnesota – units found in Rotasonic core (modified from Smith, 1987).

B. Northern Minnesota – Generalized – from the literature (Parham, 1970, as cited in Smith, 1987).

1 180 ₂₀

Ú

Q.

Ú.

Ŵ.

Ţ,

Į,

Ť,

ŀ

1

100

Figure 11a. Plot of gold assays in the nmHMC fraction of till and nontill samples in the Baudette Area.

Ę

Figure 11c. Plot of mercury assays in the nmHMC fraction of till and nontill samples in the Baudette Area.

Figure 11d. Plot of potassium assays in the -2um fraction of till and nontill samples in the Baudette Area.

Mercury vs Potassium in Baudette Area Tills and Saprolite

Ú.

Ţ

Figure 12a. Plot of mercury vs. potassium assays in Baudette Area tills and saprolite.

Mercury vs Potassium in Baudette Area Tills and Saprolite

Figure 12a. Plot of mercury vs. potassium assays in Baudette Area tills and saprolite.

Matrix Soluble vs Arsenic in Baudette Area Tills and Saprolite

-

È

Matrix Soluble vs Potassium in Baudette Area Tills and Saprolite

1

Ø

D

Figure 12c. Plot of matrix soluble vs. potassium assays in Baudette Area tills and saprolite.

Figure 13. Regional variations in pebble content of tills in the Baudette Area.

Figure 14a. Dispersal train model used for interpretation of two geochemical patterns--a recognizable, contrasting, single-lithology dominated composition (traceable head lithology) vs. anomalous pathfinder values. Scale of both axes varies.

Legend

A = Lithotype A, such as Mg(%) from a granite bedrock source, present in the head of dispersal train dominated by this source rock composition. Major element contrast to regional background is usually much less than some minor elements contrast.

.1

- B = Lithotype B, such as Mg(%) from an ultramafic bedrock source present in the head of dispersal train dominated by this source rock composition.
- C1= Lithotype C, such as Au (ppb) from a gold ore zone. Contrast in the head is usually very high, so a true anomaly is proposed 10x median.

Conclusion: Since till regional backgrounds are very low, contrast in head is a function of lithotype composition and mineralogy of subsample fraction analyzed (clay size fraction vs. heavy minerals).

Dilution is the dominant process affecting till composition and it occurs at a log normal rate of decay. The tail is that volume where the lithotype is still recognizable within the regional mixture, usually by accessory minerals.

- C2= Lithotype C, such as gold (ppb) from a gold ore zone, even diluted, still recognizable from the background, such as 3x regional-stratigraphic median value. Contrast varies greatly by element here.
- C3= Lithotype C, represented by resistant, sparse, gold grains (analogous to surface boulder train where only one is required to continue). In cases where background is near zero, such as for gold or Zn-spinel, the unique minerals become effective tracers.

Table 1a. Options of methodology and strategy applied to site-specific investigations.

1. Drilling method options

.

*

۰

Ç.

1

(

Í

Drilling Method	Estimated 1989 costs	<u>Remarks</u>
Reverse circulation	\$15/f t.	Till is pulverized and disaggregated, lower quality.
Rotasonic	\$21-\$31/ft.	Core for stratigraphic logs and sample selection, higher quality.

- 2. Site selection options: geophysical, geochemical, and geological targets.
- 3. * Sample selection options: 5 ft. to 10 ft. composite of any Labradorean till within 70 ft. of base of Quaternary or Keewatin till within 30 ft. Sample saprolite above and below the Kaolin-rich (or otherwise most-leached section). Sample bedrock.
- 4. Sample fraction and processing options.
 - a. Bulk sample for heavy mineral concentrate, and process via Knelson concentrator, or shaking table plus heavy liquid, or similar reproducible method. Save magnetic fraction.
 - b. Fine fraction options are -63um for gold transported a short distance (silt/clay) or -2um (clay) for pathfinders.
- 5. Sample analysis options
 - a. INAA on split of nmHMC for gold and pathfinder elements. Analyze Hg.
 - b. Numerous analysis packages available for fine fraction. Use only 1 gram for gold subsample.
 - * = Suggested approach for gold that should be the most effective, at a reasonable risk level. The use of drill equipment that grinds up pebbles during drilling will change the matrix composition, probably toward a Rainy till end member. That will make stratigraphic logging more difficult, in many ways. Do not core the Koochiching tills, which requires on-the-rig observations of stratigraphy. Search for unusual compositions or patterns in the HMC first, and only. Follow up with fine fraction and magnetic fraction analysis on subsequent interesting results of mineralogy. Focus sampling upon single-component lithology units for nearby sources.

Projected cost of 100 ft. borehole with 3 till samples, 1 saprolite, and 1 bedrock sample at preferred method:

	Number of	Cost per	
Procedure	<u>Samples</u>	Sample	Total Cost
Rotasonic drilling	-	•	\$2500.00
HMC via Knelson concentration	4	\$15.00	\$60.00
Analysis, chemical	5	\$30.00	\$150.00
Frantz nmHMC separation	4	\$10.00	\$40.00
Analysis, mineralogy (4 hours labor)	-	-	\$80.00
including gold grain count (done in house)			\$2830.00

1. Drill Pattern

- a) One borehole per 25 km^2 across the supracrustal belt.
- b) Use the new pseudo-geologic maps to site down-ice from appropriate features.

2. Drill Method

a) Rotasonic coring. Other drill methods grind up clasts, creating an artificial matrix. Correct background values, which are a major objective, and confident stratigraphic logging cannot be attained with such an artificial matrix.

1

E

- b) Drill through the Koochiching lobe deposits without coring, at an estimated cost savings of 30%(?). Koochiching deposits made up 50% of our 20 boreholes, in terms of footage.
- c) Wintertime drilling will likely be required to obtain access to selected features.

3. Sample Selection

- a) From the sub-Koochiching core samples, select analytical samples from the lowest 70 ft. of glacial deposits, primarily emphasizing tills. No observed pathfinders, significant saprolite incorporation, or heads of dispersal trains were noted above 70 feet from the Quaternary base.
- b) Select appropriate saprolite samples.

4. Analytical Fractions and Methods

The heavy mineral fraction subsample offers the most information, and comparable gold grain counts should be done. A less costly concentration method, using the Knelson concentrator, should be evaluated. Options exist to limit the fine fraction analysis, but it offers convincing evidence in regard to the veracity of stratigraphic logging. Criteria for selecting such samples on a follow-up basis could be established. Further, a total matrix (-1 mm?) fraction should be evaluated in cases where the head of a dispersal train carries pathfinders.

The analytical methods should be modified based on three criteria:

- 1) delete elements of no demonstrated value;
- 2) add elements shown in the Nordkallot project to be applicable to geochemical province recognition (Bolviken and others, 1991); and
- 3) obtain lower detection limits on a few elements of real demonstrated value.

Table 2.	Analytical	measurements	showing	regional	baseline	changes	in the
Baudette	arca.						

<u>,</u>

Ų.

Ţ.

ÚN)

- Que

Ŵ

Ţ

Û

1.

Ĵ.

20 - 20 - 20

Measured	Regional	
attribute	variation	Remarks
Ag mmHMC	increases NW	Affects Rainy till
As nmHMC	increases NW	Affects Labradorean tills
Cr nmHMC	increases NW	Affects all tills
Fe nmHMC	increases NW	Affects Rainy till
Hg nmHMC	increases NW	Affects all tills
Lu [°] nmHMC	increases NW	Affects all tills
Mn nmHMC	increases NW	Affects Labradorean tills
Zr nmHMC	increases NW	Affects all tills
Ca nmHMC	decreases NW	Affects all tills
P nmHMC	decreases NW	Affects all tills
Sr nmHMC	decreases NW	Affects Rainy till
Pb magHMC	increases NW	Affects all tills
As -2um	increases NW	Affects all tills
Ca -2um	increases NW	Affects all tills
Sb [°] -2um	increases NW	Affects all tills
Zr [•] -2um	increases NW	Affects all tills
Al -2um	decreases NW	Affects all tills
Cr -2um	decreases NW	Affects Labradorean tills
Cu -2um	decreases NW	Affects all tills
Fc -2um	decreases NW	Affects all tills
K -2um	decreases NW	Affects all tills
Na -2um	decreases NW	Affects all tills
P -2um	decreases NW	Affects all tills
V -2um	decreases NW	Affects Labradorean tills
ct P-M 1/4"	increases NW	Affects all tills
% P-M 1/4"	increases NW	Affects all tills
% P-M 4mesh	increases NW	Affects all tills
ct P-M 4mesh	increases NW	Affects all tills
% Sol in matrix	increases NW	Affects Labradorean tills
% Ca in matrix	increases NW	Affects Labradorean tills
% Mg in matrix	increases NW	Affects Labradorean tills

This measurement exceeds 20% precision.

Table 3. Data manipulation and interpretation flow chart.

- 1. From logging, assign each till to a stratigraphic unit.
- 2. Calculate precision for each element or parameter. If >15%, do not use for stratigraphic correlation or regional background changes.
- 3. For each element or parameter, calculate basic statistics by stratigraphic unit.
- 4. Establish distinct end member populations for key parameters for each stratigraphic unit. Use x-y graphs. Look at case examples of mixing (Fig. 8).

)

)

E

- 5. Review descriptive log stratigraphic correlation based on analytical data. We made revisions on 6% of till samples.
- 6. Search for regional background variation, one parameter at a time.
- 7. Review all data for one sample, creating a total picture of all fractions recombined. Contrast all samples in a borehole this way. Interpret mixing case for each stratigraphic unit (Fig. 8), considering changes in dispersal scale moving up the borehole. Result: interpret proportions of saprolite vs. sound bedrock vs. exotic materials by sample.
- . 8. Select ore and pathfinder element anomalies, such as 3x median value, plus pathfinder mineral information for review. Interpret the nature of the anomaly. Review associated data for lesser trends.
- 9. Interpret the dispersal scale of the anomaly. Try to find at least three parameters of the sample to determine first if underlying (property scale) dispersal is evident. Is there a tracer mineral present (Table 4) or unusual alteration of pebbles or unusual element concentration? Second, estimate the local and regional dispersal component. Use tools such as distance above Quaternary base, regional topography and isopachs, pebble counts, matrix solubility, siderite content, and review anomalous sample on regional stratigraphic x-y plots. That is, look for divergence from the population cluster and infer type of mixing.

 Table 4. Analytical measurements useful for resolving regional till stratigraphic questions.

Mca	sured		
Attribute		Resolves	Remarks
As	nmHMC	WT vs RT, OT	high in unox. WT
B	-2um	WT vs RT, OT	high in unox. WT
Ca	-2um	WT vs RT, OT	low in WT
Hg	nmHMC	WT vs RT, OT	high in unox. WT
κ	-2um	RT vs OT	lower in OT
Na	-2um	WT vs RT, OT	lower in WT
Р	-2um	WT vs RT, OT	lower in WT
Ti	-2um	RT vs OT	lower in OT
Lim	onite	WT vs RT, OT	higher in WT
FI I	/4"	WT vs RT, OT	lower in WT
FI 4	mesh	WT vs RT, OT	lower in WT
% C	lay	WT vs RT, OT	higher in WT
% Sa	nd	WT vs RT, OT	lower in WT
% C	a matrix	WT vs RT, OT	higher in unox. WT

This measurement exceeds 20% precision.

(a)

į.

Í,

Îμ.

Ú.

1. A

A Contraction

38. A

Č.

Table 5. An interpretation of the type of glacial dispersal for the samples bearing significant pathfinders.

Pathfinders	Sample	Height (ft.) above Quaternary Base	Uscful Parameters	Dispersal Train Interpretation
Pb & Ag in magnetic fraction Au: 4 grains	502-01	51	B vs. Na(F) plot; high P content; Ba vs. Ti(F) plot; till mag. susceptibility v. high; high sphene content	high component of one unusual lithology of sound bedrock; head, <3 miles transport
Au, Hg, Cu	514-02	41	70% granite pebbles, B vs. Na(F) plot; Ba vs. Ti(F) plot; siderite content; Cu vs. Cu; h. HMC wt.	mixed component till; tail, from granitoids
Au: 5 gold grains & anom. fine fraction gold assay	506-01	8	siderite content high; plot B vs. Na(F); Ba vs. Ti(F) plot; plot Ti vs. V(F) pyrite/zircon ratio; plot Ni(H) vs. Mg(F)	high component of saprolite of unusual composition in till; head, very short transport
Au: 1 large grain; 1 scheelite; 1 arsenopyrite	503-02	30	very low siderite content; Ba vs. Ti(F) plots in unique field; high K content; elevated Sr, Th, & U	more of a sound bedrock component; tail, distance?
Au: anom. fine fraction & some in nmHMC; Hg	503-04	10	very high matrix soluble assay; high magnetic frac. wt.; 91% of sample is matrix	more incorporation of underlying Cretaceous sand; head, short transport?
Au: 2 grains & anom. fine fraction; 2 Cu grains; 2 scheelite grains	509-01	5	median siderite content vs. no saprolite in borehole; Ba vs. Ti plots in unique field; relatively low Ni, Cr, Mg for gabbro; high magnetic frac. wt.; mafic (plutonic?) pebbles common	uncertain
Cu, Ni, Zn; 1 grain Au; Fe	505-03	3	high siderite content; incorp. of Cu, Ni, Zn from underlying saprolite; high Fe; unusual Ce & Ga content; plot Ba vs. Ti(F); 90% of sample is matrix; high matrix sol. Fe	much incorporation of saprolite similar to that in borehole; head, very short transport
Kyanite 10% of HMC subsample; Au: 1 grain	513-01	20	mixture of pebble types; 22% P-M pebbles; matrix sol. vs. As(H); B vs. Na(F); elevated Cr(H), Ce(H), Ni(H), Cu(H); zircon	mixing with underlying WT; kyanite-bearing till is not one lithology; tail
Molydenite: 4 grains; Scheelite: 2 grains	512-01	14	pebbles high SC content, low PM for WT; 9% graywacke in SC; Mo increases down borehole; mag HMC assays; As(H); B vs. Na(F); Ti vs. V(F); K vs. Hg	WT mixing with local sound bedrock on high; tail, transport from SW of Vermilion fault?
2 gahnite; 2 scheelites; Au: 4 grains	517-18	9	1-2 mm pyrite grains distinctive; As hmc elevated	this till sample rests upon bedrock; no dominant lithology observed; tail ? short distance

(F) = fine fraction

(H) = nmHMC

Table 6.A list of till samples which exceed the regional-stratigraphic median by >3x for the seven selected
elements of Au, As, Cu, Pb, Zn, Ni, Hg.

Element/Fraction	Sample	Value	Appropriate Median x3	Unit/Region
Au, nmHMC (grains/10 kg	502-01 506-01 517-018 520-03	4 5 4 4	3 3 3 3	
Au, -63 um assay (ppb)	503-04 506-01 509-01 514-02 515-03 517-15 517-16 518-02 519-06 521-02	23 34 15 14 10 5 6 6 4 5	6 6 3 6 3 3 3 3 3 3 3 3	RT-E RT-E RT-W RT-W OT-W OT-W RT-W WT-W RT-W
Cu, nmHMC (ppm) (see also Native Copper App. F & L)	508-02 508-03 511-02 505-02 505-03 514-01 514-02	369 461 386 220 700 260 271	266 266 210 210 210 210 210 210	RT-E RT-E RT-W OT-E OT-E RT-W RT-W
Cu, nmHMC (ppm)	521-05 517-06	263 400	225 381	OT-W WT-W
Zn, nmHMC (ppm)	505-03	272	264	OT-E
Ni, nmHMC (ppm)	505-03	665	168	OT-E
Hg, nmHMC (ppb)	514-02	249	189	RT-W

Pb, nmHMC none Pb, -2 um none As, nmHMC none As, -2 um none Cu, -2 um none Zn, -2 um none Ni, -2 um none

<u>j</u>u

Ţ

Ĩ,

ý.

Ę.

Ą

Í

Ţ

Table 7. A list of <u>magnetic fraction</u> till and saprolite samples that exceed the regional-stratigraphic median by \geq 3x the median for elements listed.

9

Element	Sample	Value	Appropriate Median x3	Unit/Region
MgO	501-003	3.7	3.75	SAP-E
TiO2	503-006 515-001 515-008	27.4 22.9 26.4	22.5 22.5 22.5	ASAP-E RT-W OT-W
Ag	502-001 502-002	8 8	6.6 6.6	RT-E RT-E
Со	501-002	1772	579	SAP-E
Cr	501-001 507-004 507-012 512-002 512-003 513-003 513-004	2660 2500 2616 3080 2580 3140 3120	2160 2160 2160 2160 2160 2160 2160 2160	RT-E OT-E SAP-E WT-W WT-W WT-W
Cu	507-012 514-006 520-016	178 241 1006	174 174 174	SAP-E SAP-W SAP-W
Ni	512-002 518-006	538 596	492 492	WT-W WT-W
Pb	507-012	182	141	SAP-E
Zn	507-012	2938	1275	SAP-E

Table 8. Regional-stratigraphic till median values (ppm).

1819

D

<u></u> (10)

Į.

Ð

0

D

Ð

I

Í

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				an an aithe an de aide the			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		D .! 7711	Dalass Till	117	Old Datas Till		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				winnipeg 1 iii			
		Median East	Median West	Median West	Median East	Median West	Saprolite
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Element- Fraction	(n=20)	(n=21)	(n=29)	(n=7)	(n=24)	Median (n=14)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ag - nmHMC	1.9	2.5	3.0	2.7	2.2	3.1
As - unHMC 24 30 4^{-1} (2) 23 39 6.5 As - unHMC 0.088 0.047 4^{-1} (0.088 0.001 0.003 0.005 0.013 Au - 2um 0.002 0.001 0.001 0.001 0.001 0.002 B 0.002 0.001 0.001 0.001 0.001 0.002 B 0.001 0.001 0.001 0.001 0.001 0.002 B -2um 155.5 126 118 97 123 52 Ca - amHMC 17500 16400 14800 17200 14500 15950 Ca - amHMC 1950 55500 4100 21000 52.000 3125 Ca - amHMC 250 510.00 4100 210.00 52.000 3125 Ca - amHMC 2500 21000 32.000 21000 300000 21000 30000 2100 30000 2100 30000 2100 30000 30000 30000	Ag2um	0.90	0.80	0.70	0.80	0.95	0.50
As -2um 1 1.5 2 0.312 Au -3um 0.068 0.047 0.028 0.001 0.001 0.001 0.002 B 37.5 30 62. 52 37 58 Ba -amHMC 62.5 62.5 120 62.5 96.25 Ba -2um 155.5 126 118 97 123 52 Ca -amHMC 155.5 126 118 97 123 52 Ca -amHMC 155.0 16400 14800 10100 68150 11000 Cr -amHMC 88.5 70 41000 210.00 500000 312.50 Cu - amHMC 28.5 70 74.5 190.5 64 21 7.5 42.5 Cu - amHMC 20000 23000 30000 300000 300000 300000 300000 300000 300000 300000 300000 312.5 312.5	As - nmHMC	24	30	62	23	39	6.5
	As2um	1	1.5	2.5	1.5	2	0.312
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Au - nmHMC	0.088	0.047	0.028	0.038	0.065	0.013
B 37.5 30 62 37 58 Ba - nHMC 62.5 62.5 120 62.5 96.25 Ba - Jum 155.5 126 118 97 123 52 Ca - amHMC 17500 14600 14800 11000 68.150 1100 Ca - 2um 21950 55500 41300 68.150 1100 68.150 1100 Cr - 3umHMC 395.00 510.00 4100.04 210.00 5520.00 31.250 Cr - 3umHMC 88.5 70 127 70 74.5 190.5 Cu - 2um 60 38 37.462 47.5 42.5 Fe amHMC 312.5 312.5 300000 270000 300000 27000 300000 Hg 0.023 0.063 0.0151 0.079 0.025 K. amHMC 312.5 506.25 K - 2um 5650 5000 5500 5000 11000 18500 12.5 12.5 <t< td=""><td>Au2um</td><td>0.002</td><td>0.001</td><td>0.001</td><td>0.001</td><td>0.001</td><td>0.002</td></t<>	Au2um	0.002	0.001	0.001	0.001	0.001	0.002
	В	37.5	30	62	52	37	58
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ba - nmHMC	62.5	62.5	62.5	120	62.5	96.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ba2um	155.5	126	118	97	123	52
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ca - nmHMC	17500	16400	14800	17200	14500	15950
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ca2um	21950	55500	41300	10100	68150	1100
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Cr - nmHMC	395.00	510.00	410.00	210.00	520.000	31.250
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Cr2um	122	75	60	95	84	21
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Cu - nmHMC	88.5	70	127	70	74.5	190.5
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Cu2um	60	38	37	62	47.5	42.5
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Fe - nmHMC	220000	240000	310000	300000	270000	300000
Hg 0.023 0.063 0.0157 0.051 0.079 0.025 K - nmHMC 312.5	Fe tot2um	41450	32500	27300	36700	36550	42400
K mmHMC 312.5 302.5 306.25 K -2um 15500 1600 1850 1600 1850 1600 1850 1600 1850 1600 1850 1600 1700 1850 1600 1700 1850 1600 1700 1850 1600 1700 1850 1600 1700 1850 1600 1700 1850 125 1.	Ho	0.023	0.063	0157	0.051	0.079	0.025
K + Initial J12.5 J12.5 <thj12.5< th=""> J12.5 J12.5</thj12.5<>	K mHMC	312.5	312.5	312.5	312.5	312.5	506.25
Li - mHMC 4 3 4 4 3 5 Li - 2um 34 33 33 29 29 14 Mg - mHMC 6150 7200 7500 10900 7600 12700 Mg - 2um 15600 16700 3550 8600 15400 4800 Mn - mHMC 2700 3500 4100 4100 4750 8250 Mn2um 605 636 600 418 712.5 86.5 Mo - mHMC 1.25 1.25 4.125 1.25 1.25 1.25 Mo2um 0.625 3.000 4.000 1.000 4.500 0.625 Ni - amHMC 42.5 36 844 56 47.5 52.5 Ni - 2um 65.5 48 46 63 53 49 P - nmHMC 1170 1280 1300 1060 1065 1115 Sc - amHMC 34 39 59 35	K - MITTIVIC	5650	5000	5000	2000	4100	1850
Li Li - 2um 3 - 3 3 2 9 2 14 Mg - amHMC 6150 7200 7500 10900 7600 12700 Mg - amHMC 6150 7200 3500 4100 4100 4750 8250 Mn - amHMC 2700 3500 4100 4100 4750 8250 Mn - amHMC 1.25 1.25 1.25 1.25 1.25 1.25 Mo - annHMC 1.25 3.000 4.000 11000 4500 0.625 Ni - amHMC 42.5 3.6 84 56 47.5 52.5 Ni - 2um 65.5 48 46 63 53 49 P - amHMC 1170 1280 1300 1060 1065 1115 P - 2um 7445 7790 4430 7670 6195 598 Sc - amHMC 68.0 72.2 44.0 48.0 68.05 40.5 Sc - 2		3050	3000		2300	-100	1850
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			3	7	20	20	14
Mg - Imfriku 6150 7200 7300 7600 7600 1700 Mg2um 15600 16700 15500 16700 15400 4800 Mn - mmHMC 2700 3500 4100 4100 4750 8250 Mn2um 605 636 600 418 712.5 86.5 Mo - nmHMC 1.25 1.25 1.25 1.25 1.25 1.25 Mo - 2um 0.625 3.000 4.000 1.000 4.500 0.625 Ni - nmHMC 42.5 36 84 56 47.5 52.5 Ni2um 65.5 48 46 63 53 49 P - nmHMC 1170 1280 1300 1060 1065 1115 P2um 7445 7790 4430 7670 6195 5985 Pb2um 13 11 12 15 12 19 Sc - nmHMC 68.0 72.2 4440 <td></td> <td>34</td> <td>33</td> <td>2500</td> <td>10000</td> <td>7(00</td> <td>19700</td>		34	33	2500	10000	7(00	19700
Mg - Jum 1800 1600 4300 4800 Ma - mmHMC 2700 3500 4100 4100 4750 8250 Ma - Jum 605 636 600 418 712.5 86.5 Mo - nmHMC 1.25 1.25 1.25 1.25 1.25 1.25 Mo2um 0.625 3.000 4.000 1.000 4.500 0.625 Ni - nmHMC 42.5 36 84 56 47.5 52.5 Ni2um 65.5 48 46 63 53 49 P - nmHMC 1170 1280 1300 1060 1065 1115 P2um 7445 7790 4430 7670 6195 5985 Pb - nmHMC 34 39 59 35 39 47.5 Sc - nmHMC 68.0 72.2 44.0 48.0 68.05 40.5 Sc2um 9.0 7.0 6.0 9.0 8.0	Mg - ImHMC	6150	1/200	1500	10900	16400	12/00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mig2um	15600	16/00	15500	6000	13400	4000
Mn2um 605 636 600 418 712.3 86.3 Mo - mmHMC 1.25 1.25 1.25 1.25 1.25 1.25 1.25 Mo2um 0.625 3.000 4.000 1.000 4.500 0.625 Ni - mHMC 42.5 36 84 56 47.5 52.5 Ni - 2um 65.5 48 46 63 53 49 P - nmHMC 1170 1280 1300 1060 1065 1115 P - 2um 7445 7790 4430 7670 6195 5985 Pb - nmHMC 34 39 59 35 39 47.5 Pb - 2um 13 11 12 15 12 19 Sc - nmHMC 68.0 72.2 4440 48.0 68.05 40.5 Sc - 2um 9.0 7.0 6.0 9.0 8.0 11.5 Th 127.0 176.0 158.5	Min - mmriMic	2700	3300	4100	4100	4750	82.50
Mb ILS ILS <thils< th=""> <thils< th=""> <thils< th=""></thils<></thils<></thils<>	Min20m	605	030	000	418	12.5	1 25
Mo 2um 0.625 3.000 4.000 1.000 1.005 1.115 P - nmHMC 1170 1280 1300 1060 1065 1115 12 19 Sc - nmHMC 34 39 59 35 39 47.5 200 Th 127.0 176.0 158.5 46.0 161.5 200 11.5 Th 127.0 176.0 158.5 46.0 161.5 200 1150 Ti - nmHMC 8360 7320 .4840 </td <td>Mo - nmHMC</td> <td>1.25</td> <td>1.25</td> <td>1.25</td> <td>1.25</td> <td>1.25</td> <td>1.25</td>	Mo - nmHMC	1.25	1.25	1.25	1.25	1.25	1.25
Ni - mHMC 42.5 36 84 56 41.5 52.5 Ni - 2um 65.5 48 46 63 53 49 P - mHMC 1170 1280 1300 1060 1065 1115 P - 2um 7445 7790 4430 7670 6195 5985 Pb - mHMC 34 39 59 35 39 47.5 Pb - 2um 13 11 12 15 12 19 Sc - amHMC 68.0 72.2 44.0 48.0 68.05 40.5 Sc - 2um 9.0 7.0 6.0 9.0 8.0 11.5 Th 127.0 176.0 158.5 46.0 161.5 20.0 Ti - mHMC 8360 7320 4840 4210 5760 1090 Ti - aum 1290 1090 790 780 985 312.5 U 15.0 18.0 17.0 6.1 15.0	Mio2um	0.625	3.000	4.000	1.000	4,500	0.625
Ni2um 65.5 48 46 63 53 49 P - mmHMC 1170 1280 1300 1060 1065 1115 P - 2um 7445 7790 4430 7670 6195 5985 Pb - mmHMC 34 39 59 35 39 47.5 Pb - 2um 13 11 12 15 12 19 Sc - nmHMC 68.0 72.2 44.0 48.0 68.05 40.5 Sc2um 9.0 7.0 6.0 9.0 8.0 11.5 Th 127.0 176.0 158.5 46.0 161.5 20.0 Ti - nmHMC 8360 7320 4840 4210 5760 1090 Ti2um 1290 1090 790 780 985 312.5 U 15.0 18.0 17.0 6.1 15.0 3.95 V - nmHMC 160.0 136.0 142.0 195.0	Ni - nmHMC	42.5	36	84	56	47.5	52.5
P - mHMC117012801300106010651115P2um744577904430767061955985Pb - mHMC343959353947.5Pb - 2um131112151219Sc - nmHMC68.072.244.048.068.0540.5Sc - nmHMC68.072.244.048.068.0540.5Sc - 2um9.07.06.09.08.011.5Th127.0176.0158.546.0161.520.0Ti - nmHMC836073204840421057601090Ti - 2um12901090790780985312.5U15.018.017.06.115.03.95V - amHMC160.0136.0142.0195.0144.5129.5V - 2um79.059.052.071.062.586.0W - 2um6.256.256.256.256.256.25Zn - nmHMC66.57211218877.5181.5Zn - 2um9381758279.589Zr - nmHMC61506700740028006150312.5W - 3um435442.5Ø Matrix sol.13193116249% Matrix sol.11.311.98.411.810.39.4 <td><u>Ni2um</u></td> <td>65.5</td> <td>48</td> <td>46</td> <td>63</td> <td>53</td> <td>49</td>	<u>Ni2um</u>	65.5	48	46	63	53	49
P2um744577904430767061955985Pb - nmHMC343959353947.5Pb - 2um131112151219Sc - nmHMC68.072.244.048.068.0540.5Sc - 2um9.07.06.09.08.011.5Th127.0176.0158.546.0161.520.0Ti - nmHMC836073204840421057601090Ti - 2um12901090790780985312.5U15.018.017.06.115.03.95V - nmHMC160.0136.0142.0195.0144.5129.5V - 2um79.059.052.071.062.586.0W - annHMC5.0003.1253.1257.0003.1253.125V - 2um6.256.256.256.256.256.25Zn - nmHMC66.5721218877.5181.5Zn - 2um9381758279.589Zr - 2um435442.5% Matrix sol.13193116249% Matrix sol. Ca147250nmHMC wt (a)11.311.98.411.810.39.4	P - nmHMC	1170	1280	1300	1060	1065	1115
Pb - nmHMC343959353947.5Pb - 2um131112151219Sc - nmHMC68.072.244.048.068.0540.5Sc - 2um9.07.06.09.08.011.5Th127.0176.0158.546.0161.520.0Ti - nmHMC836073204840421057601090Ti - 2um12901090790780985312.5U15.018.017.06.115.03.95V - nmHMC160.0136.0142.0195.0144.5129.5V - 2um79.059.052.071.062.586.0W - nmHMC50003.1253.1257.0003.1253.125W - 2um6.256.256.256.256.256.25Zn - nmHMC61506700740028006150312.5Zr - nmHMC61506700740028006150312.5Zr - 2um435442.5% Matrix sol.13193116249% Matrix sol. Ca147250nmHMC w(e)11.311.98.411.810.39.4	P2um	7445	7790	4430	7670	6195	5985
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pb - nmHMC	34	39	59	35	39	47.5
Sc - nmHMC68.072.244.048.068.0540.5Sc - 2um9.07.06.09.08.011.5Th127.0176.0158.546.0161.520.0Ti - nmHMC836073204840421057601090Ti - 2um12901090790780985312.5U15.018.017.06.115.03.95V - nmHMC160.0136.0142.0195.0144.5129.5V - 2um79.059.052.071.062.586.0W - nmHMC5.0003.1253.1257.0003.1253.125W - 2um6.256.256.256.256.256.25Zn - nmHMC66.5721218877.5181.5Zn - nmHMC61506700740028006150312.5Zr - nmHMC61506700740028006150312.5Zr - 2um435442.5% Matrix sol.13193116249% Matrix sol. Ca147250nmHMC wt. (g)11.311.98.411.810.39.4	Pb2um	13	11	12	15	12	19
Sc - 2um9.07.06.09.08.011.5Th127.0176.0158.546.0161.520.0Ti - nmHMC836073204840421057601090Ti - 2um12901090790780985312.5U15.018.017.06.115.03.95V - nmHMC160.0136.0142.0195.0144.5129.5V - 2um79.059.052.071.062.586.0W - nmHMC5.0003.1253.1257.0003.1253.125W - 2um6.256.256.256.256.256.25Zn - nmHMC66.5721218877.5181.5Zn - 2um9381758279.589Zr - nmHMC61506700740028006150312.5Zr - 2um435442.5% Matrix sol.13193116249% Matrix sol. Ca147250nmHMC wt. (g)11.311.98.411.810.39.4	Sc - nmHMC	68.0	72.2	44.0	48.0	68.05	40.5
Th127.0176.0158.546.0161.520.0Ti - nmHMC836073204840421057601090Ti - 2um12901090790780985312.5U15.018.017.06.115.03.95V - nmHMC160.0136.0142.0195.0144.5129.5V - 2um79.059.052.071.062.586.0W - nmHMC5.0003.1253.1257.0003.1253.125W - nmHMC6.256.256.256.256.256.25Zn - nmHMC66.5721218877.5181.5Zn - 2um9381758279.589Zr - nmHMC61506700740028006150312.5Zr - 2um435442.5% Matrix sol.13193116249% Matrix sol. Ca147250nmHMC wt. (g)11.311.98.411.810.39.4	Sc2um	9.0	7.0	6.0	9.0	8.0	11.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Th	127.0	176.0	158.5	46.0	161.5	20.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ti - nmHMC	8360	7320	4840	4210	5760	1090
U15.018.017.06.115.03.95V - nmHMC160.0136.0142.0195.0144.5129.5V - 2um79.059.052.071.062.586.0W - nmHMC5.0003.1253.1257.0003.1253.125W - 2um6.256.256.256.256.256.25Zn - nmHMC66.5721218877.5181.5Zn - 2um9381758279.589Zr - nmHMC61506700740028006150312.5Zr - 2um435442.5% Matrix sol.13193116249% Matrix sol. Ca147250nmHMC wt, (g)11.311.98.411.810.39.4	Ti2um	1290	1090	790	780	985	312.5
V - nmHMC160.0136.0142.0195.0144.5129.5V - 2um79.059.052.071.062.586.0W - nmHMC5.0003.1253.1257.0003.1253.125W - 2um6.256.256.256.256.256.25Zn - nmHMC66.5721218877.5181.5Zn - 2um9381758279.589Zr - nmHMC61506700740028006150312.5Zr - 2um435442.5% Matrix sol.13193116249% Matrix sol. Ca147250nmHMC wt, (g)11.311.98.411.810.39.4	U	15.0	18.0	17.0	6.1	15.0	3.95
V2um79.059.052.071.062.586.0W - nmHMC5.000 3.125 3.125 7.000 3.125 3.125 W2um 6.25 6.25 6.25 6.25 6.25 6.25 Zn - nmHMC 66.5 72 121 88 77.5 181.5 Zn2um93 81 75 82 79.5 89 Zr - nmHMC 6150 6700 7400 2800 6150 312.5 Zr2um43 5 44 2.5 % Matrix sol.1319 31 16 24 9 % Matrix sol. Ca14 7 2 5 0 nmHMC wt, (g) 11.3 11.9 8.4 11.8 10.3 9.4	V - nmHMC	160.0	136.0	142.0	195.0	144.5	129.5
W - nmHMC5.0003.1253.1257.0003.1253.125W - 2um 6.25 6.25 6.25 6.25 6.25 6.25 Zn - nmHMC 66.5 72 121 88 77.5 181.5 Zn - 2um 93 81 75 82 79.5 89 Zr - nmHMC 6150 6700 7400 2800 6150 312.5 Zr - 2um43 5 44 2.5 % Matrix sol.1319 31 16 24 9 % Matrix sol. Ca1 4 7 2 5 0 nmHMC wt. (g) 11.3 11.9 8.4 11.8 10.3 9.4	V2um	79.0	59.0	52.0	71.0	62.5	86.0
W - 2um6.256.256.256.256.25Zn - nmHMC66.5721218877.5181.5Zn - 2um9381758279.589Zr - nmHMC61506700740028006150312.5Zr - 2um435442.5% Matrix sol.13193116249% Matrix sol. Ca147250nmHMC wt. (g)11.311.98.411.810.39.4	W - nmHMC	5.000	3.125	3.125	7.000	3.125	3.125
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	W2um	6.25	6.25	6.25	6.25	6.25	6.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zn - nmHMC	66.5	72	121	88	77.5	181.5
Zr - nmHMC 6150 6700 7400 2800 6150 312.5 Zr - 2um 4 3 5 4 4 2.5 % Matrix sol. 13 19 31 16 24 9 % Matrix sol. Ca 1 4 7 2 5 0 nmHMC wt. (g) 11.3 11.9 8.4 11.8 10.3 9.4	Zn2um	93	81	75 - 75	82	79.5	89
Zr - 2um 4 3 5 4 4 2.5 % Matrix sol. 13 19 31 16 24 9 % Matrix sol. Ca 1 4 7 2 5 0 mmHMC wt. (g) 11.3 11.9 8.4 11.8 10.3 9.4	Zr - nmHMC	6150	6700	7400	2800	6150	312.5
% Matrix sol. 13 19 31 16 24 9 % Matrix sol. Ca 1 4 7 2 5 0 mmHMC wt. (g) 11.3 11.9 8.4 11.8 10.3 9.4	Zr2um	4	3	5	4	4	2.5
% Matrix sol. Ca 1 4 7 2 5 0 nmHMC wt. (g) 11.3 11.9 8.4 11.8 10.3 9.4	% Matrix sol.	13	19	31	16	24	9
nmHMC wt. (g) 11.3 11.9 8.4 11.8 10.3 9.4	% Matrix sol. Ca	1	4	7	2	5	0
	nmHMC wt. (e)	11.3	11.9	8.4	11.8	10.3	9.4
Table 9.Observed attributes or available tools that are probably usable tracers to specific sources in
the Baudette Area since the regional background in till is so low.

F

, i

- I. Matrix
 - A. Mineralogy
 - 1. scheelite
 - 2. gahnite
 - 4. corundum
 - 5. limonite pisolith
 - 6. native copper
 - 7. galena
 - 8. native gold
 - 9. molybdenite
 - 10. kyanite
 - B. Chemistry
 - 1. Au
 - 2. Hg
 - 3. Ba
 - 4. Zn
 - 5. Ag & Pb bearing magnetite
 - 6. Pb
 - 7. Ni
 - 8. W

II. Clasts

- 1. komatiites?
- 2. tourmalinites
- 3. magnetic tonalites
- 4. magnetic coarse grained mafic intrusives
- III. Whole Core
 - 1. high magnetic susceptibility of till unit
- IV. Additional plausible tracers not identified in this survey.
 - 1. tourmaline
 - 2. apatite
 - 3. monazite
 - 4. diamond
 - 5. ilmenite
 - 6. diopside

<u>Remarks</u>

1. Siderite content is an excellent guide to the saprolite incorporation in till.

2. The list of <u>potential</u> mineral tracers to ore deposits for this area is very long, especially if microprobe final analysis is used (e.g. olivine, diopside, ilmenite and garnet for diamond-bearing kimberlites).

Table 10. A synthesis of the observations and conclusions regarding till composition and variability.

A. Summary of results.

Ų.

Ć

Ę

Į.

<u> </u>

- 1. Stratigraphic units with:
 - a. various till types, subglacial vs. supraglacial;
 - b. heads and tails of dispersal trains;
 - c. incorporation of underlying material (mixing cases); and
 - d. characteristic content of certain elements--Hg, K, As, B, Ca, Na, P, Cu.
- 2. Regional variation, E vs. W, in:
 - a. exotic carbonate clast content;
 - b. exotic carbonate matrix content; and
 - c. ten elements in matrix clay fraction express the variation.
- B. A working hypothesis to explain the observations.
 - 1. Each stratigraphic package contains a basic composition, created by continental + regional provenance and flow path (e.g. Rainy lobe deposits contain a crystalline granite-greenstone composition).
 - 2. That composition, or central tendency of population on an X-Y plot, is modified by glacial processes.
 - a. Erosion + Entrainment + Transport + Deposition; probably dominated by:
 - 1) basal ice mechanics and flow velocity;
 - 2) the buried landscape topography, especially the topographic relief at the local- and property-scales; and
 - 3) the underlying materials; three types are available for incorporation to create the nine mixing models observed in Figure 8.
 - b. Result is expressed by two general groups of deposits:
 - 1) supraglacial tills; and
 - 2) subglacial tills whose deposition and composition are affected by the buried landscape.
 - 3. The result of regional variation of twelve elements in the matrix clay fraction is ascribed to incorporation of the Winnipeg lobe deposits.
 - a. Dilution of the matrix by carbonate-rich matrix.
 - b. The variation fits the distribution pattern of the Winnipeg lobe deposits.
 - 4. After deposition, subsequent inter-glacial weathering causes observed oxidation. Hydromorphic dispersion may occur, but has not been identified.

. . .

*

. . .

•

Map 1. Location of the Baudette Area in Lake of the Woods County, Minnesota.

1

5

Legend

Legend

Baudette Area project boundary County boundary ____

Legend

D

10

Map 2. Surficial features and general topography of the Baudette Area (after Eng, 1982; and Eng, unpublished data). East-west dashed line is inferred buried Vermilion moraine.

.

......

ti ti

-

.

Map 3. Past and present overburden drilling projects in relation to regional glacial drift thickness (modified from Figure 2, MGS Information Circular 30, 1989, Ed. by G.B. Morey).

Legend

- Rotasonic overburden drill hole
- MGS scientific drill hole-bedrock test with stratigraphic log of overburden
- Industry exploration bedrock drill hole
- ★ Bedrock outcrop

,

Ę

į

Í

- 1989, Aeromagnetic interpretation Baudette area, Spector, A., 1:62,500
- 1991, Aeromagnetic interpretation Baudette area extension, Spector, A., 1:62,500

Map 4. Sources of subsurface geological information for the Baudette Area. CUSMAP aeromagnetics, Bouger gravity, and CUSMAP reconnaissance cover the entire area.

(1) defined as >100 ft. above local bedrock surface; elevation of high is given; interpretation based upon evaluation of all borehole data.

Map 5a. A regional contour map of both bedrock and surface elevation. Local-scale features, inferred to be relative bedrock highs, are shown by gray tone.

Legend-Pseudomap R33W Strip

',G,`

n v

mvb

l life

Granitic rocks

Metavolcanics

Basic metavolcanics

Iron formation

- in s
- Interpreted fault
- Road
- Drill hole
- Drill data available to Dr. Spector

Metasedimentary rocks

Legend

Rotasonic overburden drill hole

 MGS scientific drill hole-bedrock test with stratigraphic log of overburden -

6

54 72 1

Industry exploration bedrock drill hole
 x Bedrock outcrop

Map 5c. Aeromagnetic interpreted pseudomap (Spector in Lawler and Venske, 1991).

• Rotasonic overburden drill hole

⊗ MGS scientific drill hole-bedrock test with stratigraphic log of overburden

- Industry exploration bedrock drill hole
- × bedrock outcrop

(1) interpreted from all available data and assumption of saprolite preservation in bedrock topographic lows

Map 6. A regional contour map of both glacial drift and saprolite thickness.

0'

Contained the glacial lobe sediment, but not the

Map 7. Isopachs of Koochiching lobe sediment from 20 boreholes of this project.

REGIONAL TRENDS OF ELEVATION AT THE BASE OF THE KOOCHICHING LOBE SEDIMENT

REGIONAL TRENDS OF KOOCHICHING TILL THICKNESS

REGIONAL TRENDS OF KOOCHICHING NON-TILL THICKNESS

REGIONAL TRENDS OF KOOCHICHING LOBE SEDIMENT THICKNESS

REGIONAL TRENDS OF RAINY TILL THICKNESS

....

....

REGIONAL TRENDS OF RAINY LOBE SEDIMENT THICKNESS

....

....

....

particular unit mapped

Map 9. Isopachs of Winnipeg lobe sediment from 20 boreholes of this project.

REGIONAL TRENDS OF ELEVATION AT THE BASE OF THE WINNIPEG LOBE SEDIMENT

REGIONAL TRENDS OF WINNIPEG TILL THICKNESS

11

REGIONAL TRENDS OF WINNIPEG NON-TILL THICKNESS

Map 10. Isopachs of Old Rainy lobe sediment from 20 boreholes of this project.

REGIONAL TRENDS OF ELEVATION AT THE BASE OF THE OLD RAINY LOBE SEDIMENT

REGIONAL TRENDS OF OLD RAINY LOBE SEDIMENT THICKNESS

REGIONAL TRENDS OF KAOLINITIC + CHLORITIC SAPROLITE THICKNESS

REGIONAL TRENDS OF THICKNESS OF REWORKED SAPROLITE AND CRETACEOUS SAND (DRILL HOLE 503)

Map 12a. Bedrock geology map (modified from 1:250,000 scale Roseau 2° sheet by Day, and others, 1991).

MAP UNIT DESCRIPTION

ų.

(

Į

Ţ

Ę

1

1

D

D

Ð

D

Planetrotocic Rocks Late Archean Units of the Queries Subprovince K Createcous rocks, undivided Intrusive and migratific rocks Xd Diabase, gabbro and diorite Wom Keissteich migratije Xd Diabase, gabbro and diorite Wom Keissteich migratije Rote Late Archean Units of the Wabigoon Subprovince Late Archean Units of the Wawa Subscience Rote Cancolorite, quartz monzonite, and granite Wom Keissteinentary rocks Wim Granodiorite, quartz monzonite, and granite Wog Granodiorite, quartz diorite, and tonalite Wim Granodiorite, quartz monzonite, and granite Wog Granodiorite, quartz diorite, and tonalite Wim Granodiorite press Supacrustal rocks Wom Ketswolzanic rocks Wim Metasolianit rocks Wom Late Archean Units of the Wawa Subprovince Wim Granodiorite press Wim Metasolianit rocks Wim Granodiorite rocks Wim Metasolianit rocks Wim Metasolianit rocks Wim Metasoliani rocks <tr< th=""><th></th><th></th><th></th><th></th></tr<>				
K Createcous rocks, undivided Intrusive and migmatific rocks Xd Diabase, gabbro and dionic Wmm Moreblende monzonite Xd Diabase, gabbro and dionic Late Archean Units of the Wabigoon Subprovince Intrusive rocks Point Late Archean Units of the Wabigoon Subprovince Intrusive rocks Wmm Moreblende monzonite Wmm Granodiorite, quartz monzonite, and granite Wgd Granodiorite, quartz diorite, and sonalite Wmm Moreblende monzonite Wgd Granodiorite, quartz diorite, and sonalite Wgm Granitoid rocks Wgd Granodiorite, quartz diorite, and sonalite Wgm Granitoid rocks Wgd Granodiorite, quartz diorite, and sonalite Wgm Granitoid rocks Wgm Late Archean Units of the Wawa-Subprovince Wgm Granitoid rocks Wgd Granitoid rocks. Wgm Granitoid rocks Wgm Late Archean Units of the Wawa-Subprovince Wmm Matesolianientary rocks, undivided Wgm Late Archean Units of the Wawa-Subprovince Wmm Matesolianientary rocks, undivided Wgm Late Archean Units of the Wawa-Subprovince Wmm Matesolianientary		Phanerozoic Rocks		Late Archean Units of the Quetico Subprovince
Early Protentiation Rocks When Homblende monizonite Wend Massedimentary rocks Xd Diabase, gabbro and diorite Wend Massedimentary rocks Post-tectonic intrusive rocks (younger than about 2,700 Ma) Intrusive rocks Wgn Grandforite, quartz monizonite, and granite Wma Grandforite greiss Wgd Grandforite, quartz diorite, and tonalite Supracrustal rocks Wgn Granitold rocks Wgd Grandforite greiss Supracrustal rocks Wg Granitold rocks Wine Wite Wolk Supracrustal rocks Wg Granitold rocks Wine Vitewolkanic rocks, undivided Wine Vitewolkanic rocks, undivided Wine Diatemendiate massedimentary rocks Wine Vitewolkanic rocks, undivided Wine Conformation Wine Vitewolkanic rocks, undivided Wine Vitewolkanic rocks Wine Vitewolkanic rocks Wine Matteedimentary rocks Wine Vitewolkanic rocks Wine Vitewolkanic rocks Wine Vitewolkanic rocks Wine Mattee Intervolkanic rocks Wine Vitewolkanic rocks Wine Mattee Intervolkanic rocks Wine Vitewolkanic rock Wine Mattee Intervolkanic rocks Wine Vitewolkanic rocks Wine Mattee Intervolkanic rocks Wine Witewolkanic rocks Wine	к	Cretaceous rocks, undivided	Intrusive	and migmatitic rocks
Xd Diabase, gabbro and diorite Wwm Schär-fich migmatile Ymm Katasedimentary rocks Late Archean Units of the Wabigoon Subprovince Posi-tectonic intrusive rocks (younger than about 2,700 Ma) Intrusive rocks Wgm Granodiorite, quartz monzonite, and granite Wgd Wgm Granodiorite, quartz monzonite, and granite Wgd Wgm Granodiorite, quartz monzonite, and granite Wgd Wgm Granodiorite, quartz diorite, and tonalite Suprecrustal rocks Wg Granitoid rocks Wmm Metasedimentary rocks Wgit Granitoid rocks Wmm Metasedimentary rocks, undivided Wift Intrusive rocks Wmm Metasedimentary rocks, undivided Wift Intrusive rocks Wmm Metasedimentary rocks, undivided Wift Intrusive rocks Wmm Metasedimentary rocks Wmm Matesedimentary rocks Wmm Metasedimentary rocks Wmm Mate and felsio Metavoleanic rocks Wmm Metasedimentary rocks Wm Mate and retasedimentary rocks Wmm Metasedimentary rocks Wmit Mate and retasedimentary rocks Wmm Metasedimentary rocks Wmit Mate and retasedimentary rocks Wmm Metasedimentary rocks		Early Proterozoic Rocks	Whm	Homblende monzonite
Late Archean Units of the Wabigoon Subprovince Late Archean Units of the Wave-Shebandowan Subprovince Post-tectonic intrusive rocks (younger than about 2,700 Ma) Intrusive rocks Wgm Granodiorite, quartz monzonite, and granite Wg Wgm Granodiorite, quartz monzonite, and granite Wg Wgm Granodiorite, quartz diorite, and tonalite Supercrusial rocks Wgm Granitoid rocks Wm Late Archean Units of the Wave-Shebandowan Subprovince Wgm Granodiorite, quartz monzonite, and granite Wg Granodiorite, quartz diorite, and tonalite Wgm Granitoid rocks Wg Granodiorite, quartz diorite, and tonalite Supercrusial rocks Wm Ultramafic to mafic intrusive rocks, undivided Wm Late Archean Units of the Wave-Shebandowan Subprovince Wm Metasolianic rocks Wm Metavolcanic rocks Wm Wm Metavolcanic rocks Wm Hereita metavolcanic rocks Wm Wm Mafic to intermediate metavolcanic rocks Wm Hereita metavolcanic rocks Wm Wm Mafic to intermediate metavolcanic rocks Wm Metavolcanic and metavolcanic rocks Wm Wm Metavolcanic and metavol	Xd	Diabase, gabbro and diorite	Wvsm Wmsb	Schist-rich migmatite Metasedimentary rocks
Post-tectonic intrusive rocks (younger than about 2,700 Ma) Intrusive rocks Wgmz Granodiorite, quartz monzonite Wmg Granodiorite, quartz monzonite Wg Granodiorite prises Wg Granodiorite, quartz diorite, and tonalite Suparcustal rocks Wg Granitoid rocks Wg Granitoid rocks Wg Granitoid rocks Wm Layered volcanic-sedimentary rocks, undivided Wm Metavolcanic rocks Wm Metavolcanic rocks, undivided Wm Metavolcanic rocks, undivided Wire Chert-rich iron-formation Wire Chert-rich rocks Wire Chert-rich rock Unterview rocks Wire Matis and felsin Metavolcanic rocks Wr Matis and felsin Metavolcanic rocks Unterview rocks Unterview rocks Wm Matis and felsin Metavolcanic rocks Wr Matis and relative rocks Unterview rocks Unterview rocks Wm Matis and felsin Metavolcanic rocks Wr Matis and metasedimentary rocks Unterview rocks Unterview rocks Wm Matis and felsin Metavolcanic rocks Wr Matis and metasedimentary rocks Unterview rocks Unterview rocks Wire Matis and metasedimentary rocks Unterview rocks Unterview rocks PROJECT LOCATION Wire Matis and metasedimentary rocks Unterview rocks Unterview rocks PROJECT LOCATION Wire Matis and relate of the metavolanic rocks Wr Metavolcanic and metasedimentary rocks Exemt Exemt Exemt Wire Matis t		Late Archean Units of the Wabigoon Subprovince		Late Archean Units of the Wawa-Shebandowan Subprovince
Wgmz Granodiorite, quartz monzonite, and granite Wgd Granodiorite, quartz diorite, and tonalite Wmg Granodiorite griefs Supracrustal rocks Wge Granitoid rocks Wra Granodiorite griefs Wge Granitoid rocks Wra Granodiorite, quartz diorite, and tonalite Wge Granitoid rocks Wra Granodiorite, quartz diorite, quartz diorite, and tonalite Wge Granitoid rocks Wra Granodiorite, quartz diorite, quartz diorite, and tonalite Wge Granitoid rocks Wra Granodiorite, quartz diorite, quartz diorite, and tonalite Wge Granitoid rocks Wra Granodiorite, quartz diorite, quartz diorite, and tonalite Wge Granitoid rocks Wra Granodiorite, quartz diorite, quartz diorite, quartz diorite, and tonalite Wge Granitoid rocks Wra Granodiorite, quartz diorite, quarta diorite, dite, dite, dite, diorite, diorite, diorite, diorite, di	Post-tect	onic intrusive rocks (younger than about 2,700 Ma)	Intrusive	rocks
Wgn Granodiorite gneiss Supracrustal rocks Pre- and syn-tectonic intrusive rocks (about 2,700 to 2,736 Ma) Wivs Layered volcanic-sedimentary rocks, undivided Wg Granitoid rocks Winw Matavolcanic rocks, undivided Wit Ultramafic to mafic intrusive rocks Winw Matavolcanic rocks, undivided Wit Uno-formation Winv Matavolcanic rocks, undivided Winv Matic and relisie metavolcanic rocks Winv Mafic and felsie Metavolcanic rocks Wrinv Mafic and felsie metavolcanic rocks Winv Mafic metavolcanic rocks Wrinv Mafic interavolcanic rocks Winv Mafic metavolcanic rocks Wrinv Mafic metavolcanic rocks Winv Mafic metavolcanic rocks Wrinv	Wgmz Wmz	Granodiorite, quartz monzonite, and granite Hornblende monzonite	Wgd	Granodiorite, quartz diorite, and tonalite
Pre- and syn-tectonic intrusive rocks (about 2,700 to 2,736 Ma) Wir Layered volcanic-sedimentary rocks, undivided Wirm Ultramafic to mafic intrusive rocks Supracrustal rocks Wire Ultramafic to mafic intrusive rocks Supracrustal rocks Wire Ultramafic to mafic intrusive rocks, undivided Wire Ultramafic to mafic intrusive rocks Wire Constraintion Wire Metasedimentary rocks, undivided Wire Constraintion Wire Pelsic metavolcanic rocks Wire Mafic and felsic Metavolcanic rocks Wire Mafic intervolcanic rocks Wire Mafic intervolcanic rocks Wire Mafic intervolcanic rocks Wire Mafic intervolcanic rocks Wire Mafic metavolcanic rocks Wire Mafic metavolcanic rocks Wire Mafic metavolcanic rocks Wire Mafic metavolcanic rocks Wire Mafic intervolcanic rocks Wire Mafic intervolcanic rocks Wire Mafic metavolcanic rocks Wire Mafic metavolcanic rocks Wire Mafic intervolcanic rocks Wire Mafic intervolcanic rocks Wire Mafic metavolcanic rocks Wire Mafic intervolcanic rocks Wire Wire Mafic intervolcanic rocks Wire Wire Wire Wire Wire Wire Wire Wire	Wgn	Granodiorite gneiss	Supracru	istal rocks
Wgb Mafie intrusive rocks Wgb Mafie intrusive rocks Supracrustal rocks Wir Litermatic to mafie intrusive rocks Supracrustal rocks Wir Litermatic to mafie intrusive rocks Supracrustal rocks Wir Chert-rich iron-formation Wirb Chert-rich iron-formation Wirb Chert-rich iron-formation Wirs Pelsie metavoleanic rocks Wir Pelsie metavoleanic rocks Wir Pelsie metavoleanic rocks Wir Intermediate metavoleanic rocks Wir Intermediate metavoleanic rocks Wir Mafie to intermediate metavoleanic rocks Wir Metavoleanic and metasedimentary rocks Wir Metavoleanic and metasedimentary rocks Riser Rainy Lake-Scien River fault zone Riser Rainy Lake-Scien River fault zone Alvi Wabigoon subprovince Alvi Wabigoon subprovince	Pre- and	syn-tectonic intrusive rocks (about 2,700 to 2,736 Ma)	Wivs	Layered volcanic-sedimentary rocks
Web Mafic intrusive rocks Supracrustal rocks Wir Ultramafic to mafic intrusive rocks, undivided Wir For-formation Wir Chert-rich iron-formation Wirs Metasedimentary and metavoleanic rocks Wirs Felsic metavoleanic and voleanic leasted imentary rocks. Wir Intermediate metavoleanic rocks Wirv Intermediate metavoleanic rocks Wirv Intermediate metavoleanic rocks Wirv Mafic intermediate metavoleanic rocks Wirv Mafic metavoleanic rocks Wirv Mafic metavoleanic rocks Wirv Metavoleanic and metasedimentary rocks Wirv Metavoleanic and metavoleanic rocks Wir	Wg	Granitoid rocks	w mmv	Metavoicanic rocks, undivided
Wei Ultramafic to mafic intrusive rocks Supracrustial rocks Wms Metasedimentary rocks, undivided Wif Dron-formation Wmsv Metasedimentary and metavolcanic rocks Wife Cent-rich iron-formation rocks Wife Mafic and felsic Metavolcanic rocks Wife Intermediate metavolcanic rocks Wife Intermediate metavolcanic rocks Wife Untermediate metavolcanic rocks Wiv Mafic not netavolcanic rocks Www Mafic not netavolcanic rocks Wive Intermediate metavolcanic rocks Www Mafic netavolcanic rocks Www Mafic netavolcanic rocks Www Mafic netavolcanic rocks Wive Intermediate metavolcanic rocks Wive Intermediate metavolcanic rocks Wive Metavolcan	Wgb	Mafic intrusive rocks		
Supracrustal rocks Wins Metasedimentary rocks, undivided Wif Icon-formation Wifs Chert-rich iron-formation Wins Metasedimentary and metavoleanic rocks Wins Elsic metavoleanic rocks Wins Intermediate metavoleanic rocks Wins Mafic not intermediate metavoleanic rocks Wins Mafic metavoleanic rocks Wins Metavoleanic and metasedimentary rocks Minsessite Alvi Minsessite Alv	Wui	Ultramafic to mafic intrusive rocks		
Wms Metasedimentary rocks, undivided Wilf Iron-formation Wmb Chert-rich iron-formation Wmsv Metasedimentary and metavolcanic rocks Winfv Mafic and felsic Metavolcanic rocks Winiv Mafic to intermediate metavolcanic rocks Winiv Mafic to interovolcanic rocks <	Supracru	stal rocks		
Wiff Iron-formation Wiff Chert-rich iron-formation Wmsv Metaschinentary and metavolcanic rocks Why Felsic metavolcanic rocks Wiff Intermediate metavolcanic rocks Winv Mafic and fielis Metavolcanic rocks Winv Mafic to intermediate metavolcanic rocks Winv Mafic metavolcanic rocks Winv Metavolcanic roc	Wms	Metasedimentary rocks, undivided		
Winb Chert-rich iron-formation Winsv Metasedimentary and metavolcanic rocks Wirks Felsic metavolcanic rocks Winhv Mafic and felsic Metavolcanic rocks Winiv Mafic and felsic Metavolcanic rocks Winiv Mafic to intermediate metavolcanic rocks Winiv Mafic to intermediate metavolcanic rocks Winv Mafic to intermediate metavolcanic rocks Winv Mafic metavolcanic rocks Minv Malic metavolcanic Alv1 Canada QF Quetico fault zone	Wif	Iron-formation		
Wins Metasedimentary and metavoleanic rocks Wivs Felsic metavoleanic rocks Wiv Intermediate metavoleanic rocks Wiv Intermediate metavoleanic rocks Winv Mafic to intermediate metavoleanic rocks Wivs Metavoleanic rocks Nivs Metavoleanic rocks	Wifb	Chert-rich iron-formation		
Why Felsic metavolcanic rocks Wir Felsic metavolcanic rocks Wir Intermediate metavolcanic rocks Win Intermediate metavolcanic rocks Win Mafic netavolcanic rocks Win Mafic netavolcanic rocks Win Mafic netavolcanic rocks Wis Metavolcanic and metasedimentary rocks Netavolcanic and metasedimentary rocks Netavolc	Wmsv	Metasedimentary and metavolcanic rocks		
Miv Prelsic metavolcanic rocks Winfv Mafic and felsic Metavolcanic rocks Wiv Intermediate metavolcanic rocks Wiv Mafic netavolcanic rocks Wiv Mafic metavolcanic rocks Wiv Metavolcanic and metasedimentary rocks Wvs Metavolcanic and metasedimentary rocks PROJECT LOCATION Regend QF Quetico fault zone VF Vermillion fault zone RLSRF Rainy Lake-Scine River fault zone RLSRF Rainy Lake-Scine River fault zone Alv1 Als Alv2 Wawa-Sbebandowan subprovince Alv2 Wawa-Sbebandowan subprovince	Wfvs	Felsic metavolcanic and volcaniclastic metasedimentary roc	:ks	
Wirk Intermediate metavolcanic rocks Wirk Intermediate metavolcanic rocks Wirk Mafic to intermediate metavolcanic rocks Wirk Metavolcanic rocks Wirk Mafic to intermediate metavolcanic rocks Wirk Mafic to intermediate metavolcanic rocks Wirk Mafic to intermediate metavolcanic rocks Netavolcanic and metasedimentary rocks Netavolcanic rocks Netavolcanic and metasedimentary rocks Neta	Wiv	Felsic metavolcanic rocks		VIIV
White the intermediate metavolcanic rocks Wmiv Mafic to intermediate metavolcanic rocks Wvs Metavolcanic and metasedimentary rocks Wvs Metavolcanic and metasedimentary rocks PROJECT LOCATION Right Difference of the interval of the in	wmrv Win	Matic and telsic Metavolcanic rocks		
Winv Mafic metavolcanic rocks Wvs Metavolcanic and metasedimentary rocks Wvs Metavolcanic and metasedimentary rocks PROJECT LOCATION PROJECT LOCATION Legend QF Quetico fault zone VF Vermillion fault zone RLSRF Rainy Lake-Scine River fault zone Alv1 Wabigoon subprovince Alv2 Wawa-Shebandowan subprovince	Wniv	Mafic to intermediate metavolcanic rocks		
Wvs Metavolcanic and metasedimentary rocks Metavolcanic and metasedimentary rocks PROJECT LOCATION PROJECT LOCATION Legend QF Quetico fault zone VF Vermillion fault zone RLSRF Rainy Lake-Seine River fault zone RLSRF Rainy Lake-Seine River fault zone Alv1 Wabigoon subprovince Als Quetico subprovince Alv2 Wawa-Sbebandowan subprovince	Wmv	Mafic metavolcanic rocks		
Alv1 Alv1 Canada Ca	Wvs	Metavolcanic and metasedimentary rocks		
Alv1 Alv1 Canada Canada Canada Canada Alv1 Canada Canada Canada Canada Canada Canada Canada Core Canada Core Canada Core Core Core Core Core Core Core Core		······································		
Aivi Aivi Aivi Ais Ais Aiv2 Aivi Ai				
Alv1 Alv1 Canada Alv1 Canada Canada Alv1 Canada Alv1 Canada Alv1 Canada Alv1 Canada Alv1 Canada Alv1 Canada Alv1 Canada Alv1 Canada Alv1 Alv1 Alv1 Alv1 Alv1 Alv1 Alv1 Alv1 Alv2 Canada Alv2 Canada Alv2 Canada Ca				
Alv1 Alv1 Canada Alv1 Canada CF QF Quetico fault zone VF Vermillion fault zone RLSRF Rainy Lake-Seine River fault zone Alv1 Alv1 Alv2 Alv2 Canada CF Cuetico subprovince Als Canada CF Cuetico subprovince Alv2 Canada CF Cuetico subprovince Alv2 Canada CF Cuetico subprovince Canada CF Cuetico subprovince Canada CF Cuetico subprovince Canada Comad				
Alv1 Alv1 Canada UF Alv1 Canada	\leq			
Alv1 Canada UF Alv1 Canada Canada Legend QF QF Alv1 Alv1 Als Als Alv2 Alv2 Alv2 VF Vermilion fault zone RLSRF Rainy Lake-Seine River fault zone RLSRF Rainy Lake-Seine River fault zone Alv2 VF Vermilion subprovince Alv2 VF Vermilion subprovince VF Vermilion subprovince VF Ve		M		
Alv1 Canada UF Alv1 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Correl	. I			
Alv1 Canada UF Alv1 Canada UF Canada UF Canada UF Canada UF Canada UF Canada UF Cuetico fault zone VF Vermillion fault zone RLSRF Rainy Lake-Seine River fault zone RLSRF Rainy Lake-Seine River fault zone Alv1 VI VI VI VE VE VE VE VE VE VE VE VE VE				PROJECT LOCATION
Alv1 Canada UF Alv1 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Core Co				
Alv1 Alv1 Canada QF QF QF Quetico fault zone VF Vermillion fault zone RLSRF Als Als Alv2 Alv2 Alv2 VF Vermillion fault zone RLSRF Rainy Lake-Seine River fault zone Alv1 VF Vermillion fault zone Alv2 VF Vermillion fault zone Alv2 VF VF Vermillion fault zone Alv2 VF Vermillion fault zone Alv2 VF VF Vermillion fault zone Alv2 VF VF VF VF VF VF VF VF VF VF	<u>}</u>			
Alv1 Alv1 Alv1 Alv2 Alv2 Alv2 Alv2 Alv2 Alv2 Alv1 Alv1 Alv2 Alv2 Alv2 Alv1 Alv2 Alv2 Alv2 Alv1 Alv2		Alud Canada		
QF Quetico fault zone VF Vermillion fault zone VF Vermillion fault zone RLSRF Rainy Lake-Scine River fault zone Alv1 Wabigoon subprovince Als Quetico subprovince Als Quetico subprovince Alv2 Wawa-Shebandowan subprovince		Alvi		
QF Quetico fault zone VF Vermillion fault zone VF Vermillion fault zone RLSRF Rainy Lake-Scine River fault zone Alv1 Wabigoon subprovince Als Quetico subprovince Als Quetico subprovince Alv2 Wawa-Shebandowan subprovince				Legend
Alv1 Alv2 Alv2 Alv2 Alv1 Alv2 Alv1 Alv2 Alv1 Alv2 Alv1 Alv2 Alv1 Alv2 Alv1 Alv2 Alv1 Alv1 Alv1 Alv2 Alv1 Alv2				OF Outling fault and
Aivi Ais Ais Ais Ais Ais Ais Ais Ai				VE Versilies fault zone
Als Als RLSRF Rainy Lake-Seine River fault zone Als Alv1 Wabigoon subprovince Alv2 Alv2 Wawa-Shebandowan subprovince	Alv1	BLSRF Minnesota		
Als Alvi Wabigoon subprovince Alv2 Alv2 Alv2 Wawa-Shebandowan subprovince		Ais		KLSKF Kainy Lake-Seine River lault zone
Alv 2 Alv 2		AIS	/-	AlvI Wabigoon subprovince
Alv2 Wawa-Shebandowan subprovince		Alv2		Als Quetico subprovince
	L	AIV 2		Alv2 Wawa-Shebandowan subprovince

Map 12b. Bedrock geology map description and location.

.

.

•

-

3 D D Q Ð Ð 0 D D D Ð D D D D D 0 D D D Ę

¢

C C

3

-

•

5

APPENDICES

Appendix 280-A. Synopsis of Baudette area drill information. Map scales are 1:24,000.

- Appendix 280-B. Descriptive logs of Baudette area drill core.
- Appendix 280-C. Sampling and analytical methods.
- Appendix 280-D. Precision and accuracy of assay methods.
- Appendix 280-E. Variation maps for the Baudette area.
- Appendix 280-F. Master index for Baudette area samples.
- Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.
- Appendix 280-H. Baudette area assays. Magnetic heavy mineral concentrate samples from tills and saprolite.
- Appendix 280-I. Baudette area bedrock and saprolite samples analyzed as bedrock. Trace element and oxide assays.
- Appendix 280-J. Baudette area sample component weights and percents reported by contract laboratory.
- Appendix 280-K. Physical properties of Baudette area samples.
- Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.
- Appendix 280-M. Baudette area pebble counts. Super-category counts per 10 kg sample by size fraction.
- Appendix 280-N. Baudette area pebble counts +1/4" 3/8" pebbles.
- Appendix 280-O. X-ray diffraction results for 14 selected Baudette area till and saprolite samples.
- Appendix 280-P. Baudette area gold data summary.

F

.

-39

•

.

Appendix 280-A. Synopsis of Baudette area drill site information.

Ú.

Q

ģ

Ę

1

Į.

Į

ģ

Ę

Ę

Ę

Ę

Ĺ

Ę

Ę

Í

Column abbre	Column abbreviations and data key							
Column abbre Twp Rng Sec min. dia. Inclin. Surf. elev. Quat. Pct.	=township =range =section =minute =diameter =inclination =surface =clevation =Quaternary =percent							
No.	=number							
< >	=icss than =greater than							
n/a	=not applicable							

								UTM	UTM							
Drill						Quadrangle	Regional	East	North			Drilling	Drilling	Core		Inclin.
Site	Twp	Rng	Sec	40acre	County	7.5 min.	survey	coordinate	coordinate	Latitude	Longitude	method	company	dia.	Azimutl	h angle
301	158N	31W	17	NE of NW	Lake of Woods	Baudette SW	Baudette	377 200	5374 280	48 30 39	94 39 46	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
502	159N	31 W	20	SE of SE	Lake of Woods	Baudette SW	Baudette	378 360	5381 120	48 34 21	94 38 57	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
503	160N	31 W	14	SW of SE	Lake of Woods	Baudette	Baudette	382 830	5392 060	48 40 18	94 35 32	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
504	157N	32W	1	SE of SE	Lake of Woods	Chase Brook	Baudette	374 600	5366 380	n/a	n/a	n/a	n/a	n/a	n/a	n/a
505	158N	32W	22	SW of NW	Lake of Woods	Oaks Corner NE	Baudette	370 320	5372 150	48 29 26	94 45 14	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
506	159N	32W	22	NW of NW	Lake of Woods	Graceton SE	Baudette	370 420	5382 350	48 34 55	94 45 22	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
507	160N	32W	5	SE of SE	Lake of Woods	Graceton	Baudette	368 920	5395 550	48 42 03	94 46 56	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
508	157N	33W	15	NW of NW	Lake of Woods	Oaks Corner	Baudette	360 880	5364 940	48 25 22	94 52 53	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
509	158N	33W	23	SE of SW	Lake of Woods	Oaks Corner NE	Baudette	363 870	5371 560	48 29 02	94 51 21	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
510	159N	33W	36	NW of SW	Lake of Woods	Graceton SE	Baudette	364 340	5378 400	48 32 38	94 50 20	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
511	160N	33W	8	SW of SW	Lake of Woods	Graceton NW	Baudette	358 310	5394 010	48 41 04	94 55 31	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
512	157N	34W	24	NE of SE	Lake of Woods	Oaks Corner	Baudette	355 630	5362 550	48 24 01	94 57 02	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
513	158N	34W	23	SE of SE	Lake of Woods	Oaks Corner	Baudette	354 160	5371 590	48 28 55	94 58 27	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
514	159N	34W	15	SE of SW	Lake of Woods	Winter Road Lake	Baudette	351 720	5383 260	48 35 10	95 00 42	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
515	160N	34W	32	NE of SE	Lake of Woods	Winter Road Lake	Baudette	349 650	5388 480	48 37 56	95 02 24	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
516	157N	35W	36	NE of SE	Lake of Woods	Shilling Dam	Baudette	345 920	5359 340	48 22 14	95 04 55	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
517	158N	35W	30	NW of NE	Lake of Woods	Shilling Dam NW	Baudette	337 790	5371 930	48 28 51	95 11 48	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
518	159N	35W	22	SW of NE	Lake of Woods	Winter Road Lake	Baudette	342 810	5382 690	48 34 44	95 07 55	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
519	160N	35W	16	SE of NW	Lake of Woods	Winter Road Lake	Baudette	340 692	5393 260	48 40 23	95 09 40	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
520	159N	36W	29	SW of NW	Lake of Woods	Mulligan Lake	Baudette	329 010	5381 190	48 32 48	95 19 08	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
521	160N	36W	30	SE of SW	Lake of Woods	Mulligan Lake NE	Baudette	328 020	5390 060	48 38 28	95 20 04	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90

Appendix 280-A. Synopsis of Baudette area drill site information. Map scales are 1:24,000.

Appendix 280-A (continued).

		Base	Sound	Quat.	Reworked		Sound				No. of	No. of	No. of	
Drill	Surf.	Quat.	bedrock	thick	saprolite	Saprolite	bedrock	Total	Cored	Pct.	till	other drift	non-drift	Total
Site	elev.	elev.	elev.	ness	thickness	thickness	thickness	depth	interval	recovery	samples	samples	samples	samples
301	1156	1021	<942	135	0	>79	0	214	0-214	76	<u> </u>	0	3	4
502	1137	958	958	179	0	0	8	187	0-187	96	3	2	1	6
503	1116	963	857	153	58	48	8	267	0-267	96	5	0	4	9
504	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
505	1167	933	906	234	0	27	6	267	0-267	96	3	0	2	5
506	1174	998	943	176	3	52	15	246	0-246	96	2	0	3	5
507	1157	918	<910	239	0	>8	0	247	0-247	98	7	4	2	13
508	1191	1039	911	152	1	127	5	285	0-285	90	3	0	6	9
509	1175	1083	1083	92	0	0	8	100	0-100	100	1	0	1	2
510	1226	1119	1119	107	0	0	5	112	0-112	90	2	0	1	3
511	1196	1053	1026	143	0	27	15	185	0-185	85	5	0	1	6
512	1185	1080	1078	105	0	2	10	117	0-117	100	3	0	. 1	4
513	1200	1107	1093	93	2	12	8	115	0-115	93	4	0	2	6
514	1305	1089	1048	216	0	41	5	262	0-262	87	3	2	2	7
515	1251	1039	1039	212	0	0	11	223	0-223	94	8	0	1	9
516	1211	1157	1157	54	0	0	7	61	0-061	95	2	1	1	4
517	1255	1035	1035	220	Ó	0	9	229	0-229	90	18	0	1	19
518	1280	1030	1023	250	2	5	16	273	0-273	91	7	ĩ	i	9
519	1233	1071	1048	162	ō	23	23	208	0-208	95	6	ō	ī	7
520	1249	950	<920	299	ĩ	>29	0	329	0-329	91	14	i	2	17
521	1235	948	938	287	i	9	23	320	0-320		6	5	4	.15

æ

A-2

Appendix 280-A. Synopsis of Baudette area drill site information. Map scales are 1:24,000.

Appendix 280-A. Synopsis of Baudette area drill site information. Map scales are 1:24,000.

Appendia 280-A. Synopsis of Baudette area drill site information. Map scales are 1:24,000.

Appendix 280-A. Synopsis of Baudette area drill site information. Map scales are 1:24,000.

Drill Site 521 Twp 160N Rng 36W Sec 30 SE

A-6

Appendix 280-B. Descriptive logs of Baudette area drill core.

Column abbreviations, data key, and other notation

3. A

T

apar	=appar c ntly	
calc	=calcarcous	
carb	=carbonate	
cgr	=coarse-grained	
cob	=cobbl e s	
ft	=feet	
fgr	=finc-grained	
gnl	=granules	
gvl	=gravel	
grn	=grœn	
incl	=including	
lam	=laminac	
lith	=lithology	
mgr	=mcdium-grained	
mod	=moderately	
noncalc	=non-calcareous	
occ	=occassional	
ox	=oxidized	
pebs	=pebbles	
sed	=sediment	
sev	=several	
sh	=shale	
sl	=slightly	
sm	=small	
unox	=unoxidized	
v	=very	
w/	=with	

К	=Koochiching
R	=Rainy
W	=Wnnipeg
0	=Old Rainy
S	=Saprolite
R	=Bedrock

Other Notes

Glacial Drift descriptive logs by G. Meyer (MGS) Saprolite descriptive logs by D. Cartwright (MnDNR) Bedrock descriptive logs by T. Klein (USGS)

For clast lithologies, PM =Paleozoic-Mesozoic FI =felsic-intermediate intrusives SC =supracrustals

Numbers next to samples in graphic plots are height in feet above the basal Quaternary contact

The data from drill hole 517 have been plotted as type samples for the other drill holes

Gold (Au) assay data is in parts per billion (ppb).

Explanation of data contained on descriptive logs.

B-2

Drill Hole OB-501

•

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	Till and Saprolite Samples in Drill Hole 501	0 50	К	(0-3) SILTY CLAY; OXIDIZED; leached; top foot fgr sand; peb line at base over silty till. (3-7) NO CORE.
10	Crystalline Bedrock AL V V Exotice	•		(7-9) SILTY CLAY TILL; OXIDIZED; mod calc, carb pebs; v silty sand at top interbeds & grades to till. (9-13 1/2) SILTY VERY FINE SAND; OXIDIZED; inclined upper contact; fgr peb lines in last foot.
		•		(13 1/2-17) GRAVELLY SAND; OXIDIZED; unox at 14 1/2 ft; abrupt upper contact; mostly fgr sand 14 1/2-15 1/2 ft, mostly fgr gvl from 15 1/2 ft; abundant carb; abrupt lower contact.
20		• • •		(17-28) SILT LOAM TILL; UNOXIDIZED; firm; calc, carb pebs common, occ sh pebs; silt bed at 18 ft; coarsening upward gvl bed 19 1/2-21 ft; fine sandy loam till 21-22 1/2 ft, silt bed w/gvl at base 22 1/2-23 ft.
30		•		(28-47) LOAN TILL; UNOXIDIZED; as above, but massive; sm to m pebs fairly common, sm cob at 31 1/2 ft; darker gray w/depth; last foot more silty & obscurely laminated.
40	△ HT-517 WT-517 0X. V WT-517 O 07-517 Clay	. •		
50	Till Samples in Drill Hole 501	•		(47-54) FINE SANDY LOAM TILL; UNOXIDIZED; as above, massive; mostly only sm pebs, carb dominant; sev medium pebs near base.
_60				(54-72) CLAY TILL; UNOXIDIZED; massive, softer than above, abrupt upper contact; mod calc, calc by 58 ft; less pebs than above, carb pebs common, but fewer than above, most large pebs Precambrian; compact by 58 ft; sm cob at 58 ft; gradational lower contact.
70	Sand 4 42 2 SIII	•		
		•		(72-76 1/2) SILT LOAM-SILTY CLAY TILL; UNOXIDIZED; as above, but variable texture; mostly silty clay till by 74 ft; many clay & silt inclusions below 74 1/2 ft; abrupt lower contact. (76 1/2-80) SILTY CLAY, CLAY & CLAYEY SILT; UNOXIDIZED; laminated, firm; mod calc (clay) to v calc (silt).
80		•		(80-91) SILTY CLAY; UNOXIDIZED; sl calc-noncalc; reddish brown lam to 82 1/2 ft, could be oxidation phenomena as encompassing clay is greenish gray; poorly sorted fgr sandy silt bed at 81 1/2 ft; fgr sand scattered throughout silty clay, no pebs; vaguely laminated w/clay & clayey silt below 82 1/2 ft; more silt w/depth, grades to silt from 89 ft.
100		•		(91-97) SILT; UNOXIDIZED; greenish gray sl calc; fgr mica flakes; reddish brown silty clay laminated below 92 1/2 ft; mostly greenish silty clay below 95 1/2 ft, over clayey silt at 96 ft; fairly abrupt lower contact. (97-99 1/2) SILTY GRAVELLY SAND; UNOXIDIZED; pebbly v cgr sand grading upward to mgr sand, mod sorted; interbedded w/clayey silt; rare carb.
110		•		<pre>(yy 1/2-102) LLATET SILT; UNUAIDIZED; greenish gray; st CalC; mod. sorted; sev v large pebs near top, cob at base. (102-106 1/2) MEDIUN-COARSE SAND; UNOXIDIZED; well sorted, rare cob. (106 1/2-112 1/2) FINE-MEDIUM SAND; UNOXIDIZED; silty zone w/silt bed near top; varies to mgr sand; sm pebs at base.</pre>
	-	•		(112 1/2-127) FINE SAND: UNOXIDIZED; fairly abrupt upper

Drill	Hole	OB-	502	
-------	------	-----	-----	--

Depth	Stratigraphic	Magnetic Suscept-	Strati- graphic	· · · ·
(ft)	Attributes	ibility	Column	Description
10	Till and Seprolite Samples in Drill Hole 502 Crystalline Redrock 431 41 51 4151 4151 4151 4151 4151 41515151515151515	0 50		<pre>(0-4) SILT LOAM TILL; OXIDIZED; firm; calc; top foot peaty, silty, clay loam; not many pebs; mottled in lower 2 ft. (4-14 1/2) LOAM TILL; OXIDIZED; as above but more pebs; carb common.</pre> (14 1/2-34 1/2) LOAM TILL; UNOXIDIZED; as above; most pebs sm; carb abundant, v rare sh.
30	Jooo Saprolita S.w 0.10 0.70 0.30 Ilg naHMC 	•		
40		•		(34 1/2-37) CLAY LOAM TILL; UNOXIDIZED; couple thin beds of silty cgr sand in upper 1/2 ft; silt & clay lam below 36 ft. (37-41 1/2) CLAY; UNOXIDIZED; calc; firm; mostly silt in upper 1 1/2 ft; occ sm pebs, clustered; silt bed at 41 ft; abrupt
	Till Samples in Drill Hole 502	•		lower contact. (41 1/2-47) LOAM TILL; UNOXIDIZED; soft; calc; common carb; clay poor; sm cob, large pebs towards top; thin silty sand beds throughout; lower foot silty fgr-mgr sand, sm pebs at base.
50				(47-79) LOAM TILL; UNOXIDIZED; massive; firm; calc; clay poor to about 52 ft.; common carb, fairly common sh; occ large pebs but not v pebbly; clay loam till below 73 ft, silty clay till below 77 ft.
60		•		
70	Till Samples In Drill Hole 502			•
80		•		(79-95 1/2) LOAM TILL;UNOXIDIZED; almost loose consistency, then quite firm by 82 ft; matrix high in silt & fgr sand, not many pebs; lighter gray than above till, also no sh noted; compact by 91 ft.
90	F1 / / / / / PN	•		(95 1/2-98) CLAY TILL; UNOXIDIZED; massive; calc; only
_100				scattered pebs; abrupt upper & lower contacts but clay & silt iam near base. (98-105) SILT; UNOXIDIZED; calc; mod calc, irregularly spaced clay lam; scattered sand grains, sm pebs; mostly clay & silty clay below 101 ft, w/silt lam; thin greenish bed at 103 ft, mostly silty clay below w/fair amount of fine sand; thin clay bed at 104 ft, lam below. (105-120) SILT & (142, UNOVIDIZED; al calcanoposic; more
110		•	R	greenish, better Laminated than above, v few sand grains, no pebs; sev dark brown Lam at 107 ft; 107-108 ft less distinctly laminated, sl calc-calc, more sand grains, apar interbedded Koochiching source sed; 108-112 ft disturbed section w/some core loss, apar lake sed as above; 112-113 ft sl-mod calc, only sl calc below; rare sand grains; transitional to till below 117 1/2 e office aleves and grains; transitional to fill below 117

02 03 0 118 4 150 т. (153 1/2-156) GRAVELLY SAND; UNOXIDIZED; silty, cgr, poorly sorted w/common large pebs, sm cob at 154 ft; carb pebs rare; silt clast at base, abrupt lower contact. (156-163 1/2) COARSE SAND; UNOXIDIZED; v well sorted; cgr -v cgr w/few gnl by 158 ft; sm clast of gray, mod calc sandy till at 159 1/2 ft; last 2 ft not as well sorted, mostly mgr, w/some gnl at 162 ft; abrupt lower contact. 04 0 12 8 160 R Ō (163 1/2-178 1/2) SILTY VERY FINE SAND; UNOXIDIZED; greenish gray; abundant dark mica flakes; v fgr-fgr below 164 1/2 ft, silty in spots; mostly silty below 172 ft; no core 177-178 1/2 ft. 170 05 0 106 1 (178 1/2-180) NO CORE. 180 0 (180-187) BEDROCK; pink to tan, medium-coarse grained biotite-bearing synite. The biotite is ragged, mostly altered to chlorite, and forms a variably present, moderately well developed foliation at 45° to core axis. The original coarse-grained feldspars have recrystallized to anhedral patches comprised of very fine-grained, sausseritized feldspars separated by intergranular micas. + B + + ÷ + 4 + 06 ----1 ÷ + + + + + + + + 190 Thin section description: sample at 181 feet. Mineralogy: microcline (44%), plagioclase (48%), biotite (4%), epidote (4%), accessory minerals (garnet, opaque). Texture: hypidiomorphic-granular, with 0.5 to 0.8 mm diameter, generally equigranular, feldspars. Light brown, slightly pleochroic biotite is present in glomeroporphyritic megacrysts 0.9 mm in diameter. 200 Lithology: syenite. 210 TD = 187' 220 230 240 250 260

Drill	Hole	OB-503	j
-------	------	--------	---

Depth	Stratigraphic	Magnetic Suscept-	Strati- graphic	Description
(IC)	ACTIDUCES			Description
	Till and Seprolite Samples in Drill Hole 503 Crystalline Nedrock 739 30	0 • 50 •	Ň	(0-3) GRAVELLY SAND; OXIDIZED; reddish brown; sand mod sorted, silty & fgr; last foot poorly sorted fgr gvl. (3-9) SILTY FINE SAND; OXIDIZED; mod sorted; some coarser grains.
10	20 A 10 A 20 A 10 A 20 A 10 A 1	•		(9-13 1/2) VERY FINE SAND; UNOXIDIZED; sm pebs, little organics below 11 ft; v fgr sandy silt below 12 ft.
		•		(13 1/2-17) CLAY & SILTY CLAY; UNOXIDIZED; vaguely laminated; abrupt lower contact.
20	u 0 77	•		(17-30) LOAM TILL; UNOXIDIZED; soft; common sm carb pebs; clayey w/clay lam in upper foot or so; firm & more pebbly below
	7000	•		27 ft; last foot mostly silt.
		•		
30	iig nailMC ▲ RT WT ox.	•		(30-73) VERY FINE SANDY SILT & SILTY SAND; UNOXIDIZED; v well sorted: 30-32 ft v for sandy silt w/silt lam near base: 32-38
10	$\overline{V} WT$ $\overline{V} - WT$ $\overline{V} - Weath. Rock$ $A RT-517$ $(L) WT-517 ox.$ $V WT-517$ $O 0T-517$	•		ft silty v fgr sand; 38-46 ft silt-v fgr sandy silt; 46-52 ft silty v fgr sand; 52-62 ft v fgr sandy silt; 62-63 1/2 ft clay loam till mixed w/silt; 63 1/2-65 ft silt w/pebbly clay lam towards base; 65-73 ft v fgr sandy silt, clay loam till layer at 68 1/2 ft; carb pebs in last foot, gradational lower contact.
		•		
	in Drill Hole 503	•		
50	$ \land \land $	•		
50	$1 \qquad \not \longrightarrow \qquad \end{pmatrix}$	•		
	/ / / / /	•	see and first the see and first the see and see a	
		•		
60				
a star alpha annat i sa sha alba a sa sha alba alba a sa sha alba alba alba a sa sha alba alba alba alba alba a	sc	•		
	63 Till Samples	•		
70	In Drill Hole 503			
		•		(73-76 1/2) SILTY CLAY LOAM TILL; UNOXIDIZED; grades to silt w/thin clay loam till lam 75-76 1/2 ft; abrupt lower contact.
		•		(76 1/2 -80) CLAY LOAM TILL; UNOXIDIZED; compact; silt bed at 77 1/2 ft, silt lam below 78 1/2 ft, gradational lower contact.
80				(80-82 1/2) SILT - VERY FINE SANDY SILT; UNOXIDIZED; clay loam till layers below 81 ft.
		•		(82 1/2-89) CLAY LOAN TILL; UNOXIDIZED; firm; silt lam in upper foot or so; sm carb & sh pebs common; fine loamy texture by 85 ft; cob at 88 ft.
90		•		(89-92) SILT; UNOXIDIZED; scattered sand grains; peb cluster at
		•		(92-110) LOAM TILL; UNOXIDIZED; mostly only sm pebs; clay bed
		•		at 95 ft, silty clay loam texture below; uncommon carb; compact by 104 ft, also clay texture w/few pebs.
100		•		
	-	•		
		•		
		•		
110		•	R	(110-153) SANDY LOAN TILL; UNOXIDIZED; greenish gray; firm; sl calc; foot or so of mgr-cgr sand at top; till cobbly at top,
				occ large pebs below; v rare carb; loose in places, v sandy from about 123-131 ft; cobs at 127, 131, 134 1/2, 146, 149 ft &

~

Drill	Hole	OB-505
-------	------	--------

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	Till and Saprolite Samples In Drill Hole 505 Crystalline Badrock	0 • 50 •	K	(0-8) FINE SAND; OXIDIZED; mod sorted, few sm pebs in upper part; thin silty cgr sand bed w/sm carb pebs at base; abrupt lower contact.
10	Bedrock	•		(8-11 1/2) CLAY & SILTY CLAY; UNOXIDIZED; mod calc; generally rare & v thin calc silt lam; few sm pebs & silt lam 10-11 ft.
		•		(11 1/2-18) CLAY TILL; UNOXIDIZED; massive, firm; mod calc-calc; few sm pebs; gredational upper contact; silty clay till below 14 ft; more pebs, some large by 16 ft; last foot silty clay w/interbeds of clay, soft, mod calc, v rare clasts.
20	2000	•		<pre>(18-20) MEDIUM SAND; UNOXIDIZED; gvl at base grading up to silty v fgr sand. (20-22) LOAM TILL; UNOXIDIZED; mod calc; high in v fgr sand & silt, pebbly; abrupt contacts. (22-25 1/2) SILTY UPPY FINE CANNEL WANTED TO A Life of the second second</pre>
30	8 Saprolite 8.00 0.10 0.20 0.30	•		coarse grains; gnl at 24 1/2 ft, v silty below; medium peb bed at base. (25 1/2-68 1/2) LOAM TILL; UNOXIDIZED; firm; calc; carb common, sh uncommon; fgr sand inclusion at 27 1/2 ft, well sorted fgr
	IIG NAUKC ▲- RT ₩- WT DX. Ψ OT ●- OT ●- Weath. Rock	•		sand bed 28-28 1/2 ft; more silty 44-48 ft w/silt inclusion at 46 ft; more compact w/depth; carb cob at 65 ft.
40	∧ KT-517 ox. ↓ WT-517 ox. ↓ WT-517 o T-517 Clay	•		
	The Samples In Drill Hole 505	•		
50		•		
		•		
60				
70	SC Tili Samples In Drill Hole S05	•		(68 1/2-75 1/2) CLAY LOAM TILL; UNOXIDIZED; compact; calc; broadly gradational upper contact; sh more common than above; lignite peb at 71 ft; more silty below 73 ft; laminated silty clay & clay, calc, w/few clasts, below 74 ft.
	8	•		。 (75 1/2-87)LOAM TILL; UNOXIDIZED; soft; calc; common carb & sh
80	90/3 · · · · · · · · · · · · · · · · · · ·	•		pebs; fairly abrupt upper contact; fine sandy loam till below about 80 ft; mostly sm pebs; cob at 86 1/2 ft.
		•		
90	PI <u></u> PM	•		(87-89) BOULDER. (89-99 1/2) CLAY LOAN TILL; UNOXIDIZED; compact; common carb & sh; minor silt & fgr sand inclusions; silty in upper couple ft, more clayey in places; darker & more massive w/no inclusions below 95 ft.
100		•		
		•		(99 1/2-105 1/2) GRAVELLY SAND; UNOXIDIZED; silty, poorly sorted; common to abundant carb pebs, sm carb cob at 100 ft; till bed at 101 ft, sandy to clayey till from 101 1/2-102 1/2 ft, mostly till w/mgr sand interbeds 104-105 1/2 ft.
110		•		<pre>LIDE 1/2-124 1/2) CLAY TILL; UNOXIDIZED; compact; calc; clay loam texture above 108 ft, large carb cob at 107 ft; silt inclusions 108-112 ft; mostly silty clay w/scattered pebs; not quite as clayey below about 122 ft.</pre>
		•		
120		•		
		•		(124 1/2-129) SILTY CLAY & CLAY; UNOXIDIZED; laminated; mod calc-calc; v well sorted, no sand grains; greenish gray, dark gray & gray; greenish silt bed towards base.
130		•		(129-135 1/2) SILT & CLAY; UNOXIDIZED; laminated; sl-mod calc; greenish gray silt & light brownish gray clay, w/reddish brown clay beds at 129 1/2 ft; below 129 1/2 ft messive gray silty clay w/sand grains, red bed at 130 ft; below 130 ft laminated
140		•	R	below 130 1/2 ft; sev red beds at 132 1/2 ft; well developed rhythmites at 134 ft. (135 1/2-137 1/2) FINE SANDY SILT; UNOXIDIZED; greenish gray; massive, not as well sorted as above: no pebs: mod calc.

					•		(137 1/2-140) SILT; UNOXIDIZED; greenish gray w/gray silty clay
01	1 2	13	1		•		calc.
	• •				•		(140-145) SILT LOAM TILL; UNOXIDIZED; greenish gray; soft;
					•		ft, large pebs below; large peb & sm cob at base; abrupt lower
150				F		CLARKER CHARTER O	contact. (145-150 1/2) LOAMY SAND TILL: UNOXIDIZED: greenish gray; firm;
1					•		sl calc; silty pebbly sand from 145 1/2-146 1/2 ft; large pebs
					•		fairly common; dark greenish gray cgr silt & gray silty clay 149-149 1/2 ft: gray v silty cgr sand, poorly sorted 149
							1/2-150 1/2 ft.
							(150 1/2-169 1/2) SILT; UNOXIDIZED; dark greenish gray cgr silt & gray silt: mod calc: laminated; abundant dark mica flakes in
160				ļ			cgr silt; no gray silt below 156 ft; v fgr sand lam at 161 ft;
							1/2 ft; brownish colors at joints; no pebs; 168-169 ft silt
							W/clay lam at top.
					•		
					•		
170					•		(169 1/2-172) VERY FINE-FINE SAND; UNOXIDIZED; v silty &
							interbedded w/fgr sandy silt. (172-177) COARSE SILT: UNOYID17ED: dark greenish grav: occ
					•		brownish clay lam; v fgr sandy silt lam at 174 1/2 ft.
					•		
					•		
180					•		(177-224 1/2) SILTY VERY FINE & FINE SAND & SANDY SILT; UNOXIDIZED: al calc: dark greenish gray, high mafic content:
				ł	•		fgr-mgr sand lam at 181 ft; mostly v fgr sandy silt 188-194 ft;
l I					•		rare carb; silty cgr sand pocket at 192 ft; few gnl below to 194 ft: cgr-v cgr sand bed at 195 ft: 205-206 ft silty v
ų l					•		fgr-fgr sand grades down to cgr sand; cgr silt 210-211 ft,
					•		brownish clay lam in silt bed below; mostly cgr silt 213 1/2 ft-215 ft: 215-217 ft silty y for-mor mand, mod morted, w/y for
					•		sandy silt beds.
190				}	••••		
					•		
					•		
					•		
					•		
200							
					•		
					•		
					•	ng hang pang hang pang hang pang meng bang bang bang bang bang ng hang bang bang bang pang pan ng hang bang bang bang pang pan ng hang bang bang bang pang	
				ø			
210						en and and have a gene and and and an and an and and and and a	
						Anne prop anne prog anne p	
					•		
					•		
220					•		
	1				•		1 (224 1/2-234) LOAM TILL; UNOXIDIZED; greenish gray; loose; sl
			•		•	anity dots pany and pany na ven data data anit pany any data anity anit haya ta fina data data anit haya ta fina data data anit ta	v large cob at base; no pebs or cobs 228-232 ft, more a v
					•		poorly sorted sandy silt; 232-234 ft v poorly sorted sandy clay w/few pebs incl 2 large pebs at top, also large saprolite
02	3	19	2		•		inclusion different from saprolite below; peb lines at base in
230					•		reworked saprolite.
03	1 2	200	1		•		
			•		•		
					•		(234-237) SAPROLITE; CHLORITIC; greenish gray, soft. Slight
		• -			•		237-238 ft. Oxidized zones occur along fractures at 236 ft.
04	0	16	1		•		Completely weathered to clay minerals except for sparse
_240					•		angular quartz and pink telospars ranging up to 2 mm, and abundant flakes of muscovite. Slightly calcareous.
							(237-240) SAPROLITE; CHLORITIC; dark greenish gray. Similar to
]				•		240 ft (in place?). Slightly calcareous.
	l				ļ		(240-243) SAPROLITE; CHLORITIC; similar to 234-237 ft.
							grainy-clumpy texture. Contains more quartz, some feldspars
250	-						and abundant small muscovite flakes. Similar to above (234-237
	1						calcareous.
)					L		
1					L		
1					Г		(261-267) BEDROCK; light gray, equigranular, biotite quartz
260]				Ι		quartz and 5% biotite. Moderately well-developed S ₄ foliation
					-		is at 45° to the CA.
05	-	3	-			* • * • * • * • * • *	Thin section description: sample at 262 feet.
					•	* * * * * * * * * *	Mineralogy: plagioclase (33%), microcline
	1				-	+ + + + +.	(25%), quartz (21%), dark green biotite (20%),
270					l		apatite (trace).
	1						Texture: Hypidiomorphic-granular with zoned,
l I					l		subhedral plagioclase (0.5-3 mm long) and recrystallized anhedral microcline and quartz
1							(0.2-0.7 mm diameter). Biotite is subhedral
					1	1	usually U.D to 1.5 mm long with moderate chloritization and clay alteration
	1						(weathering). The cores of
280	4						the zoned plagloclase are extensively altered
	1]	1	Lithology, Weathered blatite guests
	1					1	monzonite.
						1	
	}						TD = 267'
1 290	I				1		

.

Drill	Hole	OB-506	
-------	------	--------	--

	1	·
	-	
		the first party and the state and the state
	-	and a fin an
	1	
	1 -	ang ang Pal yan Tag ang ang ang ang ang ang ang ang
		n inn ann an Ann An An An An An
	-	
		المتلفية ومرتبع بوليا وراجع
		an a
	-	
		the region and the face has been and
		and the second se
	-	a sun den and gen har har har har har h
	1	a set and the set of t
	•	
	1	and the second
		ինաստես բոլոր եւսվեն, պ
	•	
		As any new horizontal and the set
		Canada and and a second and a
	•	an de an an mar a salar al
	1	
		and the set of the set
		A in he has been in the set of the set
	-	
	1	
150	A	
		ha Takay ka ang ma Tay ing ang
		the second se
		Free in Andrea in the second
	1	and and the set of the first f
	1	
		المهرين والمعالية المعالمين والمعالية المعالية والمعالية والمعالية والمعالية والمعالية والمعالية والمعالية والم
		h nin der Tengens ger als für sell aus Ten
	1	
	-	
		ty the Table Angle Ang
	· ·	
		And and the set of the
	-	han program in the set of the set
		en mit die gestaan gewandelik geve
	1 -	Index Balance man Vinetary 1
	1	

100 100 101 101 102 102 103 104 105 105 100 106 107 107 108 108 109 109 100 100 100 101 101 102 102 103 104 105 105 106 107 107 108 108 109 109 100 100 100 101 101 102 102 102 103 104 105 105 106 107 108 108 109 109 100 109 100 100 109 100 100 100 100 100 100 100 101 101 102 102 102 103 104 105 105 106 106 107 107 108 108 109 109 109 100 109 100 100 100 100 100 100 100 101 101 102 102 102 103 104 105 105 106 106 107 107 108 108 108 109 109 109 100 100 100 100 100 100 100 100 101 101 102 102 102 103 103 104 105 105 106 106 107 107 108 108 108 108 108 109 109 109 100 100 100 100 100 101 101 102 102 102 103 103 104 105 105 105 106 106 107 107 108	 10 24 10 25 5 10 26 5 10					
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 101 102 103 104 105 105 106 107 108 109 100 100 101 102 103 104 105 105 106 107 108 109 100 100 101 102 103 104 105 105 106 107 108 109 100 100 101 1	 101 B4 102 B4 103 B4 104 B4 105 B4 105 B4 105 B4 106 B4 106 B4 107 B5 B5			•		(142-144 1/2) CLAY; UNOXIDIZED; calc; interbedded w/clay till to about 143 ft, mostly silty clay & clay w/fairly common sm
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1	 101 34 10 34 10 34 10 5. 10 5. 10 5. 10 5. 10 5. 10 5. 10 6. 10 6. 10 7. 10 7.			•		pebs below. (144 1/2-155) SILTY CLAY LOAM TILL; UNOXIDIZED; y soft; calc;
100 100 100 100 101 102 103 104 105 105 106 107 108 109 100 100 101 102 103 104 105 105 106 107 108 109 100 100 101 102 103 104 105 105 106 107 108 109 100 100 101 102 103 104 105 105 106 107 108 109 100 100 101 1	 101 34 101 34 101 34 102 5 102 5 103 5 104 105 111 & LOAT JAY, JAY (1012) Ladiest direction and any setting the setting the	150		•		more silty & firm below 151 1/2 ft, also more pebs; silt & clay inclusions below 154 ft from underlying lake sed.
100 100 101 102 103 104 105 105 106 107 108 109 100 100 101 102 103 104 105 105 106 107 108 109 100 100 101 102 103 104 105 105 106 107 108 109 100 100 101 102 103 104 105 105 106 107 108 108 109 100 100 101 102 1	 101 34 3 18 3 18 4 101 54 5 5 6 101 54 7 5 7 5 7 6 7 6 7 7 7 10 2011 1 C CC 1011 C CC 2011 C CC 2			•		
100 100 170 01 5 101 24 232 100 100	101 34 34 35 36 36 37 10 36 36 37 10 36 36 37 10 36 36 37 10 36 36 37 10 36 36 37 10 36 36 37 10 36 36 37 10 36 36 37 10 36 36 37 10 36 36 37 10 36 36 36 37 38 38 38 39 38 39 39 30 30 30 31 30 31 31 31 36 36 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 38 38 38 39 39 39 30 30 30 30 30 31 31 36 36 36 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 38 38 39 39 39 30 30 30 30 <p< th=""><th></th><th>÷</th><th>•</th><th></th><th>(155-161) SILT & CLAY; UNOXIDIZED; laminated greenish gray silt</th></p<>		÷	•		(155-161) SILT & CLAY; UNOXIDIZED; laminated greenish gray silt
100 commony city transformation is boil 100 fty, city (low till is taken. 170 01 5 101 34 001 5 101 34 003 3 232 8 180 0 3 232 8 180 0 3 232 8 180 0 3 232 8 180 0 3 232 8 180 0 3 232 8 180 0 3 100 100 100 003 0 3 18 100 100 100 004 0 19 5 100	 a table is a first set of the set o			•		A cark gray clay, law vary from st calc-calc; well developed rhythmites in places, best least calc; few v thin brown clay law towards top; mostly calc silt below 157 ft; sm pebs fairly
170 01 5 101 34 170 01 5 101 34 02 3 232 8 100 100 100 100 100 03 0 3 18 100 100 100 04 0 3 18 100 <th>10 34 10 34 10 34 10 34 10 34 10 5 10 6 10 6 10 6 10 7 <</th> <th>160</th> <th></th> <th>•</th> <th></th> <th>common; clay lam below 160 ft, clay flow till at base.</th>	10 34 10 34 10 34 10 34 10 34 10 5 10 6 10 6 10 6 10 7 <	160		•		common; clay lam below 160 ft, clay flow till at base.
170 01 5 101 34 02 3 232 8 180 180 180 180 03 0 3 180 04 0 3 180 05 100 180 180 04 0 3 180 05 0 3 180 06 0 3 180 180 180 180 180 180 180 180 180 190 190 180 180 180 190 190 180 180 180 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 <t< th=""><th>101 34 32 18 33 18 34 35 18 36 37 18 37 18 38 39 30 18 30 18 30 18 30 18 31 18 31 18 31 18 32 18 31 18 32 18 32 18 32 18 33 18 34 10 35 18 36 118 37 18 37 18 38 118 39 118 30 118 30 118 30 118 31 18 31 18 31 18 31 18 31 18 31 18 31 18 32 18 31 18 32 18 31 18<!--</th--><th></th><th></th><th>•</th><th>ĸ</th><th>(161-162) CLATET GRAVEL; UNOXIDIZED; mod calc, Dimodal sorting; more silty clay than gvl in upper foot; common carb; mostly fgr-mgr gvl mixed w/silty clay.</th></th></t<>	101 34 32 18 33 18 34 35 18 36 37 18 37 18 38 39 30 18 30 18 30 18 30 18 31 18 31 18 31 18 32 18 31 18 32 18 32 18 32 18 33 18 34 10 35 18 36 118 37 18 37 18 38 118 39 118 30 118 30 118 30 118 31 18 31 18 31 18 31 18 31 18 31 18 31 18 32 18 31 18 32 18 31 18 </th <th></th> <th></th> <th>•</th> <th>ĸ</th> <th>(161-162) CLATET GRAVEL; UNOXIDIZED; mod calc, Dimodal sorting; more silty clay than gvl in upper foot; common carb; mostly fgr-mgr gvl mixed w/silty clay.</th>			•	ĸ	(161-162) CLATET GRAVEL; UNOXIDIZED; mod calc, Dimodal sorting; more silty clay than gvl in upper foot; common carb; mostly fgr-mgr gvl mixed w/silty clay.
170 01 5 101 34 02 3 232 8 180 186 186 186 186 03 0 3 188 186 186 186 03 0 3 188 186 1	 10 34 22 8 3 18 3 18 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			•	Kita and a state of the second se	(165-176) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm; sl calc; rare carb; less sandy below 168 ft; 169-170 ft loamy
02 3 232 8 100 100 100 100 100 03 0 3 18 100 100 03 0 3 18 100 <td< th=""><th>232 8 10</th><th>170 01</th><th>5 101 34</th><th></th><th></th><th>w/few sm carb pebs; common large pebs; incorporated saprolite below 174 ft.</th></td<>	232 8 10	170 01	5 101 34			w/few sm carb pebs; common large pebs; incorporated saprolite below 174 ft.
100 100 003 0 003 0 100 10 100 10 101 10 102 10 103 10 104 10 105 10 106 10 101 10 102 10 101<	19 5 10	. 02	3 232 8	•		
100 1	 10 4 m and rock Tragements to 16 d. cm. Nate containing large the control of the co			•	R	(176-179) SAPROLITE; REWORKED; mottled dark greenish gray. Contains numerous exotic carbonate and other rounded pebbles up
03 0 3 18 100 100 100 100 100 0 19 5 100 0 19 5 200 0 19 5 200 19 5 5 200 19 5 5 200 19 5 5 200 19 5 5 200 19 5 5 200 19 5 5 200 19 5 5 200 19 5 5 200 19 5 5 200 19 5 5 200 19 5 5 210 10 19 5 5 210 10 19 5 5 220 10 10 10 10 10 220 10 10 10 10 10 10 220 10 10 10 10	 3 18 3 18 5 10 5 10 5 10 5 11 5 10 5	180		•	0	to 4 mm and rock fragments up to 4 cm. Also contains large unweathered sections of rock. Calcareous.
03 0 3 18 100 100 18 18 100 19 5 100 100 04 0 19 5 100 <td< th=""><th> 3 18 5 6 7 10 5 7 10 6 7 10 7 10 10<</th><th></th><th></th><th>•</th><th></th><th>(179-180) SAPROLITE; CHLORITIC; dark greenish gray weathered rock. (180-183) SAPROLITE: CHLORITIC: dark greenish gray. The</th></td<>	 3 18 5 6 7 10 5 7 10 6 7 10 7 10 10<			•		(179-180) SAPROLITE; CHLORITIC; dark greenish gray weathered rock. (180-183) SAPROLITE: CHLORITIC: dark greenish gray. The
03 0 3 18 100 100 100 100 100 04 0 19 5 100 04 0 19 5 100 100 200 19 5 100 100 100 100 100 200 19 5 100 <th> 3 18 a statistic contains up to is a represent and up to it is a statistic fragments and up to it is a statistic fragment and up to it is a statistic contains and it is</th> <th></th> <th></th> <th>•</th> <th>5.100 m</th> <th>preserved rock texture is medium-grained and horizontally foliated. Thin oxidized zones at 182 ft (drilling or glacial</th>	 3 18 a statistic contains up to is a represent and up to it is a statistic fragments and up to it is a statistic fragment and up to it is a statistic contains and it is			•	5.100 m	preserved rock texture is medium-grained and horizontally foliated. Thin oxidized zones at 182 ft (drilling or glacial
0 19 5 200 19 5 200 19 5 200 19 5 200 19 5 200 19 5 200 19 5 200 19 5 200 19 5 200 10 10 210 10 10 210 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10	but to inderive relation brows and network and taking may mailted with dark relation brows and network and taking may mailted with dark relation brows and networks and the provide the dark relation brows and networks and the provide the relation of the second second second second second second second (197-208) SHROLITS CALLENTLY services and the second second second second second second second second second second second second second second seco	03 190	0 3 18	•		artifact?). Contains up to 1 cm rock fragments and up to 1 mm angular quartz and feldspars. Calcareous. (183-191) SAPROLITE: CHLORITIC: similar to above but ovidired
0 19 5 200 19 5 200 19 5 200 10 10 200 10 10 200 10 10 200 10 10 200 10 10 200 10 10 200 10 10 210 10 10 210 10 10 210 10 10 210 10 10 210 10 10 210 10 10 220 10 10 220 10 10 220 10 10 220 10 10 220 10 10 10 220 10 10 10 10 220 10 10 10 10 10 220 10 10 10 10 10 10 220 10 10 10	9 5 9 5			•		Dark to moderate reddish brown streaks and stains. Less oxidized from 183-184. Core is a dark greenish gray mottled
200 200 200 200 200 200 210 210	 10 1	04	0 19 5	•		With dark reddish brown and moderate olive brown. Contains fragments of up to 1 mm angular pink granitic fragments. Calcareous.
210 210 220 220 220 220 220 220 220 220 230 240 05 - 10 260 05 - 10 260 05 - 10 250 250	 Total and the second sec	200		•		(191-208) SAPROLITE; KAOLINITIC; grayish green. Rock texture is much more pronounced than above or maybe just a finer
20 210 210 210 210 210 220 220 2	 20 The president to aligned to chicate. Sliphtly calcareous to calcareous. 20 The president to aligned to chicate. Sliphtly calcareous. 20 The second to chicate the second the second to chicate the second the second to chicate the second the second the second the second to chicate the second the second to chicate the second the second the second the second the second to chicate the second the second to chicate the second the secon			•		texture. Contains 0.5 mm grains of quartz and feldspar. Weathered feldspars appear as sparse white specs. Alignment of chlorite 5° from vertical calcits vehice at 202 ft 204 ft and
210 210 210 210 220 220 220 220	 10 10 10 10 10 10 			•		207 ft parallel to alignment of chlorite. Slightly calcareous to calcareous.
210 majority of the seprolite. Slightly calcareous. 220 • • • • • • • • • • • • • • • • • • •	 Importing of the approximation of the			•		(208-215) SAPROLITE; CHLORITIC; dark greenish gray to dusky green. Similar to above. Contains thin layers of chlorite- rich material horizontally cross cutting the foliation of the
220 220 220 220 220 230 230 230 230 230 240 05 10 240 05 10 250 360 250 360 <p< th=""><th> 10 1</th><th>210</th><th>· · · · · · · · · · · · · · · · · · ·</th><th>•</th><th></th><th>majority of the saprolite. Slightly calcareous.</th></p<>	 10 1	210	· · · · · · · · · · · · · · · · · · ·	•		majority of the saprolite. Slightly calcareous.
220 220 220 220 220 220 220 220	 10 10 10 10 10 			•		
220 230 230 240 05 10 250 250 250 250 250 250 250 25	10					(215-231) SAPROLITE; CHLORITIC; [Note: Wet coring done. Usually fines are washed out.] 13 ft core lost. Dark greenish gray.
230 230 230 230 240 05 10 50 <	10 10<	220				(231-246) BEDROCK; most of the cored interval is gray-green,
230 230 230 230 230 230 230 230	 To To To 					fine-grained and strongly foliated with an undulating S ₁ foliation parallel to CA with poorly defined by fine-grained biotite layers. Abundant quarts and quarts foldows wins
230 230 230 230 230 240 05 10 240 05 10 250 250 250 250 250 250 250 25	 10 10 10 					generally show 5:1 flattening. Between 237 and 240 feet calcite replaces the groundmass surrounding a diffuse calcite
240 05 - 10 240 05 - 10 240 05 - 10	 10 1	230			S	vein which is perpendicular to the CA. In the same interval, the carbonate replaced wall rock is cut by 0.5 to 2 cm quartz and quartz falener weige which show well developed by which the
<pre>central part of the quartz-feldspar vein or surrounds the</pre>	 10 1				+ + + + + + B	A crosscutting, gray quartz vein, containing trace amounts of fine-grained disseminated pyrite and chalcopyrite, fills the
240 05 10 10 10 10 10 	- 10 - 10			•		central part of the quartz-feldspar vein or surrounds the early quartz-feldspar veins. The late, gray quartz portion of vein
<pre>closely spaced fracture cleavage at 45° to CA offsets ear fine-grained, gray calcite veinlets which are parallel to t + + + + + t + + + + t + + + + t + + + +</pre>	 Closely spaced fracture cleavage at 65° to CA offeets which are parallel to CA. The protoilth was probably a dark gray to black, strongly foliated and breactated mafire cock with 3 am dimeter a stuppy related and breactated mafire cock with 3 am dimeter a stuppy related and breactated mafire cock with 3 am dimeter a stuppy related and breactated mafire cock with 3 am dimeter a stuppy related and breactated mafire cock with 3 am dimeter a stuppy related and breactated mafire cock with 3 am dimeter a stuppy related and breactated mafire cock with 3 am dimeter a stuppy related and breactated mafire cock with 3 am dimeter a stuppy related and breactated mafire cock with 3 am dimeter a stuppy related by sericite, calcite, and minor biotite. Thin section description: samples at 240 and 261 feet. Wineralogy: porphyroclastic hornblende (30%), chlorite (20%), calcite (20%), epidote (15%), epidote (15%), pigloclase (22%), opaques (prite, chalcopyrite, iron or iron-titanium oxides (22%). Texture: Intensely deformed hornblende (dark green), porphyroclasts defines the foliation. Fine-grained plagloclase porphyroclasts are brock. Epidote is present as prismatic eukedral crystal or as mide verin? is composed of anhedral recrystalized, with fine-grained neiches. A 3 am wide verin? is composed of anhedral recrystalized, with fine-grained intergranular calcite replaced in the sthin section show rotation along the vein boundaries. Lithology: protonylonite with quartz and calcite veins (protoilin subpor). (Subophitic gabbro is porty calcine with guartz and calcite veins (protoilin subpor). (Subophitic gabbro is porty section). 	240 05	10			host rock showing the same foliation as the adjacent wall rocks. Between 240 and 245 brittle deformation caused by a
<pre> the prototion was probably a dark gray to black, strongly foliated and brecciated mafic rock with 3 mm diameter stu the the the the the the the the the</pre>	 The prototion was proposy a dark gray to black, strongly cubedral plagioclase porphyroclasts that have been highly deformed and variably replaced by sericite, calcite, and minor biotite. This section description: samples at 240 and 241 feet. Mineralogy: porphyroclastic hornblende (30%), chlorite (20%), calcite (20%), poldote (15%), quart 2 (10%), plagioclase (2%), opaques [pyrite, chalcopyrite, hicopyrite, iron or iron-titanium oxides] (2%). Texture: Intensely deformed hornblende (dark green), porphyroclasts with rotation up to 1/2 commonly have chlorite and guartz pressure shadows. Chlorite and singation of the hornblende porphyroclasts defores the foliation. Fine-grained plagioclase display is prosperied of anhedral recrystal lized, with fine-grained intergranular calcite replacing the host rock near the vein. A thin (0.3 m) quartz venis display protony is porty rotating above, calcite and subdrait excited and proproduct and sing the venis display calcite properties. Lithology: protonylonite with quartz and calcite velms (protoliting above). (Subophitic gaboro is poorly reserved locally in the sample at 240 feet). 			······································		closely spaced fracture cleavage at 45° to CA offsets earlier fine-grained, gray calcite veinlets which are parallel to CA. The perchain was perchain a dark which are parallel to CA.
deformed and variably replaced by sericite, calcite, and biotite.	deformed and variably replaced by sericite, calcite, and minor blotite. Thin section description: samples at 240 and 241 feet. Mineralogy: porphyroclastic hornblende (30%), chlorite (20%), calcite (20%), epidote (15%), quartz (10%), paigloclase (2%), oppoproclast (2%), oppoproclast (2%), porphyroclast (2%), porphyroclast (1%), porphyroclast (1%)	-	1			foliated and brecciated mafic rock with 3 mm diameter stumpy euhedral plagioclase porphyroclasts that have been highly
	Thin section description:samples at 240 and 241 feet.Mineralogy:porphyroclastic hornblende (30%), chlorite (20%), calcite (20%), endidee (35%), quartz (10%), plegioclase (2%), opaques ipyrite, chalcopyrite, iron or iron-titanium oxides] (2%).Texture:Intensely deformed hornblende (dark green), porphyroclasts with rotation up to 1/2 commonity have chlorite and quartz pressure shadows. Chlorite and elongation of the hornblende porphyroclasts defines the foliation. Fine-grained plagloclase porphyroclasts are brocken. Epidote is present as prismatic euhedral crystalis or as irreguler, anhedral necrystalilzed, with fine-grained intergranular calcite replacing the host rock near the vein. A thin (0.3 mm) quartz vein is displaced along the prominent shear plane. Subdomains within the thin section show rotation along the vein boundaries.Lithology:protomylonite with quartz and calcite veins (protoilit gabbro). Subophitic gabbro is poorly preserved locally in the sample at 240 feet).	250				deformed and variably replaced by sericite, calcite, and minor biotite.
Thin section description: samples at 240 and 241 feet.	Mineralogy: porphyroclastic hornblende (30%), chlorite (20%), calcite (20%), epidote (15%), quartz (10%), plagioclase (2%), opaques [pyrite, chalcopyrite, iron or iron-titanium oxides] (2%). Texture: Intensely deformed hornblende (dark green), porphyroclasts with rotation up to 1/2 commonly have chlorite and quartz pressure shadows. Chlorite and elongation of the hornblende porphyroclasts defines the foliation. Fine-grained plagioclase porphyroclasts are broken. Epidote is present as prismatic euhedral crystals or as irregular, anhedral patches. A 3 mm wide vein?? is composed of anhedral recrystallzed, with fine-grained intergravular calcite replacing the host rock near the vein. A thin (0.3 mm) quartz vein is displaced along the prominent shear plane. Subdomains within the thin section show rotation along the vein boundaries. Lithology: protomylonite with quartz and calcite veins (protoilth gabbro). (Subophitic gabbro is poorly preserved locally in the sample at 260 feet).		1		·····	Thin section description: samples at 240 and 241 feet.
Mineralogy: porphyroclastic hornblende (30%), chlorite (20%), calcite (20%), epidote (15%), guartz (10%) - plagioglase (2%) - concerns	Ipprite, chickopyrite, iron or iron-titanium oxides] (2%). Texture: Intensely deformed homblende (dark green), porphyroclasts with notation up to 1/2 commonly have chiorite and quertz pressure shadows. Chlorite and elongation of the homblende porphyroclasts are broken. Epidote is present as prismatic euhedral crystals or as irregular, anhedral patches. A 3 mm wide vein?? Is composed of anhedral recrystalized, with fine-grained integranular calcite replacing the host rock near the vein. A thin (0.3 mm) quartz vein is displaced along the prominent shear plane. Subdomains within the thin section show rotation along the vein poroly preserved locally in the sample at 240 feet).					Mineralogy: porphyroclastic hornblende (30%), chlorite (20%), calcite (20%), epidote (15%), guartz (10%), plagioclasa (2%), comprese
[pyrite, chalcopyrite, iron or iron-titanium oxides] (2%).	Texture:Intensely deformed hornblende (dark green), porphyroclasts with rotation up to 1/2 commonly have chlorite and quartz pressure shadows. Chlorite and elongation of the hornblende porphyroclasts defines the foliation. Fine-grained plagioclase porphyroclasts are broken. Epidote is present as prismatic euhedral crystals or as irregular, anhedral patches. A 3 mm wide vein77 is composed of anhedral recrystallized, with fine-grained intergranular calcite replacing the host rock near the vein. A thin (0.3 mm) quartz vein is displaced along the prominent shear plane.Lithology:protomylonite with quartz and calcite veins (protolith gabbro). (Subophitic gabbro is poorly preserved locally in the sample at 240 feet).					[pyrite, chalcopyrite, iron or iron-titanium oxides] (2%).
Z60 Texture: Intensely deformed hornblende (dark	<pre>a deal, porphyroclasts with rotation up to 1/2 commonly have chlorite and quartz pressure shadows. Chlorite and elongation of the hornblende porphyroclasts defines the foliation. Fine-grained plagioclase porphyroclasts are broken. Epidote is present as prismatic euhedral crystals or as irregular, anhedral patches. A 3 mm wide vein7 is composed of anhedral recrystallized, with fine-grained intergranular calcite replacing the host rock near the vein. A thin (0.3 mm) quartz vein is displaced along the prominent shear plane. Subdomains within the thin section show rotation along the vein boundaries.</pre>	260	1			Texture: Intensely deformed hornblende (dark
commonly have chlorite and quartz pressure shadows. Chlorite and elongation of the	hornblende porphyroclasts defines the foliation. Fine-grained plagioclase porphyroclasts are broken. Epidote is present as prismatic euhedral crystals or as irregular, anhedral patches. A 3 mm wide vein?? is composed of anhedral recrystallized, with fine-grained intergranular calcite replacing the host rock near the vein. A thin (0.3 mm) quartz vein is displaced along the prominent shear plane. Subdomains within the thin section show rotation along the vein boundaries. Lithology: protomylonite with quartz and calcite veins (protolith gabbro). (Subophitic gabbro is poorly preserved locally in the sample at 240 feet).					commonly have chlorite and quartz pressure shadows. Chlorite and elongation of the
hornblende porphyroclasts defines the foliation. Fine-grained plagioclase	<pre>porpuroclasts are broken. Epidote is present as prismatic euhedral crystals or as irregular, anhedral patches. A 3 mm wide vein?? is composed of anhedral recrystallized, with fine-grained intergranular calcite replacing the host rock near the vein. A thin (0.3 mm) quartz vein is displaced along the prominent shear plane. Subdomains within the thin section show rotation along the vein boundaries. Lithology: protomylonite with quartz and calcite veins (protolith gabbro). (Subophitic gabbro is poorly preserved locally in the sample at 240 feet).</pre>					hornblende porphyroclasts defines the foliation. Fine-grained plagioclase
270 porphyroclasts are broken. Epidote is present as prismatic euhedral crystals or as irregular, anhedral patches. A 3 mm wide	vein7 is composed of anhedral recrystallized, with fine-grained intergranular calcite replacing the host rock near the vein. A thin (0.3 mm) quartz vein is displaced along the prominent shear plane. Subdomains within the thin section show rotation along the vein boundaries. Lithology: protomylonite with quartz and calcite veins (protolith gabbro). (Subophitic gabbro is poorly preserved locally in the sample at 240 feet).	270				as prismatic euhedral crystals or as irregular, anhedral patches. A 3 mm wide
vein?? is composed of anhedral recrystallized, with fine-grained intergranular calcite	Control of the proving the nost rock hear the vein. A thin (0.3 mm) quartz vein is displaced along the prominent shear plane. Subdomains within the thin section show rotation along the vein boundaries. Lithology: protomylonite with quartz and calcite veins (protolith gabbro). (Subophitic gabbro is poorly preserved locally in the sample at 240 feet).					vein?? is composed of anhedral recrystallized, with fine-grained intergranular calcite replacing the heat much much the work of the
(0.3 mm) quartz vein is displaced along the prominent shear plane.	Subdomains within the thin section show rotation along the vein boundaries. Lithology: protomylonite with quartz and calcite veins (protolith gabbro). (Subophitic gabbro is poorly preserved locally in the sample at 240 feet).					(0.3 mm) quartz vein is displaced along the prominent shear plane.
280 Subdomains within the thin section show rotation along the vein boundaries.	Lithology: protomylonite with quartz and calcite veins (protolith gabbro). (Subophitic gabbro is poorly preserved locally in the sample at 240 feet).	280				Subdomains within the thin section show rotation along the vein boundaries.
Lithology: protomylonite with quartz and calcite veins (protolith gabbro), (Subschitic	gabbro is poorly preserved locally in the sample at 240 feet).					Lithology: protomylonite with quartz and calcite veins (protolith gabbro). (Subonhitic
gabbro is poorly preserved locally in the sample at 240 feet).						gabbro is poorly preserved locally in the sample at 240 feet).
	TD = 246'	290				TD = 246'

.

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	Till and Saprolite Samples in Drill Hole 507	0 50	К	(0-3 1/2) VERY FINE-FINE SAND OVIDITED WILL conted for
10	Crystalline Bedrock	•		<pre>coarse grains. (3 1/2-6) CLAY & SILT; OXIDIZED; leached to 5 1/2 ft; well developed lam; mostly silt w/few sand grains below 5 ft. (6-32) VERY FINE SAND; OXIDIZED; v well sorted, silty & coarse grains in places; bed of silty clay w/sand grains at 9 ft, v fgr-fgr sand below; large carb peb at 10 1/2 ft, fgr sand w/few sm pebs below to 11 ft; unox below 11 ft; clayey till over clay bed at 11 ft over bed of v fgr sandy silt w/silt lam; clayey till lam at 12 ft; 13-14 ft clayey till w/carb & sh pebs, silt</pre>
20	- 4000 2 400 - 280 - 280	•		beds at 13 1/2 ft; laminated silt bed at 15 ft over v well sorted fgr sand w/beds of v fgr sand; at 21 ft silty v fgr sand grading to silt at 22 ft, calc, w/clay lem, some sand; v fgr sand below 23 ft, clayey till bed at 25 ft; thinly laminated silt beds at 27 1/2, 28 1/2 ft; fgr sand below 29 1/2 ft.
30	Baprolite s.ce s.te s.te s.te s.te s.te s.te s.te s.t	•		
40	₩₩T ₩₩ath. Rock Δ RT-517 Cl WT-517 ox. V WT-517 O OT-517 Clay Clay	•		(32-85) LOAM TILL; UNOXIDIZED; firm; calc; abundant carb, v rare sh; abrupt upper contact; darker gray & compact below 36 ft; mostly sm & medium pebs, little more large pebs w/depth; gradational lower contact, clayey in last couple ft, interbedded w/clay at base.
50	Till Samples in Drill Hole 507	•		
60		•		•
70	SC Till Samples in Drill Hole S07	•		
80		• • •		•
90		•		(85-92) SILT & CLAY; UNOXIDIZED; clay to silty clay interbedded w/clayey till in upper foot, silt laminated w/clay below; few sm pebs; interbedded w/till below 90 ft.
100		•		(92-101 1/2) CLAY LOAM TILL; UNOXIDIZED; mud flow deposits; soft, pebbly silt 92 1/2-93 1/2 ft; mostly pebbly silt below 94 1/2 ft, laminated w/clay at about 97 1/2 ft; mostly clayey till below 98 1/2 ft, silt bed at 99 ft.
110	*	•		(101 1/2-134) CLAY LOAN TILL; UNOXIDIZED; firm; massive; common carb & sh; mostly only sm pebs; more silty w/depth; grades to laminated silt & clay at 119 ft, back to clayey till by 119 1/2 ft; sandy zone at 131 ft; dark gray in last 1/2 ft.
		•		

,

270	(239-247) SAPROLITE; derived from aplite dikes which intrude a black, biotite- and plagioclase-rich, porphyritic mafic plutonic rock. Aplite is white, fine-grained, with 1 to 2 mm quartz, plagioclase and muscovite phenocrysts. Mafic pluton is medium-grained and porphyritic with 3 to 4 mm parallel plagioclase laths, in a biotite-rich matrix, which are locally parallel in structural subdomains. From 243 to 246 feet a
280	medium green-gray, clay-rich saprolite is highly deformed showing a strong foliation and brecciation with small-scale S- folds of tectonic breccia clasts (0.5-2 cm long, > 5:1 flattening). Many clasts are flattened and show pressure shadows. The mafic and felsic layers in this interval alternate frequently with contacts parallel to the prominent foliation. Mafic layers are warped into discontinuous, low- amplitude, open folds and are tectonically thinned by ductile-
	style deformation. Aplite layers show brittle deformation. A few percent calcite is disseminated throughout.
290	TD = 247'

02	1	72	3		•		(140-153) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm, compact below 143 ft; mod calc; cob near top but not real
					•		rocky; more large pebs 146-150 ft; rare carb, common dark Precambrian pebs; some evidence of mixing w/saprolite below 150 ft; 152-153 ft reworked saprolite w/large peb at base.
150 O3	2	275	1				
						R	(152-153) SAPROLITE: RELIGREED: greenish gray and dark grounish
				ı		S	gray, mottled. No apparent preserved texture, just a mottle of
04	0	245	1				light and dark green clay minerals. Cobble at 152 ft. Contains many subrounded pebbles that range up to 3 cm.
	Ū	270	•		•		Slightly calcareous. (153-160) SAPROLITE: KAOLINITIC: nale blue-green, massive
160							Where exposed to air it turns olive. Uniformly weathered, no
					•		angular quartz grains. Highly calcareous zone at 155 ft.
05	-	3	-		•		Quartz grains range up to 3 mm at 155 ft. Slightly calcareous. (160-161) SAPROLITE: KAOLINITIC: light greenish gray, massive.
					•		Slightly oxidized in places. Line of subrounded pebbles and a thin layer of sand at 160-1/2 ft. Pebbles range in to 2 cm
170					•		Contains angular quartz grains and siderite nodules up to 1 cm.
					•		(161-175) SAPROLITE; KAOLINITIC; similar to 156-160 ft. with
					•		slightly larger siderite nodules. Large 2 cm angular quartz fragments at 162 ft. Becomes almost fissile at 164-167 ft. 3
					•		mm quartz fragments in a continuous line at 173 ft. (quartz
					•		(175-178) SAPROLITE; CHLORITIC; similar to above only slightly
180							darker. Some areas are dark greenish gray. Variegated at 175- 176 ft. 2 mm siderite nodules. Quartz cobble at 175 ft. 5 mm
							rock fragments. Slightly calcareous.
							gray, soft. Color turns to greenish gray when exposed to air.
					•		NO apparent texture, just a soft mottling of colors. Many 1-2 mm siderite nodules with a few angular quartz grains. Powdery
					•		from 183-184 ft. Slightly calcareous. (185-187) SAPROLITE: CHLORITIC: similar to 175-178 ft.
190					••		(187-232) SAPROLITE; CHLORITIC; similar to 178-185 ft.
					•		stronger. Lost 192-212 ft. Large metagraywacke fragments at
							212-214 ft. Abundant angular quartz fragments up to 2 cm with siderite nodules associated with the grains (relict? quartz
							veins?). Core harder, dryer, and variegation becomes coarser
200							calcareous.
				ů			
				-			
210							
					•		
					•		, · · · · · · · · · · · · · · · · · · ·
							and an
220 06	-	3	-		•		
					••		
					•		green, blockly, weathered metagraywacke in a matrix of grayish
					•		green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite
07	0	11	2				nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous.
230			,				(240-245) SAPROLITE; CHLORITIC; similar to above, rock
					•		ft.
					•		(245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar
					•		to 178-185 ft. Massive but has horizontal alignment of grains.
240	ļ				•		nodules. Massive pale blue-green clay from 248-251 ft.
240	1				•		
	1				•		Quartz grains, siderite nodules, and occasional mica-rich zones
					•		or layers. Calcareous in areas from 266-268 ft., with mica- rich zones and angular quartz fragments. 4 cm quartz vein at
							271 ft. Highly calcareous around quartz vein. Slightly
250							(276-280) WEATHERED BEDROCK; weathered metagraywacke.
				,	•		graywacke with subangular to subrounded feldspars in a green
					•		biotitic matrix. So defined by contact with fine-grained well sorted laminated siltstone is locally parallel with S At 282
					•		feet mylonitic shear bands are present at a scale of 3 to 8 cm.
240					•		parallel and folded (oriented at 30-60° to CA) at the top of
200	1				•		the cored interval by D2 which caused cataclasis near the bottom of the interval. S2 is developed by closely spaced

Drill	Hole	OB-509
-------	------	--------

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	Till and Saprolite Samples	0 [®] 50	K	(0-5) SILTY VERY FINE SAND; OXIDIZED; Y well sorted.
10	Crystalline Bedrock	•		(5-13) VERY FINE SANDY SILT; OXIDIZED; poorly sorted w/pebbly cgr sand interbeds in upper foot, cob at 6 ft, v well sorted below; silt bed at 9 ft; coarse sand grains below 11 1/2 ft, also unox; silt lam at 12 1/2 ft; mod sorted, silty mgr-cgr sand w/sm pebs in last 1/2 ft.
20		• • • •		(13-20 1/2) LOANY SAND-SANDY CLAY TILL; UNOXIDIZED; crudely stratified; common carb & sh; mostly sm pebs; bed of pebbly mgr-cgr sand at 17 1/2 ft over mgr-cgr sand, well sorted w/few sm pebs to 18 1/2 ft; till rich in fgr sand & silt & loose below 18 1/2 ft; firm dark gray loam till below 20 ft.
	2000	•		(20 1/2-23) SILTY FINE SAND; UNOXIDIZED; mod sorted w/couple firm loam till layers to 22 ft, well sorted v fgr sand below.
30	Saprolite 	•		(23-43) LOAN TILL; UNOXIDIZED; firm; texture on silty side of loam; silty fgr sand bed at 26 ft, grades to silty fgr-mgr pebbly sand w/till layers from 27-28 ft; common sm pebs; 36 1/2-40 1/2 ft v fgr sand-rich till, abrupt lower contact w/large pebs at base; 40 1/2-43 ft pebbly clayey silt, firm, calc, v poorly sorted, reworked lake sed.
_40		•		
50	Till Samples In Drill Hole 509	•		(43-83) LOAM TILL; UNOXIDIZED; firm; calc; matrix high in silt & fgr sand; common carb, rare sh; mostly only sm pebs; clay loam till below 70 ft; large inclusion at 74 1/2 ft of clayey silt, silty clay & clay, greenish gray & gray w/reddish brown mottles, mod calc-calc; 77-83 ft mixed gray clay loam till & greenish gray sandy loam till.
_60		•		
70	sandssin	•		
80		•		•
01 90	2 83 15	•	K	(83-92) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm; sl calc; large pebs fairly common; uncommon carb.
02 100	,× 2			(92-100) BEDROCK; medium to dark gray, coarse-grained gabbro, subophitic, with ferromagnesian megacrysts (0.5 cm) enclosed by 0.1 to 0.2 mm plagioclase and ferromagnesian minerals with a diabasic texture. Plagioclase is pink to tan color. Ferromagnesian minerals up to 60% usually enclose disseminated subhedral pyrite (1%). Magnetite disseminated in the ferromagnesian minerals. Some primary? biotite is present. No penetrative fabric is observed.
	'			Thin section description: sample at 100 feet.
110	SC Till Bamples in Drill Hote			Mineralogy: Pyroxene and fibrous amphibole (51%), plagioclase (36%), biotite (9%), iron oxide and pyrite (4%), sphene (trace).
				Texture: Subophitic, with large subhedral uralite-altered pyroxene porphyroclasts partly enclosing plagioclase (An 60) laths, large

subhedral brown biotite grains usually occupy intergranular areas whereas green biotite is altering from the fibrous amphibole. Plagicclase crystals are intergrown with amphibole where they are in contact. No persentive fabric is present. The sectures penetrative fabric is present. The textures suggest an autometamorphic origin for the amphibole and some of the green blotite. Brown biotite may be a magnatic mineral.

Lithology: Gabbro (plagioclase-pyroxene

;

Depth	Stratigraphic	Magnetic Suscent-	Strati-	
(ft)	Attributes	ibility	Column	Description
	Till and Saprolite Samples in Drill Hole 510 Crystalline Redrock	0 50 •	к	(0-5) SILTY FINE SAND; OXIDIZED; unox below 2 ft; v fgr sand bed at 2 ft, less silty below; 4-5 ft gvlly fgr sand w/large pebs, poorly sorted, abundant carb; abrupt basal contact. (5-20 1/2) LOAM TILL; UNOXIDIZED; firm; abundant carb, no sh noted; large pebs fairly common; compact below 14 ft, not as peblow; fairly abrupt lower contact.
10		•		pedoty; fairly adrupt lower contact.
20		•		
	Saprollte	•		loamy texture 23-24 1/2 ft w/sm cob at base; sh peb at 25 ft.
30	a.00 6.10 a.70 0.30 Ilg nmIHC ▲- RT ₩ NT ox, ∀ WT ₩ OT	•		(27-41) SANDY LOAM TILL; UNOXIDIZED; compact; rich in v fgr sand; v sandy below 30 ft, grading to v fgr sandy silt from 32-33 ft; pebs fairly common, carb common, occ sh noted; coarse loamy texture below 38 ft.
40		•		
	Till Samples in Drill Hole 510	3 0 0		(41-55) CLAY TILL; UNOXIDIZED; compact; abundant carb, uncommon sh; abrupt upper contact; loamy textured 50-50 1/2 ft, clay loam till below.
50		•		
60		•		(55-59) NO CORE; driller believes fgr sand. (59-66) CLAY LOAM TILL; UNOXIDIZED; as above; grades to calc
		•		(66-80) NO CORF: driller believes for sand.
70	in Drill Hole 510			
80				(80-85) VERY FINE SANDY SILT; UNOXIDIZED; well sorted but fair
		•		amount of sm pebs; calc; couple inches silty v fgr sand at top; 82-84 ft interbedded w/sandy loam till; clay pick-up clasts at 83 ft; v fgr sand bed at 84 1/2 ft; gradational lower contact. (85-88 1/2) LOAM TILL; UNOXIDIZED; firm; calc; rich in silt & v fgr sand; v fgr sand bed near top; pebs uncommon; last foot mostly v for eardy silt
90	· ·	•		(88 1/2-97) SILTY CLAY TILL; UNOXIDIZED; compact; calc; gradational upper contact; fine loamy texture below 92 ft; v compact clay loam till below 94 ft; below 96 ft greenish gray silt & clay mixed w/little clay loam till.
100 01	2 93 2	•	K R	(97-107) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm; sl-mod calc; large pebs fairly common; uncommon carb, mod calc in lower part; last few inches calc & loamy in texture, could be mixed w/ another till.
02	1 27 1	•	R	(107-112) BEDROCK; very dark gray, coarse-grained gabbro, subophitic pyroxenes (now chlorite) with sausseritized
110 03	8 -		· · · · · · · · · ·	plagioclase from 0.5 to 1 cm long. Several pyrite veinlets (2- 5 mm thick) and small amounts of disseminated pyrite are found in a metabasalt xenolith. One 4 wide magnetite-rich (0.1 mm diameter crystals) layer occurs at 107 feet. No penetrative fabric is observed.
				Thin section description: samples at 108 and 109 feet.
120				[*] Mineralogy: plagioclase (67%), biotite (22%), augite (9%), iron and iron-titanium oxides (2%).
130				Texture: Hypidiomorphic-granular with subhedral plagioclase (0.5-1 mm) laths enclosing intergranular anhedral augite (0.1- 0.3 mm) now altered to fibrous amphibole whereas brown biotite occupies intergranular areas and may be a primary magmatic mineral. Plagioclase slightly altered to white mica. No penetrative fabric is observed
110				Lithology: plagioclase-cumulate rock.
140		1	1	TD = 1121

D	r	i	1	1	Ho	1	е	0	B	 5	1	1

Depth	Stratigraphic	Magnetic Suscept-	Strati- graphic	N
(IT)	ATTILDUTES		K	
10	In Drili Hole 511 Crystalline 73 Bedrock 73 A 13_A23 K	•		<pre>(0-7) FINE SAND; UXIDIZED; Well sorted, some coarser grains; abrupt lower contact. (7-10 1/2) LOAN TILL; OXIDIZED; common carb pebs; v silty 8-8 1/2 ft; 10-10 1/2 ft silty mgr sand over silty v fgr sand; v abrupt lower contact. (10 1/2-39) LOAM TILL; UNOXIDIZED; compact; common carb pebs; clay loam till below 19 ft; 22-23 1/2 ft silt, gradational contacts; mostly sm pebs; uncommon sh; grades into silt below.</pre>
20		•		5
30	Saprolite s.m. s.m. s.m. s.m. s.m. s.m. s.m. s.m.	•		
_40	Clay Clay Clay Clay Clay THI Samples In Drift Hole	•		(39-44) SILT; UNOXIDIZED; calc; w/mostly thin till layers; massive silt below 40 1/2 ft, v rare pebs.
50	sıı ,			(44-75) SILT LOAM TILL; UNOXIDIZED; firm, compact below 47 ft; common carb & sh; silty zone at 53 ft; apar some core loss 52-57 ft, driller assumed was silt bed; coarse loamy texture w/dark pebs 67-70 1/2 ft; gradational lower contact.
60				
70	Send SC SC Till Samples in Drill Hole S11	•		
80		•		(75-80) SILTY VERY FINE SAND; UNOXIDIZED; v well sorted; little silt at top; greenish gray w/depth; clay lam at 79 ft; v fgr sandy silt below 79 ft, grades into till below.
		•		<pre>(00-04 1/2) SILIT LLAT LUAN TILL; UNOXIDIZED; Compact; Calc; mixed w/greenish gray silt to 81 1/2 ft; not many pebs; 82-83 1/2 ft silty v fgr sand, grading to v fgr sandy silt at base; till mixed w/silt towards base. (84 1/2-89) VERY FINE SANDY SILT; UNOXIDIZED; massive; last foot silty v fgr sand.</pre>
90	4	•		(89-91) SILT; UNOXIDIZED; greenish gray. (91-109) SILTY CLAY-CLAYEY SILT: UNOXIDIZED: calc: interbedded
100				W/dark gray clay to 93 ft; massive silty clay to 94 ft; few pebs below 94 ft; clayey silt below 94 ft, vaguely laminated w/silty clay from 96-97 ft; clayey silt laminated w/silty clay below 102 ft, also silty v fgr sand lam below 104 1/2 ft; dark gray clay bed at 107 ft, great variety of interbeds.
110		•	k k	(109-123) SANDY LOAM TILL; UNOXIDIZED; greenish gray to 111 ft;
01	0 127 1	•		firm; mod calc-calc; rare carb; large pebs fairly common; sparse dark Precembrian pebs, most are granitic; mostly only sm pebs below 119 ft, cob at base.

Depth	Stratigraphic	Magnetic Suscept-	Strati- graphic	Decerintion
	ALLEIDULES	TUTTICA	Corumn	Description
	Till and Septolite Samples in Drill Hole 512	•0 50		(0-3) CLAY LOAM TILL; OXIDIZED; firm; calc; few inches of silty v fgr sand on top; common carb & sh; sandy & soft in last 1/2
		•		ft. (3-10 1/2) LOAM TILL; OXIDIZED; unox below 5 ft; compact; calc;
	Beirock	•		common carb & sh; abrupt lower contact.
10	4/00 B 14	•		(10 1/2-31) LOAM TILL; UNOXIDIZED; compact; calc; coarser
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		textured than above, also sh not as common; v compact below 20 ft; cobs at 24, 26 1/2, 27 ft; soft sandy zone at 28 ft; less
	K	•		pebbly below 27 ft; 30-31 ft silty fgr-mgr sand, pebbly in lower part, interbedded w/clavey silt to silty clay, grades
		•		into till below.
20	-			
	2000 .	•		
		•		
	Saprolite	•		
30	ë,ba e,to e,20 o,30 Ilg mm/IMC	•		
	M - WT ox.	•		(31-47 1/2) CLAY LOAM TILL; UNOXIDIZED; greenish gray; compact;
	V WT 0 0 0 0 Weath, Rock	•		zone at 35 1/2 ft, more below 37 1/2 ft w/inclusions of silt &
	∧ RT-517 () WT-517 ox. ✓ WT-517	•		send; peps mostly sm; v thin silt lam below 43 ft, v fgr sandy silt inclusion at 47 ft; fairly abrupt lower contact.
40	○ oT-517 Clay	•		
	1 \wedge	•		
	Till Samples In Drill Hole 512	•		
		•		
50		•		(47 1/2-51) VERY FINE SANDY SILT; UNOXIDIZED; v well sorted, few dropstones.
	$1 \qquad \qquad $			(51-61) CLAY LOAM TILL; UNOXIDIZED; as above, compact, calc,
		•		mostly sm pebs; 58 1/2-59 1/2 ft interbedded fgr-mgr sand & clayey silt, pebbly in lower part, cob at base; 59 1/2-61 ft,
		•		greenish gray sandy loam till, compact, mod calc, common dark pebs, probably inclusion of another till; abrupt lower contact.
60		•		
		•		(61-63) COARSE SAND; UNOXIDIZED; mod sorted, occ large pebs; common carb, but Precambrian dominant.
a na su anna a suaranna a suaranna A	Sand	na n		<pre>(63-04-1/2; SANDY LOAN-TILL; UNOXIDIZED; compact; mod calc-calc; dark pebs out number carb; sand lam 64-65 ft; calc</pre>
	sc sc	•		below 65 ft; more clayey 65-66 ft; fair amount of large pebs; texture ranges to sandy clay loam; probably mixed w/Rainy lobe
70	Till Samples In Drill Hole	•		fill; no sh noted; boulder 76 1/2-77 1/2 ft; wood chip at 83 ft, more clayey, little more carb below.
	512			
		•		
		•		•
80		•		
		•		
		•	K K	(84 1/2-87) SANDY SILT; REDUCED; mottled; well sorted,
		•	W	VITUALLY NO PEDS.
90		•		(3/-yu 1/2) CLAT IILL; REDUCED; ox grayish brown below 89 1/2 ft; v compact; calc; carb uncommon; vague v thin clay lam; sm
01	0 38 1	•		(90 1/2-104 1/2) CLAY LOAM TILL; OXIDIZED; light brownish gray;
		•		mostly sm pebs; much local rock (schist) incorporated in till;
i		•		near base; unox in lower few feet; v abrupt lower contact, no
02	0 58 1	1		evidence of mixing w/saprolite.
		Ţ		(105-107) SAPRULIE; CHLORITIC; Light greenish gray, soft, dry, micaceous. Fine to medium-grained relict texture. Quartz
03	0 27 1	•	Vertication	Calcite zones throughout. Angular quartz grains, relospar, V muscovite and rock fragments to 5 mm. 1 cm quartz/calcite vein
		+		at 105 ft. Last ten inches of core is greenish gray and muscovite content decreases. Calcareous.
110		•		meta-graywacke with a moderately well developed S The rock
04	- · - 3	•	+ + + + + + + +	muscovite, and 0.5% disseminated pyrite (0.5 mm). Two 0.5 cm
	-		* ********	vertical light gray, translucent quartz veins are associated with locally coarse-grained biotite and contain no apparent

L

Denth		Magnetic	Strati-	
(ft)	Attributes	Suscept- ibility	Graphic Column	Description
	Till and Saprolite Samples in Drill Hole 513	0 50	K	(0-8) SILTY VERY FINE SAND; OXIDIZED; well sorted; gnl lam at
	Crystalline Bedrock	•		(8-12 1/2) CLAY LOAM TILL: UNOXIDIZED: firm: calc: common carb
10		•		& sh; grades to v fgr-fgr sand w/few pebs at 11 1/2 ft.
	$ \begin{array}{c} $	•		(12 1/2-27) LOAM TILL; UNOXIDIZED; firm; calc; sandy loam till above 14 ft, fining & compact below; abundant carb, some sh; more clayey W/depth to 19 ft; gvlly zone at 19 ft; v fgr sand lam at 21, 24 & 25 ft; dark gray clay loam till below 25 ft; abrupt lower contact.
20	2000	•		
	SAPTOILLA 1.00 0.10 0.20 0.30	•		(27-34) FINE SANDY LOAM TILL; UNOXIDIZED; loose; common carb.
30	iig naliMC ——▲——RT — WT ox.	•		
40		•		(34-52 1/2) VERY FINE SAND; UNOXIDIZED; v well sorted; fgr in upper foot; grades to v fgr sandy silt below 41 ft; number of carb pebs from 43-44 ft, could be "flow till"; 44-45 ft v fgr sand, 45-46 ft greenish gray, mod calc silt; 46-47 ft fgr sand; 47-48 ft v fgr sand w/silt bed at base w/silty clay lam, mod
	Clay Till Samples in Drill Hole 513	•		calc; pebbly mgr sand below to 48 1/2 ft, abrupt lower contact; 48 1/2-50 greenish gray loam till, compact, mod calc-calc, not much carb; 50-51 ft well sorted mgr sand, few pebs, cob at base; 51-52 1/2 v fgr sandy silt w/few pebs; cob at base.
50		•		
		•		(52 1/2-58 1/2) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm; calc; carb fairly common; cob near top; 57-58 1/2 ft grayish brown loam till, calc, compact, gradational upper contact, abrupt lower contact, probably inclusion of another
60	$ \land \land$	•		till. (58 1/2-71 1/2) LOAM TILL; UNOXIDIZED; compact; calc; carb fairly common: cobs at 60 1/2 & 65 ft: inclusion of greenish
		•		gray sandy loam till at 62 1/2 ft; sandy loam till w/uncommon carb in lower few ft; 70-71 1/2 ft v fgr sandy silt w/few pebs, mgr sand bed at 71 ft.
70		•	K	(71 1/2-75) SANDY LOAN TILL, INOVIDIZED, compact, calc. carb
01	1 418 3		R W	fairly common, probably derived from till below; cob at 73 ft; last 1/2 ft or so mixed w/till below. (75-79 1/2) CLAY LOAM TILL; OXIDIZED; grayish brown; v compact; v calc, abundant carb; unox, less compact below 76 ft; mostly sm pebs; gravish brown inclusion at 77 1/2 ft; clay bed at 79
80 02	0 17 1	•		ft; gradational lower contact. (79 1/2-93) CLAY LOAM TILL; OXIDIZED; grayish brown; v calc but less carb than above, more greenish pebs, probably contains fair amount of local rock & saprolite; cob at 92 ft.
03	0 21 3	• • •		
90 04	0 23 2	•	Array and the set of a set of	
05	0 156 3	•	S	(93-95) SAPROLITE; REWORKED; large pebs of local rock, not same as underlying bedrock; some indication that saprolite below could be reworked to bedrock. (93-95) SAPROLITE; REWORKED; olive-gray, blocky. Winnipeg till mixed with it 93-94 ft. Pyrite crystals up to 2 mm. Angular
100		•		rock fragments up to 5 cm. Highly calcareous. (95-101) SAPROLITE; CHLORITIC; greenish gray, massive. No sulfides Rock fragments up to 4 cm at 96 ft. Pebble line at
				(101-107) NO CORE.
110 06	30			(107-115) BEDROCK; pyrrhotitic massive sulfide with minor amounts of pyrite. Intercepts of swirling, highly-deformed, banding alternate with intervals of wispy banding. A one foot interval (at 111) feet of a deformed pyrrhotite-cemented breccia with some light gray, chlorite-rich, frequents showing
	sc		• • • • • • • • • • • • • • • • • • •	a seriate texture which developed before sulfide replacement of the groundmass. Subhedral to euhedral pyrite crystals are present in aggregates ranging from 0.3 to 1 cm in diameter.
120	Till Semples in Drill Hole 513		·	silicified, medium gray quartz-feldspar porphyry dikes. Blue, waxy, quartz? veins and patches may be related to the silicification of the porphyry dikes. All lithologies show a moderate to strongly developed S ₁ to 10° to CA.

4

Denth		Magnetic	Strati-	
(ft)	Attributes	Suscept- ibility	graphic Column	Description
	Till and Saprolite Samples in Drill Hole 514	0 50	K	(0-4) GRAVELLY COARSE SAND; OX1DIZED; mod sorted; little pest
10	Crystalline Redrock	•		(4-11) FINE-MEDIUM GRAVEL; OXIDIZED; silty, mod sorted; common carb; well sorted gvlly v cgr sand 8-9 1/2 ft.
	$\begin{array}{c} \mathbf{A} \\ $	•		(11-25) GRAVELLY COARSE SAND; OXIDIZED; mod sorted; some large pebs; large pebbly bed at 15 ft; well sorted w/only few pebs below 19 ft.
20	• • • 6	•		
		•		(25-27) COARSE SAND; OXIDIZED. (27-29) MEDIUM SAND; OXIDIZED; well sorted.
30	iig naihiC ▲ RT ■ WT ox.	•		(29-35) FINE SAND; OXIDIZED; well sorted.
40	VWT OT 	•		(35-44) SILTY VERY FINE-FINE SAND; OXIDIZED; mod sorted, some coarser grains & sm pebs; well sorted, not silty below 37 ft; v well sorted v fgr sand below 39 ft; unox below 41 ft; sh-rich bed at base.
	Till Samples	•		-
	In Drill Hote 514	•		(44-48) CLAY LOAN TILL; UNOXIDIZED; firm; calc; compact layer 46 1/2-47 1/2 ft; abundant carb, uncommon sh.
50		•		(48-63) LOAM TILL; UNOXIDIZED; compact; lith as above; lighter gray below 57 ft; pebbly zone 60-61 ft; abrunt lower contact.
60		•		
	SC 9-6 Till Samples In Drill Hole			(63-68) SILT LOAM TILL; UNOXIDIZED; firm; calc; v for mand beds in upper foot or so; only sm pebs. (68-84 1/2) LOAM TILL; UNOXIDIZED; compact; common carb,
		•		Uncommon sh; more pebs then above; carb cob at base.
80		•		•
				<pre>(84 1/2-89) LOAM TILL; UNOXIDIZED; firm; calc, common carb; matrix rich in silt & fgr sand; mostly sm pebs; gradational lower contact.</pre>
90		•		(89-110) LOAM TILL; UNOXIDIZED; firm-compact; lith as above, uncommon sh.
		•		
100		•		
		•		
110		•		
		•		tilo-110; CLAT LOAM TILL; UNOXIDIZED; firm; lith as above; few pebs; silt-rich below 111 1/2 ft; mixed w/silt below 114 ft, mostly wilt below 115 ft.

			from alignment of chlorite.
			Thin section description: sample at 260 feet.
270		 	Mineralogy: chlorite (0.03-0.07mm), epidote (0.05-0.1mm), plagioclase, quartz, magnetite (0.1-0.3mm), pyrite (trace).
280			Texture: Very fine-grained non-pleochroic chlorite is lepidoblastic with anhedral masses of epidote (after plagioclase) disseminated throughout. Magnetite octahedra show quartz- filled pressure shadows. The original plagioclase is very poorly preserved.
	· ·		Lithology: metabasalt.
			TD = 262'
290			

Depth	Stratigraphic	Magnetic Suscent-	Strati- graphic	
(ft)	Attributes	ibility	Column	Description
	Till and Saprolite Samples in Drill Hole 515	• 0 _• 50	K	(0-2) FINE SAND; OXIDIZED; well sorted; some coarse sand
	Crystalline Bedrock	••••		grains. (2-9) VERY FINE_SAND; OXIDIZED; v well sorted; coarse grains below 7 1/2 ft.
10	$ \begin{array}{c} $	•		(9-12) MEDIUM-COARSE SAND; UNOXIDIZED; well sorted, few gnl; top 1/2 ft pebbly cgr sand, cob near top; abundant carb. (12-21) VERY FINE-FINE SAND; UNOXIDIZED; v well sorted; fairly abrupt upper contact; v fgr sand in upper foot; much v coarse sand grains below 19 ft, bimodal sorting; abrupt lower contact.
20		•		
	rees 8 Saprolita 8 te 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,1	••••		(21-23) GRANULE GRAVEL; UNOXIDIZED; well sorted; abundant carb. (23-29) COARSE-VERY COARSE SAND; UNOXIDIZED; well sorted; upper foot v fgr sand w/coarser grains; abrupt lower contact.
30	iig nmliAC ▲— RT	•		(29-31) FINE-MEDIUM SAND; UNOXIDIZED; well sorted.
	W WT OX. V, WT V OT Weath. Rock	•		(31-35 1/2) COARSE-VERY COARSE SAND; UNOXIDIZED; well sorted; few sm pebs; more pebbly below 33 ft.
40	0 HT-317 ox. V HT-317 ox. V HT-317 oc. CHY	•		(35 1/2-41) MEDIUM-COARSE SAND; UNOXIDIZED; well sorted; fgr sand bed on top; few gnl in places.
	Till Samples In Drill Hale 515	•		(41-45) VERY FINE-FINE SAND; UNOXIDIZED; v well sorted; coarsens w/depth.
		•		(45-48) MEDIUM SAND; UNOXIDIZED.
50		•		(48-50) MEDIUM-COARSE SAND; UNOXIDIZED; well sorted; few pebs, especially towards base; fgr-mgr sand bed at base; abrupt lower
60		•		contact. (50-80) LOAM TILL; UNOXIDIZED; compact; calc; uncommon carb, no sh noted; mostly sm pebs; sm cobs at 51, 52 ft; silt inclusions at 57 ft; 60-62 ft mostly reworked lake silt; silt inclusion, 2 sm cobs at 67 ft; v silty below 70 ft; sm cob at base.
				and the second
70	SC Till Semples in Drill Hole 515	•		
		•		•
80		•		
		• • •		(80-89 1/2) LOAM-SILT LOAM TILL; UNOXIDIZED; greenish gray; v loose; apar interbedded silty till & silt; lith as above; mod calc below 85 ft, apar mostly reworked lake sed; gray clayey till inclusion at base.
90			K	(89 1/2-92 1/2) VERY FINE SANDY SILT; UNOXIDIZED; greenish
	•	•		<pre>gray; v Well sorted; mod CalC. (92 1/2-101) VERY FINE-FINE SAND; UNOXIDIZED; greenish gray; v well sorted; rare coarser grains; mostly silty v fgr sand below 96 ft; v fgr sandy silt towards base; abrupt lower contact.</pre>
100	4	•		
		•		(101-108 1/2) MEDIUM-COARSE SAND; UNOXIDIZED; v well sorted; rare carb. (108 1/2-112 1/2) VERY FINE-FINE SAND; UNOXIDIZED; well sorted;
110	4	••		ן דקר-mgr sand ווט-ווו ו/כ ft, v well sorted below.
		•		(112 1/2-117) VERY FINE SAND; UNOXIDIZED; v well sorted; fgr

.

						1		
						•		grades into till below.
						•		(143 1/2-163) LOAMY SAND TILL; UNOXIDIZED; sl-mod calc;
	01		26	2		•		calc-calc; cob at 157 ft; calc & compact below 159 ft, carb
	150	Ŭ	20	2		•		fairly common; cob near base.
						•		
						•		
	03		F 0			•		
	02	Ŭ	53	1		•		
	160							
Į,	_	1						(163-165) GRAVELLY COARSE-VERY COARSE SAND; mod sorted;
		}						Uncommon carb.
		}				•		167 ft, silty mgr-cgr sand w/pebs below; gradational lower
	170					•		contact.
						••••] (108-176) LUAMY SAND TILL; UNOXIDIZED; as above till; silty fgr sand 169-169 1/2 ft: cob at 170 ft: Loamy bed at 172 ft: pebs
i	03	0	17	10		•		uncommon; loam till inclusion at 175 ft; fairly abrupt lower
	н.					•		contact.
						•	R	(176-191) SANDY LOAM TILL; UNOXIDIZED; firm-compact; calc;
								fairly common carb; iron stains below 181 ft; more compact
	180 04	0	54	2				W depth; targe peos fairty common.
						•		
						•		
						•		
1	190 05	0	66	1		•		
	-	-				•		(191-212 1/2) SANDY LOAM TILL; UNOXIDIZED; greenish gray;
						•		compact; calc, fairly common carb; somewhat gradational upper
1						•		sand lam at 197, 197 1/2, 200 1/2 ft; cob at 205 1/2 ft; and
	06	о	66	1				inclusion at 206 ft; loamy bed near base.
	200							
								1
·						•		·
	07	1	46	1	ø	•		
						•		
	210 08	o	597	•		•		
1			•••			•		
	-					•	Faffard Later C	
							+ + + + + + +	with a locally poorly-preserved diabasic texture is
				·				metemorphosed to the biotite-facies and exhibits a poorly
	09	a –	-	2	and the second second		* * * * * * *	crushed zones containing epidote and trace amounts of pyrite.
	220						+ + + + + +	A 15 cm intercept of an aplite dike at 222 feet is cut by a
0							L + . + . + . + . +	vertical 2 cm-thick white quartz vein.
		1				1	+ + + + + +	Thin section description: sample at 214 feet.
Į								Mineralogy: horphlende (0.2-0.6 mm)
		1					1	plagioclase (0.1-0.2 mm), epidote, sphene,
	230	1						chlorite.
1		1						Texture: Blastosubophitic hornblende
								preserves the texture of the original pyroxene
							4	extensively altered to epidote. Sphene occurs
								in irregular patches.
		1						Lithology: metabasalt.
	240	4						4 -
		1				}	ļ	TD = 2231
		1				1		
		1				1		
						}	ļ	
	250]				L	ł	
]						1
		1						
		1				1		
		1				1		
		1				1	ł	
	260	4						

Н

Ш

Ы

H

Н

Н

Drill Hole OB-516

Drill	Hole	OB-51	.7
-------	------	-------	----

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
10	Till and Saprolite Samples in Drill Hole 517 Crystalline Bedrock 170 112 102 112 170 114 2 102 1125 170 114 2 102 1125 170 114 2 102 1125 151 94 151 94 133 K - 100 2 52 52 52 52 57 62 70	0 50 °		 (0-9) LOAM TILL; OXIDIZED; compact by 4 ft; calc; carb common, noted sh; 0-1 ft v silty fgr sand w/pebs, 1-1 1/2 ft cob; silty fgr sand bed at 3 ft. (9-23) SILT; UNOXIDIZED; well sorted; few sand grains, sm pebs; laminated w/v fgr sandy silt below 13 ft; pebbly from 17-19 ft, could be "flow till"; silty clay lam below 22 ft; lower contact somewhat gradational.
30	2000 8 sprolite 0, 00 0, 10	•		(23-38) CLAY-CLAY LOAM TILL; UNOXIDIZED; firm-compact; calc; fairly common carb; apar has partings, could be flow till; softer & lighter gray below 28 ft, loam till below 29 ft; sandy till zones below 32 ft; thin fgr sand bed at 37 1/2 ft.
40 O1	0 47 1			(38-55) SANDY LOAM TILL; UNOXIDIZED; loose-firm; calc; fairly common carb, but Precembrian pebs dominant; loamy sand texture above 42 ft; cobs at 41, 51, 54 ft; fairly abrupt lower contact.
50 02 60 03	1 268 2 0 100 1	•	R	(55-74 1/2) CLAY LOAM TILL; UNOXIDIZED; compact; calc; common-abundant carb; loam texture above 59 ft, v compact below 59 ft; somewhat less compact below 73 ft; sm cob at base.
₇₀ 04	1 538 1	•		(74 1/2-98) CLAY LOAM TILL; OXIDIZED; dark grayish brown;
80 O5	0 28 1	•		compact; V Calc; carb common but not dominant; greenish gray color to 79 ft; silt 80-81 ft; 87-88 ft pebbly, loamy texture w/sand inclusions; short gradational zone at base.
06 90 07	0 127 1 1 25 1	•		(98-103) CLAYEY SILT; OXIDIZED; grayish brown, laminated w/dark gray clay below 99 ft; v fgr sandy silt in lower foot or so.
08	1 178 1	•		(103-121) LOAM TILL; UNOXIDIZED; olive gray; firm; v calc; common carb; coarse side of loam texture, less so & compact below 107 ft; couple sm cobs at 116 1/2 ft; v compact below 115 ft; clay loam till, dark gray, & less compact below 117 ft; large carb peb at base, fairly abrupt contact.

Drill Hole OB-51	8
------------------	---

· •

•

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	Till and Saprolite Samples in Drill Hole 518 Crystalline Bedrock 10	0° 50	к	 (0-6) GRAVELLY SAND; OXIDIZED; silty, poorly sorted; little peat on top; 3 1/2-5 ft well sorted, v fgr sand. (6-19) FINE-MEDIUM GRAVEL; OXIDIZED; silty, poorly sorted; top foot boulder; carb-rich.
	$ \begin{array}{c} $	•		
20	* 45 V	•		(19-25) GRAVELLY VERY COARSE SAND; OXIDIZED; mod sorted; some large pebs; grades to gvl below.
	Baprolite 	•		(25-29) FINE-MEDIUM GRAVEL; OXIDIZED; occ large pebs.
	$ \begin{array}{c} \bigtriangleup \\ \blacksquare \\ -$	•		(29-41) GRAVELLY VERY COARSE SAND; OXIDIZED; v gvlly below 32 ft.
40	Ciey TH Semples in Drill Hole 518	•		<pre>(41-44) SANDY SILT-MEDIUM SAND; OXIDIZED; 41-42 1/2 ft fgr-mgr sand, mod sorted, few gnl, sm pebs; 42 1/2-44 ft unox v fgr sandy silt grading to silty v fgr sand, v well sorted, calc. (44-46) FINE-COARSE SAND; UNOXIDIZED; mod sorted, few pebs. (46-51) GRAVELLY VERY COARSE SAND; UNOXIDIZED; well sorted; only sm pebs; large peb zone at 49 ft.</pre>
50		•		(51-57) COARSE-VERY COARSE SAND; UNOXIDIZED; mgr-cgr below 54 ft; v fgr-fgr sand below 56 ft, gnl & pebs towards base.
60	28 100 37 38 € 1 100 38 € 1 100 38 € 1 100 38 € 1 100 38 € 100	· •		(57-62) NO CORE; presume fgr sand. (62-66) SILT; UNOXIDIZED: v well sorted; calc; top foot silty
70	SC Till Samples in Drift Hole S18	•		fgr-mgr sand. (66-73) MEDIUM-COARSE SAND; UNOXIDIZED; mod sorted, few gnl, sm pebs; couple silt beds or inclusions near top; fgr-mgr sand below 71 ft.
	3	•		(73-79 1/2) SILTY VERY FINE-FINE SAND; UNOXIDIZED; greenish gray; well sorted; more coarse grains w/depth.
80		•		(79 1/2-86) FINE-MEDIUM SAND; UNOXIDIZED; well sorted; v fgr sand beds at 80 & 83 ft; mgr-cgr sand below 84 ft.
90	FI	•	K R	(86-90 1/2) SANDY SILT-FINE SAND; UNOXIDIZED; greenish gray; calc; well sorted; top foot sandy silt; 87-89 ft fgr sand w/mgr bed near top, pebbly cgr sand bed at base, some carb; 89-90 1/2 ft v fgr sandy silt. (90 1/2-95) MEDIUM-VERY COARSE SAND; UNOXIDIZED; mod sorted; occ sm peb; not much carb.
		•		(95-98 1/2) FINE SAND; UNOXIDIZED; mod sorted, some coarser grains; couple silt beds or inclusions at 97 ft, over bed of fgr-cgr sand. (98 1/2-105) MEDIUM-COARSE SAND; UNOXIDIZED; well sorted; fair amount of v cgr sand below 103 ft; last 1/2 foot pebbly fgr sand, poorly sorted.
<u>110 O1</u>	0 37. 3	•		(105-112 1/2) LOAN & SANDY LOAN TILL; UNOXIDIZED; firm-compact; calc; loam till layer or inclusion at top over silt to 106 ft; 106-107 ft sandy loam till w/cob near top; 107-107 1/2 silt; loam till 107 1/2-110 ft, abruptly over sandy loam till; sand beds at 109, 111, 112 ft. (112 1/2-119) LOAN TILL; UNOXIDIZED; compact; calc; matrix rich in fgr sand & silt; most pebs sm; carb fairly common; many sm

•

:

_150	•	•		(141-157) SILTY VERY FINE SAND; UNOXIDIZED; well sorted; v fgr sandy silt 145-146 ft; some coarser grains below 146 ft; less silty below 150 ft; v fgr sandy silt below 155 ft.
_160		•		(157-163) SILT; UNOXIDIZED; well sorted; dark greenish gray calc clay bed at 158 ft; silty till mixed w/silt 159-161 ft, coarse sand grains in silt below.
170		•		(163-171) SILTY VERY FINE SAND; UNOXIDIZED; v fgr sandy silt 168-169 ft, over bed of fgr-mgr sand, which grades back to silty v fgr sand.
03	0 52 22	•		(171-186) VERY FINE SANDY SILT; UNOXIDIZED; beds of silty v fgr sand, occ lenses of silty clay-clay; little charcoal below 175 ft, layer at 177 ft w/little wood, dated greater than 40,400 radiocarbon years; peb at 182 ft; silty v fgr sand in last foot or so; abrupt lower contact.
180		•		
190		•		(186-188) GRAVELLY FINE-COARSE SAND; UNOXIDIZED; silty, v poorly sorted, many v large pebs; lower foot cobs. (188-198) GRAVELLY COARSE-VERY COARSE SAND; UNOXIDIZED; mod sorted; silty; common carb; occ large pebs; poorly sorted below 196 ft; some v large pebs below 197 ft.
200		•		(198-202) SILTY FINE-MEDIUM GRAVEL; UNOXIDIZED; some large pebs; 199 1/2-200 1/2 ft v dark gray clay loam till; gvlly v cgr sand to 201 ft, silty gvl below. (202-229 1/2) CLAY LOAM TILL; UNOXIDIZED; v dark olive gray;
04 210	1 237 1	•		(mud flow) w/ball of dark gray till at 202 1/2 ft; indurated (cemented?) 207-209 1/2 ft; less compact below 211 ft; v compact below 217 ft; v dark gray below 220 ft.
05 220	0 25 1	•		
06	0 13 1	• • •		(229 1/2-239 1/2) LLAT; UNUXIDIZED; V dark gray; V thin, V tgr sandy silt lam; abrupt lower contact. (235 1/2-249 1/2) CLAY LOAM TILL; OXIDIZED; compact; calc; little less clay, less pebs than above till; carb common but
230		•		not dominant; gray in upper foot (reduced7); mixed w/saprolite below 248 ft. (249 1/2-251 1/2) SAPROLITE & TILL; mostly saprolite, mixed w/little till as above.
240 07	<u>0</u> 16 2	•		(250-252) SAPROLITE; REWORKED; grayish yellow-green to greenish gray. Looks "brecciated" with a mottled pale brown tint. Medium to coarse-grained sand in a matrix of clay minerals. Some small weathered rock fragments. Highly calcareous. (252-258) SAPROLITE; CHLORITIC; greenish gray, blocky. Hard with appular weathered rock fragments up to 7 cm.
08 _250	1 91 1	•	W S	oxidized vein from 253-256 ft. (10 R 4/6). Vein is less calcareous than the rest of core. Highly calcareous. (258-259) WEATHERED BEDROCK; weathered metavolcanic. (259-273) SAPROLITE; CHLORITIC; same as 252-258, calcareous to highly calcareous.
_260		•	<u>S</u> + + + + + B + + + + + + B	(257-273) BEDROCK; a medium gray-green, well-foliated, intermediate volcaniclastic rock contains 5% 3-4 mm rounded, dark, soft, pretectonic crystals that have an occasionally well-preserved prismatic habit. Sericitically-altered, stumpy plagioclase occur at 268 feet. Anastomosing S ₁ ? cleavage is parallel to CA.
09	- 3 -	•		Thin section description: sample at 262 feet. Mineralogy: chlorite, plagioclase, quartz, epidote, white mica. Texture: Blastoporphyritic, pretectonic
_280		•	* * * * * * * * * * *	euneural to annedral, commonly broken, lath- like, plagioclase crystals (An 107, most 0.3- 0.5 mm, some >5 mm long) are aligned and accompanied by quartz and green, pleochroic, chlorite filling pressure shadows. The matrix is well foliated chlorite and lenses of recrystallized quartz transected by a widely- spaced chlorite-rich shear bands. Epidote and
290				white mica are alteration products of plagioclase. Lithology: protomylonite. TD = 2734

Depth	Stratigraphic	Magnetic Suscept-	Strati- graphic	
(ft)	Attributes	ibility	Column	Description
	Till and Seprolite Samples in Drill Hole 519	0 50 •	K	(0-7) VERY FINE SAND; OXIDIZED; well sorted; little peat on top; pebbly below 4 ft, not as well sorted; abrupt lower contact.
10	Crystalline Redrock	•		(7-12) LOAM TILL; OXIDIZED; grayish brown; firm; calc, abundant carb; silt inclusion at 10 & 12 ft.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•		(12-15 1/2) SILTY VERY FINE SAND; OXIDIZED; mod sorted, w/coarse grains; pocket of pebbly fgr sand at 13 1/2 ft; pebbly v fgr sandy silt below 14 ft.
20		•		(15 1/2-27) LOAM TILL; OXIDIZED; dark grayish brown; compact; abundant_carb; 15 1/2-16 1/2 ft 'flow' till, 16 1/2-17 ft silty fgr-mgr gvl, poorly sorted; v fgr sandy silt inclusion at 22 ft; large cob at 27 ft.
	, 2000 	•		
30	see s.te s.te s.te	•		(27-45 1/2) LOAM TILL; UNOXIDIZED; matrix rich in v fgr sand & silt; interbedded w/silty v fgr sand; massive below 35 ft; common carb, fairly common sh.
	$\mathbf{x} - \mathbf{k} T \qquad -\mathbf{k} $	•		
_40	₩7-517 0 07-517 Clay	•		
	Till Samplee in Drill Hole 519	•		(45 1/2-51) VERY FINE SANDY SILT; UNOXIDIZED; silt bed on top;
50		•		few pebs; clay lam at 47 ft, more pebs below.
		•		(51-54) LOAM TILL; UNOXIDIZED; approaches sandy loam texture, rich in v fgr sand & silt as above till. (54-60 1/2) LOAM TILL; UNOXIDIZED; firm; calc; carb fairly common, no sh noted; matrix high in silt & v fgr sand; silty bed at 60 1/2 ft.
60	51 52 3 8 V V∇ 51 40 20 Sin	······		(60 1/2-64 1/2) SILT; UNOXIDIZED; v well sorted; massive.
70	SC Till Samples in Drill Hole	•	к	(64 1/2-70) SILTY VERY FINE SAND; UNOXIDIZED; v well sorted; laminated silt bed at 68 1/2 ft, well sorted v fgr-fgr sand below, w/some coarser grains.
		•	R	(70-76) FINE-VERY COARSE SAND; UNOXIDIZED; poorly sorted, w/pebs up to large; uncommon carb.
		•		(76-79) SILTY VERY FINE SAND; UNOXIDIZED; v well sorted.
80		•		(79-81) GRAVELLY COARSE-VERY COARSE SAND; UNOXIDIZED; well
		•		(81-89 1/2) SANDY LOAM TILL; UNOXIDIZED; firm; mod calc; calc below 85 ft w/common carb; cob at 83 1/2, 87 ft; v silty gvl 87 1/2-88 1/2 ft.
<u></u>		•		<pre>(89 1/2-93 1/2) GRAVELLY VERY COARSE SAND; UNOXIDIZED; silty, poorly sorted; common carb, more than in gvl above till; 92-93 1/2 ft sandy loam till, firm-compact, calc, common carb, less</pre>
01	U 49 I	•		sency than above till. (93 1/2-99) GRAVELLY MEDIUM-COARSE SAND; UNOXIDIZED; silty, poorly sorted; finer grained towards base.
100	2 46 1	•	F	(99-111) LOAM TILL; UNOXIDIZED; compact; calc; common carb; large pebs fairly common.
		•		
<u>110</u> 03	1 14 2	•		(111-114 1/2) SANDY LOAM TILL; UNOXIDIZED; firm to loose; lith similar to above; loamy bed at 112 ft. (114 1/2-114 1/2) CRAVELLY CRAPSE SAND: INOVIDIZED: populy

and the second second

D	r	i	1	1	HO	le	0	B -	5	2	0	
---	---	---	---	---	----	----	---	------------	---	---	---	--

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	-6 -16 Till Samples In Drill Hole 520	0 50	K	<pre>(0-3 1/2) FINE SAND; OXIDIZED; mod sorted; sm cob near top; last foot poorly sorted w/large pebs; carb-rich. (3 1/2-20) LOAM TILL; OXIDIZED; unox below 11 ft; firm; calc; abundant carb, fairly common sh; 6-6 1/2 ft silt; lens of sandy till at 19 1/2 ft.</pre>
 20 01	148 148 161 156 1744 156 1744 156 1744 1764 1764 1764 1764 1764 1774 186 2010 186 196 197 350 198 198	•	K	(20-45 1/2) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm; mod calc-calc; carb fairly common but crystalline dominant; v sandy below 26 ft w/few pebs, mostly sm; fgr sand 34-35 ft; grades back to sandy loam till by 40 ft; cob at 43 ft; grades to loam till by 44 ft, v calc w/much carb.
30 02 40	3 23 1	•		,
03	4 21 1	•		(45 1/2-54 1/2) FINE SAND; UNOXIDIZED; mod sorted; 45 1/2-47 ft silty mgr-cgr gvl, v poorly sorted, w/common carb pebs.
60	Till and Saprolite Samples in Drill Hole 520 Crystalline Bedrock 274 201 AD V V V Exotice	•		(54 1/2-64) MEDIUM-COARSE GRAVEL; UNOXIDIZED; silty, v poorly sorted; common carb.
ang managana ang ang ang ang ang ang ang ang	2844 108 V 148 256 V - 400 3126 - 400 312 2 188 108 177			(64-69) GRAVELLY COARSE SAND; UNOXIDIZED; poorly sorted; gvl 67-68 ft.
70	7000 18 9 9 9 9 9 9 9 9 9 9 9 9 9	•		(71 1/2-82 1/2) GRAVELLY COARSE SAND; UNOXIDIZED; poorly sorted; below 76 ft silty, v gvlly & v poorly sorted w/large pebs; "cob at 78 1/2 ft.
80	Hg nmIHC $\Delta - RT$ W - WT ox, -V - WT -V - OT -V - Weath. Rock $\Delta RT = 517$ ox. $\nabla WT = 517$ ox. $\nabla VT = 517$			 (82 1/2-85) MEDIUM SAND; UNOXIDIZED; mod sorted; v fgr sand at top; mgr-cgr below 84 ft. (85-90 1/2) GRAVELLY COARSE SAND; silty, poorly sorted; most pebs fgr-mgr.
90		•		(90 1/2-94) COARSE-VERY COARSE SAND; UNOXIDIZED; mod sorted. (94-96) FINE-COARSE GRAVEL; UNOXIDIZED; silty, v poorly sorted; carb cob at base.
04 100	0 31 1	•	W O	<pre>calc; similar to lower 1 1/2 ft of above till; common carb; sandy zones; gvlly below 100 ft incl cob. (100 1/2-103) SILTY VERY FINE SAND; UNOXIDIZED; poorly sorted w/sm pebs; grades to v fgr sandy silt. (103-106) FINE-MEDIUM SAND; UNOXIDIZED; gvlly cgr sand bed at top, pebbly towards base, last 1/2 ft cob; some v fgr sand; carb uncommon.</pre>
110 05	1 195 1	•		<pre>(106-109) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm; calc; carb fairly common; last foot gradational to underlying sand. (109-112) GRAVELLY COARSE SAND; UNOXIDIZED; silty, poorly sorted; grades to till below. (112-178) SANDY LOAM TILL; UNOXIDIZED; greenish gray; compact; calc; carb fairly common; fairly pebbly but not many large paper large cob pear too; 113-116 1/2 ft silty cgr sand w/fill</pre>
<u>120</u> 06	0 63 1	•		below 145 ft; coarse loamy texture 126-133 ft, another zone below 145 ft; texture 1s variable, ranging to sandy clay loam in lower part; v compact below 130 ft; cob at 128 1/2, 130 1/2, 137, 139, 144, 159 1/2, 165 1/2 & 169 ft; boulder 164-165 ft.
130		•		
07	0 242 1	•		

;

Sensor and Bernet of A 12 a sense sense of the sense of t

Drill	Hole	OB-521	
-------	------	--------	--

300 13 - 1 300 - 1 14 - - 14 - - 14 - - 14 - - 14 - - 14 - - 14 - - 14 - - 14 - - 14 - - 14 - - 14 - - 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15		2	Ģ	3	1		Control of the solution of th
14 - 1 14 - 1 14 - 1 14 - 1 14 - 1 14 - 1 14 - 1 14 - 1 14 - 1 14 - 1 14 - 1 14 - 1 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 15 - 7 16 -	300 1	3	-	-	1	+	Thin section description: sample at 299 feet. Hineralogy: chlorite, quartz, biotite, mucrovite plagication
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.	4	-		1	+	+ +
15 - 7 - 15 - 7 - 16 + + + + + 16 + + + + + + 16 + + + + + + + + + + + + + + + + + + +	310	'				+	+ + + + + + + + + + + + + + + + + + +
	1	5	-	7	-	+++++++++++++++++++++++++++++++++++++++	<pre></pre>
320 + + + + + + + + + + + + + + + + + + +	320	Í				+	+ + + + + + Lithology: mylonite (with S-C fabric). + + + + + + + + + + + + + + + + + + +

Appendix 280-C. Sampling and analytical methods.

Field Logging and Core Recovery Procedures

Drill core taken by the rotasonic drilling method is recovered in lengths ten to thirty feet long. Cores are dry-drilled to minimize the opportunity for water-washing of the soft sediments and sand layers. Recovered core lengths are extruded from the core barrel into plastic sleeves and broken to four foot lengths. The core sections are then marked with top and bottom orientations and placed into four foot long wooden boxes for shipment and holding until they can be logged and sampled. Martin and others (1988, 1989) describe in detail the mechanics of procedures and equipment used to ensure quality control during rotasonic coring operations.

Descriptive Core Logging

Core recovered during drilling operations at the twenty drill sites was descriptively logged by Gary Meyer, glacial geologist with the Minnesota Geological Survey (MGS). Characteristics noted during logging include texture, Munsell color, reaction to 10% HCl, till compactness, pebble abundance and lithology, presence of organic material, nature of stratigraphic contacts, and sedimentary structures. Textural analysis and 1-2mm sand counts were later performed on 84 grab samples by technicians at the MGS. Results of the latter work are on file at MnDNR in Hibbing.

Thicknesses of stratigraphic units were determined using both the existing core and the notations made on field drilling logs. The field logs were useful for identifying missing core intervals and for determining thicknesses of easily deformed silt-clay layers. Thickness and elevation data for geologic units are listed in Appendix 280-A and Appendix 280-B and are probably accurate to within 1 or 2 feet. Appendix 280-B contains descriptions and profiles of the core recovered from the twenty drill holes.

Core Sampling

Till and saprolite are the primary sample media. Sands, gravels, and silt-clay were sampled only if the basal Quaternary unit was not till or if sampling coverage in the drill hole was sparse. Only two samples of Koochiching lobe till were sampled, in drill hole 516, where Koochiching drift is the only available sampling media. Bedrock core was sampled wherever it was encountered.

Guidelines for sampling were: 1) sample all till-bearing stratigraphic units starting at the base of the Quaternary section and working upwards to the base of the Koochiching lobe drift, 2) make all reasonable effort to ensure that sampled intervals do not cross stratigraphic or compositional boundaries in the core, 3) sample saprolite sections if they exceed ten feet in thickness, 4) when sampling, make sure to exclude the outer surfaces of core, which are potentially cross-contaminated by other stratigraphic units.

Sampling of Glacial Drift: Glacial drift intervals and several saprolite intervals treated as drift were sampled with aluminum splitting tools and plastic scoops to prevent metallic contamination of gold or other metals into the samples. Target weights for samples are: 10kg (8kg minimum) for heavy mineral concentrate processing, 1200g (1kg minimum) for silt/clay extraction, and 200g for matrix carbonate analysis. Most samples represent 5 to 10 feet (1.5-3m) of core.

The 10kg sample of core was sent to a contract laboratory (Overburden Drilling Management) for disaggregation and preparation of Heavy Mineral Concentrates (HMC). Subsamples produced by this procedure are: Heavy Mineral Concentrate (HMC), lights fraction <3.3sp.g. (ltHMC), magnetic HMC fraction >3.3sp.g. (magHMC), and nonmagnetic HMC fraction >3.3sp.g. (nmHMC). During HMC processing, the silt-clay component of the samples is discarded. The granule and pebble (+10mesh) fractions are retained. Nonmagnetic

heavy mineral concentrates (nmHMC) are divided after gold grain counting was completed, 3/4 for assay, 1/4 for mineralogy. The 3/4 split is then sent to the analytical laboratory (Bondar-Clegg) for further preparation (crushing to -200mesh).

The 1200g sample of the core interval is packaged and sent to a contract lab (Bondar-Clegg) for disaggregation, textural analysis, and silt-clay separation using the method outlined by the Geological Survey of Canada (Higgins, 1988).

The 200g samples are disaggregated, dried, and dry-sieved in-house to obtain a -63um sample for carbonate analysis.

Sampling of Saprolite and Bedrock: Bedrock, and saprolite samples treated as bedrock, were logged, described, and selected for analysis by Terry Klein, geologist with the U.S. Geological Survey in Reston, Virginia (Klein, 1991). Representative bedrock and saprolite intervals were sampled for petrographic, major element, and trace element analysis. Only a few of the saprolite intervals were analyzed for major element oxides. Core samples were crushed to -200 mesh at the contract laboratory (Bondar-Clegg). Thin section pucks were sent to a petrographic lab. Bedrock and saprolite sample intervals ranged from 1 to 10 feet in length. Bedrock and saprolite cores were also examined for scheelite using an ultra-violet lamp, and for gamma-ray emission by Geiger counting.

Analysis Methods

Physical Measurements: Measurements for physical properties were made semi-quantitatively for munsell color, oxidation state, till compactness, reactivity to 10% HCl, pH, and bulk density.

Munsell color was determined during logging, prior to sampling, by comparing the wetted interior surface of split core with the munsell color chart. Oxidation state was determined during logging by noting the degree of preservation of non-resistant mineral species and by noting oxidation color changes in the predominantly unoxidized drill cores. Till compactness was determined qualitatively during logging on a scale of one (soft) to five (very compact). pH was measured on slurried mixtures of distilled water and disaggregated core using the method described by Davey and El-Ansary (1986). Bulk density measurements were done inhouse using the method of Pavich (1989).

Pebble and Mineral Measurements: Mineralogic properties measured include pebble counts and mineral grain counts of non-magnetic Heavy Mineral Concentrate (nmHMC) fractions. Fourteen selected samples of till and saprolite were also subjected to clay matrix X-ray Diffraction (XRD) analysis.

Pebble counts were made on till samples using methods modified from Szabo and others (1975), Kokkola and Pehkonen (1976), and Coker and others (1984). Additional help in devising a practical classification and identification system for pebble counting was provided by Professor J. Welsh (Welsh, unpublished DNR open-file report). Pebbles recovered from the HMC processing were divided into three lithic super-categories, with five size classes from +1" to +4mesh for each category. The number of pebbles counted per sample ranged from 75 to over 2000. Large numbers of pebbles were counted to ensure that reasonable quantities of supracrustal (SC) category pebbles would be available for further sub-division. The supracrustal category pebbles were then divided into eight types of SC pebbles and additional miscellaneous categories. Pebble categories are: P-M (Paleozoic and Mesozoic pebbles of dolomite, limestone, marl, and buff-colored chert), F-I (coarse-grained felsic-to-intermediate plutonic pebbles of granite, granodiorite, and biotite granite-gneiss), and SC (everything else, subdivided as follows: SCm -Mafic plutonic pebbles, SCmv -Mafic volcanic pebbles, SCma -Mafic volcanicamphibolite pebbles, SCfv -Felsic volcanic pebbles, SCfh -Felsic-intermediate hpabyssal pebbles, SCgn -Gneissschist-dark coarse-grained felsics, SCsi -Siliceous including iron formation, SCgy -Graywacke, SCmg -Highly magnetic pebbles but not as a separate sub-category, SCsd -Sulfide or sulfide-bearing, SCms -Meta-sedimentary pebbles but not graywacke, SCmc -Miscellaneous, including graphite).
Mineral counts of the 1/4 split nonmagnetic heavy mineral concentrate (nmHMC) in 57 selected drift and saprolite samples were made with a binocular stereoscope and a good light source. The nmHMC product provided a starting material which was then separated into nonmagnetic and paramagnetic fractions using a custom modified Frantz magnetic separator at the U.S. Geological Survey - Geochemical Branch, in Denver, Colorado. This step helped isolate accessory nonmagnetic minerals from the more abundant paramagnetic rock fragments (Fig. 10).

Mineral grain size, morphology, and color were noted during counting. Mineral types and methods used for estimating counts are: particulate gold (dry-panned), scheelite (under UV-light), pyrite-marcasite-zirconsphene-rutile-kyanite-native copper-and rock fragments (by grid estimate), and corundum-chalcopyritearsenopyrite-molybdenite-pyrite+quartz-epidote-gahnite-galena-and pyrrhotite (by trace grain identification). Mineral grains of unknown identity were isolated and sent for SEM-EDS analysis at Hanna Research Laboratories). Additionally, estimates of siderite percent and number of limonite pisoliths were made on the paramagnetic fraction, for stratigraphic correlation purposes (see Appendix 280-F).

Clay mineralogy determinations were made on fourteen glacial drift and saprolite samples using X-ray Diffraction techniques (oriented slides) via a contract laboratory (Hanna Research Laboratories).

Electromagnetic Measurements

Magnetic Susceptibility was measured on all rotasonic core before splitting, using a handheld magnetic susceptibility meter on unsplit core. Measurements were taken every two feet along the length of each core. Later pebble counts provided a count of magnetic supra-crustal pebbles in each sample having sufficient magnetic character to be attracted to a hand magnet.

Chemical Measurements

Chemical assays were made on the nonmagnetic heavy mineral concentrates (nmHMC), silt-clay (-63um) for Au and Ag, clay (-2um), and magnetic heavy mineral concentrates (magHMC) of glacial drift and selected saprolite samples. Whole rock and/or trace element measurements were made on selected bedrock and saprolite samples. In addition, matrix weak-acid solubility and percent calcium, magnesium, and iron in the soluble portion were measured. The matrix solubility measurements were made on the silt-clay fraction of dry-sieved samples using 4N HNO3.

Detection limits, sample digestion procedures, and analytical methods for nonmagnetic heavy mineral concentrates (mmHMC), clay (-2um), and magnetic heavy mineral concentrates (magHMC) are listed in tables C-1, C2, and C3.

Table C-1. Analytical methods and detection limits for the nmHMC fraction of Baudette area samples.

Ē

E

E

Ē

E

E

			Sample	Detection	Digestion	Measurement
No.	Item	Element	wt (g)	limit	method	method
1	Ag	Silver	0.5	0.1 ppm	HCI-HNO3 (3:1)	AA
2	Al	Aluminum	0.1	200 ppm	HCI-HNO3 (3:1)	ICP
3	As	Arsenic	n/a	l ppm	none	INAA
4	Au	Gold	n/a	0.001 ppm	none	INAA
5	Ba	Barium	n/a	100 ppm	none	INAA
6	Bc	Beryllium	0.1	0.5 ppm	HCI-HNO3 (3:1)	ICP
7	Bi	Bismuth	0.1	2 ppm	HCI-HNO3 (3:1)	ICP
8	Br	Bromine	n/a	1 ppm	none	INAA
9	Ca	Calcium	0.1	500 ppm	HC1-HNO3 (3:1)	ICP
10	Cd	Cadmium	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
11	Ce	Cerium	0/1 n/a	10 ppm	none	INAA
12	Co	Cobalt	n/a	10 ppm	none	INAA
13	Cr.	Chromium	n/a	50 ppm	none	INAA
14	C:	Cesium	n/a	l ppm	none	INAA
15	Cu	Conner	01	1 ppm	HCLHNO3 (3.1)	ICP
16	En	Europium	0.1 n/a	2 ppm		INAA
17	Ea	Trop	D'a	2 ppm 500 ppm	none	
19	G	Gallium	01	2 nnm	HCI HNO3 (3.1)	ICD
10	Uf	Hafnium	0.1	2 ppm 2 ppm	HCI-HINO3 (3.1)	
20	111 11~	Manaur	11/a 0.5	2 ppm	HNO3 HCI SNCI2	CV AA
20	ng T-	Tridium	0.3	0.005 ppm	HINOS-HCI-SINCIZ	
21	Ir V	Detersion	11/a	600 mm		ICD
22	к Га	Toothoown	0.1	500 ppm	HCI-HNO3 (3:1)	
25	1.4	Lantnanum	n/a	5 ppm		INAA
24		Lithium	0.1	1 ppm	HCI-HNO3 (3:1)	
25		Lutetium	n/a	0.5 ppm		INAA
20	Mg	Magnesium	0.1	500 ppm		ICF
21		Manganese	0.1	500 ppm		ICF
28	Mo	Nolybachum	0.1	Гррт	HCI-HNO3 (3:1)	ICP
29	Na	Sodium	0.1	500 ppm	HCI-HNO3(3:1)	ICP
30	ND	Niobium	0.1	i ppm	HCI-HNO3 (3:1)	ICP
31	NI	Nickel	0.1	l ppm	HCI-HNO3 (3:1)	ICP
32	P	Phosphorous	0.1	20 ppm	HCI-HNO3 (3:1)	ICP
33	Pb	Lead	0.1	2 ppm	HCI-HNO3 (3:1)	ICP
34	Rb	Rubidium	0.1	20 ppm	HCI-HNO3 (3:1)	ICP
35	Sb	Antimony	n/a	0.2 ppm	none	INAA
36	Sc	Scandium	n/a	0.5 ppm		INAA
37	Se	Selenium	0.5	0.1 ppm	HCI-HNO3 (3:1)	HY-AA
38	Sm	Samarium	n/a	0.2 ppm		INAA
39	Sr	Strontium	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
40	Ta	Tantalum	n/a	l ppm	none	INAA
41	ТЬ	Terbium	n/a	l ppm	none	INAA
42	Te	Tellurium	n/a	20 ppm	none	INAA
43	Th	Thallium	n/a	0.5 ppm	none	INAA
44	Ti	Titanium	0.1	10 ppm	HCI-HNO3 (3:1)	ICP
45	U	Uranium	n/a	0.5 ppm	none	INAA
46	v	Vanadium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
47	W	Tungsten	n/a	2 ppm	none	INAA
48	Y	Yittrium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
49	Yb	Ytterbium	n/a	5 ppm	none	INAA
50	Zn	Zinc	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
51	Zr	Zirconium	n/a	500 ppm	none	INAA

Table C-2. Analytical methods and detection limits for clay fraction of Baudette area samples.

Ú.

Ú.

Ú,

Ŵ.

- Ú

TŴ1

TÎN (

Ú.

Ő.

Ú.

Ú.

<u>í</u>

Í

Č.

Ţ.

			Sample	Detection	Digestion	Measurement
No.	Item	Element	wt (g)	limit	method	method
1	Ag	Silver (-63um)	0.1	0.1 ppm	HCI-HNO3 (3:1)	ICP
2	Al	Aluminum	0.1	200 ppm	HCI-HNO3 (3:1)	ICP
3	As	Arsenic	0.5	0.5 ppm	HCI-HNO3 (3:1)	HY-AA
4	Au	Gold (-63um)	30	0.001 ppm	Aqua-Regia	FA-DC
5	В	Boron	1.0	10 ppm	NaOH Fusion	DCP
6	Ba	Barium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
7	Be	Beryllium	0.1	0.5 ppm	HCI-HNO3 (3:1)	ICP
8	Bi	Bismuth	0.1	2 ppm	HC1-HNO3 (3:1)	ICP
9	Ca	Calcium	0.1	500 ppm	HC1-HNO3 (3:1)	ICP
10	Cd	Cadmium	0.5	0.2 ppm	HC1-HNO3 (3:1)	AA
11	Ce	Cerium	0.1	5 ppm	HC1-HNO3 (3:1)	ICP
12	Co	Cobalt	0.1	l ppm	HCI-HNO3 (3:1)	ICP
13	Cr	Chromium	0.1	1 ppm	HCl-HNO3 (3:1)	ICP
14	Cu	Copper	0.1	l ppm	HCI-HNO3 (3:1)	ICP
15	Fe	Iron	0.1	500 ppm	HCI-HNO3 (3:1)	ICP
16	Ga	Gallium	0.1	2 ppm	HCl-HNO3 (3:1)	ICP
17	K ·	Potassium	0.1	500 ppm	HCl-HNO3 (3:1)	ICP
18	La	Lanthanum	0.1	l ppm	HCI-HNO3 (3:1)	ICP
19	Li	Lithium	0.1	l ppm	HCl-HNO3 (3:1)	ICP
20	Mg	Magnesium	0.1	500 ppm	HCI-HNO3 (3:1)	ICP
21	Mn	Manganese	0.5	l ppm	HCI-HNO3 (3:1)	AA
22	Mo	Molybdenum	0.1	l ppm	HCI-HNO3 (3:1)	ICP
23	Na	Sodium	0.1	500 ppm	HCl-HNO3 (3:1)	ICP
24	Nb	Niobium	0.1	l ppm	HC1-HNO3 (3:1)	ICP
25	Ni	Nickel	0.1	l ppm	HCI-HNO3 (3:1)	ICP
26	Р	Phosphorous	0.1	50 ppm	HCI-HNO3 (3:1)	ICP
27	РЬ	Lead	0.1	2 ppm	HCl-HNO3 (3:1)	ICP
28	Rb	Rubidium	0.1	20 ppm	HCI-HNO3 (3:1)	ICP
29	Sb	Antimony	0.5	0.2 ppm	HCl-HNO3 (3:1)	HY-AA
30	Sc	Scandium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
31	Se	Selenium	n/a	l ppm	none	XRF
32	Sn	Tin	0.1	20 ppm	HCI-HNO3 (3:1)	ICP
33	Sr	Strontium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
34	Ta	Tantalum	0.1	10 ppm	HCl-HNO3 (3:1)	ICP
35	Te	Tellurium	0.1	10 ppm	HCI-HNO3 (3:1)	ICP
36	Ti	Titanium	0.1	10 ppm	HCI-HNO3 (3:1)	ICP
37	v	Vanadium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
38	W	Tungsten	0.1	10 ppm	HCI-HNO3 (3:1)	ICP
39	Y	Yittrium	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
40	Zn	Zinc	0.1	l ppm	HC1-HNO3 (3:1)	ICP
41	Zr	Zirconium	0.1	l ppm	HCI-HNO3 (3:1)	ICP

Table C-3. Analytical methods and detection limits for the magHMC fraction of Baudette area samples.

			Sample	Detection	Digestion	Measurement
No.	Item	Element	wt. (g)	limit	method	method
1	Fe2O3	Iron	0.5	200 ppm	HCI-HNO3-HF	AA
2	MgO	Magnesium	0.5	2 ppm	HCI-HNO3-HF	AA
3	TiO2	Titanium	0.5	20 ppm	HCI-HNO3-HF	AA
4	Ag	Silver	0.5	1 ppm	HCI-HNO3-HF	AA
5	Co	Cobalt	0.5	2 ppm	HCI-HNO3-HF	AA
6	Cr	Cromium	0.5	0.5 ppm	HCI-HNO3-HF	AA
7	Cu	Copper	0.5	1 ppm	HCI-HNO3-HF	AA
8	Mn	Manganese	0.5	0.5 ppm	HCI-HNO3-HF	AA
9	Ni	Nickel	0.5	1 ppm	HCI-HNO3-HF	AA
10	РЬ	Lcad	0.5	2 ppm	HCI-HNO3-HF	AA
11	v	Vanadium	0.5	10 ppm	HCI-HNO3-HF	AA
12	Zn	Zinc	0.5	0.2 ppm	HCl-HNO3-HF	AA

¢.

¢.

E

È

Note: Detection limits calculated based on instrumental sensitivity, initial sample weight, and dilution. Dilution for metals and TiO2 is 100x. Dilution for MgO is 2,000x. Dilution for Fe2O3 is 10,000x.

Samples were digested using the microwave digestion method of Mathes and others (1983).

Appendix 280-D. Precision and accuracy of assay methods.

Precision and accuracy control for Baudette area samples is made using soil, bedrock, and metal ore standards, and within-project and between-project duplicate samples. Quartz blanks are also used to check for cross contamination of samples during preparation.

Precision

Percent Precision and 2 standard deviation (2 sd) confidence intervals have been calculated for the for the nmHMC assay results (Table D-1) and the -2um (clay) assay results (Table D-2) using the methods outlined by Shiffelbein (1987) and Wise (1987). Elements exhibiting an assay distribution more lognormal than arithmetic have been transformed to log10 values as suggested by Garrett (1969) before proceeding with the precision calculation. Assay results for control samples were also plotted graphically for visual evaluation of precision. Fig. D-1 is an example of such a plot.

The Percent Precision (% P) for each element is calculated by determining the variance of each control group and then using the average of those variances in the precision calculation. The equation as structured gives heavier weighting to variances of the paired sample duplicates in calculating precision.

Equation 1

n = no. of samples in group N = no. of groups $\overline{X_o} = mean assay value for the samples in group N$ $X_{r_l} = assay value for ith replicate in group$ $\overline{X_{N\times n}} = mean value of all assayed samples in N groups$ t = the t-Distribution for N degrees of freedom

N is the number of control sample groups and n is the number of samples analyzed in each control group. For the clay fraction samples N=8, n=7 for SO-1, n=4 for GTS-1, and n=2 for each duplicate pair. For the nmHMC samples N=3, n=6 for PTC-1, n=4 for FER-4, and n=2 for each duplicate pair.

A 2 standard deviation (2 sd) confidence interval (equation 2) is used for stratigraphic interpretations and is calculated as two times the square root of the arithmetic variance derived in equation 1.

 $2 SD = 2 \times \sqrt{variance}$

Equation 2

Accuracy

Accuracy can be approximately determined when certified, recommended, or accepted values of control standard assays are available. Accuracy, where reported for Baudette Area assays, is calculated as a percent variation from certified, recommended, or accepted values, using the coefficient-of-variation calculation of Size (1987). Tables D-1 and D-2 list accuracies for elements where certified, recommended, or accepted standard values are available.

% variation =
$$100 \times \frac{(X_o - \overline{X_p})^2}{X_o}$$

Equation 3

n = no. of assayed samples in group $X_o = recommended$ value $\overline{X_n} = mean of n assayed values$

Control Samples

Precision and accuracy control for Baudette Area assay samples used the following scheme:

-2um (clay) Assay Control Samples:

<u>SO-1</u> -(CANMET SOIL-1) one control sample per twenty assay samples to measure analytical precision, 7 samples total. These control samples are exposed to digestion and analysis error. The SO-1 samples are suitable for both precision and accuracy calculations.

<u>GTS-1</u> -(CANMET GOLD TAILINGS SAMPLE) four samples of a gold tailings standard interspesed in the total sample population as a double check on analytical precision. The GTS-1 assay results reflect digestion and analysis error. The GTS-1 samples are suitable for both precision and accuracy calculations.

<u>Otz-1</u> -three sea-sand quartz blanks interspersed in the total population to test cross contamination during preparation. These samples will reflect preparation, digestion, and analysis error, but as blanks they are not suitable for precision and accuracy determinations. Results for the quartz blanks suggest that cross contamination during preparation is not significant factor in these samples.

<u>Sample Duplicates</u> -(within project duplicates) six duplicates (12 samples) were split after preparation. These samples have been exposed to digestion, and analysis errors, but since they were split after preparation, they do not reflect preparation errors. Each sample in the duplicate pair was analyzed adjacent to its partner in the analytical sequence. The clay fraction sample duplicates are suitable for precision calculations.

<u>Inter-Laboratory Duplicates</u> - (between project duplicates) two samples that were earlier analyzed during a previous glacial drift geochemistry project were used to check for variability between data compiled in earlier projects and data compiled in the present project. The samples are not suitable for precision or accuracy calculations, but can be used to compare datasets from different projects.

nmHMC Assay Control Samples:

Į.

Ĩ

<u>PTC-1</u> -(CANMET NOBLE METALS-BEARING SULPHIDE CONCENTRATE) six samples of a platinum-group-element ore standard. The assay results for PTC-1 reflect reference standard variability, digestion, and analysis error. The results are suitable for both precision and accuracy calculations.

<u>FER-4</u> -(CANMET IRON FORMATION) four samples, each spiked with a gold grain of known size. The FER-4 results are suitable for precision calculations.

<u>Sample Duplicates</u> -six pairs of till samples, each pair sampled along the identical core interval. These samples contain intra-sample preparation, digestion, and analysis errors, and are suitable for precision calculations. The duplicate paired samples were run in separate analytical batches so that between batch error could also be included in the precision determinations.

Table D-1. Precision and accuracy for assays of nmHMC in Baudette area samples.

Item	Element	% P	% P	2 sd	FER-4	FER-4	% vari.	PTC-1	PTC-1	% vari.
		(log)	(arith)	(arith)	(mean)	œrt.	FER-4	(mean)	œrt.	PTC-1
Ag	Silver	80	185	14	2.3	-	•	17	-	-
Al	Aluminum	17	11	0.1	0.5	0.9	39	0.3	-	-
As	Arsenic	14	55	16	4.8	3.6	32	11	-	-
Au	Gold	28	159	314	6.5	•	-	512	650	99
Ba	Barium	12	68	104	103	43	138	262	-	-
Bi	Bismuth	5	22	9.0	16	-	-	121	-	-
Br	Bromine	63	61	1.8	1.0	-	•	4.8	-	-
Ca	Calcium	164	18	0.2	1.4	1.6	12	0.2	-	-
Cd	Cadmium	140	57	1.0	1.8	-	-	2.5	-	-
Ce	Cerium	6	49	120	10	-	-	33	-	-
Co	Cobalt	3	6	44	10	2.0	400	2730	-	-
Cr	Chromium	4	20	147	50	9.0	456	1930	-	· _
Cs	Cesium	255	71	1.0	1.0	0.8	25	2.2	-	-
Cu	Copper	11	2	97	15	13	17	>20,000	52000	-
Eu	Europium	35	37	0.9	2.0	-	-	2	-	-
Fe	Iron	3	9	2.5	27	22	24	23	27	1
Ga	Gallium	44	190	47	2.0		-	85	-	-
Hf	Hafnium	24	117	53	2.0	-	-	3.2	-	-
Hg	Mercury	11	38	19	24	-	-	13 ·	-	-
La	Lanthanum	10	44	47	8.0	8.0	0	5.0	-	-
Li	Lithium	18	22	0.9	5.8	7.0	18	4.0	-	-
Lu	Lutetium	132	33	.05	0.5	-	-	0.5	-	-
Mg	Magnesium	102	11	0.1	0.8	0.8	11	2.3	-	
Mn	Manganese	10	23	0.1	0.1	0.1	15	0.1	-	•
Mo	Molybdenum	20	33	5.0	15.3	-	-	8.3	-	-
Na	Sodium	0	0	0.0	0.0	-	-	0.0	-	-
NЪ	Niobium	9	23	3.3	10	-	-	17	-	-
Ni	Nickel	5	1	4.6	4.8	6.0	21	>20,000	94,000	-
Р	Phosphorous	8	18	0.0	0.1	0.1	55	0.1	· -	-
РЬ	Lead	10	- 30	14	13	8.0	66	76	-	-
Rb	Rubidium	30	118	18	16	-	-	13	-	-
Sb	Antimony	115	34	0.4	1.6	3.0	46	0.2	-	-
Sc	Scandium	10	14	4.3	1.1	1.5	27	4.2	-	-
Se	Selenium	1100	11	0.6	0.1	-	-	18	-	-
Sm	Samarium	15	38	6.5	2.3	2.2	2	0.6	-	-
Sr	Strontium	6	21	8.2	61	62	2	5.7	-	-
Та	Tantalum	34	41	1.7	1.0	-	-	1.0	-	-
ТЪ	Terbium	43	51	1.3	1.0	-	-	1.0	-	-
Te	Tellurium	14	52	15	20	-	-	47	•	-
Th	Thorium	16	45	29	0.8	-	-	1.5	-	-
Ti	Titanium	16	22	0.1	0.1	0.0	19	0.1	-	-
IJ	Uranium	24	53	4 1	0.6	-	-	3.8	-	-
v	Vanadium	11	20	16	6.3	11	43	11	-	-
w	Tungsten	51	187	14	23			87	_	-
Y	Yttrium	6	10	57	55	8.0	31	20	-	-
Yb	Ytterhium	20	34	2.2	5.0	0.0	000	50	-	-
Zn	Zinc	47	45	2.0	25	0.5 77	200	2.0	-	-
7r	Zirconium	<u>م</u> بر ۵	75	2170	55	19	2020	1070	-	-
<u></u>	Litoinun	7	/0	U	520	10	2000	14/0		

F

Ċ

Ê

Notes: % P =percent precision

2 sd =2x arithmetic standard deviation

mean =average value for control group

cert. =certified assay value of control standard

log =lognormal precision value

arith =arithmetic precision value

PTC-1 =Platinum group standard

FER-4 =Sulfide ore standard

Table D-2. Precision and accuracy for assays of clay fraction in Baudette area samples.

1

ý.

ļ

Į.

ļ

Ę.

Ú.

Ţ.

ų.

Ú

Č.

Į.

Ę.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			% P	% P	2 sd	GTS-1	GTS-1	% vari.	SO-1	SO-1	% vari.
Ag Silver 41 50 0.3 0.2 . 1.1 . Al Aluminum 8 8 0.2 1.5 6.4 77 4.4 9.4 As Arsenic 45 20 1.9 47 - - 1.1 - Au Gold 98 18 13 279 346 19 - - B Boron 7 10 154 - - 21 - Ba Barium 0 0 0.0 5.0 - - 5.5 - Bis Bismuth 0 0 0.0 2.3 3.9 11 0.9 1.8 Cd Cadmium 0 0.0 0.2 - - 0.2 - - 1.7 - - 1.7 - - 1.7 - - 1.7 - - 1.7 - - 1.8 - - 2.7 3.2 - - 2.7 3.2 - <th< th=""><th>Item</th><th>Element</th><th>(log)</th><th>(arith)</th><th>(arith)</th><th>(mean)</th><th>œrt.</th><th>GTS-1</th><th>(mean)</th><th>œrt.</th><th>SO-1</th></th<>	Item	Element	(log)	(arith)	(arith)	(mean)	œrt.	GTS-1	(mean)	œrt.	SO-1
Al Aluminum 8 8 0.2 1.5 6.4 77 4.4 9.4 As Arsenic 45 20 1.9 47 - - 1.1 - Au Gold 98 18 13 279 346 19 - - B Barium 1 6 12 239 - - 314 879 Be Berium 0 0 0.0 0.5 - - 5.0 - Ca Calcium 0 0 0.0 0.2 - - 0.1 0.9 1.8 Cd Cadumium 0 0 0.0 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - - 0.2 - 1.7 2.8 - - 1.7 7.8 1.1 1.30 - - 1.41 1.6 0.0 0.2 3.1 9.1 1.6 0.0	Āg	Silver	41	50	0.3	0.2	•	-	1.1	-	-
As Ascencie 45 20 1.9 47 - - 1.1 - Au Gold 98 18 13 279 346 19 - - B Boron 7 17 10 154 - - 21 - Ba Barium 1 6 12 239 - - 314 879 Be Beryllium 0 0 0.0 5.0 - - 5.0 - Ca Calcium 10 8 0.2 3.5 3.9 11 0.9 1.8 Cd Cadmium 0 0 0.0 0.2 - 0.2 - Ce Cerium 2 7 5.7 48 - - 147 160 Cu Copper 2 7 4.4 97 - - 61 61 Ga Gallium 5 17 1.6 2.0 - - 18 - Ca	Al	Aluminum	8	8	0.2	1.5	6.4	77	4.4	9.4	53
Au Gold 98 18 13 279 346 19 B Barium 1 6 12 239 314 879 Be Berium 0 0 0.0 0.5 0.5 Be Berium 0 0 0.0 0.5 0.5 Ca Calcium 10 8 0.2 3.5 3.9 11 0.9 1.8 Cd Cadmium 0 0 0.0 0.2 - - 0.2 - Cc Cerium 2 7 5.7 48 - - 117 - Co Cobalt 2 7 1.7 28 - - 61 66 Cu Copper 2 7 4.4 97 - - 61 66 Cu Copper 2 7 1.6 2.0 - - 18 - Cu Cobalt 8 <	As	Arsenic	45	20	1.9	47	-	-	1.1	-	-
B Boron 7 17 10 154 - - 21 - Ba Barium 1 6 12 239 - - 314 879 Be Beryllium 0 0 0.0 0.5 - - 0.5 - Bi Bismuth 0 0 0.0 5.0 - - 0.2 - Ca Calcium 10 8 0.2 3.5 3.9 11 0.9 1.8 Cd Cadmium 0 0 0.0 0.2 - 0.2 - 0.2 - Cd Cadmium 2 7 5.7 48 - - 117 - 0.2 - 0.2 2.7 Ca Cabalt 2 7 1.7 2.8 0.0 2.3 1.92 1.0 2.7 1.3 Li Lathana 5 17 1.6 2.0 - 1.8 2.3 - Mg Magnesium 3	Au	Gold	98	18	13	279	346	19	-	-	-
Ba Barium 1 6 12 239 - - 314 879 Be Beryllium 0 0 0.0 0.5 - - 0.5 - Ca Calcium 10 8 0.2 3.5 3.9 11 0.9 1.8 Cd Cadmium 0 0 0.0 0.2 - 0.2 - Cc Cerium 2 7 5.7 48 - - 117 - Co Cobalt 2 7 5.7 48 - - 147 160 Cu Copper 2 7 4.4 97 - - 61 61 Fe Iron 4 7 0.3 5.5 6.0 8 5.3 6.0 Ga Gallium 5 17 1.6 2.0 - - 1.8 2.7 La Lathhanum 7 18 7.8 28 - - 53 - Mg	В	Boron	7	17	10	154	-	-	21	-	•
Bet Beryllium 0 0 0.0 0.5 - - 0.5 - Bismuth 0 0 0.0 0.5 - - 5.0 - Ca Calcium 10 8 0.2 3.5 3.9 11 0.9 1.8 Cd Cadmium 0 0 0.0 0.2 - - 0.2 - Ce Cerium 2 7 5.7 48 - - 117 - Co Cobalt 2 7 5.7 48 - - 147 160 Cu Copper 2 7 4.4 97 - - 61 61 Fe Iron 4 7 0.3 5.5 6.0 8 5.3 6.0 La Lathanum 7 18 7.8 28 - - 53 - Li Lithium 2 6 1.8 20 - - 1.8 2.3 Magne	Ba	Barium	1	6	12	239	-	-	314	879	64
Bit muth 0 0 0.0 5.0 - - 5.0 - Ca Calcium 10 8 0.2 3.5 3.9 11 0.9 1.8 Cd Cadmium 0 0 0.0 0.2 - - 0.2 - Ce Cerium 2 7 5.7 48 - - 117 - Co Coronium 1 7 8.1 130 - - 61 61 Cu Copper 2 7 4.4 97 - - 61 61 Ga Gallium 5 17 1.6 2.0 - - 18 - K Potassium 16 8 0.0 0.2 3.1 92 1.0 2.7 La Lathaum 7 18 7.8 28 - - 53 - Mg Magnesium 3 6 0.1 2.1 - - 1.8 2.3 <t< td=""><td>Be</td><td>Beryllium</td><td>0</td><td>0</td><td>0.0</td><td>0.5</td><td>-</td><td>-</td><td>0.5</td><td>-</td><td>-</td></t<>	Be	Beryllium	0	0	0.0	0.5	-	-	0.5	-	-
Ca Calcium 10 8 0.2 3.5 3.9 11 0.9 1.8 Cd Cadmium 0 0 0.0 0.2 - - 0.2 - Cc Cerium 2 7 5.7 48 - - 117 - Co Cobalt 2 7 1.7 28 - - 147 160 Cu Copper 2 7 4.1 30 - - 147 160 Cu Copper 2 7 4.4 97 - - 61 61 Fe Iron 4 7 0.3 5.5 6.0 8 5.3 6.0 Ga Gallium 5 17 1.6 2.0 - - 18 - Latathanum 7 18 7.8 28 - - 1.8 2.3 Magneates 10 2.9 2.0 33 - - 1.8 2.3 Mo <t< td=""><td>Bi</td><td>Bismuth</td><td>0</td><td>0</td><td>0.0</td><td>5.0</td><td>•</td><td>-</td><td>5.0</td><td>-</td><td>-</td></t<>	Bi	Bismuth	0	0	0.0	5.0	•	-	5.0	-	-
Cd Cadmium 0 0 0.0 0.2 - - 0.2 - Ce Cerium 2 7 5.7 48 - - 117 - Co Cobalt 2 7 5.7 48 - - 117 - Cr Chromium 1 7 8.1 130 - - 147 160 Cu Copper 2 7 4.4 97 - - 61 61 Cu Copper 2 7 4.4 97 - - 61 61 Cu Copper 2 7 4.4 97 - - 18 - Ga Gallium 5 17 1.6 2.0 - 18 2.3 6.0 La Lathanum 7 18 7.8 28 - - 1.8 2.3 Mn Magnesium 3 6 0.1 2.1 2.7 - 1.8 2.3	Ca	Calcium	10	8	0.2	3.5	3.9	11	0.9	1.8	51
Ce Cerium 2 7 5.7 48 - - 117 - Co Cobalt 2 7 1.7 28 - - 27 32 Cr Chromium 1 7 8.1 130 - - 147 160 Cu Copper 2 7 4.4 97 - - 61 61 Fe Iron 4 7 0.3 5.5 6.0 8 5.3 6.0 Ga Gallium 5 17 1.6 2.0 - - 18 - K Potassium 16 8 0.0 0.2 3.1 92 1.0 2.7 La Lathanum 7 18 7.8 28 - - 1.8 2.3 Mg Magnesium 3 6 0.1 2.1 - - 1.8 2.3 Mn Manganesic 10 29 209 1280 - - 8.1 - Ni <td>Cd</td> <td>Cadmium</td> <td>0</td> <td>0</td> <td>0.0</td> <td>0.2</td> <td>-</td> <td>-</td> <td>0.2</td> <td>-</td> <td>-</td>	Cd	Cadmium	0	0	0.0	0.2	-	-	0.2	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ce	Cerium	2	7	5.7	48	-	-	117	-	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Co	Cobalt	2	7	1.7	28	-	-	27	32	16
CuCopper274.4976161FeIron470.35.56.085.36.0GaGallium5171.62.018-KPotassium1680.00.23.1921.02.7LaLanthanum7187.82853-LiLithium261.82044-MgMaganese102920912805790.1MoMolybdenum31272.0332.7-NaSodium12160.10.01.4960.22.0NbNiobium37544.4118.1-PPhosphorous14310.10.10.10.1PbLead8224.1350.22ScScandium6131.48.714-SbArimony23560.212.3-ScSclenium274761.11.21.1-ScSclenium274761.11.21.1-SrTrontium211 </td <td>Cr</td> <td>Chromium</td> <td>1</td> <td>7</td> <td>8.1</td> <td>130</td> <td>-</td> <td>-</td> <td>147</td> <td>160</td> <td>8</td>	Cr	Chromium	1	7	8.1	130	-	-	147	160	8
FeIron470.35.56.085.36.0GaGallium5171.62.018-KPotassium1680.00.23.1921.02.7LaLanthanum7187.82853-LiLithium261.82044-MgMagnesium360.12.11.82.3MnMagnesium31272.0332.7-NaSodium12160.10.01.4960.22.0NbNicobium37544.4118.1-NiNickel296.4870.10.1PPhosphorous14310.10.10.10.1PbLead8224.1352021RbRubidium1654415099139SbActimony23560.211.1-ScScandium6131.48.71.1-SrStrontium2111340076328TaTantalum320224	Cu	Copper	2	7	4.4	97	-	-	61	61	1
GaGallium5171.62.018-KPotassium1680.00.23.1921.02.7LaLanthanum7187.82853-LiLithium261.82044-MgMagnesium360.12.11.82.3MnManganese102920912802.7-NaSodium12160.10.01.4960.22.0NbNiobium37544.4118.1-NiNickel296.487-2021PPhosphorous14310.10.1-0.10.1PbLead8224.1352021RbRubidium1654415099139SbAntimony23560.211.4-ScScandium6131.48.71.4-SrStrontium211134002.3-TeTellurium7202.113.510-SrStrontium2111340	Fe	Iron	4	7	0.3	5.5	6.0	8	5.3	6.0	11
KPotassium1680.00.23.1921.02.7LaLanthanum7187.82853-LiLithium261.82044-MgMagnesium360.12.11.82.3MnMaganese102920912805790.1MoMolybdenum31272.0332.7-NaSodium12160.10.01.4960.22.0NbNiobium37544.4118.1-NiNickel296.4870.10.1PPhosphorous14310.10.10.10.1PbLead8224.1352021RbRubidium1654415099139SbAntimony23560.211.1-ScScandium6131.48.7-1.4-SrStrontium2111340020-SrStrontium211134000.40.5SrStrontium26<	Ga	Gallium	5	17	1.6	2.0	-	-	18	-	-
LaLanthanum7187.82853-LiLithium261.82044-MgMagnesium360.12.11.82.3MnManganese102920912805790.1MoMolybdenum31272.0332.7-NaSodium12160.10.01.4960.22.0NbNiobium37544.4118.1-NiNickel296.4877994PPhosphorous14310.10.10.10.1PbLead8224.1352021RbRubidium1654415099139SbAntimony23560.21-1.1-ScScandium6131.48.7-14-ScSclenium274761.11.2-1.1-SrStrontium2111340076328TaTantalum3202247.57.7-2.3-TeTellurium7202.113.5- </td <td>ĸ</td> <td>Potassium</td> <td>16</td> <td>8</td> <td>0.0</td> <td>0.2</td> <td>3.1</td> <td>92</td> <td>1.0</td> <td>2.7</td> <td>61</td>	ĸ	Potassium	16	8	0.0	0.2	3.1	92	1.0	2.7	61
LiLithium261.82044-MgMagnesium360.12.11.82.3MnManganese102920912805790.1MoMolybdenum31272.0332.7-NaSodium12160.10.01.4960.22.0NbNiobium37544.4118.1-NiNickel296.4870.10.1PPhosphorous14310.10.10.10.1PbLead8224.1352021RbRubidium16544150-99139SbAntimony23560.21-0.2-ScScandium6131.48.7-1.1-SnTin000.0202.3-SrStrontium2111340076328TaTantalum3202247.57.7-2.3-ToTitaaium265.466-115139WTungsten000.010-10-<	La	Lanthanum	7	18	7.8	28	•	-	53	-	-
MgMagnesium360.12.11.82.3MnManganese102920912805790.1MoMolybdenum31272.0332.7-NaSodium12160.10.01.4960.22.0NbNiobium37544.4118.1-NiNickel296.4870.10.1PPhosphorous14310.10.10.10.1PbLead8224.1352021RbRubidium1654415099139SbAntimony23560.210.2-ScScandium6131.48.71.1-SnTin000.02020-SrStrontium2111340076328TaTantalum3202247.57.7-2.3-ToTellurium7202.113.510-VVanadium265.466115139WTungsten00.01	Li	Lithium	2	6	1.8	20	-	-	44	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mg	Magnesium	3	6	0.1	2.1	-	-	1.8	2.3	20
MoMolybdenum31272.0332.7-NaSodium12160.10.01.4960.22.0NbNiobium37544.4118.1-NiNickel296.4877994PPhosphorous14310.10.10.10.1PbLead8224.1352021RbRubidium1654415099139SbAntimony23560.210.2-ScScandium6131.48.7-14-ScScandium6131.48.7-14-SnTin000.02020-SrStrontium2111340076328TaTantalum3202247.57.7-2.3-TeTellurium7202.113.5-10-TiTitanium265.466-115139WTungsten000.010-10-YYttrium381.39.2-20-Zinc	Mn	Manganese	10	29	209	1280	-	-	579	0.1	35
NaSodium12160.10.01.4960.22.0NbNiobium37544.4118.1-NiNickel296.4877994PPhosphorous14310.10.10.10.1PbLead8224.1352021RbRubidium1654415099139SbAntimony23560.210.2-ScScandium6131.48.714-SeSclenium274761.11.21.1-SnTin000.02020-SrStrontium2111340076328TaTantalum3202247.57.72.3-TiTitanium260.00.00.40.5VVanadium265.466115139WTungsten000.01020-YYttrium381.39.220-Zinc278.1150-	Мо	Molybdenum	31	27	2.0	33	-	-	2.7	-	-
NbNiobium 37 54 4.4 11 8.1 -NiNickel29 6.4 87 -7994PPhosphorous14 31 0.1 0.1 -0.1 0.1 PbLead822 4.1 35 20 21 RbRubidium16 54 41 50 99 139 SbAntimony23 56 0.2 1 0.2 -ScScandium613 1.4 8.7 14 -SeSclenium 274 76 1.1 1.2 1.1 -SnTin00 0.0 20 20 -SrStrontium2 11 13 400 76 328 TaTantalum 320 224 7.5 7.7 - 2.3 -TeTellurium7 20 2.1 13.5 10 -TiTitanium2 6 0.0 0.0 0.4 0.5 VVanadium2 6 5.4 66 115 139 WTungsten00 0.0 10 20 -Zinc27 8.1 150 20 <	Na	Sodium	12	16	0.1	0.0	1.4	96	0.2	2.0	91
NiNickel296.4877994PPhosphorous14310.10.10.10.1PbLead8224.1352021RbRubidium1654415099139SbAntimony23560.210.2-ScScandium6131.48.714-SeSclenium274761.11.21.1-SnTin000.02020-SrStrontium2111340076328TaTantalum3202247.57.7-2.3-TeTellurium7202.113.5-10-TiTitanium260.00.0-0.40.5VVanadium265.466-115139WTungsten000.010-10-YYttrium381.39.2-20-Zinc278.1150-127146	NЬ	Niobium	37	54	4.4	11	-	-	8.1	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni	Nickel	2	9	6.4	87	-	- '	79	94	16
PbLead8224.1352021RbRubidium1654415099139SbAntimony23560.210.2-ScScandium6131.48.714-SeSclenium274761.11.21.1-SnTin000.02020-SrStrontium2111340076328TaTantalum3202247.57.72.3-TeTellurium7202.113.510-TiTitanium260.00.0-0.40.5VVanadium265.466115139WTungsten000.01020-ZnZinc278.1150127146	Р	Phosphorous	14	31	0.1	0.1	-	-	0.1	0.1	1
RbRubidium1654415099139SbAntimony23560.210.2-ScScandium6131.48.714-SeSelenium274761.11.21.1-SnTin000.02020-SrStrontium2111340076328TaTantalum3202247.57.72.3-TeTellurium7202.113.510-TiTitanium260.00.0-0.40.5VVanadium265.466115139WTungsten000.01020-ZnZinc278.1150127146	РЬ	Lead	8	22	4.1	35	-	-	20	21	5
SbAntimony23560.21-0.2-ScScandium6131.48.714-SeSelenium274761.11.21.1-SnTin000.02020-SrStrontium2111340076328TaTantalum3202247.57.72.3-TeTellurium7202.113.510-TiTitanium260.00.00.40.5VVanadium265.466115139WTungsten000.01020-YYttrium381.39.220-ZnZinc278.1150127146	RЬ	Rubidium	16	54	41	50	•	-	99	139	29
ScScandium6131.48.714-SeSelenium274761.11.21.1-SnTin000.02020-SrStrontium2111340076328TaTantalum3202247.57.72.3-TeTellurium7202.113.510-TiTitanium260.00.00.40.5VVanadium265.466115139WTungsten000.01020-ZnZinc278.1150127146ZrZirconium2241532221-	Sb	Antimony	23	56	0.2	1	•	-	0.2	-	-
SeSelenium274761.11.21.1-SnTin000.02020-SrStrontium2111340076328TaTantalum3202247.57.72.3-TeTellurium7202.113.510-TiTitanium260.00.00.40.5VVanadium265.466115139WTungsten000.01020-ZnZinc278.1150127146ZrZirconium2241532221-	Sc	Scandium	6	13	1.4	8.7	-	-	14	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Se	Selenium	274	76	1.1	1.2	-	-	1.1	-	•
SrStrontium2111340076328TaTantalum3202247.57.72.3-TeTellurium7202.113.510-TiTitanium260.00.00.40.5VVanadium265.466115139WTungsten000.01020-YYttrium381.39.220-ZnZinc278.1150127146TrZirconium2241532221-	Sn	Tin	0	0	0.0	20	-	-	20	-	-
TaTantalum3202247.57.72.3-TeTellurium7202.1 13.5 10-TiTitanium260.00.00.40.5VVanadium265.466115139WTungsten00.01010-YYttrium381.39.2-20-ZnZinc278.1150127146ZrZirconium2241532221-	Sr	Strontium	2	11	13	400	-	-	76	328	77
TeTellurium7202.1 13.5 10-TiTitanium260.00.00.40.5VVanadium265.466115139WTungsten000.01010-YYttrium381.39.220-ZnZinc278.1150127146ZrZirconium22415.32221-	Ta	Tantalum	320	224	7.5	7.7	-	-	2.3	-	-
TiTitanium260.00.00.40.5VVanadium265.466115139WTungsten000.01010-YYttrium381.39.220-ZnZinc278.1150127146ZrZirconium22415.32221-	Te	Tellurium	7	20	2.1	13.5	-	-	10	-	-
VVanadium265.466115139WTungsten000.01010-YYttrium381.39.220-ZnZinc278.1150127146ZrZirconium2241532221-	Ti	Titanium	2	6	0.0	0.0	-	-	0.4	0.5	30
W Tungsten 0 0 0.0 10 - - 10 - Y Yttrium 3 8 1.3 9.2 - - 20 - Zn Zinc 2 7 8.1 150 - - 127 146 Zr Zirconium 22 41 53 22 - - 21 -	v	Vanadium	2	6	5.4	66	-	-	115	139	18
Y Yttrium 3 8 1.3 9.2 - - 20 Zn Zinc 2 7 8.1 150 - - 127 146 Zr Zirconium 22 41 53 22 - - 21 -	W	Tungsten	0	0	0.0	10	-	-	10	-	-
Zn Zinc 2 7 8.1 150 127 146 Zr Zirconium 22 41 53 22 21 -	Y	Yttrium	3	8	1.3	9.2	-	-	20	-	-
7r Zirconium 22 41 53 22 - 21 -	Zn	Zinc	2	7	8.1	150	-	-	127	146	13
	Zr	Zirconium	22	41	5.3	22	-	•	21	-	<u>.</u>

% P =percent precision

2 sd =2x arithmetic standard deviation

mean =average value for control group

cert. =certified assay value of control standard

log =lognormal precision value

arith =arithmetic precision value

GTS-1 =Gold ore standard

SO-1 =Soil standard

Fig. D-1. Assay results for seven samples of reference standard CANMET SO-1

Ê

E

Ē

¢

Ē

C

C

Analyses

△ Recommended Value

Appendix 280-E. Variation maps of Baudette area results.

Abbreviations, data key, and other notation

<u>Symbols</u> T S

Tr.

- = summary of till data in borehole
- S = summary of saprolite data in borehole
- B = bedrock lithology

Notes: data selection criteria are 4 or more gold grains, 10 ppb or more gold in the silt-clay fraction, and 3x median or more of pathfinder element or heavy mineral.

F

Ċ.

Ē

Ċ

Ê

Ċ

C

	R 36 W	R 35 W	R 34 W	R 33 W	R 32 W	R 31 W
T 160 N	OB-521 T = corundum, Cu S = - B = mylonite malic volcanic ?	OB-519 T = - • S = -	OB-515 T = gold assay, fine fraction S = -	OB-511 • T = native Cu (11) S = -	OB-507 T = - S = gold grains, HMC, Zn (4) corundum B = porphyritic mafic plutonic	OB-503 T = gold assay, HMC * gold assay, fine fraction scheelite Ba * S = Hg in quartz sand B = mylonite
	phyllonite ?	B = hornblende tonalite	•	B = biotite quartz monzonite	with aplite dikes	quartz-bearing plutonic protolith
T 159 N	T = (4) gold grains, HMC S = (30) galena, Cu	OB-518 T = - S = -	OB-514 T = gold assay, HMC * gold assay, fine fraction Hg, Cu * S = -	OB-510 T = -	OB-506 T = (5) gold grains, HMC * gold assay, fine fraction *	OB-502 T = (4) gold grains, HMC * Ag & Pb in magnetite * (3) chalcopyrite
	B = - ● 520	B = protomylonite intermediate volcaniclastic	B = basalt 514	S = - 510 B = gabbro	S = gold assay, fine fraction Cu HMC assay B = protomylonite gabbro	S = - • B = syenite
	R 36 W	OB-517 T = (4) gold grains, HMC * gold assay, HMC * (2) Zn-spinel grains * (2) scheelite grains * Cu, corundum S = - B = mylonite mafic rock	OB-513 T = kyanite 10% S = - • B = barren semimassive sulfides	OB-509 T = gold assay, fine fraction * W, corundum * (2) native Cu * (2) scheelite S = - B = gabbro	OB-505 T = (2) molybdenite Zn, Ni, Cu * S = Zn, Fe, Pb B = quartz monzonite	OB-501 • T = - S = corundum B = quartz monzonite
PROJ	T 157 N	OB-516 T = - S = - B = graywacke	OB-512 T = (4) molybdenite * (2) scheelite * S = - B = graywacke	OB-508 T = Cu, native Cu (12) S = (10) galena, native Cu B = graywacke + mylonite		SCALE 1 MIL

1-90 eem

. ′ *

. 6

Appendix 280-F. Master index for Baudette area samples.

Column abbreviations and data key

Stratigraphic units

4

ý.

Í.

<u>.</u>

Ť.

Í,

ý

Ī.

Ę.

Í.

Z

Í

- 2

кт	=Koochiching till
KG	=Koochiching gravel
RT	=Rainy till
RS	=Rainy sand
RG	=Rainy gravel
RL	=Rainy lake sediment
WT	=Winnipeg till
ws	=Winnipeg sand
OT	=Old Rainy till
Ōŝ	=Old Rainy sand
ŎĞ	=Old Rainy gravel
ÕL	=Old Rainy lake sediment
ASAP	=reworked saprolite
SAP	=saprolite
SAPZ	=saprolite (trace element analysis)
BEDZ	=bedrock (trace element analysis)
BED	=bedrock
Other abbreviations	
na	=not applicable
ру	=pyrite
ODM	=Overburden Drilling Management Labs
kg	=kilogram
Surf.	=surface
elev.	=elevation
(msl)	=mcan sca level
(ft.)	=feet
Qtz or qtz	=quartz
plut.	=plutonic
Bio.	=biotite
Plag.	=plagioclase
Gran	=Granite
Green	=Greenstone
Gray	=Graywacke
> 4	=greater than four limonite grains
1-4	=one to four limonite grains in sample

Notes:

Sample height data are sample height (in feet) above or below the basal Quaternary contact.

AUDEIIGIA	200-1. 10143	Gold	tor Daudette area	sanipica.				Surf	Bed	Quat	Sample	Sample		Estimated
		araine	ODM	Siderite	I imonite	Sampled		alau	alau	bace	baight	denth	Lindorhung	NE un ico
a 1	•• •	grams	D	Siderite	Linome	Sampieu		CICV.	CICV.	Uase (nergin (O)		Onderlying	NE up ice
Sample 501-001		/10kg	Kemarks	<u>~~~%</u>	content	131-135	Area Fast	(msl) 1156	(msl) 042	(msl) 1021	<u>((t.)</u>	([[.]	Otz Monzonite	bedrock Gran/Green
501-007	SAP	õ			v	135-145	Fast	1156	942	1021	-5	133	Otz Monzonite	Gran/Green
501-003	SAP	ŏ				157-163	Fast	1156	942	1021	-25	160	Otz Monzonite	Gran/Green
501-004	BEDZ	na				163-166	East	1156	942	1021	-30	165	Otz Monzonite	Gran/Green
502-001	RT	4	0.1% py	1	0	123-133	East	1137	958	958	51	128	Svenite	Gran/Green
502-002	RT	2	0.5% py	1	0	133-143	East	1137	958	958	41	138	Svenite	Gran/Green
502-003	RT	0		1	0	143-153	East	1137	958	958	31	148	Svenite	Gran/Green
502-004	RS	0				153-163	East	1137	958	958	21	158	Syenite	Gran/Green
502-005	OL	0				167-177	East	1137	958	958	7	172	Syenite	Gran/Green
502-006	BED	na	4			179-187	East	1137	958	958	-4	183	Syenite	Gran/Green
503-001	RT	0		1	0	111-118	East	1116	857	963	39	115	Mylonite (qtz plut.)	Greenstone
503-002	RT	1		1	0	118-128	East	1116	857	963	30	123	Mylonite (qtz plut.)	Greenstone
503-003	RT	0		1	0	128-138	East	1116	857	963	20	133	Mylonite (qtz plut.)	Greenstone
503-004	RT	0		1	0	138-148	East	1116	857	963	10	143	Mylonite (qtz plut.)	Greenstone
503-005	RT	1		1	0	148-153	East	1116	857	963	3	151	Mylonite (qtz plut.)	Greenstone
503-006	ASAP	1				164-174	East	1116	857	963	-16	169	Mylonite (qtz plut.)	Greenstone
503-007	SAP	0				211-221	East	1116	857	963	-63	216	Mylonite (qtz plut.)	Greenstone
503-008	BEDZ	na				240-247	East	1116	857	963	-91	244	Mylonite (qtz plut.)	Greenstone
503-009	BED	na				247-255	East	1116	857	963	-98	251	Mylonite (qtz plut.)	Greenstone
505-001	KI OT	1	0.10/	15	0	140-149	East	110/	906	933	90	145	Bio. qtz monzonite	Greenstone
505-002		3	0.1% py	75	0	224-228	East	110/	900	933	8	220	Bio. diz monzonite	Greenstone
505-003	SAD	1	i Cu grain	15	0	228-234	East	110/	900	933	5	231	Bio. diz monzonite	Greenstone
505-004	BED7	na				261.267	Fast	1167	900	073	-30	259	Bio. qtz monzonite	Greenstone
505-005	RT	5	1.5% pv	70	0	166-171	Fast	1174	943	998	- 50	169	Mylonite (gabbroic)	Greenstone
506-002	RT	ĩ	1.0% py	70	ŏ	171-176	Fast	1174	943	998	3	174	Mylonite (gabbroic)	Greenstone
506-003	SAP	õ	1.070 ру	10	v	183-192	Fast	1174	943	998	-12	. 188	Mylonite (gabbroic)	Greenstone
506-004	SAP	ŏ				192-199	East	1174	943	998	-19	195	Mylonite (gabrroic)	Greenstone
506-005	BED	na				236-244	East	1174	943	998	-64	240	Mylonite (gabbroic)	Greenstone
507-001	RT	0		1	0	148-155	East	1157	910	918	88	152	Malic Plutonic	Gran/Green
507-002	RT	0		70	0	155-162	East	1157	910	918	81	159	Mafic Plutonic	Gran/Green
507-003	RL	4	0.1% ру			162-168	East	1157	910	918	74	165	Mafic Plutonic	Gran/Green
507-004	OT	1	l Cu grain	90	0	170-178	East	1157	910	918	65	174	Mafic Plutonic	Gran/Green
507-005	OT	1		90	0	183-189	East	1157	910	918	53	186	Mafic Plutonic	Gran/Green
507-006	от	1		90	0	197-202	East	1157	910	918	40	200	Mafic Plutonic	Gran/Green
507-007	OS	0				202-207	East	1157	910	918	35	205	Mafic Plutonic	Gran/Green
507-008	от	1		90	0	207-215	East	1157	910	918	28	211	Mafic Plutonic	Gran/Green
507-009	os	0			•	217-227	East	1157	910	918	17	222	Matic Plutonic	Gran/Green
507-010	01	1		90	0	221-234	East	1157	910	918	9	231	Matic Plutonic	Gran/Green
507-011	OL	0				234-239	East	1157	910	918	3	237	Malic Plutonic	Gran/Green
507-012	DAP	1				239-242	East	1157	910	910	-2	241	Malic Plutonic	Gran/Green
507-013						110 134	East	1101	910	1020	-0	243	Groupusche	Gran/Green
508-001	DT KI	1	2 Cu graine	50	Ň	140-146	Fact	1101	011	1039	31	142	Graywacke	Greenstone
508-002	PT	2	10 Cu grains	50	0	146-140	Fast	1101	011	1039	3	143	Graywacke	Greenstone
508-003	SAP	Â	to Cu grains		v	153-160	Fast	1101	011	1030	-5	157	Gravwacke	Greenstone
508-005	SAP7	na				160-168	Fast	1191	911	1039	-12	164	Graywacke	Greenstone
508-006	SAPZ	na				214-223	East	1191	911	1039	-67	210	Gravwacke	Greenstone
508-007	SAP	0				223-232	East	1191	911	1039	-76	228	Gravwacke	Greenstone
508-008	SAPZ	na				266-276	East	1191	911	1039	-119	271	Gravwacke	Greenstone
508-009	BED	na				280-285	East	1191	911	1039	-131	283	Graywacke	Greenstone
509-001	RT	2	2 Cu grains	40	0	083-092	East	1175	1083	1083	5	88	Gabbro	Greenstone
509-002	BED	na	~			092-100	East	1175	1083	1083	-4	96	Gabbro	Greenstone
510-001	RT	2	1 Cu grain	40	0	097-102	East	1226	1119	1119	8	100	Plag. cumulate	Gran/Green
510-002	RT	1	1 Cu grain	40	0	102-107	East	1226	1119	1119	3	105	Plag. cumulate	Gran/Green

|--|

T

Π

.

6	6	6	6	6	6	6	6	6	6	6	6	5	6	6	j	6	Č	5	6	Ċ	j (Ö

Appendix	280-F. Ma	ster index	for Baudette area	samples.				6	- D. J	0	Contractor	Cola	en dage ton. Alter and a state of the state of	F
		Gold	0014	Sidesite	T imonito	Compled		Suri.	Bea.	Quat.	Sample	Sample	The desiries	Estimated
a .	•••	grains	ODM D	Siderite	Limonite	Sampled		elev.	elev.	Dase	neignt	depin	Underlying	NE up ice
Sample	BED	/10kg	Remarks	<u>%</u>	<u>content</u>	<u>107-112</u>	Area Fast	(msl) 1226	<u>(msl)</u>	(msl)		(<u>[t.)</u>	Dedrock Plag cumulate	bedrock Gran/Green
511-001	BLD RT		7 Cu grains	40	0	109-116	West	1196	1026	1053		113	Bio atz monzonite	Granite
511-002	RT	ŏ	3 Cu grains	40	ŏ	116-123	West	1196	1026	1053	24	120	Bio, gtz monzonite	Granite
511-003	RT	ŏ	1 Cu grain	40	ŏ	127-133	West	1196	1026	1053	13	130	Bio, otz monzonite	Granite
511-004	WT	Ō		50	Ō	133-138	West	1196	1026	1053	8	136	Bio, gtz monzonite	Granite
511-005	WT	0		50	1-4	138-143	West	1196	1026	1053	3	141	Bio, gtz monzonite	Granite
511-006	SAPZ	na				143-147	West	1196	1026	1053	-2	145	Bio. qtz monzonite	Granite
512-001	WT	0		80	> 4	087-095	West	1185	1078	1080	14	91	Graywacke	Gray/Green
512-002	WT	0		80	> 4	095-100	West	1185	1078	1080	8	98	Graywacke	Gray/Green
512-003	WT	0		80	> 4	100-105	West	1185	1078	1080	3	103	Graywacke	Gray/Green
512-004	BED	na				107-117	West	1185	1078	1080	-7	112	Graywacke	Gray/Green
513-001	RT	1		1	0	071-075	West	1200	1093	1107	20	73	Po massive sulfide	Greenstone
513-002	WΓ	0		60	> 4	075-083	West	1200	1093	1107	14	79	Po massive sulfide	Greenstone
513-003	WT	0		60	> 4	083-088	West	1200	1093	1107	8	86	Po massive sulfide	Greenstone
513-004	WT	0		60	> 4	088-093	West	1200	1093	1107	3	91	Po massive sulfide	Greenstone
513-005	SAP	0				095-101	West	1200	1093	1107	-5	98	Po massive sulfide	Greenstone
513-006	BED	na				106-115	West	1200	1093	1107	-18	111	Po massive sulfide	Greenstone
514-001	RT	0		40	0	165-173	West	1305	1048	1089	47	169	Basalt	Granite
514-002	RT	1		40	0	173-178	West	1305	1048	1089	41	176	Basalt	Granite
514-003	KI DC	0		40	0	1/8-183	west	1305	1048	1089	30	181	Basalt	Granite
514-004	KG OD	0		1		188-198	west	1305	1048	1089	23	193	Basall	Granite
514-005	US CAD	1				198-207	West	1305	1048	1089	14	203	Basalt	Granite
514-000	BED	0				257 262	West	1305	1048	1089	-0	222	Basalt	Granite
515 001		<u></u>		00	0	142 152	West	1251	1040	1039	-44	149	Dasalt	Granite
515-001	DT NI	0		80	0	153-163	West	1251	1039	1039	54	140	Basalt	Granite
515-002		0		80	> 4	168-176	West	1251	1039	1039	40	177	Basalt	Granite
515-004	or	ŏ		ŝõ	1-4	176-182	West	1251	1039	1039	11	179	Basalt	Granite
515-005	OT	ŏ		50	1-4	182-192	West	1251	1039	1039	25	187	Basalt	Granite
515-006	OT	õ		50	1-4	192-202	West	1251	1039	1039	15	197	Basalt	Granite
515-007	ŎŤ	ĩ		50	1-4	202-207	West	1251	1039	1039		205	Basalt	Granite
515-008	OT	ŏ		50	1-4	207-212	West	1251	1039	1039	3	210	Basalt	Granite
515-009	BED	na				212-223	West	1251	1039	1039	-6	218	Basalt	Granite
516-001	KT	0		25	0	037-042	West	1211	1157	1157	15	40	Graywacke	Graywacke
516-002	KТ	0		25	0	042-047	West	1211	1157	1157	10	45	Graywacke	Graywacke
516-003	KG	1				047-054	West	1211	1157	1157	4	51	Graywacke	Graywacke
516-004	BED	na				056-061	West	1211	1157	1157	-5	59	Graywacke	Graywacke
317-001	RT	0		40	0	038-045	West	1255	1035	1035	179	42	Mylonite (malic)	Greenstone
517-002	RT	- 1 .		40	0	045-055	West	1255	1035	1035	170	50	Mylonite (mafic)	Greenstone
517-003	wr	0		10	> 4	055-064	West	1255	1035	1035	161	60	Mylonite (mafic)	Greenstone
517-004	WT	1		1	1-4	064-074	West	1255	1035	1035	151	69	Mylonite (mafic)	Greenstone
517-005	WT	0		1	> 4	074-082	West	1255	1035	1035	142	78	Mylonite (mafic)	Greenstone
517-006	WT	0		25	> 4	082-092	West	1255	1035	1035	133	87	Mylonite (mafic)	Greenstone
517-007	WT	1		25	> 4	092-098	West	1255	1035	1035	125	95	Mylonite (mafic)	Greenstone
517-008	WT	1		50	1-4	103-112	West	1255	1035	1035	113	108	Mylonite (malic)	Greenstone
517-009	WT	0		50	1-4	113-123	West	1255	1035	1035	102	118	Mylonite (malic)	Greenstone
517-010	WT	0		50	1-4	123-129	West	1255	1035	1035	94	126	Mylonite (malic)	Greenstone
517-011	OT	0		50	1-4	136-146	West	1255	1035	1035	79	141	Mylonite (matic)	Greenstone
517-012	OT OT	0	0.00/ 5.00	50	1-4	140-153	West	1255	1035	1035	71	150	Mylonite (malic)	Greenstone
517-013	UT OT	3	0.8% FeS2	50	1-4	103-103	west	1200	1035	1035	62	158	Mylonite (malic)	Greenstone
517-014		U		50	1-4	103-1/3	West	1200	1035	1035	52	108	Myionite (malic)	Greenstone
517-015	OT	U		50	1-4	1/3-185	West	1200	1035	1035	42	1/8	Mylonite (malic)	Greenstone
JI/-UID		U. 0		50 60	1-4	102.203	West	1233	1035	1035	32	100	Mylonite (malic)	Greenstone
517-017	OT	4	1 0% E.S.	50	1-4	203-203	West	1255	1035	1035		212	Mylonite (malic)	Greenstone
J1/-010	U 1		1.070 1.032		7-4	202-220	11 001	1233	1033	1055	9	212	wiyioning (mane)	OLCEUPIONC

	Appendix .	200-1. 19145	Gold	of pandeme alta	sampres.				Surf.	Bed.	Quat.	Sample	Sample		Estimated
			grains	ODM	Siderite	Limonite	Sampled		elev.	elev.	base	height	depth	Underlying	NE up ice
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Com-lo	11	/10kg	Domoska	0/	contont	internal	A =00	(mal)	(mal)	(mel)	(0)	(0)	hedrock	bedeook
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	517-019	BED		Kemarks		content	221-229	West	1255	1035	1035		225	Mylonite (malic)	Greenstone
	518-001	RT	0		70	0	105-115	West	1280	1023	1030	140	110	Int. volcanic	Greenstone
518-03 WS 0 0 172-182 Wert 128 1023 1030 173 177 Int. volcanic Greenatione 518-005 WT 0 70 0 202-209 West 128 1023 1030 36 214 Int. volcanic Greenatione 518-005 WT 0 70 1-4 212-229 West 1280 1023 1030 36 214 Int. volcanic Greenatione 518-007 WT 0 70 >>4 234-235 West 1280 1030 13 246 Int. volcanic Greenatione 518-007 WT 0 70 >>4 234-235 West 1280 1030 13 246 Int. volcanic Greenatione 518-003 WT 1 70 >>4 1233 1048 1071 52 110 Itb. tonalite Greenatione 519-002 WT 1 70 0 157-162 West 1233 1048 1071 3 160 Itb. tonalite	518-002	RT	ĩ		60	ŏ	128-134	West	1280	1023	1030	119	131	Int. volcanic	Greenstone
518-00 WT I 70 0 202-209 West 1280 1023 1030 45 2006 Int. volcanic Greenstone 518-005 WT 0 70 -1.4 219-219 West 1280 1023 1030 36 214 Int. volcanic Greenstone 518-006 WT 0 70 > 4 235-235 West 1280 1023 1030 10 240 Int. volcanic Greenstone 518-008 WT 1 70 > 4 24523 West 1280 1023 1030 13 248 Int. volcanic Greenstone 518-008 WT 1 70 0 05777 West 1233 1048 1071 21 116 Int. volcanic Greenstone 519-50 WT 0 0.874 Freenstone 519-50 WT 0 107-10 0 151-157 West 1233 1048 1071 3 160 Hb. tonalite Greenstone 519-006 WT 0 700 0	518-003	WS	ō		00	v	172-182	West	1280	1023	1030	73	177	Int. volcanic	Greenstone
518-003 WT 0 70 0 29-219 West 1280 1023 1030 36 214 Int. volcanic Greenstone 518-007 WT 0 70 1-4 219-229 West 1280 1023 1030 102 240 Int. volcanic Greenstone 518-007 WT 0 70 > 4 235-245 West 1280 1023 1030 10 240 Int. volcanic Greenstone 518-008 WT 0 0 060 0 06740 Vest 1231 1048 1071 61 101 Hb. toolanite Green/Gran 519-001 WT 1 70 > 4 104-145 West 1233 1048 1071 2 110 Hb. toolanite Green/Gran 519-001 WT 0 70 0 122-15 West 1233 1048 1071 2 143 Hb. toolanite Green/Gran 519-002 RT 3 1 0 020-09 10 0 020-	518-004	WT	ĩ		70	0	202-209	West	1280	1023	1030	45	206	Int. volcanic	Greenstone
518-060 WT 0 70 14 219-250 Weit 1200 1023 1030 70 24 219-250 Weit 1200 1023 1030 70 24 235-250 Weit 1200 1023 1030 3 2244 Int. volcanic Greesstone 518-000 BEDZ na - 263-273 Weit 1230 1030 -18 268 Int. volcanic Greesstone 519-002 RT 2 0.8% FeS2 60 0 0671-105 Weit 1233 1048 1071 61 101 Hb. tonalite Greess/Gran 519-002 NT 1 60 1-4 401-45 Weit 1233 1048 1071 52 110 Hb. tonalite Greess/Gran 519-002 WT 0 70 0 152-157 Weit 1233 1048 1071 8 155 Hb. tonalite Greess/Gran 519-002 RT 3 1 0 020-050 Weit 1249 509 500 244	518-005	WT	ò		70	ň	200-210	West	1280	1023	1030	36	214	Int. volcanic	Greenstone
	518-006	WT	ň		70	1.4	210-220	West	1280	1023	1030	26	214	Int. volcanic	Greenstone
518-008 WT 1 70 4 245-250 West 1280 1030 3 248 Int. volkanic Circenstone 519-002 RT 0 0.8% FeS2 60 0 045-097 West 1231 1048 1071 71 91 Hb. tonalite Green/Gran 519-002 RT 2 0.8% FeS2 60 0 045-105 West 1233 1048 1071 71 91 Hb. tonalite Green/Gran 519-004 WT 1 60 1.4 105-115 West 1233 1048 1071 8 155 Hb. tonalite Green/Gran 519-005 WT 0 70 0 157-162 West 1233 1048 1071 -3 160 Hb. tonalite Green/Gran 519-007 BED na 1 0 020-004 West 1249 920 950 264 35 Saprolite undiff. Greenstone	518-007	WT	ň		70	> 4	215-225	West	1280	1023	1030	10	240	Int. volcanic	Greenstone
518-009 BEDZ. ns constraint 263-273 West 1280 1030 -18 268 Int. voltamic Creentions 519-001 RT 0 0.85 097 West 1233 1048 1071 61 101 Hib. tonalite Green/Gran 519-003 WT 1 70 > 4 1064.15 1071 61 101 Hib. tonalite Green/Gran 519-004 WT 1 70 > 4 1064.15 West 1233 1048 1071 20 143 Hib. tonalite Green/Gran 519-005 WT 0 70 0 152-157 West 1233 1048 1071 3 160 Hb. tonalite Green/Gran 520-002 RT 3 1 0 030-040 West 1249 920 950 274 25 Saprolite undiff. Greenstone 520-002 RT 3 1 0 030-040 West	518-008	ŵŤ	ĩ		70	54	245-250	West	1280	1023	1030	3	240	Int. volcanic	Greenstone
	518-000	BED7	na	•	70	- 1	263-273	West	1280	1023	1030	-18	240	Int. volcanic	Greenstone
	510-001	BLD2 BT	<u></u>		60	0	085-097	West	1233	1025	1071	-10	01	Hb tonalite	Green/Gran
	519-002	RT RT	2	0.8% FeS2	60	ň	007-105	West	1233	1048	1071	61	101	Hb. tonalite	Green/Gran
	519-002	WT	1	0.0761632	60	1-4	105-115	West	1233	1048	1071	52	110	Hb. tonalite	Green/Gran
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	510.004	WT	1		70	> 4	140 145	West	1233	1048	1071	20	143	Hb. tonalite	Green/Gran
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	510.005	WT	0		70	<u> </u>	140-145	Wast	1222	1040	1071	20	145	Hb. tonalite	Green/Gran
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	519-005	WT	0		70	0	157 162	Wat	1233	1040	1071	2	155	Ub topolite	Green/Gran
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	510.007	NED			/0	0	100 104	Wat	1233	1048	1071	30	100	Ub tonalite	Green/Gran
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	520 001	DED DT	11a		1	0	020 020	West	1233	020	050	-30	192	Sappolite undiff	Greenstone
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	520-001	NI DT	2		1	0	020-030	West	1249	920	950	214	25	Saprolite undiff.	Greenstone
JaboboNT0251.4000	520-002	RI DT	3		40	0	030-040	Wat	1249	920	950	204	33	Saprolite undiff.	Greenstone
JacobaW10231-409-102Wast1249920950121976Saptolite undiff.Greenstone520-006OT0601-4116-118West1249920950117122Saprolite undiff.Greenstone520-007OT0601-4118-128West1249920950156143Saprolite undiff.Greenstone520-008OT0601-4148-148West1249920950156143Saprolite undiff.Greenstone520-009OT0601-4148-178West1249920950136163Saprolite undiff.Greenstone520-010OT010250-259West1249920950126173Saprolite undiff.Greenstone520-012OT010250-259West1249920950136163Saprolite undiff.Greenstone520-013OT010250-259West1249920950135264Saprolite undiff.Greenstone520-015OS0280-299West1249920950-6305Saprolite undiff.Greenstone520-015OS0280-299West1249920950-6305Saprolite undiff.Greenstone520-016SAP030-304 <td>520-003</td> <td>WT</td> <td>4</td> <td></td> <td></td> <td>14</td> <td>040-047</td> <td>West</td> <td>1249</td> <td>920</td> <td>950</td> <td>200</td> <td>44</td> <td>Saprolite undiff</td> <td>Greenstone</td>	520-003	WT	4			14	040-047	West	1249	920	950	200	44	Saprolite undiff	Greenstone
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	520-004	OT			23	1-4	106 116	Wat	1249	920	950	100	90	Saprolite undiff.	Greenstone
520-000 OT 0 00 1-4 110-128 Wist 1249 920 950 166 133 Saprolite undiff. Greenstone 520-007 OT 0 60 1-4 128-188 Wist 1249 920 950 156 143 Saprolite undiff. Greenstone 520-009 OT 1 60 1-4 148-188 Wist 1249 920 950 156 143 Saprolite undiff. Greenstone 520-010 OT 0 60 1-4 168-178 Wist 1249 920 950 136 163 Saprolite undiff. Greenstone 520-011 OT 0 1 0 259-299 Wist 1249 920 950 35 264 Saprolite undiff. Greenstone 520-013 OT 0 1 0 259-299 Wist 1249 920 950 17 282 Saprolite undiff. Greenstone 520-017 SAP 0 10 0 278-264 Wist 1249	520-005		1		60	1-4	116 179	Wast	1249	920	950	100	111	Saprolite undiff.	Greenstone
320-007 O1 0 00 1-4 126-135 west 1249 920 950 100 133 Saptolite undiff. Greensione 520-008 OT 1 60 1-4 184-188 West 1249 920 950 136 153 Saprolite undiff. Greensione 520-010 OT 1 60 1-4 184-158 West 1249 920 950 136 163 Saprolite undiff. Greensione 520-011 OT 1 60 1-4 168-178 West 1249 920 950 126 173 Saprolite undiff. Greensione 520-012 OT 0 1 0 250-299 West 1249 920 950 15 264 Saprolite undiff. Greensione 520-014 OT 0 1 0 278-286 West 1249 920 950 -6 305 Saprolite undiff. Greensione 520-015 OS 0 280-016 SAP 0 300-310 West	520-000		0		60	1-4	1 10-120	West	1249	920	950	1//	122	Saprolite undiff.	Greenstone
JabrodicOI0001-4136-148West1249920950136145Shapfolite undiff.Greenstone520-010OT0601-4148-158West1249920950136163Saprolite undiff.Greenstone520-011OT0601-4148-178West1249920950136163Saprolite undiff.Greenstone520-012OT010250-259West124992095045255Saprolite undiff.Greenstone520-013OT010259-269West124992095035264Saprolite undiff.Greenstone520-014OT010259-269West12499209505294Saprolite undiff.Greenstone520-015OS0289-299West1249920950-6305Saprolite undiff.Greenstone520-015OS0289-299West1249920950-6305Saprolite undiff.Greenstone520-016SAP0310-320West1249920950-16315Saprolite undiff.Greenstone521-001RT10075-081West1235938948173114Sh. mafic volcanicGreenstone521-003WT075> 4124-134West </td <td>520-007</td> <td></td> <td>Å</td> <td></td> <td>60</td> <td>1-4</td> <td>120-130</td> <td>West</td> <td>1249</td> <td>920</td> <td>950</td> <td>100</td> <td>143</td> <td>Saprolite undiff</td> <td>Greenstone</td>	520-007		Å		60	1-4	120-130	West	1249	920	950	100	143	Saprolite undiff	Greenstone
320-009OII001-4145-13920920930140133Saprolite undiff. GreenstoneGreenstone $520-011$ OT1601-4168-178West1249920950136163Saprolite undiff.Greenstone $520-012$ OT010250-259West124992095045255Saprolite undiff.Greenstone $520-013$ OT010250-259West124992095035264Saprolite undiff.Greenstone $520-014$ OT010278-286West124992095017282Saprolite undiff.Greenstone $520-015$ OS0278-286West12499209505294Saprolite undiff.Greenstone $520-015$ OS0280-299West12499209505294Saprolite undiff.Greenstone $520-017$ SAP0310-320West1249920950-6305Saprolite undiff.Greenstone $521-001$ RT110015-081West1235938948173114Sh. mafic volcanicGreenstone $521-002$ RT0100111-17West1235938948158129Sh. mafic volcanicGreenstone $521-007$ VT010 <td< td=""><td>520-008</td><td></td><td>1</td><td></td><td>60</td><td>1.4</td><td>1 40 150</td><td>Wat</td><td>1249</td><td>920</td><td>050</td><td>146</td><td>143</td><td>Saprolite undiff.</td><td>Greenstone</td></td<>	520-008		1		60	1.4	1 40 150	Wat	1249	920	050	146	143	Saprolite undiff.	Greenstone
520-010 O1 O 60 1-4 136-16 220 950 133 103 54p10ite undiff. Greenstone 520-011 OT 0 1 0 250-269 West 1249 920 950 126 173 Saprolite undiff. Greenstone 520-012 OT 0 1 0 250-269 West 1249 920 950 15 264 Saprolite undiff. Greenstone 520-013 OT 0 1 0 259-269 West 1249 920 950 17 282 Saprolite undiff. Greenstone 520-015 OS 0 289-299 West 1249 920 950 5 294 Saprolite undiff. Greenstone 520-015 OS 0 310-320 West 1249 920 950 -16 315 Saprolite undiff. Greenstone 521-001 RT 1 0 075-08 West 1235 938 948 173 114 Sh. mafic volcanic Greenstone	520-009		1		60	1.4	140-150	West	1249	920	950	140	155	Saprolite undiff.	Greenstone
320-011OT100014 $100-178$ Wat (120)120920950120173Baptolic undiff. (130)Orcensione Greenstone $520-013$ OT010 $259-299$ West124992095035264Saprolite undiff.Greenstone $520-014$ OT010 $278-286$ West124992095017282Saprolite undiff.Greenstone $520-015$ OS0289-299West1249920950-6305Saprolite undiff.Greenstone $520-016$ SAP0300-310West1249920950-6305Saprolite undiff.Greenstone $520-017$ SAP0310-320West1249920950-16315Saprolite undiff.Greenstone $520-017$ SAP0310-320West1249920950-16315Saprolite undiff.Greenstone $521-001$ RT10011-117West1235938948173114Sh. mafic volcanicGreenstone $521-002$ RT075> 4124-14West1235938948158129Sh. mafic volcanicGreenstone $521-003$ WT0750217-224West123593894881197Sh. mafic volcanicGreenstone $521-005$ WT075 <td>520-010</td> <td></td> <td>1</td> <td></td> <td>60</td> <td>1.4</td> <td>169 179</td> <td>West</td> <td>1249</td> <td>920</td> <td>050</td> <td>130</td> <td>103</td> <td>Saprolite undiff</td> <td>Greenstone</td>	520-010		1		60	1.4	169 179	West	1249	920	050	130	103	Saprolite undiff	Greenstone
520-012 OT 0 1 0 229-29 Weil 1295 920 950 4.5 229 Disploite undiff. Greenstone 520-013 OT 0 1 0 278-286 West 1249 920 950 17 282 Saprolite undiff. Greenstone 520-015 OS 0 289-299 West 1249 920 950 5 294 Saprolite undiff. Greenstone 520-015 OS 0 300-310 West 1249 920 950 -6 305 Saprolite undiff. Greenstone 520-017 SAP 0 310-320 West 1249 920 950 -16 315 Saprolite undiff. Greenstone 521-001 RT 1 0 075.081 West 1235 938 948 173 114 Sh. mafic volcanic Greenstone 521-002 RT 0 10 0 111.117 West 1235 938 948 173 114 Sh. mafic volcanic Greenstone	520-011		0		1	1-4	250 250	West	1249	920	050	120	755	Saprolite undiff.	Greenstone
320-013OT010 $278-280$ West 1249 920 950 53 $20-64$ Supposite undiff.Greensione $520-014$ OS0 $278-286$ West 1249 920 950 55 294 Saprolite undiff.Greensione $520-015$ OS0 $289-299$ West 1249 920 950 55 294 Saprolite undiff.Greensione $520-016$ SAP0 300.310 West 1249 920 950 -6 305 Saprolite undiff.Greensione $520-017$ SAP0 310.320 West 1249 920 950 -6 305 Saprolite undiff.Greensione $521-001$ RT110 $075-081$ West 1235 938 948 209 78 Sh. mafic volcanicGreensione $521-002$ RT0100 $111-17$ West 1235 938 948 173 114 Sh. mafic volcanicGreensione $521-002$ WT0750 $192-201$ West 1235 938 948 1197 Sh. mafic volcanicGreensione $521-004$ OT10 $201-221$ West 1235 938 948 81 206 Sh. mafic volcanicGreensione $521-005$ WT010 $201-224$ West 1235 938 948 81 206 Sh. mafic volcanicGreensio	520-012		0		1	0	250-255	Wart	1249	920	950	45	255	Saprolite undiff.	Greenstone
320-014 01 0 1 0 $28-299$ West 1249 920 950 17 262 $3aprolite undiff.Greenstone520-015SAP0300-310West1249920950-6305Saprolite undiff.Greenstone520-017SAP0310-320West1249920950-6305Saprolite undiff.Greenstone520-017SAP0310-320West1249920950-16315Saprolite undiff.Greenstone521-002RT00075-081West123593894820078Sh. mafic volcanicGreenstone521-002RT0100111-117West1235938948173114Sh. mafic volcanicGreenstone521-003WT075> 4124-134West1235938948158129Sh. mafic volcanicGreenstone521-004OT10201-211West123593894881206Sh. mafic volcanicGreenstone521-006WT010201-211West123593894881206Sh. mafic volcanicGreenstone521-0070G0217-224West123593894881$	520-013		0		1	0	239-209	West	1249	920	950	35	204	Saprolite undiff.	Greenstone
520-015 053 0 267-257 West 1249 920 950 -6 305 Saprolite undiff. Greenstone 520-016 SAP 0 310-320 West 1249 920 950 -16 315 Saprolite undiff. Greenstone 520-017 SAP 0 10 0 011-117 West 1235 938 948 209 78 Sh. mafic volcanic Greenstone 521-002 RT 0 10 0 11-117 West 1235 938 948 173 114 Sh. mafic volcanic Greenstone 521-003 WT 0 75 > 4 1241.34 West 1235 938 948 158 129 Sh. mafic volcanic Greenstone 521-003 WT 0 75 0 192-201 West 1235 938 948 158 129 Sh. mafic volcanic Greenstone 521-004 WT 0 75 0 217-224 West 1235 938 948 67 221 <td>520-014</td> <td>01</td> <td>Å</td> <td></td> <td>1</td> <td>U</td> <td>2/0-200</td> <td>West</td> <td>1249</td> <td>920</td> <td>950</td> <td>17</td> <td>202</td> <td>Saprolite undiff.</td> <td>Greenstone</td>	520-014	01	Å		1	U	2/0-200	West	1249	920	950	17	202	Saprolite undiff.	Greenstone
320-010SAP0 $300-310$ West 1249 920 930 -60 303 Saprolite undiff.Greenstone $520-017$ SAP0 $300-320$ West 1249 920 950 -16 315 Saprolite undiff.Greenstone $521-001$ RT110 $075-081$ West 1235 938 948 209 78 Sh. mafic volcanicGreenstone $521-002$ RT0100 $111-117$ West 1235 938 948 173 114 Sh. mafic volcanicGreenstone $521-003$ WT075> 4 $124-134$ West 1235 938 948 158 129 Sh. mafic volcanicGreenstone $521-004$ OT1750 $192-201$ West 1235 938 948 91 197 Sh. mafic volcanicGreenstone $521-005$ WT010 $201-211$ West 1235 938 948 81 206 Sh. mafic volcanicGreenstone $521-006$ WT0750 $217-224$ West 1235 938 948 81 206 Sh. mafic volcanicGreenstone $521-007$ 0G0 $234-245$ West 1235 938 948 67 221 Sh. mafic volcanicGreenstone $521-007$ 0G0 $234-245$ West 1235 938 948 48 200 Sh.	520-015	CAD	Å				209-277	Wast	1249	920	050	5	294	Saprolite undiff.	Greenstone
321-017SAP0310-320West1249920930-10313Saprofile infinit.Offensione521-002RT110075-081West123593894820978Sh. mafic volcanicGreenstone521-002RT0100111-117West123593894820978Sh. mafic volcanicGreenstone521-003WT075> 4124-134West1235938948158129Sh. mafic volcanicGreenstone521-004OT1750192-201West123593894891197Sh. mafic volcanicGreenstone521-005WT010201-211West123593894881206Sh. mafic volcanicGreenstone521-006WT0750217-224West123593894867221Sh. mafic volcanicGreenstone521-007OG0224-234West123593894867221Sh. mafic volcanicGreenstone521-008OG0224-234West123593894858229Sh. mafic volcanicGreenstone521-009OG0224-234West123593894835252Sh. mafic volcanicGreenstone521-010OS0277-287West1235938 <td< td=""><td>520-010</td><td>SAP</td><td>0</td><td></td><td></td><td></td><td>210 220</td><td>Wast</td><td>1249</td><td>920</td><td>950</td><td>-0</td><td>305</td><td>Saprolite undiff.</td><td>Greenstone</td></td<>	520-010	SAP	0				210 220	Wast	1249	920	950	-0	305	Saprolite undiff.	Greenstone
521-001R110073-061West1235938948173114Sh. mafic volcanicGreenstone $521-002$ WT0100111-117West1235938948173114Sh. mafic volcanicGreenstone $521-003$ WT075> 4124-134West1235938948158129Sh. mafic volcanicGreenstone $521-004$ OT1750192-201West123593894891197Sh. mafic volcanicGreenstone $521-005$ WT010201-211West123593894881206Sh. mafic volcanicGreenstone $521-006$ WT0750217-224West123593894881206Sh. mafic volcanicGreenstone $521-006$ WT0750217-224West123593894867221Sh. mafic volcanicGreenstone $521-006$ WT0750217-224West123593894858229Sh. mafic volcanicGreenstone $521-008$ OG0234-245West123593894835252Sh. mafic volcanicGreenstone $521-008$ OG0267-277West123593894815272Sh. mafic volcanicGreenstone $521-010$ OS0 <td< td=""><td>520-017</td><td>DT</td><td></td><td></td><td>- 1</td><td></td><td>075 001</td><td>West</td><td>1249</td><td>920</td><td></td><td>200</td><td>70</td><td>Sapronte ununi.</td><td>Greenstone</td></td<>	520-017	DT			- 1		075 001	West	1249	920		200	70	Sapronte ununi.	Greenstone
521-002RT01001111West1235938948158129Sh. mafic volcanicGreenstone $521-004$ OT1750192-201West1235938948158129Sh. mafic volcanicGreenstone $521-004$ OT10201-211West123593894891197Sh. mafic volcanicGreenstone $521-005$ WT010201-211West123593894881206Sh. mafic volcanicGreenstone $521-006$ WT0750217-224West123593894881206Sh. mafic volcanicGreenstone $521-007$ OG0224-234West123593894858229Sh. mafic volcanicGreenstone $521-007$ OG0234-245West123593894858229Sh. mafic volcanicGreenstone $521-007$ OG0234-245West123593894858229Sh. mafic volcanicGreenstone $521-007$ OG0234-245West123593894835252Sh. mafic volcanicGreenstone $521-009$ OG0237-277West123593894815272Sh. mafic volcanicGreenstone $521-010$ OS0277-287West12359389485<	521-001	DT NI	0		10	Ň	111 117	West	1235	038	048	173	114	Sh. mafic volcanic	Greenstone
521-003 W1 0 75 0 124-15 West 1235 938 948 91 197 Sh. mafic volcanic Greenstone 521-004 OT 1 0 201-201 West 1235 938 948 91 197 Sh. mafic volcanic Greenstone 521-005 WT 0 1 0 201-211 West 1235 938 948 91 197 Sh. mafic volcanic Greenstone 521-005 WT 0 75 0 217-224 West 1235 938 948 67 221 Sh. mafic volcanic Greenstone 521-007 OG 0 224-234 West 1235 938 948 58 229 Sh. mafic volcanic Greenstone 521-007 OG 0 224-234 West 1235 938 948 58 229 Sh. mafic volcanic Greenstone 521-007 OG 0 224-234 West 1235 938 948 58 229 Sh. mafic volcanic Greenstone	521-002	WT	Ň		75	×4	124-124	West	1235	018	049	1/3	170	Sh. mafic volcanic	Greenstore
521-004 01 1 0 202-201 West 1235 938 948 81 206 Sh. mafic volcanic Greenstone 521-005 WT 0 1 0 201-211 West 1235 938 948 81 206 Sh. mafic volcanic Greenstone 521-006 WT 0 75 0 217-224 West 1235 938 948 67 221 Sh. mafic volcanic Greenstone 521-006 WT 0 75 0 217-224 West 1235 938 948 67 221 Sh. mafic volcanic Greenstone 521-007 OG 0 224-234 West 1235 938 948 58 229 Sh. mafic volcanic Greenstone 521-007 OG 0 224-234 West 1235 938 948 58 229 Sh. mafic volcanic Greenstone 521-009 OG 0 247-257 West 1235 938 948 15 272 Sh. mafic volcanic Greenstone <td>521-003</td> <td>OT</td> <td>1</td> <td></td> <td>75</td> <td><u> </u></td> <td>102.201</td> <td>Weet</td> <td>1235</td> <td>038</td> <td>0/8</td> <td>01</td> <td>125</td> <td>Sh. mafic volcanic</td> <td>Greenstone</td>	521-003	OT	1		75	<u> </u>	102.201	Weet	1235	038	0/8	01	125	Sh. mafic volcanic	Greenstone
521-005 WT 0 75 0 201-224 West 1235 938 948 67 221 Sh. mafic volcanic Greenstone 521-006 WT 0 75 0 217-224 West 1235 938 948 67 221 Sh. mafic volcanic Greenstone 521-007 OG 0 224-234 West 1235 938 948 58 229 Sh. mafic volcanic Greenstone 521-007 OG 0 224-234 West 1235 938 948 58 229 Sh. mafic volcanic Greenstone 521-007 OG 0 234-245 West 1235 938 948 58 229 Sh. mafic volcanic Greenstone 521-009 OG 0 247-257 West 1235 938 948 35 252 Sh. mafic volcanic Greenstone 521-010 OS 0 277-287 West 1235 938 948 5 282 Sh. mafic volcanic Greenstone 521-011 <t< td=""><td>521-004</td><td>WT</td><td>Å</td><td></td><td>15</td><td>Ň</td><td>201 211</td><td>West</td><td>1235</td><td>038</td><td>0/9</td><td>91</td><td>206</td><td>Sh. mafic volcanic</td><td>Greenstone</td></t<>	521-004	WT	Å		15	Ň	201 211	West	1235	038	0/9	91	206	Sh. mafic volcanic	Greenstone
521-000W10730 $217-224$ West 1235 938 948 57 67 221 Sh. malic volcanicGreenstone $521-007$ OG0 $224-234$ West 1235 938 948 58 229 Sh. malic volcanicGreenstone $521-008$ OG0 $234-245$ West 1235 938 948 48 240 Sh. malic volcanicGreenstone $521-009$ OG0 $234-245$ West 1235 938 948 35 252 Sh. malic volcanicGreenstone $521-010$ OS0 $267-277$ West 1235 938 948 15 272 Sh. malic volcanicGreenstone $521-011$ OS0 $277-287$ West 1235 938 948 5 282 Sh. malic volcanicGreenstone $521-012$ SAP0 $287-297$ West 1235 938 948 -5 292 Sh. malic volcanicGreenstone $521-013$ BEDna $298-299$ West 1235 938 948 -12 299 Sh. malic volcanicGreenstone $521-014$ BEDna $302-304$ West 1235 938 948 -16 303 Sh. malic volcanicGreenstone $521-014$ BEDna $302-304$ West 1235 938 948 -16 303 Sh. malic volcanicGreenstone $521-014$ BEDna <td>521-005</td> <td>WT</td> <td>Ŭ,</td> <td></td> <td>75</td> <td>0</td> <td>201-211</td> <td>West</td> <td>1235</td> <td>038</td> <td>0/8</td> <td>67</td> <td>200</td> <td>Sh. mafic volcanic</td> <td>Greenstone</td>	521-005	WT	Ŭ,		75	0	201-211	West	1235	038	0/8	67	200	Sh. mafic volcanic	Greenstone
521-007 OG 0 224-245 West 1235 936 946 36 229 Sh. mafic volcanic Greenstone 521-008 OG 0 234-245 West 1235 938 948 48 240 Sh. mafic volcanic Greenstone 521-009 OG 0 247-257 West 1235 938 948 35 252 Sh. mafic volcanic Greenstone 521-010 OS 0 267-277 West 1235 938 948 15 272 Sh. mafic volcanic Greenstone 521-010 OS 0 267-277 West 1235 938 948 15 272 Sh. mafic volcanic Greenstone 521-011 OS 0 277-287 West 1235 938 948 5 282 Sh. mafic volcanic Greenstone 521-012 SAP 0 287-297 West 1235 938 948 -5 292 Sh. mafic volcanic Greenstone 521-013 BED na 298-299 West <td>521-000</td> <td></td> <td>0</td> <td></td> <td>15</td> <td>U</td> <td>217-224</td> <td>West</td> <td>1235</td> <td>930</td> <td>040</td> <td>59</td> <td>221</td> <td>Sh. mafic volcanic</td> <td>Greenstone</td>	521-000		0		15	U	217-224	West	1235	930	040	59	221	Sh. mafic volcanic	Greenstone
521-000 OG 0 234-247 west 1235 936 946 240 Sh. malic volcanic Oreenstone 521-009 OG 0 247-257 West 1235 938 948 35 252 Sh. malic volcanic Greenstone 521-010 OS 0 267-277 West 1235 938 948 15 272 Sh. malic volcanic Greenstone 521-010 OS 0 277-287 West 1235 938 948 15 272 Sh. malic volcanic Greenstone 521-012 SAP 0 277-287 West 1235 938 948 5 282 Sh. malic volcanic Greenstone 521-012 SAP 0 287-297 West 1235 938 948 -5 292 Sh. malic volcanic Greenstone 521-013 BED na 298-299 West 1235 938 948 -12 299 Sh. malic volcanic Greenstone 521-014 BED na 302-304 West 1	521-007	00	0				224-234	Wast	1725	020	740 040	0C. 40	229	Sh. mafic volcanic	Greenstone
521-000 OG 0 247-277 West 1235 936 946 53 252 Sh. malic voltanic Orcensione 521-010 OS 0 267-277 West 1235 938 948 15 272 Sh. malic voltanic Greenstone 521-011 OS 0 277-287 West 1235 938 948 5 282 Sh. malic volcanic Greenstone 521-012 SAP 0 287-297 West 1235 938 948 -5 292 Sh. malic volcanic Greenstone 521-012 SAP 0 287-297 West 1235 938 948 -5 292 Sh. malic volcanic Greenstone 521-013 BED na 298-299 West 1235 938 948 -12 299 Sh. malic volcanic Greenstone 521-014 BED na 302-304 West 1235 938 948 -16 303 Sh. malic volcanic Greenstone 521-014 BED na 302-304	521-008		U A				234-243	Wast	1233	730	740 0/9	40 24	240	Sh. mafic volcanic	Greenstone
521-010 05 0 201-217 west 1235 936 946 15 212 Sh. mafic volcanic Orcensione 521-011 05 0 277-287 West 1235 938 948 5 282 Sh. mafic volcanic Greenstone 521-012 SAP 0 287-297 West 1235 938 948 -5 292 Sh. mafic volcanic Greenstone 521-012 SAP 0 287-297 West 1235 938 948 -5 292 Sh. mafic volcanic Greenstone 521-013 BED na 298-299 West 1235 938 948 -12 299 Sh. mafic volcanic Greenstone 521-014 BED na 302-304 West 1235 938 948 -16 303 Sh. mafic volcanic Greenstone 521-015 PEDZ na 302-304 West 1235 938 948 -16 303 Sh. mafic volcanic Greenstone	521-009	00	0				241-231	West	1233	930	948 049	33	232 272	Sh. mafic volcanic	Greenstone
521-011 0.5 0 2/1-267 West 1235 936 946 5 262 Sh. mail Volcanic Greenstone 521-012 SAP 0 287-297 West 1235 938 948 -5 292 Sh. mail Volcanic Greenstone 521-013 BED na 298-299 West 1235 938 948 -12 299 Sh. mailc volcanic Greenstone 521-014 BED na 302-304 West 1235 938 948 -16 303 Sh. mailc volcanic Greenstone 521-014 BED na 304/300 West 1235 938 948 -16 303 Sh. mailc volcanic Greenstone	521-010	05	U A				201-211	West	1233	930	748 040	13	2/2	Sh. mafic volcanic	Greenstone
521-012 SAF 0 281-297 West 1235 938 946 -3 292 Sh. mail: Volcanic Greenstone 521-013 BED na 298-299 West 1235 938 948 -12 299 Sh. mail: Volcanic Greenstone 521-014 BED na 302-304 West 1235 938 948 -16 303 Sh. maii: volcanic Greenstone 521-014 BED na 302-304 West 1235 938 948 -16 303 Sh. maii: volcanic Greenstone 521-015 BED na 304/430 West 1235 938 948 -16 303 Sh. maii: volcanic Greenstone	521-011	05	U				211-201	West	1233	930	948 040	2	262	Sh. mafic volcanic	Greenstore
521-013 BED na 290-299 West 1235 936 946 -12 299 Sh. malic volcanic Greenstone 521-014 BED na 302-304 West 1235 938 948 -16 303 Sh. malic volcanic Greenstone 521-015 BED7 na 304.320 West 1235 938 948 -16 303 Sh. malic volcanic Greenstone	521-012	SAP ·	0				201-291	West	1233	920	940 040	-)	292	Sh. mafic volcanic	Greenstone
221014 BED na $302-304$ West 1253 236 246 -10 303 50. Malle volcanic Uteensione 210420 West 1253 238 048 25 212 Characterization Constants	521-015	BED	na				203 204	Wast	1233	920	946 076	-12	299	Sh. mafic volcanic Sh. mafic volcanic	Greenstone
	521-014	BED BED7	па				201-204	West	1233	920	940 049	-10	203	Sh. mafic volcanic	Greenstone

Appendix 280-F. Master index for Baudette area samples.

.

· @

6

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

Column abbreviations and data key

Stratigraphic units

КT	=Koochiching till
KG	=Koochiching gravel
RT	=Rainy till
RS	=Rainy sand
RG	=Rainy gravel
RL	=Rainy lake sediment
WT	=Winnipeg till
WS	=Winnipeg sand
ОТ	=Old Rainy till
OS	=Old Rainy sand
OG	=Old Rainy gravel
OL	=Old Rainy lake sediment
ASAP	=reworked saprolite
SAP	=saprolite
Other abbreviations	
ODM	=Overburden Drilling Management Labs
-63um	=silt + clay iraction
-2um	=clay traction
nmHMC	=nonmagnetic heavy mineral concentrate
icp	=inductively coupled plasma
aa	=atomic absorption
hyaa	=hydride generation atomic absorption
inaa	=instrumental neutron activation
ladc	=lire assay direct current
dcp	=direct coupled plasma
cvaa	=cold vapor atomic absorption

Notes:

200

Į

Assay values reported here are listed to 3 significant figures.

Values less than or equal to the detection limits shown in Appendix 280-C (eg. <0.5), are reported here as five-eighths (0.625) of the listed detection limit for that element (eg. 0.3125).

Values originally reported as off scale (eg. >20,000) are listed here as the upper value (e.g. 20,000).

Sample 517-005 had insufficient nmHMC to use for INAA analysis, so null values are registered for those nmHMC INAA results.

		Ag	Ag	Al	Al	As	As	Au	Au	В	Ba	Ba	Be	Be	Bi	Bi	Br	Ca
		-63um	nmhmc	-2um	nmhmc	-2um	nmhmc	-63um	nmhmc	-2um	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um
Sample	Unit	icp	aa	icn	icp	hvaa	inaa	fadc	inaa/fadc	dcp	icp	inaa	icp	icp	ico	ico	inaa	ico
501-001	RT	0.9	4.7	14500	7400	0.3	19	0.003	0.231	80 70	25	63	0.3	0.3	3.1	3	1.9	1200
501-002	SAP	0.5	5.2 4.3	23500	6300	0.3	6	0.001	0.010	58	41	180	0.3	0.3	3.1	14	1.9	900
502-001	RT	0.7	1.7	30200	14300	1.0	23	0.002	0.053	29	144	63	0.3	0.3	3.1	3	1.9	12300
502-002	RT	1.0	1.5	32800	12500	1.0	19	0.005	0.079	29	148	63	0.3	0.3	3.1	3	1.9	14500
502-003		0.9	1.4	30600	15300	1.5	18	0.004	0.118	14	167	63	0.3	0.3	3.1	3	1.9	17700
502-005	OL.	0.8	2.6	29400	9900	2.0	21	0.001	0.012	37	117	170	0.3	0.3	3.1	2	1.9	11100
503-001	ŘŤ	0.9	1.2	25500	13900	1.5	31	0.002	0.034	37	166	63	0.3	0.3	3.1	3	1.9	29700
503-002	RT	0.6	1.4	28600	15400	1.0	31	0.001	0.887	19	164	63	0.3	0.3	3.1	3	1.9	18100
503-003	RT	0.7	1.9	27600	12900	1.0	20	0.002	0.064	64	156	63	0.3	0.3	3.1	3	1.9	15700
503-004	RI PT	0.7	1.3	28800	17000	1.0	17	0.023	0.240	28 25	137	250	0.3	0.3	3.1	3	1.9	17800
503-005	ASAP	0.3	0.8	8200	2200	· 0.3	19	0.002	0.116	74	-458	63	0.3	0.3	3.1	3	1.9	600
503-007	SAP	0.3	3.1	9500	5600	0.3	ĩ	0.002	0.003	88	15	63	0.3	0.3	3.1	20	1.9	700
305-001	RT	1.2	2.3	28600	5600	1.0	27	0.001	0.213	40	151	63	0.3	0.3	3.1	8	1.9	32800
505-002	OT	1.1	2.7	33600	6300	1.0	26	0.002	0.019	46	113	150	0.3	0.3	3.1	10	1.9	9000
505-003	SAP	0.9	3.1	34400	6400 5500	1.0	31	0.001	0.200	31	121	63 210	0.3	0.3	3.1	11	1.9	6000
506-001	RT	0.8	2.5	34500	6000	1.0	29	0.034	0.101	57	101	63	0.3	0.3		3	1.9	11200
506-002	RT	1.1	1.7	37700	6500	1.0	42	0.008	0.232	42	155	150	0.3	0.3	3.1	3	1.0	19900
506-003	SAP	0.3	3.1	33600	13400	0.3	11	0.018	0.003	58	98	410	0.3	0.3	3.1	18	1.9	5500
506-004	SAP	0.3	1.9	29200	10100	0.3	9.	0.005	0.019	76	94	270	0.3	0.3	3.1	7	1.9	1200
507-001		0.0 79	1.5	24000	7500	1.5	24 18	0.001	0.079	47	152	03 63	0.3	0.3	3.1	3	1.0	32200
507-003	RL	0.7	3.3	23300	5400	1.0	19	0.003	0.122	40	124	63	0.3	0.3	3.1	3	1.9	48300
507-004	OT	0.7	2.7	24700	5100	1.0	19	0.001	0.038	52	87	120	0.3	0.3	3.1	8	1.9	10100
507-005	OT	0.8	2.8	27600	4500	1.5	17	0.001	0.115	47	91	63	0.3	0.3	3.1	14	1.9	12100
507-006	01	0.7	2.8	25600	4400	1.5	17	0.002	0.022	50 60	99	63	0.3	0.3	3.1	12	1.0	9000
507-007	OT	0.8	2.0	23800	5200	2.0	23	0.004	0.035	58	91	120	0.3	0.3	3.1	17	1.9	12700
507-009	OS .	0.8	2.2	25100	4300	3.0	24	0.001	0.010	88	107	100	0.3	0.3	3.1	16	1.9	13800
507-010	OT	0.7	2.6	25900	5000	2.0	28	0.001	0.055	61	97	130	0.3	0.3	3.1	6	1.9	11700
507-011	OL	2.4	2.6	26800	4300	2.0	19	0.003	0.055	54	118	63	0.3	0.3	3.1	8	1.9	12500
507-012	SAP DT	0.3	0.1	29900	8600	2.0		0.002	0.017			63	0.3	0.3	3.1	3	1.9	2800
508-002	RT	0.7	2.2	29400	9300	1.0	30	0.003	0.030	46	165	63	0.3	0.3	3.1	3	2.0	26200
508-003	RT	2.1	2.5	31700	15000	1.8	39	0.001	0.275	38	177	63	0.3	0.3	3.1	3	1.9	24500
508-004	SAP	0.5	4.3	22800	8200	0.3	40	0.001	0.245	59	28	63	0.3	0.3	3.1	9	1.9	1000
508-007	SAP	0.3	2.7	23700	5100	0.3	1	0.002	0.011	48	30	63	0.3	0.3	3.1	22	1.9	700
509-001		0.9	21	32900	11000	1.0	20	0.015	0.083		150	63	0.3	0.3	3.1		1.9	27900
510-002	RT	1.4	2.1	21800	9900	2.0	35	0.001	0.027	32	142	63	0.3	0.3	3.1	3	1.9	28000
511-001	RT	1.5	2.7	18800	7000	2.0	22	0.001	0.127	44	122	63	0.3	0.3	3.1	3	1.9	50100
511-002	RT	0.3	2.6	26100	9400	1.0	14	0.001	0.009	42	131	63	0.3	0.3	3.1	3	1.9	47800
511-003	RT	0.6	3.2	24600	9800	1.0	36	0.001	0.122	35	127	63	0.3	0.3	3.1	3	1.9	50300
511-004	WT	0.3	2.2	23200	7300	1.0	03 58	0.002	0.028	21 41	110	03 67	0.3	0.3	3.1 3.1	3	1.9	37700
512-001	-wi	0.9	3.0	23900	8400	2.5	79	0.001	0.038		115	63	0.3	0.3	3.1	3	1.9	39200
512-002	WT	0.8	3.8	25600	7200	3.0	112	0.001	0.058	122	121	63	0.3	0.3	3.1	7	1.9	41300
512-003	<u>wr</u>	0.6	3.6	24700	6900	3.0	84	0.001	0.027	131	100	63	0.3	0.3	3.1	12	1.9	44000
513-001	RT	0.3	2.2	22500	11400	2.0	54	0.003	0.418	47	140	63	0.3	0.3	3.1	3	1.9	65500
513-002	WT	U.8 1.6	3.0	20900	5300	3.0	44	0.001	0.017	132	122	63	0.3	0.3	3.1	9 8	3.0	41600
513-004	ŵŤ	1.0	3.0	19800	4500	2.5	47	0.002	0.023	130	103	150	0.3	0.3	3.1	10	1.9	36800

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

G-2

Appendix 280-G. Baudette area assays. Nonmagn	etic heavy mineral concentra	te and clay fraction	i of till and non-till samples.
---	------------------------------	----------------------	---------------------------------

			Ag	Ag	Al	Al	As	As	Au	Au	В	Ba	Ba	Be	Be	Bi	Bi	Br	Ca
			-63um	nmhmc	-2um	nmhmc	-2um	nmhmc	-63um	nmhmc	-2um	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um
S13 SAP 0.9 0.1 2500 8100 0.2 0.001 0.15 22 0.001 0.01 0.3 0.1 1.5 3100 1.5 22 0.001 0.01 0.3 0.1 1.5 3100 1.5 22 0.001 0.01 0.3 0.1 1.1 1.5 3100 1.5 22 0.001 0.031 0.3 0.1 1.1 1.5 3100 514-005 OS 1.0 2.2 2300 0.600 1.5 2.7 0.001 0.037 35 66 0.3 0.3 1.1 3 1.9 1220 514-005 OS 1.0 2.2 2.200 0.001 0.017 35 66 0.3 0.3 1.1 3 1.9 1220 514-005 CK 0.000 0.017 0.018 1.1 1.0 0.01 0.014 1.0 0.014 1.0 0.014 1.0 0.013 1.1 1.1 1.9 2.001 0.014 1.0 1.0 1.0 1.1 1.0 1.0 </th <th>Sample</th> <th>Unit</th> <th>icn</th> <th>22</th> <th>icn</th> <th>icn</th> <th>hvaa</th> <th>inaa</th> <th>fade</th> <th>inaa/fadc</th> <th>den</th> <th>icn</th> <th>inaa</th> <th>icn</th> <th>icn</th> <th>icn</th> <th>icn</th> <th>inaa</th> <th>icn</th>	Sample	Unit	icn	22	icn	icn	hvaa	inaa	fade	inaa/fadc	den	icn	inaa	icn	icn	icn	icn	inaa	icn
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	313-005	SAP	0.9	0.1	25600	8100	0.3	62	0.003	0.156	65	82	63	0.3	0.3	6.0	3	1.9	29100
S14-002 RT 0.0 1.5 24800 12000 1.5 24800 12000 1.5 140 RT 0.0 1.1 <	514-001	RT	1.1	2.6	23000	13700	1.5	22	0.002	0.017	29	130	63	0.3	0.3	3.1	3	1.9	53100
514-63 RT L1 L8 25300 10800 2.0 4.2 0.001 0.081 15 167 63 0.3 0.1 3 1.9 130 514-005 SAP 0.6 2.7 27600 11000 0.3 2 0.011 0.012 15 66 0.3 0.3 3.1 3 0.0 2.5 1.9 3600 515-00 RT 0.9 2.7 25000 6400 1.0 2.1 0.001 0.017 40 3.6 0.3 3.1 1.9 1.2 2.5 1.9 420 1.0 2.4 0.002 0.035 1.7 4.0 3.0 3.3 1.0 1.1 1.0 2.1 2.5 2.7600 1.0001 1.0 2.1 0.001 0.066 2.8 1.50 6.3 0.3 0.3 3.1 3 1.9 9500 515-060 TC 0.9 2.5 2.7600 10000 1.0	514-002	RT	0.9	1.5	24800	12000	1.5	36	0.014	0.341	10	117	63	0.3	0.3	3.1	3	1.9	41600
S14-06 RG L12 2 2000 4500 25 22 0.001 0.013 35 001 0.03 0.3 0.10 0.3 0.11 22 1.0 0.031 31 22 1.0 0.011 0.013 31 01 21 0.011 0.013 31 10 22 1.0 0.033 1.1 11 10 0.3 0.13 0.1 0.11 <th0.11< th=""> <th0.11< th=""></th0.11<></th0.11<>	514-003	RT	1.1	1.8	26300	10800	2.0	42	0.003	0.081	15	147	63	0.3	0.3	3.1	3	1.9	38200
314-00 OS 1.0 2.7 24-00 10.0 2 0.011 0.010 2.5 0.1 0.1 0.1 2.1 0.1 2.1 0.1 2.1 0.1 2.1 0.1 2.1 0.1 2.1 0.1 2.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.1 0.1 0.1 0.01	514-004	RG	1.2	2.9	23000	4500	2.5	22	0.001	0.003	35	90	110	0.3	0.3	3.1	23	1.9	38700
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	514-005	OS	1.0	2.2	22300	10200	1.5	21	0.001	0.057	36	00	03	0.3	0.3	3.1	3	1.9	12200
515002 RT 0.9 2.7 50600 7100 1.0 40 0.001 0.053 17 124 13 0.3 0.13 2.1 6 1.9 1300 515003 RT 1.1 2.2 25600 8100 1.3 2.1 0.002 0.054 29 124 63 0.3 0.3 1.3 1.0 0.6600 515005 OT 0.8 2.2 25700 1200 1.0 2.1 0.001 0.066 29 134 63 0.3 0.3 1.3 3 2.0 5100 5100 0.01 0.066 29 134 63 0.3 0.3 1.1 3 1.9 5300 51600 1.0 2.1 0.001 0.0642 39 125 63 0.3 0.3 1.3 1.1 3 1.9 5300 530 530 0.31 0.3 1.3 1.1 3 1.9 5300 53 0.3 0.3 0.3 1.3 1.9 1500 530 530 0.3 0.3	514-000	DT	0.8	2.7	20200	4800	1.0		0.011	0.019	15	141	110	0.7	0.3	9.0	0	1.9	42200
515-003 RT 1.1 2.9 23400 6400 1.3 21 0.001 0.014 29 124 631 0.3 0.3 3.1 1 10 19 13000 515-005 OT 0.8 2.2 25600 1100 1.3 21 0.001 0.066 38 150 63 0.3 0.3 3.1 3 1.0 9.000 1.0 25 0.001 0.066 38 150 63 0.3 0.3 3.1 3 1.3 1.3 2.0 9.001 0.066 38 150 63 0.3 0.3 3.1 3 1.3 1.3 1.3 2.0 9.000 1.6 2.0 0.001 0.046 38 150 63 0.3 0.3 3.1 3 1.3<	515-002	RT	0.9	2.5	30600	6300	1.0	40	0.002	0.053	17	174	63	0.3	0.3	31	, ,	1.9	41300
515-000 OT 0.8 2.2 22660 8100 1.3 21 0.002 0.054 29 1.24 63 0.3 0.3 0.1 0.1 0.1 0.1 0.0066 29 1.9 631 0.3	515-003	RT	11	29	25400	6400	1.5	25	0.001	0.017	40	96	63	0.3	0.3	31	10	1.9	31200
\$15000 OT 0.8 2.5 27500 10000 1.0 22 0.006 38 150 63 0.3 0.3 0.1 3 2.0 \$4300 \$15000 OT 0.9 1.9 25900 11400 1.5 24 0.001 0.0466 38 150 63 0.3 0.3 0.3 3.1 3 1.9 \$5000 \$15000 OT 2.1 1.9 25000 14100 1.0 23 0.001 0.042 39 122 63 0.3 0.3 3.1 3 1.9 39600 \$16402 KT 0.3 1.7 2800 19000 3.0 66 0.001 0.024 39 123 63 0.3 0.3 3.1 3 1.0 31 1.0 31 3 1.0 31 3 1.0 31 3 1.0 31 3 1.0 31 3 1.0 31 3 1.0 31 3 1.0 31 3 31 31 31 31 <td>515-004</td> <td>OT</td> <td>0.8</td> <td>2.2</td> <td>26600</td> <td>8100</td> <td>1.3</td> <td>21</td> <td>0.002</td> <td>0.054</td> <td>29</td> <td>124</td> <td>63</td> <td>0.3</td> <td>0.3</td> <td>3.1</td> <td>3</td> <td>1.9</td> <td>60800</td>	515-004	OT	0.8	2.2	26600	8100	1.3	21	0.002	0.054	29	124	63	0.3	0.3	3.1	3	1.9	60800
515000 OT 0.9 2.3 26700 112300 1.0 2.5 0.001 0.064 38 150 63 0.3 0.3 3.1 3 2.0 55000 515000 OT 2.1 1.9 22600 16000 1.0 23 0.001 0.927 37 122 63 0.3 0.3 3.1 3 1.9 55000 51600 KT 0.3 2.1 2.0 21600 11900 2.0 39 0.001 0.942 37 125 63 0.3 0.3 3.1 3 1.9 53000 1100 2.0 45 0.001 0.042 37 125 63 0.3 0.3 3.1 3 1.9 57000 110 79 0.001 0.047 72 63 0.3 0.3 3.1 3 1.9 0.070 0.070 0.070 0.070 0.03 0.3 0.3 3.1 3 1.9 0.070 0.070 0.01 0.30 0.3 0.3 0.3 0.3 0.3 0.3	515-005	OT	0.8	2.5	27600	10000	1.0	21	0.001	0.066	29	139	63	0.3	0.3	3.1	3	2.0	54300
515-007 OT 0.9 1.9 25000 1100 1.5 24 0.001 0.043 39 150 63 0.3 0.3 0.1 31 1.9 58000 516-060 KT 0.3 2.0 21600 11900 2.0 39 0.001 0.042 37 125 63 0.3 0.3 3.1 3 1.5 38000 516-002 KT 0.3 2.1 22 21000 11900 2.0 46 0.001 0.024 37 125 63 0.3 0.3 3.1 3 1.9 95700 516-002 KT 0.3 1.7 22400 16000 1.8 22 0.001 0.047 30 13 0.3 0.3 3.1 3 1.9 95000 9500 1.0 72 0.001 0.023 51 116 63 0.3 0.3 3.1 3 1.9 95000 9500 9500 9500 9500 1.0 72 0.001 0.022 53 127 63 0	515-006	ОТ	0.9	2.3	26700	12300	1.0	25	0.001	0.066	38	150	63	0.3	0.3	3.1	3	2.0	59100
515-000 VT 0.1 21 0.001 0.57 37 122 63 0.3 0.3 3.1 3 1.9 39600 516-001 KT 0.3 2.2 24100 10100 2.0 46 0.001 0.042 37 125 63 0.3 0.3 3.1 3 1.9 85700 516-001 KG 0.3 1.7 23800 19000 3.0 86 0.001 0.022 27 255 63 0.3 0.3 3.1 3 1.9 85700 517-002 RT 0.5 1.7 23800 10000 1.0 41 0.002 0.268 24 121 63 0.3 0.3 3.1 3 1.9 93700 11000 1.0 1.0 0.01 0.10 51 128 63 0.3 0.3 3.1 3 1.9 10000 120 1.0 128 63 0.3 0.3 3.1 3 1.9 10000 11000 10000 10000 10000 10000 1	515-007	ОТ	0.9	1.9	25900	14100	1.5	24	0.001	0.046	39	150	63	0.3	0.3	3.1	3	1.9	56800
516-001 KT 0.3 2.0 21600 1000 2.0 39 0.001 0.042 37 125 63 0.3 0.3 3.1 3 1.9 93000 516-002 KG 0.3 1.7 28000 19000 3.0 86 0.001 0.024 27 255 63 0.3 0.3 3.1 3 1.9 75100 517-001 RT 0.9 2.2 23500 10000 1.0 41 0.002 0.268 24 121 63 0.3 0.3 3.1 3 1.9 63000 517-002 WT 0.3 0.3 3.1 3 1.9 10000 517-002 WT 0.3 1.7 20400 13000 1.0 72 0.001 0.238 51 111 63 0.3 0.3 3.1 3 1.9 10000 517-000 WT 0.3 3.4 1.9 10000 517-000 1.500 1.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 3.3 3.1	515-008	OT	2.1	1.9	28600	10800	1.0	23	0.001	0.597	37	122	63	0.3	0.3	3.1	3	1.9	39600
36-602 KT 0.3 2.2 24100 10100 2.0 46 0.001 0.023 27 255 63 0.3 0.3 3.1 3 1.9 87700 517-002 RT 0.5 1.7 25000 10000 1.0 48 0.001 0.023 27 255 63 0.3 0.3 3.1 3 1.9 75100 517-002 RT 0.5 3.1 2.000 1.00 70 0.001 0.010 51 108 63 0.3 3.1 3 1.9 63000 517-007 WT 0.3 3.4 17800 19000 1.5 79 0.001 0.025 53 127 63 0.3 0.3 3.1 3 1.9 10000 517-007 WT 0.3 3.4 17800 1900 1.0 47 0.001 0.178 53 127 63 0.3 0.3 3.1 3 1	516-001	KT	0.3	2.0	21600	11900	2.0	39	0.001	0.042	37	125	63	0.3	0.3	3.1	3	1.9	93000
310-003 K.G 0.3 1.7 22:00 10000 1.3 0.3 <th< td=""><td>516-002</td><td>KI</td><td>0.3</td><td>22</td><td>24100</td><td>10100</td><td>2.0</td><td>40</td><td>0.001</td><td>0.054</td><td>39</td><td>125</td><td>180</td><td>0.3</td><td>0.3</td><td>3.1</td><td>3</td><td>1.9</td><td>85700</td></th<>	516-002	KI	0.3	22	24100	10100	2.0	40	0.001	0.054	39	125	180	0.3	0.3	3.1	3	1.9	85700
317-00; N.T 0.3 2.1 2.3 0.3 0.3 2.1 3 2.0 37000; 017-00; W.T 0.6 3.0 2.3 2.000; 10.0 19 0.001; 0.206; 5.4 112; 63 0.3 0.3 3.1 3 1.9 10000; 17-00; W.T 0.3 1.8 2.000; 10.001; 0.201; 0.201; 0.210; 2.1 11.00; 0.001; 0.217; 11.01; 63 0.3 0.3 3.1 3 1.9 10000; 17-000; W.T 0.3 1.8 2.000; 1.0 0.27 1.001; 0.027; 11.9 63 0.3 0.3 3.1 3 1.9 10000; 17-000; W.T 0.3 2.0 2000; 1.0 47 0.001; 0.023; 53 127 63 0.3 0.3 3.1 3 1.9 7400; 17-000; W.T 0.3 2.5 2200; 100; 2.5 36 0.002; 0.18 61	510-003		0.3	1.7	28300	10900	3.0		0.001	0.023	2/	255	63	0.3	0.3	3.1		1.9	50700
517003 WT 0.6 3.0 2000 100 79 0.001 0.100 56 108 63 0.3 0.1 31 3 11 5 1000 517005 WT 0.3 1.7 20000 13600 1.0 72 0.001 0.023 51 111 63 0.3 0.3 3.1 3 1.9 10000 517005 WT 0.3 3.4 17800 16100 2.0 1 0.001 0.023 51 112 63 0.3 0.3 3.1 3 1.9 10000 517007 WT 0.3 3.0 24000 10000 1.0 47 0.001 0.175 57 128 63 0.3 0.3 3.1 3 1.9 74000 10000 3.0 54 0.002 0.175 57 128 63 0.3 0.3 3.1 3 1.9 7400 50 10000 3.0 54 0.002 0.018 51 116 0.3 0.3 0.3 3.1	517-001	RI PT	0.5	2.7	20000	10000	1.0	20 41	0.001	0.047	30 24	121	63	0.3	0.3	3.1	3	2.0	63000
\$17.004 VT 0.3 1.7 22400 13600 1.0 72 0.001 0.338 \$1 11 63 0.3 0.3 1.1 3 1.9 10000 \$17.005 VT 0.3 1.4 17800 19900 1.5 79 0.001 0.22 53 127 63 0.3 0.3 3.1 3 1.9 10000 \$17.006 VT 0.3 2.0 20400 10600 1.0 62 0.001 0.02 53 1.27 63 0.3 0.3 3.1 3 1.9 10000 517.000 0.01 0.07 53 63 0.3 0.3 3.1 3 1.9 77400 \$17.000 WT 0.3 2.0 2.000 0.060 3.0 54 0.002 0.016 3.2 0.3 0.3 3.1 3 1.9 77400 51 63 0.3 0.3 3.1 3 1.9 77400 517.012 0.7 0.5 22600 9700 3.0 54 0.002	517-002	WT	0.9	3.0	20300	10200	1.0	79	0.001	0.200	56	108	63	0.3	0.3	31	3	1.9	10000
517.005 WT 0.3 1.8 20200 16100 2.0 1 0.001 0.028 71 128 63 0.3 0.3 1.1 3 1 1 10000 517.006 WT 0.3 3.0 20400 16690 1.0 62 0.001 0.175 58 119 63 0.3 0.3 3.1 3 1.9 10000 517.008 WT 0.3 3.0 20800 9200 2.0 65 0.002 0.182 67 135 63 0.3 0.3 3.1 3 1.9 77400 517.010 WT 0.6 2.7 21000 10600 3.0 54 0.002 0.016 32 109 63 0.3 0.3 3.1 3 1.9 77400 517.011 OT 0.7 2.5 22600 10100 2.5 54 0.002 0.016 33 101 63 0.3 0.3 3.1 3 1.9 77800 1701 1.1 2.2 22600 12	517-004	wr	0.3	1.7	20400	13600	1.0	72	0.001	0.538	51	111	63	0.3	0.3	3.1	3	1.9	10000
Si7-006 WT 0.3 3.4 17800 10900 1.5 79 0.001 0.127 58 119 63 0.3 0.3 3.1 3 1.9 10000 S17-008 WT 0.3 2.8 20800 9300 1.0 47 0.001 0.178 57 128 63 0.3 0.3 3.1 3 1.9 10000 S17-009 WT 0.3 3.0 2.001 10600 3.0 54 0.002 0.018 61 128 63 0.3 0.3 3.1 3 1.9 74000 S17-010 WT 0.6 2.7 21000 10600 2.5 56 0.002 0.016 33 0.3 0.3 3.1 3 1.9 76000 517-017 0.8 2.5 22600 9700 3.0 54 0.002 0.042 33 111 63 0.3 0.3 3.1 3 1.9 77300 517-017 0.7 2.5 22600 120 39 0.23 1.21 63	517-005	WT	0.3	1.8	20200	16100	2.0	1	0.001	0.028	71	128	63	0.3	0.3	3.1	3		10000
517-007 WT 0.3 3.0 20400 10600 1.0 62 0.01 0.0.78 57 128 63 0.3 0.3 3.1 3 1.9 10000 \$17-008 WT 0.3 3.0 20600 9200 2.0 65 0.002 0.182 67 135 63 0.3 3.1 3 1.9 7400 \$17-010 WT 0.6 2.7 21000 10600 3.0 54 0.002 0.016 31 1.9 67400 3 0.3 3.1 3 1.9 74400 \$17-012 OT 0.8 2.5 22400 13200 2.0 50 0.001 0.166 33 1.11 63 0.3 0.3 3.1 3 2.0 67400 517-015 OT 1.1 2.0 24400 9400 2.0 400 0.03 0.35 121 63 0.3 0.3 3.1 3 1.9 7500 517-016 OT 1.3 2.0 6400 0.03 0.33 0.3	517-006	WT	0.3	3.4	17800	10900	1.5	79	0.001	0.127	58	119	63	0.3	0.3	3.1	3	1.9	10000
517-008 WT 0.3 2.8 20800 9300 1.0 47 0.01 0.178 57 128 63 0.3 0.3 3.1 3 1.9 78400 517-010 WT 0.6 2.7 21000 10600 3.0 54 0.002 0.0182 67 135 63 0.3 0.3 3.1 3 1.9 78400 517-011 OT 0.8 2.5 22600 9700 3.0 54 0.002 0.016 33 97 63 0.3 0.3 3.1 3 1.9 78400 517-012 OT 0.8 2.5 22600 9700 3.0 54 0.002 0.012 33 97 63 0.3 0.3 3.1 3 1.9 78300 517-015 OT 1.0 2.1 21500 13200 2.0 39 0.003 0.051 39 123 130 0.3 0.3 3.1 3 1.9 78100 517-017 OT 1.6 2.2 21700 170 <t< td=""><td>517-007</td><td>WT</td><td>0.3</td><td>3.0</td><td>20400</td><td>10600</td><td>1.0</td><td>62</td><td>0.001</td><td>0.025</td><td>53</td><td>127</td><td>63</td><td>0.3</td><td>0.3</td><td>3.1</td><td>3</td><td>1.9</td><td>10000</td></t<>	517-007	WT	0.3	3.0	20400	10600	1.0	62	0.001	0.025	53	127	63	0.3	0.3	3.1	3	1.9	10000
517-009 WT 0.3 3.0 26000 9200 2.0 65 0.002 0.182 67 135 63 0.3 0.13 0.1 3 1.9 74000 517-010 OT 0.9 2.6 22400 10600 2.5 36 0.002 0.016 32 109 63 0.3 0.3 3.1 3 1.9 74000 517-012 OT 0.7 2.5 22600 9700 3.0 54 0.002 0.016 32 109 63 0.3 0.3 3.1 3 1.9 74000 517-015 OT 1.1 2.0 2400 9400 2.0 39 0.003 0.052 34 100 63 0.3 0.3 3.1 3 1.9 7400 517-016 OT 1.1 2.0 24400 9400 2.0 47 0.003 0.052 34 100 63 0.3 0.3 3.1 3 1.9 76100 517-016 OT 0.7 1.9 26000 1070 2.5 <t< td=""><td>517-008</td><td>WT</td><td>0.3</td><td>2.8</td><td>20800</td><td>9300</td><td>1.0</td><td>47</td><td>0.001</td><td>0.178</td><td>57</td><td>128</td><td>63</td><td>0.3</td><td>0.3</td><td>3.1</td><td>3</td><td>1.9</td><td>78400</td></t<>	517-008	WT	0.3	2.8	20800	9300	1.0	47	0.001	0.178	57	128	63	0.3	0.3	3.1	3	1.9	78400
517-010 WT 0.6 2.7 21000 106000 3.0 54 0.002 0.038 61 128 63 0.3 0.3 3.1 3 1.9 74400 517-011 OT 0.8 2.5 22600 9700 3.0 54 0.002 0.042 33 97 63 0.3 0.3 3.1 3 1.9 74900 517-012 OT 0.7 2.5 22600 9700 3.0 54 0.002 0.042 33 97 63 0.3 0.3 3.1 3 1.9 7300 517-016 OT 1.0 2.1 21500 13200 2.0 39 0.003 0.52 34 100 63 0.3 0.3 3.1 3 1.9 74400 517-017 OT 1.6 2.2 23700 11400 3.0 47 0.006 0.039 35 121 63 0.3 0.3 3.1 3 1.9 75700 517-018 OT 1.6 2.2 232000 7600 1.5 <	517-009	WT	0.3	3.0	20600	9200	2.0	65	0.002	0.182	67	135	63	0.3	0.3	3.1	3	1.9	82900
517-011 OT 0.9 2.6 22400 10100 2.5 30 0.002 0.016 32 109 6.3 0.3 0.3 3.1 3 1.9 67800 517-012 OT 0.7 2.5 22400 13200 2.0 50 0.001 0.166 33 111 63 0.3 0.3 3.1 3 2.0 74900 517-013 OT 0.7 2.5 22400 9400 2.0 42 0.005 0.021 39 123 130 0.3 0.3 3.1 3 1.9 7500 517-015 OT 1.6 2.2 23700 10700 2.0 73 0.003 0.185 40 124 63 0.3 0.3 3.1 3 1.9 76100 517-017 OT 1.6 2.2 23700 10700 2.5 54 0.001 0.69 37 120 63 0.3 0.3 3.1 3 1.9 76100 518-002 RT 0.8 2.5 24000	517-010	WT	0.6	2.7	21000	10600	3.0	54	0.002	0.038	61	128	63	0.3	0.3	3.1	3	1.9	74400
517-012 O1 0.8 2.5 22000 9700 3.0 34 0.002 0.042 33 97 03 0.3 0.1 3 1.1 3 2.0 74900 517-013 OT 1.0 2.1 21500 13200 2.0 39 0.003 0.052 34 100 63 0.3 0.3 3.1 3 2.0 74900 517-015 OT 1.1 2.0 24400 9400 2.0 42 0.005 0.021 39 123 130 0.3 0.3 3.1 3 1.9 75700 517-016 OT 0.3 1.4 25600 11400 3.0 47 0.003 0.185 40 124 63 0.3 0.3 3.1 3 1.9 75100 517-018 0.7 1.9 2000 9700 2.0 73 0.003 0.037 44 124 63 0.3 0.3 3.1 3 1.9 76100 518-002 RT 0.8 2.5 24600 10800 <	517-011	OT	0.9	2.6	22400	10100	2.5	30	0.002	0.016	32	109	03	0.3	0.3	3.1	3	1.9	0/800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	517-012		0.8	2.5	22000	9700	3.0	50	0.002	0.042	33	111	03 63	0.3	0.3	3.1	3	1.9	73300
S17-015 OT 1.1 2.10 2.100 1.200 2.00 2.0 3.0 0.32 3.0 0.3	517-013		1.0	2.5	22400	13200	2.0	30	0.001	0.100	34	100	63	0.3	0.3	3.1	3	2.0	67400
517-016 OT 0.3 1.4 25600 1400 3.0 47 0.006 0.039 35 121 63 0.3 0.3 3.1 3 1.9 75700 517-017 OT 1.6 2.2 23700 10700 2.0 73 0.003 0.183 40 124 63 0.3 0.3 3.1 3 1.9 75700 517-018 0.7 1.9 26000 9700 2.5 54 0.001 0.609 37 120 63 0.3 0.3 3.1 3 1.9 75100 518-002 RT 0.8 2.5 24600 10800 1.0 44 0.006 0.055 47 124 63 0.3 0.3 3.1 3 1.9 76100 518-003 WT 0.3 3.1 3 1.9 0.701 2.0 2.0 0.055 47 124 63 0.3 0.3 3.1 3.1 3 1.9 970100 518-005 WT 0.3 3.1 3.1 3.0 93040 0.0 <td< td=""><td>517-015</td><td>or</td><td>1.0</td><td>2.0</td><td>24400</td><td>9400</td><td>2.0</td><td>42</td><td>0.005</td><td>0.021</td><td>39</td><td>123</td><td>130</td><td>0.3</td><td>0.3</td><td>3.1</td><td>3</td><td>1.9</td><td>81 500</td></td<>	517-015	or	1.0	2.0	24400	9400	2.0	42	0.005	0.021	39	123	130	0.3	0.3	3.1	3	1.9	81 500
517-017 OT 1.6 2.2 23700 10700 2.0 73 0.003 0.185 40 124 63 0.3 0.3 3.1 3 1.9 76100 517-017 OT 0.7 1.9 26000 9700 2.5 54 0.001 0.609 37 120 63 0.3 0.3 3.1 3 2.0 68200 518-001 RT 0.7 2.4 22200 7600 1.5 47 0.003 0.037 44 121 63 0.3 0.3 3.1 3 1.9 76100 518-002 RT 0.8 2.5 24600 10800 1.0 44 0.006 0.055 47 124 63 0.3 0.3 3.1 3 1.9 76100 518-003 WT 0.3 3.1 14200 4600 3.0 74 0.001 0.025 73 131 63 0.3 0.3 3.1 14 19 01000 518-007 WT 0.9 3.2 21800 <	517-016	ŎŤ	0.3	1.4	25600	11400	3.0	47	0.006	0.039	35	121	63	0.3	0.3	3.1	3	1.9	75700
517-018 OT 0.7 1.9 26000 9700 2.5 54 0.001 0.609 37 120 63 0.3 0.3 3.1 3 2.0 68200 518-001 RT 0.7 2.4 22200 7600 1.5 47 0.003 0.037 44 121 63 0.3 0.3 3.1 3 1.9 76100 518-002 RT 0.8 2.5 24600 10800 1.0 44 0.006 0.055 47 124 63 0.3 0.3 3.1 3 1.9 76100 518-003 WT 0.3 3.1 14200 4600 3.0 74 0.001 0.237 62 126 63 0.3 0.3 3.1 14 1.9 10000 518-005 WT 0.9 3.2 21800 3700 5.0 74 0.001 0.013 87 154 180 0.3 0.3 3.1 13 2.0 5600 518-008 WT 0.9 3.6 23500 6200	517-017	OT	1.6	2.2	23700	10700	2.0	73	0.003	0.185	40	124	63	0.3	0.3	3.1	3	1.9	76100
SIE-001 RT 0.7 2.4 2200 7600 1.5 47 0.003 0.037 44 121 63 0.3 0.3 3.1 3 1.9 76100 S18-002 RT 0.8 2.5 24600 10800 1.0 44 0.006 0.055 47 124 63 0.3 0.3 3.1 3 1.9 69100 S18-003 WS 1.5 2.8 27000 7700 2.0 32 0.022 0.052 41 115 63 0.3 0.3 3.1 3 1.9 69100 518-006 WT 0.3 3.0 1.920 4300 4.0 79 0.011 0.237 62 126 63 0.3 0.3 3.1 1.5 3.0 8480 518-006 WT 0.9 3.6 23500 6200 3.0 60 0.002 0.016 126 110 63 0.3 0.3 3.1 3 1.9 43400 519-002 RT 0.3 0.3 3.1 3 1.9 4	517-018	OT	0.7	1.9	26000	9700	2.5	54	0.001	0.609	37	120	63	0.3	0.3	3.1	3	2.0	68200
518-002 RT 0.8 2.5 24600 10800 1.0 44 0.006 0.055 47 124 63 0.3 0.3 3.1 3 1.9 69100 518-003 WS 1.5 2.8 27000 7700 2.0 32 0.022 0.052 41 115 63 0.3 0.3 3.1 3 1.9 30100 518-004 WT 0.3 3.1 144 1.9 10000 518-004 WT 0.3 3.1 14 1.9 10000 518-006 WT 0.9 3.2 21800 3700 5.0 74 0.001 0.013 87 154 180 0.3 0.3 3.1 10 2.0 5600 5000 500 500 500 500 500 5000 5000 5000 5000 500 500 500 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 500 500 500 </td <td>518-001</td> <td>RT</td> <td>0.7</td> <td>2.4</td> <td>22200</td> <td>7600</td> <td>1.5</td> <td>47</td> <td>0.003</td> <td>0.037</td> <td>44</td> <td>121</td> <td>63</td> <td>0.3</td> <td>0.3</td> <td>3.1</td> <td>3</td> <td>1.9</td> <td>76100</td>	518-001	RT	0.7	2.4	22200	7600	1.5	47	0.003	0.037	44	121	63	0.3	0.3	3.1	3	1.9	76100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	518-002	RT	0.8	2.5	24600	10800	1.0	44	0.006	0.055	47	124	63	0.3	0.3	3.1	3	1.9	69100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	518-003	ws	1.5	2.8	2/000	7700	2.0	32	0.022	0.052	41	115	03	0.3	0.3	3.1	6	1.9	30100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	518-004	WI	0.3	3.1	14200	4000	3.0	74	0.001	0.237	02	120	03	0.3	0.3	3.1	14	1.9	84900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	518-005	WT	0.3	3.0	21800	4300	4.0	79	0.001	0.023	27	151	180	0.3	0.3	3.1	10	3.0	56600
518-003 WT 1.1 3.6 30800 7400 3.0 62 0.001 0.001 100	518-007	WT	0.9	3.2	21600	6200	3.0	60	0.002	0.015	126	110	63	0.3	0.3	3.1	13	2.0	50500
519-001 RT 0.3 2.5 17900 7900 2.0 22 0.001 0.049 25 109 63 0.3 0.3 3.1 3 1.9 85200 519-002 RT 0.6 2.7 18100 8500 2.0 27 0.001 0.046 41 118 130 0.3 0.3 3.1 3 1.9 84900 519-003 WT 0.7 3.6 21100 8300 2.0 48 0.002 0.014 36 123 63 0.3 0.3 3.1 3 1.9 93600 519-004 WT 1.2 3.4 20500 5300 5.0 50 0.002 0.048 84 92 63 0.3 0.3 3.1 3 1.9 93600 519-005 WT 1.4 3.0 34100 7700 4.0 48 0.002 411 118 63 0.3 0.3 3.1 3 1.9 19100 52600 520-002 RT 1.3 3.8 28000 7700 <	518-008	wr	1.1	3.6	30800	7400	3.0	62	0.001	0.091	104	107	63	0.3	0.3	3.1	3	1.9	43400
519-002 RT 0.6 2.7 18100 8500 2.0 27 0.001 0.046 41 118 130 0.3 0.3 3.1 7 1.9 84900 519-003 WT 0.7 3.6 21100 8300 2.0 48 0.002 0.014 36 123 63 0.3 0.3 3.1 3 1.9 93600 519-004 WT 1.2 3.4 20500 5300 5.0 50 0.002 0.048 84 92 63 0.3 0.3 3.1 3 2.0 38100 519-005 519-005 WT 1.4 3.0 34100 7700 4.0 48 0.004 0.032 41 118 63 0.3 0.3 3.1 3 1.9 22600 519-005 WT 1.3 3.8 28000 7700 3.0 47 0.003 0.025 46 111 63 0.3 0.3 3.1 3 1.9 22600 520-002 RT 1.0 <	519-001	RT	0.3	2.5	17900	7900	2.0	22	0.001	0.049	25	109	63	0.3	0.3	3.1	3	1.9	85200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	519-002	RT	0.6	2.7	18100	8500	2.0	27	0.001	0.046	41	118	130	0.3	0.3	3.1	7	1.9	84900
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	519-003	WT	0.7	3.6	21100	8300	2.0	48	0.002	0.014	36	123	63	0.3	0.3	3.1	3	1.9	93600
519-005 WT 1.4 3.0 34100 7700 4.0 48 0.004 0.032 41 118 63 0.3 0.3 3.1 3 1.9 22600 519-006 WT 1.3 3.8 28000 7700 3.0 47 0.003 0.025 46 111 63 0.3 0.3 3.1 3 1.9 22600 520-001 RT 0.8 1.6 27800 15000 3.0 36 0.001 0.086 24 181 63 0.3 0.3 3.1 3 1.9 52000 520-002 RT 1.0 1.1 27100 14100 2.0 19 0.001 0.023 22 142 63 0.3 0.3 3.1 3 1.9 55200 520-003 RT 0.7 2.3 22700 11000 2.0 30 0.001 0.021 29 111 63 0.3 0.3 3.1 3 1.9 52200 520-004 WT 0.3 2.7 <t< td=""><td>519-004</td><td>WT</td><td>1.2</td><td>3.4</td><td>20500</td><td>5300</td><td>5.0</td><td>50</td><td>0.002</td><td>0.048</td><td>84</td><td>92</td><td>63</td><td>0.3</td><td>0.3</td><td>3.1</td><td>3</td><td>2.0</td><td>38100</td></t<>	519-004	WT	1.2	3.4	20500	5300	5.0	50	0.002	0.048	84	92	63	0.3	0.3	3.1	3	2.0	38100
519-006 WT 1.3 3.8 28000 7700 3.0 47 0.003 0.025 46 111 63 0.3 0.3 3.1 3 1.9 19100 520-001 RT 0.8 1.6 27800 15000 3.0 36 0.001 0.086 24 181 63 0.3 0.3 3.1 3 1.9 552000 520-002 RT 1.0 1.1 27100 14100 2.0 19 0.001 0.023 22 142 63 0.3 0.3 3.1 3 1.9 552000 520-003 RT 0.7 2.3 22700 11000 2.0 30 0.001 0.021 29 111 63 0.3 0.3 3.1 3 1.9 52200 520-004 WT 0.3 2.7 23800 10400 2.0 58 0.001 0.031 51 118 63 0.3 0.3 3.1 3 1.9 89200 520-005 OT 1.0 2.7	519-005	WT	1.4	3.0	34100	7700	4.0	48	0.004	0.032	41	118	63	0.3	0.3	3.1	3	1.9	22600
S20-001 R1 0.8 1.0 2/800 15000 3.0 36 0.001 0.086 24 181 63 0.3 0.3 3.1 3 1.9 55500 520-002 RT 1.0 1.1 27100 14100 2.0 19 0.001 0.023 22 142 63 0.3 0.3 3.1 3 1.9 52200 520-003 RT 0.7 2.3 22700 11000 2.0 30 0.001 0.021 29 111 63 0.3 0.3 3.1 3 1.9 52200 520-004 WT 0.3 2.7 23800 10400 2.0 58 0.001 0.031 51 118 63 0.3 0.3 3.1 3 1.9 8200 520-005 OT 1.0 2.7 24400 9400 2.0 32 0.001 0.195 24 108 160 0.3 0.3 3.1 5 1.9 68100	519-006	WT	1.3	3.8	28000	7700	3.0	47	0.003	0.025	46	<u> </u>	63	0.3	0.3	3.1	3	1.9	19100
520-002 R1 1.0 1.1 27100 14100 2.0 19 0.001 0.023 22 142 05 0.3 5.1 5 1.9 522003 520-003 RT 0.7 2.3 22700 11000 2.0 30 0.001 0.021 29 111 63 0.3 0.3 3.1 3 1.9 88500 520-004 WT 0.3 2.7 23800 10400 2.0 58 0.001 0.031 51 118 63 0.3 0.3 3.1 3 1.9 88500 520-005 OT 1.0 2.7 24400 9400 2.0 32 0.001 0.195 24 108 160 0.3 0.3 3.1 5 1.9 68100	520-001	RI	0.8	1.6	2/800	14100	3.0	30	0.001	0.080	24	181	03 63	0.3	0.3	3.L 2 1	t 1	1.9	53500
S20-004 WT 0.3 2.7 23800 10400 2.0 58 0.001 0.021 27 111 05 0.5 0.5 0.1 3 1.9 89200 520-004 WT 0.3 2.7 23800 10400 2.0 58 0.001 0.031 51 118 63 0.3 0.3 3.1 3 1.9 89200 520-005 OT 1.0 2.7 24400 9400 2.0 32 0.001 0.195 24 108 160 0.3 3.1 5 1.9 68100	520-002	KI DT	1.0	1.1	27100	11000	2.0	20	0.001	0.023	22	142	62	0.3	0.3	3.1	2	1.9	88500
520-005 OT 1.0 2.7 24400 9400 2.0 32 0.001 0.195 24 108 160 0.3 0.3 3.1 5 1.9 68100	520-003	WT	0.7	2.3	22700	10400	2.0	50	0.001	0.021	51	118	61	0.3	0.3	11	1	1.9	80200
	520-005	OT	1.0	2.7	24400	9400	2.0	32	0.001	0.195	24	108	160	0.3	0.3	3.1	5	1.9	68100

		Ag	Ag	Al	Al	As	As	Au	Au	В	Ba	Ba	Be	Be	Bi	Bi	Br	Ca
		-63um	nmhmc	-2um	nmhmc	-2um	nmhmc	-63um	nmhmc	-2um	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um
Sample	Unit	icp	aa	icp	icp	hvaa	inaa	fadc	inaa/fadc	dcp	ico	inaa	ico	icp	ico	ico	inaa	ico
520-006	OT	0.7	2.4	27200	11000	2.0	39	0.001	0.063	- 27	111	63	0.3	0.3	3.1	- 3	2.0	61800
520-007	OT	1.0	2.6	28100	8900	2.5	54	0.001	0.242	42	123	63	0.3	0.3	3.1	3	1.9	53300
520-008	ОТ	1.1	1.8	26800	9600	2.0	88	0.001	0.019	37	118	63	0.3	0.3	3.1	3	1.9	72900
520-009	от	1.1	2.4	27000	12500	2.0	43	0.001	0.023	38	121	63	0.3	0.3	3.1	. 3	1.9	71500
520-010	ОТ	1.2	2.2	23900	10100	3.0	40	0.002	0.175	42	138	63	0.3	0.3	3.1	3	1.9	68400
520-011	OT	1.3	2.7	24200	11100	3.0	38	0.002	0.478	43	124	63	0.3	0.3	3.1	3	1.9	74200
520-012	ОТ	0.3	2.1	21 500	15900	2.5	35	0.001	0.028	47	149	63	0.3	0.3	3.1	3	1.9	10000
520-013	OT	1.2	2.2	25100	10700	2.0	21	0.001	0.104	51	157	63	0.3	0.3	3.1	3	1.9	76500
520-014	ОТ	0.3	1.8	21000	12800	1.0	30	0.001	0.064	40	144	63	0.3	0.3	3.1	3	1.9	10000
520-015	OS	1.8	2.8	21900	5900	9.0	34	0.001	0.011	25	124	180	0.3	0.3	3.1	9	1.9	25400
520-016	SAP	1.4	5.4	21 500	5000	1.0	32	0.003	0.011	27	45	130	0.3	0.3	3.1	18	1.9	800
520-017	SAP	3.6	6.4	20300	3200	1.0	1	0.002	0.018	30	62	320	0.5	0.3	3.1	13	1.9	900
321-001	RT	1.0	2.1	23700	11400	2.0	38	0,001	0.025	63	150	63	0.3	0.3	3.1	3	1.9	79100
521-002	RT	0.7	3.1	20500	12600	1.0	26	0.005	0.019	41	126	63	0.3	0.3	3.1	3	1.9	86300
521-003	WT	1.2	2.5	17400	8500	1.5	49	0.001	0.020	68	112	63	0.3	0.3	3.1	3	1.9	71800
521-004	ОТ	1.2	2.3	22200	11200	1.5	54	0.001	0.273	29	125	63	0.3	0.3	3.1	3	1.9	83100
521-005	WΤ	1.0	2.7	22400	15300	2.5	85	0.001	0.065	54	121	63	0.3	0.3	3.1	3	1.9	84500
521-006	WT	0.3	3.0	21300	6500	3.0	124	0.001	0.023	47	116	63	0.3	0.3	3.1	3	1.9	10000
521-007	OG	1.6	3.3	30200	5600	3.0	97	0.002	0.028	49	115	110	0.3	0.3	3.1	17	4.0	49800
521-008	OG	2.1	3.0	33100	5500	3.0	103	0.001	0.017	34	100	63	0.6	0.3	3.1	8	1.9	39700
521-009	OG	2.8	3.5	33700	5000	3.0	58	0.002	0.014	31	124	63	0.5	0.3	7.0	18	3.0	37000
521-010	OS	1.9	3.1	25100	4200	4.5	18	0.002	0.003	40	123	63	0.3	0.3	3.1	14	1.9	15300
521-011	OS	1.8	3.4	28100	5600	3.0	19	0.002	0.020	40	140	63	0.3	0.3	3.1	11	1.0	11000
521-012	SAP	1.6	1.6	41600	23200	1.5	1	0.001	0.003	64	134	63	0.3	0.3	3.1	3	1.9	3900

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

\$

Note: All values are reported in parts per million (ppm).

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

		Ca	Cd	b)	Ce	Ce	Co	Co	Cr	Cr	C	Cu	Cu	Fu	Fe	Fe tot	Ga	62
		nmhme	-200	nmhme	-2110	nmhma		amhme	- 200	nmhme	nmhme	200	nmhme	amhme	nmhme	200		nmhma
a 1	•• •		-2011	minine	-2011		-2011	inimite i	-2011	,	minine	-20111				-2011	-2011	nininic
Sample	RT	10300	<u>aa</u> 0.1	<u>ICP</u>	<u>100</u> 62		<u>1CD</u> 7	<u>inaa</u>	45	<u>inaa</u> 310	<u>inaa</u>		<u>- ICD</u> 50		<u>inaa</u> 220000	13300	<u>1CD</u>	<u> </u>
501-002	SAP	20800	0.1	3.0	28	71	17	58	21	82	0.6	10	73	ĩ	310000	10300	6	i
501-003	SAP	19900	0.1	2.0	73	190	19	62	27	130	9.0	29	38	;	300000	30700	10	i
302-001	RT	24200	0.1	0.6	83	430	22	81	134	340	0.6	67	64	• 4	160000	41400	10	7
502-002	RT	22400	0.1	0.6	83	580	22	80	126	410	0.6	57	49	3	180000	42100	11	8
502-003	RT	20400	0.1	0.6	72	550	24	68	122	400	0.6	62	47	6	180000	42200	10	9
502-004	RS	15500	0.1	3.0	73	240	28	65	134	150	0.6	74	64	1	290000	49000	10	1
502-005		21000	0.1	1.0	76	330	31	59	136	330	0.6	67	94	4	240000	50700	11	1
503-001	RI	17700	0.1	0.6	61	600	20	110	123	400	0.6	71	89	4	200000	36800	3	5
503-002	KI DT	19300	0.1	0.0	01	050	23	89	129	4/0	0.6	/3	12	1	200000	41500	8	8
503-003	KI DT	13800	0.1	0.0	20	770 610	21	65	109	440	0.0	51	10	5	190000	39200	8	
503-004		19700	0.1	0.0	136	670	21	03	162	410	0.0	50	132	1	210000	33500	9	11
503-005	ASAP	3400	0.1	4.0	46	390	6	95	232	620	0.0	64	01	5	270000	4600	, , , , , , , , , , , , , , , , , , ,	, ,
503-007	SAP	26000	0.4	2.0	8	49	13	38	53	130	0.6	31	31	ĩ	300000	3500	6	1
505-001	RT	15100	0.1	1.0	97	360	26	71	128	240	0.6	65	128	4	310000	46300	°	i
505-002	OT	18600	0.1	2.0	111	250	40	87	172	400	2.0	70	220	4	310000	75500	15	i
505-003	ΟΤ	17500	0.1	3.0	143	330	34	100	143	210	0.6	62	700	1	310000	69300	15	1
505-004	SAP	15000	0.1	3.0	255	560	33	110	139	31	3.0	39	242	10	300000	87900	17	1
306-001	RT	13600	0.1	2.0	81	250	31	92	103	390	0.6	58	117	3	330000	55600	11	1
506-002	RT	12600	0.1	0.6	90	260	32	120	94	300	0.6	52	79	1	340000	58100	9	1
506-003	SAP	14200	0.1	3.0	150	31	16	150	26	170	0.6	12	29	1	300000	32000	6	2
506-004	SAP	7700	0.1	2.0	153	63	25	120	59	130	0.6	71	732		290000	33400	8	
507-001	KI DT	1/100	0.1	0.0	5/	500	17	62	92	490	0.0	59	49	4	200000	33000	1	
507-002		15200	0.1	0.0	51	400	19	60	00 94	380	0.0	50	4/	4	200000	31,800	1	1
507-003	OT	17300	0.1	0.0	51	120	74	68	85	190	0.0	51	56	1	250000	36700	9	1
507-005	OT	17200	0.1	0.6	54	120	27	70	134	150	0.6	63	53	i	310000	47400	ó	i
507-006	ŎŤ	13400	0.1	2.0	74	200	24	54	90	200	0.6	52	44	i	300000	32400	10	ī
507-007	OS	13900	0.1	2.0	82	180	29	96	105	240	0.6	66	68	2	340000	40400	11	1
507-008	от	13200	0.1	0.6	78	280	22	77	95	280	0.6	63	70	2	300000	31000	7	1
507-009	OS	13100	0.1	2.0	61	130	26	83	137	150	0.6	63	63	1	350000	38400	8	1
507-010	от	11100	0.1	0.6	73	240	20	88	93	360	0.6	54	119	3	300000	28800	9	1
507-011	OL	14100	0.1	0.6	85	180	24	81	106	270	0.6	60	177	1	320000	36100	10	1
507-012	<u>SAP</u>	18900	0.1	0.6	68	130	12	120	143	180	1.0	30	139	1	190000	46800	8	4
508-001	KI DT	17000	0.1	2.0	00 70	490	20	83	122	300	0.0	21	203	1	240000	30900	1	1
508-002	DT N	22400	0.1	1.0	86	580	20	69 04	122	430	0.0	60	461	2	230000	49000		2
508-005	SAP	14400	0.1	20	157	250	40	110	154	340	0.0	96	660	3	290000	57100	16	5
508-007	SAP	18000	0.1	0.6	180	360	23	38	218	110	0.6	55	105	i	310000	62400	20	i
309-001	RT	17500	0.1	0.6	90	480	27	89	114	320	0.6	73	255	;	240000	47300		
510-001	RT	18100	0.1	0.6	63	490	26	72	137	340	0.6	80	98	4	220000	48400	7	4
510-002	RT	16200	0.1	1.0	70	590	19	86	106	460	0.6	50	88	4	230000	36000	5	4
311-001	RT	16100	0.1	0.6	49	680	18	78	75	390	0.6	47	215	3	250000	31200	1	1
511-002	RT	18000	0.1	0.6	53	630	19	73	89	410	0.6	50	386	3	240000	35500	1	2
511-003	RT	16200	0.1	0.6	43	640	90	76	68	410	0.6	38	135	3	230000	31400	1	4
511-004	WT	20300	0.1	0.6	3	850	12	42	51	630	0.6	34	162	1	250000	25800	1	1
511-005		16600	0.1	0.6	63	530	15	60	45	360	0.6	37	329	1	290000	29400	2	<u>l</u>
512-001	WT	18400	0.1	2.0	60	380	18	76	77	340	0.6	42	170	3	260000	31600	1	1
512-002	WI	14800	0.1	2.0	01	200	18	82	13	220	0.0	58 24	290	1	320000	30300	1	1
312-003		14300	<u>0.1</u>	2.0		740				230	0.0		104 7X	1		20000		
513.007	WT	14800	0.1	0.0	17	390	16	74	53	310	0.0	36	114	1	320000	26700	1	3
513-003	ŵŤ	15800	0.1	0.6	60	320	18	66	60	290	0.6	37	122	2	320000	27000	i	1
513-004	WT	16400	0.1	2.0	55	350	18	91	64	240	0.6	40	165	2	330000	28100	i	i

		Ca	Cd	Cd	Ce	Ce	Co	Со	Cr	Cr	Cs	Cu	Cu	Eu	Fe	Fe tot	Ga	Ga
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	nmhmc	-2um	-2um	nmhmc
Sample	Unit	icn	22	icn	icn	inaa	icn	inaa	icn	inaa	inaa	icn	icn	inaa	inaa	icn	icn	icn
513-005	SAP	15400	0.1	2.0	41	26	14	350	80	160	0.6	40	910	1	270000	38000	4	T
514-001	RT	18100	0.1	0.6	53	880	16	78	70	510	0.6	35	271	4	240000	30400	1	4
514-002	RT	17800	0.1	0.6	58	860	17	72	73	560	0.6	37	260	5	220000	31700	1	5
514-003	RT	18400	0.1	0.6	61	610	19	67	88	470	0.6	45	44	5	220000	35800	2	3
514-004	RG	18500	0.1	2.0	48	130	28	74.	89	120	0.6	58	98	1	320000	47000	1	1
514-005	OS	17300	0.1	0.6	47	770	24	72	56	470	0.6	36	90	6	230000	37400	11	4
514-000	SAP DT	19200	0.1	3.0	<u></u>	410	44	21	<u> </u>	31	0.0	81	299	<u></u>	330000	10000	12	
515-002	PT	15900	0.1	10	57	350	20	82	127	290	1.0	40 63	107	1	300000	48400	2	1
515-002	RT	17800	0.1	2.0	60	410	25	72	R1	380	0.6	44	60	1	310000	35100	5	î
515-004	OT	15100	0.1	10	48	610	21	59	96	520	1.0	50	54	3	270000	38400	้า	î
515-005	ŎŤ	15000	0.2	0.6	65	770	22	48	97	560	0.6	52	34	ĩ	260000	40900	i	i
515-006	OT	16100	0.1	0.6	62	780	21	64	81	630	0.6	51	50	1	260000	38700	i	ī
515-007	от	18100	0.1	0.6	61	600	20	50	91	470	0.6	51	74	2	240000	39300	1	1
515-008	OT	18500	0.1	0.6	47	520	23	54	80	350	0.6	61	141	6	230000	48400	- 3	1
516-001	KT	21500	0.1	0.6	20	770	17	63	68	810	0.6	41	93	5	230000	29900	1	2
516-002	KT	18700	0.1	0.6	29	750	31	68	79	740	0.6	43	105	3	240000	33500	1	1
516-003	KG	16900	0.1	1.0	46	560	25	62	107	630	0.6	48	114	4	250000	39700	1	1
517-001	RT	15400	0.1	0.6	40	740	16	65	73	560	0.6	33	55	4	240000	32500	1	1
517-002	RT	17200	0.1	0.6	38	990	15	70	73	680	0.6	31	57	4	230000	31100	1	4
517-003	WI	17300	0.1	0.6	5	1240	14	100	59	1200	0.6	32	140		260000	27300	1	3
517-004	WT	11100	0.1	0.0	2	710	14	84 20	0C 40	110	0.0	33	119	1	240000	27500	1	6
517-005	WT	13500	0.1	06	3	900	13	100	49	720	0.6	20	400	1	310000	20300	1	1
517-007	wr	15300	0.1	3.0	3	900	13	87	52	790	0.6	31	199	i	290000	24100	1	i
517-008	ŴŤ	13000	0.1	2.0	37	740	15	83	63	580	0.6	37	99	5	310000	26100	i	i
517-009	WT	14800	0.1	0.6	28	990	14	77	61	720	0.6	38	109	4	310000	24600	1	1
517-010	WT	12300	0.2	3.0	35	710	15	84	65	470	0.6	38	96	1	330000	25000	1	1
517-011	ΟΤ	12800	0.1	2.0	34	630	19	73	78	500	0.6	36	82	7	290000	29600	1	1
517-012	OΤ	13000	0.1	2.0	24	560	20	61	97	550	1.0	41	67	4	300000	32300	1	1
517-013	OT	13900	0.1	2.0	24	790	18	72	84	550	0.6	39	84	3	280000	31700	1	1
517-014	OT	12700	0.1	2.0	28	540	18	69	81	490	0.6	37	58	1	290000	31600	1	1
517-015	OT	11100	0.1	1.0	32	610	19	70	11	550	0.0	45	124	1	280000	33800	1	1
517-010		11900	0.1	1.0	40	550	20	77	/0	520	0.0	44	03	0	2/0000	35200	1	1
517-017	OT	10500	0.1	0.0	47	510	21	8A	84	540	0.0	47	86	4	280000	33800	1	1
518-001	RT	15600	0.1	0.0	30	550	18	59	69	380	0.6	35	53		240000	30900	<u>i</u>	<u>i</u>
518-002	RT	17600	0.1	2.0	42	800	19	'n	81	630	0.6	44	17	5	280000	33500	i	i
518-003	WS	22400	0.1	2.0	71	620	23	65	102	570	0.6	47	103	1	250000	36200	5	1
518-004	WT	13300	0.1	2.0	3	470	13	78	45	350	0.6	32	91	1	350000	24200	1	1
518-005	WΓ	12700	0.1	2.0	19	360	16	75	61	340	0.6	39	80	1	350000	26500	1	1
518-006	WΓ	12900	0.1	2.0	57	470	19	79	63	410	0.6	47	90	1	330000	29300	1	1
518-007	WT	14300	0.1	1.0	56	390	15	71	57	290	0.6	30	127	3	380000	26300	1	1
518-008	WT	15900	0.1	2.0	54	330	27	58	106	370	0.6	38	342	1	340000	39500	1	1
519-001	RT	14600	0.1	2.0	10	550	16	64	74	520	0.6	32	59	1	280000	29900	1	1
519-002	RT	16200	0.1	0.6	13	610	15	62	58	510	0.6	32	328	1	280000	28300	1	1
519-003	WT	15200	0.1	1.0	13	010	17	78	0/	240	0.6	33	99 60	4	280000	51800	1	1
519-004	WI WT	13200	0.1	. 20	50 76	420	1/	30 07	30	410	20 06	54 76	0C 20C	1	310000	£3300 \$2600	1	1
219-002	WT	12000	0.1	1.0	. gn	430	21	110	132	310 460	0.0	80	200	3	310000	51 200	9	1
520-001	PT	16400	0.1	0.6	74	710	20	65	111	580	10	46			210000	38100		
520-007	RT	19000	0.1	0.6	69	590	21	62	106	450	0.6	42	47	4	190000	37400	i	6
520-003	RT	15900	0.2	0.6	25	490	17	63	80	460	0.6	38	70	i	230000	33400	i	i
520-004	WT	17500	0.1	0.6	31	670	19	68	70	560	0.6	38	94	1	250000	32800	1	1
520-005	от	14700	0.1	2.0	38	330	24	69	171	400	0.6	58	96	1	310000	38600	1	1

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

 Π

|--|--|

		Ca	Cd	Cd	Ce	Ce	Co	Co	Cr	Cr	Cs	Cu	Cu	Eu	Fe	Fe tot	Ga	Ga
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	nmhmc	-2um	-2um	nmhmc
Sample	Unit	icp	aa	icp	icp	inaa	icp	inaa	icp	inaa	inaa	icp	icp	inaa	inaa	icp	ico	icp
520-006	OT TO	14600	0.1	2.0	- 36	430	- 21	71	114	420	0.6	49	88	2	280000	35100	T	
520-007	ОТ	14600	0.1	2.0	51	510	22	86	90	520	0.6	54	95	3	280000	37400	1	1
520-008	OT	15100	0.1	0.6	36	520	23	63	91	460	0.6	51	76	4	270000	39300	1	1
520-009	от	15000	0.1	1.0	37	610	24	75	97	510	0.6	54	75	1	260000	41300	1	1
520-010	ОТ	14500	0.1	1.0	42	530	21	58	98	420	1.0	52	61	1	270000	37900	1	1
520-011	OT	13700	0.1	0.6	- 40	570	22	63	97	650	0.6	48	57	1	260000	38000	1	1
520-012	от	18700	0.1	0.6	12	960	15	68	69	960	3.0	35	61	1	180000	31900	1	6
520-013	OT	13600	0.1	0.6	49	1000	19	55	70	1200	3.0	40	46	1	250000	35900	1	5
520-014	OT	14500	0.1	0.6	3	1080	16	38	69	1000	0.6	35	53	1	250000	31 300	1	5
520-015	OS	17000	0.1	4.0	149	230	40	77	227	120	1.0	105	69	2	330000	65300	8	1
520-016	SAP	16500	0.1	1.0	381	430	45	100	112	88	0.6	45	341	2	330000	51900	14	1
520-017	SAP	16500	0.1	3.0	1726	870	76	150	91	80	0.6	86	1899	17	310000	71400	22	1
321-001	RT	14400	0.1	2.0	31	820	17	68	64	590	0.6	37	64	4	240000	31000	1	4
521-002	RT	17900	0.1	0.6	27	1080	18	52	77	810	0.6	35	57	8	240000	30400	1	1
521-003	WT	13300	0.1	2.0	30	630	13	75	59	480	0.6	33	104	1	290000	22700	1	1
521-004	ОТ	12900	0.1	2.0	25	480	116	64	82	490	0.6	39	189	4	300000	32500	1	1
521-005	WT	20200	0.2	2.0	28	920	16	78	55	750	0.6	38	263	1	260000	28400	1	1
521-006	WT	17200	0.2	2.0	9	510	15	100	59	430	0.6	34	213	. 5	300000	27900	1	1
521-007	OG	16800	0.1	1.0	61	190	34	130	110	110	0.6	108	385	1	350000	53500	1	1
521-008	0 G	16000	0.1	2.0	68	250	51	120	154	220	1.0	149	531	1	330000	77500	4	1
521-009	OG	17300	0.1	0.6	65	200	45	100	181	98	1.0	147	276	1	340000	69300	7	1
521-010	OS	18500	0.1	2.0	109	260	42	82	150	170	0.6	66	61	1	330000	51800	13	1
521-011	OS	19300	0.1	2.0	113	340	38	71	132	140	0.6	67	70	2	300000	47800	14	1
521-012	SAP	8300	0.1	1.0	151	88	24	46	129	180	1.0	74	126	1	240000	47700	14	1

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

Note: All values are reported in parts per million (ppm).

		Hf	Hg	Ir	K	ĸ	La	La	Li	Li	Lu	Mg	Mg	Mn	Mn	Мо	Мо	Na
		nmhmc	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um
Sample	Unit	inaa	cvaa	inaa	ico	icp	icp	inaa	icp	icp	inaa	icp	icp	<u>aa</u>	icp	icp	icp	icp
501-001	RT	130	0.024	0.06	[200	313	55	140	10	3	2.2	2900	10400	65	2400	1.0	1.3	15800
501-002	SAP	58 63	0.015	0.06	2600	1400	109	300	28	19	3.7	3600	21100	89	6400	0.6	1.3	13900
502-001	RT	91	0.012	0.06	5300	313	45	180	26		2.1	14500	5000	603	2400	0.6	1.3	24100
502-002	RT	120	0.015	0.06	6000	313	47	240	30	4	2.7	16000	4800	560	2500	0.6	1.3	16000
502-003	RT	93	0.015	0.06	6200	313	41	220	35	4	2.6	15900	5400	607	2500	0.6	1.3	16800
502-004	RS	29	0.027	0.06	5100	313	39	94	30	4	1.7	12900	10800	576	5400	2.0	1.3	19500
502-005	RT	<u></u>	0.032	0.06	6700	- 111	40	250	- 20	- 4	2.8	15500	5800	675	2900	10	1.3	10000
503-002	RT	150	0.015	0.06	6700	313	38	280	34	4	3.6	16400	5100	663	2300	0.6	1.3	12300
503-003	RT	140	0.011	0.06	6000	313	35	340	35	4	3.3	15700	4100	603	1600	2.0	1.3	12800
503-004	RT	130	0.030	0.06	6200	313	42	260	35	3	3.7	14800	4800	598	1800	0.6	7.0	9000
503-005	RT	120	0.009	0.06	3900	313	34	290	30	5	3.1	11700	6000	451	2600	0.6	1.3	10500
503-006	ASAP	120	0.255	0.06	313	313	9	190	17	3	2.9	1000	3200	14	1900	0.6	5.0	4400
505-007	BAP RT		0.004	0.06	510	313	54	160	32	- 0	32	15300	20800	606	10800	0.0	1.5	9000
505-002	OT	96	0.036	0.06	4300	313	48	120	21	3	2.4	12300	10100	497	10900	3.0	1.3	10700
505-003	OT	82	0.042	0.06	5700	500	55	130	20	4	2.3	11200	11000	469	12300	2.0	1.3	8500
505-004	SAP	88	0.069	0.06	5300	1000	94	310	11	3	2.8	9500	14400	224	16400	3.0	1.3	8600
506-001	RT	49	0.051	0.06	4300	313	42	120	25	4	1.8	11700	10400	399	8000	2.0	1.3	19800
506-002	KI SAP	کر	0.054	0.06	2700	900 5400	40 52	23	25 10	4	2.3	12000	9300	114	3500	3.0 0.6	1.3	20800
506-004	SAP	3	0.027	0.06	4400	4100	114	43	31	ģ	6.4	7800	10800	136	17600	0.6	1.3	14900
507-001	RT	130	0.027	0.06	5100	313	39	240	36	4	3.5	15000	5500	784	2000	3.0	1.3	8300
507-002	RT	100	0.038	0.06	4700	313	39	180	32	3	2.5	15700	7000	604	2800	0.6	1.3	6800
507-003	RL	64	0.045	0.06	4400	313	39	100	31	3	1.6	15600	10200	524	4000	0.6	1.3	12100
507-004		40	0.042	0.00	2500	313	23	51	21	5	0.7	8600	14300	520	3000	10	1.3	11300
507-005	OT	32	0.051	0.06	3400	313	35	84	35	5	0.9	8300	10900	362	3800	0.6	1.3	11700
507-007	OS	30	0.078	0.06	3500	313	37	81	36	4	1.7	9600	11100	491	7200	0.6	1.3	13600
507-008	ОТ	60	0.054	0.06	2900	313	36	120	34	4	1.6	7400	9300	418	5000	1.0	1.3	11100
507-009	OS	17	0.072	0.06	2800	313	29	54	39	4	1.1	8100	10800	502	7000	3.0	8.0	15800
507-010		/0	0.000	0.00	2900	313	33	120	39	4	1.8	11000	10500	417	5800	0.0	1.3	5700
507-012	SAP	+3 52	0.030	0.06	2500	313	12	57	17	3	2.4	6000	7500	84	18700	0.6	1.3	7400
508-001	RT	130	0.023	0.06	5900	313	45	200	39	3	3.2	17000	7100	740	5400	0.6	1.3	7300
508-002	RT	130	0.021	0.06	5500	313	45	220	35	3	3.1	15900	6200	614	4800	0.6	1.3	12000
508-003	RT	130	0.023	0.06	6000	313	- 48	240	34	5	2.9	16200	7900	668	5700	0.6	1.3	10500
508-004	SAP	62	0.033	0.06	1000	313	130	140	0	3	4.0	2600	10300	53	13000	0.0	1.3	6200
508-007	BAF RT	130	0.018	0.00	3600	111		210			14	17400	7300	103	5100	0.0	1.3	9900
510-001	RT	110	0.030	0.06	5700	313	39	210	38	4	3.2	16800	7000	667	3300	2.0	1.3	12100
510-002	RT	130	0.024	0.06	5600	313	45	270	34	4	3.5	14600	6100	838	-2600	3.0	1.3	11900
311-001	RT	130	0.032	0.06	4800	313	41	290	28	3	3.5	15000	7700	664	3500	3.0	1.3	18100
511-002	RT	140	0.038	0.06	5100	313	39	260	33	4	3.5	15700	8700	625	4900	0.6	1.3	20600
511-003	KI WT	130	0.033	0.06	2000	313	38 22	2/0	34 20	4	3.5	15800	8600	825	3000	0.0	1.3	20900
511-004	wr	100	0.078	0.06	7100	313	35	260	32	4	2.6	12700	10000	463	4400	4.0	1.3	13400
512-001	WT	94	0.120	0.06	5900	313	37	180	34	5	2.0	12400	9500	617	5100	0.6	1.3	9000
512-002	WT	79	0.162	0.06	7400	313	36	160	36	5	1.8	11700	10000	466	6100	2.0	1.3	10600
512-003	WT	41	0.162	0.06	6700	313	37	160	35	5	2.5	10900	10200	462	6000	0.6	6.0	7000
513-001	KT WT	160	0.072	0.06	3800	313	35	340	20	3	4.0	12200	0000	849 604	3400 5100	U.0 0.6	1.3	9900 6000
513-002	WT	78 74	0.303	0.06	5700	313	31	150	30	4	1.8	9800	10100	376	5200	0.6	1.3	7000
513-004	wr	87	0.204	0.06	5000	313	28	160	27	4	1.9	9400	9800	395	5300	0.6	1.3	8000

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

77

G-8

Υ.

AAA

M

Appendix 280-G.	Baudette area assays.	Nonmagnetic heav	vy mineral concentrate	and clay	fraction of ti	Il and non-till samples.

		Hſ	Hg	Ir	ĸ	K	La	La	Li	Li	Lu	Mg	Mg	Mn	Mn	Mo	Мо	Na
		nmhmc	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um
Sample	Unit	inaa	cvaa	inaa	icp	icp	icp	inaa	icn	ico	inaa	icp	icp	aa	icp	icp	ico	icn
513-005	SAP	17	0.048	0.06	3000	313	27	18	30	6	1.0	14400	5100	594	3400	2.0	1.3	8000
514-001	RT	150	0.036	0.06	5200	313	41	400	37	5	3.6	16700	7100	678	5000	0.6	1.3	7300
514-002	RI	170	0.249	0.06	4900	313	39	390	33	4	4.0	16800	6100	636	3500	0.6	1.3	10000
514-003		120	0.027	0.00	2600	313	40	2/0	33	4	4.0	16/00	1200	5/3	3100	2.0	1.3	11000
514-004	08	160	0.072	0.00	2000	212	31	24	24	د ۸	1.1	14000	6200	022	12200	3.0	1.3	12100
514-005	SAP	100	0.029	0.00	1000	313	22 0	550	74	15	4.1	16000	15300	208	21300	0.0	1.3	20000
313-001	RT	140	0.069	0.06	5900	313	41	190	14		35	17000	10200	573	7000	60	1.3	14700
515-002	RT	59	0.061	0.06	5600	313	40	150	32	3	21	18000	8800	826	8500	5.0	1.3	14900
515-003	RT	120	0.069	0.06	3700	313	32	170	25	3	2.5	10400	9900	455	5600	5.0	1.3	14200
515-004	OT	120	0.048	0.06	4500	313	40	270	30	3	3.4	14300	8000	620	4700	6.0	1.3	9200
515-005	ОТ	120	0.036	0.06	4800	313	46	340	31	3	4.3	13700	7900	662	4800	5.0	1.3	10400
515-006	от	120	0.054	0.06	4700	313	45	350	32	4	3.8	14600	8100	744	4500	5.0	1.3	8300
515-007	OT	98	0.044	0.06	4700	313	44	270	31	4	3.7	13900	8700	754	5600	6.0	1.3	11200
515-008	OT	75	0.047	0.06	4900	313	32	240	29		2.1	14400	9000	723	6300	5.0	1.3	13100
516-001	KT	215	0.063	0.06	4700	313	40	330	33	4	4.1	16300	7300	713	3800	2.0	1.3	8600
516-002	KT	190	0.075	0.06	4900	313	40	320	35	4	4.1	16700	7200	749	4100	5.0	1.3	9700
510-003	KG	99	0.099	0.06	8000	313	43	250	30		2.8	19500	6900	642	4500	4.0	1.3	14200
517-001	KI DT	150	0.048	0.00	5/00	313	30 16	330	30	5	4.4	10900	6100	292	3200	20	1.3	12600
517-002	WT	230	0.055	0.00	5200	212	30	430	34	2	4.9	1/300	6000	283	2000	2.0	1.3	12/00
517-003	wr	281	0.133	0.00	5000	313	37	450	34	4	63	17000	4700	616	1900	4.0	1.3	5200
517-005	WT	201	0.060	0.00	5300	313	37	346	33	1	0.5	16000	4900	569	2300	3.0	150	4900
517-006	wr	238	0.228	0.06	4900	313	37	420	32	4	4.6	16600	6500	549	3500	3.0	1.3	4200
517-007	WT	271	0.213	0.06	5400	313	40	400	37	4	5.5	17000	6500	597	2900	5.0	1.3	5400
517-008	WT	170	÷ 0.141	0.06	5400	313	42	350	35	4	4.3	15600	7400	626	4200	4.0	1.3	6900
517-009	WT	214	0.125	0.06	5500	313	39	460	34	3	4.4	16000	8000	591	3700	5.0	1.3	5100
517-010	WT	110	0.153	0.06	5100	313	38	300	33	4	4.2	15500	7400	605	3900	5.0	1.3	4500
517-011	от	120	0.081	0.06	3800	313	34	290	29	3	3.4	15000	7600	750	4600	4.0	1.3	16400
517-012	OT	110	0.087	0.06	3600	313	32	250	27	3	3.7	15600	7900	579	5000	6.0	1.3	15000
517-013	01	170	0.084	0.06	3500	313	33	370	20	4	4.1	16000	7300	680	4200	4.0	1.3	15400
517-014		90	0.000	0.06	3000	313	32	240	20	4	3.3	15500	/300	00/	5000	5.0	1.3	19500
517-015		120	0.078	0.00	4100	212	30	260	29	2	3.0	16500	5800	0J1 920	4200	4.0	1.3	10100
\$17-017	OT	160	0.005	0.00	3900	313	39	300	31	3	43	16200	6600	705	3700	3.0 4 0	1.3	9800
517-018	ŎŤ	120	0.102	0.06	4100	313	37	240	31	3	2.8	16600	5500	864	4400	3.0	1.3	8900
518-001	RT	140	0.063	0.06	4900	313	39	250	32	3	27	16500	7300	614	4300	2.0	1.3	8200
518-002	RT	200	0.096	0.06	5000	313	38	350	33	3	4.5	15000	8100	653	3900	4.0	1.3	6700
518-003	WS	262	0.096	0.06	4600	313	34	290	32	4	4.8	12400	10300	498	3600	6.0	1.3	11400
518-004	WT	160	0.345	0.06	3100	313	29	210	25	4	3.0	18700	6300	625	4200	5.0	6.0	5900
518-005	WT	91	0.348	0.06	3900	313	33	170	32	4	2.1	16900	6200	600	4100	5.0	1.3	5500
518-006	WT	180	0.333	0.06	4600	313	39	210	37	4	3.6	14700	6100	590	4100	4.0	10.0	5700
518-007	WT	65	0.192	0.06	6600	313	34	180	37	5	2.0	11700	10200	457	3700	4.0	1.3	4700
518-008	TW	81	0.219	0.06	5400	313	29	160	42	5	1.8	16300	9300	474	3600	6.0	5.0	9000
519-001	RT	98	0.087	0.10	3000	313	29	240	26	3	3.2	16800	7400	537	6200	4.0	1.3	13700
519-002	KI WET	130	0.090	0.06	3/00	313	30	280	2/		3.9	15800	/900	601	5200	3.0	1.3	12000
519-003	WI	130	0.129	0.00	4200	313	34	280	31	3	3.0	17500	7500	610	4/00	4.0	1.3	9800
510-004	WT	61	0.135	0.00	4000	313	33	200	20	1	3.3	11300	8300	616	7200	5.0	1.3	5200
519-005	wr	100	0.054	0.06	4900	313	33	310	29	3	26	10500	7400	528	6300	40	1.3	7600
520-001	RT	170	0.042	0.06	6200	- 113	47	320			4.2	19200	5100	210	2200	6.0	11	0700
520-002	RT	140	0.033	0.06	5300	313	43	260	35	3	4,1	18300	5000	713	2200	2.0	1.3	7900
520-003	RT	110	0.096	0.06	4400	313	38	210	30	4	3.5	19900	6700	741	4300	3.0	1.3	8500
520-004	WT	170	0.204	0.06	5600	313	41	310	35	3	3.8	19000	8000	634	3400	4.0	1.3	7500
520-005	от	62	0.068	0.06	3900	313	35	150	27	4	2.5	16100	10200	625	5900	6.0	1.3	8600

		Hſ	Hg	Ir	K	ĸ	La	La	Li	Li	Lu	Mg	Mg	Mn	Mn	Мо	Мо	Na
		nmhmc	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um
Sample	Unit	inaa	суза	inaa	icn	ico	icp	inaa	icp	ico	inaa	icp	ico	83	icn	ico	icn	ico
520-006	ОТ	70	0.066	0.06	4300	313	30	190	29	3	2.2	14100	9700	642	6000	4.0	1.3	6800
520-007	OT	120	0.087	0.06	4500	313	31	230	31	4	3.6	13900	7900	702	5000	4.0	1.3	6900
520-008	ОТ	92	0.069	0.06	4300	313	29	230	29	3	3.6	16700	7600	746	4800	5.0	1.3	7300
520-009	от	120	0.081	0.06	4300	313	29	270	29	4	3.3	16800	7400	895	5600	4.0	1.3	6900
520-010	OT	97	0.087	0.06	4100	313	31	240	29	3	2.6	15200	7800	851	5400	6.0	1.3	7400
520-011	OT	130	0.096	0.06	4300	313	31	290	29	3	3.0	16000	7400	681	4700	7.0	1.3	7500
520-012	OT	281	0.084	0.06	4000	313	33	430	29	4	4.1	15600	6200	565	2400	3.0	1.3	8400
520-013	OT	256	0.078	0.06	4100	313	36	450	30	3	5.0	13800	4700	624	1800	5.0	1.3	12200
520-014	OT	264	0.075	0.06	3600	313	33	500	28	4	6.0	15300	5200	904	2400	3.0	1.3	7800
520-015	OS	24	0.045	0.06	2700	500	46	99	17	4	1.6	10100	11500	626	9200	16.0	1.3	13200
520-016	SAP	12	0.036	0.06	1000	700	167	110	7	4	0.7	1800	12600	34	9200	3.0	1.3	6700
520-017	SAP	1	0.012	0.06	1200	1100	751	642	6	3	1.4	2000	15900	57	4400	5.0	1.3	7400
521-001	RT	180	0.066	0.06	4800	313	32	380	- 32	3	4.4	17600	5800	622	3100	4.0	1.3	10500
521-002	RT	221	0.063	0.06	4700	313	33	510	31	4	5.0	15400	7300	732	3300	4.0	1.3	6400
521-003	WT	130	0.105	0.06	4800	313	29	290	26	3	3.8	14300	7400	605	4100	3.0	1.3	7100
521-004	от	. 71	0.099	0.06	3600	313	30	230	28	3	3.2	14600	7800	624	5300	4.0	1.3	8800
521-005	WT	261	0.258	0.06	4400	313	33	460	38	4	5.4	14800	6300	624	3300	3.0	1.3	4500
521-006	WT	140	0.258	0.06	4400	313	32	220	37	4	3.3	16300	7500	636	4900	4.0	7.0	7400
521-007	OG	10	0.099	0.06	4900	313	27	67	34	4	1.4	15400	9000	946	12500	6.0	1.3	10800
521-008	OG	8	0.078	0.06	4300	313	20	93	32	4	1.2	16300	9000	1119	11300	8.0	4.0	10200
521-009	OG	16	0.051	0.06	4300	313	20	82	32	4	1.6	17600	10700	1014	11900	11.0	5.0	10100
521-010	OS	30	0.033	0.06	3800	313	35	110	21	4	1.5	6600	14000	386	7400	9.0	1.3	17900
521-011	OS	71	0.045	0.06	5100	313	36	160	23	4	2.0	8800	13200	303	6400	7.0	1.3	22000
521-012	SAP	8	0.015	0.06	6200	900	60	49	39	8	9.0	18200	8800	120	7300	3.0	1.3	19100

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

Note: All values are reported in parts per million (ppm).

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

		Na	Nh	Nb	Ni	Ni	Þ	P	Ph	Ph	Rb	Ph	Sh	Sh	Sr.	S.c.	Se	S.
			3		2		1 3		10 3	10	2		3		3		3	
		птатс	-2um	nmnme	-zum	nmnmc	-zum	nmhme	-zum	ninime	-zum	nminine	-zum	nmnmc	-2um	nmame	-2um	ninnme
Sample	Unit	111		icp		icp	14880	icp	12	icp	icp	icp12	byaa 0.2	inaa07	icp 2	inaa	<u>xrf</u>	hvaa
501-002	SAP	313	0.0	14	13	15	5990	670	32	38	11	34	0.2	0.7	1	17	0.0	0.5
501-003	SAP	313	0.6	16	39	65	12860	870	18	57	13	13	0.3	0.5	6	19	0.6	0.1
502-001	RT	313	2.0	14	65	34	20290	720	12	30	40	13	0.3	0.5	- 9	62	0.6	0.6
502-002	RT	313	3.0	15	65	36	11830	870	15	32	13	13	0.2	0.4	9	67	0.6	0.5
502-003	RT	313	3.0	14	67	30	12150	870	14	37	27	13	0.2	0.6	9	71	0.6	0.3
502-004	RS	313	3.0	12	70	33	15280	840	12	28	98	13	0.3	0.8	10	52	1.0	0.2
502-005		313	2.0	13	79	43	16120	1360	13	36	88	13	0.3	0.9		62	0.6	0.2
503-001	KI DT	313	4.0	14	00	54	0490	900	13	31	22	13	0.2	0.4	/	/0	0.0	0.9
503-002	KI DT	500	3.0	14	08 50	40	8190	1340	14	32	20	13	0.2	0.5	8	80	0.0	0.8
503-003	RT.	313	10	13	67	56	5520	770	12	34	70	13	0.2	1.7	8	110	0.0	0.7
503-005	RT	600	2.0	15	52	45	7430	1020	14	44	28	13	0.2	0.4	10	81	0.6	0.7
503-006	ASAP	313	0.6	8	11	84	3010	570	12	37	13	13	0.2	27		92	0.6	0.3
503-007	SAP	313	0.6	16	19	81	4100	940	4	10	13	13	0.1	0.1	2	79	0.6	0.1
505-001	RT	313	5.0	13	84	48	5940	950	13	35	54	13	0.2	0.7	11	52	0.6	0.2
505-002	от	313	3.0	12	126	54	6310	2110	17	34	28	13	0.2	0.9	20	46	1.0	0.2
505-003	OT	313	2.0	13	103	665	4970	1640	16	50	73	13	0.2	1.0	16	44	1.0	0.3
505-004	SAP	313	2.0	16	94	78	4760	1670	21	110	123	13	0.2	0.9	19	38	1.0	0.1
506-001	RT	313	2.0	12	14	66	13050	1220	12	40	2/	13	0.2	1.6	14	58	0.6	0.2
506-002	KI CAD	313	4.0	11	12	00	9270	1320	12	40	54 13	13	0.2	10	10	03	1.0	0.2
506-003	SAP	313	0.0	14	57	40 61	8730	1550	0	20	27	13	0.2	0.8	18	57	10	0.1
507-001	RT	313	4.0	15	49	36	5260	1100	16	29	108	13	0.2	0.8		82	0.6	0.2
507-002	RT	313	5.0	12	51	34	4400	1120	10	29	31	13	0.1	0.7	7	66	0.6	0.2
507-003	RL	313	5.0	11	52	44	3340	1100	11	· 27	55	13	0.2	0.8	7	54	0.6	0.2
507-004	от	313	2.0	11	58	56	9240	1190	9	31	49	13	0.3	0.8	9	47	0.6	0.1
507-005	ΟΤ	313	2.0	12	63	56	7690	980	12	29	13	29	0.3	0.7	11	54	2.0	0.1
507-006	от	313	1.0	11	56	53	8690	980	15	35	70	29	0.2	1.0	8	48	0.6	0.1
507-007	OS	313	2.0	13	62	74	9980	1190	14	35	13	13	0.2	1.1	10	49	0.6	0.2
507-008	01	313	. 20	11	0)	70	/6/0	1060	10	43	13	13	0.3	1.0	8	22	20	0.1
507-009	05	313	2.0	14	00 59	60	12110	1070	11	43	12	13	0.3	0.9	0	40	2.0	0.1
507-010		313	1.0	10	50	57	3820	1140	13	+3 20	31	13	0.2	0.8	ů ů	40	1.0	0.1
507-012	SAP	313	0.6	10	26	54	3760	3020	9	32	13	13	0.1	0.5	17	64	0.6	0.1
508-001	RT	313	5.0	12	60	38	3960	1840	15	34	157	13	0.2	0.9	9	63	0.6	0.2
508-002	RT	313	4.0	14	83	42	7460	1870	14	33	27	13	0.2	0.9	10	67	1.0	0.4
508-003	RT	313	4.0	15	91	55	5920	1570	12	40	39	13	0.2	0.8	11	66	0.6	0.4
508-004	SAP	313	0.6	14	127	57	4760	1040	29	89	13	13	0.2	0.1	8	43	0.6	0.2
508-007	SAP	313	0.6	15	90	22	4350	780	34	166	13	61	0.1	0.3	12	34	0.6	0.1
509-001	RT	313	4.0	13	83	43	5420	1620	13	37	13	13	0.2	0.9	12	69	0.6	0.3
510-001	RT	313	4.0	. 13	68	42	0990	1400	15	40	43	13	0.2	0.9	11	70	0.0	0.3
510-002		313	4.0			43	15730	1400			13	13	0.2	0.8			1.0	- 0.5
511-001	RI PT	313	5.0	15	50 65	53 47	15870	1140	10	42	13	13	0.2	0.7	8	65	1.0	0.1
511-002	RT	313	40	15	47	33	16160	1130	14	39	35	13	0.3	0.8	7	72	0.6	0.3
511-004	WT	500	7.0	16	30	40	7230	1550	12	48	107	13	0.3	1.3	5	62	0.6	0.4
511-005	ŴŤ	313	7.0	15	30	51	10320	1030	ii	140	155	13	0.2	1.3	6	44	0.6	0.5
512-001	WT	313	8.0	14		92	6580	1720	13	59	127	48	0.2	1.5	8	41	1.0	1.2
512-002	WT	313	8.0	15	51	128	7560	1440	. 12	77	150	33	0.3	1.6	7	38	3.0	2.0
512-003	WT	313	8.0	14	48	111	4800	1300	14	71	106	13	0.2	1.3	7	39	0.6	1.2
513-001	RT	313	10.0	12	47	43	6420	1250	11	45	76	13	0.3	1.1	7	73	3.0	0.3
513-002	WT	313	10.0	14	46	97	5130	1300	14	50	95	13	0.2	1.6	6	41	0.6	1.4
513-003	WT	:313	8.0	14	53	84	4910	1630	12	52	111	13	0.2	1.5	7	34	2.0	3.2
513-004	WΓ	313	8.0	13	54	97	6080	1000	13	52	35	13	0.3	2.0	1	37	0.6	2.7

nmmber -Jum nmmber -Jum nmber -Jum -Jum Nmber			Na	Nb	Nb	Ni	Ni	Р	Р	Pb	Pb	Rb	Rb	Sb	Sb	Sc	Sc	Se	Se
Sympole Unit Ico.			nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc
S1500 SAP 313 7.0 4 44 177 S410 80 8 68 59 13 0.1 6.2 16 46 0.6 20.0 S14400 RT S13 50.0 13 60.0 13 44.0 470 112 44 115 22 6.5 1 7.5 1.0 6.3 S14400 RT S13 50.0 15 46 33 24710 1220 18 38 104 42 0.3 0.7 8 76 3.0 0.2 6.0 73 3.0 0.2 0.1 8 0.0 1.0 1.0 0.0 0.0 2.0 0.1 8 0.0 0.0 0.0 1.0 0.0 <t< th=""><th>Sample</th><th>Unit</th><th>icp</th><th>icn</th><th>ico</th><th>icn</th><th>icp</th><th>icn</th><th>icn</th><th>icn</th><th>icp</th><th>icp</th><th>ico</th><th>hvaa</th><th>inaa</th><th>ico</th><th>inaa</th><th>xrf</th><th>hvaa</th></t<>	Sample	Unit	icp	icn	ico	icn	icp	icn	icn	icn	icp	icp	ico	hvaa	inaa	ico	inaa	xrf	hvaa
514-00 RT 500 100 15 47 40 4700 1410 12 46 130 13 0.2 0.5 7 73 1.0 0.3 514-000 RT 113 0.0 14 43 56 130 13 0.2 0.5 7 73 1.0 0.3 140 0.3 130 13 0.2 0.5 1.0 0.3 0.4 0.6 0.3 0.4 0.4 0.5 0.5 1.4 0.6 0.3 0.5 0.4 44 0.6 0.2 0.5 1.0 0.6 0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.6 0.6 0.5 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.5 0.6 0.5 0.5 0.5 0.5 <td< td=""><td>513-005</td><td>SAP</td><td>313</td><td>7.0</td><td>4</td><td>44</td><td>177</td><td>- 5410</td><td>830</td><td>8</td><td>68</td><td>59</td><td>13</td><td>0.1</td><td>6.2</td><td>16</td><td>46</td><td>0.6</td><td>20.0</td></td<>	513-005	SAP	313	7.0	4	44	177	- 5410	830	8	68	59	13	0.1	6.2	16	46	0.6	20.0
14-600 K1 11 90 14 90 140 12 48 113 23 0.2 0.5 8 76 10 0.2 514-604 RC 313 90 15 35 31 76 10 120 18 38 104 42 0.3 60 7 8 76 30 0.2 51 60 73 8 76 30 0.2 51 60 73 76 10 66 62 33 14 60	514-001	RT	500	10.0	15	47	40	4760	1410	12	46	130	13	0.2	0.5	7	73	1.0	0.3
11-000 K.G 311 20 14 40 15 32 69 13 62.0 6 6 14 40 03 514005 SA 313 7.0 15 44 13 32 7.0 15 44 13 22 01 23 01 02 03 04 03 0.2 0.7 8 7.6 30 0.3 0.4 14 0.6 0.5 51500 RT 313 9.0 14 7.6 47 10570 128 8 13 0.3 0.8 8 66 0.6 0.3 515003 RT 313 10.0 11 23 30 6330 1280 8 35 137 13 0.3 0.8 8 76 0.6 0.3 515001 RT 313 10.0 11 33 32 550 130 13 0.3 0.8 8	514-002	RT	313	9.0	13	48	34	6980	1470	12	48	115	28	0.2	0.5	8	76	1.0	0.2
14-00 Cols 500 200 14 40 33 2270 1230 18 28 504 12 Cols 12 Cols 12 Cols 12 Cols 12 Cols 13 1400 Cols 142 13 0.2 Cols 12 13 0.3 0.2 0.9 8 144 13 0.2 0.9 8 144 0.6 0.2 515000 RT 313 8.0 14 76 406 0.2 0.3 144 13 0.3 0.8 18 44 0.6 0.2 0.5 0.0 0.3 1.3 0.3 0.8 18 46 0.6 0.3 0.3 0.8 8 76 0.6 0.3 0.3 0.8 8 76 0.6 0.3 0.3 0.8 11 0.4 0.6 0.3 0.3 0.8 11 0.6 0.3 0.3 0.6 0.4 0.3 <td>514-003</td> <td></td> <td>213</td> <td>9.0</td> <td>14</td> <td>55</td> <td>33</td> <td>/000</td> <td>1410</td> <td>14</td> <td>31</td> <td>03</td> <td>13</td> <td>0.2</td> <td>0.5</td> <td>8</td> <td>73</td> <td>4.0</td> <td>0.3</td>	514-003		213	9.0	14	55	33	/000	1410	14	31	03	13	0.2	0.5	8	73	4.0	0.3
514-000 SAP 13 7.0 15 48 13 1620 20 3 148 13 0.2 0.1 29 19 0.6 0.2 51500 RT 313 9.0 14 76 47 10570 128 9 99 13 0.3 0.8 11 46 0.6 0.2 515002 RT 313 10.0 11 53 30 6330 1280 8 31 13 0.3 0.8 8 65 0.6 0.3 515003 RT 313 10.0 11 53 30 6810 120 13 0.3 0.8 8 65 0.6 0.3 51600 OT 313 10.0 11 53 32 5550 112 32 110 13 0.2 1.0 13 0.2 1.0 63 66 0.2 316 600 77 70 <td< td=""><td>514-004</td><td></td><td>500</td><td>5.0</td><td>13</td><td></td><td>31</td><td>24710</td><td>1360</td><td>18</td><td>38</td><td>104</td><td>47</td><td>0.2</td><td>0.0</td><td>10</td><td>76</td><td>3.0</td><td>0.3</td></td<>	514-004		500	5.0	13		31	24710	1360	18	38	104	47	0.2	0.0	10	76	3.0	0.3
315 600 RT 313 9.0 12 53 37 10760 1270 7 25 99 13 0.2 0.5 8 44 0.6 0.6 0.5 515002 RT 313 8.0 12 50 44 11300 133 133 0.3 1.0 8 49 1.0 0.3 1.0 8 49 1.0 0.3 0.5 1.0 8 49 1.0 0.6 0.5 0.5 0.5 0.7 313 10.0 12 56 30 0.500 9 35 1.04 13 0.3 0.8 8 76 0.6 0.3 31 0.0 1.2 56 30 0.500 1.0 31 0.0 0.0 8 65 0.6 0.3 31 0.0 1.0 1.0 31 32 550 12.00 9 36 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	514-006	SAP	313	7.0	15	48	13	14900	1620	20	3	148	13	0.2	0.1	29	19	0.6	0.2
515-002 RT 313 8.0 14 76 47 10570 1280 8 31 133 13 0.3 0.8 11 46 0.6 0.5 515-004 OT 313 10.0 11 53 30 6330 1280 8 35 137 13 0.3 0.8 8 65 0.6 0.3 315 10.0 11 53 32 5550 1260 9 35 124 13 0.3 0.8 8 76 0.6 0.4 315 10.0 11 53 32 5550 1260 10 14 10 13 0.6 0.4 11.0 13 0.7 0.6 0.8 0.6 0.2 0.6 0.6 0.2 0.6 0.6 0.2 0.6 0.6 0.2 0.6 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6	515-001	RT	313	9.0	12	53	37	10760	1470	<u> </u>	29	99	13	0.2	0.9		44	0.6	0.2
51500 RT 313 8.0 12 50 48 11300 15300 9 39 128 13 0.3 1.0 8 49 1.0 0.3 515005 OT 313 10.0 12 55 30 6810 1320 10 35 124 13 0.3 0.8 8 65 0.6 0.3 315 0.7 0.7 500 11.0 11 53 32 2550 1260 9 36 103 0.6 0.9 8 63 0.6 0.4 31 0.6 0.9 8 63 0.6 0.4 13 0.3 0.8 11 49 0.6 0.2 316 0.6 0.4 13 0.2 1.0 6 68 0.6 0.2 316 31 17.0 14 70 76 0.6010 11 13 0.2 1.2 7 70 0.6 0.4 14 13 0.3 1.2 6 61 0.6 0.2 317 313 13	515-002	RT	313	9.0	14	76	47	10570	1280	8	31	133	13	0.3	0.8	11	46	0.6	0.5
515-004 OT 313 10.0 11 53 30 6330 1280 8 35 137 13 0.3 0.8 8 65 0.6 0.3 515-005 OT 313 11.0 11 53 32 5550 1260 9 36 103 13 0.6 0.9 8 67 0.6 0.3 515-007 OT 500 11.0 11 59 31 7970 1450 10 13 0.6 0.9 8 63 0.6 0.3 516-007 71 313 16.0 11 51 6040 1520 10 41 54 13 0.3 0.8 11 49 0.6 0.2 516-002 KT 313 17.0 12 50 41 6840 131 13 0.2 1.0 7 76 0.6 0.2 517-003 13 3.0 2.0 1.7 76 0.6 0.9 517-004 WT 313 18.0 18 88	515-003	RT	313	8.0	12	50	48	11390	1530	. 9	39	128	13	0.3	1.0	8	49	1.0	0.3
515-065 OT 313 10.0 12 56 30 6810 1320 10 35 124 13 0.3 0.8 8 76 0.6 0.3 515-005 OT 313 11.0 11 53 32 5550 12600 9 36 103 13 0.6 0.9 8 74 0.6 0.3 31 0.0 11 41 550 12600 12 32 146 13 0.2 1.0 6 68 0.6 0.2 216/001 KT 313 17.0 14 70 70 0.6 0.4 13 56 13 13 0.2 1.2 7 70 0.6 0.4 14 14 13 22 870 13 56 13 0.2 1.7 77 0.6 0.4 11 13 0.2 1.7 77 0.6 0.4 14 10 13 0.2 1.7 77 0.6 0.6 0.4 11 13 0.2 1.7 77	515-004	OT	313	10.0	11	53	30	6330	1280	8	35	137	13	0.3	0.8	8	65	0.6	0.3
515000 OT 313 11.0 11 53 32 5550 12607 9 36 103 13 0.6 0.9 8 74 0.6 0.3 515007 500 01 31 86.0 11 51 31 8650 1560 12 32 146 13 0.3 0.8 11 49 0.6 0.2 11 45 13 0.2 1.0 6 6.6 0.6 0.2 15 13 13 0.2 1.0 6 6.6 0.6 0.2 15 14 70 70 0.6 0.4 15 13 13 0.2 1.0 7 70 0.6 0.4 15 13 0.3 1.2 8 6 0.6 1.4 17 0.3 1.2 8 14 14 32 85 16 0.6 0.2 17 7 7 7 0.6 0.0 11 73 11 13 0.2 1.8 6 0.6 0.1 13 13 0	515-005	OT	313	10.0	12	56	30	6810	1320	10	35	124	13	0.3	0.8	8	76	0.6	0.3
315-007 OI 300 11.0 11 59 31 7970 1450 10 34 110 13 0.2 0.9 8 63 0.6 0.4 S16-000 KT 313 16.0 11 51 31 8650 1520 10 41 54 13 0.2 1.0 6 68 0.6 0.2 S16-002 KT 313 17.0 14 70 76 10810 920 16 44 107 13 0.2 0.7 7 76 0.6 0.2 17.00 1.4 0.3 0.2 1.0 7 76 0.6 0.2 11 73 71 13 0.3 1.5 6 1.4 0.6 0.5 517.002 NT 313 18.0 14 33 32 8770 1660 11 73 71 13 0.3 1.5 6 1.4 0.0 55 517.002 NT 313 18.0 18 35 106 122 13 13 0.3	515-006	OT	313	11.0	11	53	32	5550	1260	9	36	103	13	0.6	0.9	8	- 74	0.6	0.3
312-000 01 313 900 11 31 8030 1530 12 32 140 13 0.3 0.8 11 49 0.66 0.2 316-001 KT 313 16.0 13 47 53 6640 13 64 13 0.2 1.2 7 70 0.6 0.4 516-002 KT 313 17.0 12 50 41 6830 1270 13 56 13 13 0.2 1.2 8 61 0.6 0.4 517-002 RT 313 14.0 14 45 32 8540 11600 9 46 53 13 0.2 1.0 7 76 0.6 0.9 17.002 WT 313 18.0 14 35 33 3359 9600 13 0.2 1.0 7 76 0.6 0.9 17.002 WT 313 18.0 18 36 0.6 0.2 17.002 WT 313 18.0 14 35 0.6	515-007	OT	500	11.0	11	59	31	7970	1450	10	34	110	13	0.2	0.9		63	0.6	0.4
Incodi K.I. 313 100 13 40 33 000 12 10 41 37 13 0.2 1.3 0.7 03 0.6 0.4 516-003 KG 313 17.0 14 70 76 10810 920 16 44 107 13 0.2 1.2 8 61 0.6 1.4 517-001 RT 313 14.0 14 43 32 8970 1660 9 46 53 13 0.2 1.0 7 76 0.6 0.5 517-004 WT 313 18.0 19 38 81 4870 1660 9 46 53 13 0.2 1.8 6 46 0.5 517-004 WT 313 18.0 18 350 1180 10 39 53 13 0.2 1.8 6 66 0.6 0.1 15 151 15 16 88 960 13 0.2 1.8 0 1.0 0.5 1.1 14	515-008		313	9.0	11			<u> </u>	1500	12	32	140	13	0.3	0.8		49	0.0	
Licola R.G 313 17.0 14 50 76 1000 100 13 0.3 1.2 8 61 0.0 14 0.0 14 317001 RT 313 14.0 13 45 33 8540 1190 11 33 66 13 0.2 0.7 7 76 0.6 0.2 517002 RT 313 14.0 14 45 33 8540 1190 11 73 71 13 0.2 0.7 7 76 0.6 0.2 517.003 WT 313 18.0 14 35 38 3350 960 13 60 121 13 0.2 0.1 6 26 2.0 0.1 1 1 1 1 0.2 1.1 6 6 0.0 0.1 1 1 1 0.2 1.1 1 0.2 1.1 1 0.2 1.1 0.3 0.2 1.1 0.3 0.3 1.1 0.3 0.3 1.1 0.3 0.1	516.007	KT	212	17.0	13	4/ 50	41	6820	1320	13	41	121	13	0.2	1.0	7	70	0.0	0.2
\$17.001 RT 313 14.0 13 43 33 85.00 11900 11 33 69 13 0.2 0.7 7 79 0.6 0.6 0.2 0.7 7 79 0.6 0.6 0.2 0.7 7 76 0.6 0.9 0.6 0.2 0.7 7 76 0.6 0.9 0.5 13 0.2 1.7 76 0.6 0.9 0.5 13 0.2 1.6 6 84 1.0 0.5 53 13 0.2 1.8 6 84 1.0 0.5 53 13 0.2 1.8 6 84 1.0 0.5 1.0 13 0.2 1.8 6 84 1.0 0.5 1.0 13 0.2 1.8 6 6.6 0.6 0.7 13 13 0.2 1.8 6 6.6 0.6 0.6 0.7 14 13 13 13 13 0.2 1.8 6 6.6 0.6 0.6 0.6 0.6 0.6 0.7	516-003	KG	313	17.0	14		76	10810	920	16	44	107	13	0.3	1.2	8	61	0.6	1.4
S17-002 RT 313 14.0 14 43 32 8970 1660 9 46 53 13 0.2 1.0 7 76 0.6 0.9 S17-004 WT 313 18.0 19 93 8 4470 1620 11 73 71 13 0.3 1.5 6 74 0.6 0.5 S17-004 WT 313 18.0 14 35 38 350 960 13 0.12 13 0.2 1.8 6 84 1.0 0.5 S17-006 WT 313 18.0 18 35 106 3230 1290 9 71 66 13 0.2 1.8 6 66 0.6 0.7 517-000 WT 313 15.0 15 46 102 3290 1350 12 84 133 0.3 1.7 6 66 0.6 0.0 0.6 0.3 517-010 0T 313 15.0 17 46 53 290 1350 <t< td=""><td>517-001</td><td>RT</td><td>313</td><td>14.0</td><td>15</td><td>45</td><td>33</td><td>8540</td><td>1190</td><td>11</td><td>33</td><td>69</td><td>13</td><td>0.2</td><td>0.7</td><td></td><td>79</td><td>0.6</td><td>0.2</td></t<>	517-001	RT	313	14.0	15	45	33	8540	1190	11	33	69	13	0.2	0.7		79	0.6	0.2
517-003 WT 313 18.0 19 38 81 4470 620 11 73 71 13 0.3 1.5 6 74 0.6 0.5 517-004 WT 313 18.0 14 35 38 3350 960 13 60 121 13 0.2 0.1 6 26 20 0.1 517-005 WT 313 18.0 18 35 106 3230 1200 9 71 86 13 0.3 1.8 5 63 0.6 0.1 17 517-007 WT 313 15.0 15 46 87 4390 120 10 76 109 13 0.2 1.4 6 66 0.6 0.7 517-010 WT 313 15.0 17 46 83 240 1010 12 132 97 13 0.3 1.3 6 65 0.6 0.3 517-012 OT 313 15.0 13 46 481700 1040 <td< td=""><td>517-002</td><td>RT</td><td>313</td><td>14.0</td><td>14</td><td>43</td><td>32</td><td>8970</td><td>1660</td><td>9</td><td>46</td><td>53</td><td>13</td><td>0.2</td><td>1.0</td><td>7</td><td>76</td><td>0.6</td><td>0.9</td></td<>	517-002	RT	313	14.0	14	43	32	8970	1660	9	46	53	13	0.2	1.0	7	76	0.6	0.9
517-004 WT 313 18.0 17 38 64 3650 1180 10 59 53 13 0.2 1.8 6 84 1.0 0.5 517-005 WT 313 18.0 14 35 38 3350 960 13 60 121 13 0.2 0.1 6 26 0.0 0.1 517-006 WT 313 18.0 18 35 106 3230 1290 9 71 86 13 0.3 1.8 6 66 0.6 0.7 517-008 WT 313 15.0 15 46 102 3294 1010 12 13 0.3 1.7 6 66 0.6 0.7 517-012 0T 313 15.0 13 46 53 13470 1050 12 48 54 13 0.3 1.2 6 70 0.6 0.4 517-012 0T 313 15.0 13 46 43 1260 180 10 41 <t< td=""><td>517-003</td><td>WT</td><td>313</td><td>18.0</td><td>19</td><td>38</td><td>81</td><td>4870</td><td>1620</td><td>11</td><td>73</td><td>71</td><td>13</td><td>0.3</td><td>1.5</td><td>6</td><td>74</td><td>0.6</td><td>0.5</td></t<>	517-003	WT	313	18.0	19	38	81	4870	1620	11	73	71	13	0.3	1.5	6	74	0.6	0.5
\$17.005 WT 313 18.0 14 35 38 3350 960 13 60 121 13 0.2 0.1 6 2.0 0.0 1.1 517.005 WT 313 18.0 18 35 106 3230 1290 9 71 86 13 0.3 1.8 6 660 0.6 0.7 517.007 WT 313 15.0 15 46 102 3290 13 13 0.2 1.4 6 67 0.6 0.5 5 517.009 WT 313 15.0 15 46 102 32940 1010 12 132 97 13 0.2 1.6 6 66 2.0 0.5 5 517.011 0T 313 15.0 13 46 83 2940 1010 12 48 54 13 0.3 1.2 6 70 0.6 0.3 517.012 0T 313 15.0 13 46 48 15240 12040 12040 12040	517-004	WT	313	19.0	17	38	64	3650	1180	10	59	53	13	0.2	1.8	6	84	1.0	0.5
517-000 WT 313 18.0 18 35 100 32.20 12.20 9 71 86 13 0.3 1.8 5 63 0.0 1.1 517-007 WT 313 15.0 15 46 87 4390 1130 13 57 113 13 0.2 1.4 6 67 0.6 0.5 517-008 WT 313 15.0 15 46 102 3290 1350 12 84 133 0.3 1.7 6 66 0.6 0.7 517-010 WT 313 15.0 17 46 83 2940 1010 12 132 97 13 0.2 1.6 6 66 0.0 0.5 517-011 OT 313 15.0 13 46 48 12400 14 45 43 13 0.3 1.3 0.3 1.3 6 74 1.0 0.2 1.7 16 07 0.6 0.4 13 0.3 1.3 0.3 1.3 <t< td=""><td>517-005</td><td>WT</td><td>313</td><td>18.0</td><td>14</td><td>35</td><td>38</td><td>3350</td><td>960</td><td>13</td><td>60</td><td>121</td><td>13</td><td>0.2</td><td>0.1</td><td>6</td><td>26</td><td>2.0</td><td>0.1</td></t<>	517-005	WT	313	18.0	14	35	38	3350	960	13	60	121	13	0.2	0.1	6	26	2.0	0.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	517-006	WI	313	18.0	18	35	106	3230	1290	9	/1	80	13	0.3	1.8	2	03	0.0	1.1
317-006 WT 313 15.0 15 46 67 2320 1330 12 14 13 13 0.2 1.7 0 67 0.6 03 03 13 0.3 1.3 0.3 1.3 0.3 1.3 0.3 1.3 0.3 0.6	517-007	WI	313	18.0	18	38	90	3890	1290	10	/0	109	13	0.2	1.8	0	00 67	0.0	0.7
b17-000 W1 313 15.0 17 46 162 2205 1630 12 163 163 17 6 66 66 20 0.5 517-010 OT 313 15.0 17 46 53 2940 1010 12 48 54 13 0.3 1.1 6 6 66 0.3 0.3 1.3 6.6 6 0.3 0.3 1.3 6.6 6.6 0.3 0.3 1.3 6.6 6.6 0.3 0.3 1.3 6.6 70 0.6 0.3 517-013 OT 313 15.0 13 46 48 12040 1260 9 47 44 13 0.3 1.4 6 70 0.6 0.4 517-014 OT 313 15.0 14 45 43 15820 880 10 41 33 13 0.3 1.3 6 74 1.0 0.2 517-016 0T 313 16.0 14 54 70 100 0	517-008	WT	313	15.0	15	40	107	4390	1350	13	57 84	133	13	0.2	1.4	6	66	0.0	0.5
517-011 OT 313 15.0 13 46 53 13470 1050 12 48 54 13 0.3 1.2 6 70 0.6 0.3 517-012 OT 313 16.0 15 51 51 11630 1040 11 42 79 13 0.3 1.3 6 65 0.6 0.3 517-013 OT 313 15.0 14 45 48 12040 1260 9 47 44 13 0.3 1.4 6 70 0.6 0.4 517-015 OT 313 15.0 14 45 48 7670 90 11 40 58 13 0.2 1.2 7 76 1.0 0.2 517-015 OT 313 16.0 14 54 48 7670 90 11 38 66 13 0.3 1.3 8 70 1.0 0.4 12 7 70 1.0 0.5 517-018 0T 313 16.0<	517-010	ŵŤ	313	15.0	17	46	83	2940	1010	12	132	97	13	0.2	1.6	6	66	2.0	0.5
517-012 OT 313 16.0 15 51 51 11630 1040 11 42 79 13 0.3 1.3 6 65 0.6 0.3 517-013 OT 313 15.0 13 46 48 12040 1260 9 47 44 13 0.3 1.4 6 70 0.6 0.4 517-014 OT 313 15.0 14 45 43 15820 880 10 41 33 13 0.3 1.4 6 74 1.0 0.2 517-015 OT 313 17.0 12 49 44 7300 1080 11 40 58 13 0.2 1.2 7 76 1.0 0.3 517-016 OT 313 16.0 14 54 48 7670 990 11 38 75 13 0.4 1.2 7 70 1.0 0.4 51 517-018 0T 313 16.0 12 54 52 60	517-011	OT	313	15.0	13	46	53	13470	1050	12	48	54	13	0.3	1.2	6	70	0.6	0.3
517-013 OT 313 15.0 13 46 48 12040 1260 9 47 44 13 0.3 1.4 6 70 0.6 0.4 517-015 OT 313 15.0 14 45 43 15820 880 10 41 33 13 0.3 1.3 6 74 1.0 0.2 517-015 OT 313 16.0 14 54 48 7670 990 11 38 66 13 0.3 1.3 8 70 1.0 0.4 517-016 OT 313 16.0 14 54 48 7670 990 11 38 66 13 0.3 1.3 8 70 1.0 0.4 517-017 OT 313 16.0 16 45 30 5770 1350 11 35 29 13 0.3 0.9 6 55 3.0 0.1 518-002 RT 313 15.0 17 51 47 404	517-012	ОТ	313	16.0	15	51	51	11630	1040	11	42	79	13	0.3	1.3	6	65	0.6	0.3
517-014 OT 313 15.0 14 45 43 15820 880 10 41 33 13 0.3 1.3 6 74 1.0 0.2 517-015 OT 313 17.0 12 49 44 7230 1080 11 40 58 13 0.2 1.2 7 76 1.0 0.3 517-016 OT 313 16.0 14 54 48 7670 990 11 38 66 13 0.3 1.3 8 70 1.0 0.4 517-017 OT 313 16.0 12 54 52 6020 860 14 36 52 13 0.3 1.6 8 66 0.6 0.5 517-018 07 313 15.0 17 51 47 4040 1500 13 49 46 13 0.3 0.9 6 55 3.0 0.1 518-002 15 7 65 0.6 0.2 518-002 WT 313 1	517-013	от	313	15.0	13	46	48	12040	1260	9	47	44	13	0.3	1.4	6	70	0.6	0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	517-014	OT	313	15.0	14	45	43	15820	880	10	41	33	13	0.3	1.3	6	74	1.0	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	517-015	OT	313	17.0	12	49	44	7230	1080	11	40	58	13	0.2	1.2	1	/0	1.0	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	517-010		313	10.0	14	54	48	7120	990	11	38	00 75	13	0.3	1.3	7	70	1.0	0.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517-017	OT	213	16.0	17	54	52	6020	860	14	36	57	13	0.3	1.2	, 8	66	0.6	0.5
S18-002 RT 313 15.0 17 51 47 4040 1500 13 49 46 13 0.3 1.5 7 65 0.6 0.2 518-003 WS 500 12.0 15 62 70 7640 1890 12 47 35 13 0.4 1.4 8 58 3.0 0.2 518-004 WT 313 18.0 17 39 155 4390 1420 11 91 67 13 0.4 2.4 4 34 1.0 0.9 518-005 WT 313 16.0 15 49 129 3780 1220 15 74 13 13 0.4 2.4 4 34 1.0 0.9 518-005 WT 313 15.0 15 58 122 3960 1480 14 70 22 13 0.3 2.3 6 36 0.6 1.5 518-007 WT 313 13.0 16 42 76 3300 1550 10 <	518-001	RT	313	16.0	<u> </u>	45	30	5770	1350	- ii	35	29	i3	0.3	0.9	č	33	3.0	0.1
518-003 WS 500 12.0 15 62 70 7640 1890 12 47 35 13 0.4 1.4 8 58 3.0 0.2 518-004 WT 313 18.0 17 39 155 4390 1420 11 91 67 13 0.4 2.4 4 34 1.0 0.9 518-005 WT 313 16.0 15 49 129 3780 1220 15 74 13 13 0.4 2.4 4 34 1.0 0.9 518-006 WT 313 15.0 15 58 122 3960 1480 14 70 22 13 0.3 2.7 6 36 0.6 1.5 518-007 WT 313 13.0 16 42 76 3300 1550 10 54 79 13 0.3 2.3 6 36 0.6 2.5 518-008 WT 313 13.0 15 87 66 6490 1410 10 45 <t< td=""><td>518-002</td><td>RT</td><td>313</td><td>15.0</td><td>17</td><td>51</td><td>47</td><td>4040</td><td>1500</td><td>13</td><td>49</td><td>46</td><td>13</td><td>0.3</td><td>1.5</td><td>7</td><td>65</td><td>0.6</td><td>0.2</td></t<>	518-002	RT	313	15.0	17	51	47	4040	1500	13	49	46	13	0.3	1.5	7	65	0.6	0.2
518-004 WT 313 18.0 17 39 155 4390 1420 11 91 67 13 0.4 2.4 4 34 1.0 0.9 518-005 WT 313 16.0 15 49 129 3780 1220 15 74 13 13 0.4 2.4 4 34 1.0 0.9 518-005 WT 313 16.0 15 49 129 3780 1220 15 74 13 13 0.4 2.9 5 32 1.0 1.2 518-006 WT 313 15.0 15 58 122 3960 1480 14 70 22 13 0.3 2.7 6 36 0.6 1.5 518-008 WT 313 13.0 16 42 76 3300 1550 10 54 79 13 0.3 2.5 8 38 0.6 2.6 519-001 RT 313 13.0 15 40 31 10850 1020 10 35 57 <	518-003	WS	500	12.0	15	62	70	7640	1890	12	47	35	13	0.4	1.4	8	58	3.0	0.2
518-005 WT 313 16.0 15 49 129 3780 1220 15 74 13 13 0.4 2.9 5 32 1.0 1.2 518-006 WT 313 15.0 15 58 122 3960 1480 14 70 22 13 0.3 2.7 6 36 0.6 1.5 518-007 WT 313 13.0 16 42 76 3300 1550 10 54 79 13 0.3 2.7 6 36 0.6 1.5 518-008 WT 313 13.0 16 42 76 3300 1550 10 54 79 13 0.3 2.3 6 36 0.6 2.6 518-008 WT 313 13.0 15 40 31 10850 1020 10 45 13 13 0.3 2.3 8 8 0.6 2.6 5 59 0.6 0.3 519-002 RT 313 17.0 17 40 3	518-004	WT	313	18.0	17	39	155	4390	1420	11	91	67	13	0.4	2.4	4	34	1.0	0.9
518-006 WT 313 15.0 15 58 122 3960 1480 14 70 22 13 0.3 2.7 6 36 0.6 1.5 518-007 WT 313 13.0 16 42 76 3300 1550 10 54 79 13 0.3 2.7 6 36 0.6 1.5 518-008 WT 313 13.0 15 87 66 6490 1410 10 45 13 13 0.3 2.3 6 36 0.6 2.5 518-008 WT 313 17.0 15 87 66 6490 1410 10 45 13 13 0.3 2.5 8 38 0.6 2.6 519-001 RT 313 17.0 17 40 38 9010 1280 9 39 26 13 0.3 0.8 5 59 0.6 0.3 519-002 519-002 RT 313 18.0 18 45	518-005	WT	313	16.0	15	49	129	3780	1220	15	74	13	13	0.4	2.9	5	32	1.0	1.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	518-006	WT	313	15.0	15	58	122	3960	1480	14	70	22	13	0.3	2.7	6	36	0.6	1.5
S18-008 W1 S13 13.0 13 87 00 0490 1410 10 43 13 13 0.9 2.5 8 36 0.0 20 \$19-001 RT 313 17.0 15 40 31 10850 1020 10 35 57 13 0.3 0.8 5 59 0.6 0.3 519-002 RT 313 17.0 17 40 38 9010 1280 9 39 26 13 0.3 0.9 5 61 2.0 0.2 519-002 RT 313 18.0 18 45 74 6900 940 10 41 79 13 0.3 1.3 6 61 2.0 0.2 519-004 S19-004 WT 313 11.0 16 42 75 3820 1520 15 46 13 13 0.4 2.0 5 42 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6	518-007	WI	313	13.0	10	42	10	3300	1550	10	54	19	13	0.3	2.5	0	30	0.0	23
519-002 RT 313 17.0 17 40 38 9010 1280 9 39 26 13 0.3 0.9 5 61 2.0 0.2 519-002 RT 313 17.0 17 40 38 9010 1280 9 39 26 13 0.3 0.9 5 61 2.0 0.2 519-003 WT 313 18.0 18 45 74 6900 940 10 41 79 13 0.3 1.3 6 61 2.0 0.2 519-004 WT 313 11.0 16 42 75 3820 1520 15 46 13 13 0.4 2.0 5 42 0.6 0.4 519-005 WT 313 11.0 15 82 69 3410 1200 17 35 73 13 0.3 1.4 12 45 0.6 0.5	518-008			13.0		<u>- 87</u> 40	21	10850	1410	10	45		13	0.9	2.5			0.0	
519-002 WT 313 18.0 18 45 74 6900 940 10 41 79 13 0.3 1.3 6 61 2.0 0.3 519-003 WT 313 11.0 16 42 75 3820 1520 15 46 13 13 0.4 2.0 5 42 0.6 0.4 519-005 WT 313 11.0 15 82 69 3410 1200 17 35 73 13 0.3 1.4 12 45 0.6 0.5	519-001	RT NI	313	17.0	13	40	38	9010	1280	0	30	26	13	0.3	0.0	5	61	2.0	0.3
519-004 WT 313 11.0 16 42 75 3820 1520 15 46 13 13 0.4 2.0 5 42 0.6 0.4 519-005 WT 313 11.0 15 82 69 3410 1200 17 35 73 13 0.3 1.4 12 45 0.6 0.5	519-003	wr	313	18.0	18	45	74	6900	940	10	41	79	13	0.3	1.3	6	61	20	0.3
519-005 WT 313 11.0 15 82 69 3410 1200 17 35 73 13 0.3 1.4 12 45 0.6 0.5	519-004	ŴŤ	313	11.0	16	42	75	3820	1520	15	46	13	13	0.4	2.0	5	42	0.6	0.4
	519-005	WT	313	11.0	15	82	69	3410	1200	17	35	73	13	0.3	1.4	12	45	0.6	0.5
<u>519-006 WT 313 10.0 15 80 86 5010 1280 15 43 57 13 0.3 1.7 12 48 0.6 0.6</u>	519-006	WT_	313	10.0	15	80	86	5010	1280	15	43	57	13	0.3	1.7	12	48	0.6	0.6
<u>520-001</u> RT <u>313</u> 17.0 20 57 31 6260 1040 16 31 96 13 0.4 0.8 8 79 1.0 0.4	520-001	RT	313	17.0	20	57	31	6260	1040	16	31	96	13	0.4	0.8	8	79	1.0	0.4
520-002 RT 313 16.0 18 57 27 4750 920 12 31 47 13 0.3 0.6 8 76 2.0 0.2	520-002	RT	313	16.0	18	57	27	4750	920	12	31	47	13	0.3	0.6	8	76	2.0	0.2
220-0005 KI 313 18.0 17 48 44 01.30 11.20 11 42 37 13 0.3 0.9 7 00 0.6 0.3 0.20 0.6 0.3 120 0.0 0.7 0.0 0.6 0.3	520-003	KT	313	18.0	17	48	44 66	0130	1150	11	42	37	13	0.3	0.9	1	00	0.6	0.3
ער ער גער גער גער גער גער גער גער גער גע	520-004	OT	212	16.0	15	40 R1	60	5360	940	13	15	11	15	0.3	1.5	0	57	06	0.3

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

4

1-1

 Π

		Na	Nb	Nb	Ni	Ni	Р	Р	Pb	Pb	Rb	Rb	Sb	Sb	Sc	Sc	Se	Se
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc
Sample	Unit	icp	icp	icp	icp	icp	icp	icp	icp	icp	icp	icp	hyaa	inaa	icp	inaa		hyaa
520-006	01	. 313	14.0	15	59	63	3890	1060	13	35	109	13	0.3	1.2	10	62	1.0	0.3
520-007	01	313	15.0	13	00	67	4100	1190	14	41	82	13	0.3	1.5	10	60	0.0	0.0
520-008	OT	313	18.0	14	50	44	4420	1170	10	34	45	13	0.4	1.3	9	71	1.0	0.2
520-009	01	313	18.0	15	63	56	4430	900	13	40	45	13	0.3	1.3	9	66	0.6	0.5
520-010	OT	313	17.0	13	60	61	5000	1070	13	42	62	13	0.4	1.2	8	64	1.0	0.2
520-011	ОТ	313	18.0	15	54	51	5010	890	16	49	129	13	0.3	1.2	8	63	0.6	0.3
520-012	от	313	19.0	19	43	36	6060	1190	11	57	13	13	0.4	1.4	7	69	0.6	0.1
520-013	OT	313	18.0	17	45	30	8550	990	17	54	13	39	0.2	1.4	8	86	1.0	0.1
520-014	OT	313	20.0	18	43	34	5000	1020	12	46	62	13	0.4	1.6	7	78	0.6	0.1
520-015	OS	313	15.0	15	103	54	11340	1020	22	26	22	21	1.3	0.9	10	36	0.6	0.5
520-016	SAP	313	12.0	15	50	51	5980	1120	10	146	71	13	0.3	1.1	10	30	2.0	0.3
520-017	SAP	313	42.0	18	88	33	7400	1350	63	971	13	13	1.0	0.5	11	16	0.6	0.1
521-001	RT	313	18.0	19	48	36	7790	990	12	42	34	13	0.4	0.8	1	76	0.6	0.4
521-002	RT	313	18.0	18	46	35	4420	1590	9	47	29	13	0.3	0.9	7	75	0.6	0.1
521-003	WT	313	16.0	14	42	68	4430	1200	10	53	30	13	0.4	1.3	6	63	3.0	0.5
521-004	ОТ	313	18.0	14	46	52	5450	890	10	33	52	13	0.4	1.2	7	67	0.6	0.3
521-005	WΤ	500	17.0	22	71	74	3350	1230	12	83	93	13	0.4	1.5	7	59	0.6	0.4
521-006	ŴT	313	19.0	17	47	95	5880	1320	9	62	64	13	0.3	2.1	7	37	0.6	1.2
521-007	OG	313	16.0	15	84	75	7650	1370	22	60	51	33	0.5	2.8	12	29	1.0	1.8
521-008	OG	313	16.0	14	116	65	6620	1420	22	119	75	13	0.6	2.7	14	29	0.6	1.2
521-009	OG	313	16.0	16	131	51	6690	1250	23	43	74	13	0.8	2.0	14	32	1.0	0.5
521-010	OS	313	10.0	16	84	35	14450	1230	27	26	46	43	0.6	0.6	11	36	0.6	0.1
521-011	OS	313	10.0	15	92	43	17280	1360	24	29	51	60	0.5	0.7	10	42	1.0	0.1
521-012	SAP	313	10.0	8	121	24	10730	1110	21	18	56	13	0.2	0.1	6	129	1.0	0.1

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

Note: All values are reported in parts per million (ppm).

		Sm	Sn	Sn	Sr	Sr	Ta	Ta	ТЪ	Te	Te	Th	Ti	Ti	U	v	v
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc
Sample	Unit	іпаа	icp	icp	icp	icp	ico	inaa	іпаа	ico	inaa	inaa	ico	ico	inaa	icp	icp
501-001	RT	35	12.5	12.5	10	91	0.6	9	5	6.3	12.5	67	313	6530	15	26	155
501-002	SAP	8	12.5	12.5	5	39	0.6	6	2	6.3	12.5	19	313	980	6	23	130
501-003	SAP	69	12.5	12.5	20	53	0.6	2	6	6.3	12.5	21	313	313	10	36	115
502-001	RI	44	12.5	12.5	62	153	0.6	8	2	6.3	12.5	111	670	10850	15	79	173
502-002		50	12.5	12.5	10	117	0.0	10	5	0.3	12.5	154	910	9550	18	83	105
502-003	KI DC	44	12.5	12.5	00	125	0.0	10	2	0.3	12.5	155	940	10000	17	08	152
502-004	KS OI	19	12.5	12.5	02	52	0.0	4	3	0.3	12.5	52	890	5/20	0	00	109
502-005		32	12.5	12.5	49		0.0		4	6.3	12.5	154	1400	0410	10	70	104
503-007	DT		12.5	12.5	66	115	0.0	11	6	61	12.5	194	1490	0420	21	70	130
503-002	PT	55	12.5	12.5	62	87	0.0	14	7	63	12.5	222	1720	8220	21	75	123
503-005	RT	44	12.5	12.5	58	95	0.0	16	6	63	12.5	148	1710	13580	21	75	243
503-005	RT	49	12.5	12.5	192	115	0.6	12	6	63	12.5	187	950	10710	18	87	157
503-006	ASAP	28	12.5	12.5	54	38	0.6	20	4	6.3	12.5	127	313	11120	21	90	695
503-007	SAP	2	12.5	12.5	6	67	0.6	1	1	6.3	12.5	5	313	313	1	37	484
505-001	RT	29	12.5	12.5	57	47	0.6	6	4	6.3	12.5	58	1280	5850	<u>.</u>	79	171
505-002	OT	19	12.5	12.5	40	54	0.6	4	3	6.3	12.5	41	1080	5820	6	104	230
505-003	OT	22	12.5	12.5	38	48	0.6	4	3	6.3	12.5	43	1080	5550	6	89	190
505-004	SAP	43	12.5	12.5	46	44	0.6	2	4	6.3	12.5	39	580	2470	10	77	146
506-001	RT	19	12.5	12.5	43	45	0.6	7	2	6.3	12.5	64	500	5940	7	106	233
506-002	RT	19	12.5	12.5	60	45	0.6	7	4	6.3	12.5	61	840	8490	6	113	192
506-003	SAP	8	12.5	12.5	185	47	0.6	6	2	6.3	12.5	3	313	1410	1	95	1593
506-004	SAP	19	12.5	12.5	34		0.6	5	9	6.3	12.5	3	313	6550	1	75	861
507-001	RT	42	12.5	12.5	64	92	0.6	9	5	6.3	12.5	143	1520	9070	16	63	116
507-002	RT	31	12.5	12.5	58	60	0.6	8	4	6.3	12.5	98	1260	6170	12	57	128
507-003	RL	18	12.5	12.5	60	51	0.6	6	2	6.3	12.5	60	1160	4360	7	60	165
507-004	01	14	12.5	12.5	58	53	0.6	2	2	0.3	12.5	40	720	3/10	0	/1	195
507-005	01	11	12.5	12.5	08	49	0.0	5	2	0.3	12.5	30 53	//0	3510	4	80 65	210
507-000		15	12.5	12.5	39	40	0.0	3	1	0.3	12.5	53	200	3440	0	03 74	201
507-007	03	21	12.5	12.5	53	39	0.0	4	2	0.3	12.5	52 77	790	4210	5	57	174
507-000	01	10	12.5	12.5	56		0.0	3	2	63	12.5	32	620	1880	3	63	167
507-009	OT	20	12.5	12.5	57	46	0.0	6	3	63	12.5	73	780	4540	10	63	185
507-011	OL.	14	12.5	12.5	54	43	0.6	4	2	6.3	12.5	39	1000	4290	ŝ	74	177
507-012	SAP	17	12.5	12.5	34	45	0.6	10	3	6.3	12.5	23	313	21370	4	44	91
508-001	RT	34	12.5	12.5	62	76	0.6	7	3	6.3	12.5	110	1430	7210	14	72	192
508-002	RT	39	12.5	12.5	55	86	0.6	8	4	6.3	12.5	116	1300	7070	14	79	205
508-003	RT	41	12.5	12.5	64	121	0.6	7	4	6.3	12.5	131	1060	9110	15	84	242
508-004	SAP	33	12.5	12.5	11	48	0.6	5	3	6.3	12.5	43	313	4450	6	110	126
508-007	SAP	1	12.5	12.5	12	21	0.6	1	1	6.3	12.5	12	313	313	1	162	88
509-001	RT	37	12.5	12.5	96	84	0.6	10	5	6.3	12.5	114	1720	8160	15	86	163
510-001	RT	37	12.5	12.5	64	87	0.6	10	4	6.3	12.5	123	1300	7890	14	94	157
510-002	RT	45	12.5	12.5	49	74	0.6	<u> </u>	5	6.3	12.5	166	1480	7300	18	62	131
511-001	RT	46	12.5	12.5	47	59	0.6	11	5	6.3	12.5	188	1040	5340	18	52	141
511-002	RT	44	12.5	12.5	51	70	0.6	11	0	0.3	12.5	103	580	7600	16	62	150
511-003	RT	45	12.5	12.5	22	69 .	0.6	12	2	0.3	12.5	1/5	600	/620	1/	35	133
511-004	WI	54	12.5	12.5	/3	00	0.0	14	0	0.3	12.5	245	800	0930	24	41	134
511-005		35	12.5	12.5	42	48	0.0			6.3	12.5	145		4300	12	45	
512-001	WI WT	34 20	12.3	12.3	00. 63	00 40	0.0	10	2	6.2	12.5	151	540	4550	13	59 67	1/3
512-002	WI	2	12.3	12.3	U3 69	40	0.0	10	4	6.3	12.3	103	212	2010	12	51	140
512-003			12.5	12.3			0.0	11		61	12.5	220		6220	10		177
513-002	wr	27	12.5	12.5	61	44	0.6	.5	4	6.3	12.5	114	600	2640	14	48	148
513-003	ŵŤ	23	12.5	12.5	65	44	0.6	4	3	6.3	12.5	95	313	2380	12	50	159
513-004	ŵŤ	25	12.5	12.5	60	42	0.6	4	4	6.3	12.5	100	313	2320	13	52	145

Appendix 280-G, Baudette area assays. Nonma	gnetic heavy mineral concentrate and cla	y fraction of till and non-till samples.
---	--	--

П

G-14

M

M

A - A

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

		Sm	Sn	Sn	Sr	Sr	Ta	Ta	Tb	Te	Te	Th	Ti	Ti	U	v	v
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc
Sample	Unit	inaa	icn	icp	ico	ico	icp	inaa	inaa	icp	inaa	inaa	icp	icn	inaa	icn	icp
513-005	SAP	4	12.5	12.5	42	15	0.6	4	2	6.3	12.5	12	810	19860	1	116	169
514-001	RI	58	12.5	12,5	55	6.8 02	0.0	14	1	0.3	12.5	209	1390	89/0	24	20	145
514-002	RI PT	38	12.5	12.5	51	83 84	0.0	14	6	0.5	12.5	208	14.50	87.50 7040	17	رد 67	147
514-004	RG	10	12.5	12.5	43	34	0.0	1	2	63	12.5	27	800	1850		73	117
514-005	OS	54	12.5	12.5	22	72	0.6	12	7	6.3	12.5	207	313	8180	21	66	127
514-006	SAP	2	12.5	12.5	40	28	0.6	. 1	i	6.3	12.5	1	313	313	0	286	129
515-001	RT	32	12.5	12.5	61	45	0.6	6	4	6.3	12.5	83	1070	4240	12	65	131
515-002	RT	24	12.5	12.5	69	45	0.6	6	3	6.3	12.5	81	1170	3720	9	83	114
515-003	RT	28	12.5	12.5	40	47	0.6	1	4	6.3	12.5	99	660	4500	12	63	153
515-004	OT	39	12.5	12.5	57	47	0.6	9	5	6.3	12.5	162	980	4740	15	61	129
515-005	OT	47	12.5	12.5	54	47	0.6	10	6	6.3	12.5	206	1040	4960	17	64	126
515-006	01 0T	48	12.5	12.5	>> 52	5/	0.6	14	5	0.3	12.5	210	1090	6110	18	63	134
515-007		40	12.5	12.5	32	09	0.0	10	4	0.3	12.5	103	970	0/20	13	עכ רד	103
515-000		42	12.5	12.5			0.0	14		6.3	12.5	130	1050	8460			122
516-007	KT	50	12.5	12.5	65	50	0.0	19	7	63	12.5	190	1130	7320	20	67	126
516-002	KG	30	12.5	12.5	60	52	0.0	10	4	63	12.5	158	1520	7810	14	80	125
517-001	RT	50	12.5	12.5	59	59	0.6	10	5	6.3	12.5	205	1270	6980	19	63	125
517-002	RT	64	12.5	12.5	58	60	0.6	15	7	6.3	12.5	284	1390	7360	28	59	124
517-003	WT	79	12.5	12.5	81	51	0.6	19	8	6.3	12.5	340	1070	8330	39	49	140
517-004	WT	71	12.5	12.5	83	85	0.6	19	9	6.3	12.5	254	1110	11460	30	51	141
517-005	WΓ		12.5	12.5	85	45	0.6	1		6.3	20.0		920	8410		51	179
517-006	WT	61	12.5	12.5	86	45	0.6	21	9	6.3	12.5	265	960	6660	31	46	140
517-007	WT	60	12.5	12.5	90	48	0.6	14	8	6.3	12.5	238	1010	7100	33	50	144
517-008	WT	51	12.5	12.5	78	41	0.6	14	6	6.3	12.5	215	1000	5680	22	56	143
517-009	WT	63	12.5	12.5	97	41	0.6	13	7	6.3	12.5	270	750	5380	32	59	129
517-010		40	12.5	12.5	90	40	0.0	12	4	0.3	12.5	1/5	/90	5240	18	64	140
517-011		41	12.5	12.5	50	47	0.0	12	J	6.2	12.5	150	880	5260	14	53	143
517-012		50	12.5	12.5	61	48	0.0	11		63	12.5	236	1010	6650	20		147
517-014	OT	34	12.5	12.5	56	50	0.6	9	4	6.3	12.5	145	930	6430	13	54	146
517-015	ŎŢ	41	12.5	12.5	75	41	0.6	10	6	6.3	12.5	183	1070	4870	16	61	123
517-016	ŌŤ	38	12.5	12.5	69	50	0.6	9	4	6.3	12.5	158	1020	6400	14	64	142
517-017	OT	44	12.5	12.5	73	41	0.6	12	6	6.3	12.5	186	1020	5720	. 19	61	131
517-018	OT	38	12.5	12.5	68	42	0.6	11	4	6.3	12.5	165	1060	5470	14	66	139
318-001	RT	47	12.5	12.5	58	49	0.6	14	5	6.3	12.5	176	1130	5560	19	55	121
518-002	RT	55	12.5	12.5	66	57	0.6	14	1	6.3	12.5	222	1040	7530	24	. 62	151
518-003	WS	45	12.5	12.5	41	67	0.6	ii ii	. 0	6.3	12.5	154	950	7130	24	72	143
518-004	WT	29	12.5	12.5	/1	33	0.0	0	4	0.3	12.5	121	510	2780	10	45	19
518-005	WI	25	12.5	12.5	11	30	0.0		4	0.3	12.5	100	700	2300	17	54 64	70
518-000	WT	31	12.5	12.5	84	54 AT	0.0		. 3	61	12.5	114	520	2240	17	51	186
518-007	WT	20	12.5	12.5	87		0.0		3	63	12.5	118	570	2470	13	66	176
519-001			12.5	12.5		44	0.6		4	6.3	12.5	137	1010	5690		48	
519-002	RT	43	12.5	12.5	53	45	0.6	11	5	6.3	12.5	168	930	6300	16	48	144
519-003	WT	43	12.5	12.5	60	45	0.6	11	6	6.3	12.5	183	1220	5990	19	56	143
519-004	WT	47	12.5	12.5	61	47	0.6	9	6	6.3	12.5	212	313	3300	22	50	144
519-005	WT	30	12.5	12.5	43	. 44	0.6	7	4	6.3	12.5	111	900	4280	11	97	206
519-006	WT_	43	12.5	12.5	42	42	0.6	9	5	6.3	12.5	172	690	4840	17	92	218
520-001	RT		12.5	12.5	60	80	0.6	12	6	6.3	12.5	184	1830	10280	22	74	153
520-002	RT	48	12.5	12.5	55	104	0.6	12	7	6.3	12.5	156	1710	10530	18	71	132
520-003	KT	38	12.5	12.5	58	58	0.6	10	5	0.3	12.5	128	1210	1320	15	58	133
520-004	WT	52	12.5	12.5	20	43	0.0	14	0	0.3	12.5	215	11/0	1480	23		1.59
520-005	01	23	12.5	12.3		56	0.0	c c	. 3	0.5	12.5	00	930	5000	У	0/	105

.

		Sm	Sn	Sn	Sr	Sr	Ta	Ta	Tb	Te	Te	Th	Ti	Ti	U	v	v
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc									
Sample	Unit	inaa	ico	ico	icp	icp	icn	inaa	inaa	icn	inaa	inaa	ico	icp	inaa	icn	icp
520-006	OT	28	12.5	12.5	56	45	0.6	11	4	6.3	12.5	114	970	5220	10	64	163
520-007	OT	36	12.5	12.5	58	49	0.6	10	5	6.3	12.5	143	1000	5000	15	71	153
520-008	ОТ	35	12.5	12.5	65	46	0.6	9	5	6.3	12.5	137	1060	5020	13	69	123
520-009	от	41	12.5	12.5	65	57	0.6	8	5	6.3	12.5	161	1140	6740	15	74	150
520-010	OT	36	12.5	12.5	66	48	0.6	8	4	6.3	12.5	145	1000	5370	13	65	130
520-011	от	44	12.5	12.5	62	51	0.6	11	7	6.3	12.5	189	890	6210	16	62	147
520-012	OT	73	12.5	21.0	67	80	0.6	20	9	6.3	12.5	314	990	11370	32	55	168
520-013	ОТ	69	12.5	12.5	63	53	0.6	21	8	6.3	12.5	277	900	8870	29	65	155
520-014	OT	70	12.5	12.5	72	55	0.6	30	10	6.3	12.5	320	830	9640	. 29	55	142
520-015	OS	17	12.5	12.5	43	36	0.6	3	2	6.3	12.5	57	800	2320	5	98	125
520-016	SAP	20	12.5	12.5	12	28	0.6	2	2	6.3	12.5	45	313	1200	5	158	179
520-017	SAP	114	12.5	12.5	30	29	0.6	1	9	6.3	12.5	43	313	313	7	112	111
521-001	RT	59	12.5	12.5		57	0.6	14	6	6.3	12.5	250	1040	8890	24	59	139
521-002	RT	68	12.5	12.5	52	60	0.6	17	7	6.3	12.5	318	1090	7610	26	51	154
521-003	WT	43	12.5	12.5	58	41	0.6	9	5	6.3	12.5	187	730	5030	19	50	141
521-004	ОТ	34	12.5	12.5	59	40	0.6	11	4	6.3	12.5	148	890	5360	12	53	142
521-005	WT	60	12.5	12.5	72	82	0.6	14	7	6.3	12.5	259	980	10970	23	56	141
521-006	WT	32	12.5	12.5	73	45	0.6	9	4	6.3	12.5	132	1100	5550	16	51	97
521-007	OG	12	12.5	12.5	58	35	0.6	5	2	6.3	12.5	34	1190	2000	4	92	88
521-008	OG	15	12.5	48.0	55	34	0.6	5	I	6.3	12.5	53	1310	2150	4	121	91
521-009	0G	14	12.5	12.5	58	39	0.6	1	2	6.3	12.5	37	1530	1950	5	121	111
521-010	OS	17	12.5	12.5	43	36	0.6	3	2	6.3	12.5	64	560	1900	6	121	168
521-011	OS	25	12.5	12.5	43	41	0.6	4	4	6.3	12.5	91	560	2810	11	98	155
521-012	SAP	9	12.5	12.5	56	13	0.6	1	6	6.3	12.5	23	313	810	4	68	48

Appendix 280-G.	Baudette area assays.	Nonmagnetic heavy	y mineral concentrate	and clay	fraction of	f till and nor	-till samples.

Note: All values are reported in parts per million (ppm).

.

		w	w	v	V	Yh		7n			nmHMC
		-2um	nmhmc	- -2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	(g)
Sample	Unit	icn	inaa	icn	icn	inaa	icn	icn	icn	inaa	inaa
501-001	RT	6.3	3	28	53	10	60	178	1	6200	11.4
501-002	SAP	6.3	651	5	29	8	21	161	1	940	10.7
501-003	<u>SAP</u>	6.3	7	37	111	18	159	515	2	3300	8.2
502-001	RI	6.3	7	14	71	12	91	54	2	4600	10.5
502-002	KI DT	0.3	3	10	72	12	98	21	3	0000	13.1
502-003	RI	63	3	12	37	6	92	40	2	1300	13.5
502-005	OL.	6.3	1	14	58	9	125	111	4	6500	12.3
503-001	RT	6.3	13	- ii	71		90	64	6	4900	8.3
503-002	RT	6.3	3	10	69	15	89	50	4	7300	15.0
503-003	RT	6.3	5	9	69	15	86	38	4	6400	12.9
503-004	RT	6.3	10	13	63	19	92	103	8	7400	10.4
503-005	RT	6.3	11	20	86	14	79	71	2	6900	8.3
503-006	ASAP	6.3	3	12	39	13	18	265	1	5400	10.9
503-007	<u>SAP</u>	6.3	3	1		3	17	110		313	11.5
505-001		0.3	5	19	22	15	119	135	2	5700	11.1
505-002		0.3	10	15	48	12	170	150	2	5000	13.1
505-005	SAP	63	20	16	40	12	1/9	1053	7	6600	11.8
506-001	RT	6.1	1	- 24	44		108	126		2600	10.2
506-002	RT	6.3	8	20	44	n	106	119	4	3200	13.2
506-003	SAP	6.3	14	15	28	3	34	87	1	313	12.6
586-004	SAP	6.3	3	107	256	37	102	171	2	313	5.3
507-001	RT	6.3	5	- 11	64	13	74	49	9	5400	14.2
507-002	RT	6.3	3	12	46	13	77	59	12	5300	11.0
507-003	RL	. 6.3	3	13	34	7	81	87	9	3900	11.2
507-004		0.3	3	12	2/	5	08 70	88	3	1800	10.4
507-005		0.3 6 3	3	13	23	3	82	80 80	4	1800	15.4
507-007	OS	63	, ,	14	34	1	86	91	1	1800	8.9
507-008	ŎŤ	6.3	7	15	36	8	90	91	4	3200	11.5
507-009	OS	6.3	34	13	27	5	79	87	3	313	15.5
507-010	от	6.3	8	14	35	6	77	83	4	2800	12.2
507-011	OL	6.3	3	14	32	8	88	100	9	2900	7.4
507-012	SAP	6.3	3	4	36	11	57	458	2	3000	10.2
508-001	RT	6.3	3	14	55	16	94	79	6	7600	5.4
508-002		0.3	39	14	5/	1/	105	03	4	6100	11.5
508-005	SAD	63	3	26	81	21	08	107	2	4300	10.0
508-007	SAP	63	14	4	10	1	82	199	3	313	9.0
509-001	RT	6.3	244		64	19	108	84		7500	11.2
510-001	RT	6.3	3	13	59	12	96	69	3	6400	12.8
510-002	RT	6.3	6	12	59	16	104	59	5	5900	13.5
511-001	RT	6.3	3	12	58	11	148	. 11	3	5400	9.5
511-002	RT	6.3	10	13	68	14	85	73	1	6300	10.9
511-003	RT	6.3	3	12	63	12	80	54	2	6300	12.4
511-004	WT	6.3	3	13	74	12	69	88	4	10000	6.5
511-005	WI	6.3	3			12	110	103		5900	3.5
512-001	WI	0.3	14	17	22 74	11	/8 74	130	4 7	2000	12.1
512-002	WT ·	0.3	¥۲.	21	41 46	8	68	160	2	2900	0.0 11 2
511-001	RT	61				14	75	61		8500	15.6
513-002	ŵr	6.3	3	17	38	1	78	116	3	4400	10.7
513-003	WT	6.3	3	19	34	6	81	142	2	4300	9.5
513-004	wr	6.3	3	18	33	9	93	159	2	4300	12.3

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

		w	w	Y	Y	Yb	Zn	Zn	Zr	Zr	nmHMC
		-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	(g)
Sample	Unit	icn	inaa	icn	icn	inaa	icn	icn	icn	inaa	inaa
513-005	SAP	6.3	3	12	19	3	132	301	4	313	9.9
514-001	RT	6.3	12	13	91	18	83	72	8	8200	8.7
514-002	RT	6.3	3	13	80	14	77	62	7	8600	12.2
514-003	RT	6.3	3	13	70	14	89	61	4	6000	14.3
514-004	RG	6.3	3	14	37	6	87	111	3	313	9.1
514-005	OS	6.3	3	13	73	17	86	58	3	6900	13.1
514-000	<u>SAP</u>	0.3	<u> </u>	<u> </u>		3	183	117	<u> </u>	313	11.6
515-001	RI PT	0.3	3	14	50	13	80	109	2	6/00	12.5
515-002	DT N	63	3	15	44	12	93	64 07	2	2300	12.0
515-003	OT	63	3	15	52	13	01 \$4	97 74	2	6800	12.4
515-005	OT	6.3	3	20	61	16	90	73	6	6100	12.4
515-006	ŎŤ	6.3	8	20	69	18	91 91	71	6	7100	10.5
515-007	OT	6.3	3	20	66	15	94	74	Å.	4500	12.3
515-008	OT	6.3	3	15	58	7	104	79	. 4	5200	10.5
516-001	KT	6.3	15	15	11	18	77	115	3	11000	9.1
516-002	KT	6.3	3	16	66	16	82	81	4	9100	11.0
516-003	KG	6.3	26	14	61	17	84	73	3	5600	6.3
517-001	RT	6.3	3	13	66	18	80	56	2	7700	12.9
517-002	RT	6.3	3	13	70	20	74	51	3	12000	13.7
517-003	WT	6.3	16	14	80	26	65	88	5	19000	2.8
517-004	WT	6.3	3	15	93	23	68	80	9	14000	4.3
517-005	WT	0.3	3	14	92	22	61	6/	10	313	4.0
517-000	WI	0.3	2	14	71	10	64	140	10	15000	4.9
517-007	WT	63	5	15	6	19	75	112	Ţ	1,0000	3.7
517-000	WT	63	9	15	64	15	77	112	5	11000	81
517-010	ŵŤ	6.3	3	16	61	15	79	185	14	5100	1.7
517-011	OT	6.3	8	15	59	15	72	87	2	6800	10.0
517-012	OT	6.3	9	14	54	15	69	80	2	4300	10.0
517-013	ОТ	6.3	3	15	70	16	69	80	2	10000	8.9
517-014	от	6.3	3	13	62	18	68	69	2	5400	9.9
517-015	от	6.3	3	18	50	17	75	62	3	5900	12.8
517-016	OT	6.3	3	18	56	15	79	64	2	6200	12.8
517-017	OT	6.3	3	17	54	16	80	91	4	8900	10.8
517-018	OT	6.3	21	17	50	13	81	66	3	7500	12.1
518-001	RI DT	0.3	3	14		12	80	12	5	11000	11.3
518-002	We	0.3	10	15	70 65	20	102	90	0	12000	3.9
518-003	WT	63	3	15	45	13	64	100		7400	71
518-005	wr	63	1	17	40	13	91	192	7	5100	53
518-006	ŴŤ	6.3	9	18	40	13	95	272	7	8900	5.7
518-007	ŴŤ	6.3	3	21	34	8	67	119	11	3600	9.3
518-008	WT	6.3	3	19	34	7	75	112	4	4400	9.0
319-001	RT	6.3	3	11	55	13	59	87	3	4800	11.1
519-002	RT	6.3	3	12	60	16	64	78	3	6300	11.4
519-003	WT	6.3	3	14	57	13	71	83	5	7600	11.7
519-004	WT	6.3	3	19	48	11	65	139	6	7600	10.0
519-005	WT	6.3	3	18	47	8	116	113	10	3200	10.7
519-006	WT	6.3		19	54	12	120	105	4	6100	9.9
520-001	RI	0.3	8	15	84 77	19	89	45	0	0000	13.5
520-002	KI PT	0.3	5	13	 64	10	65 72	40	8 A	6200	11.9
520-003	WT	63	14	14	60	10	7.5 RA	60 80	4	8400	1.1
520-005	OT	6.3	3	16	51	10	30 74	103	4	2800	10.2
			-								

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.
		w	W	Y	Y	Yb	Zn	Zn	Zr	Zr	nmHMC
		-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	(g)
Sample	Unit	icp	inaa	icp	icp	inaa	ico	icp	icp	inaa	inaa
520-006	от	11.0	3	- 16	- 58	- 12	72	- 98	8	5300	9.5
520-007	от	6.3	3	17	53	11	90	86	6	5700	11.7
520-008	от	6.3	3	18	50	14	87	88	6	5100	8.8
520-009	ОТ	6.3	3	18	63	12	93	86	7	6200	9.1
520-010	от	6.3	3	18	54	14	88	86	6	5000	10.8
520-011	ΟΤ	6.3	3	18	62	13	86	85	6	7400	7.6
520-012	ОТ	6.3	3	18	104	17	71	72	5	14000	3.3
520-013	ΟΤ	6.3	3	20	81	23	79	52	4	13000	4.6
520-014	ОТ	6.3	45	19	85	23	72	53	6	9700	2.6
520-015	OS	6.3	3	20	38	8	95	105	6	313	10.8
520-016	SAP	6.3	3	63	47	3	52	133	6	313	7.5
520-017	SAP	6.3	3	172	140	5	96	217	4	313	8.5
321-001	RT	6.3	3	15	77	16	83	64	7	9300	12.3
521-002	RT	6.3	14	15	80	16	77	78	9	13000	6.2
521-003	WT	6.3	16	14	55	14	69	121	11	7600	12.5
521-004	OT	13.0	9	17 .	59	14	73	76	6	4300	12.2
521-005	WT	6.3	3	17	88	22	84	97	15	9900	1.0
521-006	WT	6.3	3	17	46	12	81	150	4	8000	4.1
521-007	OG	6.3	3	18	41	7	135	102	3	313	10.1
521-008	OG	6.3	7	17	36	5	139	97	2	313	12.8
521-009	OG	6.3	3	16	42	9	122	109	3	1500	10.5
521-010	OS	6.3	3	26	41	6	123	118	3	1800	10.5
521-011	OS	6.3	3	23	49	12	120	116	2	3100	12.9
521-012	SAP	6.3	3	4	128	58	71	45	2	1600	12.0

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

Note: All values are reported in parts per million (ppm).

Column abbreviations and data key

Stratigraphic units

KT RT WT	=Koochiching till =Rainy till =Winnipeg till =Old Baiay till	
ASAP SAP	=reworked saprolite =saprolite	
~		

Other abbreviationsmagHMC=magnetic heavy mineral concentrateaa=atomic absorptionwt%=weight percent

Notes:

-

Ţ.

Į

1

Ę

1

Í,

Assay values reported here are listed to 3 or 4 significant figures depending on the element analyzed.

Ag analysis detection limit is 2.0 ppm. Values less than 2 ppm (eg. 1.3) were assayed at less than detection limit, and the result is reported here as five-eighths (0.625) of the detection limit.

		Fe2O3	MgQ	TiO2	Ασ	Co	Cr	Cu	Mn	Ni	Pb	v	7 n
		macUMC	manUMC	maguMC	magUMC	manHMC	masuMC	maallMC	macUMC	macHMC	marking	macHMC	manUMC
- ·		magrinvic	magnivic	magnivic	magnivic	magnivic	magnivic	magrinic	magrime	magrine	magnivic	magrine	magrinvic
Sample Sol ool		<u>aa (wt%)</u>	aa (wt%)	aa (wt%)	<u>aa</u>	<u>aa</u> 159	<u>aa</u> 2660	<u>aa</u> 22	<u>aa</u> 1102	<u>aa</u>	aa 70	<u>aa</u> 1600	<u>aa</u> /38
501-007	SAP	80.1	0.0	4.3	4.0	120	1000	32	1206	174	78	800	420
501-002	SAP	85.8	37	11	4.0	186	240		2126	144	88	400	742
502-001	RT	85.8	0.6	5.6	8.0	152	1280	30	1206	188	94	1800	374
502-002	RT	88.7	0.5	5.6	8.0	154	1320	26	1156	194	94	1800	408
502-003	RT	85.8	0.5	4.5	6.0	114	1180	22	1118	162	70	1600	432
503-001	RT	88.7	0.8	4.9	6.0	138	1180	36	1282	164	64	1800	478
503-002	RT	85.8	0.5	4.6	2.0	130	1080	30	1006	174	92	1600	376
50 3-0 03	RT	88.7	0.5	4.7	4.0	138	1140	26	1126	188	94	1600	388
50 3-0 04	RT	80.1	0.5	4.4	6.0	116	1220	28	1098	164	66	1600	446
503-005	RT	· 74.4	0.6	6.3	6.0	150	1700	58	1160	218	90	2000	472
503-006	ASAP	86.0	0.7	27.4	6.0	509	1387	127	3108	227	139	1850	479
505-001	RT	85.8	0.6	6.1	6.0	142	1420	46	2354	248	80	1600	484
505-002	OT	88.7	0.8	4.9	1.3	118	2020	42	3460	138	32	1400	404
505-003	OI OI	85.8	1.2	5.5	1.3	138	1/00	54	4080	152	38	1600	444
505-004	SAP DT	85.8	1.8		1.3	128	440		44.20	100	48	1200	038
506 003	NI DT	02.9	0.5	5.7	1.3	114	1420	40	1930	102	24	1600	430
506-002	SAP	0J.0 85.8	1.2	3.7	2.0	110	140	20	4460	54	30 40	3600	199
506-003	SAP	85.8	0.9	7.8	2.0	280	120	20	4220	58	38	3600	187
507-001	RT	85.8	0.5	4.7	1.3	96	1100	24	1240	142	34	1600	494
507-002	RT	85.8	0.5	4.9	1.3	96	1480	26	1318	164	42	1600	440
507-004	OT	85.8	0.8	7.5	2.0	128	2500	64	2148	186	42	1400	468
507-005	ОТ	88.7	0.6	5.1	1.3	122	1600	36	1666	158	38	1600	400
507-006	от	82.9	0.9	12.1	1.3	202	1980	38	1844	182	46	1800	472
507-008	от	82.9	0.5	10.6	1.3	118	1340	36	1900	148	48	1800	430
507-010	OT	85.8	0.5	12.8	1.3	132	1580	40	1726	176	42	1600	460
507-012	<u>SAP</u>	75.9	1.3	13.0	2.4	152	2616	178	3423	315	182	1516	2938
508-001		85.8	0.0	8./	1.3	124	1200	34	1524	130	62	1800	304
508-002	RI PT	8.C8 95.9	0.5	8.3 7.6	1.3	130	1200	38	1418	140	44	2000	330
508-003	SAD	84.7	0.5	10.4	1.5	120	1240	54 67	1674	316		2000	320
509-001	RT	85.8	0.7	74		208	2000	32	1462	170	42	1800	348
510-001	RT	88.7	0.4	10.6	1.3	100	1200	30	1440	136	46	2000	404
510-002	RT	85.8	0.4	8.9	1.3	106	1180	30	1300	154	54	1800	388
311-001	RT	88.7	0.3	9.4	1.3	104	1160	54	1436	136	40	2000	468
511-002	RT	85.8	0.4	11.0	1.3	110	1120	26	1550	138	46	2000	428
511-003	Ŕ	82.9	0.4	11.9	4.0	106	1100	20	1424	148	56	2000	464
511-004	WT	85.8	0.4	2.9	4.0	92	1000	22	1056	144	34	1400	336
511-005	WT	60.9	0.5	7.0	4.0	104	1140	40	1300	180	112	1400	392
512-001	WT	91.5	0.5	5.9	4.0	116	1800	36	1618	278	38	1600	412
512-002	WT	82.9	0.6	5.2	4.0	176	3080	52	1760	538	40	1600	420
512-003	WI	85.8	0.5	5.9	2.0	138	2580	48	1800	352	44	1600	410
513-001	KI WT	91.5	0.3	4.3	2.0	112	1420	18	1140	104	34	1600	304
513-002	WI	80.1	0.7	3.8	4.0	120	1020	30	2004	200	38	1400	300
513-003	WI	8.C8 97.0	0.9	5.1	1.3	114	3140	42	2/42	190	30	1400	400
514-001	<u> </u>	85 P			11	08	760	118	1472	122	<u></u>	1600	474
514-002	RT	85 R	0.5	4 5	20	92	760	26	1604	114	44	1800	420
514-003	RT	85.8	0.6	6.0	20	96	880	28	1800	124	44	1800	404
514-006	SAP	69.0	1.4	4.0	3.5	103	276	241	6000	155	45	2069	203
315-001	RT	68.6	0.6	22.9	2.0	134	1800	48	2948	176	42	2400	494
515-002	RT	85.8	0.9	10.8	2.0	118	880	70	1968	182	42	1400	378
515-003	RT	88.7	0.5	12.2	2.0	128	1560	26	2280	138	40	1800	384
515-004	OT	88.7	0.4	11.4	4.0	122	1440	20	1492	162	44	1800	374

		Fe2O3	MgO	TiO2	Ag	Co	Сг	Cu	Mn	Ni	Pb	<u>v</u>	Zn
		magHMC	manHMC	macHMC	magHMC	manHMC	manHMC	manHMC	maHMC	manHMC	manUMC	macUMC	mallMC
0.1	•••	magnivic	magrivic	magrine	magrine	magrivic	magnivic	magnivic	magnivic	magrivic	magrivic	magnivic	magrime
Sample		<u>aa (wt%)</u>	<u>aa (wt%)</u>	<u>aa (wt%)</u>	<u>aa</u>	<u>aa</u>	<u>aa</u>	<u>aa</u>	<u>aa</u> 1755	<u>aa</u>	<u>aa</u> 30	<u>aa</u>	82
515-005	OT	88.7	0.5	11.2	20	114	1400	32	1/32	170	30	1600	374
515-007	ŎŤ	85.8	0.6	14.1	2.0	126	1360	38	1916	184	38	2200	440
515-008	OT	68.6	0.8	26.4	1.3	118	780	64	3020	142	34	3200	536
516-001	KT	91.5	0.4	7.8	2.0	98	1580	30	1174	146	24	1800	352
516-002	КT	88.7	0.5	8.6	2.0	114	1220	34	1628	128	30	1600	348
517-001	RT	88.7	0.3	9.3	1.3	106	980	24	1204	138	42	2000	420
517-002	RT	91.5	0.4	6.6	2.0	98	1160	22	1420	124	38	1800	428
517-003	WT	88.7	0.4	7.7	2.0	106	1000	30	1112	146	48	1600	298
517-004	WT	88.7	0.3	6.9	2.0	108	1040	28	940	134	36	1800	306
517-005	WT	94.4	0.2	6.6	2.0	96	1000	20	902	140	36	1600	296
517-006	WI	94.4	0.3	5.8	1.3	100	980	26	952	146	38	1600	306
517-007	W1	91.5	0.3	5.4	1.3	92	960	26	874	130	36	1600	288
517-008	WI	91.5	0.3	8.4	2.0	98	1080	24	1132	128	30	1800	332
517-009	WI.	94.4	0.2	1.2	2.0	100	100	22	1020	132	34	1800	324
517-010	OT	95.9	0.3	10.2	1.3	112	1060	24	1150	160	30	1800	340
517-011	OT	87.0	0.3	12.0	1.3	168	1300	24	1314	144	38	2000	400
517-012	OT	88 7	0.4	11.5	1.3	100	1220	24	1374	156	40	1800	302
517-014	OT	88.7	0.5	12.5	2.0	112	1120	27	1364	136	34	1600	380
517-015	ŎŤ	85.8	0.3	12.4	1.3	124	1260	18	1200	148	44	1800	382
517-016	OT	82.9	0.4	14.7	2.0	118	1440	24	1316	146	44	1800	404
517-017	ОТ	85.8	0.3	14.1	2.0	114	1520	18	1190	156	28	1600	386
517-018	ОТ	85.8	0.3	14.0	2.0	122	1360	20	1312	146	30	1800	404
518-001	RT	85.8	0.4	12.8	1.3	100	1180	20	1350	130	34	1800	430
518-002	RT	88.7	0.3	2.5	2.0	98	1160	20	1068	128	38	1200	356
518-004	WT	85.8	0.3	2.5	4.0	106	1600	22	956	252	48	1000	384
518-005	WT	83.4	0.4	11.8	1.5	135	1634	23	1141	322	44	1634	497
518-005	WI	88.7	0.4	12.4	1.3	108	1820	20	11.30	590	52	1600	462
518-007	WI	8.C8 92.0	0.5	14.7	2.0	100	1900	34	1392	332	40	1800	440
318-008		82.9	0.4	12.0	2.0	142	1800	30	1124	2/8	44	1800	440
519-007	RT	85.8	0.4	84	2.0	104	1000	20 50	1648	120	30	1600	174
519-003	WT	91.5	0.3	4.7	1.3	98	1160	26	1018	130	38	1400	360
519-004	WT	82.9	0.3	14.9	1.3	118	1640	16	1338	186	24	2200	492
519-005	WT	74.4	0.4	17.0	1.3	160	1740	28	1536	174	32	2400	552
519-006	WT	82.9	0.4	15.4	2.0	164	1900	32	1480	176	38	2200	490
520-001	RT	85.8	0.3	11.7	1.3	116	1140	18	1062	146	28	2000	454
520-002	RT	85.8	0.6	11.5	1.3	110	1120	20	1442	140	30	2000	454
520-003	RT	85.8	0.5	11.5	2.0	110	1080	20	1536	136	26	2000	400
520-004	WT	91.5	0.3	8.6	1.3	106	880	24	1154	136	24	1800	332
520-005	OT	88.7	0.3	12.0	1.3	140	1300	26	1450	174	28	1800	420
520-006	OT	88.7	0.4	14.3	1.3	122	1340	30	1488	158	36	2000	400
520-007	01	85.8	0.4	12.7	20	124	1560	24	1360	192	38	1800	408
520-008	OT	85.8	0.4	14.8	1.3	134	1380	22	1400	190	34	1800	380
520-009		88./	0.5	14.9	20	140	1080	20	1482	1/8	48	1800	410
520-010		02.9	0.5	13.0	1.2	130	1400	20	1010	190	38 29	1800	55C 99C
520-012	OT	91.J 85 9	0.5	7.4 7.6	1.3	104	060	20	1080	102	20 20	1400	200
520-012	OT	Q4 4	0.3	7.5	20	122	1060	18	817	140	30	1800	200
520-014	or	88.7	0.3	8.9	2.0	116	1060	26	1004	136	30	1600	312
520-016	SAP	74.4	0.6	19.6	2.0	200	1180	1006	2208	228	44	2400	614
521-001	RT	88.7	0.4	9.5	1.3	108	1060	22	1242	124	26	2000	388
521-002	RT	88.7	0.4	9.6	2.0	120	1320	18	1202	150	28	1800	316
521-003	WT	91.5	0.3	9.4	2.0	166	1200	26	1162	156	66	1800	342

.

		Fe2O3	MgÖ	TiO2	Ag	Co	Cr	Сц	Mn	Ni	Pb	v	Zn
		magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC
Sample	Unit	aa (wt%)	aa (wt%)	aa (wt%)	aa								
521-004	OT	91.5	0.3	9.2	2.0	142	1120	24	1250	146	32	1800	328
521-005	WT	94.4	0.3	7.3	2.0	132	1280	46	916	190	30	1600	326
521-006	WT	94.4	0.3	9.6	2.0	156	1420	32	1026	282	48	1800	434

Note: All values are reported in parts per million (ppm) unless otherwise indicated. All analyses by flame AA.

Appendix 280-I. Baudette area bedrock and saprolite samples analyzed as bedrock. Trace element and oxide assays.

Column abbreviations and data key

Stratigraphic units

Í

Ĩ

I

1

BEDZ SAPZ BED	=Bedrock, trace elements only =Saprolite, trace elements only =Bedrock, trace elements and oxides
Other abbreviations	
icp	=inductively coupled plasma
aa	=atomic absorption
hyaa	=hydride generation atomic absorption
inaa	=instrumental neutron activation
fadc	=fire assay direct current
dcp	=direct coupled plasma
cvaa	=cold vapor atomic absorption
xrf	=x-ray fluoresence
Notes:	·····, ·········

Assay values reported here are listed to 3 significant figures.

Values less than or equal to the detection limits shown in Appendix 280-C (eg. <0.5), are reported here as five-eighths (0.625) of the listed detection limit for that element (eg. 0.3125).

Sample	Unit	Ag	Al	Au	В	Ba	Be	Bi	Br	Ca	Cd	Ce	Co	Cr	Cs	Cu	Eu	Fe
		83	icp	inaa	dcp	inaa	icp	icp	inaa	icp	icp	inaa	inaa	inaa	inaa	icp	inaa	inaa
501-004	BEDZ	0.1	28100	0.003	18	1200	0.3	5	1.9	2300	0.6	110	19	220	43.0	37	4	65000
503-008	BEDZ	0.1	24600	0.003	222	150	0.3	3	1.9	19700	0.6	31	27	190	1.0	39	1	55000
505-005	BEDZ	0.1	14700	0.003	32	1700	0.3	3	5.0	4900	0.6	76	15	210	1.0	18	1	36000
507-013	BEDZ	0.1	36600	0.003	34	150	0.3	3	1.9	8300	0.6	19	52	470	2.0	52	1	55000
508-005	SAPZ	0.1	14300	0.003	26	100	0.3	3	1.9	1400	0.6	79	25	280	2.0	69	1	38000
508-006	SAPZ	0.2	14400	0.003	40	210	0.3	3	1.9	1500	0.6	92	14	250	0.6	86	1	35000
508-008	SAPZ	0.1	11600	0.005	30	690	0.3	3	1.9	2600	0.6	44	6	160	0.6	62	1	19000
511-006	SAPZ	0.1	8200	0.003	13	340	0.3	3	1.9	2500	0.6	24*	6	300	0.6	11	1	14000
518-009	BEDZ	0.1	28200	0.003	18	120	0.3	3	1.9	7900	0.6	36	25	210	0.6	99	1	45000
521-015	BEDZ	0.1	34400	0.007	29	210	0.3	3	1.9	12000	0.6	79	24	180	4.0	48		36000

Appendix 280-I. Baudette area bedrock and saprolite samples assayed as bedrock.

Note: All values are reported as parts per million (ppm) unless otherwise indicated.

Appendix 280-I (continued).

Sample	Unit	Ga	Hſ	Hg	Ir	ĸ	La	Li	Lu	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb
		icp	inaa	cvaa	inaa	icp	inaa	icp	inaa	icp	icp	icp	icp	icp	icp	icp	icp
501-004	BEDZ	15	1	0.009	0.06	6900	160	47	2.0	9500	313	1.3	900	4	112	313	17
503-008	BEDZ	8	3	0.018	0.06	3100	11	13	0.3	13300	600	1.3	2300	5	69	850	3
505-005	BEDZ	10	3	0.006	0.06	1900	32	5	0.3	5600	313	1.3	1800	- 2	40	1460	3
507-013	BEDZ	12	1	0.012	0.06	3300	12	14	0.6	13000	313	1.3	1000	4	133	720	9
508-005	SAPZ	9	3	0.010	0.06	1100	67	3	0.3	2400	1100	1.3	600	2		313	17
508-006	SAPZ	8	3	0.009	0.06	1100	34	4	0.3	2100	800	1.3	700	1	32	313	12
508-008	SAPZ	5	3	0.003	0.06	2200	13	4	0.3	3000	700	1.3	800	1	16	313	9
511-006	SAPZ	4	3	0.003	0.06	3200	7	10	0.3	3400	313	1.3	1400	1	7	313	3
518-009	BEDZ	10	3	0.015	0.06	1300	15	28	0.3	16500	313	1.3	1400	3	91	630	4
521-015	BEDZ	10	3	0.008	0.06	6200	33	21	0.3	16400	313	1.3	1700	4	37	920	13

Note: All values are reported as part per million (ppm) unless otherwise indicated.

Appendix 280-I (continued).

Sample	Unit	Sb	Sc	Se	Sm	Sn	Sr	Ta	ТЪ	Te	Th	Ti	U	v-	w	Y	Yb	Zn	Zr inaa	nm (g)
		inaa	inaa	hyaa	inaa	icp	icp	inaa	inaa	inaa	inaa	icp	inaa	іср	inaa	icp	inaa	icp		inaa
501-004	BEDZ	0.1	16	0.1	24	12.5	42	1	4	12.5	5	1160	5	-47	3	219	12	989	313	7.9
503-008	BEDZ	0.1	18	0.1	4	12.5	73	1	1	12.5	1	313	0	50	3	16	3	62	313	9.6
305-005	BEDZ	0.1	9	0.1	4	12.5	46	<u> </u>	1	12.5	9	313	1	27	6	6	3	162	313	10.7
507-013	BEDZ	0.1	18	0.1	3	12.5	74	- 1	1	12.5	1	730	0	55	3	23	3	130	313	10.0
508-005	SAPZ	0.1	8	0.1	12	12.5	9	T	1	12.5	2	313	1	52	3	17	3	- 89	313	6.7
508-006	SAPZ	0.1	12	0.1	3	12.5	16	1	1	12.5	6	313	1	72	3	3	3	45	313	8.9
508-008	SAPZ	0.1	6	0.1	2	12.5	12	1	1	12.5	3	313	1	33	3	2	3	39	313	7.8
511-006	SAPZ	0.1	3	0.1	1	12.5	17		1	12.5	1	610	0	14	3	2	- 3	50	313	9.3
518-009	BEDZ	0.8	17	0.1	3	12.5	79	1	1	12.5	2	700	0	55	3	8	3	67	313	9.9
521-015	BEDZ	0,1	9	0.5	5	12.5	122	1		12.5	5	870	1	59	4	1	3	71	313	9.3

Note: All values are reported in parts per million (ppm) unless otherwise noted.

rependix 200-1. Daudene area ocoroek samples, trace chament and oxide assa	Appendix 280-I.	Baudette area	bedrock sample	s, trace element and	i oxide assays
--	-----------------	---------------	----------------	----------------------	----------------

Sample	Unit	Ag	As	Au	В	Ba	Be	Bi	Ce	Со	Cr	Cu	Ga	Hg	La	Li	Мо	Nb
		іср	hyaa	fadc	dcp	icp	icp	icp	icp	icp	icp	icp	icp	cvaa	icp	icp	icp	icp
502-006	BÉD	0.3	0.3	0.001	15	45	0.3	3.1	70	6	82	10	3	0.003	35	2	0.6	2.0
503-009	BED	0.3	0.5	0.005	29	25	0.3	3.1	27	29	119	50	9	0.003	17	16	0.6	6.0
506-005	BED	0.3	0.3	0.010	17	79	0.3	3.1	1	38	204	136	4	0.003	11	14	0.6	7.0
508-009	BED	0.3	0.5	0.004	27	36	0.3	3.1	48	12	117	35	8	0.003	22	5	0.6	3.0
509-002	BED	0.3	2.0	0.002	41	162	0.3	3.1	20	23	143	85	7	0.003	13	12	0.6	5.0
510-003	BED	0.3	0.5	0.008	17	214	0.3	3.1	69	13	137	98	1	0.003	31	10	0.6	5.0
512-004	BED	0.3	4.0	0.003	44	284	0.3	3.1	63	25	320	63	14	0.003	32	54	0.6	3.0
313-006	BED	0.3	0.3	0.030	17	1	0.3	11.0	23	75	188	327		0.003	23	6	0.6	8.0
514-007	BED	0.3	0.3	0.001	16	11	0.3	3.1	17	44	68	93	16	0.003	15	14	0.6	5.0
515-009	BED	0.3	0.3	0.002	19	11	0.3	3.1	3	17	123	86	5	0.003	5	16	0.6	4.0
516-004	BED	0.3	0.5	0.001	35	509	0.3	3.1	51	24	241	53	14	0.033	28	31	0.6	3.0
317-019	BED	0.3	3.0	0.003	81	196	0.3	3.1	25	35	567	107		0.003	15	44	0.6	5.0
519-007	BED	0.3	0.7	0.008	31	225	0.3	3.1	98	22	228	447	1	0.003	44	21	0.6	4.0
521-013	BED	0.3	0.3	0.001	41	84	0.3	3.1	83	27	145	64	11	0.003	42	41	0.6	4.0
521-014	BED	0.3	0.3	0.001	23	373	0.3	3.1	60	13	172			0.003	34	43	0.6	3.0

Appendix 280-I (continued).

Sample	Unit	Ni	РЬ	Rb	Sb	Sc	Se	Sn	Sr	Ta	Te	V	W	Y	Zn	Zr
		icp	icp	icp	hyaa	icp	xrf	icp	icp	icp	icp	icp	icp	icp	icp	icp
502-006	BED	8	4	35	0.1	1	0.6	12.5	126	0.6	6.3	42	6.3	8	107	20
503-009	BED	74	1	69	0.1	13	0.6	12.5	85	0.6	6.3	59	6.3	16	60	8
506-005	BED	72	1	13	0.1	10	0.6	12.5	32	0.6	6.3	128	6.3	8	74	4
508-009	BED	30	4	13	0.1	1	0.6	12.5	32	0.6	6.3	25	6.3	5	56	14
509-002	BED	11	1	13	0.1	4	0.6	12.5	205	0.6	6.3	108	6.3	5	28	6
510-003	BED	23	3	13	0.1	14	0.6	12.5	45	0.6	6.3	82	6.3	19	86	7
512-004	BED	83	7	13	0.1	12	0.6	12.5	12	0.6	6.3	115	6.3	9	98	14
513-006	BED	75	14	21	0.1	6	0.6	12.5	18	0.6	6.3	43	6.3	6	190	9
314-007	BED	28	5	34	0.2	20	0.6	12.5	42	0.6	6.3	274	6.3	13	124	11
515-009	BED	47	1	21	0.1	5	0.6	12.5	16	0.6	6.3	56	6.3	5	30	8
516-004	BED	76	6	60	0.1	13	0.6	12.5	20	0.6	6.3	112	6.3	9	84	12
517-019	BED	239	5	99	0.2	4	0.6	12.5	118	0.6	6.3	126	6.3	7	70	14
519-007	BED	74	4	140	0.1	5	0.6	12.5	49	0.6	6.3	104	6.3	8	49	10
521-013	BED	106	4	23	0.1	4	0.6	12.5	23	0.6	6.3	63	6.3	6	79	12
521-014	BED	28	6	143	0.1	10	0.6	12.5	208	0.6	6.3	100	6.3	6_	127	14

Note: All values are reported in parts per million (ppm) unless otherwise indicated.

Appendix	280-I (contin	nued).																		
Sample	Unit	SiO2	TiO2	Al2O3	Fe2O3	MnO	MgO	CaO	Na2O	K20	P2O5	LOI	Total	F	Cr	Ta	Pd	Pt	Au	S
		pct	pct	pct	pct	pct	pct	pct	pct	pct	pct	pct	pct	si	xrf	icp	fadc	fadc	fade to	otal
502-006	BED	62.0	0.28	19.00	3.43	0.03	0.31	2.41	7.24	3.23	0.35	1.35	99.83	128	94	1.9	0.001	0.003	0.001 0.	001
503-009	BED	55.0	0.75	15.60	7.92	0.12	2.97	3.52	4.14	1.01	0.35	8.11	99.49	272	217	1.9	0.001	0.003	0.005 0.	001
506-005	BED	54.4	0.85	14.80	10.50	0.26	4.06	8.55	2.11	0.43	0.20	3.97	100.13	255	117	1.9	0.017	0.015	0.010 0.	070
508-009	BED	70.1	0.35	14.50	3.32	0.05	0.94	2.26	3.15	2.88	0.15	2.35	100.05	273	139	1.9	0.002	0.003	0.004 0.	001
509-002	BED	48.9	0.82	15.90	10.20	0.17	7.57	11.20	2.73	0.74	0.50	1.43	100.16	465	91	1.9	0.001	0.003	0.002 0.	213
510-003	BED	53.0	1.04	15.00	13.70	0.38	3.05	7.50	4.56	1.00	0.40	0.14	99.77	535	134	1.9	0.001	0.003	0.008 0.	333
512-004	BED	62.6	0.63	17.00	7.01	0.10	2.85	2.29	4.38	2.14	0.20	1.66	100.86	670	450	1.9	0.003	0.003	0.003 0.	113
513-006	BED	37.8	0.26	6.96	30.40	0.57	2.05	6.00	1.21	0.87	0.30	11.78	98.20	125	157	1.9	0.008	0.008	0.030 17	1.86
514-007	BED	50.8	1.78	12.80	18.80	0.28	5.07	5.86	0.92	0.07	0.50	3.98	100.86	217	119	1.9	0.001	0.003	0.001 0.	108
313-009	BED	55.3	0.62	14.10	10.30	0.17	6.56	7.95	2.96	0.50	0.19	1.54	100.18	158	191	1.9	0.010	0.009	0.002 0.0	094
516-004	BED	63.0	0.57	14.50	6.75	0.10	3.09	5.67	2.75	2.53	0.24	1.32	100.51	468	316	1.9	0.003	0.003	0.001 0.1	340
517-019	BED	49.0	0.87	12.30	11.50	0.18	11.50	6.21	3.05	2.47	0.45	2.36	99.89	710	779	5.0	0.005	0.003	0.003 0.0	024
519-007	BED	58.9	0.56	14.30	6.96	0.10	4.93	6.41	3.83	2.58	0.45	1.32	100.34	757	175	1.9	0.016	0.006	0.008 0.0	024
521-013	BED	54.8	0.71	19.20	8.10	0.08	4.18	0.36	0.43	5.55	0.21	4.80	98.41	413	108	10.0	0.001	0.003	0.001 0.	034
521-014	BED	58.1	0.76	17.10	6.69	0.08	4.14	1.13	1.58	4.92	0.24	5.48	100.21	714	230	1.9	0.002	0.003	0.001 0.0	023

Note: All values are reported in parts per million (ppm) unless otherwise indicated.

I-4

Appendix 280-J. Baudette area sample component weights and percents reported by contract laboratory.

Column abbreviations and data key

Stratigraphic units

Ì

10

Ŭ,

Ę.

Ĵ

Ĩ

A A

30-34-

2

2

Ę

Ż

KT =	Koochiching till
KG =	Koochiching gravel
RT =	Rainy till
RS =	Rainy sand
RG =	Rainy gravel
RL =	Rainy lake sediment
WT =	Winnipeg till
WS =	Winnipeg sand
OT =	Old Rainy till
OS =	Old Rainy sand
OG =	Old Rainy gravel
OL =	Old Rainy lake sediment
ASAP =	reworked saprolite
SAP =	saprolite
Other abbreviations	

ODM =	Overburden Drilling Management Laboratories
kg =	kilogram
g =	gram
wt. =	weight
nmHMC =	nonmagnetic (+3.3 specific gravity) heavy
ltHMC =	light (-3.3 specific gravity) heavy mineral
magHMC =	magnetic heavy mineral concentrate
sol. =	soluble
wt% =	weight percent

Notes:

"Matrix as % of sample" column = (total sample wt. - + 10mesh wt.) / (total sample wt.)

Weak acid soluble portion is that portion of the -63um fraction soluble in 10% HCl.

Weak acid soluble percents are measured on separate splits of core sampled identically to other assayed samples.

% sand-silt-clay by Bondar-Clegg on sample split used for silt/clay analysis.

							Matrix							
		ODM wt.	+10mesh	ltHMC	nmHMC	magHMC	as % of				Weak acid	Acid sol.	Acid sol.	Acid sol.
Sample	Unit	(kg)	g/10kg	g/10kg	g/10kg	g/10kg	sample	% sand	% silt	% clav	%sol.	Ca wt%	Mg wt%	Fe wt%
501-001	RT	10.8	214	109	27	4	98	52	41	6	8	0.6	0.4	1.0
501-002	SAP	11.8	53	166	23	2	99	50	38	12	6	0.2	0.1	0.4
501-003	SAP	10.7	228	170	34	2	97	60	29	11	9	0.3	0.4	1.0
502-001	RT	8.1	1974	436	44	11	80	73	24	2	10	1.0	0.5	1.3
502-002	RT	8.8	. 1424	525	42	-13	86	76	21	3	9	1.0	0.5	1.2
502-003	RI	10.0	1225	409	40	12	88	80	18	2		1.1	0.6	1.2
502-004	KS	7.2	/94	230	40	3	92	89	10	1	15	1.0	0.7	23
502-005			1335				100			\	18	1.0	0.8	3.2
503-001	DT NI	11.2	1255	104	22	12	86	72	25	2		1.0	0.8	1.5
503-002	PT	0.8	1220	250	26	13	88	72	25	2		1.0	0.5	1.2
503-004	RT	83	907	255	20	0	01	83	15	2	42	10.0	2.2	16
503-005	RT	8.0	1080	176	28	8	89	71	24	5	9	0.9	0.5	1.2
503-006	ASAP	10.0	433	250	73	Ť	96	82	11	7	1 7	0.2	0.1	1.1
503-007	SAP	8.3	470	171	410	ò	95	23	59	18	3	0.2	0.1	0.2
505-001	RT	9.2	1114	388	31	4	89	73	22	5	15	1.8	0.9	2.0
505-002	ОТ	8.0	1834	169	86	11	82	76	19	5	19	1.7	1.1	3.9
505-003	ΟΤ	9.3	980	363	53	7	90	83	13	4	24	3.2	1.4	3.6
505-004	SAP	9.9	141	297	22	1	99	68	24	8	16	0.4	0.8	4.4
506-001	RT	7.9	2218	360	69	5	78	70	25	5	18	1.8	1.1	3.2
506-002	RT	9.7	4125	68	34	3	59	87	10	3	14	1.1	0.9	3.6
506-003	SAP	11.7	470	242	74	21	95	47	39	13	22	0.5	2.0	5.3
506-004	SAP	8.0	99	193	17	5	99	38	56	6	10	0.2	0.8	2.2
507-001	RT	11.5	8/5	160	31	11	91	75	21	2		3.0	1.4	1.4
507-002	KI DI	9.1	405	218	29		90	48	43	10		2.0	1.0	1.2
507-003	RL OT	8.0	338	221	48	4	90	44	40	10	12	4.7	1.7	1.7
507-004		9.0	1068	202	134	, ,	80	85	13	1	16	1.5	0.5	26
507-005	or	8.4	1671	246	116	3	83	79	17	4	15	1.8	0.6	2.5
507-007	05	10.9	2510	316	109	6	75	85	12	3	18	1.9	0.6	2.5
507-008	ŎŤ	8.9	1313	173	98	7	87	76	19	5	14	1.4	0.6	2.0
507-009	os	11.0	201	245	160	5	98	91	7	2	18	1.8	0.8	2.6
507-010	от	9.8	920	185	68	4	92	68	22	10	25	1.4	0.7	2.9
507-011	OL	7.8	46	229	23	1	100	22	51	27	21	1.3	0.9	2.6
507-012	SAP	7.5	109	281	78	1	99	64	27	9	15	0.5	0.6	3.3
308-001	RT	8.8	501	242	14	6	95	33	57	9	16	1.8	0.9	1.4
508-002	RT	10.0	2305	155	38	14	77	73	23	4	16	2.0	1.0	2.2
508-003	RT	9.2	2267	139	37	14	78	72	23	6	16	1.9	1.0	2.0
508-004	SAP	8.4	196	160	8	1	98	41	49	10	9	0.2	0.2	24
508-007	SAP	9.5	237	213	- 22	<u>v</u>	98	38				0.1	0.2	
509-001		<u> </u>	1136	200		12	60	75			13	1.4	0.8	1.0
510-001	RI PT	0.9	1150	157	78	12	00 86	79	24	4	1 12	1.2	0.0	1.2
311-002	DT	80	1354	204	20		80					<u> </u>		
511-007	RT	11.2	881	238	30	10	91	73	23	4	22	4.1	1.7	1.3
511-003	RT	97	1416	130	30	10	86	79	18	3	1 17	3.2	1.3	1.1
511-004	WT	10.1	890	131	17	6	91	58	35	7	39	9.4	3.0	1.2
511-005	WT	8.7	1497	198	11	2	85	72	24	4	19	3.7	1.4	1.4
512-001	WT	10.1	493	141	27	3	99	42	47	11	25	5.5	1.5	1.8
512-002	WT	10.7	827	178	19	1	92	39	52	10	26	5.8	1.5	1.7
512-003	WT	10.6	486	185	43	2	95	43	46	11	26	6.2	1.6	1.7
513-001	RT	11.3	933	151	29	6	90	83	15	3	27	6.4	1.9	1.3
513-002	WT	9.0	660	302	27	3	93	54	37	9	31	7.4	2.3	1.4
513-003	WT	8.4	368	205	44	3	96	66	28	6	27	6.5	1.6	1.7
513-004	WT	8.1	944	112	53	3	91	1 55	38	7	26	5.7	1.5	1.8

Appendix 280-J. Baudette area sample and subsample weights and percents reported by contract laboratory.

J-2

8

		<u>N - N</u>	1	- 1	1 V	4	8 - V	V V	<u>,</u>		i je stale s	1	V-	1	A set	4	<u>/izi</u>				k
	12		(***)							$\mathbf{-}$,
		- Alexandre	\sim	1.0			- Control				\sim	<u> </u>		-			-			-	

ADDEDITY ZALET POINTED AREA CONTRE ADDITION AND STUDIE WEIDITY SOUTDERING DEDDITED TO	v contract la	- marainev
Appendix 200 3. Deductio area semiple and subsemple weights and bereen area reported to	1 COULTAGE IN	

							Matrix							
		ODM wt.	+10mesh	ltHMC	nmHMC	magHMC	as % of				Weak acid	Acid sol.	Acid sol.	Acid sol.
Sample_		(kg)	g/10kg	g/10kg			sample	% sand	% silt	% clay	<u>%sol.</u>	Ca w1%	Mg wt%	Fe wt%
514-001	RT	8.8	1161	296	20	10	89	68	28	4	<u>i3</u>	20	1.0	<u> </u>
514-002	RT	9.6	1468	159	24	13	85	79	18	3	15	23	1.0	1.2
514-003	RT	9.6	1431	143	33	14	86	76	21	3	14	2.4	1.1	1.2
514-004	RG	9.4	1960	184	55	3	80	90	8	2	22	3.6	1.3	2.9
514-005	OS	9.4	3667	255	36	11	63	76	21	3	19	3.1	1.2	2.1
514-006	SAP	8.9	3002	104	94	0	. 70	54	39	7	33	0.6	2.2	10.7
515-001	RT	9.7	1022	275	63	4	90	76	21	3	12	1.9	0.9	1.1
515-002	RT	8.8	2700	181	47	9	73	73	22	4	15	2.3	1.0	2.2
515-003	RT	9.7	745	226	52	5	93	80	17	2	15	2.8	1.1	1.3
515-004	OT	8.8	924	267	33	5	91	71	24	5	19	3.6	1.3	1.4
515-005	OT	9.8	1105	213	27	6	89	73	22	5	20	4.0	1.4	1.7
515-006	от	8.0	858	167	25	5	91	67	27	6	23	5.1	1.7	1.9
515-007	OT	11.2	1143	198	29	5	89	69	25	6	23	5.2	1.6	1.9
515-008	OT	9.5	2143	147	47	10	79	76	20	5	6	0.1	0.2	2.4
516-001	KT	9.3	1242	111	21	6	88	62	33	6	35	8.4	2.5	1.5
516-002	KT	11.9	1386	208	17	6	87	64	31	5	30	7.0	2.1	1.5
516-003	KG	9.1	5014	102	17	6	50	80	17	3	30	6.9	2.6	1.8
517-001	RT	10.7	955	256	27	10	90		20	3	18	3.9	1.4	1.0
517-002	KI	12.0	1251	101	20	12	87	15	21	4	19	4.1	1.4	1.2
517-003	WI	10.6	1042	93	8	1	90	50	35	9	8	0.9	0.5	1.1
517-004	WI	10.0	085	100	10	2	93	24	30	10	39	9.8	2.3	1./
517-005	wi	9.4	441	190	12	2 5	90	34	51	13	30	9.0	22	1.5
517-000	WT	10.6	541	100	12	5	93	32	51	13	34	1.0	22	1.5
517-007	WT	9.0 10.5	877	250	19	5	02	67	20	12	30	6.5	2.3	1.0
517-000	wr	0.0	902	94	17	5	91	57	32	- nĭ	32	7.0	22	1.7
517-010	wr	84	815	205	, i	2	92	45	38	17	31	68	21	1.7
517-011	OT	9.6	1115	370	25	5	89	72	22	6	24	5.2	1.7	1.6
517-012	OT	9.4	1443	277	29	5	86	73	21	6	24	5.1	1.6	1.6
517-013	OT	10.7	1574	106	21	6	84	74	21	5	23	5.0	1.6	1.7
517-014	ΟΤ	10.2	1092	289	30	6	89	80	16	4	22	4.6	1.5	1.5
517-015	ОТ	12.3	1279	133	25	5	87	74	21	5	24	5.0	1.6	4.7
517-016	от	9.0	1338	281	27	6	84	78	18	4	22	4.7	1.6	1.8
517-017	ОТ	8.6	1628	126	22	6	84	83	13	3	24	5.3	1.7	1.7
517-018	OT	7.7	1157	426	25	5	88	74	21	5	23	4.4	1.6	2.0
518-001	RT	12.1	639	320	20	6	94	59	36	5	23	5.1	1.7	1.3
518-002	RT	8.0	636	199	14	4	94	49	42	9	23	4.9	1.6	1.6
518-003	WS	9.4	4	222	26	3	100	39	57	4	18	3.8	1.4	1.1
518-004	WT	9.4	1135	196	16	1	89	55	36	9	54	12.6	4.4	1.5
518-005	WT	8.5	651	208	16	1	93	46	43	11	48	11.6	3.8	1.7
518-006	WT	8.6	791	52	18	1	92	37	46	17	36	8.3	2.6	1.9
518-007	WI	8.7	547	225	41	2	94	53	34	12	28	7.0	1.6	2.0
518-008	WI	9.9	644	94	40	2	94	52	35	13	26	6.0	1.5	26
519-001	RT	9.9	2014	262	26	0	/6	80	17	4	28	7.2	1.8	1.0
519-002	RT	12.0	1538	172	21	/	85	83	14	3	32	1.4	21	29
519-003	WI	10.0	1084	230	24	1	63 01	13	<i>11</i>	2	30	0.8	2.0	1./
519-004	W1 WT	/.8	890	120	52	3	91	00	20	8	34	7.0	2.4	21
519-005	WI	10.2	909	1/0	40	3	90		34 70	11	19	2.2	0.9	3.8
320.001	PT		044	2/5	+2			76	20		16	2.1	1.0	3.0
520-001	RT.	10.9	712	745 460	25	16	01	79	10	2	10	3.0	1.5	1.5
\$20-002	RT	9.3 8 5	1360	356	21	0	93 87	70	25	۲ ۲	27	60	21	1.2
520-003	WT	8.5 R I	1669	244	21	10	81	74	21	5	1 1	5.0 7 1	24	1.5
520-005	OT	10.0	1473	168	50	5	85	83	14	3	22	4.4	1.5	1.9

							Matrix							
		ODM wt.	+10mesh	ltHMC	nmHMC	magHMC	as % of				Weak acid	Acid sol.	Acid sol.	Acid sol.
Sample	Unit	(kg)	g/10kg	e/10kg	e/10kg	g/10kg	sample	% sand	% silt	% clay	%sol	Ca wt%	Mg wt%	Fe wt%
520-006	OT	7.3	1132	360	- 37	5	89	68	25	7	22	4.5	1.5	1.8
520-007	OT	9.6	1128	106	29	5	89	64	27	9	23	4.8	1.6	1.9
520-008	от	8.2	1260	223	21	4	87	- 61	31	8	27	5.0	1.8	1.3
520-009	от	8.8	1219	373	23	23	88	64	29	7	27	5.0	1.8	1.7
520-010	от	10.9	1223	310	24	4	88	65	28	б	27	5.1	1.8	1.5
520-011	ОТ	7.9	952	315	22	4	90	63	29	8	25	5.8	2.1	1.8
520-012	ОТ	9.2	1087	138	10	6	89	70	26	4	26	6.6	2.0	1.0
520-013	OT	9.6	1041	157	14	6	90	78	18	4	26	5.9	1.2	1.1
520-014	OT	9.2	1242	224	5	11	88	64	29	7	32	7.5	2.1	1.2
520-015	OS	7.9	434	336	121	6	96	93	6	1	16	1.8	0.6	3.0
520-016	SAP	9.5	323	298	45	1	97	11	83	7	5	0.1	0.1	1.1
520-017	SAP	10.3	213	24	22	0	98	6	91	3	4	0.1	0.0	0.7
321-001	RT	12.0	1509	317	23	12	85	66	29	5	20	4.5	1.5	1.0
521-002	RT	9.7	814	114	17	6	92	66	28	6	31	6.0	1.8	1.1
521-003	WT	12.2	744	127	19	4	93	61	25	14	30	6.3	1.8	1.5
521-004	ΟΤ	10.1	1502	290	34	5	85	67	26	7	26	5.8	1.4	1.5
521-005	WT	9.6	758	130	б	2	92	41	39	20	44	10.3	2.6	1.5
521-006	WΓ	9.4	594	171	14	2	94	35	52	12	47	10.6	3.1	1.2
521-007	OG	9.8	6664	295	23	1	33	88	10	2	26	4.6	3.2	2.5
521-008	OG	9.6	5822	150	36	2	42	88	11	2	20	2.6	0.8	3.2
521-009	OG	9.6	5128	199	31	1	49	88	11	2	18	2.4	0.8	3.1
521-010	OS	8.7	675	352	137	1	93	90	9	1	16	1.8	0.5	2.8
521-011	OS	8.9	766	82	145	0	92	86	12	2	17	1.7	0.7	3.0
521-012	SAP	8.5	1227	131	102	0	88	65	30	5	19	0.7	1.4	3.5

Appendix 280-J. Baudette area sample and subsample weights and percents reported by contract laboratory.

æ

Appendix 280-K. Physical properties of Baudette area samples.

Column abbreviations and data key

Stratigraphic units

KT	=Koochiching till
KG	=Koochiching gravel
RT	=Rainy till
RS	=Rainy sand
RG	=Rainy gravel
RL	=Rainy lake sediment
WT	=Winnipeg till
WS	=Winnipeg sand
OT	=Old Rainy till
OS	=Old Rainy sand
OG	=Old Rainy gravel
OL	=Old Rainy lake sediment
ASAP	=reworked saprolite
SAP	=saprolite
SAPZ	=saprolite (trace element analysis)
BEDZ	=bedrock (trace element analysis)
BED	=bedrock

Other abbreviations

<u>Comer accreviations</u>	= (null), property not measured
susc.	=magnetic susceptibility
(cgs)	=centimeter/grams/second
Ox.	=oxidation
OX	=oxidized
un	=unoxidized
dens.	=density

			Mean		Till		
		Munsell	susc.	Ox.	compact-		Bulk
Sample	Unit	color	(cgs)	state	ness	pH	dens.
301-001	RT	5 G 7/1	9	un	4		1.9
501-002	SAP	5 GY 6/1	1			8.4	1.8
501-003	SAP	5 GY 6/1	1			5.7	1.8
501-004	BEDZ	<u>5 G 7/1</u>	0			7.5	1.7
502-001	RT	5 GY 5/1	29	un	3		
502-002	RT	5 GY 5/1	46	un	3		
502-003	RT	5 GY 5/1	50	un	3		
502-004	RS	5 Y 6/1	50	un			
502-005	OL	5 GY 5/1	58	un			
502-006	BED	1 611 11	125				
503-001	KI DT	S GY S/I	19	un	3		
503-002	KI DT	S GY S/I	14	un	3		
503-003	KI DT	5 GY SI	10	un	5		
503-004	KT DT	S GY S/I	15	un	3		
503-005	KI	SGYNI	10	un	3		
503-006	ASAP	5 Y 8/1	1				
503-007	SAP	5 G 8/1	1			8.7	1.8
503-008	BEDZ	5 G //I	1			9.4	2.0
503-009	BED	5 G //1					
505-001	KI	5 GY 5/1	13	un	2		
505-002		5 6 5/1	15	un	1		
505-003	OI CAD	5 G 5/1	12	un	1	96	1.0
505-004	SAP BED7	3 6 4/1	3			8.0	1.9
303-003	DEDL DT	5 62 5/1				0.2	2.0
506.007	DT	5 GY 5/1	30	un	3		21
506-002	CAD	5 GV 4/1	20	un	+	07	15
505-003	SAP	10GY 5/2	21			94	1.5
506-005	BED	1001 32	88				2.8
507-001	RT	5 Y 5/1	6	un	2		
507-002	RT	5 Y 5/1	6	un	3		
507-003	RL	5 GY 6/1	5	un	3		
507-004	OT	10YR 6/3	10	ox	3		
507-005	OT	5 YR 6/3	12	ox	3		
507-006	OT	5 Y 5/1	9	un	3		
507-007	OS	5 Y 5/1	11	un			
507-008	ОТ	5 Y 5/1	11	un	1		
507-009	OS	5 Y 5/1	20	un			
507-010	OT	5 Y 5/1	24	un	5		
507-011	OL	5 GY 6/3	23	un			
507-012	SAP	5 GY 3/2	18			8.9	-1.7
507-013	BEDZ		19			8.8	1.9
508-001	RT	3 GY 3/1	12	un	3		
508-002	RT	5 GY 5/1	24	un	3		
508-003	RT	5 GY 5/1	35	un	4		
508-004	SAP	5 G 6/1	8			8.3	1.7
508-005	SAPZ	5 G 6/1	6			8.8	1.8
508-006	SAPZ	5 BG 7/2	12				
508-007	SAP	5 G 6/1	12			9.2	1.9
508-008	SAPZ	5 G 5/2	17			8.9	1.9
508-009	BED		16				2.4
509-001	RT	5 GY 5/1	16	un	3		
509-002	BED		2936				
510-001	RT	5 GY 5/1	23	un	3		
510-002	RT	5 GY 5/1	25	un	3		

Appendix 280-K. Physical properties of Baudette area samples.

K-2

.

Appendix 280-K. Physical properties of Baudette area samples.

			Mean		Till		
		Munsell	susc.	Ox.	compact-		Bulk
Sample	Unit	color	(cgs)	state	ness	pH	dens.
510-003	BED		271				
511-001	RT	5 GY 5/1	20	un	3		
511-002	RT	5 GY 5/1	18	un	3		
511-003	KI WT	10 1 0/1 5 X 5/1	15	un	3		10
511-004	WT	10GV 6/1	12	un 110	4		1.9
511-006	SAPZ	5 6 6/1	2	un		9.0	
512-001	WT	5 YR 5/2	3	0X	5	,	
512-002	WT	10YR 6/2	ī	ox	4		
512-003	WT -	10YR 6/2	0	OX	4	8.8	2.0
512-004	BED		23			8.5	
513-001	RT	3 GY 6/1	4	un	4		
513-002	WT	5 Y 5/2	5	ox	4		
513-003	WT	10YR 5/2	5	OX	4		
513-004	WT	10YR 5/2	6	OX	4		2.0
513-005	SAP	5 G 6/1	5			8.5	1.8
513-006	BED	10 8 2/1	339				2.8
514-001		10 Y 6/1	13	un	4		
514-002	RT NI	J I J/2 10VP 5/2	10	110	4		
514-005	RG	10YR 5/2	10	110	-		
514-005	OS	7 Y 61	5	un			
514-006	SAP	10GY 3/2	4			7.9	1.9
514-007	BED		2127				2.5
313-001	RT	5 GY 6/1	11	un	3		·····
515-002	RT	5 GY 6/1	11	un	3		
515-003	RT	5 GY 6/1	6	un	3		
515-004	OT	10 Y 5/1	6	un	4		
515-005	OT	10 Y 5/1	1	un	4		
515-006	OT	5 G 5/1	1	un	4		2.1
515-007	OT	5 G 5/1	/	un	4		
515-008	BED	5 6 3/1	62	un	-		
516-001	KT KT	5 8 5/1	15	lin	4		
516-002	ĸT	5 Y 5/1	17	un	4		
516-003	KG	5 Y 5/1	18	un			
516-004	BED		38				
517-001	RT	3 Y 4/1	20	un	1		
517-002	RT	5 Y 5/1	19	un	4		
517-003	WT	5 Y 5/1	16	un	5		
517-004	WT	5 Y 5/1	18	un	5		
517-005	WT	3 Y 4/2	18	OX	4		
517-006	WI	3 Y 4/2	22	un	4		
517-007	WI	3 X 4/2 5 X 4/2	12	un	4		
517-008	WT	3 I 4/2 3 V 4/1	16	un	4		
517-009	wr	5 V 4/1	12	110	5		
517-011	OT	5 Y 5/1	12	un	3		
517-012	ŎŤ	5 Y 5/1	15	un	3		
517-013	OT	5 Y 5/1	12	un	3		
517-014	OT	5 Y 5/1	10	un	3		
517-015	OT	5 Y 5/1	12	un	3		
517-016	ΟΤ	5 Y 5/1	11	un	3		
517-017	OT	5 Y 5/1	9	un	3		
517-018	OT	5 Y 5/1	10	un	3		

			Mean		Till		
		Munsell	susc.	Ox.	compact-		Bulk
Sample	Unit	color	(cgs)	state	ness	рН	dens.
517-019	BED		313				
518-001	RT	3 GY 6/1	13	un	3		
518-002	RT	5 Y 5/1	9	un	4		
518-003	WS	6 GY 4/1	25	un			
518-004	WI	5 Y 3/2	23	un	- 4		
518-005	WT	5 Y 3/2	22	un	4		
518-006	WT	3 Y 3/1	21	un	5		
518-007	WT	10YR 4/2	21	OX	4		
518-008	WI	10YR 4/2	23	ox	4		
518-009	BEDZ	<u> </u>	9				1.9
519-001	RT	10 Y 6/1	9 -	un	3		
519-002	RT	10 Y 6/1	7	un	4		
519-003	WT	10 Y 6/1	9	un	4		
519-004	WT	5 Y 3/2	9 .	un	5		
519-005	WT	3 Y 3/2	10	un	4		
519-006	WT	10YR 3/3	7	un	4		
519-007	BED		1302				•
520-001	RT	3 GY 6/1	17	un	3		
520-002	RT	3 GY 6/1	18	un	3		
520-003	RT	3 GY 6/1	14	un	3		
520-004	WT	3 GY 5/1	18	un	3		
520-005	ΟΤ	3 GY 5/1	8	un	3		
520-006	ОТ	3 GY 5/1	7	un	4		
520-007	OT	3 GY 5/1	7	un	5		
520-008	OT	3 GY 5/1	8	un	5		
520-009	OT	3 GY 5/1	7	un	5		
520-010	OT	3 GY 5/1	7	un	5		
520-011	OT	3 GY 5/1	7	un	5		
520-012	OT	10 Y 5/1	9	un	4		
520-013	OT	7 Y 4/1	5	un	3		
520-014	ОГ	5 Y 5/1	7	un	5		2.0
520-015	OS	5 Y 5/1	4	un		8.0	1.6
520-016	SAP	5 GY 8/1	1			8.3	2.3
520-017	SAP	<u>5 GY 8/1</u>	0			8.3	2.0
521-001	RT	5 GY 6/1	24	un	3		
521-002	RT	5 Y 5/1	26	un	3		
521-003	WT	3 Y 4/1	7	un	4		
521-004	ОТ	10 Y 5/1	24	un	4		
521-005	WT	5 Y 3/1	19	un	4		
521-006	WT	5 Y 5/1	23	un	3		
521-007	OG	5 Y 5/1	29	un			
521-008	OG	5 Y 5/1	36	un			
521-009	OG	5 Y 5/1	29	un			
521-010	OS	5 Y 5/1	0	un			
521-011	OS	5 Y 5/1	0	un	3		
521-012	SAP	10 R 3/4	1			9.0	1.9
521-013	BED		0				
521-014	BED		0				
521-015	BEDZ		0				

Appendix 280-K. Physical properties of Baudette area samples.

K-4

1

T

Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.

Column abbreviations and data key

Stratigraphic units

Ĩ

-

1

KT RT WT OT ASAP SAP	=Koochiching till =Rainy till =Winnipeg till =Old Rainy till =reworked saprolite =saprolite
Other abbreviations ct. T morph. w/	=count =trace, < 1% =morphology =with =(null) not present in sample
m <u>orphology</u> fr a s c	=frosted rounded =anhedral =subhedral =cuhedral
<u>size</u> s m l vl	=small, < .1mm =medium, .1mm5mm =large, >.5mm - 1mm =very large, >1mm - 2mm
<u>color</u> c p l t t ro b	=clear =pink =lavender =light brown =red-orange =brown

Sample Unit ct. (%) ize (%) (%) morph. size morph. size 501-601 RT 60 8.8 8 1 5 80 60 5 8.8 8 1 1 80 1 1 80 1 1 1 1 5 8 8 8 1			Scheelite grain	Pyrite	Pvrite morph.	Pvrite	Marcasite	Marcasite size	Zircon	Zircon	Zircon	Zircon color	Sphene (%)	Sphene	Sphene
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample	Unit	ct.	(%)		size	(%)		(%)	morph.	size		,	morph.	size
50-002 SAP 1 50 a-c s-l T 1 45 free s c,pl,t 10 s s 500-002 RT 2 30 a-c s-l T m-l 30 free s-l Lc,pl,t 33 a-c s-l s 500-002 RT 1 35 a-s s-l T m-l 30 a-c s-l a-c s-l s s-l	301-001	RT		60	a-s	s-l	т	s-m	30	fr-e	5	c,p,l	5	a-s	s- m
50-400 SAP 1 50 ac s-1 T 1 45 free s i.e. T s	501-002	SAP		50	a-e	s-l			35	fr-e	5	c.p.l.t	10	5	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	501-003	SAP	1	50	a-e	s-l	Т	1	45	fr-e	s	c.l	Т	s	5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	502-002	RT	2	30	a-e	s-l	Т	m-l	30	fr-e	S-]	I.c.p.t	35	a-e	S-
593-005 RT 1 70 st st S se s cpl 00 st cpl 20 st st cpl 20 20 st st cpl 20 20 st	503-002	RT	1	35	a-s	s-1			25	fr-e	<u>s-</u>]	c.p.l.t	20	a-5	8-
939-060 ASAP 1 30 s-s s-l 45 free s c,p,l 20 s-s s- 505-001 RT 1 60 s-e s-l T m-l 30 free s-m c,p,l 1 s-s s- 505-002 RT 1 80 s-t 1 1 15 s-e s-m c,p,l 1 s-s s- 505-002 RT 1 80 s-t 1 1 10 free s c,p,l 1 s-s s- 505-002 RT 80 s-t s-t T 1 10 free s c,p,l T s s- 505-002 RT 3 30 s-t s-t T 1 10 free s c,p,l T s s 505-007 RL 3 30 s-t s-t T 1 30 s-t s,p,l 2 s-t s s 507-017 RL 3 30 s-t s s s s s s s s 507-017 SAP 7	503-005	RT	1	70	a-s	s-l			5	a-e	5	c.ro.t.p	10	8-5	s-m
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	503-006	ASAP	1	30	a-s	s-l			45	fr-e	5	c.p.l	20	a-s	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	503-007	SAP	3						99	a-s	5	c.l.p	Т	a-s	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	505-001	RT		60	a-e	s-l	Т	m-l	30	fr-e	s-m	c.l.n.t	<u> </u>	a-s	8
95003 RT 70 a+s s+l T l 25 a+e s c,p,l I ses s-l 95004 SAP 90 a+ s-l T l 10 free s c,p,l T s s 956004 SAP 25 a+ s-l T l 40 free s c,p,l T a s 957002 RT 3 30 a+ s-l T l 40 free s c,p,l T a+ s 957003 RL 75 a+ s-l T l 20 free s c,p,l 2 a+ s	505-002	RT	1	80	a-s	s-l	т	i	15	a-e	s-m	c.l.p.t.r	1	2-5	5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	505-003	RT		70	a-s	s-l	Т	1	25	a-e	S	c.p.l.t	1	8-5	s-t
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	505-004	SAP		85	a-s	s-1	Ť	1	10	fr-e	5	c.l.n	T	a-s	1
S06-00 SAP 25 a.s s-1 70 a.s s c.p.l. T a.s s S07-003 RL 3 30 a.s s-1 T 1 40 free s p.p.l. 25 a-s p.m S07-003 RL 30 a.s s-1 T 1 85 free s c.p.l. 2 a-s p.m S08-001 RT 60 a.s 1 30 a.s s c.p.l. 2 a.s a. S08-004 SAP 65 a.s c.l. T a.d a.s	506-002	RT		90	a-s	s-]	T	1		fr-e	\$		T		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	506-004	SAP		25	a-s	s-l	-	-	70	a-s	s	c.p.l	Ť	a	s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	507-002	RT	3	30	a-s	5-1	T	T	40	fr-e	5	D.C.I.t		2-5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	507-003	RI.	-	75	a-c	s-1	Ť	ī	20	fr-e	3	c10	2	a-s	8-1
708 00 2.5 1 2 30 0.8 5 $p_{c,l}$ 5 2.5 5 508-004 SAP 65 a.e s-l T l 30 a.e s c,ll T e.s s	507-012	SAP		10	8-5	s-1	Ť	i	85	fr-e	5	C.D	Ť	a-s	
S08-004 SAP 65 a-c sl T l 30 a-c s spl.t 2 a-s s 508-007 RT 2 a-s sl T i 65 re s c,l,l T e-s s l 508-007 RT 2 3 a-s s-l T i 65 re s c,l,p T e-s s i <	508-003	RT		60	2-5				30	a-s	5	 D.C.		a-s	5
SAPTass1SSssss309-801RT23ass-1T165fresc,l,p25asss309-801RT335ass-1Tsm50fresc,l,p,t10asss\$11-002RT50ass-1Tsm50fresc,l,p,t1assss\$11-004WT190acs-1Tn-145acsc,l,p,tTassss\$11-005WT190acs-1Tn-115acss,l,pTsss\$12-001WT195acs-1T11acsc,l,pTsss\$12-002WT195acs-1T11acsc,l,pTsss\$12-003WT95acs-1T11acsc,l,pTsss\$12-003WT195acs-1T11acsc,l,pTsss\$12-003WT195acs-1T125fresc,p,135acss\$12-004RT1	508-004	SAP		65	3.6	s_]	т	1	30	3-6		colt	2	2-5	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	508-007	SAP		т	8-5	s-1	•	•	99	e-a	s-m	clt	Ť	6-1	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	509-001	RT	2		a-s	<u>s-l</u>	т	1	65	fr-e	5	c.l.p	25	a-s	8-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	510-002	RT		35	2-5	s-1	Ť	s-m	50	fr-e	5	c. pt	10	a-s	s-m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	511-002	RT			a-s		<u> </u>		45	2-6		c pr	T	2-5	8-1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	511-004	WT	1	80	8-6	s-1	Ť	m-l	15	fr-e	3	cntl	5	3-5	8 -1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	511-005	WT	1	90	a-c	s-1	Ť	s-1	5	A-C	s-m	n.c.l.t.r	Ť		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	512-001	WT		- 90	A-C	5-]		<u> </u>		a-e	8	C.D		5	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	512-002	WT	ĩ	95	8-6	s-1	Ť	1	ĩ	a-e		cln	Ť	•	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	512-003	WT	•	95	9-8	s-1	Ť	s-1	î	9-9		cnt	Ť	8-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	512-005	RT			8-6	s-1	1			1-5				3-5	<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	513-005	SAP		99	a-c	s-1	Ť	i	Ť	fr-e		c n	Ť		
Site of 14 006SAP20a.s.s.112.a.s.s. r_{1} r_{2} r_{1} r_{1} r_{1} r_{2} r_{1} r_{1	514-001	RT	1	35	2-5	s-1	- T	i	25	8-0		cnl	35	A-5	8-m
17-000 0.11 20 20 10 17 10	514-005	SAP	•	20	a 5 8-8	s-1	-	•	75	8-6		с. р.	Ť	2-5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	513-008			40	8-6	<u>-</u>			50	[r-e			Ť		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	516-001	<u>k</u> T	<u>-</u>	70	a-c	5-	<u>т</u>			8-6		C D.FO			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	516-002	ĸT	1	60	8-6	s-1	Ť	s-1	35	a-e		cnl	1	-	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	517-002	- BT	i	- 65-	3-6	s-1		<u>1</u>	30	3-6		Inct	;	2-5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	517-003	WT	•	90	8-0	s-1	Ť	s-1	5	8-6		c n t	2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	517-004	wr		75	A-8	s-1	•	•••	20	8-6		c t	2	A-8	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	517-006	WT		75	8-6	s-1	т	s-1	20	fr-e		ncl	· ī	*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	517-010	wr		QR	3-6	s_1	Ť	s_1	Ť	8-6		col	т		
Shroh Gr Shroh Gr Shroh Free Shroh Shroh	517-011	OT		00	8-1	s-1	Ť	s-1	5	2-0	a_1	n c t	1	8-1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517-017		2	60	a-5 3-6	5-1 6-1	Ť	1	35	fr.e	\$-m	c n l	2	3-5	:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517.019	OT	2	85	2-0	3-1 Vİ	•	•	10	fr-e	3-111 •	m n c l	1	9-8	
S18-005 WT 95 a-c s-1 T s-1 1 free s i,p,i T a-s s S18-005 WT 1 95 a-c s-1 T s-1 1 free s c,p,l T s s S18-005 WT 1 98 a-c s-1 T s-1 free s c,p,l T s s S18-006 WT 1 98 a-c s-1 T s-1 free s-m c,p,l,ro T a-s s S19-004 WT 90 a-c s-1 T 1 5 a-e s-m p,c,r,l T s s S20-007 OT 2 75 a-c s-1 T m-1 20 a-e s p,l 1 a-s s S20-008 OT 2 60 a-c s-1 T m-1 35 fr-c s-m c,p,ro,l 1 a-s s S20-011 OT 80 a-c s-1 T 1 15 free s p,ro,rol 1 s s <td>517-018</td> <td></td> <td></td> <td></td> <td>3-6</td> <td></td> <td> T</td> <td>e.]</td> <td></td> <td></td> <td></td> <td>10,p,c,i</td> <td></td> <td>3-5</td> <td></td>	517-018				3-6		T	e.]				10,p,c,i		3-5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	518-004	wr	3	<u> </u>	a-3	3-1 •_1	т Т	-ء م_ا	î	11-3 fr-0	3	.,p,i c n l	Ť	a-3	•
S10-000 WT 90 a-c s-1 T 1 5 a-e s-m c,p,o,to 1 a-s s 519-004 WT 90 a-c s-1 T 1 5 a-e s-m p,c,r,l T s s 520-007 OT 2 75 a-e s-1 T m-l 20 a-e s p,l 1 a-s s 520-008 OT 2 60 a-e s-i T m-i 35 fr-e s-m c,p,ro,l 1 a-s s 520-008 OT 2 60 a-e s-i T m-i 35 fr-e s-m c,p,ro,l 1 a-s s 520-011 OT 80 a-e s-i T i 15 fr-e s-m c,p,ro,l 1 a-s s	518-005	WT	1	95	a-u 2.0	3-1 6-1	Ť	 s-1	Ť	fr.e	• •-m	c n h re	Ť		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TID 004	WT	1		2-0	3-1 6-1				2-0	5-111	0,0,0,10		<u>a-3</u>	<u>.</u>
520-008 OT 2 60 a-e s-i T m-i 35 fr-e s-m c,p,ro,l 1 a-s s 520-008 OT 2 60 a-e s-i T m-i 15 fr-e s pcl i s s	519-004		5		a~C 3-4				- 20-	a*C g_A	3-111 e			8-5	
Should OT 80 a-e s-i T i 15 free s not i s s	520-007		2	60	a-c 8-e	3-1 5-1	Ť	m-1	35	fr-e	э g_m	c n rol	1	a-3 A-4	
	520-000	OT	4	80	a-e	s-l	Ť		15	fr-e	5	D.C.I	1	s	-

Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in	ples in the Baudette area.
---	----------------------------

. a

Sample	Unit	Scheelite grain ct.	Pyrite (%)	Pyrite morph.	Pyrite size	Marcasite (%)	Marcasite size	Zircon (%)	Zircon morph.	Zircon size	Zircon color	Sphene (%)	Sphene morph.	Sphene size
520-016	SAP		75	a-s	s-l	Т	S-]	20	a-e	s-m	c,p,l	Т	S	5
520-017	SAP		20	5	5			10	a-e	s -m	c,t	Т	5	5
521-004	WT	3	85	a-e	s-l	Т	I	10	ſr-e	S	p,l,c,ro	5	a-s	\$
521-005	OT		95	a-s	s-l	Т	s-1	2	fr-e	S	c,p,t	Т	5-C	s-m
521-006	WT		98	a-s	s-l	Т	s-l	1	fr-e	5	c,p,t	Т	5	1
521-011	OT		60	a-s	s-l	Т	s-1	30	fr-e	s-m	c,p,l	Т	5	5
521-012	SAP		25	a-s	s-l			70	fr-e	s-m	c,p	Т	S	5

Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.

<u> </u>									Rock	
		Rutile	Rutile	Rutile	Kvanite	Kvanite	Kvanite	Kvanite	Frag.	
Sample	Unit	(%)	morph	size	(%)	morph	size	color	(%)	Other
oumpie	Onk	(70)	погра.	SIZC	(70)	morpu.	3120	00101	(/9	
301-001	RT	Т	a-s	s	Т	S	s-m	clear	Т	l corundum
501-002	SAP								Т	
501-003	SAP								Т	
502-002	RT				Т	5	S	clear	T	3 chalcopyrite
503-002	RT	Т	5	S	Т	S	s-m	clear	Т	l arsenopyrite
503-005	RT	Ť	S	5	Т	8	5	clear	Т	
503-006	ASAP	Т	a	S	Т	5	5	clear		
503-007	SAP								T	
505-001	RT				Т	S	S	clear	Т	2 molybdenite
505-002	RT				Т	5	5	clear	Т	
505-003	RT	Т	5	5	Т	5	s-m	clear	Т	l limonite on pyrite
505-004	SAP				Т	\$	S .	clear	Т	2 pyrite w/ quartz
506-002	RT	Т	S	S	Т	S	5	clear		
506-004	SAP								Т	
507-002	RT				Т	S	s-m	clear	Т	
5 07- 003	RL	Т	5	3	Т	S	S	clear	Т	1 corundum, 1 small gold flake
507-012	SAP	Т	s-e	S					Т	4 corundum
508-003	RT			<i>.</i>	Т	s-e	S	clear	Т	1 pyrite w/quartz
508-004	SAP				Т	S	S	clear		l pyrite w/quartz, l globular Cu
508-007	SAP	Т	5	5					Т	10 galena
509-001	RT									l corundum, pyrite w/quartz
510-002	RT	Т	s-e	S						
511-002	RT	Т	e	s-m						
511-004	WT				Т	S	S _	clear, 1 blue	т	
511-005	WT	Т	8	5	Т	5	s-m	clear		pyrite w/quartz
512-001	WT				Т	S	5	clear	Т	4 molybdenite
512-002	WT				Т	5	5	clear, yellow	Т	1 molybdenite
512-003	WT				Т	5	s-m	clear, 1 blue	Т	
513-001	RT	Т	5	S	10	5	S	clear, 3 blue	Т	
513-005	SAP				Т	5	5	clear		many pyrite w/quartz
514-001	RT	Т	3-C	s-m	Т	a-s	1	clear	T	pyrite w/quartz, 3 globular Cu
514-006	SAP									
515-008	OT	Т	5	5	5	5	s-]	clear, blue	T	
516-001	KT	Т	5	S	T	S	s-m	clear	Т	
516-002	KT				T	S	5	clear	Т	
517-002	RT				Т	S	\$	clear	Т	1 corundum, 1 small gold flake
517-003	WT				Т	5	5	clear	Т	
517-004	WT	т	8	5	Т	S .	5	clear	Т	
517-006	WT				Т	5	5	clear		1 epidote attached to pyrite
517-010	WT				T	5	5	clear		
517-011	OT	Т	5	5	1	5	s-l	clear, 1 blue		
517-017	от				1	S	s-l	clear	Т	chalcopyrite?
517-018	OT				T	8	s-vl	clear, 2 blue	T	2 gahnite
518-004	WT				Т	S	5	clear		
518-005	wr				Т	5	5	clear		
518-006	WT	Т	5	S	Т	5	5	clear	Т	
519-004	WT	Т	5	5	Т	S	s-m	clear, 1 blue		pyrite w/ quartz, 2 shell frags.
320-007	OT				1	\$	8-m	clear		
520-008	OT				T	5	5	clear	Т	pyrite w/ quartz
520-011	OT				1	5	s-m	clear, 1 blue	Т	

	Appendix 280-L	. Mineralogy o	of nonmagnetic hea	vy mineral concentrate	fraction from till and	d saprolite samples in the Baudette area
--	----------------	----------------	--------------------	------------------------	------------------------	--

Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.

Sample	Unit	Rutile (%)	Rutile morph.	Rutile size	Kyanite (%)	Kyanite morph.	Kyanite size	Kyanite color	Rock Frag. (%)	Other
320-016	SAP								Т	l large galena, pyrite w/ quartz
520-017	SAP								65	30 galena, trace chalcopyrite
321-004	WT				Т	S	5	clear	T	1 corundum
521-005	OT				1	S	s-l	clear	Т	
521-006	WT	Т	e	S	Т	5	s-l	clear	Т	1 pyrrhotite
521-011	OT				Т	5	5	clear		
521-012	SAP				Т	S	s-m	clear	Т	

.

. .

·

E

(

Ē

T

Appendix 280-M. Baudette area pebble counts. Super-category counts per 10 kg sample by size fraction.

Column abbreviations and data key

Stratigraphic units

-

7

Contraction of the second

200

1

1

į

1

T

.

KT RT WT OT ASAP SAP	=Koochiching till =Rainy till =Winnipeg till =Old Rainy till =reworked saprolite =saprolite
<u>Clast types</u> PM FI SC	=Paleozoic-Mesozoic =felsic to intermediate plutonic =supracrustal
Size fractions +1 +3/4 +3/8 +1/4 4m	=1" and larger pebble fraction =3/4" to -1" pebble fraction =3/8" to -3/4" pebble fraction =1/4" to -3/8" pebble fraction =4mesh to -1/4" pebble fraction
<u>Other abbreviations</u> ct peb	=count =pebble

		PM	PM	PM	PM	PM	Total	FI	FI	FI	FI	FI	Total	SC	SC	SC	SC	SC		
	,	ct	ct	ct	ct	ct	PM	ct	ct	ct	ct	ct	FI	ct	ct	ct	ct	ct	Total	Total
Sample	Unit	+1	+3/4	+ 3/8	+1/4	+4m	ct	+1	+3/4	+3/8	+1/4	+4m	ct	+1	+ 1/4	+ 3/8	+1/4	+4m	SC ct	neb ct
301-001	RT	0	0	T	0	1	2	C) 3	6	19	- 51	79	0	0	- 6	19		76	136
502-001	RT	0	0	0	2	5	1	4	10	53	186	323	577	1	6	54	105	200	367	951
502-002	RT	0	0	5	2	9	16	0	8	64	167	290	528	0	3	35	99	198	335	880
502-003	RT	0	0	2	5	8	15		10	<u> </u>	112	252	410	0	4	26	69	142	241	666
503-001	RT	1.	0	0	1	8	11	2	2	44	91	181	320		2	34	72	172	281	612
503-002	KI DT	U	0	1	3	4	8			45	131	267	449		1	45	72	207	326	783
503-003	KI DT	0	U	3	3	2	11	1		. 33	130	203	392	0	3	35	99	153	290	693
503-004	KI DT	0	0	0	1	1	2	1	· 0	43	90	210	349		2	19	54	134	210	501
303-003	DT		0				36		4	- 30	7/	109	203	3	12			122		
505-001		0	0	2	10	23	20		4	20	74	176	204	5	10	20	20	133	204	524
505-002	OT	ŏ	0	2	10	11	18	2	5	37	51	142	230		19	0	30	105	154	400
506-001	-ŘŤ			8	30	41	78	0	8	47	76	214	344	i	6	96	210	105	704	1127
506-002	RT	ŏ	ž	18	132	330	481	Š	13	36	276	333	664	3	š	105	173	376	663	1808
507-001	RT	Ō	ō	4	3	15	22	ī	<u>_</u>	36	92	186	316	ō	3	17	58	112	190	527
507-002	RT	0	Ó	3	7	22	32	0	i i	15	44	96	156	Ő	ī	9	30	62	101	289
507-004	ОТ	0	1	2	9	16	28	0	0	27	83	168	278	2	Ō	20	82	163	268	573
507-005	ОТ	0	0	15	32	28	76	3	14	90	145	200	451	1	5	90	149	208	453	979
507-006	от	0	0	0	11	26	37	1	4	52	143	305	505	1	4	45	111	200	361	902
507-008	ОТ	0	0	2	3	26	31	1	4	48	135	251	439	1	3	36	100	190	330	801
507-010	OT	0	0	1	11	13	26	0	4	38	61	174	278	0	1	35	67	159	262	565
508-001	RT	0	0	2	1	5	8	1	0	10	31	56	98	1	2	15	30	63	110	216
508-002	RT	0	0	4	10	21	35	1	7	67	118	230	423	8	10	103	162	368	651	1109
508-003	<u></u>				10			1		39	133	245	44.2		13			335		987
509-001				4		18	- 29	3	2	39	98	170	390	4			10	1/0	308	- 201
510-001	RI DT	0	0	5	5	10	19	1	6	0C 02	120	1/6	291		1	24	101	120	2/0	660
511-001	- <u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	<u>ŏ</u>	Ť	<u> </u>			75		7			218		- ň	<u> </u>		42			637
511-002	RT	. Õ	i	4	7	25	38	1	4	33	92	197	327	ŏ	1	18	30	98	147	512
511-003	RT	Ō	Ō	15	24	100	139	3	4	45	126	265	443	Ő	2	21	84	131	237	820
511-004	WT	Ó	Ō	15	78	165	258	0	5	14	27	99	145	0	2	11	34	68	115	518
511-005	WT	0	2	11	24	61	99	1	1	15	53	380	451	0	3	2	16	49	71	621
512-001	WT	0	0	5	13	39	56	0	2	12	28	84	126	0	1	18	45	85	149	331
512-002	WT	0	0	1	8	27	36	2	: 5	34	77	169	286	0	2	22	30	51	106	428
512-003		0	0	4	16	30	50	1	1	8	34	66	110	0	0	17	58	116	191	351
513-001	RT	0	0	8	42	112	162	2	3	18	57	145	224	0	3	21	54	139	217	603
513-002	WI	U	2	8	00	109	184	0	0	10	29	80	119		1	16	33	91	142	440
513-003	WI	0	0	1	20	52	/4			10	20	02	89	0	U 2	10	44	101	100	318
513-004		0			20	4/	- 12		10	60	14		12				42	121	174	332
514-001	RI PT	4	0	2	20	-+1 74	51	1	5	65	150	1207	430	1	1	20	55	134	777	877
514-002	DT NI	0	1	7	11	38	57	1	, J 1	ត	153	270	503	i î	7	40	71	110	238	708
315-001	-RT	<u> </u>	<u>`</u>	4	15		44	1	5	53	129	257	446	ő	<u> </u>	14	45	104	165	656
515-002	RT	ŏ	ž	13	43	113	170	3	17	97	230	436	783	ĩ	16	69	149	377	613	1566
515-003	RT	Õ	ō	5	20	56	80	2	2	18	44	147	213	i	2	8	32	80	124	418
515-004	OT	Ō	0	14	42	67	123	1	1	27	59	175	264	1	1	24	41	139	206	592
515-005	OT	0	0	13	29	95	137	0) 7	35	77	164	283	0	1	19	61	142	223	643
515-006	от	0	0	18	40	81	139	0) 3	28	56	159	245	0	0	11	34	103	148	531
515-007	от	0	1	10	29	88	127	1	3	27	69	139	238	1	2	18	65	128	213	579
515-008	OT	0	1	13	25	64	103	2	7	46	149	408	614	4	5	44	120	234	407	1124
516-001	KT	0	2	25	87	165	278	1	3	27	78	162	272	2	4	22	42	67	137	687
516-002	<u>KT</u>	0	5	39	105	177	327	1	2	26	113	207	348	0	1		65	166	271	945
517-001	RT	0	2	16	34	78	129		3	45	151	294	4/5		1	14	44	/9	137	741
517-002	KI WT	0	1	15	106	03 104	100	1		49	98 79	248	403		0	22	02	111	194	770
J1/-003	W 1	1		40	100	100	334	U U		21	10	202	214		U	<u> 2</u> 3	20	11	144	1 110

Appendix 280-M. Baudette area pebble counts. Super-category counts per 10kg sample by size fraction.

U	8	6	U	6	U	6		5

et et<			PM	PM	РМ	PM	PM	Total	FI	FI	FI	FI	FI	Total	SC	SC	SC	SC	SC		
Sample Lig +1/4 <t< th=""><th></th><th></th><th>ct</th><th>ct</th><th>ct</th><th>ct</th><th>ct</th><th>PM</th><th>ct</th><th>ct</th><th>ct</th><th>ct ·</th><th>ct</th><th>FI</th><th>ct</th><th>ct</th><th>ct</th><th>ct</th><th>ct</th><th>Total</th><th>Total</th></t<>			ct	ct	ct	ct	ct	PM	ct	ct	ct	ct ·	ct	FI	ct	ct	ct	ct	ct	Total	Total
11/406 WT 0 1 16 65 1.5 0 1 99 163 0 1 99 163 0 1 99 163 0 1 99 163 0 1 99 163 0 1 99 163 0 1 99 163 0 1 99 163 0 0 0 0 1 19 36 83 164 17 184 0 0 0 1 14 45 14 35 17.00 WT 0 1 16 66 184 19 18 12.4 0 13 21.4 11 144 13 22.1 14 14 23 16 13 24.1 13 23.1 144 14 24.2 14 144 14 24.2 14 144 24.2 144 140 14 14 140 141 141 141	Sample	Unit	+1	+3/4	+3/8	+1/4	<u>+4m</u>	ct	<u>+</u>	+ 3/4	+3/8	+1/4	+4m	ct	<u>+1</u>	+ 3/4	+3/8	+1/4	+4m	SC ct	
S17-050 WT 0 0 10 27 33 89 0 1 10 43 67 120 0 0 7 10 12 49 289 317-060 WT 0 1 9 33 74 73 124 14 1 3 14 14 0 0 0 7 10 49 47 317-060 WT 0 1 16 61 118 166 118 161 113 44 57 13 43 24 0 1 19 73 162 255 0 1 13 44 55 113 57 10 10 13 44 24 13 50 14 71 212 66 157 27 13 14 24 70 13 14 24 70 13 14 24 25 79 13 27 72 134 14 24 2 25 79 13 14 14 14	517-004	WT	0	1	16	65	156	238	0	2	14	50	99	165	0	1	9	18	51	79	482
317-060 WT 0 3 9 44 79 133 0 4 22 81 44 151 0 0 10 19 20 55 345 317-007 WT 0 1 16 61 118 196 11 44 151 184 0 0 7 73 73 124 24 10 19 73 163 43 53 113 44 151 00 0 7 73 73 124 224 0 1 19 73 163 43 22 45 90 13 21 66 134 224 79 923 53 141 20 344 2 2 53 79 151 227 7213 13 151 24 126 100 140 20 24 24 90 131 166 134 224 79 933 160 16 131 24 12 126 100 140 20 23 16 <td>517-005</td> <td>WT</td> <td>0</td> <td>0</td> <td>10</td> <td>27</td> <td>53</td> <td>89</td> <td>0</td> <td>1</td> <td>10</td> <td>43</td> <td>67</td> <td>120</td> <td>0</td> <td>0</td> <td>7</td> <td>10</td> <td>32</td> <td>49</td> <td>259</td>	517-005	WT	0	0	10	27	53	89	0	1	10	43	67	120	0	0	7	10	32	49	259
17-007 WT 0 1 8 23 74 107 1 3 14 49 117 184 0 0 2 11 41 34 346 317-060 WT 0 1 19 68 181 15 1 3 12 68 18 181 0 1 7 30 87 435 317-000 WT 0 0 18 55 128 0 1 3 50 187 181 19 32 74 19 24 24 50 34 71 721 71 71 157 71 10 1 18 257 731 18 201 2 24 25 79 151 217 721 157 71 10 1 71 24 24 28 181 200 25 373 0 6 44 97 733 187 267 733 187 267 733 187 267 733 187	517-006	WT	0	3	9	44	79	135	0	4	22	81	44	151	0	0	10	19	26	56	342
11-080 W1 0 1 19 36 88 14 3 21 38 121 24 0 0 7 30 30 87 433 317-00 W1 0 1 16 1 14 256 0 1 36 108 123 0 1 1 14 43 43 44 23 106 1 1 14 43 23 0 1 1 44 27 108 44 23 0 1 1 44 27 108 44 23 10 1 1 44 28 11 20 3 34 0 2 46 50 157 97 92 98 373 0 6 44 1 20 24 18 200 351 22 0 28 96 207 333 880 373 30 6 44 373 30 6 44 373 317 20 23 31 31 31 </td <td>517-007</td> <td>WT</td> <td>0</td> <td>1</td> <td>8</td> <td>23</td> <td>74</td> <td>107</td> <td>1</td> <td>3</td> <td>14</td> <td>49</td> <td>117</td> <td>184</td> <td>0</td> <td>0</td> <td>2</td> <td>11</td> <td>41</td> <td>54</td> <td>346</td>	517-007	WT	0	1	8	23	74	107	1	3	14	49	117	184	0	0	2	11	41	54	346
17-090 W1 0 1 10 61 14 20 69 83 185 0 1 7 22 72 108 449 171-010 W1 0 0 12 31 34 0 1 1 44 51 113 235 31 31 34 0 2 44 66 151 235 31 31 0 12 44 65 113 235 33 34 0 2 44 66 91 33 80 31 10 1 45 87 144 2 1 26 100 140 270 2 4 26 80 207 333 800 317 0 0 1 71 721 317 0 0 44 97 182 329 830 137 200 737 313 0 6 44 97 182 329 830 137 207 93 331 311 10 33 16 4	517-008	WT	0	1	19	36	89	145	1	3	21	58	121	204	0	0	7	30	50	87	435
317-010 W1 0 0 27 73 124 224 0 1 19 73 162 255 0 1 13 44 33 113 992 517-012 OT 0 0 18 55 128 201 1 3 50 107 22 444 0 2 45 90 157 921 911 10 1 15 97 121 1 3 50 107 124 45 91 166 187 723 187 124 18 120 131 2 4 50 166 187 73 182 201 13 2 4 6 187 1800 187 10 2 4 118 200 311 2 2 137 130 1 13 34 137 139 137 130 1 13 34 137 130 137 130 14 137 130 141 133 131 131 141 <td< td=""><td>517-009</td><td>WI</td><td>0</td><td>1</td><td>16</td><td>61</td><td>118</td><td>196</td><td>1</td><td>4</td><td>26</td><td>69</td><td>85</td><td>185</td><td>0</td><td>1</td><td>7</td><td>28</td><td>72</td><td>108</td><td>489</td></td<>	517-009	WI	0	1	16	61	118	196	1	4	26	69	85	185	0	1	7	28	72	108	489
31-7410 OI 0 0 18 400 99 150 0 3 350 127 223 444 0 3 20 13 233 0 13 221 403 0 3 221 131 231 231 131 23	517-010	WT	0	0	27	73	124	224	0	1	19	73	162	255	0	1	13	44	55	113	592
31/412 O1 0 0 18 35 12 23 444 0 2 46 90 159 297 922 31/413 OT 0 1 18 297 121 3 5 34 712 212 314 2 2 35 79 151 217 217 217 217 217 217 22 344 2 2 35 79 151 217	517-011	01	0	0	18	40	99	156	0	3	36	108	181	329	0	3	21	66	134	224	709
317-01 0 1 18 29 73 121 3 5 34 71 202 314 2 2 33 79 151 287 721 317-016 0 1 11 45 87 144 2 144 270 2 4 26 81 166 278 693 317-015 0 1 19 28 88 136 0 6 34 70 23 85 137 250 21 1 44 95 127 215 86 195 319 0 6 44 95 127 297 666 319 319 0 1 43 85 137 289 73 131 0 0 43 85 137 289 73 131 0 1 22 280 33 44 135 137 280 73 131 0 1 21 33 48 0 0 6 135 330 340 130	517-012	OT	0	0	18	55	128	201	1	3	50	127	253	434	0	2	46	90	159	297	932
517-01 01 0 1 11 45 87 144 2 1 26 100 140 270 2 4 26 81 166 279 893 517-016 OT 0 1 19 28 88 136 0 6 34 76 258 373 0 6 44 97 182 232 888 517-016 OT 0 1 748 177 126 1 0 25 81 156 202 1 1 43 95 157 277 666 517-016 OT 0 0 1 48 77 126 1 0 23 443 160 60 33 33 33 33 33 13 10 1 12 23 48 100 1 12 23 48 890 13 12 23 24 446 0 1 2 12 13 14 13 13 12 23	517-013	OT	0	1	18	29	73	121	3	5	34	71	202	314	2	2	53	79	151	287	721
517-015 OT 1 0 17 50 138 207 4 2 28 118 200 351 2 0 28 96 207 333 890 517-016 OT 0 1 7 43 119 170 3 7 29 86 193 319 2 3 43 83 137 206 77 78 11 0 1 3 75 29 86 193 319 2 3 43 83 137 206 77 78 11 0 13 16 43 95 77 78 11 0 3 16 44 05 17 13 1 0 1 12 23 44 105 13 0 1 12 23 44 105 13 0 1 12 13 20 13 22 13 22 61 98 0 0 6 33 33 30 33 33 33 <td< td=""><td>517-014</td><td>OT</td><td>0</td><td>1</td><td>11</td><td>45</td><td>87</td><td>144</td><td>2</td><td>1</td><td>26</td><td>100</td><td>140</td><td>270</td><td>2</td><td>4</td><td>26</td><td>81</td><td>166</td><td>279</td><td>693</td></td<>	517-014	OT	0	1	11	45	87	144	2	1	26	100	140	270	2	4	26	81	166	279	693
517-01 OI 0 1 19 28 88 136 0 6 34 70 228 373 0 0 6 44 97 182 329 888 517-017 0 0 1 48 177 126 1 0 22 88 137 29 88 137 20 23 43 83 137 297 686 518-002 RT 0 0 11 40 90 141 0 1 23 44 105 173 1 0 3 16 40 60 374 518-005 WT 0 0 35 120 124 279 0 3 61 122 23 44 0 0 6 13 453 130 14 14 14 14 14 14 132 14 130 14 13 130 14 13 130 14 131 130 14 132 153 131 10	517-015	OT	1	0	17	50	138	207	4	2	28	118	200	351	2	0	28	96	207	333	890
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	517-016	01	0	1	19	28	88	136	0	6	34	76	258	373	0	6	44	97	182	329	838
S17-018 OT 0 1 48 77 126 1 0 25 81 156 262 1 1 43 95 157 297 686 S18-004 WT 0 0 11 40 90 141 0 1 23 44 105 173 1 0 3 16 40 66 37 73 131 0 1 12 20 52 85 880 518-005 WT 0 0 35 120 124 279 0 3 61 423 47 0 0 6 82 74 45 380 518-005 WT 0 0 8 40 84 132 0 2 13 22 61 98 0 0 6 23 67 99 9232 1447 53 50 10 13 32 84 1447 53 53 50 13 152 13 1447 13 13 13 152 <td< td=""><td>517-017</td><td>OT</td><td>0</td><td>1</td><td>7</td><td>43</td><td>119</td><td>170</td><td>3</td><td>7</td><td>29</td><td>86</td><td>193</td><td>319</td><td>2</td><td>3</td><td>43</td><td>83</td><td>137</td><td>269</td><td>757</td></td<>	517-017	OT	0	1	7	43	119	170	3	7	29	86	193	319	2	3	43	83	137	269	757
S18-001 RT 0 0 6 16 31 53 2 2 12 40 118 175 0 2 9 30 53 99 321 S18-002 RT 0 0 3 57 220 394 674 0 0 20 37 73 131 0 1 12 20 52 85 80 S18-005 WT 0 0 35 120 124 279 0 3 6 14 23 47 0 0 6 15 34 55 380 S18-007 WT 0 0 8 40 8 132 0 2 13 22 64 137 10 0 6 138 48 151 51 51 51 52 51 44 44 137 343 2 4 56 87 216 54 13 0 38 80 159 52 51 50 50 50	517-018	OT	0	0		48		126	1	0	25	81	156	262	1	<u> </u>	43	95	157	297	686
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	518-001	RT	0	0	6	16	31	53	2	2	12	40	118	175	0	2	9	30	53	93	321
518-004 WT 0 3 57 220 394 674 0 0 20 37 73 131 0 1 12 20 52 85 890 518-005 WT 0 0 35 120 124 279 0 3 6 14 23 47 0 0 6 15 34 55 380 518-006 WT 0 0 1 23 56 80 0 0 6 28 53 87 0 3 39 80 159 281 447 519-008 WT 0 2 29 90 223 343 2 4 56 87 216 364 10 3 32 54 113 192 889 1900 WT 0 2 29 90 223 343 2 4 56 87 216 364 12 1 73 131 192 889 1900 1 5 56 <t< td=""><td>518-002</td><td>RT</td><td>0</td><td>0</td><td>11</td><td>40</td><td>90</td><td>141</td><td>0</td><td>1</td><td>23</td><td>44</td><td>105</td><td>173</td><td></td><td>0</td><td>3</td><td>16</td><td>40</td><td>60</td><td>374</td></t<>	518-002	RT	0	0	11	40	90	141	0	1	23	44	105	173		0	3	16	40	60	374
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	518-004	WT	0	3	57	220	394	674	0	0	20	37	73	131	0	1	12	20	52	85	890
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	518-005	WT	0	0	36	133	294	464	0	1	2	12	33	48	· 0	0	6	8	27	41	553
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	518-006	WT	0	0	35	120	124	279	0	3	6	14	23	47	0	0	6	15	34	55	380
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	518-007	WT	0	0	8	40	84	132	0	2	13	22	61	98	0	0	6	23	67	95	325
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	518-008	<u></u>	0	0	1	23	56	80	0	0	6	28	53	87	0	3	39	80	159	281	447
S19-002 RT 0 2 29 90 223 343 2 4 50 87 216 304 0 3 222 54 113 112 216 866 S19-003 WT 0 5 290 74 172 281 0 1 9 33 99 142 1 0 19 40 72 132 555 S19-006 WT 0 0 2 21 39 62 1 2 25 45 136 209 1 5 26 78 143 254 525 53 50 0 1 5 26 78 143 254 525 53 50 0 1 18 39 84 142 530 53 1 2 32 67 167 269 0 0 18 39 84 142 530 53 1 5 28 1 5 28 66 151 246 884 54 1	519-001	RT	2	4	44	137	303	491	4	6	87	205	457	759	. 0	1	30	96	158	285	1534
S19-003 WT 0 2 26 98 112 238 1 5 52 108 246 412 1 7 32 64 112 216 860 S19-004 WT 0 5 29 74 172 281 0 1 9 33 99 142 1 0 19 40 172 132 555 S19-005 WT 0 0 2 19 41 63 0 18 58 159 235 0 2 51 70 158 281 578 S20-002 RT 0 0 4 18 30 53 1 2 32 67 167 290 0 0 13 33 81 122 448 530 53 1 2 32 67 167 290 0 0 13 33 81 122 448 530 53 1 5 266 11 130 233 455 1	519-002	RT	0	2	29	90	223	343	2	4	56	87	216	364	0	3	22	54	113	192	899
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	519-003	WI	0	2	26	98	112	238	1	5	52	108	246	412	1	7	32	64	112	216	866
519-005 WT 0 0 2 21 39 62 1 2 25 45 136 209 1 5 26 78 143 224 52 519-005 WT 0 0 2 19 41 63 0 0 18 58 159 235 0 2 15 70 158 281 578 520-002 RT 0 0 4 18 30 53 1 2 32 67 167 269 0 0 13 33 81 127 448 520 520-002 RT 0 1 46 100 137 363 1 2 32 67 167 269 0 0 13 38 81 127 448 520 50 1 41 157 230 468 0 4 41 65 117 227 1117 52 520 0 1 41 130 233 455 1 5	519-004	WT	0	5	29	74	172	281	0	1	9	33	· 99	142	1	0	19	40	72	132	555
S19-006 W1 0 0 2 13 0 2 51 70 158 281 378 S20-002 RT 0 0 4 16 34 53 3 6 30 94 120 233 0 0 18 39 84 142 530 S20-002 RT 0 0 4 16 34 53 1 2 32 67 167 269 0 0 18 38 1127 448 S20-003 RT 0 1 46 102 187 336 1 2 34 79 213 38 0 2 27 62 118 209 884 S20-003 RT 0 0 58 132 232 223 233 465 1 55 28 61 151 246 856 55 520-007 0 0 12 38 97 1666 303 1 0 34 77 200 31	519-005	WT	0	0	2	21	39	62	1	2	25	45	136	209	1	5	26	78	143	254	525
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	519-006	<u></u>	0	0	2	19	41	63	0		18		159	235	0	2		70	158	281	3/8
520-002 RT 0 0 4 18 30 53 1 2 32 67 167 299 0 0 13 33 81 127 448 520-003 RT 0 1 466 102 187 336 1 2 34 79 221 338 0 2 27 62 118 209 884 520-005 OT 0 0 9 49 97 155 0 1 41 130 283 455 1 5 28 61 151 246 856 520-005 OT 0 0 12 32 122 166 0 1 38 97 166 303 1 0 34 77 200 312 781 520-005 OT 0 0 13 43 105 161 0 2 27 68 133 230 2 4 44 76 148 273 665 520-010 <td< td=""><td>520-001</td><td>KI D</td><td>0</td><td>0</td><td>4</td><td>10</td><td>34</td><td>23</td><td>3</td><td>0</td><td>30</td><td>94</td><td>202</td><td>333</td><td>U</td><td>U</td><td>18</td><td>39</td><td>84</td><td>142</td><td>530</td></td<>	520-001	KI D	0	0	4	10	34	23	3	0	30	94	202	333	U	U	18	39	84	142	530
520-003 R1 0 1 40 102 187 336 1 2 34 79 221 338 0 2 27 62 118 209 884 520-004 WT 0 0 58 132 232 422 0 7 74 157 230 468 0 4 41 65 117 227 1117 520-004 OT 0 0 12 32 122 166 0 1 38 97 166 303 1 0 34 77 200 312 781 520-007 OT 0 0 13 43 105 161 0 2 27 68 166 274 0 2 36 91 165 294 719 51 1 4 17 86 166 274 0 2 36 91 153 26 71 71 31 319 56 111 191 1 7 34 89 </td <td>520-002</td> <td>RI</td> <td>0</td> <td>. 0</td> <td>4</td> <td>18</td> <td>30</td> <td>23</td> <td>1</td> <td>2</td> <td>32</td> <td>6/</td> <td>10/</td> <td>209</td> <td>0</td> <td>0</td> <td>13</td> <td>33</td> <td>81</td> <td>12/</td> <td>448</td>	520-002	RI	0	. 0	4	18	30	23	1	2	32	6/	10/	209	0	0	13	33	81	12/	448
Sub-0x04 W1 0 0 38 132 232 242 0 7 74 157 230 408 0 4 41 05 117 227 111 520-005 OT 0 0 9 49 97 155 0 1 41 130 283 455 1 5 28 61 151 246 856 520-006 OT 0 0 12 32 122 166 0 1 38 97 166 303 1 0 34 77 200 312 781 520-007 OT 0 0 13 43 105 161 0 2 27 68 133 230 2 4 44 76 148 50 5111 1 3 19 56 111 191 1 7 34 89 175 373 665 520-010 OT 0 3 14 43 94 153 1 1	520-003	RI	0	1	40	102	18/	330	1	2	34	/9	221	338	0	2	2/	02	118	209	884
520-005 OI 0 0 9 49 97 155 0 1 41 150 223 455 1 5 28 01 151 240 850 520-006 OT 0 0 12 32 122 166 0 1 38 97 166 303 1 0 34 77 200 312 781 520-007 OT 0 0 13 43 105 161 0 2 27 68 133 230 2 4 44 76 148 273 665 520-009 OT 0 0 18 63 101 183 0 5 64 72 143 283 0 3 46 81 153 283 749 5 520-010 0 15 39 70 124 653 5 520-012 0 0 15 39 70 124 653 5 520-013 0 0 15 39 <t< td=""><td>520-004</td><td>WI</td><td>0</td><td>0</td><td>58</td><td>132</td><td>232</td><td>422</td><td>0</td><td></td><td>14</td><td>157</td><td>230</td><td>408</td><td>0</td><td>4</td><td>41</td><td>0)</td><td>117</td><td>227</td><td></td></t<>	520-004	WI	0	0	58	132	232	422	0		14	157	230	408	0	4	41	0)	117	227	
520-000 OI 0 0 1 38 97 100 303 1 0 34 77 200 312 78 520-007 OT 0 2 10 42 97 151 1 4 17 86 166 274 0 2 36 91 165 294 719 520-008 OT 0 0 11 34 111 157 1 3 19 56 111 191 1 7 34 89 175 306 653 520-009 OT 0 0 18 63 101 183 0 5 64 72 143 283 0 3 46 81 153 283 749 50-010 0 18 94 153 1 1 20 44 116 184 0 4 16 81 91 159 496 520-012 0 3 34 37 166 237 0 3 16 91 </td <td>5.20-005</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>49</td> <td>9/</td> <td>100</td> <td>0</td> <td>1</td> <td>41</td> <td>130</td> <td>283</td> <td>433</td> <td></td> <td>2</td> <td>28</td> <td>01</td> <td>101</td> <td>240</td> <td>800</td>	5.20-005		0	0		49	9/	100	0	1	41	130	283	433		2	28	01	101	240	800
520-007 01 0 2 10 42 97 151 1 4 17 80 100 274 0 2 30 91 163 294 171 520-008 0T 0 0 13 43 105 161 0 2 27 68 133 230 2 4 444 76 148 273 6655 520-009 0T 0 0 18 63 101 183 0 5 64 72 143 283 0 3 46 81 153 283 749 520-010 0T 0 3 14 43 94 153 1 1 20 44 116 184 0 4 16 48 91 159 496 520-012 0T 0 3 29 70 183 285 1 1 22 57 164 245 0 0 124 653 520-012 0T 0 3	520-000		0	0	12	32	122	100	0	1	38	97	100	303		0	34	//	200	312	/81
520-008 OT 0 0 13 43 103 101 0 2 27 66 133 230 2 4 44 76 148 273 6653 520-009 OT 0 0 11 34 111 157 1 3 19 56 111 191 1 7 34 89 175 306 653 520-010 OT 0 0 18 63 101 183 0 5 64 72 143 283 0 3 46 81 153 283 749 520-012 OT 0 3 14 43 94 153 1 1 20 44 116 184 0 4 16 48 91 159 496 520-012 OT 0 3 29 70 183 285 1 1 22 57 164 245 0 0 21 29 90 140 653 52	520-007		U	2	10	42	9/	151	1	4	1/	80 49	100	2/4		4	30	91	105	294	119
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	520-008		0	0	13	45	105	101	0	2	2/	60 66	133	230		4	44	/0	148	2/3	600
520-010 01 0 0 18 03 101 163 0 3 04 72 143 263 0 5 400 61 153 225 749 520-011 0T 0 3 14 43 94 153 1 1 20 44 116 184 0 4 16 48 91 159 263 520-012 0T 0 3 29 70 124 653 520-013 0T 0 2 31 85 169 288 0 1 28 76 154 259 0 0 21 29 90 140 686 520-012 0T 0 34 37 166 237 0 3 16 99 133 251 0 0 42 78 114 235 723 521-001 RT 2 0 28 51 109 189 2 10 50 116 282 459 0 3 32 48 9	520-009		0	0	11	54	111	107	1		19		142	191		,	34	09	1/3	300	740
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	520-010		0	2	18	03	101	163	0	2	04	12	143	283		5	40	51 40	123	283	/49
520-012 01 0 3 29 70 183 263 1 1 22 57 164 243 0 0 15 39 70 124 053 520-013 0T 0 2 31 85 169 288 0 1 28 76 154 259 0 0 21 29 90 140 685 520-014 0T 0 34 37 166 237 0 3 16 99 133 251 0 0 42 78 114 255 521-001 RT 2 0 28 51 109 189 2 10 50 116 282 459 0 3 32 48 90 173 822 521-002 RT 0 2 17 53 93 166 0 2 27 64 161 253 0 0 9 99 72 120 539 521-003 WT <td< td=""><td>520-011</td><td></td><td>0</td><td>2</td><td>14</td><td>43</td><td>103</td><td>100</td><td>1</td><td>1</td><td>20</td><td>44</td><td>110</td><td>104</td><td></td><td>4</td><td>10</td><td>40</td><td>70</td><td>134</td><td>490</td></td<>	520-011		0	2	14	43	103	100	1	1	20	44	110	104		4	10	40	70	134	490
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	520-012		0	5	29	/0	163	283	· 1	1	72	16	104	243		0	15	39	/0	140	000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	520-013		U	1	31	83	109	288	0	1	28	/0	104	259		0	21	29	90	140	722
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	520-014	<u>-01</u>		<u> </u>		3/	100	237			10	99	133	251			42	- 10	114	233	123
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	521-001	KI DT	2	ů,	28	10	109	109	2	10		110	107	439		د ۲	32	40	90 20	1/3	622
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	521-002	KI WT	0	2	11	39	122	1/4	0	4	29	16	161	210		2	10	33	71	114	505
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	521-003		0	2	1/	در ۱۵	110	100	0	∠ _	21	04	144	200		ں د	y /1	39	167	120	777
321-003 m 0 3 13 37 120 123 1 2 0 47 27 137 0 1 11 33 72 119 409 531 005 460 107 105 460	521-004	WT	U A	1	40	UL 67	110	102	1	* ``	4)	91 A7	144	203		2	41	24	702	110	460
	521-003	WT	۰ ۲	3	13	20	110	155		1	7	7/	99 76	117		1	10	69	107	104	460

Appendix 200 Wi. Daudette area perfore counts. Super-category counts per rock sample by size frac	Appendix 280-M.	Baudette area p	ebble counts.	Super-category	y counts per	r 10kg s	sample b	y size :	ſracti
---	-----------------	-----------------	---------------	----------------	--------------	----------	----------	----------	--------

Note: PM =Paleozoic-Mesozoic, FI =Felsic to Intermediate plutonic, SC =Supracrustal.

Ē

E.

Ĉ

8

Appendix 280-N. Baudette area pebble counts, +1/4" - 3/8" pebbles.

Column abbreviations and data key

Stratigraphic units

-

4

į

1

КT	=Koochiching till
RT .	=Robernening till
WT	-Winning till
OT	-Old Baiay till
ACAD	
ASAF CAD	-reworked saprome
SAF	-saprome
Clast type abbreviation	e
Paw	-total number of nebbles
DM	=Poleozoia Mesozoia
	-felsia intermediate elutoria
Gliss	=gneiss
SC	=supracrustal
Meta sed.	=metasediment
Misc.	=miscellaneous
+1/4	=1/4" to $-3/8$ " pebble fraction
ct	=count
volc.	=volcanic
hyp.	=hypabyssal
amph.	=amphibolite
plut.	=plutonic
Fplut.	=coarse grained felsic plutonic
Sil.	=siliceous nonsedimentary
Sfd.	=sulfide
Mag.	=magnetic
peb	=pebble
atz.	=quartz
gns	=grains
5	5

Notes:

Raw counts are total number of pebbles counted (not normalized to a 10 kg sample).

		Raw	Raw	% PM	% FI	% SC	% SC	% SC	% SC	% SC	% SC	% SC	% SC				% SC		
		±1/4	+1/4	,0 I 101		71 U C	FI	EI	Maf	Mat	Maf	Game	Grou	W 80	W 8C	W 8C	Mata	W 50	14 SC
a 1.		T1/4	+1/4				F1	1.1	IVIAL.	IVIAL.	IVIAL.	G1155.	Giay-	70 30	76 30	76.50	IVICIA	76 50	70 SC
Sample 501-001	- Unit RT	Peb_ct40	<u>_SU_Cr</u> 19	$\frac{+1/4}{1}$	<u>+1/4</u> 50	<u>+1/4</u> 50	<u>voic</u>	<u>nvp.</u> 0	<u>Volc</u> 0	amph.	5 16	FDIUL	wacke	0	Sia	Mag	sea	<u>Misc.</u> 11	misc=siderite
502-001	RT	238	82	 	63	36	9		15		3 22	24		2) 0	2		misc=siderite
502-002	RT	236	82	i	62	37	10	4	22	1	5 7	37	Ō	5	1	7	ō	Ċ)
502-003	RT	186	69	3	60	37	3	4	17	1:	3 6	46	1	1	1	3	3	3	3 misc=siderite
503-001	RT	139	60	1	55	44	10	0	43	10) 3	25	2	5) 3	2	0)
503-002	RT	231	76	1	64	35	14	3	17	11	1 16	26	0	3	() 4	4	0)
503-003	RT	227	87	1	56	43	5	3	25	14	14	37	0	1	1	. 9	0	0)
503-004	RT	121	47	1	62	37	2	2	21	19	9 15	· 30	2	2	4	13	2	0)
203-005	RT	90	48	2	50	48	27	2	23		5 19	13	0	0		<u> </u>	2	2	2 felsic vol. all same
505-001	RT	115	42		59	40	7	5	36	1.	2 5	29	0	0	() 12	7	0)
505-002	OT	130	0/	0	43	51	1	0	36	4	4 19	24	7	4	0) 21	3	0)
303-003	- 01 DT	38	167			41	0	3	28			31			C	<u> </u>	0		misc=siderite, sid=pebs
506.007	DT	250	165	10	24	20	10	4	26	13	/ 4 / 1	34	10	5	1	4	4	3	misc=siderite
307-002		176	67	23	40		12	<u>1</u>	20	I	2		10	<u> </u>					
507-007	RT	73	27		55	37	11	0	26	10	, , , ,	12	11	0	0	, <u> </u>	0	0	sid-bearing gits
507-004	OT	157	32	5	48	47	9	ő	34		, , ,	10	16	ň	Č	ŏ	13	ň	
507-005	OT	254	104	10	44	46	22	4	17		5 5	29	12	ŏ	1	4		ĩ	
507-006	ŌT	222	92	4	54	42	7	1	25	ġ) n	21	17	3	Ō	1 1	ĩ	Ő	
507-008	OT	212	83	l i	57	42	12	Ó	31	ē	5 2	22	16	õ	Ō	13	2	8	misc=unknown
507-010	ОТ	137	65	8	44	48	8	0	26	1	3 14	23	12	2	3	5	5	Ō	s[d=qtz.grain
508-001	RT	54	20	2	50	48	0	0	10	10) 40	40	0	0	0	30	0	0)
508-002	RT	290	177	3	41	56	3	0	6	14	10	58	4	2	0	9	3	0	1
508-003	RT	200	138	5	61	35	3	1	11	12	2 7	54	9	4	0	17	0	0	
509-001	RT	173	66	4	56	40	2	2	11		8 8	76	0	0	0	11	0	0)
510-001	RT	163	87	3	42	55	3	0	34		6	45	2	1	C	6	1	0)
510-002	RT BT	259	112	2	57	41	4	<u> </u>	19		<u>s 10</u>	48	6	2	4	4	0	0	std=bearing gns
511-001	KI DT	103	38	1 15	02	23	3	2	10		5 <u>2</u> [42	. U	0	3	5	5	0	sta=peb
511-002	RI DT	2140	33 77	10	54	23	2	9	20	1	/ 34) 9	14	נ	3			3	1	mise=atz amin sosan
511-005	WT	140	74	56	10	24	11	0	14	14	с о 1 15	20	21	0	. 1	, I 3	11	1	hilso-qtz.grain gossan
511_005	wr	81	14	26	57	17	7	Ő	17		11	20	27	7	14	, J 7	0	0	,) sfd=atz orain
512-001	-wr	86	44	15	- 11	- 52			14		14	48		2		2	<u> </u>		std=bearing misc=gran
512-002	WT	123	32	7	67	26	Ō	ŷ	13	() 13	56	3	ō	ō	0 0	6	Ő)
512-003	WT	114	62	15	32	54	2	0	13	29) 3	37	10	0	5	0	Ő	2	sfd=bearing,misc=sider
313-001	RT	173	58	28	37	35	7	3	14		3 12	31	28	0	2	3	0	0)
513-002	WΓ	115	30	51	23	26	10	3	13	() 3	37	30	0	0	0	3	0)
513-003	wr	71	24	24	24	52	8	0	8		4 13	42	21	0	C) 4	0	4	l
513-004	<u></u>	61	30	26	18	56	10	20	10) 10	40	7	0	3	0	0	0	sfd=bearing gns
514-001	RT	153	44	6	63	31	9	0	16		2 11	52	2	5	2	2	0	0	sid=bearing
514-002	RT	235	57	8	65	27	2	7	14		/ 14	42	4	5	0	9	5	0	
514-003		226		<u> </u>	<u></u>	- 30	2		15	10	<u> 8</u>	49		2		3	2)
515-001	RI DT	184	41	10	08	24		2	27			37	11	2			0	0	
515-002	RI DT	3/1	123	1 10	24	22	4	1	20	1.) 4) 7	33	11	2	4		2	0	
515 004		125	26	20	40	20	11	0	20		, , , 11	40	10	2		· · ·	5	0	
515-005	OT	163	57	17	46	37	2	2	10		, 11 1 11	10	37	, s , s	0		4	2	, misc=graphite
515-006	ŎŤ	104	35	31	43	26	3	õ	20		3 9	46	14	3	3	6	0	â	sfd=peb
515-007	ŎŤ	182	68	18	42	40	7	4	29	() 4	25	28	ĩ	ā) <u>4</u>	Ő	ă)
515-008	OT	280	115	9	51	41	3	ò	12		2 56	12	16	0	Ō	23	ŏ	õ) ali mag=mplu
316-001	KT	193	34	42	38	20	3	0	24) 18	21	32	3	0	12	0	0)
516-002	KT	336	73	37	40	23	11	4	27	1	34	16	19) 4	1	0)
317-001	RT	223	46	16	63	21	17	0	24	11	9	24	9	0	4	2	2	0	s[d=peb+qtz.grain
517-002	RT	218	70	12	54	34	4	1	16	4	4 10	40	9	14	0) 4	1	0	
517-003	WT	225	30	i 50	37	13	0	7	10	14) 7	20	47	0		। १	0	0	

Appendix 280-N. Baudette area pebble counts, +1/4" - 3/8" pebbles.

Appendix 280-N. Baudette area pebble counts, +1/4" - 3/8" pebbles.

E.

		Raw	Raw	% PM	% FI	% SC	% SC	% SC	% SC	% SC	% SC	% SC	% SC				% SC		
		+1/4	+1/4	ct	ct	ct	FI	FI	Maf.	Maf.	Maf.	Gnss.	Grav-	% SC	% SC	% SC	Meta	% SC	% SC
Sample	Linit	Deb. ct	SC at	±1/4	±1/4	+1/4	vole	hyp	volc	amoh	mbut	Folut	wacke	Sil	SFA	Man	red	Mirc	Demarks
517-004	WT	133	18	49	38	14	П	0	0	6	0	33	44	6	0	0	0)
517-005	WT	74	8	34	54	12	0	13	0	0	0	25	63	0	0	0	0	0)
517-006	WT	156	8	31	56	13	0	0	0	0	13	25	50	13	0	0	0	0)
517-007	WT	75	10	28	59	13	0	0	0	0	20	10	40	10	0	0	20	0)
517-008	WT	131	37	29	47	24	5	0	14	8	14	30	22	5	3	8	0	0) sfd=bearing
517-009	WT	156	25	38	44	18	0	0	8	0	24	20	36	8	4	0	0	C) sfd=peb
517-010	WT	159	35	38	38	23	0	0	17	0	11	34	34	0	0	0	3	0)
517-011	ОТ	205	62	19	51	31	5	2	15	0	10	27	29	5	2	0	6	0)
517-012	or	256	87	20	46	33	3	6	21	1	8	22	26	1	3	7	2	0) sfd=peb+2bearing
517-013	OT	191	73	16	40	44	18	5	25	0	1	18	29	3	1	12	0	0) s[d=qtz.grain
517-014	01	231	80		44		13	1	18	2	8	19	28	5	1	2	0	U U) sld=bearing
517-015		323	112	19	40	30	. 4	2	14	0	12	33	20	0	U 2	3	5	0)) ofd-oto one in mudhell
517-010		100	13	14	30	40	13	1	ען ור	3	4	32	21	0	5	4	. 4	0) sid-quz.grain,mudbali
517-017		172	/0 03	20	- 41	39	2	0	21	14	10	14	20	2	1	1	16	0	sid-bearing
317-018	-01 	1/2		19		42		2	17	10	13	- 19			<u>1</u>				
518,007	PT	80	12	40	4/	16	0	17	17	, 0	47	17	25	Ň	0	8	0	0	, i
518-004	WT	261	10	70	13	7	ő	1/	1/	Ő		53	32	ő	Š	ő			ý
518-005	wr	130	7	87	8	5	ŏ	ŏ	57	ő	14	14	1	ő	ő	ő		14	Ĺ
518-006	WT	128	15	80	ğ	10	33	ŏ	7	ŏ	0	20	27	ŏ	1	ŏ	õ		/ misc=siderite
518-007	WT	74	21	47	26	27	5	ŏ	5	Ő	Ō	38	38	5	5	Ō	5	Ó)
518-008	WT	130	76	18	22	61	8	Ō	75	1	i	5	7	Ō	3	0	Ō	Ő)
519-001	RT	434	88	31	47	22	3	7	13	Т	7	27	39	0	0	2	3	0	5
519-002	RT	277	65	39	38	23	2	5	15	5	11	31	26	5	0	2	2	0)
519-003	WT	270	57	36	40	24	2	0	26	4	5	32	30	2	0	11	0	0)
519-004	WT	115	30	50	23	27	3	0	3	0	3	20	30	0	3	0	37	0)
519-005	WT	147	78	14	31	54	14	3	27	3	4	29	17	1	1	0	1	0) sfd=qtz.grain
519-006	WT	122	58	13	39			3	14	7	12	33	19	2	2	0	0	0) sfd=peb
520-001	RI	163	41	10	03	20	2	2	20	د در	10	49	2	2	2	1	0	0	
520-002	R1 DT	110	31		20	28	0	3	0	32	0	20	13	0	5	و	2		J BIG=BIGSCHIST
520-003		207	50	42	32	20	0	2	14	10	28	30	10	0	2	0	2) ofd=ata amin
520-004	OT	26/	 	3/	44	10	2	2	10	10	20	23	10	2	2	y (0) sid=qtz.grain
520-005		150	66	15	A7	17		2	14	10	6	20	24	2	1	2	0) siu-quz.gram
520-007	OT	210	85	10	40		8	2	16	6	0	30	10	ő	5	8	2) sfd=2peb 2bearing
520-007	or	153	55	1 2	37	41	Š	Ĩ	16	4	5	42	24	2	ő	Ă	5	č) =
520-000	or	157	75	19	31	50	9	1	28	ġ	11	23	17	ĩ	ŏ	3	õ	č	à
520-010	ŎŤ	235	39	29	33	37	13	0	13	3		21	33	5	5	3	Ő	Č) sfd=qtx.grain+bearing
520-011	ÕT	107	38	32	33	36	3	3	13	8	Ō	34	24	Ō	Ō	3	16	Ċ)
520-012	ÕT	152	37	42	34	24	3	Ō	8	3	3	32	43	Ó	Ō	3	8	Ċ	0
520-013	OT	183	27	45	40	15	4	Ó	7	0	Ō	33	52	Ó	Ó	0	4	Ċ	3
520-014	OT	197	70	17	46	37	1	0	16	7	16	20	30	0	3	4	7	C) sfd=qtz.grain+bearing
521-001	RT	258	48	24	- 34	22	1	0	19	3	10	36	20	0	3	2	0	0) sfd=mvol+gabbroid
521-002	RT	125	33	30	44	26	3	0	23	0	16	3	45	3	6	0	0	C) sfd=peb+qtz.grain
521-003	WT	191	39	34	41	25	2	0	13	7	13	24	33	7	2	2	0	C) sfd=peb
521-004	от	239	84	26	38	36	7	12	22	0	7	15	32	2	0	1	1	C) button bit
521-005	WT	134	35	41	34	25	3	6	23	0	3	23	39	0	3	3	0	0)
521-006	WT	123	59	23	25	52	14	9	25	9	14	14	11	2	0	0	2	0)

Note: PM =Paleozoic-Mesozoic, FI =Felsic to Intermediate plutonic, SC =Supracrustal.

.

· · Ê ¢. ¢. 2 Ē. . ¢.

Appendix 280-O. X-ray diffraction results for 14 selected Baudette area till and saprolite samples.

Column abbreviations and data key

Stratigraphic units

-

1

-0

3

J

D

R

Ľ

.

-

RT =	Rainy till
WT =	Winnipeg till
OT =	Old Rainy till
SAP =	saprolite

feet

Other abbreviations (ft) =

	Sample					
· · · ·	Interval					
Sample #	(ft)	Unit	Smectite	Illite	Chlorite	Kaolinite
506-003	180-183	SAP		1	/	K
506-004	190-208	SAP			K	
506-006	208-215	SAP	1	>	\geq	
507-012	239-243	SAP	7>	\leq		
520-017	300-329	SAP	TK			
518-002	128-134	RT				
521-002	111-117	RT	1 \			
518-004	202-209	WT				
518-007	235-245	WT		\rightarrow	$<$	
521-003	124-134	WT	1 /			
521-006	217-224	WT	1 /			
520-005	106-116	ОТ	1			
520-012	250-259	OT	1	1		K
521-004	192-201	OT	1 \)

Appendix 280-O. X-ray diffraction clay mineralogy for selected Baudette area till and saprolite samples.

Note: For comparison, XRD peak heights of the clay minerals in each sample have been internally normalized (highest response =100%). XRD patterns were run using identical instrument parameters. Results are semi-quantitative.

Column abbreviations and data key

Stratigraphic units

30 30

1

30

1

30

31 31

Ĵ

КT	=K oochiching till
KG	=K oochiching gravel
RT	=Rainy till
RS	=Rainy sand
RG	=Rainy gravel
RL	=Rainy lake sediment
WT	=Winnipeg till
WS	=Winnipeg sand
OT	=Old Rainy till
ŌŜ	=Old Rainy sand
ŌĠ	=Old Rainy gravel
OL	=Old Rainy lake sediment
ASAP	=reworked saprolite
SAP	=saprolite
SAPZ	=saprolite (trace element analysis)
BEDZ	=bedrock (trace element analysis)
BED	=bedrock
Other abbreviations	
<u> </u>	=(null) no data or no analysis
ft.	=feet
DY	=pyrite
ÖDM	=Overburden Drilling Management Labs
nmHMC	=nonmagnetic heavy mineral concentrate
um	=micron
Ox.	=oxidation
ox	=oxidized
un	=unoxidized
kg	=kilogram
g	=gram
ug	=microgram
fadc	=fire assay direct current

=microgram =fire assay direct current

Notes:

Gold values reported for bedrock pulps and saprolite pulps (BEDZ and SAPZ) are included in the column of data labeled "Au -63um fadc". The BEDZ and SAPZ data are on whole rock pulps, not -63um fraction.

			Sample	Gold		Au		Au	ODM est	Au	
		Samoled	height	grains	ODM	nmHMC	nmHMC	nmHMC	Au assav	-63um	Or.
Sample	Unit	interval	(0)	/10kg	Pemarke	inaa/fade	a/10ka	ug/10kg	amHMC	fado	etote
501-001	RT	131-135	2	0	Keinarks	0.231	27	<u>ug/10kg</u>	0.000	0.003	un
501-002	SAP	135-145	-5	Õ		0.010	23	ŏ	0.000	0.001	un
501-003	SAP	157-163	-25	0		0.006	34	Ō	0.000	0.001	un
501-004	BEDZ	163-166	-30			0.003			0.000	0.002	un
502-001	RŤ	123-133	51	4	0.1% py	0.053	44	2	0.335	0.002	un
502-002	RT	133-143	41	2	0.5% py	0.079	42	3	0.014	0.005	un
502-003	RT	143-153	31	0		0.118	40	5	0.000	0.004	un
502-004	RS	153-163	21	0		0.012	46	1	0.000	0.008	un
502- 005	OL	167-177	7	0		0.106	75	8	0.000	0.001	un
502-006	BED	179-187	-4							0.001	un
503-001	RT	111-118	39	0		0.034	22	1	0.000	0.002	un
503-002	RT	118-128	30	1		0.887	33	29	0.691	0.001	un
503-003	RT	128-138	20	0		0.064	26	2	0.000	0.002	un
503-004	RT	138-148	10	0		0.240	22	5	0.000	0.023	un
503-005	RT	148-153	3	1		0.170	28	5	0.096	0.001	un
503-006	ASAP	164-174	-16	1		0.116	73	8	0.009	0.002	un
503-007	SAP	211-221	-63	0		0.003	410	1	0.000	0.002	un
503-008	BEDZ	240-247	-91			0.003					un
503-009	BED	247-255	-98			~ * 1 4				0.005	un
505-001	KI OT	140-149	90	1	0.10/	0.213	31	7	0.197	0.001	un
505-002		224-228	8	د	0.1% py	0.019	80	2	0.02/	0.002	un
505-003	01	228-234	5	I	I Cu grain	0.200	23	11	0.116	0.001	un
505-004	SAP DED7	234-243	-5	U		0.010	11	0	0.000	0.001	un
202-003		201-207	-30		1 50/	0.003	20		0.633	0.024	un
506.002	NI DT	171-176	3	3	1.3% py	0.101	34	, 9	0.335	0.034	un
506-002	SAP	182.107	.12	0	1.076 py	0.232	74	Ň	0.000	0.008	10
506-003	SAP	107-192	-12	ŏ		0.005	17	Õ	0.000	0.005	10
506-005	BED	236-244	-64	v		0.015	.,	Ū	0.000	0.010	un
307-001	RT	148-155	88	0		0.079	31	2	0.000	0.001	un
507-002	RT	155-162	81	Õ		0.014	29	ō	0.000	0.001	un
507-003	RL	162-168	74	4	0.1% DV	0.122	48	6	0.215	0.003	un
507-004	OT	170-178	65	1	1 Cu grain	0.038	134	5	0.070	0.001	OX
507-005	от	183-189	53	1	U	0.115	131	15	0.041	0.001	ох
507-006	от	197-202	40	1		0.022	116	3	0.024	0.002	un
507-007	OS	202-207	35	0		0.098	109	11	0.000	0.004	un
507-008	ОТ	207-215	28	1		0.035	98	3	0.024	0.001	un
507-009	OS	217-227	17	0		0.010	160	2	0.000	0.001	un
507-010	от	227-234	9	1		0.055	68	4	0.028	0.001	un
507-011	OL	234-239	3	0		0.055	23	1	0.000	0.003	un
507-012	SAP	239-242	-2	1		0.617	78	48	0.181	0.002	un
507-013	BEDZ	242-247	-6			0.003					un
508-001	RT	119-124	31	0	• • •	0.080	14	1	0.000	0.003	un
508-002	RT	140-146	9	1	2 Cu grains	0.072	38	3	0.038	0.003	un
508-003	RT	146-152	3	2	10 Cu grains	0.275	37	10	0.087	0.001	un
508-004	SAP	153-160	-5	U		0.245	8	2	0.000	0.001	un
200-800	SAPZ	100-108	-12			0.003					un
000-000	SAPL	214-223	-0/	0		0.003	22	0	0.000	0.007	un
100-000	SAP CAD7	223-232	-/0	U		0.011	~~	U	0.000	0.002	un
200-202	DED	200-210	-119			0.003				0.004	un
500-009		280-285	-131		2 Cu graine	0.083	27		0.055	0.004	<u>un</u>
509-001	BED	092-100	-4	2	I Cu grains	0.005	16	3	0.055	0.013	un
510-001	RT	097-102	8	2	1 Cu grain	0.093	41	4	0.214	0.002	un
\$10-002	RT	102-107	ž	ī	1 Cu grain	0.027	28	i	0.006	0.001	un
			-	-				-			

Appendix 280-P. Baudette area gold data summary.
Appendix 280-P. Baudette area gold data summary.

			Sample	Gold		Au		Au	ODM est.	Au	
		Sampled	height	orains	ODM	nmHMC	nmHMC	nmHMC	All assay	-63um	01
Comolo	F T	internal	(0)	/10/	Bemeeke	in a fada	a/10ka	mailtie		-osum Gada	etata
510-003	BED	107-112	-3	/TUKg	Remarks	Inaa/lade	g/ TOKg	ug/IVKg	nmnmC	0.008	un
511-001	RT	109-116	31	0	7 Cu grains	0.127	22	3	0.000	0.001	บก
511-002	RT	116-123	24	0	3 Cu grains	0.009	30	0	0.000	0.001	un
511-003	RT	127-133	13	0	1 Cu grain	0.122	30	4	0.000	0.001	un
511-004	WT	133-138	8	0	•	0.028	17	0	0.000	0.002	un
511-005	WT	138-143	3	0		0.024	11	0	0.000	0.001	un
<u>511-006</u>	SAPZ	143-147	-2			0.003					un
512-001	WT	087-095	14	0		0.038	27	1	0.000	0.001	OX
512-002	WT	095-100	8	0		0.058	19	1	0.000	0.001	OX
512-003	WT	100-105	3	0		0.027	43	1	0.000	0.001	OX
512-004	BED	107-117	-7			~	**			0.003	un
513-001		0/1-0/5	20	1		0.418	29	12	0.202	0.003	un
513-002	WI	0/5-083	14	U A		0.017	21	0	0.000	0.001	OX
513-003	WI	083-088	8	0		0.021	44	1	0.000	0.003	ox
513-004	SAD	088-093	3	0		0.023	23		0,000	0.002	OX VIR
512.005	BED	106.115	-19	U		0.150	23	4	0.000	0.003	un
513-000	DT	165 173	-10	<u> </u>	· · · · · · · · · · · · · · · · · · ·	0.017	30	0	0.000	0.030	<u>un</u>
514-007	DT NI	173-179	47	1		0.017	20		0.000	0.002	un vo
514-002	RT	178,183	36	ò		0.081	33	ĩ	0.000	0.003	110
514-004	RG	188-198	23	ŏ		0.003	55	õ	0.000	0.001	10
514-005	OS	198-207	14	ĩ		0.057	36	2	0.008	0.001	un
514-006	SAP	217-227	-6	Ō		0.019	94	2	0.000	0.011	un
514-007	BED	257-262	-44							0.001	un
513-001	RT	143-153	64	0		0.026	63	2	0.000	0.002	un
515-002	RT	153-163	54	0		0.053	47	2	0.000	0.001	un
515-003	RT	168-176	40	0		0.017	52	1	0.000	0.010	un
515-004	от	176-182	33	0		0.054	33	2	0.000	0.002	un
515-005	от	182-192	25	0		0.066	27	2	0.000	0.001	un
515-006	OT	192-202	15	0		0.066	25	2	0.000	0.001	un
515-007	OT	202-207	8	1		0.046	29	1	0.118	0.001	un
515-008	OT	207-212	3	0		0.597	47	28	0.000	0.001	un .
515-009	BED	212-223								0.002	un
516-001		037-042	15	0		0.042	21	1	0.000	0.001	un
516 002	KI	042-047	10	, v		0.034	17	1	0.000	0.001	un
516-003	RED	047-054	-5	1		0.025	17	U	0.125	0.001	un
317-001	BLD RT	038-045	179	0		0.047	37	1	0.000	0.001	<u></u>
517-002	RT	045-055	170	ĭ		0.268	20	ŝ	0.099	0.002	un
517-003	WT	055-064	161	ò	•	0.100	8	ĩ	0.000	0.001	un
517-004	wr	064-074	151	i		0.538	10	5	0.371	0.001	un
517-005	WT	074-082	142	Ō		0.028	3	0	0.000	0.001	ox
517-006	WT	082-092	133	Ó		0.127	12	2	0.000	0.001	un
517-007	WT	092-098	125	1		0.025	11	0	0.221	0.001	un
517-008	WT	103-112	113	1		0.178	18	3	0.190	0.001	un
517-009	WT	113-123	102	0		0.182	17	3	0.000	0.002	un
517-010	WT	123-129	94	0		0.038	9	0	0.000	0.002	un
517-011	ΟΤ	136-146	79	0		0.016	25	0	0.000	0.002	un
517-012	от	146-153	71	0		0.042	29	1	0.000	0.002	un
517-013	от	153-163	62	3	0.8% FeS2	0.166	21	3	0.059	0.001	un
517-014	OT	163-173	52	0		0.052	30	2	0.000	0.003	un
517-015	OT	173-183	42	0		0.021	25	1	0.000	0.005	un
517-016	OT	183-193	32	Ű		0.039	21	l	0.000	0.000	un
517-017	OT	193-203	12	U A	1.09/ 12-02	0.185	22	4	0.000	0.003	un
517-018	01	203-220	9	4	1.0% reS2	0.009	25	15	0.918	0.001	un

Appendix 280-P. Baudette area gold data summary.

			Sample	Gold		Au		Au	ODM est.	Au	
		Sampled	height	grains	ODM	nmHMC	nmHMC	nmHMC	Au assay	-63um	Ox.
Sample	Unit	interval	(ft.)	/10kg	Remarks	inaa/fadc	g/10kg	ug/10kg	nmHMC	fadc	state
317-019	BED	221-229	-5							0.003	un
518-001	RT	105-115	140	0		0.037	20	1	0.000	0.003	un
518-002	RT	128-134	119	1		0.055	14	1	0.007	0.006	un
518-003	WS	172-182	73	0		0.052	26	1	0.000	0.022	un
518-004	WT	202-209	45	1		0.237	16	4	0.319	0.001	un
518-005	WT	209-219	36	0		0.025	16	0	0.000	0.001	un
518-006	WT	219-229	26	0		0.013	18	. 0	0.000	0.001	un
518-007	WT	235-245	10	0		0.016	41	1	0.000	0.002	OX
518-008	WT	245-250	3	1		0.091	46	4	0.033	0.001	ox
518-009	BEDZ	263-273	-18			0.003					un
519-001	RT	085-097	71	0		0.049	26	1	0.000	0.001	un
519-002	RT	097-105	61	2	0.8% FeS2	0.046	21	1	0.335	0.001	un
519-003	WI	105-115	52	1		0.014	24	0	0.321	0.002	un
519-004	WI .	140-145	20	1		0.048	52	2	0.016	0.002	un
519-005	WI	152-157	8	0		0.032	46	1	0.000	0.004	un
519-006	WI	157-162	3	0		0.025	42	1	0.000	0.003	un
519-007	BED	190-194	-30							0.008	un
520-001	RT	020-030	274	0		0.086	23	2	0.000	0.001	un
520-002	RT	030-040	264	3		0.023	33	1	0.088	0.001	un
520-003	RT	040-047	256	4		0.021	21	0	0.037	0.001	un
520-004	WT	094-102	201	0		0.031	24	1	0.000	0.001	un
520-005	от	106-116	188	1		0.195	50	10	0.251	0.001	un
520-006	от	116-128	177	0		0.063	37	2	0.000	0.001	un
520-007	ОТ	128-138	166	0		0.242	29	7	0.000	0.001	un
520-008	OT	138-148	156	0		0.019	21	0	0.000	0.001	un
520-009	OT	148-158	146	1		0.023	23	1	0.000	0.001	un
520-010	OT	158-168	136	0		0.175	24	4	0.000	0.002	un
520-011	OT	168-178	126	1		0.478	22	11	0.668	0.002	un
520-012	OT	250-259	45	0		0.028	10	0	0.000	0.001	un
520-013	OT	259-269	35	0		0.104	14	1	0.000	0.001	un
520-014	OT	2/8-286	17	0		0.064		0	0.000	0.001	un
520-015	OS	289-299	2	Ű		0.011	121	I	0.000	0.001	un
520-010	SAP	300-310	-0	0		0.011	43	0	0.000	0.003	un
520-017	DT	075 001	-10			0.018	- 11	1	0.000	0.002	
\$21-007	DT	111-117	173	ò		0.025	17	1	0.000	0.001	10
521-002	wr	174-134	158	ň		0.019	19	0	0.000	0.001	100
521-004	OT	192.201	01	ĭ		0.273	34	ŏ	0.371	0.001	un
521-005	wr	201-211	81	ò		0.065	6	ó	0.000	0.001	un
521-005	wr	217.274	67	ŏ		0.023	14	ŏ	0.000	0.001	un
521-007	ÖĞ	224-234	58	ŏ		0.028	23	ĩ	0.000	0.002	un
521-008	ÔĞ	234-245	48	ŏ		0.017	36	i	0.000	0.001	un
521-009	ÔĞ	247-257	35	Ō		0.014	31	Ō	0.000	0.002	un
521-010	OS	267-277	15	Ō		0.003	137	Ō	0.000	0.002	un
521-011	OS	277-287	5	Ó		0.020	145	3	0.000	0.002	un
521-012	SAP	287-297	-5	Ó		0.003	102	0	0.000	0.001	un
521-013	BED	298-299	-12						•	0.001	un
521-014	BED	302-304	-16							0.001	un
521-015	BEDZ	304-320	-25			0.007					un

8

