Appendix B

Internal Barr Memorandum from Miguel Wong to John Borovsky and Keith Pilgrim, dated July 18, 2007, Regarding Wet and Dry Periods of Precipitation

Internal Memorandum

То:	John Borovsky, Keith Pilgrim
From:	Miguel Wong
Subject:	Wet and dry periods of precipitation
Date:	May 18, 2007
Project:	23/69-862-015-074
c:	Greg Williams

Introduction

This memo presents the results of the statistical analysis of precipitation data representative of the long-term climatic conditions in the Partridge River and Embarrass River watersheds. These results will be used as a reference to determine whether the periods of water quality monitoring in the two referred watersheds corresponded to wet or dry flow conditions; flow data is available for the Partridge River and Embarrass River, but such data do not necessarily cover the same periods of water quality monitoring.

Data Available

Water Quality Monitoring

Water quality data in the Partridge River watershed and/or Embarrass River watershed are available for the following periods:

- 1955-1966.
- 1974-1979.
- 2001-2002.
- 2004.
- 2006.

Most of the water quality data is from two periods: 1970's and 2000's.

USGS Flow Gaging Stations

Daily flow data in the Partridge River watershed and Embarrass River watershed are available for the following periods:

- USGS gaging station # 04015455, South Branch Partridge River near Babbitt from June 1, 1977 to November 5, 1980.
- USGS gaging station # 04015475, Partridge River above Colby Lake at Hoyt Lakes from September 19, 1978 to November 2, 1988.
- USGS gaging station # 04015500, Second Creek near Aurora from April 1, 1955 to September 30, 1980.
- USGS gaging station # 04016000, Partridge River near Aurora from August 1, 1942 to September 30, 1982.
- USGS gaging station # 04017000, Embarrass River at Embarrass from August 1, 1942 to December 31, 1964.
- USGS gaging station # 04018000, Embarrass River near McKinley from October 1, 1953 to September 30, 1962.

There is not flow gaging station that covers both the 1970's and the 2000's in either the Partridge River or the Embarrass River. Although the flow data available includes periods of wet and dry flows (see discussion in RS73B for the Partridge River, and in RS74 for the Embarrass River), a direct comparison of flows in the 1970's and 2000's is not possible from the flow data itself.

Precipitation

The Minnesota Department of Natural Resources (MnDNR) follows the definition given by the Climate Prediction Center of the National Weather Service (NWS), which considers a climate normal as that given by 30 years of recent data. The current definition corresponds to the period 1971-2001.

Monthly precipitation data is available from the NWS weather station (Coop ID) # 218311, Tower 3S – from January 1926 to March 2007. This precipitation record, limited to the period 1971-2001, has been used to obtain precipitation statistics that are considered representative for both the Partridge River and Embarrass River watersheds.

In addition, monthly precipitation data is available from the NWS weather station (Coop ID) # 210387, Babbitt (Partridge River watershed) – from June 1999 to March 2007, and from the NWS weather station (Coop ID) # 212576, Embarrass (Embarrass River watershed) – from January 1995 to

March 2007. Information for Water Years (October to September) 2005 and 2006 is incomplete in both the Babbitt and Embarrass precipitation records.

Statistical Analysis

A frequency analysis was conducted on the annual precipitation record of the weather station at Tower 3S for the period 1971-2001. A normal probability distribution provided a good fit of the transformed (cubic root) series of annual precipitation values (Shahin et al., 1993). The annual precipitation varied between a maximum of 38.4 inches and a minimum of 22.2 inches, with a mean annual value of 29.3 inches and a standard deviation of 5.1 inches.

Using the Tower 3S precipitation record and the normal probability distribution obtained from the statistical fitting described above, the probability of non-exceedance of precipitation (used as a proxy for flows) during 1955-1966 and 1974-1979 resulted in:

Water Year (October to September)	Probability of non-exceedance
1954	4.8%
1955	4.1%
1956	40.3%
1957	9.9%
1958	51.3%
1959	8.9%
1960	32.3%
1961	56.9%
1962	17.2%
1963	75.7%
1964	71.0%
1965	63.6%
1966	21.5%
1973	78.9%
1974	78.3%
1975	9.9%
1976	92.2%
1977	85.9%
1978	14.4%
1979	38.1%

Using the Babbitt (Partridge River watershed) precipitation record and the normal probability distribution obtained from the statistical fitting described above, the probability of non-exceedance of precipitation (used as a proxy for flows) during the 2000's resulted in:

Water Year (October to September)	Probability of non-exceedance
2000	96.5%
2001	34.3%
2002	16.9%
2003	13.7%
2004	69.3%

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Junk Miguel\Wet versus dry years_WQ data.doc

Using the Embarrass (Embarrass River watershed) precipitation record and the normal probability distribution obtained from the statistical fitting described above, the probability of non-exceedance of precipitation (used as a proxy for flows) during the 2000's resulted in:

Water Year (October to September)	Probability of non-exceedance
2000	72.8%
2001	28.9%
2002	24.1%
2003	15.6%
2004	30.0%

References

Shahin, M., van Oorschot, H.J.L., and De Lange, S.J. (1993). Statistical Analysis in Water Resources Engineering – Balkema, Rotterdam, the Netherlands. 393 pp.

Appendix C

Internal Barr Memorandum From Miguel Wong To Project File Dated May 7, 2007 Regarding Embarrass River USGS Gage Flow Data

Internal Memorandum

To:Project FileFrom:Miguel WongSubject:Embarrass River - USGS Gage Flow DataDate:May 7, 2007Project:23/69-862-015-074c:C:

Introduction

This memo a) summarizes the information available on daily stream flows at USGS gaging stations located within the Embarrass River watershed, and b) provides flow estimates for average, wet and dry weather conditions at two surface water monitoring stations in the Embarrass River.

USGS Gage Flow Data

Daily flows in the Embarrass River watershed are available at:

- USGS gaging station # 04017000 Embarrass River at Embarrass, Minnesota Drainage area = 88.3 square miles August 1, 1942 through December 31, 1964; and,
- USGS gaging station # 04018000 Embarrass River near McKinley, Minnesota Drainage area = 171.0 square miles October 1, 1953 through September 30, 1962.

Figure 1 shows that the time series of flow per unit catchment area at the two USGS gaging stations of the Embarrass River are very similar for the coincident period of record October 1, 1953 through September 30, 1962; the coefficient of correlation is 0.90. Flows recorded in the gaging station Embarrass River at Embarrass during 1953-1962, denoted by the green double-arrow in Figure 2, were on the average 36% smaller than those recorded at the same gaging station during 1942-1953. Precipitation records indicate the annual average snowfall during 1953-1962 was 25% smaller than that recorded during the previous decade, and most of the difference in the annual average flows observed at the Embarrass River at Embarrass before and during the coincident period of record referred to above can be explained by the difference in high flows occurring during spring snowmelt events. The decrease in flows during 1953-1962 was thus in response to natural climatic variability. Therefore, the entire period of record of the gaging station Embarrass River at Embarrass has been selected as representative of the hydrology at the two surface water monitoring stations in the Embarrass River.

Flow Estimates

Three statistics have been computed for the time series of flow yields at the gaging station Embarrass River at Embarrass:

- Mean annual flow = 0.73 cubic feet per second per square mile of catchment area;
- Average of the 1-day maximum annual flows = 7.6 cubic feet per second per square mile of catchment area; and,
- Average of the 30-day minimum annual flows = 0.045 cubic feet per second per square mile of catchment area.

These flow yield statistics represent average, wet and dry weather conditions for the entire Embarrass River watershed, respectively. The corresponding flow values at the two surface water monitoring stations in the Embarrass River are:

Station PM-12 (18.9 square miles)

- Average flow = 13.8 cubic feet per second.
- Wet flow = 144.4 cubic feet per second.
- Dry flow = 0.9 cubic feet per second.

Station PM-13 (111.8 square miles)

- Average flow = 81.5 cubic feet per second.
- Wet flow = 853.1 cubic feet per second.
- Dry flow = 5.1 cubic feet per second.

To:Project FileFrom:Miguel WongSubject:Embarrass River - USGS Gage Flow DataDate:May 7, 2007Project:23/69-862-015-074Page:3

Figure 1: Time series of flow yields at the two gaging stations in the Embarrass River for the coincident period of record 1953-1962

To:Project FileFrom:Miguel WongSubject:Embarrass River - USGS Gage Flow DataDate:May 7, 2007Project:23/69-862-015-074Page:4

Figure 2: Time series of flow yields at the gaging station in the Embarrass River at Embarrass for the entire period of record 1942-1964

Appendix D

MPCA Baseline Water Quality Data: Quaternary Aquifer Wells within the Copper Nickel Study Area

MPCA Baseline Water Quality Data: Quaternary Aquifer Wells within the Copper Nickel Study Area

ID Number		GWMAP00716	GWMAP00906	GWMAP01189	GWMAP00759	GWMAP00889	GWMAP01038
Universal Trans		561261	556345	577600	577858	555021	553861
Mercator - east		501201	550545	511099	577858	555921	555801
Universal Trans Mercator - north		5285293	5247911	5285468	5285406	5248401	5266949
County		St Louis	St Louis	St Louis	St Louis	St Louis	St Louis
MPCA Region		1	1	1	1	1	1
Well Use		Domestic	Domestic	Domestic	Domestic	Domestic	Domestic
Well Diameter	inch	4	4	6	4	4	6
CWI Aquifer Code	шен	OBAA	OBAA	OBAA	OWTA	OWTA	OWTA
		Buried artesian	Buried artesian	Buried artesian	Water table	Water table	Water table
Aquifer		aquifer	aquifer	aquifer	aquifer	aquifer	aquifer
1.10.0		buried	buried	buried	surficial	surficial	surficial
Aquifer Group		Quaternary	Quaternary	Quaternary	Quaternary	Quaternary	Quaternary
Well Depth	ft	136	117	152	151	148	86
Water Level	ft	10	25	12	0	14	35
Sampling Date		9/14/1995	8/22/1995	8/21/1996	9/14/1995	8/22/1995	6/5/1996
VOC Detected	14 - A	yes	yes	no	no	no	no
Alkalinity	ug/L	112000	282000	125000	164000	290000	95000
Aluminum	ug/L	257.73	1.14	869.82	756.46	1.59	6.49
Antimony	ug/L	0.007	0.050	0.007	0.030	0.020	0.015
Arsenic	ug/L	12.800	2.950	1.670	6.140	2.510	0.090
Barium	ug/L	133.7	41.5	61.2	144.7	35.4	75.0
Beryllium	ug/L	0.0400	0.0050	0.0600	0.0600	0.0050	0.0050
Bismuth	ug/L	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300
Boron	ug/L	14.8	93.0	14.3	27.6	65.4	12.0
Bromide	ug/L	0.100	0.100	0.100	0.100	0.100	0.100
Cadmium	ug/L	0.010	0.010	0.030	0.190	0.010	0.110
Calcium	ug/L	35477	27306	37426	57016	47169	40874
Cesium	ug/L	0.070	0.360	0.110	0.060	0.270	0.009
Chloride	ug/L	520	16320	10340	16340	2020	6610
Chromium	ug/L	2.49	0.04	3.76	5.03	0.04	0.08
Cobalt	ug/L	0.780	0.170	2.403	1.870	0.300	0.779
Copper	ug/L	530.4	9.6	7.4	140.0	11.8	8.3
Dissolved oxygen	ug/L	290	290	290	290	290	290
Eh	mV	86	276	-28	186	260	174
Fluoride	ug/L	200	630		220	550	
Iron	ug/L	4173.5	252.0	2281.2	13773.6	894.7	461.3
Lead	ug/L	25.32	1.31	1.71	10.57	0.02	0.32
Lithium	ug/L	4.4	15.8	4.4	4.4	16.5	4.4
Magnesium	ug/L	6195	49755	10433	18118	37601	5356
Manganese	ug/L	466.5	94.4	166.2	300.8	288.2	202.6
Mercury							
Molybdenum	ug/L	4.10	9.40	4.10	4.10	10.00	4.10
Nickel	ug/L	6.60	11.90	5.90	8.50	12.80	5.90
Nitrate-N	ug/L	490	490	490	490	490	490
Oxidation-reduction potential	mV	-137	54	-248	-35	40	-47
pH		7.90	8.30	8.26	7.90	7.80	7.03
Total Phosphorus	ug/L	212.4	164.7	84.0	440.5	72.0	14.8
Potassium	ug/L	1637	2782	1691	2555	2705	1336
Rubidium	ug/L	555	555	555	555	555	555
Selenium	ug/L	3.4	2.5	0.9	9.0	3.7	0.9
Silica	ug/L	12998	5616	7221	12200	9129	7959

ID Number		GWMAP00716	GWMAP00906	GWMAP01189	GWMAP00759	GWMAP00889	GWMAP01038
Silver	ug/L	0.008	0.020	0.008	0.030	0.008	0.008
Sodium	ug/L	3451	19119	4670	5152	11455	2498
Specific Conductance	mmhos/cm	0.215	0.586	0.277	0.405	0.544	0.260
Strontium	ug/L	136.5	282.5	133.4	156.6	212.2	91.8
Sulfate-S	ug/L	120	1500	2650	4860	90	5690
Sulfate	ug/L	360	4500	7950	14580	270	17070
Total Sulfur	ug/L	212	1678	2877	5059	160	5698
Temperature	°C	6.4	7.6	8.5	8.0	8.5	8.2
Thallium	ug/L	0.004	0.004	0.032	0.004	0.004	0.009
Tin	ug/L	0.650	0.050	0.030	0.110	0.030	0.310
Titanium	ug/L	0.0117	0.0062	0.0141	0.0176	0.0069	0.0034
Total dissolved solids	ug/L	156000	332000	168000	250000	344000	186000
Total organic carbon	ug/L	5600	1800	1800	2300	2600	1300
Total phosphate-P	ug/L	200	140	50	1020	40	10
Total suspended solids	ug/L	18000	2000	112000	26000	2000	2000
Tritium	ug/L		0.7	22.2			
Vanadium	ug/L	4.6	10.9	5.6	10.9	11.9	5.2
Zinc	ug/L	169.1	12.2	8.5	76.2	11.0	2.6
Zirconium	ug/L	0.280	0.040	0.650	0.230	0.090	0.020

MPCA Baseline Water Quality Data: Quaternary Aquifer Wells within the Copper Nickel Study Area

Data from Minnesota Pollution Control Agency's Ground Water Monitoring and Assessment Program (GWMAP) Baseline Data Sets http://www.pca.state.mn.us/water/groundwater/gwmap/gwbaseline.html

Appendix E

Calibration of Mass Balance Models for Embarrass River Watershed

Embarrass River Model - Calibration to Baseline Water Quality Data Parameter: Silver

	surface water flow into PM-12	Q_s12 =	12.60	(cfs)
ata	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
Ő	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
N N	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
님	LTVSMC Tailings Basin seepage	$Q_{ts} =$	11.50	(CIS)
t	around water flow into PM 12	Q_{1} = Q_{1}	0.00	(CIS)
du	ground water flow into PM-12	$Q_{g12} = 0.013 =$	0.00 4 21	(CIS)
		&_g10 =	7.21	(013)
	concentration of surface water into PM-12	C s12 =	0.11	(µq/l)
Data	concentration of surface water into PM-13	 C_s13 =	0.11	(µa/l)
u L	concentration of WWTP discharge	 C_sBab =	0.11	(µa/l)
atic	concentration of Area 5 Pit NW discharge	C_spit =	0.16	(ug/l)
entr	concentration of LTVSMC Tailings Basin seepage	C fs =	0.1	(µg/l)
DUC	concentration of Hydrometallurgical Residue Cells Liner Leakage	C rrs =	0	
Ŭ	concentration of ground water flow into PM-12	C g12 =	0.008	(µg/l)
ndu	concentration of ground water flow into PM-13	C q13 =	0.008	(µg/l)
	J	9.0		(1-3-7
e	flow in river at PM-12	Q_r12 =	13.79	(cfs)
ater Ian	flow in river at PM-13	Q_r13 =	80.00	(cfs)
Ba	flow check	Q_ck =	80.00	(cfs)
	mass flux of surface water into PM-12	M_s12 =	39	(µg/s)
	mass flux of surface water into PM-13	M_s13 =	151	(µg/s)
of	mass flux of Babbitt WWTP	M_sBab =	1	(µg/s)
u v	concentration of Area 5 Pit NW discharge	M_spit =	9	(µg/s)
El t	concentration of LTVSMC Tailings Basin seepage	M_fs =	33	(µg/s)
ss s	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(µg/s)
Calc Mas	mass flux of ground water into PM-12	M_g12 =	0	(µg/s)
02	mass flux of ground water into PM-13	M_g13 =	1	(µg/s)
)ce	mass flux in river at PM-12	M_r12 =	40	(µg/s)
lass alar				
Σä	mass flux in river at PM-13	M_r13 =	234	(µg/s)
C				
L ioi				
itec	concentration in river at PM-12	C_r12 =	0.10	(µg/l)
cer				
alc				4 AT
00	Iconcentration in river at PM-13	C_r13 =	0.10	(µg/l)
C				
atio				
/ed ntra	Observed concentration in river at PM-12		ND (0.2)	(µg/l)
sen				
D p	Observed concentration in river at PM-13		ND (0.2)	(ua/l)
		I	110 (0.2)	\M9''/

Embarrass River Model - Calibration to Baseline Water Quality Data Parameter: Aluminum

	surface water flow into PM-12	Q_s12 =	11.54	(cfs)
ta	surface water flow into PM-13	Q_s13 =	43.27	(cfs)
Da	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
≥ ≥	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
O L	LTVSMC Tailings Basin seepage	Q_fs =	11.50	(cfs)
rt I	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(CfS)
đu	ground water flow into PM-12	$Q_{g12} =$	0.86	(CfS)
	Iground water now into PM-13	Q_g13 =	4.21	(CIS)
	concentration of ourface water into DM 10	C a12	0.1	(ma/l)
Ita		0_\$12 =	0.1	(mg/i)
Da	concentration of surface water into PM-13	C_s13 =	0.1	(mg/l)
u.	concentration of WWTP discharge	C_sBab =	0.1	(mg/l)
trat	concentration of Area 5 Pit NW discharge	C_spit =	0.0125	(mg/l)
iu a	concentration of LTVSMC Tailings Basin seepage	C_fs =	1.5788	(mg/l)
ouo	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(mg/l)
U T	concentration of ground water flow into PM-12	C_g12 =	0.025	(mg/l)
Idu	concentration of ground water flow into PM-13	C g13 =	0.025	(mg/l)
		<u> </u>	0.020	\ ··· ອ··/
ø	flow in river at PM-12	Q_r12 =	12.73	(cfs)
tter and	flow in river at PM-13	 Q_r13 =	73.70	(cfs)
Wa Bal	flow check	Q ck =	73.70	(cfs)
				(0.0)
	mass flux of surface water into PM-12	M s12 =	33	(ma/l)
	mass flux of surface water into PM-13	M s13 =	122	(mg/l)
of	mass flux of Babbitt WWTP	M_sBab =	1	(mg/l)
Б×	concentration of Area 5 Pit NW discharge	M_spit =	1	(mg/l)
-Iu atic	concentration of LTVSMC Tailings Basin seepage	M_fs =	514	(mg/l)
s F s	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/l)
alc as	mass flux of ground water into PM-12	M_g12 =	1	(mg/l)
ΰΣ	mass flux of ground water into PM-13	M_g13 =	3	(mg/l)
e	mass flux in river at PM-12	M r12 =	34	(ma/s)
ss and				(<u>9</u> /0)
Ma Bal	mass flux in river at PM-13	M r13 =	674	(ma/s)
	1	<u> </u>	.	(····;) ···/
L L				
d atio				
ate ntra	concentration in river at PM-12	C_r12 =	0.09	(mg/l)
culs				
Calc	concentration in river at DM 12	C r12	0.00	(ma/l)
00	Concentration in river at FIVE 13	0_113 =	0.32	(119/1)
2				
atio				
/ed ntra	Observed concentration in river at PM-12		0.10	(mg/l)
sen				
SdC Do	Observed concentration in river at DM 12		0.10	(ma/l)
00			0.19	(IIIg/I)

Parameter: Arsenic

surface water flow into PM-12 Q_s12 = 12.60 (cfs) surface water flow into PM-13 Q_s13 = 48.51 (cfs) Babbitt WWTP discharge Q_spit = 0.33 (cfs) Area 5 Pit NW discharge Q_spit = 1.99 (cfs) LTVSMC Tailings Basin seepage Q_fs = 11.50 (cfs) Hydrometallurgical Residue Cells Liner Leakage Q_rrs = 0.00 (cfs) ground water flow into PM-12 Q_g12 = 0.86 (cfs) ground water flow into PM-13 Q_g13 = 4.21 (cfs) concentration of surface water into PM-13 C_s13 = 0.75 (µg/l) concentration of surface water into PM-13 C_s13 = 0.75 (µg/l) concentration of Area 5 Pit NW discharge C_spit = 1 (µg/l) concentration of LTVSMC Tailings Basin seepage C_fs = 2.905 (µg/l) concentration of ground water flow into PM-12 C_g12 = 2.73 (µg/l) concentration of ground water flow into PM-13 C_g13 = 2.73 (µg/l) concentration of ground water flow into PM-13 C_g13 = 2.73 (µg/l) concentration of ground water flow into PM-13 C_g13 = 2.73 (µg/l) concentration of ground water flow into PM-13 C_g13 = 2.73 (µg/l) concentration of ground water flow into PM-13 C_g13 = 2.73 (µg/l) concentration of ground water flow into PM-13 C_g13 = 2.73 (µg/l) flow in river at PM-12 Q_r12 = 13.79 (cfs) flow in river at PM-13 Q_r13 = 80.00 (cfs) flow check Q_0 ck = 80.00 (cfs)
The second se
Area 5 Pit NW dischargeQ_spit = 0.33 (cfs)Area 5 Pit NW dischargeQ_spit = 1.99 (cfs)LTVSMC Tailings Basin seepageQ_fs = 11.50 (cfs)ground water flow into PM-12Q_g12 = 0.00 (cfs)ground water flow into PM-13Q_g13 = 4.21 (cfs)ground water flow into PM-13Q_g13 = 4.21 (cfs)concentration of surface water into PM-13C_s13 = 0.75 (µg/l)concentration of surface water into PM-13C_s13 = 0.75 (µg/l)concentration of Area 5 Pit NW dischargeC_sbab = 0.75 (µg/l)concentration of LTVSMC Tailings Basin seepageC_fs = 2.905 (µg/l)concentration of ground water flow into PM-12C_g12 = 2.73 (µg/l)concentration of ground water flow into PM-13C_g13 = 2.73 (µg/l)concentration of ground water flow into PM-13C_g13 = 2.73 (µg/l)tow in river at PM-12Q_r12 = 13.79 (cfs)flow in river at PM-13Q_r13 = 80.00 (cfs)flow in river at PM-13Q_r13 = 80.00 (cfs)
Area 5 Pit NW discharge $O_spit =$ 1.99 (cfs)LTVSMC Tailings Basin seepageQ_fs = 11.50 (cfs)Hydrometallurgical Residue Cells Liner LeakageQ_rrs = 0.00 (cfs)ground water flow into PM-12Q_g12 = 0.86 (cfs)ground water flow into PM-13Q_g13 = 4.21 (cfs)concentration of surface water into PM-13C_s12 = 0.75 (µg/l)concentration of surface water into PM-13C_s13 = 0.75 (µg/l)concentration of Area 5 Pit NW dischargeC_sbab = 0.75 (µg/l)concentration of LTVSMC Tailings Basin seepageC_fs = 2.905 (µg/l)concentration of ground water flow into PM-12C_g12 = 2.73 (µg/l)concentration of ground water flow into PM-13C_g12 = 2.73 (µg/l)concentration of ground water flow into PM-13C_g13 = 2.73 (µg/l)flow in river at PM-12Q_r12 = 13.79 (cfs)flow in river at PM-13Q_r13 = 80.00 (cfs)flow in river at PM-13Q_r13 = 80.00 (cfs)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Hydrothetatidigical Residue Cens Lifter Leakage $Q_ns =$ $0.00 (cts)$ ground water flow into PM-12 $Q_g12 =$ $0.86 (cfs)$ ground water flow into PM-13 $Q_g13 =$ $4.21 (cfs)$ concentration of surface water into PM-12 $C_s12 =$ $0.75 (\mu g/l)$ concentration of surface water into PM-13 $C_s13 =$ $0.75 (\mu g/l)$ concentration of WWTP discharge $C_sBab =$ $0.75 (\mu g/l)$ concentration of Area 5 Pit NW discharge $C_spit =$ $1 (\mu g/l)$ concentration of LTVSMC Tailings Basin seepage $C_fs =$ $2.905 (\mu g/l)$ concentration of ground water flow into PM-12 $C_g12 =$ $2.73 (\mu g/l)$ concentration of ground water flow into PM-13 $C_g13 =$ $2.73 (\mu g/l)$ flow in river at PM-12 $Q_r12 =$ $13.79 (cfs)$ flow in river at PM-13 $Q_r13 =$ $80.00 (cfs)$
Operation
Image: concentration of surface water into PM-12C_s12 =0.75 (µg/l)concentration of surface water into PM-13C_s13 =0.75 (µg/l)concentration of WWTP dischargeC_sBab =0.75 (µg/l)concentration of Area 5 Pit NW dischargeC_spit =1 (µg/l)concentration of LTVSMC Tailings Basin seepageC_fs =2.905 (µg/l)concentration of ground water flow into PM-12C_g12 =2.73 (µg/l)concentration of ground water flow into PM-13C_g13 =2.73 (µg/l)flow in river at PM-12Q_r12 =13.79 (cfs)flow in river at PM-13Q_r13 =80.00 (cfs)flow checkQ_cfs0.00 (cfs)
the property concentration of surface water into PM-12C_s12 = 0.75 (µg/l)concentration of surface water into PM-13C_s13 = 0.75 (µg/l)concentration of WWTP dischargeC_sBab = 0.75 (µg/l)concentration of Area 5 Pit NW dischargeC_spit =1 (µg/l)concentration of LTVSMC Tailings Basin seepageC_fs = 2.905 (µg/l)concentration of Hydrometallurgical Residue Cells Liner LeakageC_rrs =0concentration of ground water flow into PM-12C_g12 = 2.73 (µg/l)concentration of ground water flow into PM-13C_g13 = 2.73 (µg/l)flow in river at PM-12Q_r12 = 13.79 (cfs)flow in river at PM-13Q_r13 = 80.00 (cfs)flow we heekO we heekO we heek0 we heek
tempconcentration of surface water into PM-12 $C_s12 =$ $0.75 (\mu g/l)$ concentration of surface water into PM-13 $C_s13 =$ $0.75 (\mu g/l)$ concentration of WWTP discharge $C_sBab =$ $0.75 (\mu g/l)$ concentration of Area 5 Pit NW discharge $C_spit =$ 1 ($\mu g/l)$ concentration of LTVSMC Tailings Basin seepage $C_fs =$ $2.905 (\mu g/l)$ concentration of Hydrometallurgical Residue Cells Liner Leakage $C_rrs =$ 0concentration of ground water flow into PM-12 $C_g12 =$ $2.73 (\mu g/l)$ concentration of ground water flow into PM-13 $C_g13 =$ $2.73 (\mu g/l)$ flow in river at PM-12 $Q_r12 =$ $13.79 (cfs)$ flow in river at PM-13 $Q_r13 =$ $80.00 (cfs)$ flow in river at PM-13 $Q_r6 =$ $80.00 (cfs)$
Image: concentration of surface water into PM-13 $C_s13 =$ $0.75 (\mu g/l)$ concentration of WWTP discharge $C_sBab =$ $0.75 (\mu g/l)$ concentration of Area 5 Pit NW discharge $C_spit =$ $1 (\mu g/l)$ concentration of LTVSMC Tailings Basin seepage $C_fs =$ $2.905 (\mu g/l)$ concentration of Hydrometallurgical Residue Cells Liner Leakage $C_rrs =$ 0 concentration of ground water flow into PM-12 $C_g12 =$ $2.73 (\mu g/l)$ concentration of ground water flow into PM-13 $C_g13 =$ $2.73 (\mu g/l)$ flow in river at PM-12 $Q_r12 =$ $13.79 (cfs)$ flow in river at PM-13 $Q_r13 =$ $80.00 (cfs)$ flow check $Q_ck =$ $80.00 (cfs)$
concentration of WWTP discharge C_sBab = 0.75 (µg/l) concentration of Area 5 Pit NW discharge C_spit = 1 (µg/l) concentration of LTVSMC Tailings Basin seepage C_fs = 2.905 (µg/l) concentration of Hydrometallurgical Residue Cells Liner Leakage C_rrs = 0 concentration of ground water flow into PM-12 C_g12 = 2.73 (µg/l) concentration of ground water flow into PM-13 C_g13 = 2.73 (µg/l) flow in river at PM-12 Q_r12 = 13.79 (cfs) flow in river at PM-13 Q_r13 = 80.00 (cfs) flow in river at PM-13 Q_r13 = 80.00 (cfs)
traceconcentration of Area 5 Pit NW dischargeC_spit =1(µg/l)concentration of LTVSMC Tailings Basin seepageC_fs =2.905(µg/l)concentration of Hydrometallurgical Residue Cells Liner LeakageC_rrs =0concentration of ground water flow into PM-12C_g12 =2.73(µg/l)concentration of ground water flow into PM-13C_g13 =2.73(µg/l)flow in river at PM-12Q_r12 =13.79(cfs)flow in river at PM-13Q_r13 =80.00(cfs)flow in river at PM-13Q_r13 =80.00(cfs)
concentration of LTVSMC Tailings Basin seepage C_fs = 2.905 (µg/l) concentration of Hydrometallurgical Residue Cells Liner Leakage C_rrs = 0 concentration of ground water flow into PM-12 C_g12 = 2.73 (µg/l) concentration of ground water flow into PM-13 C_g13 = 2.73 (µg/l) flow in river at PM-12 Q_r12 = 13.79 (cfs) flow in river at PM-13 Q_r13 = 80.00 (cfs) flow in river at PM-13 Q_r13 = 80.00 (cfs)
concentration of Hydrometallurgical Residue Cells Liner Leakage C_rrs = 0 concentration of ground water flow into PM-12 C_g12 = 2.73 (µg/l) concentration of ground water flow into PM-13 C_g13 = 2.73 (µg/l) flow in river at PM-12 Q_r12 = 13.79 (cfs) flow in river at PM-13 Q_r13 = 80.00 (cfs) flow check Q_ck = 80.00 (cfs)
O to Cconcentration of ground water flow into PM-12C_g12 =2.73 (µg/l)concentration of ground water flow into PM-13C_g13 =2.73 (µg/l)o to concentration of ground water flow into PM-13O c_g12 =2.73 (µg/l)o to concentration of ground water flow into PM-13O c_g12 =2.73 (µg/l)o to concentration of ground water flow into PM-13O c_g13 =O c_g12 =13.79 (cfs)flow in river at PM-12O c_r12 =13.79 (cfs)flow in river at PM-13O c k =80.00 (cfs)O c k =
C_g13 =2.73 ($\mu g/l$)The problem of ground water flow into PM-13C_g13 =2.73 ($\mu g/l$)The problem of ground water flow into PM-13Q_r12 =13.79 (cfs)The problem of ground water flow in river at PM-12Q_r13 =80.00 (cfs)The problem of ground water flow in river at PM-13Q_r13 =80.00 (cfs)The problem of ground water flow checkQ_ck =80.00 (cfs)
$\begin{array}{c c} & & & & \\ \hline & & & \\ \hline & & & \\ \hline \\ \hline$
Image: second
Flow in river at PM-13 $Q_r13 = 80.00$ (cfs)
\sim m flow check \sim 80.00 (cfs)
mass flux of surface water into PM-12 M s12 = 268 (µg/s
mass flux of surface water into PM-13 $M_s13 = 1030 (\mu g/s)$
δ mass flux of Babbitt WWTP M_sBab = 7 (μg/s
$5 \times \text{concentration of Area 5 Pit NW discharge}$ M_spit = 56 (µg/s
Example Concentration of LTVSMC Tailings Basin seepage M_fs = 945 (µg/s
concentration of Hydrometallurgical Residue Cells Liner Leakage M_rrs = 0 (μg/s
$\frac{1}{100} \frac{1}{100} \frac{1}$
$O \ge mass flux of ground water into PM-13$ $M_g13 = 325 (\mu g/s)$
Φ
$M_r12 = 341 (\mu g/s)$
lan
Σ 🛱 mass flux in river at PM-13 M_r13 = 2698 (μg/s
ttion and the second
concentration in river at PM-12 C r12 = 0.87 (uo/l)
O O concentration in river at PM-13 C_r13 = 1.19 (µg/l)
Ę
ation
Dbserved concentration in river at PM-12 ND (2) (µg/l)
Dbserved concentration in river at PM-12 ND (2) (µg/l)
Deserved concentration in river at PM-12 (µg/l)

Parameter: Boron

surface water flow into PM-12 Q. s12 = 12.60 (cfs) Yardace water flow into PM-13 Q. s13 = 44.51 (cfs) Babbit WWTP discharge Q. s9Bab = 0.33 (cfs) Yardace water flow into PM-12 Q. s12 = 1.99 (cfs) Hydrometallurgical Residue Cells Liner Leakage Q. rs = 1.150 (cfs) Yardace water flow into PM-12 Q. g12 = 0.88 (cfs) Yardace water flow into PM-13 Q. g13 = 4.21 (cfs) Yardace water flow into PM-13 Q. g13 = 4.21 (cfs) Concentration of surface water into PM-13 C. s13 = 11 (µq/I) Concentration of Surface water into PM-13 C. s13 = 12 (µg/I) Concentration of Area 5 PI NW discharge C. s8Bab = 12 (µg/I) Concentration of Area 5 PI NW discharge C. s91 = 133 (µg/I) Concentration of ground water flow into PM-12 C. g12 = 21.2 (µg/I) Concentration of ground water flow into PM-13 C. g13 = 21.2 (µg/I) Concentration of ground water flow into PM-13 C. g13 = 11.2 (µg/I) Concentration of Hydrometallurgical Residue Cells Liner Leakage C. rrs = 0	-		-		_
Bistritace water flow into PM-13 Q s13 = 4.851 (cfs) (cfs) Area S Pit NW discharge Q sBab 0.33 (cfs) Area S Pit NW discharge Q spit = 1.99 (cfs) ground water flow into PM-12 Q g13 = 4.21 (cfs) ground water flow into PM-13 Q g13 = 4.21 (cfs) ground water flow into PM-13 Q g13 = 4.21 (cfs) concentration of surface water into PM-13 C s12 = 12 (µg/l) concentration of surface water into PM-13 C s13 = 112 (µg/l) concentration of surface water into PM-13 C s13 = 12 (µg/l) concentration of surface water into PM-12 C s12 = 2 (µg/l) concentration of LTVSMC Tailings Basin seepage C spit = 163 (µg/l) concentration of ground water flow into PM-12 C g12 = 21.2 (µg/l) concentration of ground water flow into PM-13 C g13 = 21.2 (µg/l) concentration of ground water flow into PM-13 C g13 = 21.2 (µg/l) concentration of ground water flow PM-13 C g13 = 21.2 (µg/l) concentration of pround water flow PM-13 M s13 = 1180 (µg/s)		surface water flow into PM-12	Q_s12 =	12.60	(cfs)
Operation Operating and set of the se	ata	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
Affed b Pfit NW discharge O. splt = 11.50 (cfs) Pit CMSMC Tailings Basin seepage Q. rs = 0.00 (cfs) Pydrometallurgical Residue Cells Liner Leakage Q. rrs = 0.00 (cfs) ground water flow into PM-13 Q.g13 = 4.21 (cfs) concentration of surface water into PM-13 C. s12 = 11.50 (cfs) concentration of surface water into PM-13 C. s13 = 112 (µg/l) concentration of surface water into PM-13 C. s13 = 112 (µg/l) concentration of surface water into PM-13 C. s13 = 12 (µg/l) concentration of LTVSMC Tailings Basin seepage C. fs = 330 (µg/l) concentration of Hydrometallurgical Residue Cells Liner Leakage C. rrs = 0 concentration of ground water flow into PM-12 C. g12 = 21.2 (µg/l) concentration of ground water flow into PM-13 C. g13 = 21.2 (µg/l) concentration of ground water flow into PM-13 Q. g13 = 21.2 (µg/l) concentration of ground water flow into PM-13 Q.g13 = 21.2 (µg/l) concentration of ground water flow into PM-13 Q.g13 = 21.2 (µg/l) mass flux of surface water into PM-1	Ö	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
Link Use of a second constraints Use of a second const	Ň	Area 5 Pit NW discharge	Q_spit =	1.99	(CIS)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ĕ	LTVSMC Tallings Basin seepage	$Q_{IS} =$	0.00	(CIS)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nt	around water flow into PM-12	$Q_{15} = 0.012 = 0.012$	0.00	(CIS)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	du	around water flow into PM-13	$Q_{g12} = 0$	4.21	(cfs)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			<u>a_910</u> =		(0.0)
$\begin{tabular}{ c c c c c } \hline tilde{tabular} text and the text and the text and t$	m	concentration of surface water into PM-12	C_s12 =	12	(µg/l)
$\begin{tabular}{ c c c c c } \hline \end{tabular} tabula$	Data	concentration of surface water into PM-13	C_s13 =	12	(µg/l)
$\begin{tabular}{ c c c c c } \hline tilty discharge & C_spit = 163 (µg/l) \\ \hline concentration of LTVSMC Tailings Basin seepage & C_fs = 330 (µg/l) \\ \hline concentration of Hydrometallurgical Residue Cells Liner Leakage & C_rrs = 0 \\ \hline concentration of ground water flow into PM-12 & C_g12 = 21.2 (µg/l) \\ \hline concentration of ground water flow into PM-13 & C_g13 = 21.2 (µg/l) \\ \hline concentration of ground water flow into PM-13 & C_g13 = 21.2 (µg/l) \\ \hline flow in river at PM-12 & Q_rr12 = 13.79 (cfs) \\ flow in river at PM-13 & Q_rr13 = 80.00 (cfs) \\ \hline flow in river at PM-13 & Q_rr13 = 80.00 (cfs) \\ \hline to wcheck & Q_cck = 80.00 (cfs) \\ \hline to mass flux of surface water into PM-12 & M_s13 = 16473 (µg/s) \\ \hline mass flux of surface water into PM-13 & M_s13 = 16473 (µg/s) \\ \hline mass flux of surface water into PM-13 & M_s13 = 10473 (µg/s) \\ \hline mass flux of ground water into PM-13 & M_s13 = 10473 (µg/s) \\ \hline mass flux of ground water into PM-13 & M_s13 = 10473 (µg/s) \\ \hline mass flux of ground water into PM-13 & M_s13 = 10473 (µg/s) \\ \hline mass flux of ground water into PM-13 & M_g12 = 2516 (µg/s) \\ \hline mass flux of ground water into PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux of ground water into PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux of ground water into PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 & M_g13 = 2526 (µg/s) \\ \hline mass flux in river at PM-13 & M_g13 & M_g13 & M_g13 & M_g13 & M_g13 $	ion	concentration of WWTP discharge	C_sBab =	12	(µg/l)
SolutionConcentration of LTVSMC Tailings Basin seepageC_fs =330 (µg/l)concentration of Hydrometallurgical Residue Cells Liner LeakageC_rrs =0concentration of ground water flow into PM-12C_g12 =21.2 (µg/l)concentration of ground water flow into PM-13C_g13 =21.2 (µg/l)concentration of ground water flow into PM-13C_g13 =21.2 (µg/l)flow in river at PM-120_r12 =13.79 (cfs)flow in river at PM-130_r13 =80.00 (cfs)flow in river at PM-130_r13 =4280 (µg/s)mass flux of surface water into PM-12M_s12 =4280 (µg/s)mass flux of surface water into PM-13M_s13 =16473 (µg/s)mass flux of surface water into PM-13M_s12 =107399 (µg/s)concentration of Area 5 Pit NW dischargeM_s91 =9180 (µg/s)concentration of LTVSMC Tailings Basin seepageM_rs =0 (µg/s)mass flux of ground water into PM-13M_g12 =2526 (µg/s)mass flux of ground water into PM-13M_g13 =2526 (µg/s)mass flux of ground water into PM-13M_g13 =2526 (µg/s)mass flux in river at PM-13M_r13 =140485 (µg/s)mass flux in river at PM-13M_g13 =2526 (µg/s)mass flux in river at PM-13C_r13 =62.05 (µg/l)concentration in river at PM-13M_g13 =2526 (µg/l)mass flux in river at PM-13G_ground water into PM-12M_ground water into PM-13mass flux in river at PM-13G_ground water into PM-13G_ground water into PM-13 </td <td>trati</td> <td>concentration of Area 5 Pit NW discharge</td> <td>C_spit =</td> <td>163</td> <td>(µg/l)</td>	trati	concentration of Area 5 Pit NW discharge	C_spit =	163	(µg/l)
$\begin{tabular}{ c c c c } \hline \end{tabular} \end{tabular}$	sen Len	concentration of LTVSMC Tailings Basin seepage	C_fs =	330	(µg/l)
$\begin{array}{ c c c c } \hline \begin{array}{ c c c } \hline c & c & c & g12 & $	Sono	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
E concentration of ground water flow into PM-13 C_g13 = 21.2 (µg/l) Intervention of ground water flow into PM-13 0,r12 = 13.79 (cfs) Intervention of ground water flow into PM-13 0,r13 = 80.00 (cfs) Intervention of ground water flow into PM-13 0,r13 = 40.00 (cfs) Intervention of Area SPI NX of Surface water into PM-12 M_s12 = 4280 (µg/s) Intervention of Area SPI NX discharge M_s13 = 16473 (µg/s) Intervention of Area SPI NX discharge M_s13 = 107399 (µg/s) Intervention of Area SPI NX discharge M_s12 = 516 (µg/s) Intervention of Area SPI NX discharge M_s12 = 516 (µg/s) Intervention of Area SPI NX discharge M_s13 = 107399 (µg/s) Intervention of Area SPI NX discharge M_s13 = 107399 (µg/s) Intervention of Hydrometallurgical Residue Cells Liner Leakage M_rrs = 0 (µg/s) Intervention of Hydrometallurgical Residue Cells Liner Leakage M_rrs = 0 (µg/s) Intervention of Area SPI NX disconter into PM-12 M_g13 = 2526 (µg/s) Intervention of Area SPI NX disconter into PM-13 M_g13 = 140485 (µg/s)<	nt O	concentration of ground water flow into PM-12	C_g12 =	21.2	(µg/l)
Approximate Approximate <thapproximate< th=""> <thapproximate< th=""></thapproximate<></thapproximate<>	dul	concentration of ground water flow into PM-13	C_g13 =	21.2	(µg/l)
Note Inversion In					
The formThe fo	e	flow in river at PM-12	Q_r12 =	13.79	(cfs)
Image: Normal StructureImage: Normal	ater Ilan	flow in river at PM-13	Q_r13 =	80.00	(cfs)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	W; Ba	flow check	Q_ck =	80.00	(cfs)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		mass flux of surface water into PM-12	M_s12 =	4280	(µg/s)
$\begin{tabular}{ c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		mass flux of surface water into PM-13	M_s13 =	16473	(µg/s)
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	of	mass flux of Babbitt WWTP	M_sBab =	112	(µg/s)
Image: concentration of LTVSMC Tailings Basin seepageM_fs =107399 (µg/s)concentration of Hydrometallurgical Residue Cells Liner LeakageM_rrs =0 (µg/s)mass flux of ground water into PM-12M_g12 =516 (µg/s)mass flux of ground water into PM-13M_g13 =2526 (µg/s)mass flux in river at PM-12mass flux in river at PM-13M_r12 =4908 (µg/s)mass flux in river at PM-13C_r12 =12.57 (µg/l)concentration in river at PM-13C_r12 =12.57 (µg/l)observed concentration in river at PM-12C_r13 =62.05 (µg/l)Observed concentration in river at PM-13Observed concentration in river at PM-13	uo X	concentration of Area 5 Pit NW discharge	M_spit =	9180	(µg/s)
Image: concentration of Hydrometallurgical Residue Cells Liner Leakage M_rrs = 0 (µg/s) mass flux of ground water into PM-12 M_g12 = 516 (µg/s) mass flux of ground water into PM-13 M_g13 = 2526 (µg/s) mass flux in river at PM-12 M_r12 = 4908 (µg/s) mass flux in river at PM-12 M_r13 = 140485 (µg/s) mass flux in river at PM-13 M_r13 = 140485 (µg/s) concentration in river at PM-13 C_r12 = 12.57 (µg/l) order of the optimization of river at PM-13 C_r13 = 62.05 (µg/l) other optimization of river at PM-13 C_r13 = 62.05 (µg/l) other optimization of river at PM-13 0 0 0 optimization of river at PM-13 0 0 0 0 optimization of river at PM-13 0 0 0 0 0 optimization of river at PM-13 0 0 0 0 0 0 optimization of river at PM-13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lati FIL	concentration of LTVSMC Tailings Basin seepage	M_fs =	107399	(µg/s)
The set of ground water into PM-12 M_g12 = 516 (µg/s) mass flux of ground water into PM-13 M_g13 = 2526 (µg/s) mass flux in river at PM-12 M_r12 = 4908 (µg/s) mass flux in river at PM-13 M_r13 = 140485 (µg/s) mass flux in river at PM-13 M_r13 = 140485 (µg/s) participation concentration in river at PM-13 C_r12 = 12.57 (µg/l) participation concentration in river at PM-13 C_r13 = 62.05 (µg/l) participation observed concentration in river at PM-12 ND (35) (µg/l) participation observed concentration in river at PM-13 68.9 (µg/l)	cul ss	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(µg/s)
SolutionImage flux or ground water into PM-13Image flux or ground water into PM-13Image flux in river at PM-12Image flux in river at PM-12Image flux in river at PM-12Image flux in river at PM-13Image flux in river at PM-13	Cal Aa:	mass flux of ground water into PM-12	M_g12 =	516	(µg/s)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02	mass nux of ground water into PM-13	M_g13 =	2020	(µg/s)
$\frac{90}{1000} \frac{\text{mass flux in river at PM-12}}{\text{mass flux in river at PM-13}} \qquad M_r12 = 4908 (\mu g/s) \\ M_r13 = 140485 (\mu g/s) \\ M_r13 = 140485 (\mu g/s) \\ \hline M_r13 = 140485 (\mu g/s) \\ \hline M_r13 = 140485 (\mu g/s) \\ \hline M_r13 = 12.57 (\mu g/l) \\ \hline M_r13 = 12.57 ($					
$\frac{1}{1000} = \frac{1}{1000} = 1$	e	mass flux in river at PM-12	M r12 –	4908	(ua/s)
$\frac{140485}{(\mu g/s)}$ $\frac{12.57}{(\mu g/l)}$	ss and		<u> </u>	+300	(µg/3)
Pattern Image: mass nux in river at PM-13 M_{-1} is a mass nux in river at PM-13 L_{-1} is a mass nux in river at PM-12 Pattern concentration in river at PM-12 C_r12 = 12.57 (µg/l) concentration in river at PM-13 C_r13 = 62.05 (µg/l) Observed concentration in river at PM-12 ND (35) (µg/l) Observed concentration in river at PM-13 68.9 (µg/l)	Ma: Sal	mass flux in river at PM 13	M r12 -	140485	(ua/c)
concentration in river at PM-12C_r12 =12.57(µg/l)concentration in river at PM-13C_r13 =62.05(µg/l)Observed concentration in river at PM-12ND (35)(µg/l)Observed concentration in river at PM-1368.9(µg/l)	2 Ш	111233 1104 11 11961 at 1 191-13	w_ri3 =	140400	(µy/s)
concentration in river at PM-12 C_r12 = 12.57 (µg/l) concentration in river at PM-13 C_r13 = 62.05 (µg/l) concentration in river at PM-12 ND (35) (µg/l) observed concentration in river at PM-13 ND (35) (µg/l)	_				
$\frac{12.57}{(\mu g/l)}$	ion Ion				
$\frac{12.37 (\mu g/l)}{C_r r 13 =} = \frac{12.37 (\mu g/l)}{62.05 (\mu g/l)}$	ed rat	concentration in river at PM-12	C r12 -	10.57	(ua/l)
$\frac{1}{10000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$	lat(0_112 =	12.07	(µg/I)
Solution C_r13 = 62.05 (µg/l) Participation Observed concentration in river at PM-12 ND (35) (µg/l) Observed concentration in river at PM-13 68.9 (µg/l)	lcu				
Observed concentration in river at PM-12 ND (35) (µg/l) Observed concentration in river at PM-13 68.9 (µg/l)	Cal	concentration in river at PM-13	C r13 =	62 05	(ua/l)
Observed concentration in river at PM-12 ND (35) (µg/l) Observed concentration in river at PM-13 68.9 (µg/l)			10	02.00	\ m 9'''/
Observed concentration in river at PM-12 ND (35) (µg/l) Observed concentration in river at PM-13 68.9 (µg/l)					
Observed concentration in river at PM-12 ND (35) (µg/l) Observed concentration in river at PM-13 68.9 (µg/l)	tior				
O O Observed concentration in river at PM-13 68.9 (µg/l)	ed tra	Observed concentration in river at PM-12		ND (35)	(µg/l)
O O Observed concentration in river at PM-13 68.9 (µg/l)	e S				
Ö Ŭ Observed concentration in river at PM-13 68.9 (μg/l)) SSE				
	ŏŭ	Observed concentration in river at PM-13		68.9	(µg/l)

Parameter: Barium

	surface water flow into PM-12	Q_s12 =	11.54	(cfs)
Ita	surface water flow into PM-13	Q_s13 =	43.27	(cfs)
Da	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
≥	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
<u>e</u>	LTVSMC Tailings Basin seepage	Q_fs =	11.50	(cfs)
보	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(cfs)
nd	ground water flow into PM-12	Q_g12 =	0.86	(cfs)
<u>_</u>	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
а	concentration of surface water into PM-12	C_s12 =	11	(µg/l)
Dat	concentration of surface water into PM-13	C_s13 =	11	(µg/l)
u	concentration of WWTP discharge	C_sBab =	11	(µg/l)
trati	concentration of Area 5 Pit NW discharge	C_spit =	5	(µg/l)
en:	concentration of LTVSMC Tailings Basin seepage	C_fs =	92.98	(µg/l)
ouo	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
nt O	concentration of ground water flow into PM-12	C_g12 =	68.1	(µg/l)
du	concentration of ground water flow into PM-13	C_g13 =	68.1	(µg/l)
	·	-		
Q	flow in river at PM-12	Q r12 =	12.73	(cfs)
ter anc	flow in river at PM-13	Q r13 =	73.70	(cfs)
Wat Bala	flow check	Q ck =	73.70	(cfs)
		_		. ,
	mass flux of surface water into PM-12	M s12 –	3592	(un/s)
	mass flux of surface water into PM-13	M_s13 -	13470	(µg/s)
oť	mass flux of Babbitt WWTP	M_sBab =	103	(µg/s)
ц Ц	concentration of Area 5 Pit NW discharge	M_spit =	282	(µg/s)
lu, tio	concentration of LTVSMC Tailings Basin seepage	M_fs =	30260	(µg/s)
ы П П П	concentration of Hydrometallurgical Residue Cells Liner Leakage	M rrs =	0	(µg/s)
alci	mass flux of ground water into PM-12	M a12 =	1657	(µg/s)
ΰຶຶ	mass flux of ground water into PM-13	M_g13 =	8114	(µg/s)
		0		,
e C	mass flux in river at PM-12	M r12 =	5352	(ua/s)
ss ano			0002	(rs, c)
vla 3al	mass flux in river at PM-13	M r13 -	57/70	(110/6)
	וויזאסט וועא או איפו מגד איריס	IVI_I I 3 =	5/4/0	(µy/5)
		1		
uo				
atio				
ate	concentration in river at PM-12	C_r12 =	14.86	(µg/l)
ula				
alc				
ΰŎ	concentration in river at PM-13	C_r13 =	27.56	(µg/l)
Ę				
ttio				
ed Itra	Observed concentration in river at PM-12		15.50	(µg/l)
en K				
se				
ဝိပိ	Observed concentration in river at PM-13		27.80	(µg/l)
	·	•		

Parameter: Beryllium

		1	
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)
ıta	surface water flow into PM-13	Q_s13 =	48.51 (cfs)
Da	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)
3	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)
음	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)
rt I	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)
nd I	ground water flow into PM-12	Q_g12 =	0.86 (cfs)
	ground water flow into PM-13	Q_g13 =	4.21 (Cfs)
		•	
ם. ש	concentration of surface water into PM-12	C_s12 =	0.1 (µg/l)
Dat	concentration of surface water into PM-13	C_s13 =	0.1 (µg/l)
ion	concentration of WWTP discharge	C_sBab =	0.1 (µg/l)
itrat	concentration of Area 5 Pit NW discharge	C_spit =	0.1 (µg/l)
cen	concentration of LTVSMC Tailings Basin seepage	C_fs =	0.75 (µg/l)
Sone	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0
nt C	concentration of ground water flow into PM-12	C_g12 =	0.023 (µg/l)
dul	concentration of ground water flow into PM-13	C_g13 =	0.023 (µg/l)
e	flow in river at PM-12	Q_r12 =	13.79 (cfs)
ater land	flow in river at PM-13	Q_r13 =	80.00 (cfs)
Ba Ba	flow check	Q_ck =	80.00 (cfs)
	mass flux of surface water into PM-12	M s12 =	36 (µa/s)
	mass flux of surface water into PM-13	M s13 =	137 (µg/s)
of	mass flux of Babbitt WWTP	M sBab =	1 (µg/s)
E ×	concentration of Area 5 Pit NW discharge	M spit =	6 (µg/s)
llu; Itic	concentration of LTVSMC Tailings Basin seepage	M fs =	244 (µg/s)
ula s F	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (µg/s)
asa	mass flux of ground water into PM-12	M_g12 =	1 (µg/s)
ΰΞ	mass flux of ground water into PM-13	M_g13 =	3 (µg/s)
	•		
ce	mass flux in river at PM-12	M_r12 =	37 (µg/s)
ss an			Ar 3 ⁻⁷
Vla 3al	mass flux in river at PM-13	M r13 –	427 (ug/s)
	ווייסט וועא וו וועכו מנד ועריוס	INT_110 =	τ <i>ει</i> (μ9/5)
uo			
ati			
ate	concentration in river at PM-12	C_r12 =	0.10 (µg/l)
sula			
alc			
ΟŪ	concentration in river at PM-13	C_r13 =	0.19 (µg/l)
L L			
atic			
ed	Observed concentration in river at PM-12		ND (0.2) (µg/l)
Ser Je			
) SSE			
δŭ	Observed concentration in river at PM-13		ND (0.2) (µg/l)

Parameter: Calcium

	surface water flow into PM 12	0 c12	10 60	(ofc)
D	surface water flow into PM-13	0 = 13 =	12.0U 12.51	(cfs)
ati	Babbitt WWTP discharge	$\Omega_{\rm sBab} =$	-+0.01 0 33	(cfs)
	Area 5 Pit NW discharge	$Q_{spit} =$	1.99	(cfs)
Ň	LTVSMC Tailings Basin seepage	Q fs =	11.50	(cfs)
Ē	Hydrometallurgical Residue Cells Liner Leakage	Q rrs =	0.00	(cfs)
ont	ground water flow into PM-12	Q g12 =	0.86	(cfs)
<u> </u>	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
				<u> </u>
D	concentration of surface water into PM-12	C_s12 =	13	(mg/l)
Dat	concentration of surface water into PM-13	C_s13 =	13	(mg/l)
<u>io</u>	concentration of WWTP discharge	C_sBab =	13	(mg/l)
trat	concentration of Area 5 Pit NW discharge	C_spit =	98.7	(mg/l)
sen (concentration of LTVSMC Tailings Basin seepage	C_fs =	59.78	(mg/l)
Sonc	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
nt O	concentration of ground water flow into PM-12	C_g12 =	19	(mg/l)
lnp	concentration of ground water flow into PM-13	C_g13 =	19	(mg/l)
. 8	flow in river at PM-12	Q_r12 =	13.79	(cfs)
ater Ilan	flow in river at PM-13	Q_r13 =	80.00	(cfs)
₿ Š	flow check	Q_ck =	80.00	(cfs)
	mass flux of surface water into PM-12	M_s12 =	4637	(µg/s)
	mass flux of surface water into PM-13	M_s13 =	17845	(mg/s)
o	mass flux of Babbitt WWTP	M_sBab =	121	(mg/s)
Lo X	concentration of Area 5 Pit NW discharge	M_spit =	5558	(mg/s)
ati FIL	concentration of LTVSMC Tailings Basin seepage	M_fs =	19455	(mg/s)
cul ss	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/s)
alı 1a:	mass flux of ground water into PM-12	M_g12 =	462	(mg/s)
02	mass flux of ground water into PM-13	M_g13 =	2264	(mg/s)
e	mass flux in river at PM-12	M r12 =	5221	(ma/s)
ss and			0221	(g, 3)
ala: 3ala	mass flux in river at PM-13	M r13 –	50344	(ma/e)
2 11		<u>[M_10 –</u>	50044	(119/3)
io				
ed rat	concentration in river at PM-12	C r12 -	13 37	(ma/l)
lat [.]		0_112 =	10.07	(119/1)
no Loc				
Cal	concentration in river at PM-13	C r13 =	22.24	(mg/l)
		<u> </u>		、 し /
Ę				
atio				
/ed ntra	Observed concentration in river at PM-12		13.4	(mg/l)
en cel				
sd			10.5	/ A\
00	Observed concentration in river at PM-13		19.9	(mg/l)

Parameter: Cadmium

		ā	
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)
ta	surface water flow into PM-13	Q_s13 =	48.51 (cfs)
Da	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)
3	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)
je L	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)
ц т т	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)
L d	ground water flow into PM-12	Q_g12 =	0.86 (cfs)
L L	ground water flow into PM-13	Q_g13 =	4.21 (cfs)
a	concentration of surface water into PM-12	C_s12 =	0.08 (µg/l)
Dat	concentration of surface water into PM-13	C_s13 =	0.08 (µg/l)
u.	concentration of WWTP discharge	C_sBab =	0.08 (µg/l)
trati	concentration of Area 5 Pit NW discharge	C_spit =	0.1 (µg/l)
en.	concentration of LTVSMC Tailings Basin seepage	C_fs =	0.188 (µg/l)
ouo	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0
nt O	concentration of ground water flow into PM-12	C_g12 =	0.3 (µg/l)
dul	concentration of ground water flow into PM-13	C_g13 =	0.3 (µg/l)
	•		
ġ	flow in river at PM-12	Q_r12 =	13.79 (cfs)
tter anc	flow in river at PM-13	 Q_r13 =	80.00 (cfs)
Wa Bal	flow check	 Q_ck =	80.00 (cfs)
	mass flux of surface water into PM-12	M s12 =	29 (ug/s)
	mass flux of surface water into PM-13	M_s13 =	110 (ug/s)
of	mass flux of Babbitt WWTP	M_sBab =	1 (µg/s)
L L	concentration of Area 5 Pit NW discharge	M_spit =	6 (ug/s)
lux Iux	concentration of LTVSMC Tailings Basin seepage	M fs =	61 (ua/s)
ла Г	concentration of Hydrometallurgical Residue Cells Liner Leakage	M rrs =	0 (µg/s)
alcı ass	mass flux of ground water into PM-12	M g12 =	7 (µg/s)
Ma Ma	mass flux of ground water into PM-13	M_g13 =	36 (µa/s)
			(F.g, -)
e	mass flux in river at PM-12	M r12 =	37 (ua/s)
ss ano			(µ9,0)
Ma: 3ali	mass flux in river at PM-13	M r13 -	249 (110/0)
	1111255 11UX 111 11VEI al FIVI-15	IVI_I I 3 =	249 (µy/s)
uc			
atic			
ate	concentration in river at PM-12	C_r12 =	0.09 (µg/l)
suls			
alc			
00	concentration in river at PM-13	C_r13 =	0.11 (µg/l)
L L			
atio			
vec	Observed concentration in river at PM-12	+	ND (0.2) (µg/l)
ser			
õ õ	Observed concentration in river at PM-13		ND (0.2) (ug/l)
		1	

Embarrass River Model - Calibration to Baseline Water Quality Data Parameter: Chloride

	surface water flow into PM-12	Q_s12 =	0.30	(cfs)
lta	surface water flow into PM-13	Q_s13 =	0.30	(cfs)
Da	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
≥	Area 5 Pit NW discharge	Q_spit =	0.00	(cfs)
<u> </u>	LTVSMC Tailings Basin seepage	Q_fs =	1.20	(cfs)
, TF	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(cts)
Idr	ground water flow into PM-12	Q_g12 =	0.86	(CfS)
<u> </u>	ground water now into PNI-13	<u>v_</u> gi3 =	4.21	(CIS)
	concentration of ourface water into DM 10	0.010	10	(mg/l)
ta	Concentration of surface water into PM-12	0_512 =	10	(mg/l)
Da	concentration of surface water into PM-13	C_s13 =	10	(mg/l)
ion I	concentration of WWTP discharge	C_sBab =	10	(mg/l)
trat	concentration of Area 5 Pit NW discharge	C_spit =	6.5	(mg/l)
Sen	concentration of LTVSMC Tailings Basin seepage	C_fs =	21.54	(mg/l)
ouo	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(mg/l)
nt O	concentration of ground water flow into PM-12	C_g12 =	1.8	(mg/l)
lup	concentration of ground water flow into PM-13	C_g13 =	1.8	(mg/l)
-				
. 8	flow in river at PM-12	Q_r12 =	1.49	(cfs)
ater Ian	flow in river at PM-13	Q_r13 =	7.20	(cfs)
Ba	flow check	Q_ck =	7.20	(cfs)
	mass flux of surface water into PM-12	M_s12 =	85	(mg/l)
	mass flux of surface water into PM-13	M_s13 =	<u>8</u> 5	(mg/l)
of	mass flux of Babbitt WWTP	M_sBab =	93	(mg/l)
u no ×	concentration of Area 5 Pit NW discharge	M_spit =	0	(mg/l)
ati	concentration of LTVSMC Tailings Basin seepage	M_fs =	731	(mg/l)
l si	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/l)
alc 1as	mass flux of ground water into PM-12	M_g12 =	44	(mg/l)
2	mass flux of ground water into PM-13	M_g13 =	214	(mg/l)
e	mass flux in river at PM-12	M r12 =	222	(mg/s)
lss lan				. U -/
Ma Bal	mass flux in river at PM-13	M r13 =	1253	(mg/s)
				、 ∪ -/
UC				
d atio				
ate	concentration in river at PM-12	C_r12 =	5.27	(mg/l)
cer cer				
alc				,
00	concentration in river at PM-13	C_r13 =	6.15	(mg/l)
-				
ttior				
ed itra	Observed concentration in river at PM-12		4.49	(mg/l)
er V				
bsd				
00	Observed concentration in river at PM-13		6.98	(mg/l)

	surface water flow into PM-12	Q_s12 =	12.60	(cfs)
ıta	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
Da	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
3	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
<u>e</u>	LTVSMC Tailings Basin seepage	Q_fs =	11.50	(cfs)
т т	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(cfs)
nd	ground water flow into PM-12	Q_g12 =	0.86	(cfs)
<u> </u>	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
b	concentration of surface water into PM-12	C_s12 =	0.6	(µg/l)
Dat	concentration of surface water into PM-13	C_s13 =	0.6	(µg/l)
ion	concentration of WWTP discharge	C_sBab =	0.6	(µg/l)
trat	concentration of Area 5 Pit NW discharge	C_spit =	0.5	(µg/l)
e L	concentration of LTVSMC Tailings Basin seepage	C_fs =	1. <u>55</u> 6	(µg/l)
ouo	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(µg/l)
nt C	concentration of ground water flow into PM-12	C_g12 =	1.1	(µg/l)
dul	concentration of ground water flow into PM-13	C_g13 =	1.1	(µg/l)
-	·	-		
ġ.	flow in river at PM-12	Q_r12 =	13.79	(cfs)
tter anc	flow in river at PM-13	 Q_r13 =	80.00	(cfs)
Wa Bal	flow check	 Q_ck =	80.00	(cfs)
		. –		. /
	mass flux of surface water into PM-12	M s12 =	214	(ua/s)
	mass flux of surface water into PM-13	M_s13 =	824	(µa/s)
of	mass flux of Babbitt WWTP	M_sBab =	6	(ua/s)
u o	concentration of Area 5 Pit NW discharge	M spit =	28	(µg/s)
Iuy Tuy	concentration of LTVSMC Tailings Basin seepage	M fs =	506	(µg/s)
ла Г	concentration of Hydrometallurgical Residue Cells Liner Leakage	M rrs =	000	(µg/s)
alcu	mass flux of ground water into PM-12	M g12 =	27	(µg/s)
Ma Ma	mass flux of ground water into PM-13	M_g13 =	131	(µg/s)
ce	mass flux in river at PM-12	M r12 =	246	(µg/s)
ss an				(1 O ² - /
Va 3al	mass flux in river at PM-13	M r13 –	1736	(ua/e)
		<u></u>	1750	(49/3)
ou				
ed ati	DM 10	0	0.0	(
ate ntr	concentration in river at PM-12	C_r12 =	0.6	(µg/l)
ce				
Calc	concentration in river at PM-13	C r13 -	0.0	(ua/l)
	כטווכבוונומנוטון וון וועפו מג רועו-דס	0_113 =	0.8	(µg/I)
u u				
d rati	Observed concentration in river at DM 10		0.59	(ug/l)
shti		+	0.56	(µg/I)
ser				
ja p	Observed concentration in river at PM-13		ND (1)	(ua/l)
00		Į.		(P9/1)

Parameter: Copper

			10.00	<i></i>
	surface water flow into PM-12	Q_s12 =	12.60	(cts)
ata	surface water flow into PM-13	Q_\$13 =	48.51	(CfS)
Õ	Babbitt WW I P discharge	Q_SBab =	0.33	(CIS)
Ň	Alea 5 Fil NW discharge	$Q_spit =$	11.99	(CIS)
Ē	Hydrometallurgical Residue Cells Liner Leakage	$Q_{15} =$	0.00	(cfs)
prt	ground water flow into PM-12	$Q_{13} = 0$	0.00	(cfs)
du	ground water flow into PM-13	Q g13 =	4.21	(cfs)
		3		(/
т	concentration of surface water into PM-12	C_s12 =	1.5	(µg/l)
Data	concentration of surface water into PM-13	C_s13 =	1.5	(µg/l)
u	concentration of WWTP discharge	C_sBab =	1.5	(µg/l)
trati	concentration of Area 5 Pit NW discharge	C_spit =	2.5	(µg/l)
en Sen	concentration of LTVSMC Tailings Basin seepage	C_fs =	2.5	(µg/l)
ouo	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(µg/l)
nt O	concentration of ground water flow into PM-12	C_g12 =	4	(µg/l)
lnp	concentration of ground water flow into PM-13	C_g13 =	4	(µg/l)
9	flow in river at PM-12	Q_r12 =	13.79	(cfs)
ater Ilan	flow in river at PM-13	Q_r13 =	80.00	(cfs)
Ba Ba	flow check	Q_ck =	80.00	(cfs)
	mass flux of surface water into PM-12	M_s12 =	535	(µg/s)
	mass flux of surface water into PM-13	M_s13 =	2059	(µg/s)
of	mass flux of Babbitt WWTP	M_sBab =	14	(µg/s)
5 ≚	concentration of Area 5 Pit NW discharge	M_spit =	141	(µg/s)
ati	concentration of LTVSMC Tailings Basin seepage	M_fs =	814	(µg/s)
ss cul	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(µg/s)
al. Jas	mass flux of ground water into PM-12	M_g12 =	97	(µg/s)
02	mass flux of ground water into PM-13	M_g13 =	477	(µg/s)
e	mass flux in river at PM-12	M r12 -	616	(ua/e)
ss and	הותסט העג ווד דועכו מנד ועוד וב		040	(µg/s)
/la: 3ala	mass flux in river at PM 13	M r13	1100	(uq/a)
<u> — — —</u> — — — — — — — — — — — — — — — —	111233 1111 1111 1111 dl F111-13	IVI_I I 3 =	4130	(µy/s)
_				
ion				
ed rati	concontration in river at PM 12	C r12	1.60	(ug/l)
ate		0_112 =	1.00	(µg/I)
L Cu l				
C al	concentration in river at PM-13	C_r13 =	1.83	(µg/l)
Ľ				
atio				
/eo ntra	Observed concentration in river at PM-12		1.53	(µg/l)
ice ice				
a co Co Co	Observed concentration in river at PM-13		2 00	(ua/l)
			2.00	(P9')

Embarrass River Model - Calibration to Baseline Water Quality Data Parameter: Flouride

	surface water flow into PM-12	Q_s12 =	12.60	(cfs)
lta	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
Da	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
≥	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
인니	LIVSMC Failings Basin seepage	Q_ts =	11.50	(cts)
rt –	Hydrometallurgical Residue Cells Liner Leakage	$Q_rrs =$	0.00	(CIS)
du	ground water flow into PM-12	$Q_{g12} = 0$ a13 -	0.86	(CIS)
_	Biogue water now into t M-19	ע_שוט≓	4.21	
	concentration of surface water into PM-12	C s12 =	0.1	(ma/l)
Data	concentration of surface water into PM-13	C s13 =	0.1	(ma/l)
u D	concentration of WWTP discharge	C sBab =	0.1	(mg/l)
ratic	concentration of Area 5 Pit NW discharge	C_spit =	0.2	(mg/l)
enti	concentration of LTVSMC Tailings Basin seepage	C_fs =	1.55	(mg/l)
onc	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(mg/l)
C T	concentration of ground water flow into PM-12	C_g12 =	0.385	(mg/l)
lnpu	concentration of ground water flow into PM-13	C_g13 =	0.385	(mg/l)
, e	flow in river at PM-12	Q_r12 =	13.79	(cfs)
ater ilan	flow in river at PM-13	Q_r13 =	80.00	(cfs)
Ba K	flow check	Q_ck =	80.00	(cfs)
	mass flux of surface water into PM-12	M_s12 =	36	(mg/l)
	mass flux of surface water into PM-13	M_s13 =	137	(mg/l)
o	mass flux of Babbitt WWTP	M_sBab =	1	(mg/l)
uoi vr	concentration of Area 5 Pit NW discharge	M_spit =	11	(mg/l)
Flu	concentration of LIVSMC Tailings Basin seepage	M_ts =	504	(mg/l)
cu	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/l)
Jal Jas	mass flux of ground water into PM-12	$M_{012} =$	9	(mg/l)
02	Intass nux of ground water into FIVI-15	w_y13 =	40	(mg/I)
-				
s nce	mass flux in river at PM-12	M_r12 =	46	(mg/s)
las: ala				
2 10	mass flux in river at PM-13	M_r13 =	745	(mg/s)
C				
ttion				
atec	concentration in river at PM-12	C_r12 =	0.12	(mg/l)
Sula				
Calc	concentration in river at PM 12	C r13 -	0.22	(ma/l)
		0_113 =	0.33	(iiig/i)
Ľ				
d atic	Observed concentration in viver at DM 10		0.10	(m m //)
rve	Observed concentration in river at PM-12		0.10	(mg/I)
) Sel				
ŏč	Observed concentration in river at PM-13		0.37	(mg/l)

Iron

Embarrass River Model - Calibration to Baseline Water Quality Data

Parameter: Iron

	surface water flow into PM-12	Q_s12 =	0.77	(cfs)
ıta	surface water flow into PM-13	Q_s13 =	2.63	(cfs)
D	Babbitt WWTP discharge	Q_sBab =	0.33	(cts)
Ň	Area 5 Mit NW discharge	$Q_spit =$	0.00	(CIS)
Ē	LIVOIVIO Tallings basin seepage Hydrometallurgical Residue Calls Liner Lookage	$Q_1S =$	1.20	(CIS)
ort .	around water flow into PM-12	$Q_{13} = 0$	0.00	(cfs)
dul	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
	I~			、 /
ស	concentration of surface water into PM-12	C_s12 =	2.9	(mg/l)
Dat	concentration of surface water into PM-13	C_s13 =	2.9	(mg/l)
ion Ion	concentration of WWTP discharge	C_sBab =	2.9	(mg/l)
trati	concentration of Area 5 Pit NW discharge	C_spit =	0.038	(mg/l)
sen (concentration of LTVSMC Tailings Basin seepage	C_fs =	4.594	(mg/l)
ouo	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(mg/l)
nt C	concentration of ground water flow into PM-12	C_g12 =	0.035	(mg/l)
dul	concentration of ground water flow into PM-13	C_g13 =	0.035	(mg/l)
r S	flow in river at PM-12	Q_r12 =	1.96	(cfs)
'ate alar	flow in river at PM-13	Q_r13 =	10.00	(cfs)
≥ ä	flow check	Q_ck =	10.00	(cfs)
	mass flux of surface water into PM-12	M_s12 =	64	(mg/l)
÷	mass flux of surface water into PM-13	M_s13 =	215	(mg/l)
0	concentration of Area 5 Dit NIM discharge	IVI_SDdD =	27	(mg/l)
tion	concentration of LTVSMC Tailings Basin seenage	M fs =	156	(mg/l)
ла: Ша	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/l)
alcu ass	mass flux of ground water into PM-12	M_g12 =	1	(mg/l)
Ma Ma	mass flux of ground water into PM-13	M_g13 =	4	(mg/l)
ð	made flux in river of DM 12	M r12	01	(ma/a)
ss anc		IVI_I I Z =	91	(mg/s)
Ma Bal	mass flux in river at PM-13	M_r13 =	467	(mg/s)
		1		
ion				
ed rat	concentration in river at PM-12	C r12 -	1.65	(ma/l)
ulat ent		<u></u>	1.00	\'''9/''/
alci				
ÖÖ	concentration in river at PM-13	C_r13 =	1.65	(mg/l)
tior				
red ntra	Observed concentration in river at PM-12		1.75	(mg/l)
serv				
Cor	Observed concentration in river at PM-13		1.29	(ma/l)
				\ 3 /

Embarrass River Model - Calibration to Baseline Water Quality Data Parameter: Hardness

	surface water flow into PM-12	Q_s12 =	12.60	(cfs)
ıta	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
Da	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
2	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
음	LTVSMC Tailings Basin seepage	Q_fs =	11.50	(cfs)
H H	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(cfs)
nd Id	ground water flow into PM-12	Q_g12 =	0.86	(cfs)
-	Iground water flow into PM-13	Q_g13 =	4.21	(CIS)
				<i>(m</i>)
ច	concentration of surface water into PM-12	C_s12 =	/0	(mg/l)
Dat	concentration of surface water into PM-13	C_s13 =	70	(mg/l)
o	concentration of WWTP discharge	C_sBab =	70	(mg/l)
trat	concentration of Area 5 Pit NW discharge	C_spit =	925	(mg/l)
cen	concentration of LTVSMC Tailings Basin seepage	C_fs =	436.6	(mg/l)
Sone	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(mg/l)
nt C	concentration of ground water flow into PM-12	C_g12 =	87.5	(mg/l)
Inpi	concentration of ground water flow into PM-13	C_g13 =	87.5	(mg/l)
e	flow in river at PM-12	Q_r12 =	13.79	(cfs)
ater land	flow in river at PM-13	Q_r13 =	80.00	(cfs)
Ba Va	flow check	Q ck =	80.00	(cfs)
		. –		、
	Imass flux of surface water into PM-12	M s12 =	24969	(ma/l)
	mass flux of surface water into PM-13	M_s13 =	96090	(mg/l)
oť	mass flux of Babbitt WWTP	M sBab =	654	(mg/l)
Б×	concentration of Area 5 Pit NW discharge	M spit =	52093	(mg/l)
atic ati	concentration of LTVSMC Tailings Basin seepage	M_fs =	142091	(mg/l)
s F S F	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/l)
alc as	mass flux of ground water into PM-12	M_g12 =	2130	(mg/l)
UΣ	mass flux of ground water into PM-13	M_g13 =	10425	(mg/l)
e	mass flux in river at PM-12	M r12 =	27752	(ma/s)
ss an			_,,,,	(9 , 0)
Aa: 3ala	mass flux in river at PM-13	M r13 –	328452	(ma/s)
		<u></u>	020432	(119/3)
C C				
tio _				
tra	concentration in river at PM-12	C r12 =	71.09	(mg/l)
ulat		<u> </u>		
LC LC				
ပိပိ	concentration in river at PM-13	C_r13 =	145.08	(mg/l)
		. —		/
L L				
4 atic				
/ec ntra	Observed concentration in river at PM-12		61.70	(mg/l)
ien Cel				
sd(1.10 50	(/)
00	Observed concentration in river at PM-13		143.50	(mg/l)

Parameter: Potassium

	curface water flow into PM 12	0 c12	0 00	(ofc)
D	surface water flow into PM-13	$\Box_{312} = \Box_{313}$	0.30	(cfs)
ati	Babbitt WWTP discharge	$\Omega_{\rm sBab} =$	0.30	(cfs)
Ū,	Area 5 Pit NW discharge	$Q_{spit} =$	0.00	(cfs)
Ň	LTVSMC Tailings Basin seepage	$Q_{fs} =$	1.20	(cfs)
Ē	Hydrometallurgical Residue Cells Liner Leakage	Q rrs =	0.00	(cfs)
out	ground water flow into PM-12	Q g12 =	0.86	(cfs)
du du	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
a	concentration of surface water into PM-12	C_s12 =	3.7	(mg/l)
Dat	concentration of surface water into PM-13	C_s13 =	3.7	(mg/l)
<u>io</u>	concentration of WWTP discharge	C_sBab =	3.7	(mg/l)
trati	concentration of Area 5 Pit NW discharge	C_spit =	48.6	(mg/l)
e L	concentration of LTVSMC Tailings Basin seepage	C_fs =	7.77	(mg/l)
ouo	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
nt C	concentration of ground water flow into PM-12	C_g12 =	1.6	(mg/l)
lnp	concentration of ground water flow into PM-13	C_g13 =	1.6	(mg/l)
e	flow in river at PM-12	Q_r12 =	1.49	(cfs)
ater Ilano	flow in river at PM-13	Q_r13 =	7.20	(cfs)
Ba Ba	flow check	Q_ck =	7.20	(cfs)
	mass flux of surface water into PM-12	M_s12 =	32	(µg/s)
	mass flux of surface water into PM-13	M_s13 =	31	(mg/s)
of	mass flux of Babbitt WWTP	M_sBab =	35	(mg/s)
noi XL	concentration of Area 5 Pit NW discharge	M_spit =	0	(mg/s)
Flu	concentration of LTVSMC Tailings Basin seepage	M_fs =	264	(mg/s)
cul	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/s)
Cal Aa:	mass flux of ground water into PM-12	IVI_g12 =	39	(mg/s)
02	Inass nux of ground water 1110 FIVE 13	w_yts =	191	(1119/5)
ce	mass flux in river at PM-12	M r12 =	105	(mg/s)
ss				. 3/
Ma Bal	mass flux in river at PM-13	M r13 =	591	(ma/s)
			001	(<u>9</u> , 0)
C				
tion				
tra	concentration in river at PM-12	C r12 =	2.49	(mg/l)
ulat				(···· 3/··/
alct				
ပိပိ	concentration in river at PM-13	C_r13 =	2.90	(mg/l)
uc				
atio				<i>,</i>
vec ntr	Observed concentration in river at PM-12		0.78	(mg/l)
ser lce				
sdC Doc	Observed concentration is river at DM 19		0.01	(mc/l)
00	Observed concentration in river at PM-13		2.31	(IIIg/I)

Parameter: Magnesium

		1 -		
	surface water flow into PM-12	Q_s12 =	12.60	(cfs)
ıta	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
D	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
N N	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
음	LTVSMC Tailings Basin seepage	Q_fs =	11.50	(cfs)
nt F	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(cfs)
ਹੁ	ground water flow into PM-12	Q_g12 =	0.86	(cfs)
<u> </u>	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
ъ	concentration of surface water into PM-12	C_s12 =	6	(mg/l)
Dat	concentration of surface water into PM-13	C_s13 =	6	(mg/l)
tion	concentration of WWTP discharge	C_sBab =	6	(mg/l)
trat	concentration of Area 5 Pit NW discharge	C_spit =	252	(mg/l)
en Cen	concentration of LTVSMC Tailings Basin seepage	C_fs =	69.97	(mg/l)
Sond	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
nt C	concentration of ground water flow into PM-12	C_g12 =	10.65	(mg/l)
dul	concentration of ground water flow into PM-13	C_g13 =	10.65	(mg/l)
ee	flow in river at PM-12	Q_r12 =	13.79	(cfs)
ater Ilano	flow in river at PM-13	Q_r13 =	80.00	(cfs)
₿ Š	flow check	Q_ck =	80.00	(cfs)
	mass flux of surface water into PM-12	M s12 =	2140	(ua/s)
	mass flux of surface water into PM-13	M s13 =	8236	(ma/s)
of	mass flux of Babbitt WWTP	M sBab =	56	(mg/s)
E ×	concentration of Area 5 Pit NW discharge	M spit =	14192	(mg/s)
lin, ti	concentration of LTVSMC Tailings Basin seepage	M fs =	22772	(mg/s)
с П п п с П с п с	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/s)
ass	mass flux of ground water into PM-12	M_g12 =	259	(mg/s)
ΰΞ	mass flux of ground water into PM-13	M_g13 =	1269	(mg/s)
ce	mass flux in river at PM-12	M_r12 =	2455	(mg/s)
lss lan				
Ma 3al	mass flux in river at PM-13	M r13 =	48924	(ma/s)
		<u> </u>	-0024	(mg/3)
Lo				
äti	DATE: Note:	0	0.00	(
ate ntr	concentration in river at PM-12	C_r12 =	6.29	(mg/l)
Sult				
Son	concentration in vivor at DM 10	0	01.01	(ma m /l)
00	concentration in river at PM-13	0_f13 =	21.61	(mg/l)
		1		1
uo				
atio				
/ec ntr:	Observed concentration in river at PM-12		6.2	(mg/l)
en				
sq				
	Observed separation in viver at DM 10	1	15.0	(ma/l)

Parameter: Manganese

		-		
_	surface water flow into PM-12	Q_s12 =	0.30	(cfs)
ata	surface water flow into PM-13	Q_s13 =	0.30	(cfs)
Ö	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
Ň	Area 5 Pit NW discharge	Q_spit =	0.00	(cts)
문	LIVSMC Tailings Basin seepage	Q_ts =	1.20	(cts)
, T	Hydrometallurgical Residue Cells Liner Leakage	$Q_{rrs} =$	0.00	(cfs)
đ	ground water flow into PM-12	Q_g12 =	0.86	(CfS)
	Iground water now into Pivi-13	Q_g13 =	4.21	(CIS)
ອ	concentration of surface water into PM-12	C_s12 =	0.3	(mg/l)
Dat	concentration of surface water into PM-13	C_s13 =	0.3	(mg/l)
ion	concentration of WWTP discharge	C_sBab =	0.3	(mg/l)
itrat	concentration of Area 5 Pit NW discharge	C_spit =	0.65	(mg/l)
cen	concentration of LTVSMC Tailings Basin seepage	C_fs =	1.183	(mg/l)
Con	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
ut C	concentration of ground water flow into PM-12	C_g12 =	0.188	(mg/l)
lnp	concentration of ground water flow into PM-13	C_g13 =	0.188	(mg/l)
ee	flow in river at PM-12	Q_r12 =	1.49	(cfs)
ater Jane	flow in river at PM-13	Q_r13 =	7.20	(cfs)
Wa Ba	flow check	Q_ck =	7.20	(cfs)
	mass flux of surface water into PM-12	M_s12 =	3	(µg/s)
	mass flux of surface water into PM-13	M_s13 =	3	(mg/s)
of	mass flux of Babbitt WWTP	M_sBab =	3	(mg/s)
ы Б	concentration of Area 5 Pit NW discharge	M_spit =	0	(mg/s)
-In ati	concentration of LTVSMC Tailings Basin seepage	M_fs =	40	(mg/s)
luc s l s	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/s)
alc las	mass flux of ground water into PM-12	M_g12 =	5	(mg/s)
S C	mass flux of ground water into PM-13	M_g13 =	22	(mg/s)
Φ				,
uč a	mass flux in river at PM-12	M_r12 =	10	(mg/s)
as: ala				
Σű	mass flux in river at PM-13	M_r13 =	75	(mg/s)
2				
tio				
tec tra	concentration in river at PM-12	C r12 =	0.24	(mg/l)
ulat en				<u> </u>
lct lct				
ပိပိ	concentration in river at PM-13	C r13 =	0.37	(mg/l)
C				
tio				
ed	Observed concentration in river at PM-12		0.34	(mg/l)
en		1		/
se				
ပိပိ	Observed concentration in river at PM-13		0.20	(mg/l)

Parameter: Sodium

surface water flow into PM-12 Q. s12 = (12.60) (cfs) Markae water flow into PM-13 Q. s13 = (45.1) (cfs) Babbit WWTP discharge Q. sBab = (0.33) (cfs) (15.1) (cfs) Markae water flow into PM-12 Q. g12 = (0.6) (cfs) (15.1) (cfs) Markae water flow into PM-12 Q. g12 = (0.6) (cfs) (15.1) (cfs) Ground water flow into PM-13 Q. g13 = (4.2) (cfs) (15.1) (cfs) Ground water flow into PM-13 Q. g13 = (4.2) (cfs) (15.1) (cfs) Goncentration of surface water into PM-13 Q. g13 = (4.2) (cfs) Goncentration of Avrace water into PM-13 Q. g13 = (4.2) (cfs) Goncentration of Avrace S Pit NW discharge C. spit = (11.9) (cfs) Goncentration of Avrace S Pit NW discharge C. spit = (11.9) (cfs) Goncentration of Ground water flow into PM-12 C. g12 = (4.3) (cfs) Goncentration of Ground water flow into PM-13 C. g13 = (4.9) (cfs) Goncentration of ground water flow into PM-13 Q. g13 = (4.2) (cfs) Goncentration of Avras Pit NW discharge G. spit = (1					
Bit face water flow into PM-13 Q s13 = 4.451 (cfs) Q Babbit WWTP discharge Q s8b = 0.33 (cfs) Area 5 PI NW discharge Q spl = 1.99 (cfs) 1.99 (cfs) Hydrometallurgical Residue Cells Liner Leakage Q rrs = 0.00 (cfs) 0.00 (cfs) ground water flow into PM-13 Q g13 = 4.21 (cfs) 0.65 = 0.35 (mgl) concentration of surface water into PM-13 C s12 = 0.35 (mgl) 0.00 (cfs) 0.00 (cfs) concentration of surface water into PM-13 C s13 = 3.5 (mgl) 0.00 (cfs) 0.00 (cfs) concentration of Surface water into PM-12 C s12 = 0.5 (mgl) 0.00 (cfs) 0.00 (cfs) concentration of LTVSMC Talings Basin seepage C spl = 0.43 (mgl) 0.00 (cfs) 0.00 (cfs) concentration of ground water flow into PM-12 C g12 = 4.9 (mgl) 0.00 (cfs) concentration of ground water flow into PM-13 C g13 = 4.9 (mgl) 0.00 (cfs) concentration of ground water flow PM-13 Q g13 = 4.9 (mgl) 0.00 (cfs) mass flux of surface water into PM-12 M s12 =		surface water flow into PM-12	Q_s12 =	12.60	(cfs)
Application Application Application Application Application Application Application <	Data	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
Area 5 Pit NW discharge O. spit = 1.39 (cfs) Hydrometallurgical Residue Cells Liner Leakage O. rs = 0.00 (cfs) ground water flow into PM-12 O. g12 = 0.86 (cfs) ground water flow into PM-13 O. g12 = 0.86 (cfs) concentration of surface water into PM-13 C. s12 = 3.5 (mg/l) concentration of surface water into PM-13 C. s13 = 3.5 (mg/l) concentration of surface water into PM-13 C. s13 = 3.5 (mg/l) concentration of surface water into PM-12 C. s12 = 0.9 (cfs) concentration of surface water into PM-13 C. s13 = 3.5 (mg/l) concentration of Journd water flow into PM-12 C. g12 = 4.4 (mg/l) concentration of ground water flow into PM-12 C. g13 = 4.9 (mg/l) concentration of ground water flow into PM-13 C. g13 = 4.9 (mg/l) concentration of ground water flow into PM-13 C. g13 = 4.9 (mg/l) concentration of Area 5 Pit NW discharge C. rs = 0 concentration of ground water flow into PM-12 C. g13 = 4.9 (mg/l) concentration of Area 5 Pit NW discharge O. rd =		Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
Open LTVSMC Tailings Basin seepage O, fs = (1.50 (cfs)) ground water flow into PM-12 O g12 = 0.86 (cfs) ground water flow into PM-13 O, g13 = 4.21 (cfs) concentration of surface water into PM-13 C, s12 = 3.5 (mg/l) concentration of surface water into PM-13 C, s13 = 3.5 (mg/l) concentration of Area 5 PRI NW discharge C, s8ab = 3.5 (mg/l) concentration of LTVSMC Tailings Basin seepage C, fs = 44.31 (mg/l) concentration of LTVSMC Tailings Basin seepage C, g12 = 4.9 (mg/l) concentration of LTVSMC Tailings Basin seepage C, g13 = 4.9 (mg/l) concentration of LTVSMC Tailings Basin seepage C, g13 = 4.9 (mg/l) concentration of LTVSMC Tailings Basin seepage C, g13 = 4.9 (mg/l) concentration of ground water flow into PM-12 C, g13 = 4.9 (mg/l) concentration of ground water flow into PM-13 C, g13 = 4.9 (mg/l) concentration of area 5 PRI NW discharge O, ck = 80.00 (cfs) mass flux of surface water into PM-13 M, s12 = 1248 (mg/s) mass flux of surface water into PM-12	3	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
Hydrometallurgical Residue Cells Liner Leakage Q. rrs = 0.00 (cfs) ground water flow into PM-13 Q.g13 = 4.21 (cfs) concentration of surface water into PM-13 C. s12 = 3.5 (mg/l) concentration of surface water into PM-13 C. s13 = 3.5 (mg/l) concentration of surface water into PM-13 C. s13 = 3.5 (mg/l) concentration of surface water into PM-13 C. s13 = 3.5 (mg/l) concentration of Area 5 Pit NW discharge C. s8ab = 3.5 (mg/l) concentration of Hydrometallurgical Residue Cells Liner Leakage C.rrs = 0 concentration of typdometallurgical Residue Cells Liner Leakage C.rrs = 0 concentration of ground water flow into PM-12 C. g12 = 4.3 (mg/l) concentration of typdometallurgical Residue Cells Liner Leakage C.rrs = 0 concentration of typdometallurgical Residue Cells Liner Leakage C.rrs = 0 concentration of typdometallurgical Residue Cells Liner Leakage C.rrs = 0 concentration of ground water flow into PM-12 Q.g13 = 4.9 (mg/l) mass flux of surface water into PM-13 Q.g14 = 13.79 (cfs)	<u>e</u>	LTVSMC Tailings Basin seepage	Q_fs =	11.50	(cfs)
Magnetic flow Model PM-12 Q.g12 = Q.g13 = 4.21 (cfs) Q.g13 = 4.21 (cfs) Q.g13 = 4.21 (cfs) Q.g13 = 4.21 (cfs) Q.g13 = 4.21 (cfs) Q.g13 = 4.21 (cfs) Q.g13 = 4.21 (cfs) Q.g13 = 0.212 = 0.25 (mgl) Q.g13 = 4.21 (cfs) Q.g14 = 0.35 (mgl) Q.g13 = 4.21 (cfs) Q.g13 = 4.21 (cfs) Q.g14 = 0.35 (mgl) Q.g14 = 0.35 (mgl) Q.g14 = 0.05 (mgl) Q.g14 = 0.91 (cfs) 1.11 (mgl) Q.g14 = 0.01 (cfs) Q.g14 = Q.g14 = 0.43 (mgl) Q.g14 = 0.01 (cfs) Q.g14 = Q.g14 (mgl) Concentration of Pydrometallurgical Residue Calls Liner Leakage C rs = 0 Q.g17 (mgl) Q.g17 (mgl) Move in river at PM-12 Q r12 = 13.79 (cfs) Q.g13 (mgl) Q.g12 (mgl) Q.g12 (mgl) Model Invi niver at PM-13 Q r12 = M.g12 = 1248 (mgl) Q.g12 (mgl) Model Q.g12 =	L t	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(cfs)
Image: space of the state into PM-13 O_g13 = 4.21 (cfs) concentration of surface water into PM-12 C_s12 = 3.5 (mg/l) concentration of surface water into PM-13 C_s13 = 3.5 (mg/l) concentration of surface water into PM-13 C_s13 = 3.5 (mg/l) concentration of WTPP discharge C_s8ab = 3.5 (mg/l) concentration of Area 5 Pit NW discharge C_s9tl = 119 (mg/l) concentration of LTVSMC Tailings Basin seepage C_rrs = 0 concentration of LTVSMC Tailings Basin seepage C_rrs = 0 concentration of ground water flow into PM-12 C_g12 = 4.9 (mg/l) concentration of ground water flow into PM-13 C_g13 = 4.90 (mg/l) concentration of ground water flow into PM-13 C_g13 = 80.00 (cfs) flow in river at PM-12 Q_r12 = 13.79 (cfs) flow in river at PM-13 Q_r13 = 80.00 (cfs) mass flux of surface water into PM-12 M_s12 = 1248 (mg/s) mass flux of surface water into PM-13 M_s12 = 1248 (mg/s) mass flux of ground water flow PM-13 M_s12 = 100 (mg/s)	nd	ground water flow into PM-12	Q_g12 =	0.86	(cfs)
Bits C s12 = 3.5 (mg/l) concentration of surface water into PM-13 C s13 = 3.5 (mg/l) concentration of wWTP discharge C s8ab = 3.5 (mg/l) concentration of LTVSMC Tailings Basin seepage C fs = 44.31 (mg/l) concentration of regrund water flow into PM-12 C g12 = 4.9 (mg/l) concentration of ground water flow into PM-13 C g12 = 4.9 (mg/l) concentration of ground water flow into PM-13 C g13 = 4.9 (mg/l) concentration of ground water flow into PM-13 C g13 = 4.9 (mg/l) concentration of ground water flow into PM-13 C g13 = 4.9 (mg/l) concentration of ground water flow into PM-13 C g13 = 4.9 (mg/l) mass flux of surface water into PM-12 M r13 = 60.00 (cfs) mass flux of surface water into PM-13 M s13 = 4804 (mg/s) mass flux of surface water into PM-13 M s13 = 1248 (mg/s) mass flux of surface water into PM-13 M s13 = 1482 (mg/s) mass flux of surface water into PM-13 M s13 = 1482 (mg/s) mass flux of ground water into PM-13 M s13 = 1428 (mg/	L L	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{tabular}{ c c c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	b	concentration of surface water into PM-12	C_s12 =	3.5	(mg/l)
$\begin{tabular}{ c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c } \hline \end{tabular} \\ \hline \end{tabular} \end$	Dat	concentration of surface water into PM-13	C_s13 =	3.5	(mg/l)
$\begin{tabular}{ c c c c c c } \hline \end{tabular} tabu$	<u>io</u>	concentration of WWTP discharge	C_sBab =	3.5	(mg/l)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	trat	concentration of Area 5 Pit NW discharge	C_spit =	119	(mg/l)
Open concentration of Hydrometallurgical Residue Cells Liner Leakage C_rrs = O concentration of ground water flow into PM-12 C_g12 = 4.9 ((mg/l) concentration of ground water flow into PM-13 C_g13 = 4.9 ((mg/l) concentration of ground water flow into PM-13 Q_r12 = 13.79 (cfs) flow in river at PM-12 Q_r13 = 80.00 (cfs) flow check Q_ck = 80.00 (cfs) mass flux of surface water into PM-13 M_s13 = 4804 ((mg/s)) mass flux of surface water into PM-13 M_s13 = 4804 ((mg/s)) mass flux of surface water into PM-13 M_s13 = 4804 ((mg/s)) mass flux of ground water into PM-13 M_s13 = 4804 ((mg/s)) mass flux of ground water into PM-12 M_s91 = 6702 ((mg/s)) concentration of Hydrometallurgical Residue Cells Liner Leakage M_rrs = 0 ((mg/s)) mass flux in river at PM-12 M_g13 = 584 ((mg/s)) mass flux in river at PM-13 M_g13 = 119 ((mg/s)) mass flux in river at PM-13 M_g13 = 12.30 ((mg/l)) mass flux in river at PM-13 C_r13 = 12.31 ((mg/l)) oconcentration in river at PM-13 C_r13 =	en:	concentration of LTVSMC Tailings Basin seepage	C_fs =	44.31	(mg/l)
$\begin{tabular}{ c c c c c c c } \hline C g12 & g12$	ouc	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
E concentration of ground water flow into PM-13 C_g13 = 4.9 (mg/l) group flow in river at PM-12 0_r12 = 13.79 (cfs) flow in river at PM-13 0_r13 = 80.00 (cfs) flow in river at PM-13 0_r13 = 80.00 (cfs) flow check 0_ck = 80.00 (cfs) mass flux of surface water into PM-12 M_s13 = 4804 (mg/s) mass flux of surface water into PM-13 M_s13 = 4804 (mg/s) mass flux of surface water into PM-12 M_spit = 072 (mg/s) concentration of Area 5 Pit NW discharge M_spit = 070 (mg/s) group concentration of LTVSMC Tailings Basin seepage M_fs = 14421 (mg/s) mass flux of ground water into PM-12 M_g12 = 119 (mg/s) mass flux of ground water into PM-13 M_g13 = 27911 (mg/s) mass flux in river at PM-13 M_r12 = 1400 (mg/s) mass flux in river at PM-13 C_r13 = 12.33 (mg/l) mass flux in river at PM-13 C_r13 = 12.33 (mg/l) mass flux in river at PM-13 3.0 (mg/l) 3.0 (mg/l) mo	nt O	concentration of ground water flow into PM-12	C_g12 =	4.9	(mg/l)
NoteN	lnp	concentration of ground water flow into PM-13	C_g13 =	4.9	(mg/l)
But provide in river at PM-12 Q_r12 = 13.79 (cfs) flow in river at PM-13 Q_r13 = 80.00 (cfs) flow in river at PM-13 Q_rck = 80.00 (cfs) flow check Q_rck = 80.00 (cfs) mass flux of surface water into PM-12 M_s12 = 1248 (µg/s). mass flux of surface water into PM-13 M_s13 = 4804 (mg/s) mass flux of surface water into PM-13 M_s13 = 4804 (mg/s) mass flux of surface water into PM-13 M_s13 = 4804 (mg/s) mass flux of surface water into PM-13 M_s13 = 6702 (mg/s) concentration of Area 5 Pit NW discharge M_spit = 6702 (mg/s) concentration of Hydrometallurgical Residue Cells Liner Leakage M rrs = 0 (mg/s) mass flux of ground water into PM-12 M g12 = 119 (mg/s) mass flux in river at PM-12 M_g13 = 584 (mg/s) mass flux in river at PM-13 M_g13 = 27911 (mg/s) mass flux in river at PM-13 C_r13 = 12.33 (mg/l) concentration in river at PM-13 G_r13 = 12.33 (mg/l) mass flux of ground water into PM-13					
Top top Intervent at PM-13 Q_r13 = 80.00 (cfs) Intow in river at PM-13 Q_ck = 80.00 (cfs) Intow in river at PM-13 M_s12 = 1248 (µg/s) mass flux of surface water into PM-12 M_s13 = 4404 (mg/s) mass flux of surface water into PM-13 M_s13 = 4704 (mg/s) mass flux of surface water into PM-13 M_s13 = 6702 (mg/s) concentration of Area 5 Pit NW discharge M_spit = 6702 (mg/s) concentration of Hydrometallurgical Residue Cells Liner Leakage M_rrs = 0 (mg/s) mass flux of ground water into PM-13 M_g12 = 119 (mg/s) mass flux of ground water into PM-13 M_g13 = 584 (mg/s) mass flux in river at PM-12 M_g13 = 27911 (mg/s) mass flux in river at PM-13 M_g13 = 27911 (mg/s) concentration in river at PM-13 C_gr13 = 12.33 (mg/l) mass flux in river at PM-13 C_gr13 = 12.33 (mg/l) mass flux in river at PM-13 C_gr13 = 12.30 (mg/l) mass flux in river at PM-13 12.7 (mg/l) 12.7 (mg/l) <td>ø</td> <td>flow in river at PM-12</td> <td>Q_r12 =</td> <td>13.79</td> <td>(cfs)</td>	ø	flow in river at PM-12	Q_r12 =	13.79	(cfs)
Note:Q_ck =80.00 (cfs)Mass flux of surface water into PM-12M_s12 =1248 (µg/s)mass flux of surface water into PM-13M_s13 =4804 (mg/s)mass flux of Babbit WWTPM_splab =33 (mg/s)concentration of Area 5 Pit NW dischargeM_spit =6702 (mg/s)concentration of I_TVSMC Tailings Basin seepageM_fs =14421 (mg/s)concentration of Hydrometallurgical Residue Cells Liner LeakageM_rrs =0 (mg/s)mass flux of ground water into PM-13M_g12 =119 (mg/s)mass flux of ground water into PM-13M_g13 =584 (mg/s)mass flux in river at PM-12M_rr12 =1400 (mg/s)mass flux in river at PM-13M_r13 =27911 (mg/s)mass flux in river at PM-13C_r12 =3.59 (mg/l)mass flux in river at PM-13C_r13 =12.33 (mg/l)mass flux of concentration in river at PM-1300mass flux of concentration in river at PM-13012.7 (mg/l)	tter and	flow in river at PM-13	Q_r13 =	80.00	(cfs)
mass flux of surface water into PM-12 M_s12 = 1248 (µg/s) mass flux of surface water into PM-13 M_s13 = 4804 (mg/s) mass flux of surface water into PM-13 M_s13 = 4804 (mg/s) mass flux of surface water into PM-13 M_s12 = 1248 (µg/s) mass flux of surface water into PM-13 M_s12 = 1248 (µg/s) concentration of LTVSMC Tailings Basin seepage M_fs = 14421 (mg/s) concentration of Hydrometallurgical Residue Cells Liner Leakage M_rrs = 0 (mg/s) mass flux of ground water into PM-12 M_g12 = 119 (mg/s) mass flux of ground water into PM-13 M_g13 = 584 (mg/s) mass flux in river at PM-12 M_r13 = 27911 (mg/s) mass flux in river at PM-13 M_r13 = 27911 (mg/s) concentration in river at PM-13 C_r13 = 12.33 (mg/l) observed concentration in river at PM-12 3.0 (mg/l) 3.0 (mg/l) observed concentration in river at PM-13 2.7 (mg/l) 3.0 (mg/l)	Wa Bai	flow check	Q_ck =	80.00	(cfs)
mass flux of surface water into PM-12 M_s12 = 1248 (µg/s) mass flux of surface water into PM-13 M_s13 = 4804 (mg/s) mass flux of surface water into PM-13 M_s13 = 4804 (mg/s) mass flux of surface water into PM-13 M_s12 = 1248 (µg/s) mass flux of surface water into PM-13 M_s12 = 33 (mg/s) concentration of Area 5 Pit NW discharge M_spit = 6702 (mg/s) concentration of Hydrometallurgical Residue Cells Liner Leakage M_rrs = 0 (mg/s) mass flux of ground water into PM-12 M_g13 = 584 (mg/s) mass flux of ground water into PM-13 M_g13 = 584 (mg/s) mass flux in river at PM-12 M_r12 = 1400 (mg/s) mass flux in river at PM-13 M_r13 = 27911 (mg/s) concentration in river at PM-13 C_r13 = 12.33 (mg/l) participe O Observed concentration in river at PM-12 3.0 (mg/l) observed concentration in river at PM-13 12.7 (mg/l)					
$\frac{1000}{100} \text{ mass flux of surface water into PM-13} & M_s13 = 4804 (mg/s) \\ \frac{1000}{100} \text{ mass flux of Babbitt WWTP} & M_sBab = 33 (mg/s) \\ \frac{1000}{100} \text{ concentration of Area 5 Pit NW discharge} & M_spit = 6702 (mg/s) \\ \frac{1000}{100} \text{ concentration of LTVSMC Tailings Basin seepage} & M_fs = 14421 (mg/s) \\ \frac{1100}{100} \text{ concentration of LTVSMC Tailings Basin seepage} & M_fs = 14421 (mg/s) \\ \frac{1100}{100} \text{ mass flux of ground water into PM-12} & M_g12 = 119 (mg/s) \\ \frac{1100}{100} \text{ mass flux of ground water into PM-13} & M_g13 = 584 (mg/s) \\ \frac{1100}{100} \text{ mass flux in river at PM-12} & M_g13 = 584 (mg/s) \\ \frac{1100}{100} \text{ mass flux in river at PM-13} & M_g13 = 27911 (mg/s) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & C_gr13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 3.00 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} \text{ concentration in river at PM-13} & M_g13 = 12.33 (mg/l) \\ \frac{1100}{100} $		mass flux of surface water into PM-12	M_s12 =	1248	(µg/s)
mass flux of Babbit WWTP M_sBab = 33 (mg/s) concentration of Area 5 Pit NW discharge M_spit = 6702 (mg/s) concentration of LTVSMC Tailings Basin seepage M fs = 14421 (mg/s) concentration of Hydrometallurgical Residue Cells Liner Leakage M_rrs = 0 (mg/s) mass flux of ground water into PM-12 M_g13 = 584 (mg/s) mass flux of ground water into PM-13 M_g13 = 584 (mg/s) mass flux in river at PM-12 M_rr13 = 27911 (mg/s) mass flux in river at PM-13 M_r13 = 27911 (mg/s) concentration in river at PM-13 C_r12 = 3.0 (mg/l) concentration in river at PM-13 C_r13 = 12.33 (mg/l) concentration in river at PM-13 C_r13 = 12.33 (mg/l)		mass flux of surface water into PM-13	M_s13 =	4804	(mg/s)
StepConcentration of Area 5 Pit NW dischargeM_spit = 6702 (mg/s) concentration of LTVSMC Tailings Basin seepageM_fs = 14421 (mg/s) concentration of Hydrometallurgical Residue Cells Liner LeakageM_rrs =0 (mg/s)mass flux of ground water into PM-12M_g12 = 119 (mg/s) mass flux of ground water into PM-13M_g13 = 5844 (mg/s) mass flux in river at PM-12M_r12 = 1400 (mg/s) mass flux in river at PM-13M_r13 = 27911 (mg/s) mass flux in river at PM-13M_r13 = 27911 (mg/s) concentration in river at PM-13C_r12 = 3.59 (mg/l) concentration in river at PM-13C_r13 = 12.33 (mg/l) concentration in river at PM-13C_r13 = 12.30 (mg/l) concentration in river at PM-13C_r13 = 12.77 (mg/l)	of	mass flux of Babbitt WWTP	M_sBab =	33	(mg/s)
$\frac{1}{2} \frac{1}{2} \frac{1}$	Б×	concentration of Area 5 Pit NW discharge	M_spit =	6702	(mg/s)
Image: Second structure Concentration of Hydrometallurgical Residue Cells Liner Leakage M_mrs = O (mg/s) mass flux of ground water into PM-12 M g12 = 119 (mg/s) mass flux of ground water into PM-13 M_g13 = 584 (mg/s) mass flux in river at PM-12 M_r12 = 1400 (mg/s) mass flux in river at PM-13 M_r13 = 27911 (mg/s) mass flux in river at PM-13 M_r13 = 27911 (mg/s) concentration in river at PM-13 C_r12 = 3.59 (mg/l) concentration in river at PM-13 C_r13 = 12.33 (mg/l) observed concentration in river at PM-13 0 3.0 (mg/l) Observed concentration in river at PM-13 12.7 (mg/l) 12.7 (mg/l)	atic	concentration of LTVSMC Tailings Basin seepage	M_fs =	14421	(mg/s)
$M_g12 =$ 119 (mg/s)mass flux of ground water into PM-12M_g13 =584 (mg/s)mass flux of ground water into PM-13M_g13 =584 (mg/s)mass flux in river at PM-12M_r12 =1400 (mg/s)mass flux in river at PM-13M_r13 =27911 (mg/s)pattern of ground water into river at PM-13C_r12 =3.59 (mg/l)pattern of ground water into river at PM-13C_r13 =12.33 (mg/l)pattern of ground water into river at PM-13C_r13 =12.33 (mg/l)pattern of ground water into river at PM-13Deserved concentration in river at PM-1312.7 (mg/l)	s F	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/s)
$O \ge$ mass flux of ground water into PM-13M_g13 =584 (mg/s)mass flux in river at PM-12M_r12 =1400 (mg/s)mass flux in river at PM-13M_r13 =27911 (mg/s)page of the page of the	ass	mass flux of ground water into PM-12	M_g12 =	119	(mg/s)
$\frac{M_r r 12 = 1400 \text{ (mg/s)}}{M_r r 13 = 27911 \text{ (mg/s)}}$ $\frac{M_r r 13 = 27911 \text{ (mg/s)}}{M_r r 13 = 27911 \text{ (mg/s)}}$ $\frac{M_r r 13 = 27911 \text{ (mg/s)}}{M_r r 13 = 27911 \text{ (mg/s)}}$ $\frac{M_r r 13 = 27911 \text{ (mg/s)}}{M_r r 13 = 27911 \text{ (mg/s)}}$ $\frac{M_r r 13 = 27911 \text{ (mg/s)}}{M_r r 13 = 27911 \text{ (mg/s)}}$ $\frac{M_r r 13 = 27911 \text{ (mg/s)}}{M_r r 13 = 27911 \text{ (mg/s)}}$ $\frac{M_r r 13 = 27911 \text{ (mg/s)}}{M_r r 13 = 27911 \text{ (mg/s)}}$ $\frac{M_r r 13 = 27911 \text{ (mg/s)}}{M_r r 13 = 27911 \text{ (mg/s)}}$ $\frac{M_r r 13 = 27911 \text{ (mg/s)}}{M_r r 13 = 27911 \text{ (mg/s)}}$	ΰΣ	mass flux of ground water into PM-13	M_g13 =	584	(mg/s)
mass flux in river at PM-12 M_r12 = 1400 (mg/s) mass flux in river at PM-13 M_r13 = 27911 (mg/s) mass flux in river at PM-13 C_r12 = 3.59 (mg/l) concentration in river at PM-13 C_r13 = 12.33 (mg/l) concentration in river at PM-13 C_r13 = 12.33 (mg/l) concentration in river at PM-13 C_r13 = 12.33 (mg/l) concentration in river at PM-13 0bserved concentration in river at PM-12 3.0 (mg/l) concentration in river at PM-13 12.7 (mg/l) 12.7 (mg/l)					
$\frac{mass flux in river at PM-12}{mass flux in river at PM-13}$ $M_r12 = 1400 (mg/s)$ $M_r13 = 27911 (mg/s)$ $M_r13 = 27911 (mg/s)$ $\frac{mass flux in river at PM-13}{mass flux in river at PM-12}$ $C_r12 = 3.59 (mg/l)$ $C_r13 = 12.33 (mg/l)$ $C_r13 = 3.0 (mg/l)$ $C_r13 = 3.0 (mg/l)$ $M_r13 = 3.0 (mg/l)$					
Wind and a set of the se	ce	mass flux in river at PM-12	M_r12 =	1400	(mg/s)
$\frac{P_{R}}{P_{R}} = \frac{P_{R}}{P_{R}} + \frac{P_{R}}{P_{R}} = \frac{P_{R}}{P_{R}} + \frac{P_{R}}{P_{R}} = \frac{P_{R}}{P_{R}} + \frac{P_{R}}{P_{R}} + \frac{P_{R}}{P_{R}} = \frac{P_{R}}{P_{R}} + \frac{P_{R}}{P_{R}} + \frac{P_{R}}{P_{R}} = \frac{P_{R}}{P_{R}} + \frac{P_{R}}{P$	ss an				/
Image: Note of the infinite data in the data i	Vla 3al	mass flux in river at PM-13	M r13 –	27011	(ma/e)
Visite concentration in river at PM-12 C_r12 = 3.59 (mg/l) concentration in river at PM-13 C_r13 = 12.33 (mg/l) visite Observed concentration in river at PM-12 3.0 (mg/l) Observed concentration in river at PM-13 12.7 (mg/l)		ווינטט וועא ווי וועכו מנד ועריס	IVI_I I 0 =	21311	(119/5)
Image: second					
Parage concentration in river at PM-12 C_r12 = 3.59 (mg/l) concentration in river at PM-13 C_r13 = 12.33 (mg/l) visual observed concentration in river at PM-12 3.0 (mg/l) Observed concentration in river at PM-13 12.7 (mg/l)	uo				
and the second concentration in river at PM-12 C_r12 = 3.59 (mg/l) concentration in river at PM-13 C_r13 = 12.33 (mg/l) concentration in river at PM-13 C_r13 = 12.33 (mg/l) observed concentration in river at PM-12 3.0 (mg/l) Observed concentration in river at PM-13 12.7 (mg/l)	ati				
Observed concentration in river at PM-13 C_r13 = 12.33 (mg/l) Observed concentration in river at PM-12 3.0 (mg/l) Observed concentration in river at PM-13 12.7 (mg/l)	ate	concentration in river at PM-12	C_r12 =	3.59	(mg/l)
YE O C_r13 = 12.33 (mg/l) Observed concentration in river at PM-12 Observed concentration in river at PM-13 3.0 (mg/l) 12.7 (mg/l)	suls				
O O concentration in river at PM-13 C_r13 = 12.33 (mg/l) Observed concentration in river at PM-12 3.0 (mg/l) Observed concentration in river at PM-13 12.7 (mg/l)	alc				,
Observed concentration in river at PM-12 3.0 (mg/l) Observed concentration in river at PM-13 12.7 (mg/l)	00	concentration in river at PM-13	C_r13 =	12.33	(mg/l)
Observed concentration in river at PM-12 3.0 (mg/l) Observed concentration in river at PM-13 12.7 (mg/l)			-		
Observed concentration in river at PM-12 3.0 (mg/l) Observed concentration in river at PM-13 12.7 (mg/l)	E				
Observed concentration in river at PM-12 3.0 (mg/l) Observed concentration in river at PM-13 12.7 (mg/l)	H atio				
O O Observed concentration in river at PM-13 12.7 (mg/l)	/ec htra	Observed concentration in river at PM-12		3.0	(mg/l)
ŠČOObserved concentration in river at PM-1312.7 (mg/l)	arv Ser				
O O Observed concentration in river at PM-13 12.7 (mg/l)) bnc				
	δŏ	Observed concentration in river at PM-13		12.7	(mg/l)

Parameter: Nickel

	surface water flow into PM-12	Q_s12 =	12.60	(cfs)
ata	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
ow Da	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
문	LIVSMC Tailings Basin seepage	Q_ts =	11.50	(CfS)
t	Aydrometallurgical Residue Cells Liner Leakage	$Q_{1}S =$	0.00	(CIS)
du	ground water flow into PM-12	$Q_{g12} =$	0.00	(CIS)
—	giodina water new into t in to	Q_910 =	۱ ۲.۲	(013)
	concentration of ourface water into PM 12	C a12	1.0	(ug/l)
ata		0_512 =	1.2	(µg/i)
õ	concentration of surface water into PM-13	C_s13 =	1.2	(µg/l)
ion	concentration of WWTP discharge	C_sBab =	1.2	(µg/l)
trat	concentration of Area 5 Pit NW discharge	C_spit =	2.5	(µg/l)
cen	concentration of LTVSMC Tailings Basin seepage	C_fs =	6.88	(µg/l)
ouo	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(µg/l)
nt O	concentration of ground water flow into PM-12	C_g12 =	7	(µg/l)
dul	concentration of ground water flow into PM-13	C_g13 =	7	(µg/l)
ø	flow in river at PM-12	Q_r12 =	13.79	(cfs)
anc	flow in river at PM-13	Q_r13 =	80.00	(cfs)
Bal Bal	flow check	Q ck =	80.00	(cfs)
				(/
	mass flux of surface water into PM-12	M s12 =	428	(ua/s)
	mass flux of surface water into PM-13	M s13 =	1647	(µg/s)
of	mass flux of Babbitt WWTP	M_sBab =	11	(µg/s)
티스	concentration of Area 5 Pit NW discharge	M_spit =	141	(µg/s)
ati Flu	concentration of LTVSMC Tailings Basin seepage	M_fs =	2239	(µg/s)
cul	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(µg/s)
Cal Aas	mass flux of ground water into PM-12	M_g12 =	170	(µg/s)
02	mass flux of ground water into PM-13	$IVI_gI3 =$	834	(µg/s)
e	mass flux in river at PM-12	M r12 -	610	(nu/e)
ss and			010	(P9/9/
Ma: Bal	mass flux in river at PM 13	M r13 -	5471	(ua/c)
		101_113 =	J47 I	(µg/s)
c				
ior				
ed rat	concentration in river at PM-12	C r12 -	1.6	(ua/l)
lat		0_112 =	1.0	(µg/i)
nce Lice				
ပ် ပိ	concentration in river at PM-13	C r13 =	2.4	(µq/l)
		. –		
Ę				
atio				
red 'tra	Observed concentration in river at PM-12	1	1.9	(µg/l)
erv				
sq				
00	Observed concentration in river at PM-13		2.1	(µg/l)

Parameter: Lead

-		-		
	surface water flow into PM-12	Q_s12 =	12.60	(cfs)
Data	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
Ň	Area 5 Pit NW discharge	Q_spit =	1.99	(cts)
음	LTVSMC Tailings Basin seepage	Q_ts =	11.50	(cts)
Ť	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(CfS)
đ	ground water flow into PM-12	Q_g12 =	0.86	(CfS)
_	Iground water now into PW-13	Q_913 =	4.21	(CIS)
				<i>(</i>
a	concentration of surface water into PM-12	C_s12 =	0	(µg/l)
Dai	concentration of surface water into PM-13	C_s13 =	0	(µg/l)
L L	concentration of WWTP discharge	C_sBab =	0	(ua/l)
atic			0.5	(mg/)
ntre	concentration of Area 5 Pit NW discharge	C_spit =	0.5	(µg/I)
Gel	concentration of LTVSMC Tailings Basin seepage	C_fs =	1.2	(µg/l)
u o	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
out C	concentration of ground water flow into PM-12	C_g12 =	1.2	(µg/l)
dul	concentration of ground water flow into PM-13	C_g13 =	1.2	(µg/l)
<u></u>	flow in river at PM-12	Q_r12 =	13.79	(cfs)
tter lanc	flow in river at PM-13	 Q_r13 =	80.00	(cfs)
Ba Ba	flow check	Q ck =	80.00	(cfs)
				. ,
	mass flux of surface water into PM-12	M s12 =	0	(ua/s)
	mass flux of surface water into PM-13	M_s13 =	0	(µg/s)
oť	mass flux of Babbitt WWTP	M sBab =	0	(µg/s)
5 ×	concentration of Area 5 Pit NW discharge	M spit =	28	(µg/s)
atic ati	concentration of LTVSMC Tailings Basin seepage	M fs =	391	(µg/s)
s F B	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(µg/s)
alc as	mass flux of ground water into PM-12	M_g12 =	29	(µg/s)
υΣ	mass flux of ground water into PM-13	M_g13 =	143	(µg/s)
		-		
Φ			_	, , .
uc s	mass flux in river at PM-12	M_r12 =	29	(µg/s)
as ala				
Σä	mass flux in river at PM-13	M_r13 =	591	(µg/s)
		-		
Ľ				
atic				
ttee	concentration in river at PM-12	C_r12 =	0.07	(µg/l)
ula Ser				
alc				
ΰŭ	concentration in river at PM-13	C_r13 =	0.26	(µg/l)
L				
J atic				
vec	Observed concentration in river at PM-12		ND (0.30)	(µg/l)
en Ce				
sd(0.07	(
00	Observed concentration in river at PM-13		0.27	(µg/I)

Parameter: Antimony

	aunfange unstan flags inte DM 40	0 -10	10.00 (- (-)
	Sunace water now into MM-12	$Q_{12} = 0$	12.60 ((cis)
Data	surface water flow into PM-13	Q_s13 =	48.51 (0	cts)
	Babbitt WWTP discharge	Q_sBab =	0.33 (0	cfs)
≥	Area 5 Pit NW discharge	Q_spit =	1.99 (0	cfs)
은	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (0	cfs)
ц.	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (0	cfs)
nd	ground water flow into PM-12	Q_g12 =	0.86 (0	cfs)
	ground water flow into PM-13	Q g13 =	4.21 (cfs)
	10			,
	and the standard water into DM 40	0 -10	0.00 (
a	concentration of surface water into PIN-12	6_\$12 =	0.02 (µg/I)
Dai D	concentration of surface water into PM-13	C_s13 =	0.02 (µg/l)
on l	concentration of WWTP discharge	C_sBab =	0.02 (µg/l)
ati	concentration of Area 5 Pit NW discharge	C spit =	150	ua/l)
intr	concentration of LTVSMC Tailings Pagin scopage	C_fc	0.25 (ug/l)
ЭС ЭС		0_13 =	0.23	µg/i)
Cor	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
out (concentration of ground water flow into PM-12	C_g12 =	1.5 (µg/l)
dul	concentration of ground water flow into PM-13	C_g13 =	1.5 (µg/l)
	•	-		
D	flow in river at PM-12	Q r12 =	13 79 (cfs)
ter anc	flow in river at PM-13	Q_r13 =	80.00 (cfs)
Na: Bala	flow check	0. ck -	80.00 (ofe)
		Q_0K =	00.00 (0	013)
	Image flux of outpage water into DM 10	M at0	7 (
	mass flux of surface water into PM-12	M_\$12 =	/ (µg/s)
÷	mass flux of surface water into PM-13	M_\$13 =	27 (µg/s)
0	mass flux of Babbitt WWTP	M_sBab =	0 ()	µg/s)
א פ	concentration of Area 5 Pit NW discharge	M_spit =	84 (µg/s)
El ati	concentration of LTVSMC Tailings Basin seepage	M_fs =	81 (µg/s)
s n	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 ()	µg/s)
alc as	mass flux of ground water into PM-12	M_g12 =	37 ()	µg/s)
UΣ	mass flux of ground water into PM-13	M_g13 =	179 (µg/s)
Ce	mass flux in river at PM-12	M_r12 =	44 (µg/s)
lss lan			ľ	
Ba	mass flux in river at PM-13	M r13 =	416 (ua/s)
		<u> </u>		. 3, 3/
ior				
∋d rat	concentration in river at DM 12	C r12	0.11	ug/l)
ate		0_112 =	0.11	µg/I)
cul				
o al	concentration in river at PM-13	C r13 -	0 19 /	ua/l)
		0_113 =	0.10	μ <u>θ</u> /1)
ior				
bd trat	Observed concentration in river at PM-12		ND (0.3) (ua/l)
enie			(0.0) (r: 3r '/
se				
ပ်င်	Observed concentration in river at PM-13		ND (0.3) (µg/l)

Parameter: Selenium

	surface water flow into PM-12	Q_s12 =	12.60	(cfs)
w Data	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
<u>í</u>	LTVSMC Tailings Basin seepage	Q_fs =	11.50	(cfs)
L t	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(cfs)
Inc	ground water flow into PM-12	Q_g12 =	0.86	(cfs)
Ē	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
-				
	concentration of ourface water into PM 12	C a12	0.2	(110/1)
ta		0_512 =	0.3	(µg/i)
Da	concentration of surface water into PM-13	C_s13 =	0.3	(µg/l)
ion	concentration of WWTP discharge	C_sBab =	0.3	(µg/l)
trat	concentration of Area 5 Pit NW discharge	C_spit =	1	(µg/l)
ent	concentration of LTVSMC Tailings Basin seepage	C fs =	1.09	(ua/l)
u c	concentration of Hydrometallurgical Residue Cells Liner Leakage	_ C rrs =	0	
Ŭ				/ m
out	concentration of ground water flow into PM-12	C_g12 =	2.95	(µg/l)
lnp	concentration of ground water flow into PM-13	C_g13 =	2.95	(µg/l)
Φ	flow in river at PM-12	Q r12 =	13.79	(cfs)
ter anc	flow in river at PM-13	$0_{13} =$	80.00	(cfs)
Nat Sali	flow check	Q_rte =	80.00	(cfs)
		<u>u_ur =</u>	00.00	(013)
		M - 10	10-1	(
	mass flux of surface water into PM-12	IVI_S12 =	107	(µg/s)
·	mass flux of surface water into PM-13	M_s13 =	412	(µg/s)
ō	mass flux of Babbitt WWTP	M_sBab =	3	(µg/s)
u ×	concentration of Area 5 Pit NW discharge	M_spit =	56	(µg/s)
ati Fl∪	concentration of LTVSMC Tailings Basin seepage	M_fs =	355	(µg/s)
lu s	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(µg/s)
alcas	mass flux of ground water into PM-12	M_g12 =	72	(µg/s)
UΣ	mass flux of ground water into PM-13	M_g13 =	351	(µg/s)
Ce	mass flux in river at PM-12	M_r12 =	182	(µg/s)
ss an				
Ma 3al	mass flux in river at PM-13	M r13 –	1356	(uu/s)
		<u></u>	1000	(M9/3)
uo				
ati				
ate	concentration in river at PM-12	C_r12 =	0.47	(µg/l)
cer				
alc				
00	concentration in river at PM-13	C_r13 =	0.60	(µg/l)
L L				
atio				
/ed	Observed concentration in river at PM-12		ND (1)	(µg/l)
erv cei				
sq				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
00	Observed concentration in river at PM-13		ND (1)	(µg/l)
Embarrass River Model - Calibration to Baseline Water Quality Data

Parameter: Sulfate

	surface water flow into PM-12	Q_s12 =	12.60	(cfs)
ata	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
ä	Babbitt WWTP discharge	Q_sBab =	0.33	(CfS)
Ň	Area 5 Pit NW discharge		11.99	(CIS)
Ĕ	LTVSMU Tallings Basin seepage		11.50	(CIS)
rt	Aydrometallurgical Residue Cells Liner Leakage	Q_{1} $S = 0$	0.00	(CIS)
du	ground water flow into PM-12	$Q_{g12} =$	0.00	(CIS)
_	Giodina water now into T MPTO	Q_910 =	4.21	(013)
	and the standard water into DM 40	0 -10	4	(ma m /l)
ta	concentration of surface water into PM-12	C_\$12 =	4	(mg/I)
Da	concentration of surface water into PM-13	C_s13 =	4	(mg/l)
tion	concentration of WWTP discharge	C_sBab =	4	(mg/l)
itral	concentration of Area 5 Pit NW discharge	C_spit =	1042	(mg/l)
cen	concentration of LTVSMC Tailings Basin seepage	C_fs =	152.4	(mg/l)
Sone	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
nt O	concentration of ground water flow into PM-12	C_g12 =	8.5	(mg/l)
dul	concentration of ground water flow into PM-13	C_g13 =	8.5	(mg/l)
e	flow in river at PM-12	Q_r12 =	13.79	(cfs)
ater land	flow in river at PM-13	Q_r13 =	80.00	(cfs)
Ba Va	flow check	Q_ck =	80.00	(cfs)
	mass flux of surface water into PM-12	M_s12 =	1427	(µg/s)
	mass flux of surface water into PM-13	M_s13 =	5491	(mg/s)
of	mass flux of Babbitt WWTP	M_sBab =	37	(mg/s)
ы	concentration of Area 5 Pit NW discharge	M_spit =	58682	(mg/s)
-In ati	concentration of LTVSMC Tailings Basin seepage	M_fs =	49599	(mg/s)
luc si l	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/s)
alc las	mass flux of ground water into PM-12	M_g12 =	207	(mg/s)
S	mass flux of ground water into PM-13	M_g13 =	1013	(mg/s)
Ð	mana flux in vivan et DM 10	M =10	1071	(ma m/=)
s	mass flux in river at PM-12	IVI_r12 =	16/1	(mg/s)
as: ala		1		
Σä	mass flux in river at PM-13	M_r13 =	116455	(mg/s)
L				
d				
ntra	concentration in river at PM-12	C_r12 =	4.3	(mg/l)
ula				
alc				
ŰŐ	concentration in river at PM-13	C_r13 =	51.4	(mg/l)
		-		
uo				
d rati	Observed concentration in river at DM 10		4 7	(ma/l)
vec	Observed concentration in river at PM-12		4./	(mg/I)
ser				
So So	Observed concentration in river at PM 12	1	26.1	(ma/l)
00			30.1	(119/1)

Embarrass River Model - Calibration to Baseline Water Quality Data

Parameter: Thallium

			40.00	(()
	surface water flow into PM-12	$Q_{s12} =$	12.60	(CfS)
ata	surface water flow into PM-13	Q_\$13 =	48.51	(CtS)
ä	Babbitt WWIP discharge	Q_sBab =	0.33	(CfS)
Ň	Area 5 PILINW discharge		1.99	(CIS)
Ĕ	Livolvio Tallings Basin seepage		11.50	(CIS)
rt	around water flow into DM 12		0.00	(CIS)
du	ground water flow into PM-12	$Q_g 2 =$	0.86	(CIS) (cfc)
_	Biodina water now into Finisho	<u>v_</u> gio =	4.21	(013)
đ	concentration of surface water into PM-12	C_s12 =	0.2	(mg/l)
Data	concentration of surface water into PM-13	C_s13 =	0.2	(mg/l)
– uo	concentration of WWTP discharge	C_sBab =	0.2	(mg/l)
trati	concentration of Area 5 Pit NW discharge	C_spit =	1 ((mg/l)
en j	concentration of LTVSMC Tailings Basin seepage	C_fs =	0.2	(mg/l)
ouc	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
ut C	concentration of ground water flow into PM-12	C_g12 =	0.004	(mg/l)
lnp	concentration of ground water flow into PM-13	C_g13 =	0.004	(mg/l)
ို	flow in river at PM-12	Q_r12 =	13.79	(cfs)
ateı alan	flow in river at PM-13	Q_r13 =	80.00	(cfs)
≥ ä	flow check	Q_ck =	80.00	(cfs)
		-		
	mass flux of surface water into PM-12	M_s12 =	71	(µg/s)
·	mass flux of surface water into PM-13	M_s13 =	275	(mg/s)
Ō	mass flux of Babbitt WWTP	M_sBab =	2	(mg/s)
joi xu	concentration of Area 5 Pit NW discharge	M_spit =	56	(mg/s)
Flu	concentration of LTVSMC Tailings Basin seepage	fs =	65	(mg/s)
cul	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(mg/s)
Cal Aas	mass flux of ground water into PM-12	$M_{g12} =$	0	(mg/s)
02	mass nux of ground water into FIV-13	IVI_YI3 =	0	(ing/s)
lce .	mass flux in river at PM-12	M_r12 =	73	(mg/s)
ass ılar				
Β̈́́	mass flux in river at PM-13	M_r13 =	470	(mg/s)
uo				
ed rati	concentration in river at PM-12	C r12 -	0.10	(ma/l)
ulati ent		0_112 =	0.19	(iiig/l)
alct				
ပိပိ	concentration in river at PM-13	C_r13 =	0.21	(mg/l)
ion				
ed trat	Observed concentration in river at PM-12		ND (0.4)	(µg/l)
erve			, <i>(</i>	
)bs(((I))
00	Observed concentration in river at PM-13		ND (0.4)	(µg/I)

Embarrass River Model - Calibration to Baseline Water Quality Data Parameter: Zinc

	surface water flow into PM-12	Q_s12 =	12.60	(cfs)
ıta	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
D D	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
2	Area 5 Pit NW discharge	Q_spit =	1.99	(cfs)
음	LTVSMC Tailings Basin seepage	Q_fs =	11.50	(cfs)
т Н	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(cfs)
d d	ground water flow into PM-12	Q_g12 =	0.86	(cfs)
<u> </u>	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
ъ D	concentration of surface water into PM-12	C_s12 =	16	(µg/l)
Data	concentration of surface water into PM-13	C_s13 =	16	(µg/l)
u O	concentration of WWTP discharge	C_sBab =	16	(µg/l)
trat	concentration of Area 5 Pit NW discharge	C_spit =	5	(µg/l)
en Sen	concentration of LTVSMC Tailings Basin seepage	C_fs =	14.35	(µg/l)
ono	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
nt O	concentration of ground water flow into PM-12	C_g12 =	11.5	(µg/l)
lnp	concentration of ground water flow into PM-13	C_g13 =	11.5	(µg/l)
e	flow in river at PM-12	Q_r12 =	13.79	(cfs)
ater land	flow in river at PM-13	Q_r13 =	80.00	(cfs)
У́; Ва	flow check	Q_ck =	80.00	(cfs)
	mass flux of surface water into PM-12	M_s12 =	5707	(µg/s)
	mass flux of surface water into PM-13	M_s13 =	21963	(µg/s)
of	mass flux of Babbitt WWTP	M_sBab =	149	(µg/s)
ы Бх	concentration of Area 5 Pit NW discharge	M_spit =	282	(µg/s)
-In ati	concentration of LTVSMC Tailings Basin seepage	M_fs =	4670	(µg/s)
s P S F	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0	(µg/s)
alc as	mass flux of ground water into PM-12	M_g12 =	280	(µg/s)
UΣ	mass flux of ground water into PM-13	M_g13 =	1370	(µg/s)
	mass flux in river at PM-12	M_r12 =	6137	(µg/s)
ass lar				
Ba	mass flux in river at PM-13	M r13 =	34422	(µg/s)
ior				
ed rat	concontration in river at PM 12	C r12	15 70	(110/1)
ate		0_112 =	15.72	(µg/I)
cul				
Salc	concentration in vivor at DM 10	0 110	15.00	(
00	concentration in river at PM-13	U_113 =	15.20	(µg/I)
LO LO				
- atio				
/ec	Observed concentration in river at PM-12		18.3	(µg/l)
en cel				
sq				
	Observed concentration in river at PM 12	1	10.0	(ua/l)

Appendix F

Predicted Concentrations Using Mass-Balance Models for Embarrass River Watershed

Tailings Basin - Proposed Action

F.1	Embarrass River:	Year 1
F.2	Embarrass River:	Year 5
F.3	Embarrass River:	Year 8
F.4	Embarrass River:	Year 9
F.5	Embarrass River:	Year 15
F.6	Embarrass River:	Year 20
E 7	Emborross Divor	Closura

- F.7 Embarrass River: Closure
- F.8 Embarrass River: Post-Closure

Tailings Basin - Geotechnical Mitigation

- F.9 Embarrass River: Year 1
- F.10 Embarrass River: Year 5
- F.11 Embarrass River: Year 10
- F.12 Embarrass River: Year 15
- F.13 Embarrass River: Year 20
- F.14 Embarrass River: Closure
- F.15 Embarrass River: Post-Closure

Appendix F.1 Embarrass River Proposed Action Year 1

Input Flows

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

FLOWS

Case	Year 1				
Flows	Low Flow Conditions (no surface runoff)				Node
low in rass River	flow in river at PM-12 flow in river at PM-13	Q_r12_L = Q_r13_L =	0.86	(cfs) (cfs)	PM-12 PM-13
Total f Embar	flow check	Q_ck_L =	6.27	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.34	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
lov	seepage from cell 2W	Q_s2w_L =	0.86	(cfs)	PM-13
out 1	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
lnp	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 1				
Flow	Average Flow Conditions (mean annual)				
liver	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
flow in arrass F	flow in river at PM-13	Q_r13_M =	92.68	(cfs)	PM-13
Total Embi	flow check	Q_ck_M =	92.68	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	3.19	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
Nol.	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
nt 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
aul	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 1				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i ırrass	flow in river at PM-13	Q_r13_H =	864.23	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	864.23	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	3.19	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
lov	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
t t	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
du	ground water flow into PM-13	Q q13 H =	4.21	(cfs)	PM-13

Case	Year 1			
Parameter	Silver			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00096	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
ut con	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.35	(mg/s)	2.75	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conver flux to concen	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 1 Aluminum			
		4		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
u da	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.01	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.18	(mg/L)
L S	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
Ĕ	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
lnp	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.10	(mg/s)	0.90	(mg/s)	0.90	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	38.29	(mg/s)	355.65	(mg/s)	355.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	41.98	(mg/s)	571.64	(mg/s)	2,755.13	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.237	(mg/L)	0.218	(mg/L)	0.113	(mg/L)

Case	Year 1			
Parameter	Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
, da	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.005946518	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
rt .	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average I	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ent o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.06	(mg/s)	0.54	(mg/s)	0.54	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.07	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.52	(mg/s)	3.24	(mg/s)	19.61	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Year 1			
Parameter	Boron			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.138981444	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.35	(mg/s)	12.53	(mg/s)	12.53	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	8.00	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	12.40	(mg/s)	122.61	(mg/s)	384.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Con flux conc	concentration in river at PM-13	C_r13 =	0.070	(mg/L)	0.047	(mg/L)	0.016	(mg/L)

Case	Year 1			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
, di	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.29E-02	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.51	(mg/s)	4.77	(mg/s)	4.77	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ů	mass flux in seepage from cell 2W	M_s2w =	2.26	(mg/s)	20.95	(mg/s)	20.95	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	12.54	(mg/s)	58.92	(mg/s)	299.10	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conver filux to concen	concentration in river at PM-13	C_r13 =	0.071	(mg/L)	0.022	(mg/L)	0.012	(mg/L)

Case	Year 1			
Parameter	Beryllium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000271356	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Flo	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
concer flux	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flo	w	Average	Flow	High Flo	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	 0.41	(mg/s)
at	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.41	(mg/s)	2.60	(mg/s)
			Low Flo	w	Average	Flow	High Flo	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
U ≓ S	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Calcium			
		-	-	
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	45.78662467	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
d L	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
L O	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
t,	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	444.46	(mg/s)	4,128.35	(mg/s)	4,128.35	(mg/s)
Ň	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	12.28	(mg/s)	12.28	(mg/s)	12.28	(mg/s)
ပိ ,	mass flux in seepage from cell 2W	M_s2w =	1,449.83	(mg/s)	13,466.52	(mg/s)	1.77	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lass balance	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
2	mass flux in river at PM-13	IVI_F13 =	4,032.71	(mg/s)	53,100.63	(mg/s)	323,489.12 High Fl	(mg/s)
convert mass lux to	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
0 = 0	concentration in river at PM-13	C_r13 =	26.104	(mg/L)	20.246	(mg/I)	13.227	(mg/l)

Case	Year 1			
Parameter	Cadmium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000117453	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)		0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)		2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)		0.04	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
ert ss 1	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)		0.04	(mg/s)
			Low Flow		Average	Average Flow		High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)		0.33	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.05	(mg/s)	0.27	(mg/s)		2.02	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)		0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)		0.000	(mg/L)

Case	Year 1			
Parameter	Chloride			
		-		
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.89E+01	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
d L	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Ave	age Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,56	3.63 (mg/s)	40,514	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	4	3.81 (mg/s)	43.81	(mg/s)
ttion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	ę	3.39 (mg/s)	93.39	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,41	2.99 (mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	21	4.46 (mg/s)	214.46	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	33	5.09 (mg/s)	335.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	183.09	(mg/s)	1,70	0.65 (mg/s)	1,700.65	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	51.97	(mg/s)	Ę	1.97 (mg/s)	51.97	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	522.40	(mg/s)	4,85	2.27 (mg/s)	4,852.27	(mg/s)
			Low Flo	w	Ave	age Flow	High Fl	low
balance th node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,70	5.83 (mg/s)	40,651.48	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	1,015.74	(mg/s)	28,27	3.26 (mg/s)	246,621.91	(mg/s)
			LOW FIO	W	AVe	age Flow	High Fi	low
rt mass ntration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)		489 (mg/L)	9.951	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	5.723	(mg/L)	10	780 (mg/L)	10.084	(mg/L)

Case	Year 1			
Parameter	Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
sb r	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tior	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001174401	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
it .	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Aver	ige Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	(21 (mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	(03 (mg/s)	0.03	(mg/s)
ation	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	(01 (mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1	04 (mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	(13 (mg/s)	0.13	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	(03 (mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0	11 (mg/s)	0.11	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	(00 (mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.04	(mg/s)	(35 (mg/s)	0.35	(mg/s)
			Low Flo	w	Aver	ige Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)		25 (mg/s)	2.46	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	1	91 (mg/s)	15.01	(mg/s)
			Low Flo	w	Aver	ige Flow	High Fl	ow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.	01 (mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.	01 (mg/L)	0.001	(mg/L)

Case	Year 1			
Parameter	Copper			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.005888719	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.06	(mg/s)	0.53	(mg/s)	0.53	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ຊ ິ <u>ບ</u>	mass flux in seepage from cell 2W	M_s2w =	0.11	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	0.74	(mg/s)	5.49	(mg/s)	38.24	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
ర≓ర	concentration in river at PM-13	C_r13 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)

Case	Year 1			
Parameter	Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.57E+00	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
Ition	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	44.38	(mg/s)	412.18	(mg/s)	412.18	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	37.59	(mg/s)	349.17	(mg/s)	349.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance 1 node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mass ł at eacl	mass flux in river at PM-13	M_r13 =	137.29	(mg/s)	1,034.46	(mg/s)	3,217.94	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	0.774	(mg/L)	0.394	(mg/L)	0.132	(mg/L)

Case	Year 1			
Parameter	Iron			
		-	-	
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
, di	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.00E-03	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
ort	concentration of ground water into PM-12		0.035	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
ation	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.04	(mg/s)	0.36	(mg/s)	0.36	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	111.42	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance 1 node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass t at each	mass flux in river at PM-13	M_r13 =	116.49	(mg/s)	7,154.16	(mg/s)	70,475.26	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.656	(mg/L)	2.728	(mg/L)	2.882	(mg/L)

Case	Year 1			
Parameter	Hardness			
		-		
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.15E+02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
ntration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
u XI	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,057.32	(mg/s)	28,397.48	(mg/s)	28,397.48	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	254.25	(mg/s)	254.25	(mg/s)	254.25	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	10,588.73	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Ma at	mass flux in river at PM-13	M_r13 =	26,454.88	(mg/s)	340,174.23	(mg/s)	1,868,614.78	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
ŭ≓ŭ	concentration in river at PM-13	C_r13 =	149.066	(mg/L)	129.701	(mg/L)	76.402	(mg/L)

Case	Year 1			
Parameter	Potassium			
		-	-	
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
ů p c	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.15	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Ave	rage Fl	low	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,3	.0.39 (r	mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	:	8.94 (r	mg/s)	38.94	(mg/s)
tion	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)		0.05 (r	mg/s)	0.05	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,4	2.81 (r	mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	1	0.63 (r	mg/s)	190.63	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	:	4.55 (r	mg/s)	34.55	(mg/s)
ert o Ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,02	.9.85 (r	mg/s)	3,029.85	(mg/s)
n ve ma:	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	88.87	(mg/s)	8	25.45 (r	mg/s)	825.45	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	188.44	(mg/s)	1,7	i0.33 (r	mg/s)	1,750.33	(mg/s)
			Low Flo	w	Ave	rage Fl	low	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	38.99	(mg/s)	1,3	i9.39 (r	mg/s)	15,029.28	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	506.94	(mg/s)	13,6	3.01 (r	mg/s)	94,422.01	(mg/s)
			Low Flo	w	Ave	rage Fl	low	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	1.602	(mg/L)		5.481 (r	mg/L)	3.679	(mg/l)
Conv flux t	concentration in river at PM-13	C_r13 =	2.856	(mg/L)		i.198 (r	mg/L)	3.861	(mg/l)

Case Parameter	Year 1 Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	48.72	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
ŭ L	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average	Flow	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	472.92	(mg/s)	4,392.66	(mg/s)	4,392.66	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	6.29	(mg/s)	6.29	(mg/s)	6.29	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	1,696.96	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High F	low
ss balance sach node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	3,704.25	(mg/s)	49,595.94	(mg/s)	180,605.13	(mg/s)
			Low Flo	w	Average	Flow	High F	low
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
ŬĘŭ	concentration in river at PM-13	C_r13 =	20.872	(mg/L)	18.910	(mg/l)	7.384	(mg/l)

Case	Year 1			
Parameter	Manganese			
-		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.29	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.81	(mg/s)	26.10	(mg/s)	26.10	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	28.69	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	58.48	(mg/s)	979.13	(mg/s)	7,529.59	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
ŬĘŬ	concentration in river at PM-13	C_r13 =	0.329	(mg/L)	0.373	(mg/l)	0.308	(mg/l)

Case	Year 1			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
р с	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	66.13	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
d L	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	641.91	(mg/s)	5,962.27	(mg/s)	5,962.27	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	7.53	(mg/s)	7.53	(mg/s)	7.53	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	1,074.64	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mass bé at each	mass flux in river at PM-13	M_r13 =	2,427.13	(mg/s)	30,760.62	(mg/s)	107,182.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Conve flux to concer	concentration in river at PM-13	C_r13 =	13.676	(mg/L)	11.728	(mg/l)	4.382	(mg/l)

Case	Year 1			
Parameter	NICKEI	l		
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
u dá	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.009513833	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ation	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.09	(mg/s)	0.86	(mg/s)	0.86	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.17	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mass bê at each	mass flux in river at PM-13	M_r13 =	1.27	(mg/s)	6.24	(mg/s)	32.44	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass itration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Convel flux to concer	concentration in river at PM-13	C_r13 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)

Case Parameter	Year 1 Lead			
				ı.
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
ja na di	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000585798	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
ů –	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.27	(mg/s)	0.27	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	0.51	(mg/s)	0.51	(mg/s)
		-	Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Antimony			
		-		-
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.83E-03	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage		0.004	(mg/L)
co	concentration in tailings basin cell 2W		2.50E-04	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
tration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.05	(mg/s)	0.44	(mg/s)	0.44	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	0.27	(mg/s)	0.76	(mg/s)	1.20	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 1 Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000967892	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
ln p	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t balance ch node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	0.46	(mg/s)	1.48	(mg/s)	8.03	(mg/s)
		-	Low Flo	w	Average	Flow	High Fl	ow
nvert mass t to icentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Col Col	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Sulfate			
			-	
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
ů p c	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	142.79	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)		16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)		206.87	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)		37.36	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)		79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)		1,012.72	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)		58,922.60	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,386.13	(mg/s)	12,874.84	(mg/s)		12,874.84	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	216.95	(mg/s)	216.95	(mg/s)		216.95	(mg/s)
ធ បំ	mass flux in seepage from cell 2W	M_s2w =	3,696.11	(mg/s)	34,330.84	(mg/s)		34,330.84	(mg/s)
			Low Flow		Average	Flow	High Flo		ow
balance th node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)		16,449.94	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	6,518.78	(mg/s)	115,994.83	(mg/s)		203,334.29	(mg/s)
			LOW FIO	w	 Average	FIOW		High Fi	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)		4.027	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	36.732	(mg/L)	44.226	(mg/l)		8.314	(mg/l)

Case	Year 1			
Parameter	Thallium			
-		-		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00096816	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
		Low Flo	w	Average	Flow	High Fl	ow	
ass balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	 0.81	(mg/s)
M, at	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.59	(mg/s)	4.96	(mg/s)
		-	Low Flo	w	Average	Flow	 High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	 0.000	(mg/L)
ŭ≓ŭ	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Zinc			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
р с р	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.009842772	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
ntral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.10	(mg/s)	0.89	(mg/s)	0.89	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> دُ	mass flux in seepage from cell 2W	M_s2w =	0.35	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	2.09	(mg/s)	39.66	(mg/s)	389.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	0.012	(mg/L)	0.015	(mg/L)	0.016	(mg/L)

Appendix F.2 Embarrass River Proposed Action Year 5

FLOWS

Case	Year 5				
Flows	Low Flow Conditions (no surface runoff)				Node
in River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
flow i arrass	flow in river at PM-13	Q_r13_L =	6.28	(cfs)	PM-13
Total Emba	flow check	Q_ck_L =	6.28	(cfs)	
	surface water flow into PM-12	Q s12 L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q s13 L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.41	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.01	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_L =	0.79	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
Ing	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 5				
Flow	Average Flow Conditions (mean annual)				
River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow in arrass F	flow in river at PM-13	Q_r13_M =	93.61	(cfs)	PM-13
Total Emb	flow check	Q_ck_M =	93.61	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	4.10	(cfs)	PM-13
, da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.01	(cfs)	PM-13
No <u>l</u>	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
out 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
aul	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 5				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i irrass	flow in river at PM-13	Q_r13_H =	865.16	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	865.16	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	4.10	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.01	(cfs)	PM-13
lov	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
nt 1	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
<u> </u>	ground water flow into PM-13	Q g13 H =	4.21	(cfs)	PM-13

Case	Year 5			
Parameter	Silver			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00090	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
out con	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance 1 node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.37	(mg/s)	2.77	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 5			
Parameter	Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
centra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.61E-02	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.11	(mg/s)	11.16	(mg/s)	11.16	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	35.38	(mg/s)	355.65	(mg/s)	355.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance n node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mass t at each	mass flux in river at PM-13	M_r13 =	40.15	(mg/s)	581.97	(mg/s)	2,765.46	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
Convel flux to concer	concentration in river at PM-13	C_r13 =	0.226	(mg/L)	0.220	(mg/L)	0.113	(mg/L)

Case	Year 5			
Parameter	Arsenic			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.006775027	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	W		Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		0.27	(mg/s)	3	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)		0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)		0.33	(mg/s)	0.33	(mg/s)
u su l	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.07	(mg/s)	0.07	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.08	(mg/s)		0.79	(mg/s)	0.79	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> دُ	mass flux in seepage from cell 2W	M_s2w =	0.07	(mg/s)		0.65	(mg/s)	0.65	(mg/s)
			Low Flo	w		Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)		0.34	(mg/s)	3.11	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	0.54	(mg/s)		3.49	(mg/s)	19.87	(mg/s)
			Low Flo	w		Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)		0.001	(mg/L)	0.001	(mg/L)
° ≓ °	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	1	0.001	(mg/L)	0.001	(mg/L)
Case	Year 5								
-----------	---	----------	-------------	--------					
Parameter	Boron								
		-							
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)					
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)					
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)					
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)					
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.135355742	(mg/L)					
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)					
cor	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)					
ort .	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)					
du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)					

			Low Flor	w	Average	Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)		49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)		0.52	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)		0.11	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)		239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)		2.53	(mg/s)
lo XI	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)		7.41	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.56	(mg/s)	15.72	(mg/s)		15.72	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)		0.05	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	7.40	(mg/s)	74.34	(mg/s)		74.34	(mg/s)
			Low Flow		Average	Average Flow		High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)		49.25	(mg/s)
Mass ba at each r	mass flux in river at PM-13	M_r13 =	12.05	(mg/s)	125.84	(mg/s)		387.86	(mg/s)
			Low Flor	w	Average	Flow		High Fl	ow
nvert mass x to ncentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)		0.012	(mg/L)
CO CO	concentration in river at PM-13	C_r13 =	0.068	(mg/L)	0.048	(mg/L)		0.016	(mg/L)

Case	Year 5			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.03E-02	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
d L	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.58	(mg/s)	5.84	(mg/s)	5.84	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	2.08	(mg/s)	20.95	(mg/s)	20.95	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	12.44	(mg/s)	59.99	(mg/s)	300.17	(mg/s)
		-	LOW FIO	w	Average	FIOW	High Fi	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conv filux to conce	concentration in river at PM-13	C_r13 =	0.070	(mg/L)	0.023	(mg/L)	0.012	(mg/L)

Case	Year 5			
Parameter	Beryllium			
	-			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000454842	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flow		Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.03	(mg/s)	0.44	(mg/s)	2.62	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass or ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 5 Calcium			
	concentration of ourface water into DM 12	C a12 -	12	(mg/l.)
ta	concentration of surface water into PM-12	C_\$12 = C_\$13 =	13	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	55.55427025	(mg/L)
Cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
ot	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High	n Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,6	69 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.	42 (mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.	41 (mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,4	61 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.	72 (mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.	83 (mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	641.67	(mg/s)	6,450.21	(mg/s)	6,450.	21 (mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	176.59	(mg/s)	176.59	(mg/s)	176.	59 (mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,339.65	(mg/s)	13,466.52	(mg/s)	25.	38 (mg/s)
			Low Flo	w	Average	Flow	Higl	n Flow
balance ch node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.	39 (mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	4,884.05	(mg/s)	55,586.80	(mg/s)	325,998.	90 (mg/s)
			LOW FIO	w	Average	Flow	Higi	TIOW
/ert mass to :entration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.0	36 (mg/l)
Con flux 1 conc	concentration in river at PM-13	C_r13 =	27.459	(mg/L)	20.983	(mg/l)	13.3	15 (mg/l)

Case	Year 5			
Parameter	Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000238486	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Averag	e Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.0	8 (mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.0	(mg/s)	0.01	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.0) (mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.0	(mg/s)	0.01	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.0	(mg/s)	0.03	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.0) (mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	w	Averag	e Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	0.05	(mg/s)	0.2) (mg/s)	2.03	(mg/s)
			Low Flo	w	Averag	Flow	High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.00) (mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.00) (mg/L)	0.000	(mg/L)

Case Parameter	Year 5 Chloride			
		J		
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.07E+01	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
noc	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
sste	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	123.84	(mg/s)	1,244.90	(mg/s)	1,244.90	(mg/s)
n ve	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	747.10	(mg/s)	747.10	(mg/s)	747.10	(mg/s)
ဒ္ ပိ	mass flux in seepage from cell 2W	M_s2w =	482.71	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	1,611.91	(mg/s)	28,512.64	(mg/s)	246,861.29	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
mass	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Conver flux to concen	concentration in river at PM-13	C r13 =	9.063	(mg/L)	10.763	(mg/L)	10.083	(mg/L)

Case Parameter	Year 5 Cobalt			
rarameter	oodalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
ů provenské	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00200513	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	W	Averag	e Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.2	(mg/s)	2	(mg/s)
ıtration	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	8 (mg/s)	0.03	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.0	(mg/s)	0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.23	(mg/s)	0.23	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00) (mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.3	i (mg/s)	0.35	(mg/s)
			Low Flo	w	Averag	e Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	5 (mg/s)	2.46	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.22	(mg/s)	2.04	(mg/s)	15.14	(mg/s)
			Low Flo	w	Averag	e Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.00	(mg/L)	0.001	(mg/L)
Conver flux to concen	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.00	(mg/L)	0.001	(mg/L)

Case	Year 5			
Parameter	Copper			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
β β	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007797191	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.09	(mg/s)	0.91	(mg/s)	0.91	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.10	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance 1 node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	0.77	(mg/s)	5.86	(mg/s)	38.61	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)

Case	Year 5			
Parameter	Fluoride	l		
	concentration of surface water into PM-12	C s12 =	0.1	(mg/L)
Ita	concentration of surface water into PM-13	 C_s13 =	0.1	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tior	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.25E+00	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
u du	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	25.95	(mg/s)	260.89	(mg/s)	260.89	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.21	(mg/s)	1.21	(mg/s)	1.21	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	34.74	(mg/s)	349.17	(mg/s)	349.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	117.14	(mg/s)	884.30	(mg/s)	3,067.79	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Conv flux to conce	concentration in river at PM-13	C_r13 =	0.659	(mg/L)	0.334	(mg/L)	0.125	(mg/L)

Case	Year 5			
Parameter	Iron			
-		-		
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.96E-02	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
ation	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.69	(mg/s)	6.92	(mg/s)	6.92	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	102.95	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	 1,062.84	(mg/s)	11,777.08	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	108.83	(mg/s)	7,160.87	(mg/s)	70,481.98	(mg/s)
			LOW FIU	vv	Average	FIOW	підії гі	0₩
/ert mass :0 entration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	 2.721	(mg/L)	2.883	(mg/L)
Conv flux 1 conc	concentration in river at PM-13	C_r13 =	0.612	(mg/L)	2.703	(mg/L)	2.879	(mg/L)

Case	Year 5			
Parameter	Hardness			
		-	-	
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
, p c	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.61E+02	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
itration	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,017.90	(mg/s)	30,336.71	(mg/s)	30,336.71	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,654.83	(mg/s)	3,654.83	(mg/s)	3,654.83	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	9,784.08	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance ach node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Ma: at e	mass flux in river at PM-13	M r13 =	29,011.40	(mg/s)	345,514.05	(mg/s)	1,873,954.60	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to oncentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
0 = 0	concentration in river at Pivi-13	0_113 =	163.109	(IIIg/L)	130.427	(mg/∟)	70.538	(IIIg/L)

Case	Year 5			
Parameter	Potassium			
		-		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.67	(mg/L)
Cet	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
int	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	N	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
ıtration	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.76	(mg/s)	0.76	(mg/s)	0.76	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
u XI	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert o ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
n ve ma:	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	88.61	(mg/s)	890.78	(mg/s)	890.78	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	174.12	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	N	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	39.70	(mg/s)	1,360.10	(mg/s)	15,029.99	(mg/s)
Mass be at each	mass flux in river at PM-13	M_r13 =	493.07	(mg/s)	13,699.05	(mg/s)	94,488.05	(mg/s)
			Low Flo	N	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	1.631	(mg/L)	3.483	(mg/L)	3.679	(mg/l)
Con Con con	concentration in river at PM-13	C_r13 =	2.772	(mg/L)	5.171	(mg/L)	3.859	(mg/l)

Case	Year 5			
Parameter	Magnesium			
		-		
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	29.76	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

		Low Flow		Average Flow		High Fl	ow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
itrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	343.77	(mg/s)	3,455.69	(mg/s)	3,455.69	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	90.42	(mg/s)	90.42	(mg/s)	90.42	(mg/s)
<u>د</u> د م	mass flux in seepage from cell 2W	M_s2w =	1,568.01	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flor	W	Average	Flow	High Fl	ow
lass balance t each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
a A	mass flux in river at PM-13	M_r13 =	3,530.27	(mg/s)	48,743.09	(mg/s)	179,752.28	(mg/s)
		1	LOW FIO	W	Average	Flow	High Fi	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
ర≓ర	concentration in river at PM-13	C_r13 =	19.848	(mg/L)	18.400	(mg/l)	7.342	(mg/l)

Case	Year 5			
Parameter	Manganese			
		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
, p r	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.31	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
qu	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
tration	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.58	(mg/s)	36.00	(mg/s)	36.00	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	26.51	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flow		Average	Flow	High Fl	ow
balance n node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	57.07	(mg/s)	989.03	(mg/s)	7,539.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.321	(mg/L)	0.373	(mg/l)	0.308	(mg/l)

Case	Year 5			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	34.82	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
ıtrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	402.15	(mg/s)	4,042.46	(mg/s)	4,042.46	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	108.24	(mg/s)	108.24	(mg/s)	108.24	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	992.97	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance sch node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mas: at ea	mass flux in river at PM-13	M_r13 =	2,206.42	(mg/s)	28,941.52	(mg/s)	105,363.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass < to icentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Col Col	concentration in river at PM-13	C_r13 =	12.405	(mg/L)	10.925	(mg/l)	4.303	(mg/l)

Case Parameter	Year 5 Nickel			
		1		
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
p d	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.029814715	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
d d	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.34	(mg/s)	3.46	(mg/s)	3.46	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.15	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	1.54	(mg/s)	8.88	(mg/s)	35.08	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.009	(mg/L)	0.003	(mg/L)	0.001	(mg/L)

Case	Year 5			
Parameter	Lead			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
β β	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000769203	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

		Low Flow		Average Flow		Flow	w		High Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		-	(mg/s)		-	(mg/s)
tration	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)		0.03	(mg/s)		0.03	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		-	(mg/s)		-	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		-	(mg/s)		-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)		0.14	(mg/s)		0.14	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.02	(mg/s)		0.02	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)		0.09	(mg/s)		0.09	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)		0.27	(mg/s)		0.27	(mg/s)
			Low Flo	w		Average	Flow		High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)		0.03	(mg/s)		0.03	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)		0.55	(mg/s)		0.55	(mg/s)
			Low Flo	w		Average	Flow		High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)		0.000	(mg/L)		0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)		0.000	(mg/L)		0.000	(mg/L)

Case	Year 5			
Parameter	Antimony	l		
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
, di	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.47E-03	(mg/L)
cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
tration	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.07	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.30	(mg/s)	1.08	(mg/s)	1.52	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass ortration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 5			
Parameter	Selenium			
			-	
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001159434	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tratior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass b at eacl	mass flux in river at PM-13	M_r13 =	0.48	(mg/s)	1.55	(mg/s)	8.10	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Year 5			
Parameter	Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	140.42	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
U N	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,621.93	(mg/s)	16,304.02	(mg/s)	16,304.02	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,118.71	(mg/s)	3,118.71	(mg/s)	3,118.71	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	3,415.24	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
balance h node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	9,375.46	(mg/s)	122,325.77	(mg/s)	209,665.23	(mg/s)
		-	Low Flo	w	Average	Flow	 High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
Conve flux to concel	concentration in river at PM-13	C_r13 =	52.711	(mg/L)	46.176	(mg/l)	8.563	(mg/l)

Case Parameter	Year 5 Thallium			
			-	
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
n data	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000906999	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
Lo co	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
E	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.61	(mg/s)	4.97	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	 0.000	(mg/L)
Con Con con	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 5			
Parameter	Zinc			
		1		
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
р с р	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.017646569	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Averag	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.7	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.1	(mg/s)	0.15	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.80	i (mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.3	(mg/s)	1.37	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.20	(mg/s)	2.0	(mg/s)	2.05	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.32	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	w	Averag	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	2.18	(mg/s)	40.82	(mg/s)	390.18	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	i (mg/L)	0.016	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.012	(mg/L)	0.01	(mg/L)	0.016	(mg/L)

Appendix F.3 Embarrass River Proposed Action Year 8

FLOWS

Case	Year 8				
Flows	Low Flow Conditions (no surface runoff)				Node
in s River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
l flow arrass	flow in river at PM-13	Q_r13_L =	6.28	(cfs)	PM-13
Tota Emb	flow check	Q_ck_L =	6.28	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
ata	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.45	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.01	(cfs)	PM-13
flov	seepage from cell 2W	Q_s2w_L =	0.75	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
Ing	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 8				
Flow	Average Flow Conditions (mean annual)				
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow ir arrass I	flow in river at PM-13	Q_r13_M =	94.29	(cfs)	PM-13
Total Emb	flow check	Q_ck_M =	94.29	(cfs)	_
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	4.79	(cfs)	PM-13
, da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.01	(cfs)	PM-13
Nol 1	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
ut f	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
au	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 8				
Flow	High Flow Conditions (avg. annual 1-day max flow)				
ו River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow iı arrass	flow in river at PM-13	Q_r13_H =	865.84	(cfs)	PM-13
Total Emb ã	flow check	Q_ck_H =	865.84	(cfs)	_
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	4.79	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.01	(cfs)	PM-13
low	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
rt .	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
Ľ Ľ	ground water flow into PM-13	Q a13 H =	4.21	(cfs)	PM-13

Case	Year 8			
Parameter	Silver			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
n data	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00089	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
E	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.12	(mg/s)	0.12	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ຊີ ເວິ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.38	(mg/s)	2.79	(mg/s)
			LOW FIO	w	Average	FIOW	High Fi	ow
ert mass n ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 8			
Parameter	Aluminum			
		-		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.01E-01	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
ntration	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.28	(mg/s)	13.63	(mg/s)	13.63	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.06	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	33.47	(mg/s)	355.65	(mg/s)	355.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	38.40	(mg/s)	584.42	(mg/s)	2,767.91	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.216	(mg/L)	0.219	(mg/L)	0.113	(mg/L)

Case	Year 8			
Parameter	Arsenic			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007035766	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
t	concentration of ground water into PM-12		0.00273	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
itration	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.09	(mg/s)	0.95	(mg/s)	0.95	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> دُ	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ch node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	0.54	(mg/s)	3.66	(mg/s)	20.03	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass k to ncentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Co Co	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Year 8			
Parameter	Boron			
		-	-	-
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
β β	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.140897597	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	N	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
ntrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.80	(mg/s)	19.10	(mg/s)	19.10	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	7.00	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flor	N	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	11.87	(mg/s)	129.21	(mg/s)	391.23	(mg/s)
			Low Flo	N	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Conv flux to conce	concentration in river at PM-13	C_r13 =	0.067	(mg/L)	0.048	(mg/L)	0.016	(mg/L)

Case	Year 8			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.04E-02	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	N	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ntrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.64	(mg/s)	6.84	(mg/s)	6.84	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	1.97	(mg/s)	20.95	(mg/s)	20.95	(mg/s)
			Low Flor	N	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	12.39	(mg/s)	60.98	(mg/s)	301.17	(mg/s)
			Low Flo	N	Average	Flow	High Fl	ow
/ert mass o entration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conv flux t conc	concentration in river at PM-13	C_r13 =	0.070	(mg/L)	0.023	(mg/L)	0.012	(mg/L)

Case Parameter	Year 8 Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000543459	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average I	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
centra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flo	w	Average I	Flow	High Fl	ow
balance 1 node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Mass t at each	mass flux in river at PM-13	M_r13 =	0.03	(mg/s)	0.46	(mg/s)	2.65	(mg/s)
			Low Flor	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 8			
Parameter	Calcium			
-		-		
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	72.53696661	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
ort	concentration of ground water into PM-12		19	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	925.47	(mg/s)	9,833.30	(mg/s)	9,833.30	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	132.27	(mg/s)	132.27	(mg/s)	132.27	(mg/s)
<u>د</u> د م	mass flux in seepage from cell 2W	M_s2w =	1,267.42	(mg/s)	13,466.52	(mg/s)	19.01	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	5.051.30	(ma/s)	58.925.58	(ma/s)	329.331.31	(ma/s)
			Low Flo	w	Average	Flow	High Fl	ow
convert mass ux to oncentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)

Case	Year 8			
Parameter	Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000383404	(mg/L)
cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
qr	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High Flo	w
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	w	Average	Flow	High Flo	w
s balance ach node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	 0.33	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	0.05	(ma/s)	0.31	(ma/s)	2.06	(ma/s)
			Low Flo	w	Average	Flow	High Flo	ow w
convert mass lux to oncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 8			
Parameter	Chloride			
		-	-	
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.07E+00	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	77.48	(mg/s)	823.25	(mg/s)	823.25	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	559.62	(mg/s)	559.62	(mg/s)	559.62	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	456.68	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	1,352.05	(mg/s)	27,903.51	(mg/s)	246,252.16	(mg/s)
	1		LOW FIO	w	Average	FIOW	підп гі	ow
't mass ntration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	7.606	(mg/L)	10.457	(mg/L)	10.050	(mg/L)

Case Parameter	Year 8 Cobalt			
	concentration of surface water into PM-12	C s12 =	0.0006	(ma/L)
ta	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
sb c	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002321539	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
ot	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
con con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.31	(mg/s)	0.31	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ម ប័ ខ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flow		Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass	mass flux in river at PM-13	M_r13 =	0.22	(mg/s)	2.12	(mg/s)	15.22	(mg/s)
			LOW FIO	w	Average	FIOW	High Fi	ow
ert mass htration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Year 8			
Parameter	Copper			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
, dâ	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00854201	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flor	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.11	(mg/s)	1.16	(mg/s)	1.16	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ຊ ິ <u>ບ</u>	mass flux in seepage from cell 2W	M_s2w =	0.10	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flor	w	Average	Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Mas at ea	mass flux in river at PM-13	M_r13 =	0.78	(mg/s)	6.11	(mg/s)	38.87	(mg/s)
			Low Flor	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
o⊊ŏ	concentration in river at PM-13	C_r13 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)

Case Parameter	Year 8 Eluoride			
i arameter	Thomas	1		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.89E-01	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average I	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	10.06	(mg/s)	106.94	(mg/s)	106.94	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.91	(mg/s)	0.91	(mg/s)	0.91	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	32.86	(mg/s)	349.17	(mg/s)	349.17	(mg/s)
			Low Flo	w	Average I	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	99.07	(mg/s)	730.04	(mg/s)	2,913.52	(mg/s)
			Low Flo	w	Average I	Flow	High Fl	ow
ivert mass to centration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Cor flux con	concentration in river at PM-13	C_r13 =	0.557	(mg/L)	0.274	(mg/L)	0.119	(mg/L)
Case	Year 8							
-----------	---	----------	-------------	--------				
Parameter	Iron							
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)				
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)				
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)				
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)				
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.80E-02	(mg/L)				
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)				
co	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)				
nt	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)				
qr	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)				

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.74	(mg/s)	7.86	(mg/s)	7.86	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	97.40	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
ate	mass flux in river at PM-13	M_r13 =	103.29	(mg/s)	7,161.77	(mg/s)	70,482.88	(mg/s)
	1	_	Low Flo	w	Average	Flow	High Fl	ow
onvert mass ix to oncentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
5 ≓ 3	concentration in river at PM-13	C_r13 =	0.581	(mg/L)	2.684	(mg/L)	2.876	(mg/L)

Case	Year 8			
Parameter	Hardness			
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ů p c	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.52E+02	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
itrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,221.47	(mg/s)	34,228.62	(mg/s)	34,228.62	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	2,737.70	(mg/s)	2,737.70	(mg/s)	2,737.70	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	9,256.51	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	27,770.27	(mg/s)	348,488.83	(mg/s)	1,876,929.38	(mg/s)
		•	Low Flo	w	Average	Flow	High Fl	ow
wert mass to centration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
flux con	concentration in river at PM-13	C_r13 =	156.224	(mg/L)	130.596	(mg/L)	76.599	(mg/L)

Case	Year 8			
Parameter	Potassium	l		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
, då	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.73	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
ntration	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.57	(mg/s)	0.57	(mg/s)	0.57	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
u xn	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert o Ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
n ve mas	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	85.90	(mg/s)	912.75	(mg/s)	912.75	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	164.73	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	39.51	(mg/s)	1,359.91	<u>(mg/s)</u>	 15,029.80	(mg/s)
Mas at ea	mass flux in river at PM-13	M r13 =	480 78	(ma/s)	13 720 83	(ma/s)	94 509 83	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	1.624	(mg/L)	3.482	(mg/L)	3.679	(mg/l)

Case	Year 8			
Parameter	Magnesium			
-		-		
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	17.33	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
ntration	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	221.12	(mg/s)	2,349.41	(mg/s)	2,349.41	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	67.73	(mg/s)	67.73	(mg/s)	67.73	(mg/s)
<u>د</u> د م	mass flux in seepage from cell 2W	M_s2w =	1,483.46	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Ma at	mass flux in river at PM-13	M_r13 =	3,300.38	(mg/s)	47,614.12	(mg/s)	178,623.31	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
õ≓ö	concentration in river at PM-13	C_r13 =	18.567	(mg/L)	17.843	(mg/l)	7.290	(mg/l)

Case	Year 8			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.30	(mg/L)
Cet	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

		Low Flow		Average Flow		High Fl	ow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.79	(mg/s)	40.29	(mg/s)	40.29	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	25.08	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance h node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass ł at eacl	mass flux in river at PM-13	M_r13 =	55.85	(mg/s)	993.32	(mg/s)	7,543.78	(mg/s)
		-	Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.314	(mg/L)	0.372	(mg/l)	0.308	(mg/l)

Case Parameter	Year 8 Sodium			
i arameter	oonum			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	18.93	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
itraf	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	241.52	(mg/s)	2,566.23	(mg/s)	2,566.23	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	81.08	(mg/s)	81.08	(mg/s)	81.08	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	939.43	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	1,965.10	(mg/s)	27,438.13	(mg/s)	103,860.16	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Con Con con	concentration in river at PM-13	C_r13 =	11.055	(mg/L)	10.282	(mg/l)	4.239	(mg/l)

Case	Year 8			
Parameter	Nickel			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.038551821	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
tration	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.49	(mg/s)	5.23	(mg/s)	5.23	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.15	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mass t at each	mass flux in river at PM-13	M_r13 =	1.67	(mg/s)	10.63	(mg/s)	36.84	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.009	(mg/L)	0.004	(mg/L)	0.002	(mg/L)

Case	Year 8			
Parameter	Lead			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
β β	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001239552	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
int	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	A	verage	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		-	(mg/s)	-	(mg/s)
tration	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)		0.03	(mg/s)	0.03	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		-	(mg/s)	-	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)		0.14	(mg/s)	0.14	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.02	(mg/s)	0.02	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)		0.17	(mg/s)	0.17	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)		0.27	(mg/s)	0.27	(mg/s)
			Low Flo	w	A	verage	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)		0.03	(mg/s)	0.03	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)		0.63	(mg/s)	0.63	(mg/s)
			Low Flo	w	A	verage	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)		0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)		0.000	(mg/L)	0.000	(mg/L)

Case	Year 8			
Parameter	Antimony]		
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
ep r	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tion	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.28E-03	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
Lo L	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
lnp	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	e Flow	High Flo	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
itration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.11	(mg/s)	1.12	(mg/s)	1.12	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ຊ ິວ 2	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.06	i (mg/s)	0.06	(mg/s)
			Low Flo	w	Average	e Flow	High Flo	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Mas: at ea	mass flux in river at PM-13	M_r13 =	0.33	(mg/s)	1.45	i (mg/s)	1.89	(mg/s)
			Low Flo	w	Average	Flow	High Flo	ow
wert mass to centration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000) (mg/L)	0.000	(mg/L)
flux con	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Year 8			
Parameter	Selenium			
			-	
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001331851	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
itration	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass	mass flux in river at PM-13	M_r13 =	0.48	(mg/s)	1.59	(mg/s)	8.14	(mg/s)
		_	Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Year 8			
Parameter	Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	153.28	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	W	Average	Flow	High Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87 (mg/s)
tration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36 (mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72 (mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60 (mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,955.65	(mg/s)	20,779.12	(mg/s)	20,779.12 (mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	2,336.11	(mg/s)	2,336.11	(mg/s)	2,336.11 (mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	3,231.09	(mg/s)	34,330.84	(mg/s)	34,330.84 (mg/s)
			Low Flo	w	Average	Flow	High Flow
balance ch node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94 (mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	8,742.44	(mg/s)	126,018.27	(mg/s)	213,357.73 (mg/s)
			LOWIN	vv	Average	Ilow	Tigit Low
wert mass to centration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027 (mg/l)
Con flux con	concentration in river at PM-13	C_r13 =	49.181	(mg/L)	47.225	(mg/l)	8.707 (mg/l)

Case Parameter	Year 8 Thallium			
		4		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000934618	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
itration	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.63	(mg/s)	4.99	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	 0.000	(mg/L)	0.000	(mg/L)
Convei filux to concer	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 8			
Parameter	Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.029073121	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
tral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.37	(mg/s)	3.94	(mg/s)	3.94	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.30	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	2.33	(mg/s)	42.72	(mg/s)	392.07	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.013	(mg/L)	0.016	(mg/L)	0.016	(mg/L)

Appendix F.4 Embarrass River Proposed Action Year 9

FLOWS

Case	Year 9				
Flows	Low Flow Conditions (no surface runoff)				Node
r in is River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
low ras	flow in river at PM-13	Q_r13_L =	6.28	(cfs)	PM-13
Total f Embar	flow check	Q_ck_L =	6.28	(cfs)	_
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.48	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.01	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_L =	0.72	(cfs)	PM-13
out 1	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 9				
Flow	Average Flow Conditions (mean annual)				
in : River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow arrass	flow in river at PM-13	Q_r13_M =	94.76	(cfs)	PM-13
Tota Emb	flow check	Q_ck_M =	94.76	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	5.26	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.01	(cfs)	PM-13
llow	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 9				
Flow	High Flow Conditions (avg. annual 1-day ma	x flow)			
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i arrass	flow in river at PM-13	Q_r13_H =	866.31	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	866.31	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	5.26	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.01	(cfs)	PM-13
low	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
nt i	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
법	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Year 9			
Parameter	Silver			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00090	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w			High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)			0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.00	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)			0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.01	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)			0.13	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00	(mg/s)
ទ ទ័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)			0.02	(mg/s)
			Low Flow				High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)			0.45	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)			2.80	(mg/s)
			Low Flo	w			High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)			0.000	(mg/L)
Convel filux to concer	concentration in river at PM-13	C_r13 =	0.000	(mg/L)			0.000	(mg/L)

Case	Year 9			
Parameter	Aluminum			
		-		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
, p d	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.07E-01	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w			High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			405	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)			0.61	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.93	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)			2.98	(mg/s)
Lon Xuli	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.75	(mg/s)
ert e ss t	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.44	(mg/s)			15.88	(mg/s)
ma c	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.07	(mg/s)			0.07	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	32.29	(mg/s)			355.65	(mg/s)
			Low Flo	w			High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)			406.69	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	37.38	(mg/s)			2,770.18	(mg/s)
		-	Low Flo	w			High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)			0.100	(mg/L)
Conv flux to conce	concentration in river at PM-13	C_r13 =	0.210	(mg/L)			0.113	(mg/L)

Case Parameter	Year 9 Arsenic			
	concentration of surface water into PM-12	C s12 =	0.00075	(ma/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007592467	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
com	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w			High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			3	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)			0.07	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)			0.33	(mg/s)
u xnt	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.07	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.10	(mg/s)			1.13	(mg/s)
n ve mai	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)			0.65	(mg/s)
			Low Flow				High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)			3.11	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	0.56	(mg/s)			20.21	(mg/s)
		-	Low Flo	w			High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)			0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.003	(mg/L)			0.001	(mg/L)

Case	Year 9			
Parameter	Boron			
		-		
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.145082047	(mg/L)
cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)		0.52	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.11	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)		2.53	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		7.41	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.96	(mg/s)		21.59	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.04	(mg/s)		0.04	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	6.75	(mg/s)		74.34	(mg/s)
			Low Flo	w		High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)		49.25	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	11.79	(mg/s)		393.72	(mg/s)
			Low Flo	w		High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)		0.012	(mg/L)
Conver filux to concen	concentration in river at PM-13	C_r13 =	0.066	(mg/L)		0.016	(mg/L)

Case	Year 9			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.05E-02	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	W			High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)			1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.10	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)			8.11	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.25	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.68	(mg/s)			7.51	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00	(mg/s)
ទ ទ័	mass flux in seepage from cell 2W	M_s2w =	1.90	(mg/s)			20.95	(mg/s)
			Low Flo	w			High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)			46.33	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	12.36	(mg/s)			301.85	(mg/s)
		-	Low Flo	w			High Fl	ow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)			0.011	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.069	(mg/L)			0.012	(mg/L)

Case Parameter	Year 9 Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
, då	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00056357	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
lnp	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w			High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)			0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)			0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.01	(mg/s)
ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)			0.08	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)			-	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)			0.17	(mg/s)
			Low Flo	w			High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)			0.41	(mg/s)
Mass bi at each	mass flux in river at PM-13	M_r13 =	0.03	(mg/s)			2.66	(mg/s)
			Low Flo	w			High Fl	ow
t mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)			0.000	(mg/L)
Conver flux to concer	concentration in river at PM-13	C r13 =	0.000	(mg/L)			0.000	(mg/L)

Case	Year 9			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	75.53238205	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
co	concentration in tailings basin cell 2W		59.78	(mg/L)
int	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)		462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		121.41	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)		2,263.72	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		5,369.83	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,020.37	(mg/s)		11,239.50	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	156.22	(mg/s)		156.22	(mg/s)
۹ ۵	mass flux in seepage from cell 2W	M_s2w =	1,222.55	(mg/s)		22.45	(mg/s)
			Low Flo	w		High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)		53,252.39	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	5,125.29	(mg/s)		330,764.89	(mg/s)
			Low Flo	w		High Fl	ow
't mass ntration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)		13.036	(mg/l)
Conver flux to concer	concentration in river at PM-13	C_r13 =	28.823	(mg/L)		13.491	(mg/l)

Case	Year 9			
Parameter	Cadmium			
-		-		
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
ů p c	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000407879	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage		0.0004	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	W			High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)			0.01	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)			0.04	(mg/s)
uo no	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.01	(mg/s)
sst	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)			0.06	(mg/s)
n ve ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)			0.04	(mg/s)
			Low Flo	w			High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)			0.33	(mg/s)
Mass b: at each	mass flux in river at PM-13	M_r13 =	0.05	(mg/s)			2.07	(mg/s)
			Low Flo	w			High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)			0.000	(mg/L)
Conver filux to concer	concentration in river at PM-13	C r13 =	0.000	(mg/L)			0.000	(mg/L)

Case	Year 9			
Parameter	Chloride			
		-	-	
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.89E+00	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w		High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)		43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		93.39	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)		214.46	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		335.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	79.55	(mg/s)		876.22	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	660.93	(mg/s)		660.93	(mg/s)
<u>ې</u> د ک	mass flux in seepage from cell 2W	M_s2w =	440.51	(mg/s)		4,852.27	(mg/s)
			Low Flo	w		High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)		40,651.48	(mg/s)
Mass be at each	mass flux in river at PM-13	M_r13 =	1,439.26	(mg/s)		246,406.43	(mg/s)
			Low Flo	w		High Fl	low
t mass tration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)		9.951	(mg/L)
Conver flux to concen	concentration in river at PM-13	C_r13 =	8.094	(mg/L)		10.051	(mg/L)

Case Parameter	Year 9 Cobalt			
R		4		
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002481389	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
or t	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flow				High Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			2 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)			0.03 (mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.01 (mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			12 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)			0.13 (mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.03 (mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)			0.37 (mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00 (mg/s)
۹ ^۵	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)			0.35 (mg/s)
			Low Flo	w			High Flow
alance	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)			2.46 (mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.23	(mg/s)			15.28 (mg/s)
			Low Flo	w			High Flow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)			0.001 (mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.001	(mg/L)			0.001 (mg/L)

Case	Year 9			
Parameter	Copper			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.008625606	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
it .	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
브	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flow				High Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			6 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)			0.10 (mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.01 (mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			30 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)			0.48 (mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.19 (mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.12	(mg/s)			1.28 (mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00 (mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)			1.03 (mg/s)
			Low Flo	w			High Flow
alance node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)			6.19 (mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.78	(mg/s)			38.99 (mg/s)
			Low Flo	w			High Flow
t mass tration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)			0.002 (mg/L)
Conver flux to concen	concentration in river at PM-13	C r13 =	0.004	(mq/L)			0.002 (mg/L)

Case Parameter	Year 9 Fluoride			
		4		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
, då	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.91E-01	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

		Low Flow				High Fl	ow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)			9.37	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)			45.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	9.34	(mg/s)			102.84	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.07	(mg/s)			1.07	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	31.70	(mg/s)			349.17	(mg/s)
			Low Flow				High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)			415.45	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	97.35	(mg/s)			2,909.59	(mg/s)
			Low Flo	w			High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)			0.102	(mg/L)
Conv flux to conce	concentration in river at PM-13	C_r13 =	0.547	(mg/L)			0.119	(mg/L)

Case	Year 9			
Parameter	Iron			
-		-	-	
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.91E-02	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w			High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)			0.85	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			27.08	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)			4.17	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			2.13	(mg/s)
sste	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.80	(mg/s)			8.80	(mg/s)
n ve ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.15	(mg/s)			0.15	(mg/s)
ຊ ິບ	mass flux in seepage from cell 2W	M_s2w =	93.95	(mg/s)			1,034.88	(mg/s)
			Low Flow				High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)			11,777.08	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	99.92	(mg/s)			70,483.84	(mg/s)
			Low Flo	w			High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)			2.883	(mg/L)
Conver flux to concen	concentration in river at PM-13	C r13 =	0.562	(mg/L)			2.875	(mg/L)

Case	Year 9			
Parameter	Hardness			
	-	-		
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
, p d	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.56E+02	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
du l	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flow				High Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			283,600 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)			2,129.58 (mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			653.73 (mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			1,391,712 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)			10,425.01 (mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			53,090.84 (mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,453.69	(mg/s)			38,042.63 (mg/s)
ma en a	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,233.31	(mg/s)			3,233.31 (mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	8,928.86	(mg/s)			98,352.01 (mg/s)
			Low Flo	w			High Flow
s balance ach node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)			 286,383.27 (mg/s)
Mas at ea	mass flux in river at PM-13	M r13 =	28 170 45	(ma/s)			1 881 239 00 (mg/s)
		1	Low Flo	w		I	High Flow
convert mass lux to oncentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)			70.104 (mg/L)
0 ₽ S	concentration in river at Pivi-13	C_F13 =	158.424	(mg/L)			76.733 (mg/L)

Case	Year 9			
Parameter	Potassium			
		1		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.04	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

		Low Flow				High Fl	low	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)			38.94	(mg/s)
tratior	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.68	(mg/s)			0.68	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)			190.63	(mg/s)
uo: Xn	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			34.55	(mg/s)
ert o ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			3,029.85	(mg/s)
n ve ma:	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	95.16	(mg/s)			1,048.24	(mg/s)
<u>و</u> د ک	mass flux in seepage from cell 2W	M_s2w =	158.90	(mg/s)			1,750.33	(mg/s)
			Low Flo	w			High Fl	low
s balance ach node	mass flux in river at PM-12	M_r12 =	39.62	(mg/s)			15,029.90	(mg/s)
Mas at ea	mass flux in river at PM-13	M r13 =	484 31	(ma/s)			94 645 42	(ma/s)
			Low Flo	w			High Fl	low
convert mass lux to oncentration	concentration in river at PM-12	C_r12 =	1.628	(mg/L)			3.679	(mg/l)
		0 113 -	2.724	(IIIg/L)		1	3.860	(1119/1)

Case	Year 9			
Parameter	Magnesium			
-		-		
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	16.28	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

		Low Flow					High Fl	ow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)				24,309	(mg/s)
tration	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)				259.20	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)				56.03	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)				119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)				1,268.87	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)				15,261.91	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	219.96	(mg/s)				2,422.93	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	79.99	(mg/s)				79.99	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,430.95	(mg/s)				15,762.00	(mg/s)
			Low Flo	w				High Fl	ow
ss balance ach node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)				24,623.80	(mg/s)
Mas at e	mass flux in river at PM-13	M r13 =	3,258.97	(mg/s)				178,709.09	(mq/s)
			Low Flo	W				High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)				6.028	(mg/l)
č≓č	concentration in river at PM-13	C_r13 =	18.328	(mg/L)				7.289	(mg/l)

Case	Year 9			
Parameter	Manganese			
		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
р р	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.29	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w			High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			1,215	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)			4.58	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			2.80	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)			22.40	(mg/s)
u s n	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			27.31	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.90	(mg/s)			42.96	(mg/s)
ma: ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	24.19	(mg/s)			266.49	(mg/s)
			Low Flo	w			High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)			1,222.81	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	55.07	(ma/s)			7.546.45	(ma/s)
			Low Flo	w			High Fl	ow
convert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)			0.299	(mg/l)
0 = 0	concentration in river at PM-13	C_r13 =	0.310	(mg/L)			0.308	(mg/l)

Case	Year 9			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	22.11	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w			High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)			119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			32.69	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)			583.80	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			6,729.88	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	298.66	(mg/s)			3,289.71	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	95.76	(mg/s)			95.76	(mg/s)
ទ ប័ ខ	mass flux in seepage from cell 2W	M_s2w =	906.18	(mg/s)			9,981.63	(mg/s)
			Low Flo	w			High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)			14,331.94	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	2,003.65	(mg/s)			104,598.32	(mg/s)
			Low Flo	w			High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)			3.508	(mg/l)
Con Con con	concentration in river at PM-13	C_r13 =	11.268	(mg/L)			4.266	(mg/l)

Case Parameter	Year 9 Nickel			
r urumotor	monor			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
u dá	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.041162911	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flow				High Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			5 (mg/s))
tion	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)			0.17 (mg/s))
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.01 (mg/s))
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			24 (mg/s))
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)			0.83 (mg/s))
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.29 (mg/s))
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.56	(mg/s)			6.13 (mg/s)	1
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.04	(mg/s)			0.04 (mg/s))
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.14	(mg/s)			1.55 (mg/s))
			Low Flo	w			High Flow	
alance	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)			5.04 (mg/s)	,
Mass b at each	mass flux in river at PM-13	M_r13 =	1.74	(mg/s)			37.74 (mg/s)	,
			Low Flo	w			High Flow	
rt mass ntration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)			0.001 (mg/L))
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.010	(mg/L)			0.002 (mg/L))

Case	Year 9			
Parameter	Lead			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
ů provenské	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001749429	(mg/L)
cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	W			High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			-	(mg/s)
tration	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)			0.03	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			-	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)			0.14	(mg/s)
u con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.02	(mg/s)
ssf	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)			0.26	(mg/s)
n ve ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00	(mg/s)
<u>د</u> د	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)			0.27	(mg/s)
			Low Flo	w			High Fl	ow
balance n node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)			0.03	(mg/s)
Mass	mass flux in river at PM-13	M_r13 =	0.22	(mg/s)			0.72	(mg/s)
	-		Low Flo	w			High Fl	low
t mass tration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)			0.000	(mg/L)
Conver flux to concer	concentration in river at PM-13	C r13 =	0.001	(mg/L)			0.000	(mg/L)

Case	Year 9			
Parameter	Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
, da	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.83E-03	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flow				High Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			0 (mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)			0.04 (mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.00 (mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			0 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)			0.18 (mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.01 (mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.12	(mg/s)			1.31 (mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00 (mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)			0.06 (mg/s)
			Low Flo	w			High Flow
alance node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)			0.12 (mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.34	(mg/s)			2.08 (mg/s)
			Low Flo	w			High Flow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)			0.000 (mg/L)
Convei filux to concer	concentration in river at PM-13	C_r13 =	0.002	(mg/L)			0.000 (mg/L)
Case	Year 9						
-----------	---	----------	-------------	--------			
Parameter	Selenium						
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)			
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)			
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)			
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)			
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001403839	(mg/L)			
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)			
co	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)			
rt	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)			
du du	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)			

			Low Flo	w		High Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		1 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)		0.07 (mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.00 (mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		6 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)		0.35 (mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.09 (mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)		0.21 (mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)		0.02 (mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)		0.25 (mg/s)
			Low Flo	w		High Flow
oalance 1 node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)		1.29 (mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	0.48	(mg/s)		8.17 (mg/s)
		-	Low Flo	w		High Flow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)		0.000 (mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.003	(mg/L)		0.000 (mg/L)

Case	Year 9			
Parameter	Sulfate			
-		-		
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	166.62	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w		High Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		16,206 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)		206.87 (mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		37.36 (mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		79,526 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)		1,012.72 (mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		58,922.60 (mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,250.82	(mg/s)		24,792.97 (mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	2,759.02	(mg/s)		2,759.02 (mg/s)
<u>ع</u> ک	mass flux in seepage from cell 2W	M_s2w =	3,116.72	(mg/s)		34,330.84 (mg/s)
			Low Flo	w		High Flow
ss balance sach node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	 	16,449.94 (mg/s)
Ma: ate	mass flux in river at PM-13	M_r13 =	9,346.14	(mg/s)		217,794.48 (mg/s)
			Low Flo	w		High Flow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)		4.027 (mg/l)
ర≓ర	concentration in river at PM-13	C_r13 =	52.561	(mg/L)		8.884 (mg/l)

Case	Year 9			
Parameter	Ihallium	l		
	concentration of surface water into PM-12	C s12 =	0.0002	(mg/L)
ita	concentration of surface water into PM-13	 C_s13 =	0.0002	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tion	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000967503	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w			High Flow	/
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			1 (m	ng/s)
-	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)			0.00 (m	ng/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.00 (m	ng/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			4 (m	ng/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)			0.00 (m	ng/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.03 (m	ng/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)			0.14 (m	ng/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00 (m	ng/s)
ຊ ິວ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)			0.05 (m	ng/s)
			Low Flo	w			High Flow	1
lass balance t each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)			0.81 (m	ng/s)
a ≤	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)			5.01 (m	ng/s)
			LOW FID	vv			Tight Flow	
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)			0.000 (m	ng/L)
ŬĘŏ	concentration in river at PM-13	C_r13 =	0.000	(mg/L)			0.000 (m	ng/L)

Case	Year 9			
Parameter	Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
ů pů	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.039738069	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w			High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)			65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)			0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)			0.15	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)			318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)			1.37	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)			0.17	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.54	(mg/s)			5.91	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.29	(mg/s)			3.23	(mg/s)
			Low Flo	w			High Fl	ow
alance	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)			65.25	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	2.48	(mg/s)			394.05	(mg/s)
			Low Flo	w			High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)			0.016	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.014	(mg/L)			0.016	(mg/L)

Appendix F.5 Embarrass River Proposed Action Year 15

FLOWS

Case	Year 15				
Flows	Low Flow Conditions (no surface runoff)				Node
in s River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
flow rras:	flow in river at PM-13	Q_r13_L =	6.29	(cfs)	PM-13
Total 1 Embaı	flow check	Q_ck_L =	6.29	(cfs)	_
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.50	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.02	(cfs)	PM-13
flov	seepage from cell 2W	Q_s2w_L =	0.70	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
Ing	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 15				
Flow	Average Flow Conditions (mean annual)				
River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
flow in arrass F	flow in river at PM-13	Q_r13_M =	95.15	(cfs)	PM-13
Total Embi	flow check	Q_ck_M =	95.15	(cfs)	4
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	5.65	(cfs)	PM-13
, da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.02	(cfs)	PM-13
<u>o</u> l	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
rt 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
au	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 15				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
ן River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow in arrass	flow in river at PM-13	Q_r13_H =	866.70	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	866.70	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	5.65	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.02	(cfs)	PM-13
lo v	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
t t	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
du	ground water flow into PM-13	Q g13 H =	4.21	(cfs)	PM-13

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
n data	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00122	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
u du	concentration of ground water into PM-13	C_g13 =	0.000000	(mg/L)

		Low Flow		Average	Flow	High Flow		
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
concer flux	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
t S	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flow		Average	Average Flow		ow
e c								
alan	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass balan at each noc	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	0.00	(mg/s) (mg/s)	0.04	(mg/s) (mg/s)	0.45	(mg/s) (mg/s)
Mass balan at each noc	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	0.00 0.02 Low Flor	(mg/s) (mg/s)	0.04 0.46 Average	(mg/s) (mg/s) Flow	0.45 2.86 High Fl	(mg/s) (mg/s) ow
vert mass Mass balan to at each noc	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	0.00 0.02 Low Flor 0.000	(mg/s) (mg/s) w (mg/L)	0.04 0.46 Average	(mg/s) (mg/s) Flow (mg/L)	0.45 2.86 High Fl	(mg/s) (mg/s) ow (mg/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Aluminum			
	concentration of ourfeed water into DM 12	C a12 -	0.1	(mg/l)
ta	concentration of surface water into PM-12	$C_{s12} = C_{s13} = C_{s$	0.1	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.43E-01	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)		405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)		0.61	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)		0.93	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)		1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)		-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)		0.75	(mg/s)
ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	6.25	(mg/s)	70.86	(mg/s)		70.86	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.09	(mg/s)	0.09	(mg/s)		0.09	(mg/s)
န ပိ	mass flux in seepage from cell 2W	M_s2w =	31.37	(mg/s)	355.65	(mg/s)		355.65	(mg/s)
			Low Flow		Average Flow		High Flow		ow
lance node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)		406.69	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	38.31	(mg/s)	638.71	(mg/s)		2,822.19	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
ss									
onvert ma x to ncentrati	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	 0.095	(mg/L)		0.100	(mg/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Arsenic			
		-		r
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
ų r	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.015514819	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
but	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

		Low Flow		Average Flow		High Flo		W	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)		3 ((mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)		0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)		0.01 ((mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)		15 ((mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)		- ((mg/s)
ert con iss flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)		0.07	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.22	(mg/s)	2.48	(mg/s)		2.48	(mg/s)
nve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
<u>د</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)		0.65 ((mg/s)
			Low Flow		Average	Flow	High Flow		W
llance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)		3.11 ((mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.34	(mg/s)	4.86	(mg/s)		21.23 (mg/s)
			Low Flo	W	Average	Flow		High Flo	W
onvert mass ix to incentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)		0.001 ((mg/L)
0 3 0		0.10				/ // ·		0.004	

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15	1		
Parameter	Boron			
	1	1		1
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
n de	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.173169588	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
CO	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			201110	VV	Avelage		HIGH FI	UW
n	nass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
	nass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
n tion	nass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
n trat	nass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
n ceu	nass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ü Xin	nass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
n sur	nass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.44	(mg/s)	27.67	(mg/s)	27.67	(mg/s)
n ve mas	nass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
n 5 3	nass flux in seepage from cell 2W	M_s2w =	6.56	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	nass flux in river at PM-12	M r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass ba at each	nass flux in river at PM-13	 M_r13 =	9.57	(mg/s)	135.28	(mg/s)	397.30	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
convert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Barium			
		-		1
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
n de	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.35E-02	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow		High Flo	w
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)		45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)		1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)		0.10	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)		219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)		- ((mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)		0.25	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.89	(mg/s)	10.14	(mg/s)		10.14	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
ຊ ິວ	mass flux in seepage from cell 2W	M_s2w =	1.85	(mg/s)	20.95	(mg/s)		20.95	(mg/s)
			Low Flow		Average	Average Flow		High Flow	
lance node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)		46.33	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	4.40	(mg/s)	56.18	(mg/s)		296.36	(mg/s)
			Low Flo	w	Average	Flow		High Flo	W
rt mass htration	concentration in river at PM-12	C r12 =	0.068	(mg/L)	0.015	(mg/L)		0.011	(mg/L)
inve x to ncer									

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Beryllium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001410903	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	Hig	gh Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)		0 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	(0.00 (mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	(0.00 (mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)		2 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)		- (mg/s)
onvert con mass flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	(0.01 (mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.23	(mg/s)	(0.23 (mg/s)
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)		- (mg/s)
ຊ ິວ 2	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.17	(mg/s)	(0.17 (mg/s)
			Low Flow		Average	Flow	High Flow	
lance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	(0.41 (mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.04	(mg/s)	0.61	(mg/s)		2.79 (mg/s)
			Low Flo	w	Average	Flow	Hię	gh Flow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.	000 (mg/L)
onve ux to once								

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Calcium			
		1	1	
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	95.38057957	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,344.25	(mg/s)	15,242.69	(mg/s)	15,242.69	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	205.46	(mg/s)	205.46	(mg/s)	205.46	(mg/s)
ဒ္ ပိ	mass flux in seepage from cell 2W	M_s2w =	1,187.61	(mg/s)	13,466.52	(mg/s)	29.52	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	462.42 3,199.75	(mg/s) (mg/s)	5,223.05	(mg/s) (mg/s)	53,252.39 332,560.68	(mg/s) (mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	462.42 3,199.75 Low Flor	(mg/s) (mg/s) w	5,223.05 62,144.43 Average	(mg/s) (mg/s) Flow	53,252.39 332,560.68 High Fl	(mg/s) (mg/s) ow
vert mass to contration at each node	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	462.42 3,199.75 Low Flor 19.000	(mg/s) (mg/s) w (mg/L)	5,223.05 62,144.43 Average 13.374	(mg/s) (mg/s) Flow (mg/l)	53,252.39 332,560.68 High Fl 13.036	(mg/s) (mg/s) ow (mg/l)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
ÿu	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000705708	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
CO	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flor	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
no:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
a vu	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
န ပိ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flor	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =	0.01	(mg/s) (mg/s)	0.04	(mg/s) (mg/s)	0.33	(mg/s) (mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	0.01 0.02 Low Flo	(mg/s) (mg/s) w	0.04 0.34 Average	(mg/s) (mg/s) Flow	0.33 2.08 High Fl	(mg/s) (mg/s) ow
rt mass Mass balance Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	0.01 0.02 Low Flov 0.000	(mg/s) (mg/s) w (mg/L)	0.04 0.34 Average 0.000	(mg/s) (mg/s) Flow (mg/L)	0.33 2.08 High Fl 0.000	(mg/s) (mg/s) ow (mg/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Chloride			
		1	1	
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
ig L	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.60E+00	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
but	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flor	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
u con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	107.17	(mg/s)	1,215.25	(mg/s)	1,215.25	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	869.24	(mg/s)	869.24	(mg/s)	869.24	(mg/s)
ຊ ິວ	mass flux in seepage from cell 2W	M_s2w =	427.92	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	43.81 1,448.15	(mg/s) (mg/s)	3,705.83 28,390.67	(mg/s) (mg/s)	40,651.48 246,739.32	(mg/s) (mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	43.81 1,448.15 Low Flo	(mg/s) (mg/s)	3,705.83 28,390.67 Average	(mg/s) (mg/s) Flow	40,651.48 246,739.32 High Fl	(mg/s) (mg/s) ow
vert mass Mass balance to at each node	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	43.81 1,448.15 Low Flor 1.800	(mg/s) (mg/s) w (mg/L)	3,705.83 28,390.67 Average 9.489	(mg/s) (mg/s) Flow (mg/L)	40,651.48 246,739.32 High Fl 9.951	(mg/s) (mg/s) ow (mg/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
ÿ	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.008661931	(mg/L)
Cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
CO	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
no:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert o	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.12	(mg/s)	1.38	(mg/s)	1.38	(mg/s)
e n	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
to Co	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	0.03	(mg/s) (mg/s)	0.25	(mg/s) (mg/s)	2.46	<u>(mg/s)</u> (mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	0.03 0.18 Low Flo	(mg/s) (mg/s) w	0.25 3.06 Average	(mg/s) (mg/s) Flow	2.46 16.16 High Fl	(mg/s) (mg/s) ow
onvert mass Lx to Mass balance Incentration at each node	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	0.03 0.18 Low Flo 0.001	(mg/s) (mg/s) w (mg/L)	0.25 3.06 Average 0.001	(mg/s) (mg/s) Flow (mg/L)	2.46 16.16 High Fl 0.001	(mg/s) (mg/s) ow (mg/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15	1		
Parameter	Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
р ц	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.020766721	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High Flo	w
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
uo; Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.29	(mg/s)	3.32	(mg/s)	3.32	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>د</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flo	w	Average	Flow	High Flo	w
lance node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.48	(mg/s)	7.80	(mg/s)	40.55	(mg/s)
			Low Flo	w	Average	Flow	High Flo	w
rvert mass t to centration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15	1		
Parameter	Fluoride			
		0		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
Ö u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.26E-01	(mg/L)
Cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
u 1	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
ntration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	11.65	(mg/s)	132.08	(mg/s)	132.08	(mg/s)
nve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.41	(mg/s)	1.41	(mg/s)	1.41	(mg/s)
<u>ب</u> ې	mass flux in seepage from cell 2W	M_s2w =	30.79	(mg/s)	349.17	(mg/s)	349.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
0 e								
land	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mass balanc at each nod	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	9.37 53.22	(mg/s) (mg/s)	45.99 709.81	(mg/s) (mg/s)	415.45 2,893.30	(mg/s) (mg/s)
Mass balanc at each nod	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	9.37 53.22 Low Flor	(mg/s) (mg/s) w	45.99 709.81 Average	(mg/s) (mg/s) Flow	415.45 2,893.30 High Fl	(mg/s) (mg/s) ow
onvert mass Mass balance to the model of the model of the mass mass mass mass balance the model of the model	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	9.37 53.22 Low Flor 0.385	(mg/s) (mg/s) w (mg/L)	45.99 709.81 Average 0.118	(mg/s) (mg/s) Flow (mg/L)	415.45 2,893.30 High Fl 0.102	(mg/s) (mg/s) ow (mg/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Iron			
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
ÿu	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ltra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.82E-02	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
l lo	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.38	(mg/s)	15.69	(mg/s)	15.69	(mg/s)
nve	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.20	(mg/s)	0.20	(mg/s)	0.20	(mg/s)
e S	mass flux in seepage from cell 2W	M_s2w =	91.27	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	0.85 93.70	(mg/s) (mg/s)	1,062.84	(mg/s) (mg/s)	11,777.08	(mg/s) (mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	0.85 93.70 Low Flor	(mg/s) (mg/s) w	1,062.84 7,165.50 Average	(mg/s) (mg/s) Flow	11,777.08 70,486.61 High Fl	(mg/s) (mg/s) ow
nvert mass Mass balance acch node nceentration at each node	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	0.85 93.70 Low Flor 0.035	(mg/s) (mg/s) w (mg/L)	1,062.84 7,165.50 Average 2.721	(mg/s) (mg/s) Flow (mg/L)	11,777.08 70,486.61 High Fl 2.883	(mg/s) (mg/s) ow (mg/L)

Case	Year 15			
Parameter	Hardness			
		-		r
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
, di	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.20E+02	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flow		Average	Flow	High F		ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)		283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)		2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)		653.73	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)		1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)		-	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)		53,090.84	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4,507.05	(mg/s)	51,106.04	(mg/s)		51,106.04	(mg/s)
nve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,252.38	(mg/s)	4,252.38	(mg/s)		4,252.38	(mg/s)
to Co	mass flux in seepage from cell 2W	M_s2w =	8,673.67	(mg/s)	98,352.01	(mg/s)		98,352.01	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)		286,383.27	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	19,562.68	(mg/s)	356,455.91	(mg/s)		1,884,896.46	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)		70.104	(mg/L)
Conve flux to conce	concentration in river at PM-13	C r13 =	109 943	(ma/L)	132 370	(ma/L)		76 848	(ma/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15	1		
Parameter	Potassium			
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
u di	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	14.58	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
but	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00	(mg/L)

			Low Flo	w	Average	Flow	High	n Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,9	90 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.	94 (mg/s)
tion	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.89	(mg/s)	0.89	(mg/s)	0.	89 (mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,5	62 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
uo:	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.	55 (mg/s)
ert o Ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.	85 (mg/s)
n ve ma:	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	205.50	(mg/s)	2,330.24	(mg/s)	2,330.	24 (mg/s)
ဒ္ ပိ	mass flux in seepage from cell 2W	M_s2w =	154.36	(mg/s)	1,750.33	(mg/s)	1,750.	33 (mg/s)
			Low Flo	w	Average	Flow	High	n Flow
lance node	mass flux in river at PM-12	M r12 =	39.83	(mg/s)	1,360.22	(mg/s)	15,030.	11 (mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	399.70	(mg/s)	14,948.01	(mg/s)	95,737.	01 (mg/s)
			Low Flo	W	Average	Flow	High	n Flow
/ert mass to tentration	concentration in river at PM-12	C_r12 =	1.637	(mg/L)	3.483	(mg/L)	3.6	79 (mg/l)
un di nu								

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Magnesium			
		0	0.00	
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	19.82	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	0.00	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	279.37	(mg/s)	3,167.81	(mg/s)	3,167.81	(mg/s)
ma: ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	105.20	(mg/s)	105.20	(mg/s)	105.20	(mg/s)
ຊ ເວິ	mass flux in seepage from cell 2W	M_s2w =	1,390.05	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	259.20	(mg/s) (mg/s)	2,456.41 47,201.12	(mg/s) (mg/s)	24,623.80	(mg/s) (mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	259.20 2,033.82 Low Flor	(mg/s) (mg/s) w	2,456.41 47,201.12 Average	(mg/s) (mg/s) Flow	24,623.80 178,210.31 High Fl	(mg/s) (mg/s) ow
lert mass Mass balance o at each node	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	259.20 2,033.82 Low Flor 10.650	(mg/s) (mg/s) w (mg/L)	2,456.41 47,201.12 Average 6.290	(mg/s) (mg/s) Flow (mg/l)	24,623.80 178,210.31 High Fl 6.028	(mg/s) (mg/s) ow (mg/l)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15	1		
Parameter	Manganese			
		1		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
р ц	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.43	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.00	(mg/L)

			Low Flo	w	Average	Flow	High Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58 (mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80 (mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	- (mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31 (mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	6.09	(mg/s)	69.10	(mg/s)	69.10 (mg/s)
nve	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00 (mg/s)
to to	mass flux in seepage from cell 2W	M_s2w =	23.50	(mg/s)	266.49	(mg/s)	266.49 (mg/s)
			Low Flo	w	Average	Flow	High Flow
nce							
	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81 (mg/s)
Mass bala. at each no	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	4.58 34.17	(mg/s) (mg/s)	999.74	(mg/s) (mg/s)	1,222.81 (mg/s)
Mass bala at each no	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	4.58 34.17 Low Flo	(mg/s) (mg/s) w	999.74 Average	(mg/s) (mg/s) Flow	1,222.81 (mg/s) 7,550.19 (mg/s) High Flow
onvert mass Lx to Mass bala	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	4.58 34.17 Low Flo 0.188	(mg/s) (mg/s) w (mg/L)	114.44 999.74 Average 0.293	(mg/s) (mg/s) Flow (mg/l)	1,222.81 (mg/s) 7,550.19 (mg/s) High Flow 0.299 (mg/l)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15	1		
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
ų n	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	22.52	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
ul du	concentration of ground water into PM-13	C_g13 =	0.00	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
ıtrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ar of a start	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	317.45	(mg/s)	3,599.56	(mg/s)	3,599.56	(mg/s)
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	125.94	(mg/s)	125.94	(mg/s)	125.94	(mg/s)
မိ မိ	mass flux in seepage from cell 2W	M_s2w =	880.28	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	119.26	(mg/s) (mg/s)	1,400.96	(mg/s) (mg/s)	14,331.94	(mg/s) (mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	119.26 1,442.92 Low Flo	(mg/s) (mg/s) w	1,400.96 27,932.52 Average	(mg/s) (mg/s) Flow	14,331.94 104,354.55 High Fl	(mg/s) (mg/s) ow
onvert mass ax to Mass balance moentration at each node	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	119.26 1,442.92 Low Flo 4.900	(mg/s) (mg/s) w (mg/L)	1,400.96 27,932.52 Average 3.587	(mg/s) (mg/s) Flow (mg/l)	14,331.94 104,354.55 High Fl 3.508	(mg/s) (mg/s) ow (mg/l)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
) tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.153655831	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High Flo	w
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
concentra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.17	(mg/s)	24.56	(mg/s)	24.56	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
ຊ ິວ	mass flux in seepage from cell 2W	M_s2w =	0.14	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	w	Average	Flow	High Flo	w
lance node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	2.52	(mg/s)	29.15	(mg/s)	55.35	(mg/s)
			Low Flo	w	Average	Flow	High Flo	w
nvert mass < to ncentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
0 G G		0.10			0.011	(0.000	(

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
n data	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002409879	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
nvert concentra mass flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.39	(mg/s)	0.39	(mg/s)
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
e S	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.27	(mg/s)	0.27	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	0.03	(mg/s) (mg/s)	0.03	(mg/s) (mg/s)	0.03	(mg/s) (mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	0.03 0.09 Low Flor	(mg/s) (mg/s) ₩	 0.03 0.70 Average	(mg/s) (mg/s) Flow	0.03 0.70 High Fl	(mg/s) (mg/s) ow
nivert mass Mass balance Actor	mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	M_r12 = M_r13 = C_r12 =	0.03 0.09 Low Flor 0.001	(mg/s) (mg/s) w (mg/L)	0.03 0.70 Average 0.000	(mg/s) (mg/s) Flow (mg/L)	0.03 0.70 High Fl 0.000	(mg/s) (mg/s) ow (mg/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.13E-02	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
u du	concentration of ground water into PM-13	C_g13 =	0.00E+00	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ert concentra ss flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.16	(mg/s)	1.81	(mg/s)	1.81	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ຊ ິວ ຊ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
alance node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.20	(mg/s)	1.96	(mg/s)	2.40	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
ert mass o ntration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve lux to conce	concentration in river at PM-13	C r13 =	0.001	(ma/L)	0.001	(mg/L)	0.000	(ma/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15				
Parameter	Selenium				
	concentration of curfere water into DM 40	<u> </u>	- 10 -	0.0000	(
e e	concentration of surface water into PM-12	C_9	s12 =	0.0003	(mg/L)
n dat	concentration in Babbitt WWTP discharge	C_9	sBab =	0.0003	(mg/L)
tior	concentration in Area 5 Pit NW discharge	C_:	spit =	0.0016	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_1	fs =	0.002521801	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_1	rrs =	0.054	(mg/L)
Cor	concentration in tailings basin cell 2W	C_9	s2w =	0.00109	(mg/L)
out	concentration of ground water into PM-12	C_9	g12 =	0.00295	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_0	g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
anvert concen mass flux	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.04	(mg/s)	0.40	(mg/s)	0.40	(mg/s)
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
<u>۽</u> دُ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
ulance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.16	(mg/s)	1.47	(mg/s)	8.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
rt mass itration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Convei lux to concer	concentration in river at PM-13	C r13 =	0.001	(ma/L)	0.001	(ma/L)	0.000	(ma/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15	1		
Parameter	Sulfate			
	1	1		
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
n data	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	241.92	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	0.00	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
:oncentrat lux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,409.53	(mg/s)	38,661.16	(mg/s)	38,661.16	(mg/s)
nve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,628.60	(mg/s)	3,628.60	(mg/s)	3,628.60	(mg/s)
ຊ ເວິ	mass flux in seepage from cell 2W	M_s2w =	3,027.64	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ulance node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	10,272.65	(mg/s)	144,180.08	(mg/s)	231,519.54	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
· · ·								

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15	1		
Parameter	Thallium			
		1		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001193197	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Ave	rage Flo	W	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		0.07 (m	ig/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)		0.00 (m	ig/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.00 (m	ig/s)	0.00	(mg/s)
nvert concentra mass flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		0.35 (m	ig/s)	4	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)		- (m	ig/s)	-	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.03 (m	ig/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)		0.19 (m	ig/s)	0.19	(mg/s)
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00 (m	ig/s)	0.00	(mg/s)
ຊ ິວ ຊ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)		0.05 (m	ig/s)	0.05	(mg/s)
			Low Flo	w	Ave	rage Flo	w	High F	low
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)		0.07 (m	ıg/s)	0.81	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)		0.69 (m	ıg/s)	5.06	(mg/s)
			Low Flo	w	Ave	rage Flo	W	High F	low
rt mass utration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	C	.000 (m	ig/L)	0.000	(mg/L)
Convei flux to concer	concentration in river at PM-13	C r13 =	0.000	(mg/L)	C	.000 (mg	ıg/L)	0.000	(mg/L)

Embarrass River Mass-Balance Model-Tailings Basin-Proposed Action

Case	Year 15			
Parameter	Zinc			
		-	n	
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
р ц	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.081197396	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
u du	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High Flow	1
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65 (m	ng/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28 (m	ng/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15 (m	ng/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318 (m	ng/s)
cen	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	- (m	ng/s)
uo; Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17 (m	ng/s)
ss fo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.14	(mg/s)	12.98	(mg/s)	12.98 (m	ng/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00 (m	ng/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.29	(mg/s)	3.23	(mg/s)	3.23 (m	ng/s)
			Low Flo	w	Average	Flow	High Flow	1
lance node	mass flux in river at PM-12	M r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25 (m	ng/s)
Mass ba at each	mass flux in river at PM-13	 M_r13 =	1.71	(mg/s)	50.38	(mg/s)	399.74 (m	ng/s)
			Low Flo	w	Average	Flow	High Flow	1
t mass tration	essentiation in time at DM 40	0 - 12 -	0.012	(mall)	0.016	(mg/l)	0.016 (m	na/L)
to to		6_112 -	0.012	(mg/L)	0.010	(IIIg/L)		·3·-/

Appendix F.6 Embarrass River Proposed Action Year 20

FLOWS

Caso	Vear 20				
Case					
FIOWS	Low Flow Conditions (no surface runoff)				Node
n River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
ll flow ii arrass	flow in river at PM-13	Q_r13_L =	6.29	(cfs)	PM-13
Tota Emb	flow check	Q_ck_L =	6.29	(cfs)	4
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
ata	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.51	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.02	(cfs)	PM-13
low	seepage from cell 2W	Q_s2w_L =	0.69	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
Ing	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 20				
Flow	Average Flow Conditions (mean annual)				
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow ir arrass I	flow in river at PM-13	Q_r13_M =	95.48	(cfs)	PM-13
Tota Emb	flow check	Q_ck_M =	95.48	(cfs)	_
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	5.97	(cfs)	PM-13
, da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.02	(cfs)	PM-13
lov	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
ut 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
aul	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 20				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
ו River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow iı arrass	flow in river at PM-13	Q_r13_H =	867.03	(cfs)	PM-13
Total Emb ã	flow check	Q_ck_H =	867.03	(cfs)	_
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	5.97	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.02	(cfs)	PM-13
low	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
rt .	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
Ľ Ľ	ground water flow into PM-13	Q a13 H =	4.21	(cfs)	PM-13

Case Parameter	Year 20 Silver			
		1		
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
, då	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00124	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Averag	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.0	(mg/s)	0.01	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.2	(mg/s)	0.21	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	W	Averag	Flow	High Fl	ow
s balance ch node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	· (mg/s)	0.45	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.47	' (mg/s)	2.88	(mg/s)
		-	Low Flo	W	Averag	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Cor flux con	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 20			
Parameter	Aluminum			
		-		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.74E-01	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	5.44	(mg/s)	63.12	(mg/s)	63.12	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	30.64	(mg/s)	355.65	(mg/s)	355.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	39.76	(mg/s)	633.96	(mg/s)	2,817.44	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.223	(mg/L)	0.235	(mg/L)	0.115	(mg/L)

Case	Year 20			
Parameter	Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.014389887	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
co	concentration in tailings basin cell 2W		0.00291	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.21	(mg/s)	2.43	(mg/s)	2.43	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	 3.11	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	0.66	(mg/s)	5.14	(mg/s)	21.51	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass h ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.004	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Case	Year 20							
-----------	---	----------	-------------	--------				
Parameter	Boron							
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)				
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)				
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)				
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)				
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.174123916	(mg/L)				
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)				
cor	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)				
ont	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)				
du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)				

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.53	(mg/s)	29.42	(mg/s)	29.42	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.06	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	6.40	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance n node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass t at each	mass flux in river at PM-13	M_r13 =	12.04	(mg/s)	139.56	(mg/s)	401.58	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
't mass htration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.068	(mg/L)	0.052	(mg/L)	0.016	(mg/L)

Case	Year 20			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
р с	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.60E-02	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.96	(mg/s)	11.15	(mg/s)	11.15	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	1.80	(mg/s)	20.95	(mg/s)	20.95	(mg/s)
			Low Flow		Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	12.54	(mg/s)	65.30	(mg/s)	305.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
mass	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conver flux to conceni	concentration in river at PM-13	C_r13 =	0.070	(mg/L)	0.024	(mg/L)	0.012	(mg/L)

Case	Year 20			
Parameter	Beryllium			
		0		<i>(n</i>)
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00131326	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
et	concentration of ground water into PM-12		0.000023	(mg/L)
u d	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.22	(mg/s)	0.22	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flow		Average Flow		High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	 0.04	(mg/s)	0.41	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.04	(mg/s)	0.61	(mg/s)	2.79	(mg/s)
			LOW FIO	w	Average	FIOW	High Fi	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv filux ti conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 20			
Parameter	Calcium			
		-		
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
р р	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	76.37590202	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,111.71	(mg/s)	12,906.03	(mg/s)	12,906.03	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	227.25	(mg/s)	227.25	(mg/s)	227.25	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	1,159.99	(mg/s)	13,466.52	(mg/s)	32.66	(mg/s)
			Low Flo	W	Average	Flow	High Flo	ow
lance node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	5,225.09	(mg/s)	62,093.28	(mg/s)	332,512.66	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass k to ncentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
Co Co Co	concentration in river at PM-13	C_r13 =	29.357	(mg/L)	22.980	(mg/l)	13.552	(mg/l)

Case	Year 20			
Parameter	Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000534314	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
or t	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Ma at	mass flux in river at PM-13	M_r13 =	0.05	(mg/s)	0.35	(mg/s)	2.10	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
ບ∉ວ	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 20 Chlorida			
rarameter	oniorae	1		
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.66E+00	(mg/L)
cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	111.46	(mg/s)	1,293.94	(mg/s)	1,293.94	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	961.45	(mg/s)	961.45	(mg/s)	961.45	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	417.97	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	1,749.14	(mg/s)	28,776.03	(mg/s)	247,124.68	(mg/s)
		-	LOW FIO	w	Average	FIOW	High Fi	ow
't mass ntration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	9.827	(mg/L)	10.650	(mg/L)	10.072	(mg/L)

Case	Year 20			
Parameter	Cobalt			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
β β	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007940593	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
rt .	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High I	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)		2 (mg/s)
itration	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	B (mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.0	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	2 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	8 (mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	8 (mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.12	(mg/s)	1.34	(mg/s)	1.34	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00) (mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	5 (mg/s)
			Low Flo	w	Average	Flow	High	low
alance node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	6 (mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.31	(mg/s)	3.15	(mg/s)	16.25	5 (mg/s)
			Low Flo	w	Average	Flow	High I	low
t mass tration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.00*	(mg/L)
Conver filux to concen	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.001	(mg/L)	0.00	(mg/L)

Case	Year 20			
Parameter	Copper			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
, dâ	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.020208301	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.29	(mg/s)	3.41	(mg/s)	3.41	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> دُ	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Ma at	mass flux in river at PM-13	M_r13 =	0.96	(mg/s)	8.37	(mg/s)	41.12	(mg/s)
		-	Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	 0.002	(mg/L)	0.002	(mg/L)
ర≓ర	concentration in river at PM-13	C_r13 =	0.005	(mg/L)	0.003	(mg/L)	0.002	(mg/L)

Case Parameter	Year 20 Fluoride			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.70E-01	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
itration	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	11.21	(mg/s)	130.19	(mg/s)	130.19	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.56	(mg/s)	1.56	(mg/s)	1.56	(mg/s)
ទ ប័ ខ	mass flux in seepage from cell 2W	M_s2w =	30.08	(mg/s)	349.17	(mg/s)	349.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	98.09	(mg/s)	753.94	(mg/s)	2,937.43	(mg/s)
		-	Low Flo	W	Average	Flow	High Fl	ow
ert mass n ntration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.551	(mg/L)	0.279	(mg/L)	0.120	(mg/L)

Case	Year 20			
Parameter	Iron			
		-	-	
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.72E-02	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
rt .	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
itraf	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.27	(mg/s)	14.74	(mg/s)	14.74	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.22	(mg/s)	0.22	(mg/s)	0.22	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	89.14	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	95.65	(mg/s)	7,168.74	(mg/s)	70,489.85	(mg/s)
		-	Low Flo	w	Average	Flow	High Fl	ow
rt mass	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	 2.883	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.537	(mg/L)	2.653	(mg/L)	2.873	(mg/L)

Case	Year 20			
Parameter	Hardness			
		1		
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
р с р	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge		942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.71E+02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
ort	concentration of ground water into PM-12		87.5	(mg/L)
<u>d</u>	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,941.56	(mg/s)	45,758.38	(mg/s)	45,758.38	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,703.46	(mg/s)	4,703.46	(mg/s)	4,703.46	(mg/s)
<u>د</u> ې	mass flux in seepage from cell 2W	M_s2w =	8,471.90	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	29,671.51	(mg/s)	361,984.35	(mg/s)	1,890,424.90	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
Con Con con	concentration in river at PM-13	C_r13 =	166.706	(mg/L)	133.964	(mg/L)	77.044	(mg/L)

Case	Year 20			
Parameter	Potassium			
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	13.45	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
et	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
tion	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.98	(mg/s)	0.98	(mg/s)	0.98	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
uo:	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert e ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
mag	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	195.74	(mg/s)	2,272.35	(mg/s)	2,272.35	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	150.77	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	39.92	(mg/s)	1,360.32	(mg/s)	15,030.21	(mg/s)
Mas at ea	mass flux in river at PM-13	M r13 =	577.06	(ma/s)	15.080.85	(ma/s)	95.869.85	(ma/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	1.640	(mg/L)	3.483	(mg/L)	3.679	(mg/l)
o ≑ o	concentration in river at Pivi-13	C_n3 =	3.242	(mg/L)	5.581	(mg/L)	3.907	(mg/l)

Case	Year 20			
Parameter	Magnesium			
		-	-	
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	19.45	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average I	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	283.06	(mg/s)	3,286.07	(mg/s)	3,286.07	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	116.36	(mg/s)	116.36	(mg/s)	116.36	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	1,357.72	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average I	Flow	High Fl	ow
s balance ch node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	3,285.20	(mg/s)	48,599.41	(mg/s)	179,608.60	(mg/s)
			LOW FIO	w	Average	FIOW	High Fi	ow
ert mass o Intration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
Conv flux to conce	concentration in river at PM-13	C_r13 =	18.458	(mg/L)	17.986	(mg/l)	7.320	(mg/l)

Case	Year 20			
Parameter	Manganese			
		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
, p r	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.45	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
qu	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	6.56	(mg/s)	76.11	(mg/s)	76.11	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	22.96	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass t at each	mass flux in river at PM-13	M_r13 =	56.49	(mg/s)	1,029.15	(mg/s)	7,579.60	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.317	(mg/L)	0.381	(mg/l)	0.309	(mg/l)

Case	Year 20			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
р р	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	19.36	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	281.86	(mg/s)	3,272.20	(mg/s)	3,272.20	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	139.30	(mg/s)	139.30	(mg/s)	139.30	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	859.80	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	1,984.02	(mg/s)	28,202.32	(mg/s)	104,624.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass to centration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
flux con	concentration in river at PM-13	C_r13 =	11.147	(mg/L)	10.437	(mg/l)	4.264	(mg/l)

Case	Year 20			
Parameter	Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.141786777	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ltrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.06	(mg/s)	23.96	(mg/s)	23.96	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
ទ ប័ ខ	mass flux in seepage from cell 2W	M_s2w =	0.13	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	3.26	(mg/s)	29.39	(mg/s)	55.59	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
't mass ntration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	0.018	(mg/L)	0.011	(mg/L)	0.002	(mg/L)

Case Parameter	Year 20 Lead			
	concentration of surface water into PM-12	C s12 =	0	(ma/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
b r	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001841737	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
ŭ L	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

		Low Flow		Average Flow		High Flow			
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)		-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)		0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)		-	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)		-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)		0.14	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)		0.02	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.31	(mg/s)		0.31	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.27	(mg/s)		0.27	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)		0.03	(mg/s)
Mass bê at each	mass flux in river at PM-13	M_r13 =	0.22	(mg/s)	0.77	(mg/s)		0.77	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)		0.000	(mg/L)
Conver flux to concen	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)		0.000	(mg/L)

Case	Year 20			
Parameter	Antimony			
-		1		
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.02E-02	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
int	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.15	(mg/s)	1.73	(mg/s)	1.73	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Mi at	mass flux in river at PM-13	M_r13 =	0.37	(mg/s)	2.06	(mg/s)	2.50	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
0 = 0	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Year 20			
Parameter	Selenium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
ρι J dŝ	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002326015	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.39	(mg/s)	0.39	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance n node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass t at each	mass flux in river at PM-13	M_r13 =	0.51	(mg/s)	1.81	(mg/s)	8.36	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case Parameter	Year 20 Sulfate			
, arameter	Sanato			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	211.97	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,085.44	(mg/s)	35,819.52	(mg/s)	35,819.52	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,013.51	(mg/s)	4,013.51	(mg/s)	4,013.51	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	2,957.21	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	ow Flow Average Flo		Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	11,275.75	(mg/s)	142,736.07	(mg/s)	230,075.53	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass x to ncentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
co Llu CO	concentration in river at PM-13	C_r13 =	63.351	(mg/L)	52.824	(mg/l)	9.377	(mg/l)

Case	Year 20			
Parameter	Thallium			
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
n data	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001147722	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
int	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance n node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.69	(mg/s)	5.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass itration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 20 Zinc			
rurumotor	2			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
n data	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.061124366	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
l log	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
itrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.89	(mg/s)	10.33	(mg/s)	10.33	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.28	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	2.82	(mg/s)	49.11	(mg/s)	398.46	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	0.016	(mg/L)	0.018	(mg/L)	0.016	(mg/L)

Appendix F.7 Embarrass River Proposed Action Closure

FLOWS

Case	Closure				
Flows	Low Flow Conditions (no surface runoff)				Node
in s River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
low ras:	flow in river at PM-13	Q_r13_L =	6.27	(cfs)	PM-13
Total fl Embarı	flow check	Q_ck_L =	6.27	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.51	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
flov	seepage from cell 2W	Q_s2w_L =	0.69	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
lnp	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Closure				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow i arrass	flow in river at PM-13	Q_r13_M =	87.35	(cfs)	PM-13
Total Embi	flow check	Q_ck_M =	87.35	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ą	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	2.45	(cfs)	PM-13
, da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
<u>so</u>	seepage from cell 2W	Q_s2w_M =	3.37	(cfs)	PM-13
rt 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Closure				
Flow	High Flow Conditions (avg. annual 1-day max flow)				
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i Irrass	flow in river at PM-13	Q_r13_H =	858.90	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	858.90	(cfs)	_
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	2.45	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
oli No	seepage from cell 2W	Q_s2w_H =	3.37	(cfs)	PM-13
t T	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q g13 H =	4.21	(cfs)	PM-13

Case	Closure			
Parameter	Silver			
		-		-
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
n data	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00097	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
Lo Lo	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
concen lux	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ssfe	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.32	(mg/s)	2.72	(mg/s)
		-	Low Flo	W	 Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Closure			
Parameter	Aluminum			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.37E-01	(mg/L)
Cet	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
Icen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	9.11	(mg/s)	44.20	(mg/s)	44.20	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	31.04	(mg/s)	150.57	(mg/s)	150.57	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	43.75	(mg/s)	409.87	(mg/s)	2,593.35	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.246	(mg/L)	0.166	(mg/L)	0.107	(mg/L)

Case	Closure			
Parameter	Arsenic			
		-	r	
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
ů p c	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.012359831	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
Cor	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
Icen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.18	(mg/s)	0.86	(mg/s)	0.86	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.63	(mg/s)	3.18	(mg/s)	19.56	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conver flux to conceni	concentration in river at PM-13	C_r13 =	0.004	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Closure			
Parameter	Boron			
		-		
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
ů p c	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.198832748	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
L L L L L L L L L L L L L L L L L L L	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
centration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.84	(mg/s)	13.79	(mg/s)	13.79	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	6.49	(mg/s)	31.47	(mg/s)	31.47	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass t at each	mass flux in river at PM-13	M_r13 =	12.38	(mg/s)	81.01	(mg/s)	343.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.070	(mg/L)	0.033	(mg/L)	0.014	(mg/L)

Case Parameter	Closure Barium			
	concentration of surface water into PM-12	C s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
n de	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.81E-02	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
<u>du</u>	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
centra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.69	(mg/s)	3.34	(mg/s)	3.34	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	1.83	(mg/s)	8.87	(mg/s)	8.87	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	12.29	(mg/s)	45.41	(mg/s)	285.59	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	0.069	(mg/L)	0.018	(mg/L)	0.012	(mg/L)

Case Parameter	Closure Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000808254	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.03	(mg/s)	0.35	(mg/s)	2.53	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Closure			
Parameter	Calcium			
		-		
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	59.94387899	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	W	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tratior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	857.11	(mg/s)	4,157.57	(mg/s)	4,157.57	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	19.51	(mg/s)	19.51	(mg/s)	19.51	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	1,175.36	(mg/s)	5,701.28	(mg/s)	2.80	(mg/s)
			Low Flo	W	Average	Flow	High Fl	low
alance node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	4,778.13	(mg/s)	45,371.84	(mg/s)	323,526.61	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
nvert mass x to 1centration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
C LI C	concentration in river at PM-13	C_r13 =	26.921	(mg/L)	18.354	(mg/l)	13.310	(mg/l)

Case	Closure			
Parameter	Cadmium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000227872	(mg/L)
cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
l o	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	0.05	(mg/s)	0.25	(mg/s)	2.00	(mg/s)
			Low Flo	W	 Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv filux t	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Closure			
Parameter	Chloride			
		-		
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
, di	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.29E+00	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
Itrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	89.94	(mg/s)	436.24	(mg/s)	436.24	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	82.56	(mg/s)	82.56	(mg/s)	82.56	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	423.51	(mg/s)	2,054.29	(mg/s)	2,054.29	(mg/s)
			Low Flow		Average Flow		High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	854.27	(mg/s)	24,241.46	(mg/s)	242,590.11	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Conv filux t conc	concentration in river at PM-13	C_r13 =	4.813	(mg/L)	9.806	(mg/L)	9.980	(mg/L)

Case	Closure			
Parameter	Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001356866	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
l o	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
d L	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> دُ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	1.70	(mg/s)	14.80	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conver filux to concen	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Closure			
Parameter	Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.018240705	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
et	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w		Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)		0.10	(mg/s)	0.10	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.01	(mg/s)	0.01	(mg/s)
itral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)		0.48	(mg/s)	0.48	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.19	(mg/s)	0.19	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.26	(mg/s)		1.27	(mg/s)	1.27	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)		0.43	(mg/s)	0.43	(mg/s)
			Low Flo	Low Flow		Average Flow		High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)		0.65	(mg/s)	6.19	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	0.92	(mg/s)		5.63	(mg/s)	38.38	(mg/s)
			Low Flo	w		Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)		0.002	(mg/L)	0.002	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	0.005	(mg/L)		0.002	(mg/L)	0.002	(mg/L)

Case	Closure			
Parameter	Fluoride			
		-		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.82E-02	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w		Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)		9.37	(mg/s)	9.37	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.93	(mg/s)	0.93	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)		45.87	(mg/s)	45.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		7.04	(mg/s)	7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.26	(mg/s)		1.27	(mg/s)	1.27	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.13	(mg/s)		0.13	(mg/s)	0.13	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	30.48	(mg/s)		147.83	(mg/s)	147.83	(mg/s)
			Low Flo	Low Flow		Average Flow		High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)		45.99	(mg/s)	415.45	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	86.11	(mg/s)		422.25	(mg/s)	2,605.74	(mg/s)
			Low Flo	w		Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)		0.118	(mg/L)	0.102	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.485	(mg/L)		0.171	(mg/L)	0.107	(mg/L)
Case	Closure								
-----------	---	----------	-------------	--------					
Parameter	Iron								
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)					
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)					
ů p r	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)					
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)					
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.75E-01	(mg/L)					
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)					
con	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)					
rt	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)					
du	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)					

			Low Flo	W	Average	Flow	High Flo	w
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	9.65	(mg/s)	46.80	(mg/s)	46.80	(mg/s)
nve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ទ បិ	mass flux in seepage from cell 2W	M_s2w =	90.32	(mg/s)	438.13	(mg/s)	438.13	(mg/s)
			Low Flow		Average	Flow	High Flo	w
alance node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass be at each	mass flux in river at PM-13	M_r13 =	105.01	(mg/s)	6,603.85	(mg/s)	69,924.96	(mg/s)
			Low Flo	W	Average	Flow	High Flo	w
rt mass ntration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	0.592	(mg/L)	2.671	(mg/L)	2.877	(mg/L)

Case Parameter	Closure Hardness			
		-		
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
, p d	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	227	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8610	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	W	Average	Flow	High Flo	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,251.11	(mg/s)	15,770.06	(mg/s)	15,770.06	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	403.90	(mg/s)	403.90	(mg/s)	403.90	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	8,584.18	(mg/s)	41,638.98	(mg/s)	41,638.98	(mg/s)
			Low Flow		Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	 286,383.27	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	24,793.78	(mg/s)	270,983.44	(mg/s)	1,799,423.99	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
wert mass to centration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	 70.104	(mg/L)
Cor flux con	concentration in river at PM-13	C_r13 =	139.693	(mg/L)	109.618	(mg/L)	74.029	(mg/L)

Case	Closure			
Parameter	Potassium			
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
рс рс	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	13.37	(mg/L)
cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
l o	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
qu	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flow		Average Flow		High Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
tratior	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
lo XI	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert o ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
n ve ma:	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	191.19	(mg/s)	927.38	(mg/s)	927.38	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	152.77	(mg/s)	741.03	(mg/s)	741.03	(mg/s)
			Low Flow		Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	39.03	(mg/s)	1,359.42	(mg/s)	15,029.31	(mg/s)
Mass be at each	mass flux in river at PM-13	M_r13 =	573.61	(mg/s)	12,725.67	(mg/s)	93,514.67	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass to centration	concentration in river at PM-12	C_r12 =	1.603	(mg/L)	3.481	(mg/L)	3.679	(mg/l)
Cor flux con	concentration in river at PM-13	C_r13 =	3.232	(mg/L)	5.148	(mg/L)	3.847	(mg/l)

Case	Closure			
Parameter	Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	18.87	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
l o	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

m	nass flux of surface water into PM-12	M s12 =						
m			-	(mg/s)	2,141.18	(mg/s)	24,309) (mg/s)
	nass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20) (mg/s)
m tio	nass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	B (mg/s)
m trai	nass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290) (mg/s)
m ce	nass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
u s n m	nass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ert e	nass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	269.77	(mg/s)	1,308.55	(mg/s)	1,308.55	5 (mg/s)
m ag m	nass flux in hydrometallurgical residue cells liner leakage	M_rrs =	9.99	(mg/s)	9.99	(mg/s)	9.99) (mg/s)
ວິ ຊ m	nass flux in seepage from cell 2W	M_s2w =	1,375.71	(mg/s)	6,673.11	(mg/s)	6,673.1 ²	(mg/s)
			Low Flow		Average I	Flow	High I	low
is balance ach node ∣∃	nass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80) (mg/s)
m as mas	nass flux in river at PM-13	M r13 =	3,183.54	(mq/s)	37,426.64	(mg/s)	168,435.83	3 (mg/s)
		_	Low Flor	w	Average I	Flow	High	low
convert mass lux to oncentration	oncentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	8 (mg/l)

Case	Closure			
Parameter	Manganese			
-		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.28	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
l S	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flow		Average Flow			High Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)		1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)		4.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)		2.80	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)		5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)		22.40	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)		27.31	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.95	(mg/s)	19.17	(mg/s)		19.17	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	23.26	(mg/s)	112.82	(mg/s)		112.82	(mg/s)
			Low Flow		Average	Average Flow		High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)		1,222.81	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	54.19	(mg/s)	818.53	(mg/s)		7,368.99	(mg/s)
		_	Low Flo	w	Average	Flow		High Fl	ow
ert mass h ntration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)		0.299	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.305	(mg/L)	0.331	(mg/l)		0.303	(mg/l)

Case	Closure			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	12.15	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
- S	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High	Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	0 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.20	6 (mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	9 (mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,58	6 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.8	0 (mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.8	8 (mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	173.73	(mg/s)	842.70	(mg/s)	842.7	0 (mg/s)
nve ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	11.96	(mg/s)	11.96	(mg/s)	11.90	6 (mg/s)
<u>و</u> د د	mass flux in seepage from cell 2W	M_s2w =	871.20	(mg/s)	4,225.89	(mg/s)	4,225.8	9 (mg/s)
			Low Flow		Average	Flow	High	Flow
s balance ach node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	4 (mg/s)
Mas	mass flux in river at PM-13	M r13 =	1,759,95	(ma/s)	19.889.75	(mg/s)	96.311.7	7 (ma/s)
			Low Flo	w	Average	Flow	High	Flow
convert mass lux to oncentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.50	3 (mg/l)
0000	concentration in river at Pivi-13	C_F13 =	9.916	(mg/∟)	8.046	(mg/i)	3.96	∠ [(mg/l)

Case	Closure			
Parameter	NICKEI	1		
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
ů pů	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.015125217	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
L L L L L L L L L L L L L L L L L L L	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
itration	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.22	(mg/s)	1.05	(mg/s)	1.05	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.14	(mg/s)	0.66	(mg/s)	0.66	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance 1 node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mass b at eacl	mass flux in river at PM-13	M_r13 =	1.36	(mg/s)	5.54	(mg/s)	31.74	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.008	(mg/L)	0.002	(mg/L)	0.001	(mg/L)

Case	Closure			
Parameter	Lead			
			-	
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
ů pů	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001097329	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
L L L L L L L L L L L L L L L L L L L	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
tration	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	0.38	(mg/s)	0.38	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Closure			
Parameter	Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.37E-03	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
itration	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.08	(mg/s)	0.37	(mg/s)	0.37	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.30	(mg/s)	0.67	(mg/s)	1.10	(mg/s)
		-	Low Flo	W	Average	Flow	High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Closure Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
, di	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001503093	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
L L L L L L L L L L L L L L L L L L L	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
lnp	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
ıtration	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.47	(mg/s)	1.36	(mg/s)	7.91	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case Parameter	Closure Sulfate			
		4		
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	110.25	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
Lo Lo	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
ation	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,576.45	(mg/s)	7,646.82	(mg/s)	7,646.82	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	344.66	(mg/s)	344.66	(mg/s)	344.66	(mg/s)
<u>د</u> ې	mass flux in seepage from cell 2W	M_s2w =	2,996.40	(mg/s)	14,534.54	(mg/s)	14,534.54	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance 1 node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	6,137.09	(mg/s)	91,098.21	(mg/s)	178,437.67	(mg/s)
		-	Low Flo	w	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	 4.027	(mg/l)
Con flux conc	concentration in river at PM-13	C_r13 =	34.578	(mg/L)	36.851	(mg/l)	7.341	(mg/l)

Case	Closure			
Parameter	Thallium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
, di	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge		0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000917488	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
itration	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.54	(mg/s)	4.91	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Closure			
Parameter	Zinc			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.020231354	(mg/L)
cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
LOS	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.29	(mg/s)	1.40	(mg/s)	1.40	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.28	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	2.22	(mg/s)	38.31	(mg/s)	387.67	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass or ntration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.013	(mg/L)	0.015	(mg/L)	0.016	(mg/L)

Appendix F.8 Embarrass River Proposed Action Post-Closure

FLOWS

Case	Post-Closure				
Flows	Low Flow Conditions (no surface runoff)				Node
in s River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
flow arras:	flow in river at PM-13	Q_r13_L =	6.27	(cfs)	PM-13
Total Embê	flow check	Q_ck_L =	6.27	(cfs)	_
	surface water flow into PM-12	Q s12 L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.77	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_L =	0.43	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
lnp	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Post-Closure				
Flow	Average Flow Conditions (mean annual)				
in River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow arrass	flow in river at PM-13	Q_r13_M =	85.33	(cfs)	PM-13
Tota Emb	flow check	Q_ck_M =	85.33	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	2.45	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
lo v	seepage from cell 2W	Q_s2w_M =	1.35	(cfs)	PM-13
nt	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Post-Closure				
Flow	High Flow Conditions (avg. annual 1-day ma	ax flow)			
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i arrass	flow in river at PM-13	Q_r13_H =	856.88	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	856.88	(cfs)	4
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	2.45	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
lo No	seepage from cell 2W	Q_s2w_H =	1.35	(cfs)	PM-13
t t	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q g13 H =	4.21	(cfs)	PM-13

Case	Post-Closure			
Parameter	Silver			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
р с р с	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00097	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
l o	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Average I	Flow	High Flo	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
			Low Flo	w	Average I	Flow	High Flo	ow
ss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	<u>(mg/s)</u>
Ma at c	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.31	(mg/s)	2.71	(mg/s)
			Low Flo	w	Average I	Flow	High Flo	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
ర≓ర	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Post-Closure			
Parameter	Aluminum			
		-		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
, p d	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.37E-01	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Averag	e Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.6	(mg/s)		405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.6	(mg/s)		0.61	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.9	(mg/s)		0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.1	8 (mg/s)		1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.9	(mg/s)		2.98	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.7	i (mg/s)		0.75	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	13.96	(mg/s)	44.2) (mg/s)		44.20	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.0	(mg/s)		0.01	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	19.04	(mg/s)	60.3	? (mg/s)		60.32	(mg/s)
			Low Flow		Averag	Average Flow		High Fl	ow
s balance ich node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.2	8 (mg/s)		406.69	(mg/s)
Mas: at ea	mass flux in river at PM-13	M_r13 =	36.59	(mg/s)	319.6	(mg/s)		2,503.10	(mg/s)
		-	Low Flo	w	Averag	Flow		High Fl	ow
invert mass x to ncentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.09	5 (mg/L)		0.100	(mg/L)
col Co col co	concentration in river at PM-13	C_r13 =	0.206	(mg/L)	0.13	(mg/L)		0.103	(mg/L)

Case Parameter	Post-Closure Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
p c	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.012359831	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
CO	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.27	(mg/s)	0.86	(mg/s)	0.86	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.04	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.70	(mg/s)	3.02	(mg/s)	19.39	(mg/s)
			LOWIN	~~	Average	100	Ingitte	0
vert mass to :entration	concentration in river at PM-12	C_r12 =	0.0027	(mg/L)	0.001	(mg/L)	 0.001	(mg/L)
Con	concentration in river at PM-13	C_r13 =	0.0039	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Post-Closure			
Parameter	Boron			
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.198832748	(mg/L)
Cet	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
Lo Lo	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
int	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4.35	(mg/s)	13.79	(mg/s)	13.79	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	3.98	(mg/s)	12.61	(mg/s)	12.61	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass bé at each	mass flux in river at PM-13	M_r13 =	11.38	(mg/s)	62.14	(mg/s)	324.16	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Convel flux to concer	concentration in river at PM-13	C_r13 =	0.064	(mg/L)	0.026	(mg/L)	0.013	(mg/L)

Case Parameter	Post-Closure Barium			
		010	0.014	(
_	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ate	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
pu	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.81E-02	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
ln	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ntrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.05	(mg/s)	3.34	(mg/s)	3.34	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	1.12	(mg/s)	3.55	(mg/s)	3.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass t at each	mass flux in river at PM-13	M_r13 =	11.95	(mg/s)	40.09	(mg/s)	280.28	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.067	(mg/L)	0.017	(mg/L)	0.012	(mg/L)

Case Parameter	Post-Closure Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
p c	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000808254	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
Ō	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	W	Average	Flow	High Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00 (mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00 (mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00 (mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01 (mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06 (mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	- (mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.03	(mg/s)	0.03 (mg/s)
			Low Flo	W	Average	Flow	High Flow
balance ch node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41 (mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.03	(mg/s)	0.30	(mg/s)	2.49 (mg/s)
			LOWIN	W	Average	100	Tigh Tiow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000 (mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000 (mg/L)

Case Parameter	Post-Closure Calcium			
	concentration of ourface water into DM 12	C a12 -	12	(ma/l)
ta	concentration of surface water into PM-12	C_s12 = C_s13 =	13	(mg/L) (mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	59.94387899	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
L S	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,312.64	(mg/s)	4,157.57	(mg/s)	4,157.57	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	19.51	(mg/s)	19.51	(mg/s)	19.51	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	721.08	(mg/s)	2,283.89	(mg/s)	2.80	(mg/s)
			Low Flow		 Average Flow		High Fl	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mi at	mass flux in river at PM-13	M_r13 =	4,779.37	(mg/s)	41,954.45	(mg/s)	323,526.61	(mg/s)
			Low Flo	w	 Average	Flow	High Fl	low
invert mass x to ncentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
S ≣ S	concentration in river at PM-13	C_r13 =	26.928	(mg/L)	17.373	(mg/l)	13.341	(mg/l)

Case Parameter	Post-Closure Cadmium			
	anne tratice of curfere under inte DM 40	0 - 10 -	0.00000	(
a.	concentration of surface water into PM-12	$C_{s12} =$	0.0008	(mg/L)
n dat	concentration in Babbitt WWTP discharge	C sBab =	0.00008	(mg/L)
tion	concentration in Area 5 Pit NW discharge	_ C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000227872	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
- S	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flor	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ntrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
			Low Flor	w	Average	Flow	High Fl	ow
s balance ch node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	 0.04	(mg/s)	0.33	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	0.05	(mg/s)	0.24	(mg/s)	1.99	(mg/s)
			Low Flor	W	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv flux t conc	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Post-Closure			
Parameter	Chloride			
		-		
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.29E+00	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	137.73	(mg/s)	436.24	(mg/s)	436.24	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	82.56	(mg/s)	82.56	(mg/s)	82.56	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	259.82	(mg/s)	822.94	(mg/s)	822.94	(mg/s)
			Low Flow		Average	Flow	High F	low
Aass balance tt each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
~ ~ ~		M_110 -	Low Flo	w	Average	Flow	High F	low
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)

Case	Post-Closure			
Parameter	Cobait]		
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
р с	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001356866	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
L L L L L L L L L L L L L L L L L L L	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
at .	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	1.61	(mg/s)	14.71	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass or ntration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case Parameter	Post-Closure Copper			
	••			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
, di	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.018240705	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6 (mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10 (mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01 (mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48 (mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19 (mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.40	(mg/s)	1.27	(mg/s)	1.27 (mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00 (mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.05	(mg/s)	0.17	(mg/s)	0.17 (mg/s)
			Low Flo	w	Average	Flow	High Flow
alance node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19 (mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	1.03	(mg/s)	5.37	(mg/s)	38.12 (mg/s)
			Low Flo	w	Average	Flow	High Flow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.00400	(mg/L)	0.002	(mg/L)	0.002 (mg/L)
Convel flux to concer	concentration in river at PM-13	C_r13 =	0.00579	(mg/L)	0.002	(mg/L)	0.002 (mg/L)

Case	Post-Closure			
Parameter	Fluoride			
		1	1	
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.82E-02	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
l S	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.40	(mg/s)	1.27	(mg/s)	1.27	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	18.70	(mg/s)	59.22	(mg/s)	59.22	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance t each node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
		M_110	Low Flo	(mg/0) w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)

Case Parameter	Post-Closure Iron			
i aranieter		1		
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.75E-01	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
ŭ L	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	14.78	(mg/s)	46.80	(mg/s)	46.80	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	55.41	(mg/s)	175.51	(mg/s)	175.51	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	75.23	(mg/s)	6,341.23	(mg/s)	69,662.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
't mass ntration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Conver flux to concen	concentration in river at PM-13	C_r13 =	0.424	(mg/L)	2.626	(mg/L)	2.873	(mg/L)

Case	Post-Closure			
Parameter	Hardness			
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.27E+02	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
Itral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4,978.97	(mg/s)	15,770.06	(mg/s)	15,770.06	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	403.90	(mg/s)	403.90	(mg/s)	403.90	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	5,266.36	(mg/s)	16,680.30	(mg/s)	16,680.30	(mg/s)
			Low Flo	W	Average	Flow	High Fl	low
lance node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	23,203.82	(mg/s)	246,024.76	(mg/s)	1,774,465.31	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
rt mass ntration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	130.735	(mg/L)	101.877	(mg/L)	73.175	(mg/L)

Case	Post-Closure			
Parameter	Potassium			
		-	-	
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	13.37	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
tion	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
uo:	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert e ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
ma	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	292.79	(mg/s)	927.38	(mg/s)	927.38	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	93.72	(mg/s)	296.85	(mg/s)	296.85	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	39.03	(mg/s)	1,359.42	(mg/s)	15,029.31	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	616.17	(mg/s)	12,281.49	(mg/s)	93,070.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	1.603	(mg/L)	3.481	(mg/L)	3.679	(mg/l)
Conve flux to concei	concentration in river at PM-13	C_r13 =	3.472	(mg/L)	5.086	(mg/L)	3.838	(mg/l)

Case	Post-Closure			
Parameter	Magnesium			
		-		
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	18.87	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
l o	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flor	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
itral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
li s	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	413.14	(mg/s)	1,308.55	(mg/s)	1,308.55	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	9.99	(mg/s)	9.99	(mg/s)	9.99	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	843.99	(mg/s)	2,673.20	(mg/s)	2,673.20	(mg/s)
			Low Flor	W	Average	Flow	High Fl	ow
lass balance t each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
ë ≤	mass flux in river at PM-13	M_r13 =	2,795.20	(mg/s)	33,426.73	(mg/s)	164,435.92	(mg/s)
			LOW FIO	W	Average	FIOW	High FI	ow
onvert mass ix to oncentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
ວິ≓ິວ	concentration in river at PM-13	C_r13 =	15.749	(mg/L)	13.842	(mg/l)	6.781	(mg/l)

Case	Post-Closure			
Parameter	Manganese			
-		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
, p d	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.28	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flor	Low Flow		Average Flow		High Flow		ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		107.06	(mg/s)		1,215	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)		4.58	(mg/s)		4.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		2.80	(mg/s)		2.80	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		522.39	(mg/s)		5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)		22.40	(mg/s)		22.40	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		27.31	(mg/s)		27.31	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	6.05	(mg/s)		19.17	(mg/s)		19.17	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)		0.00	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	14.27	(mg/s)		45.20	(mg/s)		45.20	(mg/s)
			Low Flor	w		Average	Flow		High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)		114.44	(mg/s)		1,222.81	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	47.30	(mg/s)		750.91	(mg/s)		7,301.36	(mg/s)
			Low Flor	w		Average	Flow		High Fl	ow
ert mass n ntration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)		0.293	(mg/l)		0.299	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.266	(mg/L)		0.311	(mg/l)		0.301	(mg/l)

Case Parameter	Post-Closure Sodium			
	concentration of ourface water into PM 12	C a12 -	2.50	(mg/L)
ta	concentration of surface water into PM-12	C_s12 = C_s13 =	3.50	(mg/L)
u da	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	12.15	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
- Do	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
ğ	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
ıtrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	266.06	(mg/s)	842.70	(mg/s)	842.70	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	11.96	(mg/s)	11.96	(mg/s)	11.96	(mg/s)
<u>د</u> د م	mass flux in seepage from cell 2W	M_s2w =	534.48	(mg/s)	1,692.86	(mg/s)	1,692.86	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ass balance teach node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
at	mass flux in river at PM-13	M_r13 =	1,515.56	(mg/s)	17,356.72	(mg/s)	93,778.75	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ix to oncentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
S ≓ S	concentration in river at PM-13	C_r13 =	8.539	(mg/L)	7.187	(mg/l)	3.867	(mg/l)

Case Parameter	Post-Closure Nickel			
	concentration of surface water into PM 12	C s12 -	0.0012	(mg/L)
ta	concentration of surface water into PM-13	C_s12 = C_s13 =	0.0012	(mg/L)
da da	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.015125217	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

		Low Flow		Average Fl		low		High Flow		
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		0.43	(mg/s)		5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)		0.17	(mg/s)		0.17	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.01	(mg/s)		0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		2.09	(mg/s)		24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)		0.83	(mg/s)		0.83	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.29	(mg/s)		0.29	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.33	(mg/s)		1.05	(mg/s)		1.05	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.08	(mg/s)		0.26	(mg/s)		0.26	(mg/s)
			Low Flo	w	A	verage	Flow		High Fl	ow
lass balance t each node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)		0.61	(mg/s)		5.04	(mg/s)
ö ≤	mass flux in river at PM-13	M_r13 =	1.42	(mg/s)	•	5.14	(mg/s)		31.34	(mg/s)
			LOW FIU	vv	^	verage			nigii ri	0
nvert mass x to ncentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)		0.002	(mg/L)		0.001	(mg/L)
flu: col	concentration in river at PM-13	C_r13 =	0.008	(mg/L)		0.002	(mg/L)		0.001	(mg/L)

Case	Post-Closure			
Parameter	Lead			
-		-		
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001097329	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
l S	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

		Low Flow			Average Flow		High Flow		
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)		0.03	(mg/s)	0.03	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		-	(mg/s)	-	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)		0.14	(mg/s)	0.14	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.02	(mg/s)	0.02	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)		0.08	(mg/s)	0.08	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)		0.05	(mg/s)	0.05	(mg/s)
	-		Low Flo	Low Flow		Average	Flow	High Fl	low
balance node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)		0.03	(mg/s)	0.03	(mg/s)
Mass	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)		0.31	(mg/s)	0.31	(mg/s)
		-	LOW FIO	w		Average	riow	підп гі	low
ert mass ortration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)		0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)		0.000	(mg/L)	0.000	(mg/L)

Case	Post-Closure			
Parameter	Antimony			
		-		
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
р р	concentration in Babbitt WWTP discharge		2.00E-05	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.37E-03	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
<u>d</u>	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	Low Flow		Average Flow		High Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)		0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)		0.04	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)		0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)		0.18	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.12	(mg/s)	0.37	(mg/s)		0.37	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)		0.12	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.34	(mg/s)	0.65	(mg/s)		1.09	(mg/s)
	1	-	Low Flo	w	Average	Flow		High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)		0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.000	(mg/L)		0.000	(mg/L)
Case Paramotor	Post-Closure								
--	---	----------	-------------	--------					
Falameter	Selenium	1							
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)					
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)					
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)					
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)					
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001503093	(mg/L)					
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)					
Lo L	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)					
ort .	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)					
du du	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)					

			Low Flo	w	Aver	ige Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	(11 (mg/s)	1	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	(07 (mg/s)	0.07	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	(00 (mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	(52 (mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	(35 (mg/s)	0.35	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	(09 (mg/s)	0.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	(10 (mg/s)	0.10	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	(00 (mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	(04 (mg/s)	0.04	(mg/s)
			Low Flo	w	Aver	ige Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)		18 (mg/s)	1.29	(mg/s)
Mas at ea	mass flux in river at PM-13	M r13 =	0 47	(ma/s)	1	29 (ma/s)	7 84	(mg/s)
		<u>_</u> t	Low Flo	w	Aver	ge Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.	00 (mg/L)	0.000	(mg/L)
ర≓ర	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.	01 (mg/L)	0.000	(mg/L)

Case Parameter	Post-Closure Sulfate			
		010	4.00	(
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
р ц	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	110.25	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
Co Co	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	W	Average	Flow	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,414.28	(mg/s)	7,646.82	(mg/s)	7,646.82	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	344.66	(mg/s)	344.66	(mg/s)	344.66	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	1,838.28	(mg/s)	5,822.44	(mg/s)	5,822.44	(mg/s)
			Low Flo	W	Average	Flow	High F	low
alance node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	5,816.80	(mg/s)	82,386.11	(mg/s)	169,725.57	(mg/s)
			Low Flo	w	Average	Flow	High F	low
ert mass o entration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
Conv filux to conce	concentration in river at PM-13	C_r13 =	32.773	(mg/L)	34.116	(mg/l)	6.999	(mg/l)

Case Parameter	Post-Closure Thallium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
p r	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000917488	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
d d	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	-		Low Flo	w	Average	Flow	High Fl	low
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.53	(mg/s)	4.89	(mg/s)
			LOWIN	**	Average	10 W	Tigitti	
ert mass o intration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	 0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Post-Closure Zinc			
		-		1
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.020231354	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
ot	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average I	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.44	(mg/s)	1.40	(mg/s)	1.40	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.17	(mg/s)	0.55	(mg/s)	0.55	(mg/s)
			Low Flo	w	Average I	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	2.27	(mg/s)	37.49	(mg/s)	386.85	(mg/s)
			Low Flo	w	Average I	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.013	(mg/L)	0.016	(mg/L)	0.016	(mg/L)

Appendix F.9 Embarrass River Geotechnical Mitigation Year 1

FLOWS

Case	Year 1				
Flows	Low Flow Conditions (no surface runoff)				Node
in River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
ll flow barrass	flow in river at PM-13	Q_r13_L =	6.27	(cfs)	PM-13
Tota Emb	flow check	Q_ck_L =	6.27	(cfs)	4
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.37	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
flov	seepage from cell 2W	Q_s2w_L =	0.83	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
Ing	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 1				
Flow	Average Flow Conditions (mean annual)				
w in ss River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
flo	flow in river at PM-13	Q_r13_M =	93.06	(cfs)	PM-13
Total Emba	flow check	Q_ck_M =	93.06	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	3.56	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
llow	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
out1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 1				
Flow	High Flow Conditions (avg. annual 1-day ma	ax flow)			
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i ırrass	flow in river at PM-13	Q_r13_H =	864.61	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	864.61	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	3.56	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
lo v	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
nt -	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
aul	ground water flow into PM-13	Q g13 H =	4.21	(cfs)	PM-13

Case	Year 1			
Parameter	Silver			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00086	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
centration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
con con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.35	(mg/s)	2.75	(mg/s)
	1	-	LOW FIO	w	Average	FIOW	Figh Fi	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 1 Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
i p u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.01	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.18	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
centration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ssf	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.11	(mg/s)	1.01	(mg/s)	1.01	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
<u>۹</u> گ	mass flux in seepage from cell 2W	M_s2w =	37.03	(mg/s)	355.65	(mg/s)	355.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	40.73	(mg/s)	571.75	(mg/s)	2,755.24	(mg/s)
			LOW FIU	vv	Average	FIOW	піун гі	0₩
nvert mass to centration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
Cor flux con	concentration in river at PM-13	C_r13 =	0.229	(mg/L)	0.217	(mg/L)	0.113	(mg/L)

Case	Year 1			
Parameter	Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.006769615	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
trati	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.07	(mg/s)	0.68	(mg/s)	0.68	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.07	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.53	(mg/s)	3.38	(mg/s)	19.76	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case Parameter	Year 1 Boron			
	concentration of surface water into PM-12	C s12 =	0.012	(mg/L)
Ita	concentration of surface water into PM-13	 C_s13 =	0.012	(mg/L)
n ds	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.137838474	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
L L	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
ncentrat ć	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.45	(mg/s)	13.91	(mg/s)	13.91	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۹</u> گ	mass flux in seepage from cell 2W	M_s2w =	7.74	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mas at e	mass flux in river at PM-13	M r13 =	12.23	(ma/s)	123.98	(ma/s)	386.00	(ma/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)

Case Parameter	Year 1 Barium			
	concentration of surface water into PM-12	C s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	 C_s13 =	0.011	(mg/L)
n de	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.05E-02	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
u du	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Averaç	e Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.9	3 (mg/s)	45	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.6	6 (mg/s)	1.66	(mg/s)
centration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.1) (mg/s)	0.10	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.1	ō (mg/s)	219	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.1	1 (mg/s)	8.11	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.2	ō (mg/s)	0.25	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.53	(mg/s)	5.0) (mg/s)	5.09	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.0) (mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	2.18	(mg/s)	20.9	5 (mg/s)	20.95	(mg/s)
			Low Flo	w	Averag	e Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.6	9 (mg/s)	46.33	(mg/s)
Mass	mass flux in river at PM-13	M_r13 =	12.48	(mg/s)	59.2	4 (mg/s)	299.42	(mg/s)
			Low Flo	w	Averag	e Flow	 High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.01	5 (mg/L)	0.011	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.070	(mg/L)	0.02	2 (mg/L)	0.012	(mg/L)

Case	Year 1			
Parameter	Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000376001	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Aver	ige Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	C	.04 (mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	C	.00 (mg/s)	0.00	(mg/s)
centration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	C	.00 (mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	C	.17 (mg/s)	2	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	C	.00 (mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	C	.01 (mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	C	.04 (mg/s)	0.04	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)		(mg/s)	-	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	C	.17 (mg/s)	0.17	(mg/s)
			Low Flo	w	Aver	ige Flow	High Fl	ow
lance node	mass flux in river at PM-12	M r12 =	0.00	(mg/s)	c	.04 (mg/s)	0.41	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	C	.43 (mg/s)	2.61	(mg/s)
			Low Flo	w	Aver	ige Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.	000 (mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.	000 (mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	77.28097689	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	811.79	(mg/s)	7,796.40	(mg/s)	7,796.40	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	12.28	(mg/s)	12.28	(mg/s)	12.28	(mg/s)
<u>د</u> ې	mass flux in seepage from cell 2W	M_s2w =	1,402.18	(mg/s)	13,466.52	(mg/s)	1.77	(mg/s)
			Low Flo	w	Average	Flow	High F	low
Mass balance at each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	327 157 17	(mg/s)
		W_110 -	Low Flo	(mg/3) w	Average	Flow	High F	low
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)

Case	Year 1			
Parameter	Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
р р	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00032784	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mass be at each	mass flux in river at PM-13	M_r13 =	0.05	(mg/s)	0.29	(mg/s)	2.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass x to ncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
flu: cor	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.52E+01	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
Itral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	160.16	(mg/s)	1,538.17	(mg/s)	1,538.17	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	51.97	(mg/s)	51.97	(mg/s)	51.97	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	505.23	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance h node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass b at eacl	mass flux in river at PM-13	M_r13 =	975.63	(mg/s)	28,110.78	(mg/s)	246,459.43	(mg/s)
			LOW FIO	w	Average	Flow	High Fi	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	5.497	(mg/L)	10.674	(mg/L)	10.073	(mg/L)

Case Parameter	Year 1 Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
tta	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
a de	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tior	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001495727	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
d L	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
u su l	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.04	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	1.96	(mg/s)	15.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Year 1			
Parameter	Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
i p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.0068095	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
Ĕ	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Ave	age Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	(.54 (mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)		.10 (mg/s)	0.10	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		.01 (mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	:	.61 (mg/s)	30	(mg/s)
concen flux	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)		.48 (mg/s)	0.48	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		.19 (mg/s)	0.19	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.07	(mg/s)		.69 (mg/s)	0.69	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		.00 (mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.11	(mg/s)		.03 (mg/s)	1.03	(mg/s)
			Low Flo	w	Ave	age Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)		.65 (mg/s)	6.19	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.75	(mg/s)		.64 (mg/s)	38.39	(mg/s)
		-	LOW FIO	w	Ave	age Flow	Figh Fi	ow
rt mass itration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.)02 (mg/L)	0.002	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.004	(mg/L)	0.	002 (mg/L)	0.002	(mg/L)

Case Parameter	Year 1 Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ן ds	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.90E+00	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	30.50	(mg/s)	292.90	(mg/s)	292.90	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	36.36	(mg/s)	349.17	(mg/s)	349.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	122.18	(mg/s)	915.18	(mg/s)	3,098.67	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o ntration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Conve flux tc conce	concentration in river at PM-13	C_r13 =	0.688	(mg/L)	0.348	(mg/L)	0.127	(mg/L)

Case	Year 1			
Parameter	Iron			
		1		
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
p c	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.00E-03	(mg/L)
Cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
ot	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.04	(mg/s)	0.40	(mg/s)	0.40	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	107.76	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	112.83	(mg/s)	7,154.20	(mg/s)	70,475.31	(mg/s)
		-	Low Flo	W	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Conv flux te conce	concentration in river at PM-13	C_r13 =	0.636	(mg/L)	2.717	(mg/L)	2.880	(mg/L)

Case	Year 1			
Parameter	Hardness			
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
, di	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.74E+02	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,931.55	(mg/s)	37,758.64	(mg/s)	37,758.64	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	254.25	(mg/s)	254.25	(mg/s)	254.25	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	10,240.73	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
llance node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	26,981.12	(mg/s)	349,535.40	(mg/s)	1,877,975.95	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass < to ncentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
flux cor	concentration in river at PM-13	C_r13 =	152.032	(mg/L)	132.728	(mg/L)	76.751	(mg/L)

Case	Year 1			
Parameter	Potassium			
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.31	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
tion	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
uo:	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert e ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
mag	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	97.76	(mg/s)	938.93	(mg/s)	938.93	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	182.25	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance ach node	mass flux in river at PM-12	M_r12 =	38.99	(mg/s)	1,359.39	(mg/s)	15,029.28	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	509.64	(mg/s)	13,746.49	(mg/s)	94,535.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	1.602	(mg/L)	 3.481	(mg/L)	3.679	(mg/l)
ర≓ర	concentration in river at PM-13	C_r13 =	2.872	(mg/L)	5.220	(mg/L)	3.864	(mg/l)

Case	Year 1			
Parameter	Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
, p d	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	44.03	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

<u>m</u>	nass flux of surface water into PM-12	M s12 -						
		111_312 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
	nass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
n tộ	nass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
m tra	nass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
n ce	nass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
n li s	nass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ss fa	nass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	462.49	(mg/s)	4,441.73	(mg/s)	4,441.73	(mg/s)
m ag m	nass flux in hydrometallurgical residue cells liner leakage	M_rrs =	6.29	(mg/s)	6.29	(mg/s)	6.29	(mg/s)
ា ឧ ប័	nass flux in seepage from cell 2W	M_s2w =	1,641.19	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flow	N	Average	Flow	High Fl	ow
s balance ach node	nass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mas	nass flux in river at PM-13	M r13 =	3.638.04	(ma/s)	49.645.00	(ma/s)	180.654.19	(ma/s)
			Low Flow	N	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)

Case	Year 1			
Parameter	Manganese			
		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
, p d	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.24	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	W	Average	Flow	High Flo	w
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.52	(mg/s)	24.25	(mg/s)	24.25	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	27.75	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	w	Average	Flow	High Flo	w
lance node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	57.25	(mg/s)	977.28	(mg/s)	7,527.74	(mg/s)
			Low Flo	w	Average	Flow	High Flo	w
nvert mass k to 1centration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Co Co Co	concentration in river at PM-13	C_r13 =	0.323	(mg/L)	0.371	(mg/l)	0.308	(mg/l)

Case	Year 1			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	52.95	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ert c ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	556.20	(mg/s)	5,341.70	(mg/s)	5,341.70	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	7.53	(mg/s)	7.53	(mg/s)	7.53	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,039.32	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mass bé at each	mass flux in river at PM-13	M_r13 =	2,306.10	(mg/s)	30,140.04	(mg/s)	106,562.07	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Conver flux to concen	concentration in river at PM-13	C r13 =	12.994	(mg/L)	11.445	(mg/l)	4.355	(mg/l)

Case	Year 1			
Parameter	Nickel			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
ů p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.019144051	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
con sul	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.20	(mg/s)	1.93	(mg/s)	1.93	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.16	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	 5.04	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	1.37	(mg/s)	7.31	(mg/s)	33.51	(mg/s)
			Low Tio	**	Average	1101	Ingili	011
vert mass to centration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Con Con con	concentration in river at PM-13	C_r13 =	0.008	(mg/L)	0.003	(mg/L)	0.001	(mg/L)

Case	Year 1			
Parameter	Lead			
			-	-
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000886329	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Itration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.27	(mg/s)	0.27	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	0.55	(mg/s)	0.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass to centration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Cor flux con	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.05E-03	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
ot	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Flow	w
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0 (1	mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04 (1	mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00 (1	mg/s)
itrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0 (1	mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18 (1	mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01 (1	mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.08	(mg/s)	0.81	(mg/s)	0.81 (1	mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00 (1	mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.06	(mg/s)	0.06 (1	mg/s)
			Low Flo	w	Average	Flow	High Flov	w
lance node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12 (1	mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.31	(mg/s)	1.14	(mg/s)	1.58 (1	mg/s)
			Low Flo	w	Average	Flow	High Flow	w
nvert mass x to ncentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000 (1	mg/L)
co Llu Co	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.000	(mg/L)	0.000 (1	mg/L)

Case Parameter	Year 1 Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ita	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
n de	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001106406	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
Cor	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ntration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័ ខ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	 0.18	(mg/s)	1.29	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.46	(mg/s)	1.50	(mg/s)	8.05	(mg/s)
			LOW FIO	vv	Average	FIOW	підії гі	0₩
rt mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Sulfate			
-		-		
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	190.00	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
ntral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,995.81	(mg/s)	19,167.71	(mg/s)	19,167.71	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	216.95	(mg/s)	216.95	(mg/s)	216.95	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	3,574.64	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lass balance t each node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
σĭΣ	mass flux in river at PM-13	M_r13 =	7,006.99	(mg/s)	122,287.70	(mg/s)	 209,627.16	(mg/s)
			LOW FIO	w	Average	FIOW	High Fi	ow
nvert mass k to 1centration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
cor tin	concentration in river at PM-13	C_r13 =	39.483	(mg/L)	46.436	(mg/l)	8.567	(mg/l)

Case	Year 1			
Parameter	Thallium			
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000907911	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
d L	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.59	(mg/s)	4.96	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass t to icentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Cor flux con	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.0182086	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.19	(mg/s)	1.84	(mg/s)	1.84	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.34	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	2.18	(mg/s)	40.61	(mg/s)	389.97	(mg/s)
			LOW FIO	w	Average	FIOW	High Fi	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.012	(mg/L)	0.015	(mg/L)	0.016	(mg/L)

Appendix F.10 Embarrass River Geotechnical Mitigation Year 5

FLOWS

Case	Year 5				
Flows	Low Flow Conditions (no surface runoff)				Node
Fotal flow in Embarrass River	flow in river at PM-12 flow in river at PM-13	Q_r12_L = Q_r13_L =	0.86 6.28	(cfs) (cfs)	PM-12 PM-13
			0.20	(015)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.46	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.01	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_L =	0.74	(cfs)	PM-13
ut 1	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
lnp	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 5				
Flow	Average Flow Conditions (mean annual)				
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow iı arrass	flow in river at PM-13	Q_r13_M =	94.54	(cfs)	PM-13
Total Emb	flow check	Q_ck_M =	94.54	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	5.04	(cfs)	PM-13
, da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.01	(cfs)	PM-13
Nol.	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
nt 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
au	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 5				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i rrass	flow in river at PM-13	Q_r13_H =	866.09	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	866.09	(cfs)	_
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	5.04	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.01	(cfs)	PM-13
<u>o</u> l	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
E T	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
ů –	ground water flow into PM-13	Q q13 H =	4.21	(cfs)	PM-13

Case	Year 5			
Parameter	Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00086	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
d L	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.12	(mg/s)	0.12	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.39	(mg/s)	2.79	(mg/s)
			LOW FIO	w	Average	FIOW	High Fi	ow
ert mass ortration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 5			
Parameter	Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.00E-02	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.13	(mg/s)	1.42	(mg/s)	1.42	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	32.84	(mg/s)	355.65	(mg/s)	355.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	36.64	(mg/s)	572.24	(mg/s)	2,755.72	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass to centration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
Cor flux con	concentration in river at PM-13	C_r13 =	0.206	(mg/L)	0.214	(mg/L)	0.112	(mg/L)

Case	Year 5			
Parameter	Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.006769615	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
et	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
L L	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
tion	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.09	(mg/s)	0.96	(mg/s)	0.96	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.54	(mg/s)	3.67	(mg/s)	20.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conver flux to concen	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Case	Year 5							
-----------	---	----------	-------------	--------				
Parameter	Boron							
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)				
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)				
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)				
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)				
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.137838474	(mg/L)				
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)				
cor	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)				
ont	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)				
du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)				

			Low Flo	w	A	verage	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)		0.52	(mg/s)	0.52	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.11	(mg/s)	0.11	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)		2.53	(mg/s)	2.53	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		7.41	(mg/s)	7.41	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.81	(mg/s)		19.64	(mg/s)	19.64	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)		0.05	(mg/s)	0.05	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	6.86	(mg/s)		74.34	(mg/s)	74.34	(mg/s)
			Low Flo	w	A	verage	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)		4.91	(mg/s)	49.25	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	11.77	(mg/s)		129.76	(mg/s)	391.78	(mg/s)
			Low Flo	w	A	verage	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)		0.013	(mg/L)	0.012	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.066	(mg/L)		0.049	(mg/L)	0.016	(mg/L)

Case Parameter	Year 5 Barium			
		4		
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
р ц	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.05E-02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.66	(mg/s)	7.19	(mg/s)	7.19	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	1.93	(mg/s)	20.95	(mg/s)	20.95	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	12.37	(mg/s)	61.34	(mg/s)	301.52	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.070	(mg/L)	0.023	(mg/L)	0.012	(mg/L)

Case	Year 5			
Parameter	Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000376001	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ch node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	 0.04	(mg/s)	0.41	(mg/s)
Mas: at ea	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.44	(mg/s)	2.63	(mg/s)
		-	Low Flo	w	Average	Flow	High Fl	ow
nvert mass x to ncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	 0.000	(mg/L)	0.000	(mg/L)
Sin	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 5 Calcium			
	concentration of surface water into PM-12	C s12 =	13	(mg/L)
ita	concentration of surface water into PM-13	 C_s13 =	13	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	77.28097689	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
lu du	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
tral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
ssf	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,016.90	(mg/s)	11,012.42	(mg/s)	11,012.42	(mg/s)
nve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	176.59	(mg/s)	176.59	(mg/s)	176.59	(mg/s)
ទ បិ	mass flux in seepage from cell 2W	M_s2w =	1,243.51	(mg/s)	13,466.52	(mg/s)	25.38	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mass	mass flux in river at PM-13	M_r13 =	5,163.14	(mg/s)	60,149.00	(mg/s)	330,561.10	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
Conver flux to concen	concentration in river at PM-13	C r13 =	29.028	(mg/L)	22.481	(mg/l)	13.487	(mg/l)

Case Parameter	Year 5 Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
n de	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00032784	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
ln p	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	H	ligh Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)		0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)		2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)		0.04	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.05	(mg/s)		0.05	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)		0.04	(mg/s)
			Low Flo	w	Average	Flow	H	ligh Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)		0.33	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.05	(mg/s)	0.31	(mg/s)		2.05	(mg/s)
			LOW FIO	w	Average	Flow	F	lign Fi	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)		0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)		0.000	(mg/L)

Case	Year 5			
Parameter	Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.52E+01	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
rt .	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
<u>d</u>	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	200.63	(mg/s)	2,172.67	(mg/s)	2,172.67	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	747.10	(mg/s)	747.10	(mg/s)	747.10	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	448.06	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	1,654.05	(mg/s)	29,440.40	(mg/s)	247,789.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Conv flux t conc	concentration in river at PM-13	C_r13 =	9.299	(mg/L)	11.004	(mg/L)	10.110	(mg/L)

Case	Year 5			
Parameter	Cobalt			
-		-		-
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001495727	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
<u>d</u>	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.21	(mg/s)	0.21	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	2.02	(mg/s)	15.12	(mg/s)
			LOW FIU	vv	 Average	TOW	підії гі	0₩
ert mass ntration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	 0.001	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Year 5			
Parameter	Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
, p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.0068095	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ntration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.09	(mg/s)	0.97	(mg/s)	0.97	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	0.76	(mg/s)	5.93	(mg/s)	38.68	(mg/s)
		_	Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)

Case	Year 5			
Parameter	Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.90E+00	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	38.20	(mg/s)	413.72	(mg/s)	413.72	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.21	(mg/s)	1.21	(mg/s)	1.21	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	32.24	(mg/s)	349.17	(mg/s)	349.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	126.90	(mg/s)	1,037.13	(mg/s)	3,220.61	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Convei flux to concer	concentration in river at PM-13	C_r13 =	0.713	(mg/L)	0.388	(mg/L)	0.131	(mg/L)

Case	Year 5			
Parameter	Iron			
		-		
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.00E-03	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.05	(mg/s)	0.57	(mg/s)	0.57	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	95.56	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	100.81	(mg/s)	7,154.52	(mg/s)	70,475.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass ntration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	0.567	(mg/L)	2.674	(mg/L)	2.875	(mg/L)

Case	Year 5			
Parameter	Hardness			
		-		
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.74E+02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)		283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)		2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)		653.73	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)		1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)		10,425.01	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)		53,090.84	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4,924.93	(mg/s)	53,334.08	(mg/s)		53,334.08	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,654.83	(mg/s)	3,654.83	(mg/s)		3,654.83	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	9,081.94	(mg/s)	98,352.01	(mg/s)		98,352.01	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)		286,383.27	(mg/s)
Mas at e	mass flux in river at PM-13	M r13 =	30.216.30	(ma/s)	368.511.42	(ma/s)		1.896.951.97	(ma/s)
			Low Flo	w	Average	Flow		High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)		70.104	(mg/L)
0 = 0	concentration in river at Pivi-13	C_113 =	109.883	(IIIY/L)	137.730	(mg/∟)	1	77.394	(IIIg/L)

Case	Year 5			
Parameter	Potassium			
			-	
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.31	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
tion	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.76	(mg/s)	0.76	(mg/s)	0.76	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
u xn	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert o Ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
n ve mas	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	122.47	(mg/s)	1,326.24	(mg/s)	1,326.24	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	161.63	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance 1 node	mass flux in river at PM-12	M_r12 =	39.70	(mg/s)	1,360.10	(mg/s)	15,029.99	(mg/s)
Mass b at eacl	mass flux in river at PM-13	M_r13 =	514.43	(mg/s)	14,134.51	(mg/s)	94,923.51	(mg/s)
			LOW FIO	w	Average	Flow	High Fi	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	1.631	(mg/L)	3.483	(mg/L)	3.679	(mg/l)
Conve flux to concel	concentration in river at PM-13	C_r13 =	2.892	(mg/L)	5.283	(mg/L)	3.873	(mg/l)

Case	Year 5			
Parameter	Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	44.03	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	579.34	(mg/s)	6,273.94	(mg/s)	6,273.94	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	90.42	(mg/s)	90.42	(mg/s)	90.42	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	1,455.48	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ulance node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	3,653.31	(mg/s)	51,561.34	(mg/s)	182,570.53	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	 6.290	(mg/l)	6.028	(mg/l)
Con Con con	concentration in river at PM-13	C_r13 =	20.540	(mg/L)	19.272	(mg/l)	7.449	(mg/l)

Case Parameter	Year 5 Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
, p u	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.24	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
du l	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.16	(mg/s)	34.25	(mg/s)	34.25	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	24.61	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass be at each	mass flux in river at PM-13	M_r13 =	54.75	(mg/s)	987.28	(mg/s)	7,537.74	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Com flux (conc	concentration in river at PM-13	C_r13 =	0.308	(mg/L)	0.369	(mg/l)	0.308	(mg/l)

Case Parameter	Year 5 Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
sp r	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	52.95	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
h	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	696.73	(mg/s)	7,545.15	(mg/s)	7,545.15	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	108.24	(mg/s)	108.24	(mg/s)	108.24	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	921.72	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	2,429.74	(mq/s)	32,444.21	(mq/s)	108,866.24	(mq/s)
	•	• -	Low Flo	W	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)

Case Parameter	Year 5 Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
, de	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.019144051	(mg/L)
Cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Flo	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.25	(mg/s)	2.73	(mg/s)	2.73	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.14	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t balance ch node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	1.44	(mg/s)	8.15	(mg/s)	34.35	(mg/s)
	1	1	LOW FIO	w	Average	FIOW	підп гі	ow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.008	(mg/L)	0.003	(mg/L)	0.001	(mg/L)

Case	Year 5			
Parameter	Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
ې مو	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000886329	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	4	verage	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		-	(mg/s)	-	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)		0.03	(mg/s)	0.03	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		-	(mg/s)	-	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)		0.14	(mg/s)	0.14	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.02	(mg/s)	0.02	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)		0.13	(mg/s)	0.13	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)		0.27	(mg/s)	0.27	(mg/s)
			Low Flo	w	4	verage	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)		0.03	(mg/s)	0.03	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)		0.59	(mg/s)	0.59	(mg/s)
			Low Flo	w	4	verage	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)		0.000	(mg/L)	0.000	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.001	(mg/L)		0.000	(mg/L)	0.000	(mg/L)

Case	Year 5			
Parameter	Antimony			
-		-		
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.05E-03	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
et	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.11	(mg/s)	1.15	(mg/s)	1.15	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័ ខ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.33	(mg/s)	1.48	(mg/s)	1.91	(mg/s)
			LOW FIO	vv	Average	FIUW	підії гі	0₩
ert mass o entration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case Parameter	Year 5 Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
a de	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001106406	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
ů d	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Averaç	e Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.1	1 (mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.0	7 (mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.0	0 (mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.5	2 (mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.3	ō (mg/s)	0.35	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.0	9 (mg/s)	0.09	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.1	6 (mg/s)	0.16	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.0	2 (mg/s)	0.02	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.2	5 (mg/s)	0.25	(mg/s)
			Low Flo	w	Averag	e Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.1	3 (mg/s)	1.29	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.48	(mg/s)	1.5	7 (mg/s)	8.12	(mg/s)
			Low Flo	w	Averaç	e Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.00) (mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.00	1 (mg/L)	0.000	(mg/L)

Case	Year 5			
Parameter	Sulfate			
-		-		
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	190.00	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
rt .	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,500.08	(mg/s)	27,074.39	(mg/s)	27,074.39	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,118.71	(mg/s)	3,118.71	(mg/s)	3,118.71	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	3,170.15	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	10,008.53	(mg/s)	133,096.13	(mg/s)	220,435.59	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	56.270	(mg/L)	49.746	(mg/l)	8.994	(mg/l)

Case	Year 5			
Parameter	Thallium			
		-	-	
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000907911	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.63	(mg/s)	5.00	(mg/s)
			LOW FIO	w	Average	Flow	High Fi	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 5 Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
sh r	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.0182086	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average I	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.24	(mg/s)	2.59	(mg/s)	2.59	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.30	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	w	Average I	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	2.19	(mg/s)	41.37	(mg/s)	390.73	(mg/s)
			Low Flo	w	Average I	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.012	(mg/L)	0.015	(mg/L)	0.016	(mg/L)

Appendix F.11 Embarrass River Geotechnical Mitigation Year 10

FLOWS

Case	Year 10				
Flows	Low Flow Conditions (no surface runoff)				Node
n River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
flow i arrass	flow in river at PM-13	Q_r13_L =	6.29	(cfs)	PM-13
Total Emba	flow check	Q_ck_L =	6.29	(cfs)	_
	surface water flow into PM-12	Q s12 L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
ţa	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.49	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.02	(cfs)	PM-13
flov	seepage from cell 2W	Q_s2w_L =	0.71	(cfs)	PM-13
ut 1	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 10				
Flow	Average Flow Conditions (mean annual)				
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow ir arrass	flow in river at PM-13	Q_r13_M =	95.05	(cfs)	PM-13
Tota Emb	flow check	Q_ck_M =	95.05	(cfs)	_
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	5.55	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.02	(cfs)	PM-13
ut flow	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
au	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 10				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i ırrass	flow in river at PM-13	Q_r13_H =	866.60	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	866.60	(cfs)	_
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	5.55	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.02	(cfs)	PM-13
low	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
rt D	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
du	ground water flow into PM-13	Q q13 H =	4.21	(cfs)	PM-13

Case Parameter	Year 10 Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00084	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flor	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =		(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =		(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =		(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert (ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flor	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass bé at each	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.40	(mg/s)	2.80	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conver flux to concen	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 10 Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
, då	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.25E-01	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
u su l	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.75	(mg/s)	19.65	(mg/s)	19.65	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.09	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ដ ប្	mass flux in seepage from cell 2W	M_s2w =	31.60	(mg/s)	355.65	(mg/s)	355.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	37.02	(mq/s)	590.47	(mq/s)	2,773.96	(mq/s)
	•		Low Flo	w	Average	Flow	High Fl	low
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)

Case Parameter	Year 10 Arsenic			
	concentration of surface water into PM-12	C s12 =	0.00075	(mg/L)
Ita	concentration of surface water into PM-13	 C_s13 =	0.00075	(mg/L)
ab r	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.009432521	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
Ĕ	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
4	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.13	(mg/s)	1.48	(mg/s)	1.48	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance ach node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Ma: ate	mass flux in river at PM-13	M_r13 =	0.58	(mg/s)	4.18	(mg/s)	20.56	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
o⊊ŏ	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.002	(mg/L)	0.001	(mg/L)

Case Parameter	Year 10 Boron			
	concentration of surface water into PM-12	C s12 =	0.012	(ma/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.149974322	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
<u>l</u>	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
u si li xi li x	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.09	(mg/s)	23.55	(mg/s)	23.55	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
ຊ ິ <u>ບ</u>	mass flux in seepage from cell 2W	M_s2w =	6.60	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	11.79	(mg/s)	133.68	(mg/s)	395.69	(mg/s)
		1	LOW FIO	w	Average	FIOW	підн гі	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Conv flux to conce	concentration in river at PM-13	C_r13 =	0.066	(mg/L)	0.050	(mg/L)	0.016	(mg/L)

Case Parameter	Year 10 Barium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
p c	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.92E-02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

Mass flux of surface water into PM-12 M_s12 = (mg/s) 3.93 (mg/s) mass flux of ground water into PM-12 M_g12 = 1.66 (mg/s) 1.66 (mg/s) mass flux of ground water into PM-12 M_g12 = 1.66 (mg/s) 0.10 (mg/s) mass flux of surface water into PM-13 M_s13 = (mg/s) 19.15 (mg/s) mass flux of ground water into PM-13 M_g13 = 8.11 (mg/s) 8.11 (mg/s) mass flux of Area 5 Pit NW discharge M_spit = (mg/s) 0.25 (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.69 (mg/s) 7.73 (mg/s) mass flux in seepage from cell 2W M_s2w = 1.86 (mg/s) 20.95 (mg/s)	w High Flow	e Flow	Average	1	Low Flow			
Mass flux of ground water into PM-12 M_g12 = 1.66 (mg/s) 1.66 (mg/s) mass flux in Babbitt WWTP discharge M_sBab = - (mg/s) 0.10 (mg/s) mass flux of surface water into PM-13 M_s13 = - (mg/s) 19.15 (mg/s) mass flux of ground water into PM-13 M_g13 = 8.11 (mg/s) 8.11 (mg/s) mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 0.25 (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.69 (mg/s) 7.73 (mg/s) mass flux in seepage from cell 2W M_s2w = 1.86 (mg/s) 0.00 (mg/s)	g/s) 45 (mg/s	3 (mg/s)	3.93	mg/s)	-	M_s12 =	mass flux of surface water into PM-12	
mass flux in Babbitt WWTP discharge M_sBab = - (mg/s) 0.10 (mg/s) mass flux of surface water into PM-13 M_s13 = - (mg/s) 19.15 (mg/s) mass flux of ground water into PM-13 M_g13 = 8.11 (mg/s) 8.11 (mg/s) mass flux of ground water into PM-13 M_g13 = 8.11 (mg/s) 0.25 (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.69 (mg/s) 7.73 (mg/s) mass flux in hydrometallurgical residue cells liner leakage M_rrs = 0.00 (mg/s) 0.00 (mg/s) mass flux in seepage from Cell 2W M_s2w = 1.86 (mg/s) 20.95 (mg/s)	g/s) 1.66 (mg/s	6 (mg/s)	1.66	mg/s)	1.66	M_g12 =	mass flux of ground water into PM-12	_
Image: Second	g/s) 0.10 (mg/s	0 (mg/s)	0.10	mg/s)	-	M_sBab =	mass flux in Babbitt WWTP discharge	tio
mass flux of ground water into PM-13 M_g13 = 8.11 (mg/s) 8.11 (mg/s) mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 0.25 (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.69 (mg/s) 7.73 (mg/s) mass flux in hydrometallurgical residue cells liner leakage M_rrs = 0.00 (mg/s) 0.00 (mg/s) mass flux in seepage from Cell 2W M_s2w = 1.86 (mg/s) 20.95 (mg/s)	g/s) 219 (mg/s	5 (mg/s)	19.15	mg/s)	-	M_s13 =	mass flux of surface water into PM-13	itrai
bit mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 0.25 (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.69 (mg/s) 7.73 (mg/s) mass flux in hydrometallurgical residue cells liner leakage M_rrs = 0.00 (mg/s) 0.00 (mg/s) mass flux in seepage from cell 2W M_s2w = 1.86 (mg/s) 20.95 (mg/s)	g/s) 8.11 (mg/s	1 (mg/s)	8.11	mg/s)	8.11	M_g13 =	mass flux of ground water into PM-13	cer
mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.69 (mg/s) 7.73 (mg/s) mass flux in hydrometallurgical residue cells liner leakage M_rrs = 0.00 (mg/s) 0.00 (mg/s) mass flux in seepage from cell 2W M_s2w = 1.86 (mg/s) 20.95 (mg/s)	g/s) 0.25 (mg/s	5 (mg/s)	0.25	mg/s)	-	M_spit =	mass flux of Area 5 Pit NW discharge	uo Xn
No.00 (mg/s) 0.00 (mg/s) No.00 mass flux in hydrometallurgical residue cells liner leakage M_rrs = 0.00 (mg/s) 0.00 (mg/s) No.00 mass flux in seepage from cell 2W M_s2w = 1.86 (mg/s) 20.95 (mg/s)	g/s) 7.73 (mg/s	3 (mg/s)	7.73	mg/s)	0.69	M_fs =	mass flux in seepage from Tailings Basin Cells 1E and 2E	ert o Ss f
S 2 mass flux in seepage from cell 2W M_s2w = 1.86 (mg/s) 20.95 (mg/s)	g/s) 0.00 (mg/s	0 (mg/s)	0.00	mg/s)	0.00	M_rrs =	mass flux in hydrometallurgical residue cells liner leakage	n ve mai
	g/s) 20.95 (mg/s	5 (mg/s)	20.95	mg/s)	1.86	M_s2w =	mass flux in seepage from cell 2W	ដ ប្
Low Flow Average Flow	w High Flow	e Flow	Average	1	Low Flow			
Step mass flux in river at PM-12 M_r12 = 1.66 (mg/s) 5.69 (mg/s)	g/s) 46.33 (mg/s	9 (mg/s)	5.69	mg/s)	1.66	M_r12 =	mass flux in river at PM-12	ss balance ach node
K mass flux in river at PM-13 M r13 = 12.32 (mg/s) 61.88 (mg/s)	g/s) 302.06 (mg/s	8 (mg/s)	61.88	mg/s)	12.32	M r13 =	mass flux in river at PM-13	Ma: at e
Low Flow Average Flow	w High Flow	e Flow	Average	1	Low Flow			
concentration in river at PM-12 C_r12 = 0.068 (mg/L) 0.015 (mg/L)		5 (mg/L)	0.015	mg/L)	0.068	C_r12 =	concentration in river at PM-12	wert mass to centration

Case Parameter	Year 10 Beryllium			
	concentration of surface water into PM-12	C s12 =	0 0001	(ma/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
, då	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000587308	(mg/L)
Cet	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.03	(mg/s)	0.48	(mg/s)	2.66	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	 0.000	(mg/L)	0.000	(mg/L)
Conv flux t	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 10			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
ü u	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	107.272439	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flow		Average Flow		High Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,496.20	(mg/s)	16,841.82	(mg/s)	16,841.82	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	202.28	(mg/s)	202.28	(mg/s)	202.28	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,196.34	(mg/s)	13,466.52	(mg/s)	29.07	(mg/s)
			Low Flow		Average Flow		High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	5,620.95	(mg/s)	66,004.10	(mg/s)	336,419.89	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass x to 1centration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
COL CO	concentration in river at PM-13	C_r13 =	31.591	(mg/L)	24.536	(mg/l)	13.717	(mg/l)

Case Parameter	Year 10 Cadmium			
	concentration of surface water into PM-12	C s12 =	0.00008	(mg/L)
Ita	concentration of surface water into PM-13	 C_s13 =	0.00008	(mg/L)
ab r	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000645923	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
rt (concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

		Low Flow		Average Flow		High Flow		ow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)		0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)		2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)		0.04	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.10	(mg/s)		0.10	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
<u>۹</u> ۵	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)		0.04	(mg/s)
			Low Flow		Average Flow			High Fl	ow
llance node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)		0.33	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.06	(mg/s)	0.36	(mg/s)		2.11	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	 0.000	(mg/L)		0.000	(mg/L)
Con Con con	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)		0.000	(mg/L)

Case Parameter	Year 10 Chloride			
	concentration of ourfoce water into DM 12	C a12 -	10	(mg/L)
ta	concentration of surface water into PM-12	$C_{s12} = C_{s13} = C_{s$	10	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.09E+00	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
ğ	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du 1	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flow		Average	Flow		High Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)		40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)		43.81	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)		93.39	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)		198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)		214.46	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)		335.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	71.00	(mg/s)	799.23	(mg/s)		799.23	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	855.78	(mg/s)	855.78	(mg/s)		855.78	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	431.07	(mg/s)	4,852.27	(mg/s)		4,852.27	(mg/s)
			Low Flow		Average	Average Flow		High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)		40,651.48	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	1,616.12	(mg/s)	28,175.65	(mg/s)		246,524.30	(mg/s)
			LOW FIO	W	Average	Flow		High Fi	ow
ert mass n ntration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)		9.951	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	9.083	(mg/L)	10.474	(mg/L)		10.052	(mg/L)

Case Parameter	Year 10 Cobalt			
	concentration of surface water into PM-12	C s12 =	0.0006	(ma/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
ן da	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001629161	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flow		Average Flow		High Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.26	(mg/s)	0.26	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flow		Average Flow		High Fl	ow
ss balance sach node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	2.06	(mg/s)	15.16	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
ŬĘŬ	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Year 10			
Parameter	Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.006983188	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
et	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
u d	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.10	(mg/s)	1.10	(mg/s)	1.10	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance ach node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Ma: ate	mass flux in river at PM-13	M_r13 =	0.76	(mg/s)	6.05	(mg/s)	38.80	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
ర ≓ ర	concentration in river at PM-13	C_r13 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)

Case	Year 10			
Parameter	Fluoride			
-		-		-
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.07E-01	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
<u>d</u>	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

		Low Flow		Average	Average Flow		High Flow		
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)		405	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)		9.37	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)		0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)		1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)		45.87	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)		7.04	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	7.07	(mg/s)	79.61	(mg/s)		79.61	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.39	(mg/s)	1.39	(mg/s)		1.39	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	31.02	(mg/s)	349.17	(mg/s)		349.17	(mg/s)
			Low Flow		Average	Average Flow		High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)		415.45	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	94.72	(mg/s)	703.19	(mg/s)		2,886.67	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)		0.102	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.532	(mg/L)	0.261	(mg/L)		0.118	(mg/L)
Case	Year 10								
-----------	---	----------	-------------	--------					
Parameter	Iron								
		-							
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)					
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)					
βρι	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)					
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)					
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.97E-02	(mg/L)					
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)					
co	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)					
nt	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)					
du	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)					

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.55	(mg/s)	6.24	(mg/s)	6.24	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.19	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	91.94	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance h node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	97.71	(mg/s)	7,160.21	(mg/s)	70,481.32	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Convel flux to concer	concentration in river at PM-13	C_r13 =	0.549	(mg/L)	2.662	(mg/L)	2.874	(mg/L)

Case Parameter	Year 10 Hardness			
i arameter		1		
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.11E+02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
Itral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4,335.31	(mg/s)	48,800.08	(mg/s)	48,800.08	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,186.52	(mg/s)	4,186.52	(mg/s)	4,186.52	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	8,737.40	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	 27,763.72	(mg/s)	286,383.27	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	29,813.82	(mg/s)	364,509.11	(mg/s)	1,892,949.66	(mg/s)
		-	Low Flo	w	 Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	167.562	(mg/L)	135.503	(mg/L)	77.185	(mg/L)

Case	Year 10			
Parameter	Potassium			
				-
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
р р	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.98	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
tion	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.88	(mg/s)	0.88	(mg/s)	0.88	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert e Ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
n ve ma:	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	111.28	(mg/s)	1,252.62	(mg/s)	1,252.62	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	155.50	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	39.82	(mg/s)	1,360.21	(mg/s)	15,030.10	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	497.22	(mg/s)	14,061.01	(mg/s)	94,850.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	1.636	(mg/L)	 3.483	(mg/L)	3.679	(mg/l)
Conv flux to conce	concentration in river at PM-13	C_r13 =	2.795	(mg/L)	5.227	(mg/L)	3.867	(mg/l)

Case	Year 10			
Parameter	Magnesium	J		
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
ן da	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
tior	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	10.43	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average	Flow	High Flo	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	145.53	(mg/s)	1,638.19	(mg/s)	1,638.19	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	103.57	(mg/s)	103.57	(mg/s)	103.57	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,400.27	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High Flo	ow
s balance ich node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mas: at ea	mass flux in river at PM-13	M_r13 =	3,177.44	(mg/s)	46,938.74	(mg/s)	177,947.93	(mg/s)
			Low Flo	w	Average	Flow	High Flo	ow
onvert mass ix to incentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
S E S	concentration in river at PM-13	C_r13 =	17.858	(mg/L)	17.449	(mg/l)	7.256	(mg/l)

Case	Year 10			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.16	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
ıtral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.21	(mg/s)	24.88	(mg/s)	24.88	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	23.67	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lass balance t each node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
ä ≤	mass flux in river at PM-13	M_r13 =	52.86	(mg/s)	977.91	(mg/s)	7,528.37	(mg/s)
			LOW FIO	w	Average	FIOW	High Fi	ow
invert mass x to ncentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	 0.293	(mg/l)	0.299	(mg/l)
C II C	concentration in river at PM-13	C_r13 =	0.297	(mg/L)	0.364	(mg/l)	0.307	(mg/l)

Case Parameter	Year 10 Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
n de	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	31.37	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	437.49	(mg/s)	4,924.53	(mg/s)	4,924.53	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	123.99	(mg/s)	123.99	(mg/s)	123.99	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	886.75	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ulance node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	2,151.28	(mg/s)	29,839.34	(mg/s)	106,261.36	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Conve flux to concei	concentration in river at PM-13	C_r13 =	12.091	(mg/L)	11.092	(mg/l)	4.333	(mg/l)

Case Parameter	Year 10 Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
b r	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.024818317	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
ů –	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)		5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)		0.17	(mg/s)
tratior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)		24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)		0.83	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)		0.29	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.35	(mg/s)	3.90	(mg/s)		3.90	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)		0.05	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.14	(mg/s)	1.55	(mg/s)		1.55	(mg/s)
			Low Flow		Average	Average Flow		High Fl	ow
oalance 1 node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)		5.04	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	1.54	(mg/s)	9.32	(mg/s)		35.52	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)		0.001	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.009	(mg/L)	0.003	(mg/L)		0.001	(mg/L)

Case	Year 10			
Parameter	Lead			
-		-		-
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
р ц	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002998768	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.04	(mg/s)	0.47	(mg/s)	0.47	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.27	(mg/s)	0.27	(mg/s)
			Low Flow		Average	Flow	High Fl	ow
alance	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.24	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conver flux to concen	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 10			
Parameter	Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.17E-02	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
L L	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flow		Average Flow		High Flo		ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)		0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)		0.04	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)		0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)		0.18	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.16	(mg/s)	1.84	(mg/s)		1.84	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.06	(mg/s)		0.06	(mg/s)
			Low Flow		Average	Flow		High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)		0.12	(mg/s)
Mass bê at each	mass flux in river at PM-13	M_r13 =	0.39	(mg/s)	2.17	(mg/s)		2.61	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)		0.000	(mg/L)
Convel flux to concer	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.001	(mg/L)		0.000	(mg/L)

Case Parameter	Year 10 Selenium			
	concentration of surface water into PM-12	C s12 =	0.0003	(mg/L)
ita	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tion	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00156894	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
<u>l</u>	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flow		Average	Flow	High Flow		ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)		1	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)		0.07	(mg/s)
tration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)		6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)		0.35	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)		0.09	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.25	(mg/s)		0.25	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)		0.03	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)		0.25	(mg/s)
			Low Flow		Average	Flow	High Flow		ow
ulance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)		1.29	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.49	(mg/s)	1.66	(mg/s)		8.21	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
ert mass o ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)		0.000	(mg/L)
Conv flux to conce	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)		0.000	(mg/L)

Case	Year 10			
Parameter	Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	223.12	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Floy	w	Average	Flow	Hię	gh Flow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,	206 (mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206	6.87 (mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37	7.36 (mg/s)
ıtrat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,	526 (mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012	2.72 (mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922	2.60 (mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,111.94	(mg/s)	35,029.37	(mg/s)	35,029	9.37 (mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,572.40	(mg/s)	3,572.40	(mg/s)	3,572	2.40 (mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	3,049.89	(mg/s)	34,330.84	(mg/s)	34,330	0.84 (mg/s)
			Low Flow		Average	Flow	Hię	gh Flow
alance n node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449	9.94 (mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	10,953.82	(mg/s)	141,504.80	(mg/s)	228,844	4.26 (mg/s)
			Low Floy	w	Average	Flow	Hiç	gh Flow
t mass tration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.	027 (mg/l)
Convel filux to concer	concentration in river at PM-13	C_r13 =	61.563	(mg/L)	52.603	(mg/l)	9.	331 (mg/l)

Case Parameter	Year 10 Thallium			
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
n de	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001032064	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
ln a	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flow		Average Flow		High Flow		ow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		0.07	(mg/s)		1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)		0.00	(mg/s)		0.00	(mg/s)
Itratior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.00	(mg/s)		0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		0.35	(mg/s)		4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)		0.00	(mg/s)		0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.03	(mg/s)		0.03	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)		0.16	(mg/s)		0.16	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)		0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)		0.05	(mg/s)		0.05	(mg/s)
			Low Flor	w		Average	Flow		High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)		0.07	(mg/s)		0.81	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)		0.66	(mg/s)		5.03	(mg/s)
		-	Low Flor	W		Average	Flow		High Fl	ow
/ert mass to entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)		0.000	(mg/L)		0.000	(mg/L)
Con Con conc	concentration in river at PM-13	C_r13 =	0.000	(mg/L)		0.000	(mg/L)		0.000	(mg/L)

Case Parameter	Year 10 Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
b r	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.063569909	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
d L	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
u su l	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.89	(mg/s)	9.98	(mg/s)	9.98	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.29	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	2.83	(mg/s)	48.76	(mg/s)	398.11	(mg/s)
		1	LOW FIO	w	Average	FIOW	High Fi	ow
ert mass or intration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.016	(mg/L)	0.018	(mg/L)	0.016	(mg/L)

Appendix F.12 Embarrass River Geotechnical Mitigation Year 15

FLOWS

Case	Year 15				
Flows	Low Flow Conditions (no surface runoff)				Node
w in ass River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flo Embarra	flow check	Q_r13_L =	6.29	(cfs)	PM-13
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.52	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.02	(cfs)	PM-13
flov	seepage from cell 2W	Q_s2w_L =	0.68	(cfs)	PM-13
ont	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
li I	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 15				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow iı arrass	flow in river at PM-13	Q_r13_M =	95.52	(cfs)	PM-13
Total Emb	flow check	Q_ck_M =	95.52	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	6.02	(cfs)	PM-13
, da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.02	(cfs)	PM-13
Nol:	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
ut 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
au	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 15				
Flow	High Flow Conditions (avg. annual 1-day max flow)				
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i rrass	flow in river at PM-13	Q_r13_H =	867.07	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	867.07	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	6.02	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.02	(cfs)	PM-13
Į	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
et 1	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
du	ground water flow into PM-13	Q q13 H =	4.21	(cfs)	PM-13

Case Parameter	Year 15 Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
i p u	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00089	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
u 1	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flor	w	Average I	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ntral	mass flux of surface water into PM-13	M_s13 =		(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
sts	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flow		Average Flow		High Flow	
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass bê at each	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.42	(mg/s)	2.82	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conver filux to concen	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 15 Aluminum			
	concentration of surface water into PM-12	C s12 =	0.1	(ma/L)
ta	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ן da	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.74E-02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
Ĕ	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
1	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	W	Average	Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)		405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)		0.61	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)		0.93	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)		1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)		2.98	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)		0.75	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.28	(mg/s)	14.87	(mg/s)		14.87	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.09	(mg/s)	0.09	(mg/s)		0.09	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	30.54	(mg/s)	355.65	(mg/s)		355.65	(mg/s)
			Low Flow		Average Flow			High Flow	
ss balance sach node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	 37.23	(mg/s)		406.69	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	35.49	(mg/s)	585.70	(mg/s)		2,769.19	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)		0.100	(mg/L)
č≓S	concentration in river at PM-13	C_r13 =	0.199	(mg/L)	0.217	(mg/L)	I	0.113	(mg/L)

Case Parameter	Year 15 Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
p r	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007825647	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
or t	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
u 1	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
uo Xnj	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.11	(mg/s)	1.33	(mg/s)	1.33	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ដ ប្	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flow		Average Flow		High Flow	
ss balance ach node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	0.56	(mg/s)	4.04	(mg/s)	20.41	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass lux to :oncentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Year 15			
Parameter	Boron			
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.153530941	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.24	(mg/s)	26.14	(mg/s)	26.14	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	6.38	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	11.72	(mg/s)	136.27	(mg/s)	398.29	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Conv flux to conce	concentration in river at PM-13	C_r13 =	0.066	(mg/L)	0.050	(mg/L)	0.016	(mg/L)

Case	Year 15			
Parameter	Barium			
-		-		
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.00E-02	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.73	(mg/s)	8.50	(mg/s)	8.50	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	1.80	(mg/s)	20.95	(mg/s)	20.95	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ich node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mas: at ea	mass flux in river at PM-13	M_r13 =	12.30	(mg/s)	62.65	(mg/s)	302.84	(mg/s)
		-	Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conv flux t conc	concentration in river at PM-13	C_r13 =	0.069	(mg/L)	0.023	(mg/L)	0.012	(mg/L)

Case Parameter	Year 15 Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000487063	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.47	(mg/s)	2.66	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv flux t	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 15			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
ü u	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	81.6110992	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
Itral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,192.96	(mg/s)	13,893.59	(mg/s)	13,893.59	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	205.46	(mg/s)	205.46	(mg/s)	205.46	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,156.29	(mg/s)	13,466.52	(mg/s)	29.52	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	5,280.84	(mg/s)	63,059.05	(mg/s)	333,475.30	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/L)	13.036	(mg/l)
Conv flux t conce	concentration in river at PM-13	C_r13 =	29.679	(mg/L)	23.327	(mg/L)	13.590	(mg/l)

Case Parameter	Year 15 Cadmium			
	concentration of surface water into PM-12	C s12 =	0.00008	(ma/L)
ita	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
ab r	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tion	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000567381	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.06	(mg/s)	0.36	(mg/s)	2.10	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv flux te conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 15			
Parameter	Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.66E+00	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	82.77	(mg/s)	963.96	(mg/s)	963.96	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	869.24	(mg/s)	869.24	(mg/s)	869.24	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	416.64	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	 3,705.83	(mg/s)	40,651.48	(mg/s)
at	mass flux in river at PM-13	M_r13 =	1,626.91	(mg/s)	28,353.84	(mg/s)	246,702.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass k to icentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
flux Co	concentration in river at PM-13	C_r13 =	9.143	(mg/L)	10.489	(mg/L)	10.054	(mg/L)

Case Parameter	Year 15 Cobalt			
	concentration of surface water into PM-12	C s12 =	0.0006	(ma/L)
ita	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tion	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001926627	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance sach node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	 2.46	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	0.22	(mg/s)	2.13	(mg/s)	15.24	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
ŬĘŬ	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case Parameter	Year 15 Copper			
i arameter				
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.009053616	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
sste	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.13	(mg/s)	1.54	(mg/s)	1.54	(mg/s)
mä	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	0.80	(ma/s)	6.50	(ma/s)	39.25	(ma/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to :oncentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)

Case	Year 15			
Parameter	Fluoride			
-				
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.63E-01	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	8.23	(mg/s)	95.87	(mg/s)	95.87	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.41	(mg/s)	1.41	(mg/s)	1.41	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	29.98	(mg/s)	349.17	(mg/s)	349.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mass be at each	mass flux in river at PM-13	M_r13 =	94.86	(mg/s)	719.47	(mg/s)	2,902.96	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
wert mass to centration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Cor flux con	concentration in river at PM-13	C_r13 =	0.533	(mg/L)	0.266	(mg/L)	0.118	(mg/L)

Case	Year 15			
Parameter	Iron			
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
ן da	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.86E-02	(mg/L)
Cet	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
uo Xnj	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.56	(mg/s)	6.57	(mg/s)	6.57	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.20	(mg/s)	0.20	(mg/s)	0.20	(mg/s)
ដ ប្	mass flux in seepage from cell 2W	M_s2w =	88.86	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	 1,062.84	(mg/s)	11,777.08	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	94.64	(ma/s)	7.160.55	(ma/s)	70.481.66	(ma/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)

Case	Year 15			
Parameter	Hardness			
-		-		
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.55E+02	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,722.89	(mg/s)	43,358.02	(mg/s)	43,358.02	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,252.38	(mg/s)	4,252.38	(mg/s)	4,252.38	(mg/s)
۹ ۵	mass flux in seepage from cell 2W	M_s2w =	8,444.89	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	28,974.75	(mg/s)	359,132.91	(mg/s)	1,887,573.46	(mg/s)
			Low Flo	W	Average	Flow	 High Fl	ow
wert mass to centration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
Con Con con	concentration in river at PM-13	C_r13 =	162.839	(mg/L)	132.850	(mg/L)	76.924	(mg/L)

Case Parameter	Year 15 Potassium			
	concentration of surface water into PM 12	C e12 -	3 70	(mg/L)
ta	concentration of surface water into PM-12	C_312 = C_s13 =	3.70	(mg/L)
ן da	concentration in Babbitt WWTP discharge	_ C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.68	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
ğ	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du 1	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
tion	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.89	(mg/s)	34.55	(mg/s)	0.89	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
u Xn	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	3,029.85	(mg/s)	34.55	(mg/s)
ert e ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	1,137.30	(mg/s)	3,029.85	(mg/s)
mag	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	97.65	(mg/s)	0.89	(mg/s)	1,137.30	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	150.29	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
llance node	mass flux in river at PM-12	M_r12 =	39.83	(mg/s)	1,393.89	(mg/s)	15,030.11	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	478.40	(mg/s)	13,945.70	(mg/s)	94,734.70	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ivert mass to centration	concentration in river at PM-12	C_r12 =	1.637	(mg/L)	3.569	(mg/L)	3.679	(mg/l)
Cor flux con	concentration in river at PM-13	C_r13 =	2.689	(mg/L)	5.159	(mg/L)	3.861	(mg/l)

Case	Year 15			
Parameter	Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	12.36	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
넵	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

		Low Flow		Average Flow			High Flow		
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)		24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)		259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)		56.03	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)		119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)		1,268.87	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)		15,261.91	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	180.69	(mg/s)	2,104.35	(mg/s)		2,104.35	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	105.20	(mg/s)	105.20	(mg/s)		105.20	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,353.39	(mg/s)	15,762.00	(mg/s)		15,762.00	(mg/s)
			Low Flow		Average Flow		High Flow		ow
lance node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)		24,623.80	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	3,167.35	(mg/s)	47,406.54	(mg/s)		178,415.73	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/L)		6.028	(mg/l)
Con Con con	concentration in river at PM-13	C_r13 =	17.801	(mg/L)	17.537	(mg/L)		7.271	(mg/l)

Case	Year 15			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.19	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

		Low Flow		Average Flow		High Flow		
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tratior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.83	(mg/s)	33.00	(mg/s)	33.00	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	22.88	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flow		Average Flow		High Flow	
alance node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	52.69	(mg/s)	986.03	(mg/s)	7,536.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/L)	0.299	(mg/l)
Convel flux to concer	concentration in river at PM-13	C_r13 =	0.296	(mg/L)	0.365	(mg/L)	0.307	(mg/l)

Case	Year 15			
Parameter	Sodium			
-		-		
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	26.02	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flow		Avera	Average Flow		High Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.0	2 (mg/s)		14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.2	6 (mg/s)		119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.6	9 (mg/s)		32.69	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.	5 (mg/s)		69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.8	0 (mg/s)		583.80	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.8	8 (mg/s)		6,729.88	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	380.42	(mg/s)	4,430.	3 (mg/s)		4,430.53	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	125.94	(mg/s)	125.9	4 (mg/s)		125.94	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	857.06	(mg/s)	9,981.6	3 (mg/s)		9,981.63	(mg/s)
			Low Flow		Avera	e Flow		High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.9	6 (mg/s)		14,331.94	(mg/s)
Mas at ea	mass flux in river at PM-13	M r13 =	2 066 48	(ma/s)	29 347	9 (ma/s)		105 769 32	(ma/s)
		1	Low Flo	w	Avera	e Flow		High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.5	7 (mg/L)		3.508	(mg/l)

Case	Year 15			
Parameter	Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
р с р	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.022174447	(mg/L)
Cet	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

		Low Flow		Average Flow		High Flow		ow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)		5	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)		0.17	(mg/s)
tratior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)		24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)		0.83	(mg/s)
u si	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)		0.29	(mg/s)
ert o Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.32	(mg/s)	3.78	(mg/s)		3.78	(mg/s)
ma ny	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)		0.05	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.13	(mg/s)	1.55	(mg/s)		1.55	(mg/s)
			Low Flow		Average	Flow		High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)		5.04	(mg/s)
Mas at ea	mass flux in river at PM-13	M r13 =	1.51	(ma/s)	9 20	(ma/s)		35 40	(ma/s)
		<u>-</u>	Low Flo	w	Average	Flow		High Fl	ow
convert mass lux to oncentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)		0.001	(mg/L)
0000	concentration in river at PM-13	C_r13 =	0.008	(mg/L)	0.003	(mg/L)	1	0.001	(mg/L)

Case	Year 15			
Parameter	Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002700416	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

		Low Flow		Avera	Average Flow		High Flow		
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		(mg/s)		-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0	03 (mg/s)		0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		(mg/s)		-	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		(mg/s)		-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0	14 (mg/s)		0.14	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0	02 (mg/s)		0.02	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.04	(mg/s)	0	46 (mg/s)		0.46	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0	00 (mg/s)		0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0	27 (mg/s)		0.27	(mg/s)
			Low Flo	w	Avera	ge Flow		High Fl	low
balance ch node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0	03 (mg/s)		0.03	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.24	(mg/s)	0	92 (mg/s)		0.92	(mg/s)
			LOWIN	vv	Avera	geriow		Tight	0w
rt mass ntration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.0	00 (mg/L)		0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.0	00 (mg/L)		0.000	(mg/L)

Case	Year 15			
Parameter	Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.29E-03	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flow		Avera	Average Flow		High Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.	1 (mg/s)		0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.	4 (mg/s)		0.04	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.	0 (mg/s)		0.00	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.	3 (mg/s)		0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.	8 (mg/s)		0.18	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.	1 (mg/s)		0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.14	(mg/s)	1.	8 (mg/s)		1.58	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.	0 (mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.	6 (mg/s)		0.06	(mg/s)
			Low Flo	w	Avera	je Flow		High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.	4 (mg/s)		0.12	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	0.36	(mg/s)	1.	1 (mg/s)		2.35	(mg/s)
			LOW FIO	w	Avera	Je Flow		High Fi	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.0	0 (mg/L)		0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.0	1 (mg/L)		0.000	(mg/L)
Case Parameter	Year 15 Selenium								
-------------------	---	----------	-------------	--------					
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)					
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)					
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)					
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)					
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001534421	(mg/L)					
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)					
cou	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)					
ont	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)					
du	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)					

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.26	(mg/s)	0.26	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	0.49	(mg/s)	1.68	(mg/s)	8.23	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to concei	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Year 15			
Parameter	Sulfate			
		-		
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
р ц	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	183.93	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
tral	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
u Xi	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
ert c ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,688.59	(mg/s)	31,312.16	(mg/s)	31,312.16	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,628.60	(mg/s)	3,628.60	(mg/s)	3,628.60	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	2,947.78	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
Mass bé at each	mass flux in river at PM-13	M_r13 =	10,484.55	(mg/s)	137,843.80	(mg/s)	225,183.26	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
't mass ntration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/L)	4.027	(mg/l)
Conver flux to concer	concentration in river at PM-13	C_r13 =	58.924	(mg/L)	50.991	(mg/L)	9.177	(mg/l)

Case Parameter	Year 15 Thallium			
	concentration of surface water into PM-12	C s12 =	0.0002	(ma/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
ep u	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tior	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001032291	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ulance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.68	(mg/s)	5.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 15 Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.066565637	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
ů de	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.97	(mg/s)	11.33	(mg/s)	11.33	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.28	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	2.91	(mg/s)	50.11	(mg/s)	399.47	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conver filux to concen	concentration in river at PM-13	C_r13 =	0.016	(mg/L)	0.019	(mg/L)	0.016	(mg/L)

Appendix F.13 Embarrass River Geotechnical Mitigation Year 20

FLOWS

Case	Year 20				
Flows	Low Flow Conditions (no surface runoff)				Node
v in ss River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
flov rra:	flow in river at PM-13	Q_r13_L =	6.29	(cfs)	PM-13
Total 1 Emba	flow check	Q_ck_L =	6.29	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.54	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.02	(cfs)	PM-13
flov	seepage from cell 2W	Q_s2w_L =	0.66	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 20				
Flow	Average Flow Conditions (mean annual)				
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow i arrass	flow in river at PM-13	Q_r13_M =	95.97	(cfs)	PM-13
Total Emb:	flow check	Q_ck_M =	95.97	(cfs)	_
	surface water flow into PM-12	Q s12 M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	6.46	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.02	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 20				
Flow	High Flow Conditions (avg. annual 1-day ma	ax flow)			
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i ırrass	flow in river at PM-13	Q_r13_H =	867.52	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	867.52	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	6.46	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.02	(cfs)	PM-13
lo v	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
nt -	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
aul	ground water flow into PM-13	Q g13 H =	4.21	(cfs)	PM-13

Case	Year 20			
Parameter	Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
, p u	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00095	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ຊ ິ <u>ບ</u>	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	 0.04	<u>(mg/s)</u>	0.45	(mg/s)
ata	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.44	(mg/s)	2.84	(mg/s)
		-	Low Flo	w	 Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	 0.000	(mg/L)	0.000	(mg/L)
ŭĘŭ	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 20 Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ן da	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.88E-02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
rt (concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.05	(mg/s)	12.58	(mg/s)	12.58	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	29.59	(mg/s)	355.65	(mg/s)	355.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	34.33	(mg/s)	583.41	(mg/s)	2,766.90	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.193	(mg/L)	0.215	(mg/L)	0.113	(mg/L)

Case Parameter	Year 20 Arsenic			
	concentration of surface water into PM-12	C s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	 C_s13 =	0.00075	(mg/L)
ep r	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007453418	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
đ	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
<u>l</u>	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
uo Xnj	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.11	(mg/s)	1.36	(mg/s)	1.36	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ដ ប្	mass flux in seepage from cell 2W	M_s2w =	0.05	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance ach node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	0.56	(mg/s)	4.07	(mg/s)	20.44	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to :oncentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Year 20			
Parameter	Boron			
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
, p u	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.158659552	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.41	(mg/s)	29.01	(mg/s)	29.01	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.06	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	6.19	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	11.70	(mg/s)	139.15	(mg/s)	401.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	 0.013	(mg/L)	0.012	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.066	(mg/L)	0.051	(mg/L)	0.016	(mg/L)

Case Parameter	Year 20 Barium			
	concentration of surface water into PM-12	C s12 =	0.011	(mg/L)
ita	concentration of surface water into PM-13	 C_s13 =	0.011	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.40E-02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
đ	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
<u>l</u>	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.82	(mg/s)	9.87	(mg/s)	9.87	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	1.74	(mg/s)	20.95	(mg/s)	20.95	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	12.34	(mg/s)	64.02	(mg/s)	304.21	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o intration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.069	(mg/L)	0.024	(mg/L)	0.012	(mg/L)

Case Parameter	Year 20 Beryllium			
	concentration of surface water into PM-12	C. s12 =	0.0001	(ma/L)
ata	concentration of surface water into PM-12	C_s12 = C_s13 =	0.0001	(mg/L)
, då	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000472927	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
rt (concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Mass be at each	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.48	(mg/s)	2.66	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv flux t conc	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 20 Calcium			
		010	10	(
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	65.23766506	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	992.61	(mg/s)	11,928.83	(mg/s)	11,928.83	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	227.25	(mg/s)	227.25	(mg/s)	227.25	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	1,120.56	(mg/s)	13,466.52	(mg/s)	32.66	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
llance node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	5,066.56	(mg/s)	61,116.09	(mg/s)	331,535.47	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ivert mass to centration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
Cor flux con	concentration in river at PM-13	C_r13 =	28.466	(mg/L)	22.503	(mg/l)	13.504	(mg/l)

Case Parameter	Year 20 Cadmium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
i p u	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000503271	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
<u>d</u>	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.05	(mg/s)	0.35	(mg/s)	2.10	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 20 Chloride			
	concentration of surface water into PM 12	C e12 -	10	(mg/L)
ta	concentration of surface water into PM-12	C_312 = C_s13 =	10	(mg/L)
da da	concentration in Babbitt WWTP discharge	_ C_sBab =	10	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.85E+00	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
Ĕ	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
<u>l</u>	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	89.08	(mg/s)	1,070.58	(mg/s)	1,070.58	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	961.45	(mg/s)	961.45	(mg/s)	961.45	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	403.76	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance 1 node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	 40,651.48	(mg/s)
Mass b at eacl	mass flux in river at PM-13	M_r13 =	1,712.56	(mg/s)	28,552.66	(mg/s)	246,901.31	(mg/s)
			LOW FIO	W	Average	Flow	 High Fi	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Convel flux to concer	concentration in river at PM-13	C_r13 =	9.622	(mg/L)	10.513	(mg/L)	10.057	(mg/L)

Case Parameter	Year 20 Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
Ita	concentration of surface water into PM-13	 C_s13 =	0.0006	(mg/L)
ן da	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00218589	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
rt (concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
1	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.40	(mg/s)	0.40	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	0.22	(mg/s)	2.21	(mg/s)	15.31	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conv flux t conc	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case Parameter	Year 20 Copper			
i arameter	000000			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.011428793	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.17	(mg/s)	2.09	(mg/s)	2.09	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance sach node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
M a: at e	mass flux in river at PM-13	M_r13 =	0.83	(mg/s)	7.05	(mg/s)	39.80	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
ΩĘΥ	concentration in river at PM-13	C_r13 =	0.005	(mg/L)	0.003	(mg/L)	0.002	(mg/L)

Case	Year 20			
Parameter	Fluoride			
-				
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.99E-01	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	9.12	(mg/s)	109.60	(mg/s)	109.60	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.56	(mg/s)	1.56	(mg/s)	1.56	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	29.05	(mg/s)	349.17	(mg/s)	349.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance h node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	94.97	(mg/s)	733.35	(mg/s)	2,916.84	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	0.534	(mg/L)	0.270	(mg/L)	0.119	(mg/L)

Case Parameter	Year 20 Iron			
i ulunetei				
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.17E-02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
out	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.33	(mg/s)	3.97	(mg/s)	3.97	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.22	(mg/s)	0.22	(mg/s)	0.22	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	86.11	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	91.68	(mg/s)	7,157.97	(mg/s)	70,479.08	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	0.515	(mg/L)	2.636	(mg/L)	2.871	(mg/L)

Case	Year 20			
Parameter	Hardness			
-		-		
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.18E+02	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Averag	e Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.4	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.5	8 (mg/s)	2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.7	8 (mg/s)	653.73	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.9	8 (mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.0	(mg/s)	10,425.01	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.8	l (mg/s)	53,090.84	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,320.52	(mg/s)	39,904.8	6 (mg/s)	39,904.86	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,703.46	(mg/s)	4,703.4	6 (mg/s)	4,703.46	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	8,183.95	(mg/s)	98,352.0	(mg/s)	98,352.01	(mg/s)
			Low Flo	w	Averag	e Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.7	2 (mg/s)	286,383.27	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	28,762.52	(mg/s)	356,130.8	3 (mg/s)	1,884,571.38	(mg/s)
			Low Flo	w	Averag	Flow	High Fl	ow
wert mass to centration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.09	(mg/L)	70.104	(mg/L)
Con Con con	concentration in river at PM-13	C_r13 =	161.599	(mg/L)	131.12	o (mg/L)	76.762	(mg/L)

Case Parameter	Year 20 Potassium			
	concentration of surface water into PM-12	C s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
, da	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.23	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
tion	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.98	(mg/s)	0.98	(mg/s)	0.98	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
uos	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert e ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
mag	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	94.77	(mg/s)	1,138.87	(mg/s)	1,138.87	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	145.65	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ch node	mass flux in river at PM-12	M_r12 =	39.92	(mg/s)	1,360.32	(mg/s)	15,030.21	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	470.97	(mg/s)	13,947.36	(mg/s)	94,736.36	(mg/s)
		-	Low Flo	W	Average	Flow	High Fl	ow
wert mass to centration	concentration in river at PM-12	C_r12 =	1.640	(mg/L)	3.483	(mg/L)	3.679	(mg/l)
Con Con con	concentration in river at PM-13	C_r13 =	2.646	(mg/L)	5.135	(mg/L)	3.859	(mg/l)

Case Parameter	Year 20 Magnesium			
		-		
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
p c	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	13.44	(mg/L)
Cet	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	204.46	(mg/s)	2,457.15	(mg/s)	2,457.15	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	116.36	(mg/s)	116.36	(mg/s)	116.36	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,311.57	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
llance node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	3,160.46	(mg/s)	47,770.50	(mg/s)	178,779.69	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass t to icentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
Col	concentration in river at PM-13	C_r13 =	17.757	(mg/L)	17.589	(mg/l)	7.282	(mg/l)

Case	Year 20			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.23	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.51	(mg/s)	42.20	(mg/s)	42.20	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	22.18	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass be at each	mass flux in river at PM-13	M_r13 =	52.66	(mg/s)	995.23	(mg/s)	7,545.69	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Con flux conc	concentration in river at PM-13	C_r13 =	0.296	(mg/L)	0.366	(mg/l)	0.307	(mg/l)

Case Parameter	Year 20 Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
, då	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	22.22	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
uo Xnj	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	338.03	(mg/s)	4,062.28	(mg/s)	4,062.28	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	139.30	(mg/s)	139.30	(mg/s)	139.30	(mg/s)
ដ ប្	mass flux in seepage from cell 2W	M_s2w =	830.58	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	2.010.96	(ma/s)	28.992.40	(ma/s)	105.414.43	(ma/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)

Case Parameter	Year 20 Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
sh r	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.023571036	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.36	(mg/s)	4.31	(mg/s)	4.31	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.13	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	1.55	(mg/s)	9.74	(mg/s)	35.94	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ix to incentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
S = S	concentration in river at PM-13	C_r13 =	0.009	(mg/L)	0.004	(mg/L)	0.001	(mg/L)

Case	Year 20			
Parameter	Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
i p u	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002295615	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.42	(mg/s)	0.42	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.27	(mg/s)	0.27	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	 0.03	(mg/s)	0.03	(mg/s)
Mas at ea	mass flux in river at PM-13	M_r13 =	0.23	(mg/s)	0.88	(mg/s)	0.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
ŭ≓ŭ	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 20			
Parameter	Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
, da	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.78E-03	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.13	(mg/s)	1.61	(mg/s)	1.61	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance ach node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Ma: ate	mass flux in river at PM-13	M_r13 =	0.36	(mg/s)	1.94	(mg/s)	2.37	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
o ∓ o	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case Parameter	Year 20 Selenium			
	concentration of surface water into PM-12	C s12 =	0.0003	(mg/L)
ita	concentration of surface water into PM-13	 C_s13 =	0.0003	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001434159	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
<u>l</u>	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.26	(mg/s)	0.26	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance ach node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Ma: ate	mass flux in river at PM-13	M_r13 =	0.50	(mg/s)	1.68	(mg/s)	8.23	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
o ∓ o	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Year 20			
Parameter	Sulfate			
			-	
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	163.33	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w		Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)		206.87	(mg/s)	206.87	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		37.36	(mg/s)	37.36	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)		1,012.72	(mg/s)	1,012.72	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	4	58,922.60	(mg/s)	58,922.60	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,485.06	(mg/s)		29,864.60	(mg/s)	29,864.60	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,013.51	(mg/s)		4,013.51	(mg/s)	4,013.51	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	2,856.70	(mg/s)	;	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	w		Average	Flow	High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)		1,671.68	(mg/s)	16,449.94	(mg/s)
Mas at e	mass flux in river at PM-13	M r13 =	10.574.86	(ma/s)	1:	36.781.15	(ma/s)	224,120,61	(ma/s)
			Low Flo	w		Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)		4.280	(mg/l)	4.027	(mg/l)

Case Parameter	Year 20 Thallium			
				1
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
i p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001001115	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
d L	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.68	(mg/s)	5.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o ntration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	 0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 20 Zinc			
	concentration of surface water into PM-12	C s12 =	0.016	(ma/L)
ata	concentration of surface water into PM-13	 C_s13 =	0.016	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.058688337	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
<u>l</u>	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	I	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	I	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	I	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.89	(mg/s)	10.73	(mg/s)	10.73	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.27	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mas at ea	mass flux in river at PM-13	M_r13 =	2.82	(mg/s)	49.51	(mg/s)	398.87	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)

Appendix F.14 Embarrass River Geotechnical Mitigation Closure

FLOWS

Case	Closure				
Flows	Low Flow Conditions (no surface runoff)				Node
in s River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
low ras:	flow in river at PM-13	Q r13 L =	6.27	(cfs)	PM-13
Total fi Embar	flow check	Q_ck_L =	6.27	(cfs)	
		a (a)			-
	surface water flow into PM-12	Q_s12_L =	0.00	(cts)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.41	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
flov	seepage from cell 2W	Q_s2w_L =	0.79	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Closure				
Flow	Average Flow Conditions (mean annual)				
in s River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
flow rrass	flow in river at PM-13	Q_r13_M =	86.63	(cfs)	PM-13
Total 1 Embai	flow check	Q_ck_M =	86.63	(cfs)	
	surface water flow into PM-12	0 s12 M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	$Q_{312}M =$	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	1.73	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
lov	seepage from cell 2W	Q_s2w_M =	3.37	(cfs)	PM-13
out 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Closure				
Flow	High Flow Conditions (avg. annual 1-day ma	ax flow)			
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i rrass	flow in river at PM-13	Q_r13_H =	858.18	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	858.18	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	1.73	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
low	seepage from cell 2W	Q_s2w_H =	3.37	(cfs)	PM-13
rt pr	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q g13 H =	4.21	(cfs)	PM-13

Case	Closure			
Parameter	Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
, p u	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00124	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo Xnj	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ដ ប្	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance sach node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	 0.04	(mg/s)	0.45	(mg/s)
Ma: at e	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)	0.31	(mg/s)	2.71	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Closure Aluminum			
	concentration of surface water into PM-12	C s12 =	0.1	(mg/L)
Ita	concentration of surface water into PM-13	 C_s13 =	0.1	(mg/L)
ן da	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.15E-01	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
5	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
Ĕ	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
1	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	7.09	(mg/s)	30.13	(mg/s)	30.13	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	35.42	(mg/s)	150.57	(mg/s)	150.57	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	46.10	(mg/s)	395.79	(mg/s)	2,579.28	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rert mass o entration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
Conv flux t conc	concentration in river at PM-13	C_r13 =	0.260	(mg/L)	0.161	(mg/L)	0.106	(mg/L)

Case Parameter	Closure Arsenic			
	concentration of surface water into PM-12	C s12 =	0.00075	(ma/L)
ita	concentration of surface water into PM-12	C_s12 = C_s13 =	0.00075	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.027915158	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
L L L L L L L L L L L L L L L L L L L	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
<u>l</u>	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	I	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	•	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
uo Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.32	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.07	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	0.78	(ma/s)	3.69	(ma/s)	20.07	(ma/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Case Parameter	Closure Boron							
-------------------	---	----------	-------------	--------				
		-						
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)				
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)				
p c	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)				
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)				
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.150573845	(mg/L)				
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)				
	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)				
ort	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)				
du du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)				

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.74	(mg/s)	7.38	(mg/s)	7.38	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	7.40	(mg/s)	31.47	(mg/s)	31.47	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mas at ea	mass flux in river at PM-13	M_r13 =	12.19	(mg/s)	74.59	(mg/s)	336.61	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
ర≓ర	concentration in river at PM-13	C_r13 =	0.069	(mg/L)	0.030	(mg/L)	0.014	(mg/L)

Case Parameter	Closure Barium			
	encodesting of surface under inte DM 40	0 -10 -	0.011	(
ŋ	concentration of surface water into PM-12	$C_{s12} = C_{s13} = C_{s$	0.011	(mg/L)
dat	concentration in Babbitt WWTP discharge	C_SBab =	0.011	(mg/L)
tion	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.95E-02	(mg/L)
lei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
but	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
Ē	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.22	(mg/s)	0.95	(mg/s)	0.95	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	2.09	(mg/s)	8.87	(mg/s)	8.87	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	12.08	(mg/s)	43.02	(mg/s)	283.21	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
wert mass to centration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Con Con con	concentration in river at PM-13	C_r13 =	0.068	(mg/L)	0.018	(mg/L)	0.012	(mg/L)

Case Parameter	Closure Beryllium			
	concentration of surface water into PM-12	C s12 =	0.0001	(ma/L)
ita	concentration of surface water into PM-12	C_s12 = C_s13 =	0.0001	(mg/L)
ep c	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001323498	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
5	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
Ĕ	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
1	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.04	(mg/s)	0.36	(mg/s)	2.54	(mg/s)
		-	Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv flux ti conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Closure			
Parameter	Calcium			
-				
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	68.73996034	(mg/L)
ICer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Averaç	e Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.2	2 (mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.4	2 (mg/s)	462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.4	1 (mg/s)	121.41	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.8	9 (mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.7	2 (mg/s)	2,263.72	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.8	3 (mg/s)	5,369.83	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	792.25	(mg/s)	3,367.9	0 (mg/s)	3,367.90	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	19.51	(mg/s)	19.5	1 (mg/s)	19.51	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,341.15	(mg/s)	5,701.2	8 (mg/s)	2.80	(mg/s)
			Low Flo	W	Averaç	e Flow	High Fl	ow
ulance node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.0	5 (mg/s)	53,252.39	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	4,879.05	(mg/s)	44,582.1	7 (mg/s)	322,736.94	(mg/s)
			Low Flo	w	Averag	e Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.37	4 (mg/l)	13.036	(mg/l)
Con ⁻ flux conc	concentration in river at PM-13	C_r13 =	27.489	(mg/L)	18.18	4 (mg/l)	13.289	(mg/l)

Case Parameter	Closure Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
β β	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001182282	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.06	(mg/s)	0.29	(mg/s)	2.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv flux ti conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Closure			
Parameter	Chloride			
			-	
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
ü u	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.97E+00	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	45.80	(mg/s)	194.68	(mg/s)	194.68	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	82.56	(mg/s)	82.56	(mg/s)	82.56	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	483.24	(mg/s)	2,054.29	(mg/s)	2,054.29	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	869.87	(mg/s)	23,999.89	(mg/s)	242,348.54	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Conv flux t conce	concentration in river at PM-13	C_r13 =	4.901	(mg/L)	9.789	(mg/L)	9.979	(mg/L)

Case Parameter	Closure Cobalt			
	concentration of surface water into PM-12	C s12 =	0.0006	(ma/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002707554	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
L S	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
oalance h node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	0.22	(mg/s)	1.73	(mg/s)	14.84	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Conv filux ti conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Closure			
Parameter	Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
, pr	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.014116893	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)		6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)		0.10	(mg/s)
ntration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)		30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)		0.48	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)		0.19	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.16	(mg/s)	0.69	(mg/s)		0.69	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.10	(mg/s)	0.43	(mg/s)		0.43	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)		6.19	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	0.84	(mg/s)	5.06	(mg/s)		37.81	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
convert mass lux to oncentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)		0.002	(mg/L)
040	concentration in river at PW-13	U_F13 =	0.005	(Ing/L)	0.002	(IIIg/L)	1	0.002	(IIIg/L)

Case	Closure			
Parameter	Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.14E+00	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	13.10	(mg/s)	55.70	(mg/s)	55.70	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	34.77	(mg/s)	147.83	(mg/s)	147.83	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
llance node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	103.25	(mg/s)	476.69	(mg/s)	2,660.18	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Conv flux ti conce	concentration in river at PM-13	C_r13 =	0.582	(mg/L)	0.194	(mg/L)	0.110	(mg/L)

Case Parameter	Closure			
i didileter				
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
p c	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.94E-02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
ation	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.15	(mg/s)	4.87	(mg/s)	4.87	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	103.06	(mg/s)	438.13	(mg/s)	438.13	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass k at each	mass flux in river at PM-13	M_r13 =	109.25	(mg/s)	6,561.92	(mg/s)	69,883.03	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass ortration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.616	(mg/L)	2.676	(mg/L)	2.877	(mg/L)

Case	Closure			
Parameter	Hardness			
-		-		-
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
βρι	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	402	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8610	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4,633.95	(mg/s)	19,699.16	(mg/s)	19,699.16	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	403.90	(mg/s)	403.90	(mg/s)	403.90	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	9,794.98	(mg/s)	41,638.98	(mg/s)	41,638.98	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	27,387.42	(mg/s)	274,912.54	(mg/s)	1,803,353.09	(mg/s)
			Low Flo	W	 Average	Flow	High Fl	ow
nvert mass < to icentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	 71.091	(mg/L)	70.104	(mg/L)
Col	concentration in river at PM-13	C_r13 =	154.306	(mg/L)	112.131	(mg/L)	74.253	(mg/L)

Case	Closure			
Parameter	Potassium			
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
, p u	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	21.31	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
ation	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
u Xn	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert e ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
mag	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	245.57	(mg/s)	1,043.93	(mg/s)	1,043.93	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	174.32	(mg/s)	741.03	(mg/s)	741.03	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
llance node	mass flux in river at PM-12	M_r12 =	39.03	(mg/s)	1,359.42	(mg/s)	15,029.31	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	649.54	(mg/s)	12,842.22	(mg/s)	93,631.22	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass t to icentration	concentration in river at PM-12	C_r12 =	1.603	(mg/L)	3.481	(mg/L)	3.679	(mg/l)
Col	concentration in river at PM-13	C_r13 =	3.660	(mg/L)	5.238	(mg/L)	3.855	(mg/l)

Case	Closure			
Parameter	Magnesium			
		-		
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	55.96	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
Lo Lo	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
넵	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
trat	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
u xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	644.90	(mg/s)	2,741.51	(mg/s)	2,741.51	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	9.99	(mg/s)	9.99	(mg/s)	9.99	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,569.75	(mg/s)	6,673.11	(mg/s)	6,673.11	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
lance node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	3,752.72	(mg/s)	38,859.59	(mg/s)	169,868.78	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass c to icentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
Co Lino	concentration in river at PM-13	C_r13 =	21.144	(mg/L)	15.850	(mg/l)	6.994	(mg/l)

Case Parameter	Closure Manganese			
		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
р ц	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.14	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
L L L	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.65	(mg/s)	7.03	(mg/s)	7.03	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ڳ	mass flux in seepage from cell 2W	M_s2w =	26.54	(mg/s)	112.82	(mg/s)	112.82	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass be at each	mass flux in river at PM-13	M_r13 =	55.17	(mg/s)	806.39	(mg/s)	7,356.85	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
/ert mass :0 :entration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Conv flux 1 conc	concentration in river at PM-13	C_r13 =	0.311	(mg/L)	0.329	(mg/l)	0.303	(mg/l)

Case	Closure			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
3 de	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	26.63	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	306.88	(mg/s)	1,304.55	(mg/s)	1,304.55	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	11.96	(mg/s)	11.96	(mg/s)	11.96	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	994.08	(mg/s)	4,225.89	(mg/s)	4,225.89	(mg/s)
			Low Flo	w	Average I	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	2,015.98	(mg/s)	20,351.60	(mg/s)	96,773.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
wert mass to centration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Con Con con	concentration in river at PM-13	C_r13 =	11.358	(mg/L)	8.301	(mg/l)	3.985	(mg/l)

Case	Closure			
Parameter	Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
р с р	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.005498724	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
u si li xi li x	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.06	(mg/s)	0.27	(mg/s)	0.27	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
<u>۽</u> ک	mass flux in seepage from cell 2W	M_s2w =	0.15	(mg/s)	0.66	(mg/s)	0.66	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ich node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mas: at ea	mass flux in river at PM-13	M_r13 =	1.23	(mg/s)	4.76	(mg/s)	30.96	(mg/s)
		-	Low Flo	w	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Con flux conc	concentration in river at PM-13	C_r13 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)

Case	Closure			
Parameter	Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
, p u	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00095888	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ich node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mas: at ea	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ix to incentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
č≓ S	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Closure Antimony			
	concentration of surface water into PM 12	C e12 -	2 00E 05	(mg/L)
fa	concentration of surface water into PM-12	C_\$12 = C \$13 =	2.00E-05	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.16E-03	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
5	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
rt (concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
1	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance ach node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Ma: ate	mass flux in river at PM-13	M_r13 =	0.23	(mg/s)	0.35	(mg/s)	0.79	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
o ∓ o	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Closure Selenium			
-				
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.003346354	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
nos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.04	(mg/s)	0.16	(mg/s)	0.16	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
			Low Flow		Average Flow		High Flow	
alance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.49	(mg/s)	1.42	(mg/s)	7.97	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv flux t	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Closure			
Parameter	Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	176.50	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,034.18	(mg/s)	8,647.39	(mg/s)	8,647.39	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	344.66	(mg/s)	344.66	(mg/s)	344.66	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	3,419.05	(mg/s)	14,534.54	(mg/s)	14,534.54	(mg/s)
			Low Flow		Average Flow		High Flow	
lass balance t each node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
a,	mass flux in river at PM-13	M_r13 =	7,017.47	(mg/s)	92,098.78	(mg/s)	179,438.24	(mg/s)
		1	LOW FIO	w	Average	FIOW	High Fi	ow
ivert mass to centration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
Cor flux con	concentration in river at PM-13	C_r13 =	39.538	(mg/L)	37.565	(mg/l)	7.388	(mg/l)

Case Parameter	Closure Thallium			
	encoded in a faurine under inte DM 40	0 - 10 -	0.0000	(
ta	concentration of surface water into PM-12	C_\$12 = C_\$13 =	0.0002	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000106288	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
rt (concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)		1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)		4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)		0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.01	(mg/s)		0.01	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)		0.02	(mg/s)
			Low Flow		Average Flow			High Flow	
ss balance ach node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	 0.07	(mg/s)		0.81	(mg/s)
Ma: ate	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.48	(mg/s)		4.85	(mg/s)
			Low Flo	w	Average	Flow		High Fl	ow
convert mass lux to oncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)		0.000	(mg/L)
0 = 0	concentration in river at Pivi-13	C_F13 =	0.000	(mg/L)	0.000	(mg/L)	I	0.000	(mg/L)

Case	Closure			
Parameter	Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
i p u	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.012754048	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
<u>d</u>	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Averag	e Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.7	l (mg/s)		65	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.2	B (mg/s)		0.28	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.1	ō (mg/s)		0.15	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.8	6 (mg/s)		318	(mg/s)
ncer K	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.3	(mg/s)		1.37	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.1	(mg/s)		0.17	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.15	(mg/s)	0.6	2 (mg/s)		0.62	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.0) (mg/s)		0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.32	(mg/s)	1.3	7 (mg/s)		1.37	(mg/s)
			Low Flow		Averag	Average Flow		High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.1	4 (mg/s)		65.25	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	2.12	(mg/s)	37.5	3 (mg/s)		386.89	(mg/s)
			Low Flo	w	Averag	e Flow		High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.01	6 (mg/L)		0.016	(mg/L)
Conve flux to concer	concentration in river at PM-13	C_r13 =	0.012	(mg/L)	0.01	5 (mg/L)		0.016	(mg/L)

Appendix F.15 Embarrass River Geotechnical Mitigation Post-Closure

FLOWS

Case	Post-Closure				
Flows	Low Flow Conditions (no surface runoff)				Node
in s River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
low 'ras:	flow in river at PM-13	Q_r13_L =	6.27	(cfs)	PM-13
Total f Embar	flow check	Q_ck_L =	6.27	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
Ita	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.67	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
flov	seepage from cell 2W	Q_s2w_L =	0.53	(cfs)	PM-13
out	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
Ing	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Post-Closure				
Flow	Average Flow Conditions (mean annual)				
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
l flow i arrass	flow in river at PM-13	Q_r13_M =	84.61	(cfs)	PM-13
Total Embi	flow check	Q_ck_M =	84.61	(cfs)	
	surface water flow into PM-12	0 s12 M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_ <u>\$12_M</u> =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q sBab M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	1.73	(cfs)	PM-13
out flow da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
	seepage from cell 2W	Q_s2w_M =	1.35	(cfs)	PM-13
	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Post-Closure				
Flow	High Flow Conditions (avg. annual 1-day ma	ax flow)			
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
flow i arrass	flow in river at PM-13	Q_r13_H =	856.16	(cfs)	PM-13
Total Emba	flow check	Q_ck_H =	856.16	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	1.73	(cfs)	PM-13
, da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
lo v	seepage from cell 2W	Q_s2w_H =	1.35	(cfs)	PM-13
rt T	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
au	ground water flow into PM-13	Q q13 H =	4.21	(cfs)	PM-13

Case Parameter	Post-Closure Silver			
	concentration of surface water into PM-12	C s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	 C_s13 =	0.00011	(mg/L)
sh r	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00124	(mg/L)
Icer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
or t	concentration of ground water into PM-12	C_g12 =	0.00008	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.00008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo Xnj	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ដ ប្	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance sach node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	0.03	(mg/s)	0.31	(mg/s)	2.71	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Paramotor	Post-Closure			
Faranieler	Adminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ů pr	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.15E-01	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
- S	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	11.73	(mg/s)	30.13	(mg/s)	30.13	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
<u>۹</u> ۵	mass flux in seepage from cell 2W	M_s2w =	23.49	(mg/s)	60.32	(mg/s)	60.32	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	38.82	(mg/s)	305.54	(mg/s)	2,489.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
onvert mass ix to incentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
S ≣ S	concentration in river at PM-13	C_r13 =	0.219	(mg/L)	0.128	(mg/L)	0.103	(mg/L)

Case Parameter	Post-Closure Arsenic			
	concentration of ourface water into DM 12	C a12 -	0.00075	(mg/l)
ta	concentration of surface water into PM-12	$C_{s12} = C_{s13} = C_{s$	0.00075	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.027915158	(mg/L)
Cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
L S	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
u u	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.53	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.04	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.97	(mg/s)	3.53	(mg/s)	19.90	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	 0.001	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.005	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case Parameter	Post-Closure Boron			
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
p c	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.150573845	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
- S	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
t	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
entra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.87	(mg/s)	7.38	(mg/s)	7.38	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	4.91	(mg/s)	12.61	(mg/s)	12.61	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance n node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	10.83	(mg/s)	55.73	(mg/s)	317.75	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	0.061	(mg/L)	0.023	(mg/L)	0.013	(mg/L)

Case Parameter	Post-Closure Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
sh r	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.95E-02	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
uos	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.37	(mg/s)	0.95	(mg/s)	0.95	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	1.38	(mg/s)	3.55	(mg/s)	3.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t balance ch node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	11.53	(mg/s)	37.71	(mg/s)	277.89	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass t to icentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Cor Cor Cor	concentration in river at PM-13	C_r13 =	0.065	(mg/L)	0.016	(mg/L)	0.011	(mg/L)

Case Parameter	Post-Closure Beryllium			
	•			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
u di	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001323498	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ម ប័ ម	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
t balance ch node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	0.04	(mg/s)	0.31	(mg/s)	2.50	(mg/s)
			LOW FIO	w	Average	FIOW	High Fi	ow
rert mass o entration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conv flux t conc	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Post-Closure Calcium			
	encontration of ourfease water into DM 40	0 -10 -	10	(
ta	concentration of surface water into PM-12	$C_{s12} = C_{s13} =$	13	(mg/L) (mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	68.73996034	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
LO LO	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
u du	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Averag	e Flow		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.2	2 (mg/s)		52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.4	2 (mg/s)		462.42	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.4	l (mg/s)		121.41	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.8) (mg/s)		258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.7	2 (mg/s)		2,263.72	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.8	3 (mg/s)		5,369.83	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,311.63	(mg/s)	3,367.9) (mg/s)		3,367.90	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	19.51	(mg/s)	19.5	l (mg/s)		19.51	(mg/s)
ដ	mass flux in seepage from cell 2W	M_s2w =	889.46	(mg/s)	2,283.8) (mg/s)		2.80	(mg/s)
			Low Flo	w	Averag	Average Flow		High Flow	
balance h node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.0	5 (mg/s)		53,252.39	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	4,946.75	(mg/s)	41,164.7	3 (mg/s)		322,736.94	(mg/s)
			LOW FIO	W	Averag	e Flow		High Fi	ow
rt mass tration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.37	4 (mg/l)		13.036	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	27.871	(mg/L)	17.19	l (mg/l)		13.320	(mg/l)

Case	Post-Closure			
Parameter	Cadmium	l		
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
ů pu	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001182282	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
L S	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
con con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ma en	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័ ទ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mas at e	mass flux in river at PM-13	M r13 =	0.07	(ma/s)	0.28	(ma/s)	2.03	(ma/s)
		1	Low Flo	w	Average	Flow	High Fl	ow
convert mass lux to oncentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	 0.000	(mg/L)
0 = 0	concentration in river at Pivi-13	C_F13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Post-Closure Chloride			
	concentration of surface water into DM 40	0 -10 -	10	(
	concentration of surface water into PM-12	C_\$12 =	10	(mg/L)
ati	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.97E+00	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	75.82	(mg/s)	194.68	(mg/s)	194.68	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	82.56	(mg/s)	82.56	(mg/s)	82.56	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	320.49	(mg/s)	822.94	(mg/s)	822.94	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance sch node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	 3,705.83	(mg/s)	40,651.48	(mg/s)
Mas: at ea	mass flux in river at PM-13	M_r13 =	737.14	(mg/s)	22,768.54	(mg/s)	241,117.19	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass c to icentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	 9.489	(mg/L)	 9.951	(mg/L)
Col Col	concentration in river at PM-13	C_r13 =	4.153	(mg/L)	9.509	(mg/L)	9.951	(mg/L)

Case Parameter	Post-Closure Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
p c	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002707554	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
법	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
uo Xnj	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.05	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ដ ប្	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ss balance sach node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	0.23	(mg/s)	1.65	(mg/s)	14.75	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Post-Closure			
Parameter	Copper			
		r		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
Itra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.014116893	(mg/L)
Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ntra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.27	(mg/s)	0.69	(mg/s)	0.69	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ຊ ິ	mass flux in seepage from cell 2W	M_s2w =	0.07	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.91	(mg/s)	4.80	(mg/s)	37.55	(mg/s)
			LOW FIO	w	Average	FIOW	High Fi	ow
rt mass tration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.005	(mg/L)	0.002	(mg/L)	0.002	(mg/L)

Case Parameter	Post-Closure Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
р ц	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.14E+00	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
- S	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
비	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	21.69	(mg/s)	55.70	(mg/s)	55.70	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
۹ ٽ ۲	mass flux in seepage from cell 2W	M_s2w =	23.06	(mg/s)	59.22	(mg/s)	59.22	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ach node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	100.13	(ma/s)	388.09	(ma/s)	2.571.57	(ma/s)
			Low Flo	w	Average	Flow	High Fl	low
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Case Parameter	Post-Closure Iron							
-------------------	---	----------	-------------	--------				
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)				
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)				
р р	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)				
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)				
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.94E-02	(mg/L)				
Cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)				
L S	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)				
ot	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)				
du	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)				

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.90	(mg/s)	4.87	(mg/s)	4.87	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	68.35	(mg/s)	175.51	(mg/s)	175.51	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	75.29	(mg/s)	6,299.30	(mg/s)	 69,620.41	(mg/s)
			LOWIIO	~~	Average	110₩	Tigitti	0
ert mass o intration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.424	(mg/L)	2.631	(mg/L)	2.873	(mg/L)

Case Parameter	Post-Closure Hardness			
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.02E+02	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	W	A	verage	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,	980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,	129.58	(mg/s)	2,129.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		653.73	(mg/s)	653.73	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,	890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,	425.01	(mg/s)	10,425.01	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,	090.84	(mg/s)	53,090.84	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	7,671.85	(mg/s)	19,	699.16	(mg/s)	19,699.16	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	403.90	(mg/s)		403.90	(mg/s)	403.90	(mg/s)
<u>د</u> ې	mass flux in seepage from cell 2W	M_s2w =	6,496.16	(mg/s)	16,	680.30	(mg/s)	16,680.30	(mg/s)
			Low Flo	w	A	verage	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,	763.72	(mg/s)	286,383.27	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	27,126.50	(mg/s)	249	953.86	(mg/s)	1,778,394.41	(mg/s)
			LOWIN	vv		verage	110₩	 ngirri	0w
ert mass o intration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)		71.091	(mg/L)	70.104	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	152.836	(mg/L)	1	04.385	(mg/L)	73.398	(mg/L)

Case	Post-Closure			
Parameter	Potassium			
		-		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
р ц	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	21.31	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
- S	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
rt	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
tion	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
ert o ss f	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
n ve ma:	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	406.56	(mg/s)	1,043.93	(mg/s)	1,043.93	(mg/s)
ទ ប្	mass flux in seepage from cell 2W	M_s2w =	115.61	(mg/s)	296.85	(mg/s)	296.85	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
s balance ch node	mass flux in river at PM-12	M_r12 =	39.03	(mg/s)	 1,359.42	(mg/s)	15,029.31	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	751.82	(mg/s)	12,398.04	(mg/s)	93,187.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
nvert mass x to ncentration	concentration in river at PM-12	C_r12 =	1.603	(mg/L)	3.481	(mg/L)	3.679	(mg/l)
C II C	concentration in river at PM-13	C_r13 =	4.236	(mg/L)	5.178	(mg/L)	3.846	(mg/l)

Case	Post-Closure			
Parameter	Magnesium			
				1
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
p c	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	55.96	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
li n	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,067.68	(mg/s)	2,741.51	(mg/s)	2,741.51	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	9.99	(mg/s)	9.99	(mg/s)	9.99	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	1,041.08	(mg/s)	2,673.20	(mg/s)	2,673.20	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
ss balance sach node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	 2,456.41	(mg/s)	24,623.80	(mg/s)
Ma: ate	mass flux in river at PM-13	M_r13 =	3,646.83	(mg/s)	34,859.69	(mg/s)	165,868.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)

Case	Post-Closure			
Parameter	Manganese			
		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
u di	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.14	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
u du	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.74	(mg/s)	7.03	(mg/s)	7.03	(mg/s)
mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	17.60	(mg/s)	45.20	(mg/s)	45.20	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	47.32	(mg/s)	738.77	(mg/s)	7,289.23	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass o entration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Conv flux to conce	concentration in river at PM-13	C_r13 =	0.267	(mg/L)	0.309	(mg/l)	0.301	(mg/l)

Case Parameter	Post-Closure Sodium			
			-	
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
, p u	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	26.63	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
ert e Ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	508.06	(mg/s)	1,304.55	(mg/s)	1,304.55	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	11.96	(mg/s)	11.96	(mg/s)	11.96	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	659.29	(mg/s)	1,692.86	(mg/s)	1,692.86	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
llance node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	1,882.37	(mg/s)	17,818.57	(mg/s)	94,240.60	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
vert mass to centration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Con Con con	concentration in river at PM-13	C_r13 =	10.606	(mg/L)	7.441	(mg/l)	3.890	(mg/l)

Case	Post-Closure			
Parameter	NICKEI			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
, p c	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.005498724	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
cou	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
du du	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.10	(mg/s)	0.27	(mg/s)	0.27	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ម ប័ ម	mass flux in seepage from cell 2W	M_s2w =	0.10	(mg/s)	0.26	(mg/s)	0.26	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	 0.61	(mg/s)	5.04	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	1.22	(mg/s)	4.36	(mg/s)	30.56	(mg/s)
		-	LOWING	vv	 Average	1000	 ngirri	0w
ert mass o intration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)

Case Parameter	Post-Closure Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
р и	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00095888	(mg/L)
ICE	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
- S	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
비	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ition	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
u Xn	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
n ve mas	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mass I at eacl	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
		-	Low Flo	W	 Average	Flow	 High Fl	ow
rt mass ntration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to concel	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Post-Closure Antimony			
	concentration of surface water into DM 12	C e12 -	2 00E 05	(mg/L)
ta	concentration of surface water into PM-12	C_\$12 = C \$13 =	2.00E-05	(mg/L)
ן da	concentration in Babbitt WWTP discharge	_ C_sBab =	2.00E-05	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.16E-03	(mg/L)
ICEI	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
u l	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
u su l	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ដ ប្	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Mas ate	mass flux in river at PM-13	M r13 =	0.24	(mg/s)	0.34	(mq/s)	0.77	(mq/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass lux to :oncentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Post-Closure Selenium			
Farameter	Seleman			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
ip u	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.003346354	(mg/L)
Cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
ort	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
ů de	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
-	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.06	(mg/s)	0.16	(mg/s)	0.16	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
alance node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.51	(mg/s)	1.35	(mg/s)	7.90	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ert mass ntration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Post-Closure			
Parameter	Sulfate			
-		-		
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	176.50	(mg/L)
ICel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
넵	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Avera	ge Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427	45 (mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206	87 (mg/s)	206.87	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37	36 (mg/s)	37.36	(mg/s)
Itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965	20 (mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012	72 (mg/s)	1,012.72	(mg/s)
li n	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922	60 (mg/s)	58,922.60	(mg/s)
ssfo	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,367.73	(mg/s)	8,647	39 (mg/s)	8,647.39	(mg/s)
n ve ma:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	344.66	(mg/s)	344	66 (mg/s)	344.66	(mg/s)
ទ បំ	mass flux in seepage from cell 2W	M_s2w =	2,267.55	(mg/s)	5,822	44 (mg/s)	5,822.44	(mg/s)
			Low Flo	W	Avera	ge Flow	High Fl	ow
is balance ach node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671	68 (mg/s)	16,449.94	(mg/s)
Mas at e	mass flux in river at PM-13	M r13 =	7.199.53	(ma/s)	83.386	68 (ma/s)	170.726.14	(ma/s)
			Low Flo	w	Avera	ge Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.2	80 (mg/l)	4.027	(mg/l)

Case	Post-Closure			
Parameter	Inallium	l		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
, di	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000106288	(mg/L)
Cet	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
Lo L	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
ort .	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
uo:	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ert e ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
mag	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទ ប័	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.47	(mg/s)	4.84	(mg/s)
			LOWIN	vv	Average	10.44	 ngirri	0w
ert mass o intration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Post-Closure Zinc			
		-		
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.012754048	(mg/L)
Cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
et .	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	5.71	(mg/s)	65	(mg/s)
Itration	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ert o ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.24	(mg/s)	0.62	(mg/s)	0.62	(mg/s)
ma	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ម ប័ ម	mass flux in seepage from cell 2W	M_s2w =	0.21	(mg/s)	0.55	(mg/s)	0.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	2.11	(mg/s)	36.71	(mg/s)	386.07	(mg/s)
			LOW FIU	w	Average	FIOW	підії гі	UW
ert mass o entration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.012	(mg/L)	0.015	(mg/L)	0.016	(mg/L)

Appendix G

Culpability Analysis of Plant Site, Tailings Basin and Embarrass River Watershed

Tailings Basin - Proposed Action

G.1	Tailings Basin
G.2	Embarrass River Watershed

Tailings Basin - Geotechnical Mitigation

G.3	Tailings Basin
G.4	Embarrass River Watershed

Appendix G.1 Tailings Basin Proposed Action

SO4, Year1, mass flux

Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 1 for Sulfate (SO₄)

SO4, Year 1, percent

SO4, Year 5, mass flux

Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 5 for Sulfate (SO₄)

SO4, Year 5, percent

SO4, Year 8, mass flux

Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 8 for Sulfate (SO₄)

SO4, Year 8, percent

SO4, Year 9, mass flux

Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 9 for Sulfate (SO₄)

SO4, Year 9, percent

SO4, Year 10, mass flux

Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 10 for Sulfate (SO_4)

SO4, Year 15, mass flux

SO4, Year 20, mass flux

Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 20 for Sulfate (SO_4)

SO4, Year 20, percent

SO4, Closure, mass flux

SO4, Closure, percent

Sb, Year 1, mass flux

Sb, Year 1, percent

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 1 for Antimony (Sb)

Sb, Year 5, mass flux

Sb, Year 5, percent

Sb, Year 8, mass flux

Sb, Year 8, percent

Sb, Year 9, mass flux

Sb, Year 9, percent

Sb, Year 10, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Antimony (Sb)

Sb, Year 10, percent

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 10 for Antimony (Sb)

Sb, Year 15, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Antimony (Sb)

Sb, Year 15, percent

Sb, Year 20, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Antimony (Sb)

Sb, Year 20, percent

Sb, Closure, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Closure for Antimony (Sb)

Sb, Closure, percent

Proposed Action: Percent of Tailings Basin Features' Impacts in Closure for Antimony (Sb)

As, Year 1, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Arsenic (As)

As, Year 1, percent

As, Year 5, mass flux

As, Year 5, percent

As, Year 8, mass flux

As, Year 8, percent

As, Year 9, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 9 for Arsenic (As)

As, Year 9, percent

As, Year 10, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Arsenic (As)

As, Year 10, percent

As, Year 15, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Arsenic (As)

As, Year 15, percent

As, Year 20, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Arsenic (As)

As, Year 20, percent

As, Closure, mass flux

As, Closure, percent

Co, Year 1, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Cobalt (Co)

Co, Year 1, percent

Co, Year 5, mass flux

Co, Year 5, percent

Co, Year 8, mass flux

Co, Year 8, percent

Co, Year 9, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 9 for Cobalt (Co)

Co, Year 9, percent

Co, Year 10, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Cobalt (Co)

Co, Year 10, percent

Co, Year 15, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Cobalt (Co)

Co, Year 20, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Cobalt (Co)

Co, Year 20, percent

Co, Closure, mass flux

Cu, Year 1, mass flux

Cu, Year 1, percent

Cu, Year 5, mass flux

Cu, Year 5, percent

Cu, Year 8, mass flux

Cu, Year 8, percent

Cu, Year 9, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 9 for Copper (Cu)

Cu, Year 9, percent

Cu, Year 10, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Copper (Cu)

Cu, Year 10, percent

Cu, Year 15, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Copper (Cu)

Cu, Year 15, percent

Cu, Year 20, mass flux

Cu, Year 20, percent

Cu, Closure, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Closure for Copper (Cu)

Cu, Closure, percent

Ni, Year 1, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Nickel (Ni)

Ni, Year 1, percent

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 1 for Nickel (Ni)

Ni, Year 5, mass flux

Ni, Year 5, percent

Ni, Year 8, mass flux

Ni, Year 8, percent

Ni, Year 9, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 9 for Nickel (Ni)

Ni, Year 9, percent

Ni, Year 10, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Nickel (Ni)

Ni, Year 15, mass flux

Ni, Year 20, mass flux

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Nickel (Ni)

Ni, Closure, mass flux

Ni, Closure, percent

Appendix G.2 Embarrass River Watershed Proposed Action

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Low Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Low Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Antimony (Sb)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for Low Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for Average Flow for Sulfate (SO₄)

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Average Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for High Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Low Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Low Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Low Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Antimony(Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Average Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Antimony (Sb)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for Low Flow for Sulfate (SO₄)

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Low Flow for Sulfate (SO_4)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for Average Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for High Flow for Sulfate (SO_4)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Low Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Average Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for High Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Low Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Average Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for High Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Low Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Low Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Average Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for High Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Low Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Low Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Average Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for High Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Low Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Low Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Average Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Average Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for High Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Antimony (Sb)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 8 for Low Flow for Sulfate (SO_4)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 8 for Average Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 8 for High Flow for Sulfate (SO_4)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Low Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Average Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for High Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Low Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Low Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Average Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for High Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Low Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Low Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Average Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for High Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Low Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Low Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Average Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Average Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for High Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Low Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Low Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Average Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Average Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for High Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Antimony (Sb)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 9 for Low Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 9 for Average Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 9 for High Flow for Sulfate (SO_4)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Antimony (Sb)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for Low Flow for Sulfate (SO₄)

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Sulfate (SO_4)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for Average Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for High Flow for Sulfate (SO_4)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Year 20 for High Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Year 20 for High Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Year 20 for High Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Year 20 for High Flow for Antimony (Sb)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for Low Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for Average Flow for Sulfate (SO₄)

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Sulfate (SO_4)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for High Flow for Sulfate (SO_4)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Closure for Average Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Closure for High Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Closure for Low Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Closure for Average Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Closure for High Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Closure for Low Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Closure for High Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Closure for High Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Closure for Average Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Antimony (Sb)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Closure for Low Flow for Sulfate (SO4)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Closure for Average Flow for Sulfate (SO4)

Proposed Action: Percent of Impacts at PM-13 in Closure for Average Flow for Sulfate (SO4)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Closure for High Flow for Sulfate (SO4)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Arsenic (As)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Arsenic (As)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Cobalt (Co)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Cobalt (Co)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Copper (Cu)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Copper (Cu)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Nickel (Ni)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Nickel (Ni)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Antimony (Sb)

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Antimony (Sb)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Antimony (Sb)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Post - Closure for Low Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Post - Closure for Average Flow for Sulfate (SO₄)

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Post - Closure for High Flow for Sulfate (SO₄)

Appendix G.3 Tailings Basin Geotechnical Mitigation

Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Year 1 for Sulfate (SO₄)

SO4, Year 1, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Sulfate (SO_4)

Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Year 5 for Sulfate (SO_4)

SO4, Year 5, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Sulfate (SO_4)

Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Year 10 for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Sulfate (SO_4)

Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Year 15 for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Sulfate (SO_4)

Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Year 20 for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Sulfate (SO_4)

Sb, Year1, mass flux

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Antimony (Sb)

Sb, Year 1, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Antimony (Sb)

Sb, Year 5, mass flux

Sb, Year 5, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Antimony (Sb)

Sb, Year 10, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Antimony (Sb)

Sb, Year 15, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Antimony (Sb)

Sb, Year 20, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Closure for Antimony (Sb)

Sb, Closure, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Closure for Antimony (Sb)

As, Year1, mass flux

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Arsenic (As)

As, Year 1, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Arsenic (As)

As, Year 5, mass flux

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Arsenic (As)

As, Year 5, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Arsenic (As)

As, Year 10, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Arsenic (As)

As, Year 15, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 20 forArsenic (As)

As, Year 20, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Closure for Arsenic (As)

As, Closure, percent

Co, Year1, mass flux

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Cobalt (Co)

Co Year 1, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Cobalt (Co)

Co, Year 5, mass flux

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Cobalt (Co)

Co, Year 5, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Cobalt (Co)

Co, Year 10, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Cobalt (Co)

Co, Year 15, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Cobalt (Co)

Co, Year 20, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Closure for Cobalt (Co)

Co, Closure, percent

Cu, Year1, mass flux

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Copper (Cu)

Cu Year 1, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Copper (Cu)

Cu, Year 5, mass flux

Cu, Year 5, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Copper (Cu)

Cu, Year 10, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Copper (Cu)

Cu, Year 15, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Copper (Cu)

Cu, Year 20, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Closure for Copper (Cu)

Cu, Closure, percent

Ni, Year1, mass flux

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Nickel (Ni)

Ni, Year 1, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Nickel (Ni)

Ni, Year 5, mass flux

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Nickel (Ni)

Ni, Year 5, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Nickel (Ni)

Ni, Year 10, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Nickel (Ni)

Ni, Year 15, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Nickel (Ni)

Ni, Year 20, percent

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Nickel (Ni)

Ni, Closure, percent

Appendix G.4 Embarass River Watershed Geotechnical Mitigation

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for Low Flow for Sulfate (SO₄)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year1_TB_Mitigation SO4, PM-13, low, percent

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for Average Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for High Flow for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Low Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Low Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for Low Flow for Sulfate (SO₄)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year5_TB_Mitigation SO4, PM-13, low, percent

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for Average Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for High Flow for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Low Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Arsenic (As)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year10_TB_Mitigation As, PM-13, average, mass flux

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Average Flow for Arsenic (As)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year10_TB_Mitigation As, PM-13, average, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Average Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for High Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Average Flow for Cobalt (Co)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year10_TB_Mitigation Co, PM-13, average, percent

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for High Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Low Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Average Flow for Copper (Cu)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year10_TB_Mitigation Cu, PM-13, average, percent

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for High Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Low Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Average Flow for Nickel (Ni)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year10_TB_Mitigation Ni, PM-13, average, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for High Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for High Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Antimony (Sb)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year10_TB_Mitigation SO4, PM-13, low, mass flux

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 10 for Low Flow for Sulfate (SO₄)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year10_TB_Mitigation SO4, PM-13, low, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 10 for Average Flow for Sulfate (SO₄)

GeotechnicalMitigation: Percent of Impacts at PM-13 in Year 10 for Average Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 10 for High Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Arsenic (As)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year15_TB_Mitigation As, PM-13, average, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Cobalt (Co)

GeotechnicalMitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Copper (Cu)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year15_TB_Mitigation Cu, PM-13, average, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Nickel (Ni)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year15_TB_Mitigation Ni, PM-13, average, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Antimony (Sb)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year15_TB_Mitigation Sb, PM-13, average, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Antimony (Sb)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year15_TB_Mitigation SO4, PM-13, low, mass flux

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for Low Flow for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Sulfate (SO_4)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for Average Flow for Sulfate (SO₄)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year15_TB_Mitigation SO4, PM-13, average, percent

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for High Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Low Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Arsenic (As)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year20_TB_Mitigation As, PM-13, average, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Cobalt (Co)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year20_TB_Mitigation Co, PM-13, average, percent

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Copper (Cu)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year20_TB_Mitigation Cu, PM-13, average, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Nickel (Ni)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year20_TB_Mitigation Ni, PM-13, average, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Antimony (Sb)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year20_TB_Mitigation SO4, PM-13, low, mass flux

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for Low Flow for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Low Flow for Sulfate (SO_4)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for Average Flow for Sulfate (SO4)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Year20_TB_Mitigation SO4, PM-13, average, percent

> Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for High Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Arsenic (As)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Closure_TB_Mitigation As, PM-13, low, percent

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Closure for Low Flow for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Closure for Average Flow for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Closure for High Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for Low Flow for Arsenic (As)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Post_Closure_TB_Mitigation As, PM-13, low, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for Average Flow for Arsenic (As)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Post_Closure_TB_Mitigation As, PM-13, average, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for High Flow for Arsenic (As)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Arsenic (As)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for Low Flow for Cobalt (Co)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Post_Closure_TB_Mitigation Co, PM-13, low, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for Average Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Cobalt (Co)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for High Flow for Cobalt (Co)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Cobalt (Co)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Post_Closure_TB_Mitigation Cu, PM-13, low, mass flux

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for Low Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for Average Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for High Flow for Copper (Cu)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Copper (Cu)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for Low Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for High Flow for Nickel (Ni)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Nickel (Ni)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post -Closure for High Flow for Antimony (Sb)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Antimony (Sb)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Post -Closure for Low Flow for Sulfate (SO₄)

P:\Mpls\23 MN\69\2369862_MovedFromMpls_P\WO 015 EIS Rpts Studies\RS74 Water Quality Modeling\Model Predictions\Embarrass_v1_Mitigation\Sensitivity_Post_Closure_TB_Mitigation SO4, PM-13, low, percent

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Post -Closure for Average Flow for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Post -Closure for High Flow for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Sulfate (SO_4)

