Appendices

Appendix A

Scope of Work for RS74 according to final Scoping Decision Document

Scope of Work for Cumulative Water Quality Impacts

(taken from Final PolyMet EIS Scoping Decision Document, October 25, 2005)

A quantitative assessment of cumulative water quality impacts will be performed for the upper Partridge River (including Colby Lake) and the Upper Embarrass River (including Wynn and Sabin Lakes). PolyMet's discharges will be treated to meet chronic aquatic toxicity-based standards but levels of metals such as nickel may be elevated above natural background levels. At the plant site and tailings basin, discharges from the wastewater treatment plant may contain dissolved solids, hardness, chlorides and possibly sulfate at levels above background. Other common pollutants such as Biological Oxygen Demand (BOD), bacteria and suspended solids are not expected to be present in significant quantities in the discharges. The actual construction of the PolyMet facility can be expected to generate sediment but this impact is readily mitigated by use of stormwater best management practices such as sedimentation basins and will be of short duration. Therefore, this impact is not proposed as a suitable subject for cumulative impact analysis.

A number of models are available to analyze the generation, fate and transport of pollutants in streams. Models recently used in Minnesota EIS's and National Pollutant Discharge Elimination System (NPDES) permitting procedures include HSPF and QUAL2E and dilution models. Toxic metals will be modeled using a conservative dilution model of the stream water quality. If this indicates that potential cumulative impacts may be experienced, a more comprehensive model could then be applied. It appears likely that the initial modeling phase will be required for the NPDES permit and will be available to the EIS contractor. In this phase, both streams will be modeled using the hydrologic loading of water from tributary sub-watersheds for dry, normal and wet conditions. The background loading of pollutants from the watershed will be estimated based on historic and recent monitoring results. For each hydrologic scenario, loading from the PolyMet facility will be included and the resultant concentrations will be calculated as a simple dilution model. Upstream and downstream additions of pollutants from other discharges will be evaluated for past, present and future actions by other parties

The models will first be calibrated to existing conditions monitoring data from 2004. This will inherently include the effects of past and present actions (through the date of monitoring) including:

Embarrass River

- o Existing discharges from Babbitt POTW
- o Existing Cliffs Erie tailings basin seepage
- Other existing sources within the former LTVSMC site (e.g. waste rock piles tributary to Spring Mine Creek)
- Modification of land use (including wetland loss) by past mining practices within the Embarrass River watershed above Sabin and Wynne Lakes
- o Typical timber harvest activities on SNF, state and county lands and private lands

- o Existing rural and residential development in Embarrass township
- o Construction of Embarrass Wetland Bank by LTVSMC
- o Closure of LTVSMC
- Partridge River and Colby Lake
 - o Existing Cliffs Erie discharges (overflow) from pits
 - Other existing sources within the former LTVSMC (e.g. waste rock piles adjacent to Wyman Creek)
 - Modification of land use (including wetland loss) by past mining practices within the upper Partridge River watershed
 - o Existing discharge from Northshore Mining Company Mine and Crusher area
 - o Existing Syl Laskin Energy Center discharges
 - o Existing discharge from City of Hoyt Lakes POTW
 - o Operation of Whitewater Reservoir
 - o Typical timber harvest activities of SNF, state and county lands and private lands
 - o Existing runoff from the development of the City of Hoyt Lakes

The hydrologic models will than be modified to include actions since the date of the monitoring and potential future actions including:

Embarrass River

- o PolyMet tailings basin wastewater treatment plant discharge
- Changes to existing discharges from Cliffs Erie tailings basin due to PolyMet's proposed collection and treatment of seeps
- o Implementation of Regional Mercury TMDL
- Any reasonably foreseeable changes to discharges from Babbitt POTW due to development and/or treatment system changes
- Any reasonably foreseeable changes to timber harvest activities on SNF, state and county lands and private lands
- Partridge River and Colby Lake
 - PolyMet discharges from mine site and long-term discharges from closed pit and stockpiles
 - o Potential future discharge from Mesabi Nugget facility

- o Proposed Cliffs Erie Railroad Pellet Transfer Facility construction and operation
- Any reasonably foreseeable changes to timber harvest activities on SNF, state and county lands and private lands
- o Changes in runoff quality due to future development of City of Hoyt Lakes
- o Implementation of Regional Mercury TMDL
- Any reasonably foreseeable changes to discharges from Hoyt Lakes POTW due to development and/or treatment system changes

Minnesota water quality standards were promulgated to protect the designated uses of waters of the state, which include protection for domestic consumption (human health), aquatic life, and recreation, industrial consumption, and agriculture and wildlife. The threshold for this cumulative impacts assessment will be the most restrictive water quality standards that apply to the respective waters being evaluated which, at a minimum, would be the chronic aquatic toxicity-based standards applicable to the respective waters being evaluated and the Class I drinking water standards that are applicable to Colby Lake as a drinking water source for the City of Hoyt Lakes. The future conditions scenarios will be completed for both operation and post-closure conditions, assuming that all other reasonably foreseeable actions have been completed.

Appendix B

Internal Barr Memorandum from Miguel Wong to John Borovsky and Keith Pilgrim, dated July 18, 2007, Regarding Wet and Dry Periods of Precipitation

Internal **Memorandum**

To: John Borovsky, Keith Pilgrim

From: Miguel Wong

Subject: Wet and dry periods of precipitation

Date: May 18, 2007

Project: 23/69-862-015-074

c: Greg Williams

Introduction

This memo presents the results of the statistical analysis of precipitation data representative of the long-term climatic conditions in the Partridge River and Embarrass River watersheds. These results will be used as a reference to determine whether the periods of water quality monitoring in the two referred watersheds corresponded to wet or dry flow conditions; flow data is available for the Partridge River and Embarrass River, but such data do not necessarily cover the same periods of water quality monitoring.

Data Available

Water Quality Monitoring

Water quality data in the Partridge River watershed and/or Embarrass River watershed are available for the following periods:

- 1955-1966.
- 1974-1979.
- 2001-2002.
- 2004.
- 2006.

Most of the water quality data is from two periods: 1970's and 2000's.

To: JPB, KMP From: MW1

Subject: Wet and dry periods of precipitation

Date: May 18, 2007 Project: 23/69-862-015-074

Page: 2

USGS Flow Gaging Stations

Daily flow data in the Partridge River watershed and Embarrass River watershed are available for the following periods:

- USGS gaging station # 04015455, South Branch Partridge River near Babbitt from June 1, 1977 to November 5, 1980.
- USGS gaging station # 04015475, Partridge River above Colby Lake at Hoyt Lakes from September 19, 1978 to November 2, 1988.
- USGS gaging station # 04015500, Second Creek near Aurora from April 1, 1955 to September 30, 1980.
- USGS gaging station # 04016000, Partridge River near Aurora from August 1, 1942 to September 30, 1982.
- USGS gaging station # 04017000, Embarrass River at Embarrass from August 1, 1942 to December 31, 1964.
- USGS gaging station # 04018000, Embarrass River near McKinley from October 1, 1953 to September 30, 1962.

There is not flow gaging station that covers both the 1970's and the 2000's in either the Partridge River or the Embarrass River. Although the flow data available includes periods of wet and dry flows (see discussion in RS73B for the Partridge River, and in RS74 for the Embarrass River), a direct comparison of flows in the 1970's and 2000's is not possible from the flow data itself.

Precipitation

The Minnesota Department of Natural Resources (MnDNR) follows the definition given by the Climate Prediction Center of the National Weather Service (NWS), which considers a climate normal as that given by 30 years of recent data. The current definition corresponds to the period 1971-2001.

Monthly precipitation data is available from the NWS weather station (Coop ID) # 218311, Tower 3S – from January 1926 to March 2007. This precipitation record, limited to the period 1971-2001, has been used to obtain precipitation statistics that are considered representative for both the Partridge River and Embarrass River watersheds.

In addition, monthly precipitation data is available from the NWS weather station (Coop ID) # 210387, Babbitt (Partridge River watershed) – from June 1999 to March 2007, and from the NWS weather station (Coop ID) # 212576, Embarrass (Embarrass River watershed) – from January 1995 to

To: JPB, KMP From: MW1

Subject: Wet and dry periods of precipitation

Date: May 18, 2007 Project: 23/69-862-015-074

Page: 3

March 2007. Information for Water Years (October to September) 2005 and 2006 is incomplete in both the Babbitt and Embarrass precipitation records.

Statistical Analysis

A frequency analysis was conducted on the annual precipitation record of the weather station at Tower 3S for the period 1971-2001. A normal probability distribution provided a good fit of the transformed (cubic root) series of annual precipitation values (Shahin et al., 1993). The annual precipitation varied between a maximum of 38.4 inches and a minimum of 22.2 inches, with a mean annual value of 29.3 inches and a standard deviation of 5.1 inches.

Using the Tower 3S precipitation record and the normal probability distribution obtained from the statistical fitting described above, the probability of non-exceedance of precipitation (used as a proxy for flows) during 1955-1966 and 1974-1979 resulted in:

Water Year (October to September)	Probability of non-exceedance
1954	4.8%
1955	4.1%
1956	40.3%
1957	9.9%
1958	51.3%
1959	8.9%
1960	32.3%
1961	56.9%
1962	17.2%
1963	75.7%
1964	71.0%
1965	63.6%
1966	21.5%
1973	78.9%
1974	78.3%
1975	9.9%
1976	92.2%
1977	85.9%
1978	14.4%
1979	38.1%

Using the Babbitt (Partridge River watershed) precipitation record and the normal probability distribution obtained from the statistical fitting described above, the probability of non-exceedance of precipitation (used as a proxy for flows) during the 2000's resulted in:

Water Year (October to September)	Probability of non-exceedance
2000	96.5%
2001	34.3%
2002	16.9%
2003	13.7%
2004	69.3%

To: JPB, KMP From: MW1

Subject: Wet and dry periods of precipitation

Date: May 18, 2007 Project: 23/69-862-015-074

Page: 4

Using the Embarrass (Embarrass River watershed) precipitation record and the normal probability distribution obtained from the statistical fitting described above, the probability of non-exceedance of precipitation (used as a proxy for flows) during the 2000's resulted in:

Water Year (October to September)	Probability of non-exceedance
2000	72.8%
2001	28.9%
2002	24.1%
2003	15.6%
2004	30.0%

References

Shahin, M., van Oorschot, H.J.L., and De Lange, S.J. (1993). Statistical Analysis in Water Resources Engineering – Balkema, Rotterdam, the Netherlands. 393 pp.

Appendix C

Internal Barr Memorandum
From Miguel Wong
To Project File
Dated May 7, 2007
Regarding Embarrass River USGS Gage Flow Data

Internal **Memorandum**

To: Project File

From: Miguel Wong

Subject: Embarrass River - USGS Gage Flow Data

Date: May 7, 2007

Project: 23/69-862-015-074

c:

Introduction

This memo a) summarizes the information available on daily stream flows at USGS gaging stations located within the Embarrass River watershed, and b) provides flow estimates for average, wet and dry weather conditions at two surface water monitoring stations in the Embarrass River.

USGS Gage Flow Data

Daily flows in the Embarrass River watershed are available at:

- USGS gaging station # 04017000 Embarrass River at Embarrass, Minnesota Drainage area = 88.3 square miles August 1, 1942 through December 31, 1964; and,
- USGS gaging station # 04018000 Embarrass River near McKinley, Minnesota Drainage area = 171.0 square miles October 1, 1953 through September 30, 1962.

Figure 1 shows that the time series of flow per unit catchment area at the two USGS gaging stations of the Embarrass River are very similar for the coincident period of record October 1, 1953 through September 30, 1962; the coefficient of correlation is 0.90. Flows recorded in the gaging station Embarrass River at Embarrass during 1953-1962, denoted by the green double-arrow in Figure 2, were on the average 36% smaller than those recorded at the same gaging station during 1942-1953. Precipitation records indicate the annual average snowfall during 1953-1962 was 25% smaller than that recorded during the previous decade, and most of the difference in the annual average flows observed at the Embarrass River at Embarrass before and during the coincident period of record referred to above can be explained by the difference in high flows occurring during spring snowmelt events. The decrease in flows during 1953-1962 was thus in response to natural climatic variability. Therefore, the entire period of record of the gaging station Embarrass River at Embarrass has been selected as representative of the hydrology at the two surface water monitoring stations in the Embarrass River.

To: Project File From: Miguel Wong

Subject: Embarrass River - USGS Gage Flow Data

Date: May 7, 2007 Project: 23/69-862-015-074

Page: 2

Flow Estimates

Three statistics have been computed for the time series of flow yields at the gaging station Embarrass River at Embarrass:

- Mean annual flow = 0.73 cubic feet per second per square mile of catchment area;
- Average of the 1-day maximum annual flows = 7.6 cubic feet per second per square mile of catchment area; and,
- Average of the 30-day minimum annual flows = 0.045 cubic feet per second per square mile of catchment area.

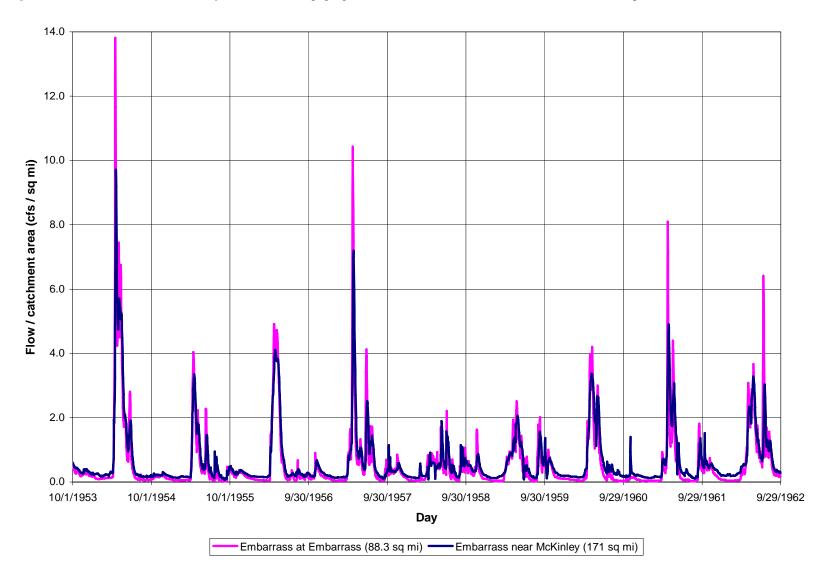
These flow yield statistics represent average, wet and dry weather conditions for the entire Embarrass River watershed, respectively. The corresponding flow values at the two surface water monitoring stations in the Embarrass River are:

Station PM-12 (18.9 square miles)

- Average flow = 13.8 cubic feet per second.
- Wet flow = 144.4 cubic feet per second.
- Dry flow = 0.9 cubic feet per second.

Station PM-13 (111.8 square miles)

- Average flow = 81.5 cubic feet per second.
- Wet flow = 853.1 cubic feet per second.
- Dry flow = 5.1 cubic feet per second.

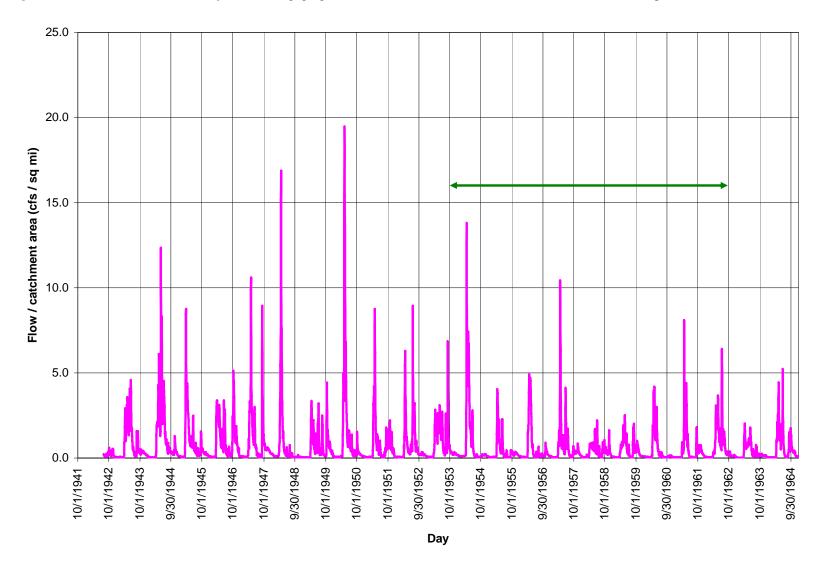

To: Project File From: Miguel Wong

Subject: Embarrass River - USGS Gage Flow Data

Date: May 7, 2007 Project: 23/69-862-015-074

Page: 3

Figure 1: Time series of flow yields at the two gaging stations in the Embarrass River for the coincident period of record 1953-1962


To: Project File From: Miguel Wong

Subject: Embarrass River - USGS Gage Flow Data

Date: May 7, 2007 Project: 23/69-862-015-074

Page: 4

Figure 2: Time series of flow yields at the gaging station in the Embarrass River at Embarrass for the entire period of record 1942-1964

Appendix D

MPCA Baseline Water Quality Data: Quaternary Aquifer Wells within the Copper Nickel Study Area

MPCA Baseline Water Quality Data: Quaternary Aquifer Wells within the Copper Nickel Study Area

ID Number		GWMAP00716	GWMAP00906	GWMAP01189	GWMAP00759	GWMAP00889	GWMAP01038
Universal Trans		561261	556345	577699	577858	555921	553861
Mercator - east		301201	330343	311099	377636	333921	333601
Universal Trans Mercator - north		5285293	5247911	5285468	5285406	5248401	5266949
County		St. Louis	St. Louis	St. Louis	St. Louis	St. Louis	St. Louis
MPCA Region		1	1	1	1	1	1
Well Use		Domestic	Domestic	Domestic	Domestic	Domestic	Domestic
Well Diameter	inch	4	4	6	4	4	6
CWI Aquifer Code		QBAA	QBAA	QBAA	QWTA	QWTA	QWTA
		Buried artesian	Buried artesian	Buried artesian	Water table	Water table	Water table
Aquifer		aquifer	aquifer	aquifer	aquifer	aquifer	aquifer
4		buried	buried	buried	surficial	surficial	surficial
Aquifer Group		Quaternary	Quaternary	Quaternary	Quaternary	Quaternary	Quaternary
Well Depth	ft	136	117	152	151	148	86
Water Level	ft	10	25	12	0	14	35
Sampling Date		9/14/1995	8/22/1995	8/21/1996	9/14/1995	8/22/1995	6/5/1996
VOC Detected	٠.	yes	yes	no	no	no	no
Alkalinity	ug/L	112000	282000	125000	164000	290000	95000
Aluminum	ug/L	257.73	1.14	869.82	756.46	1.59	6.49
Antimony	ug/L	0.007	0.050	0.007	0.030	0.020	0.015
Arsenic	ug/L	12.800	2.950	1.670	6.140	2.510	0.090
Barium	ug/L	133.7	41.5	61.2	144.7	35.4	75.0
Beryllium	ug/L	0.0400	0.0050	0.0600	0.0600	0.0050	0.0050
Bismuth	ug/L	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300
Boron	ug/L	14.8	93.0	14.3	27.6	65.4	12.0
Bromide	ug/L	0.100	0.100	0.100	0.100	0.100	0.100
Cadmium	ug/L	0.010	0.010	0.030	0.190	0.010	0.110
Calcium	ug/L	35477	27306	37426	57016	47169	40874
Cesium	ug/L	0.070	0.360	0.110	0.060	0.270	0.009
Chloride	ug/L	520	16320	10340	16340	2020	6610
Chromium	ug/L	2.49	0.04	3.76	5.03	0.04	0.08
Cobalt	ug/L	0.780	0.170	2.403	1.870	0.300	0.779
Copper	ug/L	530.4	9.6	7.4	140.0	11.8	8.3
Dissolved oxygen	ug/L	290	290	290	290	290	290
Eh	mV	86	276	-28	186	260	174
Fluoride	ug/L	200	630		220	550	
Iron	ug/L	4173.5	252.0	2281.2	13773.6	894.7	461.3
Lead	ug/L	25.32	1.31	1.71	10.57	0.02	0.32
Lithium	ug/L	4.4	15.8	4.4	4.4	16.5	4.4
Magnesium	ug/L	6195	49755	10433	18118	37601	5356
Manganese	ug/L	466.5	94.4	166.2	300.8	288.2	202.6
Mercury							
Molybdenum	ug/L	4,10	9.40	4.10	4.10	10.00	4.10
Nickel	ug/L	6.60	11.90	5.90	8.50	12.80	5.90
Nitrate-N	ug/L	490	490	490	490	490	490
Oxidation-reduction	mV	-137	54	-248	-35	40	-47
potential pH		7.90	8.30	8.26	7.90	7.80	7.03
Total Phosphorus	ug/L	212.4	164.7	84.0	440.5	72.0	14.8
Potassium	<u>_</u>	1637	2782	1691	2555	2705	1336
	ug/L	555		555	2555 555		555
Rubidium	ug/L		555			555	
Selenium	ug/L	3.4	2.5	0.9	9.0	3.7	0.9
Silica	ug/L	12998	5616	7221	12200	9129	7959

MPCA Baseline Water Quality Data: Quaternary Aquifer Wells within the Copper Nickel Study Area

ID Number		GWMAP00716	GWMAP00906	GWMAP01189	GWMAP00759	GWMAP00889	GWMAP01038
Silver	ug/L	0.008	0.020	0.008	0.030	0.008	0.008
Sodium	ug/L	3451	19119	4670	5152	11455	2498
Specific Conductance	mmhos/cm	0.215	0.586	0.277	0.405	0.544	0.260
Strontium	ug/L	136.5	282.5	133.4	156.6	212.2	91.8
Sulfate-S	ug/L	120	1500	2650	4860	90	5690
Sulfate	ug/L	360	4500	7950	14580	270	17070
Total Sulfur	ug/L	212	1678	2877	5059	160	5698
Temperature	°C	6.4	7.6	8.5	8.0	8.5	8.2
Thallium	ug/L	0.004	0.004	0.032	0.004	0.004	0.009
Tin	ug/L	0.650	0.050	0.030	0.110	0.030	0.310
Titanium	ug/L	0.0117	0.0062	0.0141	0.0176	0.0069	0.0034
Total dissolved solids	ug/L	156000	332000	168000	250000	344000	186000
Total organic carbon	ug/L	5600	1800	1800	2300	2600	1300
Total phosphate-P	ug/L	200	140	50	1020	40	10
Total suspended solids	ug/L	18000	2000	112000	26000	2000	2000
Tritium	ug/L		0.7	22.2			
Vanadium	ug/L	4.6	10.9	5.6	10.9	11.9	5.2
Zinc	ug/L	169.1	12.2	8.5	76.2	11.0	2.6
Zirconium	ug/L	0.280	0.040	0.650	0.230	0.090	0.020

 $\label{thm:potential} Data\ from\ Minnesota\ Pollution\ Control\ Agency's\ Ground\ Water\ Monitoring\ and\ Assessment\ Program\ (GWMAP)\ Baseline\ Data\ Sets\ http://www.pca.state.mn.us/water/groundwater/gwbaseline.html$

Appendix E

Calibration of Mass Balance Models for Embarrass River Watershed

Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter:				
				1
	surface water flow into PM-12	Q_s12 =	12.60	
ata	surface water flow into PM-13	Q_s13 =	48.51	` '
ر ت	Babbitt WWTP discharge	Q_sBab =	0.33 1.99	
wo	Area 5 Pit NW discharge LTVSMC Tailings Basin seepage	Q_spit = Q_fs =	11.50	
ᇤ	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	,
nput Flow Data	ground water flow into PM-12	Q g12 =	0.86	
ī	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
	concentration of surface water into PM-12	C_s12 =	0.11	(µg/l)
Data	concentration of surface water into PM-13	C s13 =		(μg/l)
u D	concentration of WWTP discharge	C sBab =		(µg/l)
ratic	concentration of Area 5 Pit NW discharge	C_spit =		(µg/l)
entr	concentration of LTVSMC Tailings Basin seepage	C_fs =		(µg/l)
ono	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
nput Concentration	concentration of ground water flow into PM-12	C_g12 =	0.008	(µg/l)
dul	concentration of ground water flow into PM-13	C_g13 =	0.008	(µg/l)
Ø)	flow in these at DM 10	0 *10	12.70	(ofo)
ance	flow in river at PM-12 flow in river at PM-13	Q_r12 = Q_r13 =	13.79 80.00	` '
Water Balance	flow check	Q_rrs =	80.00	
				(0.0)
	mass flux of surface water into PM-12	M_s12 =	39	(µg/s)
	mass flux of surface water into PM-13	M_s13 =	151	(µg/s)
Jo	mass flux of Babbitt WWTP	M_sBab =		(µg/s)
lation Flux	concentration of Area 5 Pit NW discharge	M_spit =		(µg/s)
lati Flu	concentration of LTVSMC Tailings Basin seepage	M_fs =		(µg/s)
ss cn	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =		(µg/s)
Calculation of Mass Flux	mass flux of ground water into PM-12 mass flux of ground water into PM-13	M_g12 = M_g13 =		(μg/s) (μg/s)
02	inass nux or ground water into this to	W_910 =	'	(µg/3)
ce	mass flux in river at PM-12	M_r12 =	40	(µg/s)
Mass Balance	mass flux in river at PM-13	M_r13 =	234	(µg/s)
5				
Calculated Concentration				
Calculated Concentra	concentration in river at PM-12	C_r12 =	0.10	(µg/l)
loul				
ပိပိ	concentration in river at PM-13	C_r13 =	0.10	(µg/l)
Ē				
Observed Concentration	Observed assessment in the state of DM 40		ND (0.0)	(/ ! \
Observed	Observed concentration in river at PM-12		ND (0.2)	(µg/l)
bse				
ΟŬ	Observed concentration in river at PM-13		ND (0.2)	(µg/l)

Embarrass River Model - Calibration to Baseline Water Quality Data Parameter: Aluminum surface water flow into PM-12 Q s12 = 11.54 (cfs) surface water flow into PM-13 Q s13 =43.27 (cfs) 0.33 (cfs) Babbitt WWTP discharge Q sBab = Area 5 Pit NW discharge 1.99 (cfs) Q spit = LTVSMC Tailings Basin seepage Q fs =11.50 (cfs) Hydrometallurgical Residue Cells Liner Leakage Q rrs = 0.00 (cfs) ground water flow into PM-12 Q g12 = 0.86 (cfs) ground water flow into PM-13 $Q_g13 =$ 4.21 (cfs) concentration of surface water into PM-12 $C_s12 =$ 0.1 (mg/l) $C_s13 =$ 0.1 (mg/l) concentration of surface water into PM-13 Concentration concentration of WWTP discharge C sBab = 0.1 (mg/l) concentration of Area 5 Pit NW discharge 0.0125 (mg/l) C_spit = 1.5788 (mg/l) concentration of LTVSMC Tailings Basin seepage $C_fs =$ concentration of Hydrometallurgical Residue Cells Liner Leakage C rrs = 0 (mg/l) 0.025 (mg/l) concentration of ground water flow into PM-12 $C_g12 =$ concentration of ground water flow into PM-13 $C_g13 =$ 0.025 (mg/l) Balance flow in river at PM-12 Q_r12 = 12.73 (cfs) flow in river at PM-13 Q r13 =73.70 (cfs) flow check 73.70 (cfs) Q_ck = mass flux of surface water into PM-12 M s12 =33 (mg/l) mass flux of surface water into PM-13 M s13 =122 (mg/l) M_sBab = mass flux of Babbitt WWTP (mg/l) Calculation concentration of Area 5 Pit NW discharge M_spit = (mg/l) concentration of LTVSMC Tailings Basin seepage M fs =514 (mg/l) concentration of Hydrometallurgical Residue Cells Liner Leakage M rrs = 0 (mg/l) mass flux of ground water into PM-12 $M_{g12} =$ 1 (mg/l) mass flux of ground water into PM-13 $M_g13 =$ 3 (mg/l) Balance mass flux in river at PM-12 M r12 =34 (mg/s) mass flux in river at PM-13 $M_r13 =$ 674 (mg/s) Concentration Calculated concentration in river at PM-12 C r12 = 0.09 (mg/l) C_r13 = concentration in river at PM-13 0.32 (mg/l) Concentration Observed concentration in river at PM-12 0.10 (mg/l) Observed concentration in river at PM-13 0.19 (mg/l)

Embarrass River Model - Calibration to Baseline Water Quality Data Arsenic Parameter: surface water flow into PM-12 Q s12 =12.60 (cfs) surface water flow into PM-13 $Q_{s13} =$ 48.51 (cfs) 0.33 (cfs) Babbitt WWTP discharge Q sBab = Area 5 Pit NW discharge 1.99 (cfs) Q spit = LTVSMC Tailings Basin seepage 11.50 (cfs) $Q_s fs =$ Hydrometallurgical Residue Cells Liner Leakage 0.00 (cfs) $Q_rrs =$ ground water flow into PM-12 Q_g12 = 0.86 (cfs) ground water flow into PM-13 Q g13 = 4.21 (cfs) concentration of surface water into PM-12 C s12 = $0.75 (\mu g/l)$ concentration of surface water into PM-13 $C_s13 =$ $0.75 (\mu g/l)$ nput Concentration $0.75 (\mu g/l)$ concentration of WWTP discharge C_sBab = concentration of Area 5 Pit NW discharge C_spit = (µg/l) concentration of LTVSMC Tailings Basin seepage 2.905 C fs =(µg/l) concentration of Hydrometallurgical Residue Cells Liner Leakage $C_{rrs} =$ 2.73 (µg/l) concentration of ground water flow into PM-12 C_g12 = concentration of ground water flow into PM-13 $C_g13 =$ 2.73 (µg/l) Balance flow in river at PM-12 Q r12 = 13.79 (cfs) flow in river at PM-13 Q r13 = 80.00 (cfs) flow check Q_ck = 80.00 (cfs) mass flux of surface water into PM-12 M s12 = 268 (µg/s) 1030 (µg/s) mass flux of surface water into PM-13 $M_s13 =$ ð mass flux of Babbitt WWTP M_sBab = 7 (µg/s) Calculation concentration of Area 5 Pit NW discharge M_spit = 56 (µg/s) concentration of LTVSMC Tailings Basin seepage M fs =945 (µg/s) concentration of Hydrometallurgical Residue Cells Liner Leakage M rrs = 0 (µg/s) mass flux of ground water into PM-12 $M_{g12} =$ 66 (µg/s) mass flux of ground water into PM-13 325 (µg/s) M g13 =Balance mass flux in river at PM-12 M r12 = 341 (µg/s) mass flux in river at PM-13 M r13 =2698 (µg/s) Concentration Calculated concentration in river at PM-12 0.87 (µg/l) C r12 = 1.19 (µg/l) concentration in river at PM-13 C r13 = Concentration Observed concentration in river at PM-12 ND (2) $(\mu g/I)$ Observed concentration in river at PM-13 ND (2)

Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter:	Boron			
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)	
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)	
ρa	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)	
<u> </u>	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)	
nput Flow	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)	
T T	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)	
횬	ground water flow into PM-12 ground water flow into PM-13	Q_g12 = Q_g13 =	0.86 (cfs) 4.21 (cfs)	
_	Iground water now into FM-13	Q_g13 =	4.21 (015)	
_	concentration of surface water into PM-12	C_s12 =	12 (μg/l)	
Data	concentration of surface water into PM-13	C_s13 =	12 (µg/l)	
	concentration of WWTP discharge	C sBab =	12 (μg/l)	
atio		_		
ntra	concentration of Area 5 Pit NW discharge	C_spit =	163 (µg/l)	
JCe	concentration of LTVSMC Tailings Basin seepage	C_fs =	330 (µg/l)	
nput Concentration	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
out	concentration of ground water flow into PM-12	C_g12 =	21.2 (µg/l)	
Ē	concentration of ground water flow into PM-13	C_g13 =	21.2 (µg/l)	
Φ	flow in river at PM-12	Q r12 =	13.79 (cfs)	
ter	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	80.00 (cfs)	
Water Baland	flow check	Q_ck =	80.00 (cfs)	
	non onour	<u>a_on =</u>	00.00 (0.0)	
	mass flux of surface water into PM-12	M s12 =	4280 (µg/s)	
	mass flux of surface water into PM-13	M_s13 =	16473 (µg/s)	
of	mass flux of Babbitt WWTP	M_sBab =	112 (µg/s)	
5 ×	concentration of Area 5 Pit NW discharge	M_spit =	9180 (µg/s)	
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	107399 (µg/s)	
l Sign	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (µg/s)	
Calculation of Mass Flux	mass flux of ground water into PM-12	$M_g12 =$	516 (µg/s)	
ŰΣ	mass flux of ground water into PM-13	M_g13 =	2526 (µg/s)	
		1		
စ္	Image flux in river at PM 12	M r12	4008 (119/5)	
SS	mass flux in river at PM-12	M_r12 =	4908 (μg/s)	
Mass Balance	Lancard Humain arison at DNA 40	M40	140405 (()	
≥ 🗅	mass flux in river at PM-13	M_r13 =	140485 (µg/s)	
Calculated Concentration				
ed	concentration in river at PM-12	C r12 =	12.57 (µg/l)	
lat ent	CONSTRUCTION IN TWO I ALT IVI 12	5_112 -	12.07 (μg/1)	
Calculated Concentral				
C a O	concentration in river at PM-13	C_r13 =	62.05 (µg/l)	
	les es estates and estates	1	(mg/·/	
Ë				
_ atio				
veo ntra	Observed concentration in river at PM-12		ND (35) (μg/l)	
ser				
Observed Concentration	Observed concentration in river at PM-13		68.9 (µg/l)	
	Observed concentration in fiver at 1 W-10	<u> </u>	(μg/1)	

Embarrass River Model - Calibration to Baseline Water Quality Data					
Parameter:					
	surface water flow into PM-12	Q_s12 =	11.54 (cfs)		
Data	surface water flow into PM-13	Q_s13 =	43.27 (cfs)		
<u>ت</u>	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)		
nput Flow	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)		
은	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)		
Ħ	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)		
وَ	ground water flow into PM-12	Q_g12 =	0.86 (cfs)		
_	ground water flow into PM-13	Q_g13 =	4.21 (cfs)		
æ	concentration of surface water into PM-12	C_s12 =	11 (µg/l)		
Data	concentration of surface water into PM-13	C_s13 =	11 (µg/l)		
l L	concentration of WWTP discharge	C sBab =	11 (µg/l)		
atic	concentration of Area 5 Pit NW discharge	C_spit =	5 (µg/l)		
entr	concentration of LTVSMC Tailings Basin seepage	C_fs =	92.98 (μg/l)		
a) Lice	concentration of Hydrometallurgical Residue Cells Liner Leakage	C rrs =	0		
nput Concentration	concentration of ground water flow into PM-12	C_g12 =	68.1 (µg/l)		
Indi					
	concentration of ground water flow into PM-13	C_g13 =	68.1 (µg/l)		
d)	flow in river at PM-12	Q r12 =	12.73 (cfs)		
er	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	73.70 (cfs)		
Water Balan	flow check	Q_rrs = Q_ck =	73.70 (cfs)		
	Inow check	Q_CK =	73.70 (CIS)		
	mass flux of surface water into PM-12	M s12 =	3592 (µg/s)		
	mass flux of surface water into PM-13	M_s13 =	13470 (μg/s)		
_	mass flux of Babbitt WWTP	M_sBab =	103 (μg/s)		
Ę	concentration of Area 5 Pit NW discharge	M_spit =	282 (µg/s)		
latior Flux	concentration of LTVSMC Tailings Basin seepage	M fs =	30260 (µg/s)		
l en c	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (µg/s)		
Calculation of Mass Flux	mass flux of ground water into PM-12	M_g12 =	1657 (µg/s)		
őĔ	mass flux of ground water into PM-13	M_g13 =	8114 (µg/s)		
		_			
Ф	mass flux in river at PM-12	M_r12 =	5352 (µg/s)		
ss	IIIass iiux iii iivei at i ivi-12	101_112 =	3332 (µg/3)		
Mass Balance	mass flux in river at PM-13	M_r13 =	57478 (μg/s)		
			11.0 /		
uc					
Calculated Concentration	Description of the second Part 10		44.00 (")		
late	concentration in river at PM-12	C_r12 =	14.86 (μg/l)		
Calculated Concentrat		1			
So al	concentration in river at PM-13	C_r13 =	27.56 (µg/l)		
	1		(F9' ·)		
nc					
Observed Concentration	Observed concentration in river of DM 10		15.50 (1.07)		
rve	Observed concentration in river at PM-12		15.50 (μg/l)		
Observed					
	Observed concentration in river at PM-13	I	27.80 (μg/l)		

Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter:	Beryllium			
	•		•	
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)	
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)	
ρa	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)	
≥	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)	
nput Flow	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)	
t t	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)	
횬	ground water flow into PM-12 ground water flow into PM-13	Q_g12 =	0.86 (cfs) 4.21 (cfs)	
_	Iground water now into FM-13	Q_g13 =	4.21 (CIS)	
	concentration of surface water into PM-12	C_s12 =	0.1 (µg/l)	
Data	concentration of surface water into PM-13	C_s13 =	0.1 (µg/l)	
	concentration of WWTP discharge	C sBab =	0.1 (µg/l)	
atio		T -		
ntra	concentration of Area 5 Pit NW discharge concentration of LTVSMC Tailings Basin seepage	C_spit = C_fs =	0.1 (μg/l) 0.75 (μg/l)	
nce	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0.75 (μg/l)	
nput Concentration				
put	concentration of ground water flow into PM-12	C_g12 =	0.023 (µg/l)	
드	concentration of ground water flow into PM-13	C_g13 =	0.023 (μg/l)	
Φ	flow in river at PM-12	Q r12 =	13.79 (cfs)	
ter	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	80.00 (cfs)	
Water Baland	flow check	Q ck =	80.00 (cfs)	
		<u> </u>	, ,	
	mass flux of surface water into PM-12	M s12 =	36 (µg/s)	
	mass flux of surface water into PM-13	M_s13 =	137 (µg/s)	
of	mass flux of Babbitt WWTP	M_sBab =	1 (µg/s)	
5 ¥	concentration of Area 5 Pit NW discharge	M_spit =	6 (µg/s)	
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	244 (µg/s)	
SS CL	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (µg/s)	
Calculation of Mass Flux	mass flux of ground water into PM-12	M_g12 =	1 (µg/s)	
02	mass flux of ground water into PM-13	M_g13 =	3 (µg/s)	
nce	mass flux in river at PM-12	M_r12 =	37 (μg/s)	
Mass Balance				
B B B	mass flux in river at PM-13	M_r13 =	427 (µg/s)	
_				
Calculated Concentration				
Calculated Concentrat	concentration in river at PM-12	C_r12 =	0.10 (µg/l)	
ulat en:		1	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
10 E				
ပိ ပိ	concentration in river at PM-13	C_r13 =	0.19 (μg/l)	
		1		
O L				
d rati	Observed concentration in river at DM 10		ND (0.2) (1.2/1)	
Ve	Observed concentration in river at PM-12	1	ND (0.2) (μg/l)	
Observed Concentration				
ဝီဝိ	Observed concentration in river at PM-13		ND (0.2) (μg/l)	

Embarra	Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter:	Calcium				
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)		
<u>ta</u>	surface water flow into PM-13	Q_s13 =	48.51 (cfs)		
Data	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)		
	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)		
은	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)		
±	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)		
Input Flow	ground water flow into PM-12	Q_g12 =	0.86 (cfs)		
	ground water flow into PM-13	Q_g13 =	4.21 (cfs)		
	concentration of surface water into PM-12	C_s12 =	13 (mg/l)		
Data					
	concentration of surface water into PM-13	C_s13 =	13 (mg/l)		
Fio	concentration of WWTP discharge	C_sBab =	13 (mg/l)		
ıtra	concentration of Area 5 Pit NW discharge	C_spit =	98.7 (mg/l)		
Se	concentration of LTVSMC Tailings Basin seepage	C_fs =	59.78 (mg/l)		
nput Concentration	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0		
out	concentration of ground water flow into PM-12	C_g12 =	19 (mg/l)		
Inp	concentration of ground water flow into PM-13	C_g13 =	19 (mg/l)		
4)	flow in river at PM-12	Q r12 =	13.79 (cfs)		
nce a	illow in fiver at PM-12		· · · · · ·		
Water Balance	flow in river at PM-13	Q_r13 =	80.00 (cfs)		
S @	flow check	Q_ck =	80.00 (cfs)		
	Inner the of conference into DM 40	IM -40	4007 (/-)		
	mass flux of surface water into PM-12	M_s12 =	4637 (µg/s)		
√	mass flux of surface water into PM-13 mass flux of Babbitt WWTP	M_s13 = M_sBab =	17845 (mg/s) 121 (mg/s)		
Calculation of Mass Flux	concentration of Area 5 Pit NW discharge	M_spit =	5558 (mg/s)		
atior	concentration of LTVSMC Tailings Basin seepage	M fs =	19455 (mg/s)		
를 뜻	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (mg/s)		
Calcul Mass I	mass flux of ground water into PM-12	M_g12 =	462 (mg/s)		
ΰĔ	mass flux of ground water into PM-13	M_g13 =	2264 (mg/s)		
Φ	n in the PM 40		5004 ((.)		
Mass Balanc	mass flux in river at PM-12	M_r12 =	5221 (mg/s)		
Mass Balan					
≥ @	mass flux in river at PM-13	M_r13 =	50344 (mg/s)		
_					
Calculated Concentration		1			
ed	concentration in river at PM-12	C r12 =	13.37 (mg/l)		
ılat eni	oonoonadon iii iivor der iii 12	<u> </u>	(1119/1)		
Calculated Concentral					
င် လ	concentration in river at PM-13	C_r13 =	22.24 (mg/l)		
nc					
Observed Concentration					
vec	Observed concentration in river at PM-12	 	13.4 (mg/l)		
Ser		1			
Observed	Observed concentration in river at PM-13		19.9 (mg/l)		
	Observed Concentration III TIVEL at FIVI-13	<u> </u>	(111 <u>g</u> /1)		

Embarrass River Model - Calibration to Baseline Water Quality Data				
	Cadmium			
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)	
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)	
ص	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)	
Input Flow	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)	
畄	LTVSMC Tailings Basin seepage Hydrometallurgical Residue Cells Liner Leakage	Q_fs =	11.50 (cfs)	
Ħ	ground water flow into PM-12	Q_rrs = Q_g12 =	0.00 (cfs) 0.86 (cfs)	
du	ground water flow into PM-13	Q_g13 =	4.21 (cfs)	
_	ground react new mass in to	<u> </u>	(6.6)	
	concentration of surface water into PM-12	C_s12 =	0.08 (µg/l)	
ate	concentration of surface water into PM-13	C_s13 =	0.08 (µg/l)	
		C sBab =		
tio	concentration of WWTP discharge		0.08 (µg/l)	
otra	concentration of Area 5 Pit NW discharge	C_spit =	0.1 (µg/l)	
cer	concentration of LTVSMC Tailings Basin seepage	C_fs =	0.188 (μg/l)	
Son	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
nput Concentration Data	concentration of ground water flow into PM-12	C_g12 =	0.3 (μg/l)	
Ē	concentration of ground water flow into PM-13	C_g13 =	0.3 (μg/l)	
Ф	flow in river at PM-12	Q_r12 =	13.79 (cfs)	
anc	flow in river at PM-13	 Q_r13 =	80.00 (cfs)	
Water Balan	flow in river at PM-12 flow in river at PM-13 flow check	Q_ck =	80.00 (cfs)	
	mass flux of surface water into PM-12	M_s12 =	29 (µg/s)	
	mass flux of surface water into PM-13	M_s13 =	110 (μg/s)	
o_	mass flux of Babbitt WWTP	M_sBab =	1 (µg/s)	
lation Flux	concentration of Area 5 Pit NW discharge	M_spit =	6 (µg/s)	
<u> </u>	concentration of LTVSMC Tailings Basin seepage	M_fs =	61 (µg/s)	
no ss	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs = M_g12 =	0 (μg/s) 7 (μg/s)	
Calculation of Mass Flux	mass flux of ground water into PM-12 mass flux of ground water into PM-13	M_g13 =	7 (µg/s) 36 (µg/s)	
<u> </u>	Integer haz or ground water into 1 M 10	W_g10 =	ου (μg/3)	
9	mass flux in river at PM-12	M_r12 =	37 (μg/s)	
ss	III A THE TOTAL THE TE	141_112 -	υ (μg/3)	
Mass Balance	mass flux in river at PM-13	M_r13 =	249 (µg/s)	
uc				
od atic				
ate	concentration in river at PM-12	C_r12 =	0.09 (μg/l)	
cul		1		
Calculated Concentration	concentration in river at PM-13	C_r13 =	0.11 (µg/l)	
	CONCOMULATION IN TIVEL AT LINE 13	O_110 =	υ. ι ι (μg/ι)	
Observed Concentration				
ed	Observed concentration in river at PM-12	<u> </u>	ND (0.2) (μg/l)	
) Sen			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Observed				
00	Observed concentration in river at PM-13	<u> </u>	ND (0.2) (μg/l)	

Emborro	Embarrass River Model - Calibration to Baseline Water Quality Data				
		valer Qua	illy Data	1	
Parameter:	Chloride				
T.	surface water flow into PM-12	Q_s12 =	0.30		
Data	surface water flow into PM-13 Babbitt WWTP discharge	Q_s13 = Q sBab =	0.30 0.33		
	Area 5 Pit NW discharge	Q_spit =	0.00	,	
<u>8</u>	LTVSMC Tailings Basin seepage	Q fs =	1.20		
L L	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	(cfs)	
nput Flow	ground water flow into PM-12	Q_g12 =	0.86		
<u> </u>	ground water flow into PM-13	Q_g13 =	4.21	(cts)	
	concentration of surface water into PM-12	C_s12 =	10	(mg/l)	
Data					
	concentration of surface water into PM-13	C_s13 =		(mg/l)	
tior	concentration of WWTP discharge	C_sBab =		(mg/l)	
ıtra	concentration of Area 5 Pit NW discharge	C_spit =		(mg/l)	
cer	concentration of LTVSMC Tailings Basin seepage	C_fs =	21.54	(mg/l)	
, one	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(mg/l)	
nput Concentration	concentration of ground water flow into PM-12	C_g12 =	1.8	(mg/l)	
<u> </u>	concentration of ground water flow into PM-13	C_g13 =	1.8	(mg/l)	
-	L	1			
e e	flow in river at PM-12	Q_r12 =	1.49		
<i>™ 9</i>	flow in river at PM-13	Q_r13 =	7.20		
S M	flow check	Q_ck =	7.20	(cfs)	
	Image flux of ourfoce water into DM 10	IM 010	0.5	(ma/l)	
	mass flux of surface water into PM-12 mass flux of surface water into PM-13	M_s12 = M_s13 =		(mg/l) (mg/l)	
of	mass flux of Babbitt WWTP	M_sBab =		(mg/l)	
5 ×	concentration of Area 5 Pit NW discharge	M_spit =		(mg/l)	
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =		(mg/l)	
ss cul	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =		(mg/l)	
Calculation of Mass Flux	mass flux of ground water into PM-12 mass flux of ground water into PM-13	M_g12 = M_g13 =		(mg/l) (mg/l)	
02	Illiass hux of ground water into FW-13	VI_g13 =	214	(IIIg/I)	
Ф	and a firm in the state of DM 40	M ::10	000	(
Mass Balance	mass flux in river at PM-12	M_r12 =	222	(mg/s)	
Mass Balan	mass flux in river at PM-13	M_r13 =	1253	(mg/s)	
Calculated Concentration					
trat	concentration in river at PM-12	C r12 =	5.27	(mg/l)	
Calculated Concentral		_		. 3.7	
alcı					
ÖÖ	concentration in river at PM-13	C_r13 =	6.15	(mg/l)	
atio					
/ed ntra	Observed concentration in river at PM-12		4.49	(mg/l)	
er Icel					
Observed Concentration	Observed concentration in river at PM-13		6.98	(mg/l)	
	1		5.00	···············/	

Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter: Cobalt				
raiailletei.	OODAIL			
	surface water flow into PM-12	Q s12 =	12.60	(cfs)
ta	surface water flow into PM-13	Q_s13 =	48.51	(cfs)
Data	Babbitt WWTP discharge	Q_sBab =	0.33	(cfs)
	Area 5 Pit NW discharge	Q_spit =	1.99	\ /
유	LTVSMC Tailings Basin seepage	Q_fs =	11.50	
	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	
nput Flow	ground water flow into PM-12 ground water flow into PM-13	Q_g12 = Q_g13 =	0.86 4.21	(cfs)
_	ground water new into t in 10	<u> </u>	7.21	(010)
æ	concentration of surface water into PM-12	C_s12 =	0.6	(µg/l)
Data	concentration of surface water into PM-13	C_s13 =	0.6	(µg/l)
on [concentration of WWTP discharge	C_sBab =	0.6	(µg/l)
rati	concentration of Area 5 Pit NW discharge	C_spit =		(µg/l)
čent	concentration of LTVSMC Tailings Basin seepage	C_fs =	1.556	
ono	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(µg/l)
nput Concentration	concentration of ground water flow into PM-12	C_g12 =	1.1	(µg/l)
lnp	concentration of ground water flow into PM-13	C_g13 =	1.1	(µg/l)
9	flow in river at PM-12	Q_r12 =	13.79	(cfs)
Water Balance	flow in river at PM-13	Q_r13 =	80.00	(cfs)
Ws Ba	flow check	Q_ck =	80.00	(cfs)
		Ta	· ·	
	mass flux of surface water into PM-12	M_s12 =		(µg/s)
_	mass flux of surface water into PM-13 mass flux of Babbitt WWTP	M_s13 = M_sBab =		(µg/s) (µg/s)
Calculation of Mass Flux	concentration of Area 5 Pit NW discharge	M_spit =		(µg/s) (µg/s)
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =		(μg/s)
ula R R	concentration of Hydrometallurgical Residue Cells Liner Leakage	M rrs =		(µg/s)
Calcul Mass I	mass flux of ground water into PM-12	M_g12 =		(µg/s)
ΰΞ̈́	mass flux of ground water into PM-13	M_g13 =		(µg/s)
90	mass flux in river at PM-12	M_r12 =	246	(µg/s)
ss and	mass askin more act in 12		240	(MB / D)
Mass Balance	mass flux in river at PM-13	M_r13 =	1736	(µg/s)
2 11	pridod han in river at the 10	[W]_1 10 =	1730	(µg/3)
_				
Calculated Concentration		1		
	concentration in river at PM-12	C_r12 =	0.6	(µg/l)
Sul				
Salc	concentration in vivor at DM 10	0 -10	0.0	(116°/1)
	concentration in river at PM-13	C_r13 =	0.8	(µg/l)
_				
Observed Concentration				
/ed	Observed concentration in river at PM-12		0.58	(µg/l)
200				
Observed Concentra	Observed concentration in river at PM-13		ND (1)	(µg/l)
)	Observed concentration in fiver at rivi-15	I	ND(I)	(µg/1)

Surface water flow into PM-12 Q. s12 = 12.60 (cfs)	Embarrass River Model - Calibration to Baseline Water Quality Data				
## Surface water flow into PM-13 ## Surface water					
## Surface water flow into PM-13 ## Surface water					
Area S Pit NW discharge					` /
Area S Pit NW discharge	ta				
Area S Pit NW discharge	Da				
C S12 = 1.5 (µg/l)	≥		Q_spit =	1.99	(cfs)
C S12 = 1.5 (µg/l)	P		Q_fs =	11.50	(cfs)
C S12 = 1.5 (µg/l)	느			0.00	(cfs)
C S12 = 1.5 (µg/l)	b				(cfs)
Concentration of surface water into PM-13	드	ground water flow into PM-13	Q_g13 =	4.21	(cfs)
Concentration of surface water into PM-13	æ	concentration of surface water into PM-12	C s12 =	1.5	(µg/l)
C SBab = 1.5 (μg/l)	Date				
The part of the] uc				
The part of the	ratic	-	C_spit =		
The part of the	ent	-			
The part of the	ono	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(µg/l)
The part of the	o t	concentration of ground water flow into PM-12	C_g12 =	4	(µg/l)
mass flux of surface water into PM-12 M_s12 = 535 (μg/s) mass flux of surface water into PM-13 M_s13 = 2059 (μg/s) mass flux of surface water into PM-13 M_s13 = 2059 (μg/s) mass flux of Babbitt WWTP M_sBab = 14 (μg/s) concentration of Area 5 Pit NW discharge M_spit = 141 (μg/s) concentration of LTVSMC Tailings Basin seepage M_fs = 814 (μg/s) mass flux of ground water into PM-12 M_g12 = 97 (μg/s) mass flux of ground water into PM-13 M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 4136 (μg/s) M_g13 =	lnp	concentration of ground water flow into PM-13	C_g13 =	4	(µg/l)
mass flux of surface water into PM-12 M_s12 = 535 (μg/s) mass flux of surface water into PM-13 M_s13 = 2059 (μg/s) mass flux of surface water into PM-13 M_s13 = 2059 (μg/s) mass flux of Babbitt WWTP M_sBab = 14 (μg/s) concentration of Area 5 Pit NW discharge M_spit = 141 (μg/s) concentration of LTVSMC Tailings Basin seepage M_fs = 814 (μg/s) mass flux of ground water into PM-12 M_g12 = 97 (μg/s) mass flux of ground water into PM-13 M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 4136 (μg/s) M_g13 =	Ф	flow in river at PM-12	Q r12 =	13.79	(cfs)
mass flux of surface water into PM-12 M_s12 = 535 (μg/s) mass flux of surface water into PM-13 M_s13 = 2059 (μg/s) mass flux of surface water into PM-13 M_s13 = 2059 (μg/s) mass flux of Babbitt WWTP M_sBab = 14 (μg/s) concentration of Area 5 Pit NW discharge M_spit = 141 (μg/s) concentration of LTVSMC Tailings Basin seepage M_fs = 814 (μg/s) mass flux of ground water into PM-12 M_g12 = 97 (μg/s) mass flux of ground water into PM-13 M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 4136 (μg/s) M_g13 =	ter anc	flow in river at PM-13			` '
mass flux of surface water into PM-12 M_s12 = 535 (μg/s) mass flux of surface water into PM-13 M_s13 = 2059 (μg/s) mass flux of surface water into PM-13 M_s13 = 2059 (μg/s) mass flux of Babbitt WWTP M_sBab = 14 (μg/s) concentration of Area 5 Pit NW discharge M_spit = 141 (μg/s) concentration of LTVSMC Tailings Basin seepage M_fs = 814 (μg/s) mass flux of ground water into PM-12 M_g12 = 97 (μg/s) mass flux of ground water into PM-13 M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 477 (μg/s) M_g13 = 4136 (μg/s) M_g13 =	Wa	flow check			
Mass flux of surface water into PM-13 Mass flux of Babbitt WWTP Mass flux of Sabbitt WWTP Mass flux of Gardinary Mass flux o					•
Mass flux of surface water into PM-13 Mass flux of Babbitt WWTP Mass flux of Sabbitt WWTP Mass flux of Gardinary Mass flux o		mass flux of surface water into PM-12	M s12 =	535	(ua/s)
mass flux of Babbitt WWTP concentration of Area 5 Pit NW discharge concentration of Area 5 Pit NW discharge concentration of LTVSMC Tailings Basin seepage concentration of Hydrometallurgical Residue Cells Liner Leakage mass flux of ground water into PM-12 mass flux of ground water into PM-13 mass flux of ground water into PM-13 mass flux in river at PM-12 mass flux in river at PM-12 mass flux in river at PM-13 mass flux in river at PM-13 mass flux in river at PM-13 concentration in river at PM-13 C_r12 = 1.66 (µg/l) Observed concentration in river at PM-12					
M_r12 = 646 (μg/s) M_r13 = 4136 (μg/s)	₹				
M_r12 = 646 (μg/s) M_r13 = 4136 (μg/s)	Ē				
M_r12 = 646 (μg/s) M_r13 = 4136 (μg/s)	을 을				
M_r12 = 646 (μg/s) M_r13 = 4136 (μg/s)	를 표				
M_r12 = 646 (μg/s) M_r13 = 4136 (μg/s)	10 SS				
M_r12 = 646 (μg/s) M_r13 = 4136 (μg/s)	Ca Ma				
mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12 concentration in river at PM-13 C_r12 = 1.66 (μg/l) concentration in river at PM-13 C_r13 = 1.83 (μg/l) Observed concentration in river at PM-12 1.53 (μg/l)	<u> </u>	integer haz of ground water into FM To	W_910 =	477	(µ g/5)
C_r12 = 1.66 (μg/l) concentration in river at PM-12 C_r13 = 1.83 (μg/l) Observed concentration in river at PM-12 Observed concentration in river at PM-12 1.53 (μg/l)	9	mass flux in river at PM-12	M r12 -	6/16	(na/e)
C_r12 = 1.66 (μg/l) concentration in river at PM-12 C_r13 = 1.83 (μg/l) Observed concentration in river at PM-12 Observed concentration in river at PM-12 1.53 (μg/l)	SS	INCO NOT IN THE IN TE	141_114 -	040	(P9 ^{,3})
C_r12 = 1.66 (μg/l) concentration in river at PM-12 C_r13 = 1.83 (μg/l) Observed concentration in river at PM-12 Observed concentration in river at PM-12 1.53 (μg/l)	Mas Bala	mass flux in river at PM-13	M_r13 =	4136	(µg/s)
Observed concentration in river at PM-12 Observed concentration in river at PM-12 1.53 (µg/l)				'	
Observed concentration in river at PM-12 Observed concentration in river at PM-12 1.53 (µg/l)	ion				
Observed concentration in river at PM-12 Observed concentration in river at PM-12 1.53 (µg/l)	ed	concentration in river at PM-12	C r12 =	1.66	(ua/l)
Observed concentration in river at PM-12 Observed concentration in river at PM-12 1.53 (µg/l)	lat	oonoonii alion in nivor ali rivi 12	0_112 -	1.00	(P9/1)
Observed concentration in river at PM-12 Observed concentration in river at PM-12 1.53 (µg/l)	CUI				
Observed concentration in river at PM-12 Observed concentration in river at PM-12 1.53 (µg/l)	alc or				, 10
Observed concentration in river at PM-12 Observed concentration in river at PM-13 Observed concentration in river at PM-13 2.00 (µg/l)	00	concentration in river at PM-13	C_r13 =	1.83	(µg/l)
Observed concentration in river at PM-12 Observed concentration in river at PM-13 Observed concentration in river at PM-13 2.00 (µg/l)	UC				
Observed concentration in river at PM-12 1.53 (µg/l) Observed concentration in river at PM-13 2.00 (µg/l)	atic		1		, ,,,,,
Observed concentration in river at PM-13 2.00 (μg/l)	ec Tr	Observed concentration in river at PM-12		1.53	(µg/l)
Ο Observed concentration in river at PM-13 2.00 (μg/l)	er Sel				
Ο Ο Observed concentration in river at PM-13 2.00 (μg/l))uc				
	ŌŎ	Observed concentration in river at PM-13	<u> </u>	2.00	(µg/l)

Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter: Flouride				
	surface water flow into PM-12	Q_s12 =	12.60	
Data	surface water flow into PM-13	Q_s13 =	48.51	
Ds	Babbitt WWTP discharge	Q_sBab =	0.33	
Flow	Area 5 Pit NW discharge	Q_spit =	1.99	
은	LTVSMC Tailings Basin seepage	Q_fs =	11.50	`
=	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00	` ′
Input	ground water flow into PM-12 ground water flow into PM-13	Q_g12 =	0.86	
	Iground water now into Pivi-13	Q_g13 =	4.21	(CIS)
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/l)
Data				
۵	concentration of surface water into PM-13	C_s13 =		(mg/l)
tior	concentration of WWTP discharge	C_sBab =		(mg/l)
ıtra	concentration of Area 5 Pit NW discharge	C_spit =		(mg/l)
cer	concentration of LTVSMC Tailings Basin seepage	C_fs =		(mg/l)
l o	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	(mg/l)
nput Concentration	concentration of ground water flow into PM-12	C_g12 =	0.385	(mg/l)
In	concentration of ground water flow into PM-13	C_g13 =	0.385	(mg/l)
	T			
r Sc	flow in river at PM-12	Q_r12 =	13.79	
ַ ינט ת	flow in river at PM-13	Q_r13 =	80.00	` '
<u></u> ≤ m	flow check	Q_ck =	80.00	(cfs)
	Lance the office of the state of the DM 40	IM - 40	0.0	(· · · · /l)
	mass flux of surface water into PM-12	M_s12 =		(mg/l)
Ψ=	mass flux of surface water into PM-13 mass flux of Babbitt WWTP	M_s13 = M sBab =		(mg/l)
D		M_spit =		(mg/l)
atior Flux	concentration of Area 5 Pit NW discharge concentration of LTVSMC Tailings Basin seepage	M_fs =		(mg/l) (mg/l)
필드	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =		(mg/l)
lor Iss	mass flux of ground water into PM-12	M_g12 =		(mg/l)
Calculation of Mass Flux	mass flux of ground water into PM-13	M_g13 =		(mg/l)
	private narro greena naro mila mila mila mila mila mila mila mila			(9,.,
(D)				
Mass Balance	mass flux in river at PM-12	M_r12 =	46	(mg/s)
Mass Balan				
≥ ∞	mass flux in river at PM-13	M_r13 =	745	(mg/s)
Calculated Concentration				
Calculated Concentrat	concentration in river at PM-12	C_r12 =	0.12	(mg/l)
ula Yen				
를 C				
ΰö	concentration in river at PM-13	C_r13 =	0.33	(mg/l)
_	-			
Observed Concentration				
bd trai	Observed concentration in river at PM-12		0.10	(mg/l)
eni			50	\ ··· ···· /
Observed				
రేర	Observed concentration in river at PM-13		0.37	(mg/l)

Embarrass River Model - Calibration to Baseline Water Quality Data Parameter: Iron surface water flow into PM-12 Q s12 = 0.77 (cfs) surface water flow into PM-13 Q s13 =2.63 (cfs) 0.33 (cfs) Babbitt WWTP discharge Q sBab = Area 5 Pit NW discharge 0.00 (cfs) Q spit = LTVSMC Tailings Basin seepage Q fs =1.20 (cfs) Hydrometallurgical Residue Cells Liner Leakage Q rrs = 0.00 (cfs) ground water flow into PM-12 Q g12 = 0.86 (cfs) ground water flow into PM-13 $Q_g13 =$ 4.21 (cfs) concentration of surface water into PM-12 $C_s12 =$ 2.9 (mg/l) $C_s13 =$ 2.9 (mg/l) concentration of surface water into PM-13 Concentration 2.9 (mg/l) concentration of WWTP discharge C sBab = 0.038 (mg/l) concentration of Area 5 Pit NW discharge C_spit = concentration of LTVSMC Tailings Basin seepage $C_fs =$ 4.594 (mg/l) C rrs = 0 (mg/l) concentration of Hydrometallurgical Residue Cells Liner Leakage 0.035 (mg/l) concentration of ground water flow into PM-12 $C_g12 =$ concentration of ground water flow into PM-13 $C_g13 =$ 0.035 (mg/l) Balance flow in river at PM-12 Q_r12 = 1.96 (cfs) flow in river at PM-13 Q r13 =10.00 (cfs) flow check 10.00 (cfs) Q_ck = M s12 =mass flux of surface water into PM-12 64 (mg/l) mass flux of surface water into PM-13 M s13 =215 (mg/l) M_sBab = mass flux of Babbitt WWTP 27 (mg/l) Calculation concentration of Area 5 Pit NW discharge M_spit = 0 (mg/l) concentration of LTVSMC Tailings Basin seepage M fs =156 (mg/l) 0 (mg/l) concentration of Hydrometallurgical Residue Cells Liner Leakage M rrs = mass flux of ground water into PM-12 $M_{g12} =$ 1 (mg/l) mass flux of ground water into PM-13 M g13 =4 (mg/l) Balance mass flux in river at PM-12 M r12 =91 (mg/s) mass flux in river at PM-13 $M_r13 =$ 467 (mg/s) Concentration Calculated concentration in river at PM-12 C r12 = 1.65 (mg/l) C_r13 = concentration in river at PM-13 1.65 (mg/l) Concentration Observed concentration in river at PM-12 1.75 (mg/l) Observed concentration in river at PM-13 1.29 (mg/l)

143.50

(mg/l)

Embarrass River Model - Calibration to Baseline Water Quality Data Parameter: Hardness surface water flow into PM-12 Q s12 = 12.60 (cfs) surface water flow into PM-13 Q s13 =48.51 (cfs) 0.33 (cfs) Babbitt WWTP discharge Q sBab = Area 5 Pit NW discharge 1.99 (cfs) Q spit = LTVSMC Tailings Basin seepage Q fs =11.50 (cfs) Hydrometallurgical Residue Cells Liner Leakage Q rrs = 0.00 (cfs) ground water flow into PM-12 Q g12 = 0.86 (cfs) 4.21 (cfs) ground water flow into PM-13 $Q_g13 =$ concentration of surface water into PM-12 $C_s12 =$ 70 (mg/l) $C_s13 =$ 70 (mg/l) concentration of surface water into PM-13 Concentration 70 (mg/l) concentration of WWTP discharge C sBab = 925 (mg/l) concentration of Area 5 Pit NW discharge C_spit = 436.6 (mg/l) concentration of LTVSMC Tailings Basin seepage $C_fs =$ C rrs = 0 (mg/l) concentration of Hydrometallurgical Residue Cells Liner Leakage 87.5 (mg/l) concentration of ground water flow into PM-12 $C_g12 =$ concentration of ground water flow into PM-13 $C_g13 =$ 87.5 (mg/l) Balance flow in river at PM-12 Q_r12 = 13.79 (cfs) flow in river at PM-13 Q r13 =80.00 (cfs) flow check 80.00 (cfs) Q_ck = mass flux of surface water into PM-12 M s12 =24969 (mg/l) mass flux of surface water into PM-13 M s13 =96090 (mg/l) $M_sBab =$ mass flux of Babbitt WWTP 654 (mg/l) Calculation concentration of Area 5 Pit NW discharge M_spit = 52093 (mg/l) concentration of LTVSMC Tailings Basin seepage M fs =142091 (mg/l) concentration of Hydrometallurgical Residue Cells Liner Leakage M rrs = 0 (mg/l) 2130 (mg/l) mass flux of ground water into PM-12 $M_{g12} =$ mass flux of ground water into PM-13 M g13 =10425 (mg/l) Balance 27752 (mg/s) mass flux in river at PM-12 M r12 =328452 (mg/s) mass flux in river at PM-13 $M_r13 =$ Concentration Calculated concentration in river at PM-12 C r12 = 71.09 (mg/l) C_r13 = 145.08 (mg/l) concentration in river at PM-13 Concentration Observed concentration in river at PM-12 61.70 (mg/l)

Observed concentration in river at PM-13

Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter: Potassium				
	surface water flow into PM-12	Q_s12 =	0.30 (cfs)	
Data	surface water flow into PM-13	Q_s13 =	0.30 (cfs)	
	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)	
nput Flow	Area 5 Pit NW discharge LTVSMC Tailings Basin seepage	Q_spit = Q_fs =	0.00 (cfs) 1.20 (cfs)	
正	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)	
ţ	ground water flow into PM-12	Q_g12 =	0.86 (cfs)	
<u>u</u>	ground water flow into PM-13	Q_g13 =	4.21 (cfs)	
		1		
ख	concentration of surface water into PM-12	C_s12 =	3.7 (mg/l)	
Data	concentration of surface water into PM-13	C_s13 =	3.7 (mg/l)	
o	concentration of WWTP discharge	C_sBab =	3.7 (mg/l)	
trati	concentration of Area 5 Pit NW discharge	C_spit =	48.6 (mg/l)	
Gen	concentration of LTVSMC Tailings Basin seepage	C_fs =	7.77 (mg/l)	
nput Concentration	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
t o	concentration of ground water flow into PM-12	C_g12 =	1.6 (mg/l)	
du	concentration of ground water flow into PM-13	C_g13 =	1.6 (mg/l)	
0	flow in river at PM 12	Q r12 =	1.40 (cfc)	
er Ince	How in the at PM 40	_	1.49 (cfs)	
Water Baland	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	7.20 (cfs)	
> ш	lliow check	Q_ck =	7.20 (cfs)	
	mass flux of surface water into PM-12	M s12 =	32 (µg/s)	
	mass flux of surface water into PM-13	M_s13 =	31 (mg/s)	
ð	mass flux of Babbitt WWTP	M_sBab =	35 (mg/s)	
Ε×	concentration of Area 5 Pit NW discharge	M_spit =	0 (mg/s)	
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	264 (mg/s)	
lnc lss l	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (mg/s)	
Calculation of Mass Flux	mass flux of ground water into PM-12	M_g12 =	39 (mg/s)	
0 2	mass flux of ground water into PM-13	M_g13 =	191 (mg/s)	
ф	mass flux in river at PM-12	M r12 =	105 (mg/s)	
ss	IIIdos iiux iii iivei at i ivi-12		103 (1119/5)	
Mass Balance	mass flux in river at PM-13	M_r13 =	591 (mg/s)	
Calculated Concentration				
atec	concentration in river at PM-12	C_r12 =	2.49 (mg/l)	
Sula				
Calculated Concentrat	concentration in river at DM 12	C r12	2.00 (mg/l)	
	concentration in river at PM-13	C_r13 =	2.90 (mg/l)	
Ē				
Observed Concentration				
Observed	Observed concentration in river at PM-12		0.78 (mg/l)	
ser				
පි රි	Observed concentration in river at PM-13		2.31 (mg/l)	

Embarrass River Model - Calibration to Baseline Water Quality Data			
Parameter:	Magnesium		
	•		
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)
	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)
≥	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)
은	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)
゙゙゙゙゙゙゙゙	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)
nput Flow	ground water flow into PM-12 ground water flow into PM-13	Q_g12 = Q_g13 =	0.86 (cfs) 4.21 (cfs)
_	Iground water now into FM-13	Q_g13 =	4.21 (CIS)
	concentration of surface water into PM-12	C_s12 =	6 (mg/l)
Data	concentration of surface water into PM-13	C_s13 =	6 (mg/l)
n D	concentration of WWTP discharge	C sBab =	6 (mg/l)
atio		_	
ntra	concentration of Area 5 Pit NW discharge	C_spit = C_fs =	252 (mg/l)
nce	concentration of LTVSMC Tailings Basin seepage concentration of Hydrometallurgical Residue Cells Liner Leakage	C_is = C_rrs =	69.97 (mg/l) 0
nput Concentration			
put	concentration of ground water flow into PM-12	C_g12 =	10.65 (mg/l)
드	concentration of ground water flow into PM-13	C_g13 =	10.65 (mg/l)
Φ	flow in river at PM-12	Q r12 =	13.79 (cfs)
ter	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	80.00 (cfs)
Water Baland	flow check	Q ck =	80.00 (cfs)
		. –	,
	mass flux of surface water into PM-12	M_s12 =	2140 (µg/s)
	mass flux of surface water into PM-13	M_s13 =	8236 (mg/s)
of	mass flux of Babbitt WWTP	M_sBab =	56 (mg/s)
e ×	concentration of Area 5 Pit NW discharge	M_spit =	14192 (mg/s)
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	22772 (mg/s)
	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (mg/s)
Calculation of Mass Flux	mass flux of ground water into PM-12	M_g12 =	259 (mg/s)
0 2	mass flux of ground water into PM-13	M_g13 =	1269 (mg/s)
9	mass flux in river at PM-12	M_r12 =	2455 (mg/s)
ss			= 100 (mg/0)
Mass Balance	mass flux in river at PM-13	M r13 =	48924 (mg/s)
_			
Calculated Concentration			
tec	concentration in river at PM-12	C_r12 =	6.29 (mg/l)
e la			
Calculated Concentral			
ပိပိ	concentration in river at PM-13	C_r13 =	21.61 (mg/l)
on			
ر ati:	Observed served to the CARAGO		0.07
vec	Observed concentration in river at PM-12		6.2 (mg/l)
ser			
Observed Concentration	Observed concentration in river at PM-13		15.9 (mg/l)
	Observed concentration in fiver at 1 W-10	<u> </u>	10.0 (111g/1)

Embarrass River Model - Calibration to Baseline Water Quality Data			
Parameter:	Manganese		
	· ·		
	surface water flow into PM-12	Q_s12 =	0.30 (cfs)
Data	surface water flow into PM-13	Q_s13 =	0.30 (cfs)
	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)
≥	Area 5 Pit NW discharge	Q_spit =	0.00 (cfs)
은	LTVSMC Tailings Basin seepage	Q_fs =	1.20 (cfs)
ヸ	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)
nput Flow	ground water flow into PM-12 ground water flow into PM-13	Q_g12 =	0.86 (cfs) 4.21 (cfs)
_	Iground water now into FM-13	Q_g13 =	4.21 (015)
	concentration of surface water into PM-12	C_s12 =	0.3 (mg/l)
Data	concentration of surface water into PM-13	C_s13 =	0.3 (mg/l)
n D	concentration of WWTP discharge	C sBab =	0.3 (mg/l)
atio	-	_	
ntra	concentration of Area 5 Pit NW discharge concentration of LTVSMC Tailings Basin seepage	C_spit = C_fs =	0.65 (mg/l) 1.183 (mg/l)
nce	concentration of LTVSMC Tailings basin seepage concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0
nput Concentration			
put	concentration of ground water flow into PM-12	C_g12 =	0.188 (mg/l)
드	concentration of ground water flow into PM-13	C_g13 =	0.188 (mg/l)
Φ	flow in river at PM-12	Q r12 =	1.49 (cfs)
ter	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	7.20 (cfs)
Water Baland	flow check	Q_ck =	7.20 (cfs)
	, i.e., e.i.e.	<u> </u>	7.120 (0.0)
	mass flux of surface water into PM-12	M_s12 =	3 (µg/s)
	mass flux of surface water into PM-13	M_s13 =	3 (mg/s)
of	mass flux of Babbitt WWTP	M_sBab =	3 (mg/s)
Б×	concentration of Area 5 Pit NW discharge	M_spit =	0 (mg/s)
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	40 (mg/s)
32.8	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (mg/s)
Calculation of Mass Flux	mass flux of ground water into PM-12	M_g12 =	5 (mg/s)
ິ ≥	mass flux of ground water into PM-13	M_g13 =	22 (mg/s)
	T	1	
9	mass flux in river at PM-12	M_r12 =	10 (mg/s)
SS	made maximilition act in 12	.vi_112 -	10 (1119/3)
Mass Balance	mass flux in river at PM-13	M_r13 =	75 (mg/s)
	JIII 400 II 47 II 11 I 100 I AL I 111 I 10	[W]_1 10 =	7.5 (Hig/s)
Calculated Concentration			
tra	concentration in river at PM-12	C r12 =	0.24 (mg/l)
ılai en		1 -	3.7
Calculated Concentral			
ပို့ ပိ	concentration in river at PM-13	C_r13 =	0.37 (mg/l)
nc			
atic			
vec	Observed concentration in river at PM-12		0.34 (mg/l)
ice ice			
Observed Concentration	Observed concentration in river at PM-13		0.20 (mg/l)
	OSSOCITOR CONCONTRATION IN TWO ALT WE TO	1	0.20 (IIIg/I)

Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter:				
_	surface water flow into PM-12	Q_s12 =	12.60 (cfs)	
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)	
ä	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)	
nput Flow	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)	
జ	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)	
Ħ	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)	
횬	ground water flow into PM-12 ground water flow into PM-13	Q_g12 = Q_g13 =	0.86 (cfs) 4.21 (cfs)	
_	Iground water now into PN-13	Q_g13 =	4.21 (cfs)	
æ	concentration of surface water into PM-12	C_s12 =	3.5 (mg/l)	
Data	concentration of surface water into PM-13	C_s13 =	3.5 (mg/l)	
l lo	concentration of WWTP discharge	C sBab =	3.5 (mg/l)	
atic	concentration of Area 5 Pit NW discharge	C_spit =	119 (mg/l)	
entr	concentration of LTVSMC Tailings Basin seepage	C_fs =	44.31 (mg/l)	
) nc	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
nput Concentration	concentration of ground water flow into PM-12	 C_g12 =	4.9 (mg/l)	
ndu	concentration of ground water flow into PM-13	C_g13 =	4.9 (mg/l)	
_	Concentration of ground water now into PM-13	U_g13 =	4.9 (IIIg/I)	
Ф	flow in river at PM-12	Q r12 =	13.79 (cfs)	
ter anc	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	80.00 (cfs)	
Water Baland	flow check	Q_ck =	80.00 (cfs)	
		1	(0.0)	
	mass flux of surface water into PM-12	M s12 =	1248 (µg/s)	
	mass flux of surface water into PM-13	M_s13 =	4804 (mg/s)	
of	mass flux of Babbitt WWTP	M_sBab =	33 (mg/s)	
⊢ ⊱	concentration of Area 5 Pit NW discharge	M_spit =	6702 (mg/s)	
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	14421 (mg/s)	
1 1 1 S	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (mg/s)	
Calculation of Mass Flux	mass flux of ground water into PM-12	$M_g12 =$	119 (mg/s)	
౮⋝	mass flux of ground water into PM-13	M_g13 =	584 (mg/s)	
Ce	mass flux in river at PM-12	M_r12 =	1400 (mg/s)	
Mass Balance				
Me Ba	mass flux in river at PM-13	M_r13 =	27911 (mg/s)	
		1		
Calculated Concentration				
ed rati	concentration in river at PM-12	C_r12 =	3.59 (mg/l)	
late	CONCENTIATION IN TIVET AT FIVE-12	0_114 =	3.38 (IIIg/I)	
DO POC				
Calculated Concentrat	concentration in river at PM-13	C_r13 =	12.33 (mg/l)	
	position and the first term to	10_1.0 =	(1119/1)	
uc				
Observed Concentration	Observed concentration in viver at DM 10		2.0 (22.21)	
rve	Observed concentration in river at PM-12		3.0 (mg/l)	
Observed				
7 5 5	Observed concentration in river at PM-13		12.7 (mg/l)	

Embarrass River Model - Calibration to Baseline Water Quality Data					
Parameter:	Nickel		•		
_	surface water flow into PM-12	Q_s12 =	12.60 (cfs)		
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)		
ă	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)		
nput Flow	Area 5 Pit NW discharge LTVSMC Tailings Basin seepage	Q_spit = Q_fs =	1.99 (cfs) 11.50 (cfs)		
Ĕ	Hydrometallurgical Residue Cells Liner Leakage	Q_is = Q_rrs =	0.00 (cfs)		
ţ	ground water flow into PM-12	Q_g12 =	0.86 (cfs)		
n d	ground water flow into PM-13	Q_g13 =	4.21 (cfs)		
		1.	l		
ā	concentration of surface water into PM-12	C_s12 =	1.2 (µg/l)		
Data	concentration of surface water into PM-13	C_s13 =	1.2 (μg/l)		
on	concentration of WWTP discharge	C_sBab =	1.2 (µg/l)		
trati	concentration of Area 5 Pit NW discharge	C_spit =	2.5 (μg/l)		
nput Concentration	concentration of LTVSMC Tailings Basin seepage	C_fs =	6.88 (µg/l)		
ouo;	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0 (μg/l)		
o ti	concentration of ground water flow into PM-12	C_g12 =	7 (μg/l)		
dul	concentration of ground water flow into PM-13	C_g13 =	7 (μg/l)		
	" · · · · · · · · · · · · · · · · · · ·	0.40	10.70 (()		
nce	tiow in river at PM-12	Q_r12 =	13.79 (cfs)		
Water Baland	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	80.00 (cfs)		
<u> </u>	flow check	Q_ck =	80.00 (cfs)		
	mass flux of surface water into PM-12	M s12 =	428 (µg/s)		
	mass flux of surface water into PM-13	M_s13 =	1647 (µg/s)		
of	mass flux of Babbitt WWTP	M_sBab =	11 (µg/s)		
E ×	concentration of Area 5 Pit NW discharge	M_spit =	141 (µg/s)		
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	2239 (µg/s)		
3 S S	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (µg/s)		
Calculation of Mass Flux	mass flux of ground water into PM-12	M_g12 =	170 (µg/s)		
0 ≥	mass flux of ground water into PM-13	M_g13 =	834 (µg/s)		
Φ					
s	mass flux in river at PM-12	M_r12 =	610 (µg/s)		
Mass Balance	mace flux in river at PM 13	M r13 =	5471 (49/2)		
Z W	mass flux in river at PM-13	IVI_I 13 =	5471 (μg/s)		
п					
Calculated Concentration					
Calculated Concentrat	concentration in river at PM-12	C_r12 =	1.6 (μg/l)		
loul noe					
S S	concentration in river at PM-13	C_r13 =	2.4 (µg/l)		
ion					
irati	Observed concentration in river at PM-12		1.9 (µg/l)		
irve	5555. TOG GOTTOGRAGIOT IT TWO ACT IN 12		(μg/1)		
Observed Concentration					
0 0	Observed concentration in river at PM-13		2.1 (μg/l)		

Embarrass River Model - Calibration to Baseline Water Quality Data					
Parameter:			•		
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)		
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)		
ρ̈́	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)		
nput Flow	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)		
유	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)		
= =	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)		
ਰੂ	ground water flow into PM-12	Q_g12 =	0.86 (cfs)		
<u> </u>	ground water flow into PM-13	Q_g13 =	4.21 (cfs)		
æ	concentration of surface water into PM-12	C_s12 =	0 (μg/l)		
Data	concentration of surface water into PM-13	C_s13 =	0 (μg/l)		
] uc	concentration of WWTP discharge	C sBab =	0 (μg/l)		
ratic	concentration of Area 5 Pit NW discharge	C_spit =	0.5 (µg/l)		
enti	concentration of LTVSMC Tailings Basin seepage	C_fs =	1.2 (µg/l)		
onc	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0		
nput Concentration	concentration of ground water flow into PM-12	C_g12 =	1.2 (µg/l)		
Inpl	concentration of ground water flow into PM-13	C_g13 =	1.2 (µg/l)		
	0	1 =5	(107		
9	flow in river at PM-12	Q_r12 =	13.79 (cfs)		
Water Baland	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	80.00 (cfs)		
Wa Ba	flow check	Q_ck =	80.00 (cfs)		
	mass flux of surface water into PM-12	M_s12 =	0 (μg/s)		
	mass flux of surface water into PM-13	M_s13 =	0 (µg/s)		
jo	mass flux of Babbitt WWTP	M_sBab =	0 (µg/s)		
등 폭	concentration of Area 5 Pit NW discharge	M_spit =	28 (µg/s)		
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	391 (µg/s)		
ln s	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (µg/s)		
Calculation of Mass Flux	mass flux of ground water into PM-12	M_g12 =	29 (µg/s)		
0 ≥	mass flux of ground water into PM-13	M_g13 =	143 (µg/s)		
Φ					
Ō	mass flux in river at PM-12	M_r12 =	29 (μg/s)		
Mass Balan			/		
2 0	mass flux in river at PM-13	M_r13 =	591 (μg/s)		
Calculated Concentration					
ate	concentration in river at PM-12	C_r12 =	0.07 (μg/l)		
Calculated Concentrat					
Coal	concentration in river at PM-13	C_r13 =	0.26 (µg/l)		
		<u> </u>	(P9/1)		
uc					
d ratic	Observed concentration in viver at DM 10		ND (0.30) (1.77/1)		
Observed Concentration	Observed concentration in river at PM-12		ND (0.30) (μg/l)		
bse					
ŌŎ	Observed concentration in river at PM-13		0.27 (μg/l)		

Embarra	Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter:	Antimony				
	·		•		
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)		
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)		
e O	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)		
≥	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)		
운	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)		
nput Flow	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)		
횬	ground water flow into PM-12 ground water flow into PM-13	Q_g12 =	0.86 (cfs) 4.21 (cfs)		
_	Iground water now into FM-13	Q_g13 =	4.21 (CIS)		
er.	concentration of surface water into PM-12	C_s12 =	0.02 (µg/l)		
Data	concentration of surface water into PM-13	C_s13 =	0.02 (µg/l)		
n D	concentration of WWTP discharge	C sBab =	0.02 (µg/l)		
atio	concentration of Area 5 Pit NW discharge	_			
ntra	concentration of Area's Pit NW discharge concentration of LTVSMC Tailings Basin seepage	C_spit = C_fs =	1.5 (μg/l) 0.25 (μg/l)		
nce	concentration of LTVSMC Tailings basin seepage concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0.25 (μg/l)		
ပိ					
nput Concentration	concentration of ground water flow into PM-12	C_g12 =	1.5 (µg/l)		
드	concentration of ground water flow into PM-13	C_g13 =	1.5 (µg/l)		
Φ	flow in river at PM-12	Q r12 =	13.79 (cfs)		
ter	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	80.00 (cfs)		
Water Baland	flow check	Q_ck =	80.00 (cfs)		
	now drook	<u> </u>	00.00 (0.0)		
	mass flux of surface water into PM-12	M_s12 =	7 (µg/s)		
	mass flux of surface water into PM-13	M_s13 =	27 (µg/s)		
of	mass flux of Babbitt WWTP	M_sBab =	0 (µg/s)		
5 ×	concentration of Area 5 Pit NW discharge	M_spit =	84 (µg/s)		
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	81 (µg/s)		
S S	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (µg/s)		
Calculation of Mass Flux	mass flux of ground water into PM-12	$M_g12 =$	37 (µg/s)		
౦≥	mass flux of ground water into PM-13	M_g13 =	179 (μg/s)		
		1			
e O	mass flux in river at PM-12	M r12 -	44 (ug/e)		
SS	mass flux in river at PM-12	M_r12 =	44 (µg/s)		
Mass Balance	mage flux in river at DM 10	M =10	440 (/-)		
20	mass flux in river at PM-13	M_r13 =	416 (µg/s)		
Calculated Concentration					
ed	concentration in river at PM-12	C_r12 =	0.11 (µg/l)		
ılat	os.		(μg/1)		
Calculated Concentrat					
င္မွ ၀	concentration in river at PM-13	C_r13 =	0.18 (μg/l)		
			(A: 3: 7		
Ľ					
Observed Concentration	0		ND (0.5)		
Observed	Observed concentration in river at PM-12		ND (0.3) (μg/l)		
ser					
දී රි	Observed concentration in river at PM-13		ND (0.3) (μg/l)		

Embarrass River Model - Calibration to Baseline Water Quality Data				
	Selenium			
_	surface water flow into PM-12	Q_s12 =	12.60 (cfs)	
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)	
ă	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)	
nput Flow	Area 5 Pit NW discharge LTVSMC Tailings Basin seepage	Q_spit = Q_fs =	1.99 (cfs) 11.50 (cfs)	
Ĕ	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)	
ţ	ground water flow into PM-12	Q_g12 =	0.86 (cfs)	
n	ground water flow into PM-13	Q_g13 =	4.21 (cfs)	
		_		
Ø	concentration of surface water into PM-12	C_s12 =	0.3 (µg/l)	
Data	concentration of surface water into PM-13	C_s13 =	0.3 (μg/l)	
o U	concentration of WWTP discharge	C_sBab =	0.3 (µg/l)	
trati	concentration of Area 5 Pit NW discharge	C_spit =	1 (μg/l)	
Sent	concentration of LTVSMC Tailings Basin seepage	C_fs =	1.09 (µg/l)	
ono	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0	
nput Concentration	concentration of ground water flow into PM-12	C_g12 =	2.95 (µg/l)	
dul	concentration of ground water flow into PM-13	C_g13 =	2.95 (μg/l)	
0	flow in river at PM 12	0 r10	12 70 (cfc)	
er Ince	flow in river at PM-12 flow in river at PM-13 flow check	Q_r12 =	13.79 (cfs)	
Water Baland	tiow in river at PM-13	Q_r13 =	80.00 (cfs)	
> ш	lliow check	Q_ck =	80.00 (cfs)	
	mass flux of surface water into PM-12	M s12 =	107 (μg/s)	
	mass flux of surface water into PM-13	M_s13 =	412 (μg/s)	
of	mass flux of Babbitt WWTP	M_sBab =	3 (µg/s)	
5 ×	concentration of Area 5 Pit NW discharge	M_spit =	56 (µg/s)	
Calculation of Mass Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	355 (µg/s)	
S 28	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (µg/s)	
Calcul Mass I	mass flux of ground water into PM-12	M_g12 =	72 (µg/s)	
ບ ≥	mass flux of ground water into PM-13	M_g13 =	351 (μg/s)	
ice	mass flux in river at PM-12	M_r12 =	182 (µg/s)	
Mass Balance				
B K	mass flux in river at PM-13	M_r13 =	1356 (μg/s)	
2				
E G				
tre tec	concentration in river at PM-12	C_r12 =	0.47 (μg/l)	
ula				
Calculated Concentration		0 40	0.00 (
00	concentration in river at PM-13	C_r13 =	<mark>0.60</mark> (μg/l)	
atio.				
ed otrs	Observed concentration in river at PM-12		ND (1) (μg/l)	
er cer				
Observed Concentration	Observed concentration in river at PM-13		ND (1) (μg/l)	
	Observed concentration in fiver at 1 W-13	1	(μg/i)	

Embarra	Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter:	Sulfate				
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)		
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)		
e	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)		
≥ .	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)		
l 운	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)		
l ±	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)		
nput Flow	ground water flow into PM-12 ground water flow into PM-13	Q_g12 =	0.86 (cfs) 4.21 (cfs)		
_	ground water now into FW-13	Q_g13 =	4.21 (CIS)		
	concentration of surface water into PM-12	C_s12 =	4 (mg/l)		
Data	concentration of surface water into PM-13	 C_s13 =	4 (mg/l)		
Ę.	concentration of WWTP discharge	C sBab =	4 (mg/l)		
atic	concentration of Area 5 Pit NW discharge	C_spit =	1042 (mg/l)		
entr	concentration of LTVSMC Tailings Basin seepage	C_fs =	152.4 (mg/l)		
nput Concentration	concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0		
Ğ	concentration of ground water flow into PM-12	C_g12 =	8.5 (mg/l)		
ndu	concentration of ground water flow into PM-13	C_g13 =	8.5 (mg/l)		
_	concentration of ground water now into the To	<u> 0_g10 </u>	0.5 (mg/i)		
Φ	flow in river at PM-12	Q r12 =	13.79 (cfs)		
ter	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	80.00 (cfs)		
Water Baland	flow check	Q_ck =	80.00 (cfs)		
		1	(0.0)		
	mass flux of surface water into PM-12	M_s12 =	1427 (µg/s)		
	mass flux of surface water into PM-13	M_s13 =	5491 (mg/s)		
of	mass flux of Babbitt WWTP	M_sBab =	37 (mg/s)		
5 ×	concentration of Area 5 Pit NW discharge	M_spit =	58682 (mg/s)		
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	49599 (mg/s)		
	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (mg/s)		
Calculation of Mass Flux	mass flux of ground water into PM-12	M_g12 =	207 (mg/s)		
0 ≥	mass flux of ground water into PM-13	M_g13 =	1013 (mg/s)		
		1			
S S	mass flux in river at PM-12	M_r12 =	1671 (mg/s)		
ss			(mg/s)		
Mass Balance	mass flux in river at PM-13	M r13 =	116455 (mg/s)		
	THE OF THE TWO I GET IN TO	IVI_I IO =	110 1 05 (1119/5)		
_					
Calculated Concentration					
Calculated Concentral	concentration in river at PM-12	C_r12 =	4.3 (mg/l)		
ula Ser					
alc onc					
ΰŏ	concentration in river at PM-13	C_r13 =	51.4 (mg/l)		
iion					
ed tration	Observed concentration in river at PM-12		4.7 (ma/l)		
rved	Observed concentration in river at PM-12		4.7 (mg/l)		
Observed Concentration	Observed concentration in river at PM-12		4.7 (mg/l)		

Embarra	Embarrass River Model - Calibration to Baseline Water Quality Data			
Parameter:	Thallium			
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)	
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)	
ä	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)	
Flow	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)	
正	LTVSMC Tailings Basin seepage Hydrometallurgical Residue Cells Liner Leakage	Q_fs = Q_rrs =	11.50 (cfs) 0.00 (cfs)	
Input	ground water flow into PM-12	Q_f13 = Q_g12 =	0.86 (cfs)	
ם	ground water flow into PM-13	Q_g13 =	4.21 (cfs)	
	19	<u></u> 9 · ·	: (0.0)	
~	concentration of surface water into PM-12	C_s12 =	0.2 (mg/l)	
Data	concentration of surface water into PM-13	C_s13 =	0.2 (mg/l)	
_ L	concentration of WWTP discharge	C sBab =	0.2 (mg/l)	
atio	-	_		
nput Concentration	concentration of Area 5 Pit NW discharge	C_spit = C_fs =	1 (mg/l) 0.2 (mg/l)	
nce	concentration of LTVSMC Tailings Basin seepage	C_rrs =	0.2 (Hig/l)	
ပိ	concentration of Hydrometallurgical Residue Cells Liner Leakage			
ont	concentration of ground water flow into PM-12	C_g12 =	0.004 (mg/l)	
_	concentration of ground water flow into PM-13	C_g13 =	0.004 (mg/l)	
4)	flow in river at PM-12	Q r12 =	13.79 (cfs)	
Water Balance		_		
Water Balan	flow in river at PM-13	Q_r13 =	80.00 (cfs)	
> Ш	flow check	Q_ck =	80.00 (cfs)	
	Leave the set and a set and DM 40	IM -40	74 (/-)	
	mass flux of surface water into PM-12 mass flux of surface water into PM-13	M_s12 = M_s13 =	71 (µg/s) 275 (mg/s)	
7	mass flux of Babbitt WWTP	M_sBab =	2/3 (Hg/s) 2 (mg/s)	
	concentration of Area 5 Pit NW discharge	M_spit =	56 (mg/s)	
Calculation of Mass Flux	concentration of LTVSMC Tailings Basin seepage	M fs =	65 (mg/s)	
	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (mg/s)	
Calcul Mass I	mass flux of ground water into PM-12	M_g12 =	0 (mg/s)	
ö≥	mass flux of ground water into PM-13	$M_g13 =$	0 (mg/s)	
Ф	mass flux in river at PM-12	M_r12 =	73 (mg/s)	
ss			(g,)	
Mass Balanc	mass flux in river at PM-13	M_r13 =	470 (mg/s)	
		1		
_				
Calculated Concentration				
tra	concentration in river at PM-12	C_r12 =	0.19 (mg/l)	
e la		 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Calculated Concentrat				
ပိ ပိ	concentration in river at PM-13	C_r13 =	0.21 (mg/l)	
nc				
atic		1		
vec	Observed concentration in river at PM-12	 	ND (0.4) (μg/l)	
sen oce				
Observed Concentration	Observed concentration in river at PM-13		ND (0.4) (μg/l)	
	Observed concentration in fiver at 1 W-10	1	(μg/1)	

Embarra	Embarrass River Model - Calibration to Baseline Water Quality Data				
Parameter:	Zinc				
	surface water flow into PM-12	Q_s12 =	12.60 (cfs)		
Data	surface water flow into PM-13	Q_s13 =	48.51 (cfs)		
e O	Babbitt WWTP discharge	Q_sBab =	0.33 (cfs)		
≥	Area 5 Pit NW discharge	Q_spit =	1.99 (cfs)		
nput Flow	LTVSMC Tailings Basin seepage	Q_fs =	11.50 (cfs)		
゙゙゙゙゙゙゙゙	Hydrometallurgical Residue Cells Liner Leakage	Q_rrs =	0.00 (cfs)		
횬	ground water flow into PM-12 ground water flow into PM-13	Q_g12 = Q_g13 =	0.86 (cfs) 4.21 (cfs)		
_	Iground water now into FM-13	Q_g13 =	4.21 (CIS)		
	concentration of surface water into PM-12	C_s12 =	16 (µg/l)		
Data	concentration of surface water into PM-13	C_s13 =	16 (µg/l)		
n D	concentration of WWTP discharge	C sBab =	16 (µg/l)		
atio		_			
ntra	concentration of Area 5 Pit NW discharge concentration of LTVSMC Tailings Basin seepage	C_spit = C_fs =	5 (μg/l) 14.35 (μg/l)		
nce	concentration of LTVSMC Tailings basin seepage concentration of Hydrometallurgical Residue Cells Liner Leakage	C_rrs =	0 (μg/ι)		
nput Concentration					
put	concentration of ground water flow into PM-12	C_g12 =	11.5 (µg/l)		
드	concentration of ground water flow into PM-13	C_g13 =	11.5 (μg/l)		
Φ	flow in river at PM-12	Q r12 =	13.79 (cfs)		
ter	flow in river at PM-12 flow in river at PM-13 flow check	Q_r13 =	80.00 (cfs)		
Water Baland	flow check	Q_ck =	80.00 (cfs)		
	now crock	<u> </u>	00.00 (013)		
	mass flux of surface water into PM-12	M_s12 =	5707 (μg/s)		
	mass flux of surface water into PM-13	M_s13 =	21963 (µg/s)		
of	mass flux of Babbitt WWTP	M_sBab =	149 (µg/s)		
Calculation of Mass Flux	concentration of Area 5 Pit NW discharge	M_spit =	282 (µg/s)		
latior Flux	concentration of LTVSMC Tailings Basin seepage	M_fs =	4670 (μg/s)		
S E	concentration of Hydrometallurgical Residue Cells Liner Leakage	M_rrs =	0 (µg/s)		
Calcul Mass	mass flux of ground water into PM-12	M_g12 =	280 (μg/s)		
Ű≥	mass flux of ground water into PM-13	M_g13 =	1370 (µg/s)		
		T			
φ	mace flux in river at PM 12	M r12	6127 (112/2)		
SS	mass flux in river at PM-12	M_r12 =	6137 (µg/s)		
Mass Balance	and the state of DM 40	M =10	04400 ((-)		
2 0	mass flux in river at PM-13	M_r13 =	34422 (µg/s)		
		I			
Calculated Concentration					
ed	concentration in river at PM-12	C r12 =	15.72 (µg/l)		
ılat	os.		(μg/1)		
Calculated Concentral					
င် လ	concentration in river at PM-13	C_r13 =	15.20 (μg/l)		
		<u> </u>			
Ľ					
Observed Concentration					
vec	Observed concentration in river at PM-12		18.3 (μg/l)		
ser					
Observed	Observed concentration in river at PM-13		12.3 (µg/l)		
		1	(F9,·)		

Appendix F

Predicted Concentrations Using Mass-Balance Models for Embarrass River Watershed

Tailings Basin - Proposed Action

- F.1 Embarrass River: Year 1
- F.2 Embarrass River: Year 5
- F.3 Embarrass River: Year 8
- F.4 Embarrass River: Year 9
- F.5 Embarrass River: Year 15
- F.6 Embarrass River: Year 20
- F.7 Embarrass River: Closure
- F.8 Embarrass River: Post-Closure

Tailings Basin - Geotechnical Mitigation

- F.9 Embarrass River: Year 1
- F.10 Embarrass River: Year 5
- F.11 Embarrass River: Year 10
- F.12 Embarrass River: Year 15
- F.13 Embarrass River: Year 20
- F.14 Embarrass River: Closure
- F.15 Embarrass River: Post-Closure

Appendix F.1
Embarrass River
Proposed Action
Year 1

FLOWS

Case	Year 1				
Flows	Low Flow Conditions (no surface runoff)				Node
in s River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.27	(cfs)	PM-13
Tota	flow check	Q_ck_L =	6.27	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.34	(cfs)	PM-13
da v	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_L =	0.86	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
n I	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 1				
Flow	Average Flow Conditions (mean annual)				
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_M =	92.68	(cfs)	PM-13
Total	flow check	Q_ck_M =	92.68	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	3.19	(cfs)	PM-13
	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
t t	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
Input	ground water flow into PM-13	Q g13 M =	4.21	(cfs)	PM-13

Case	Year 1				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	864.23	(cfs)	PM-13
Tota	flow check	Q_ck_H =	864.23	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ţa	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	3.19	(cfs)	PM-13
flow data	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
١٥	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
ᄪ	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case Parameter	Year 1 Silver			
		_		
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
Ē	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
concentration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00096	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
CO	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
≝	concentration of ground water into PM-13	C_g13 =	0.000008	(mg/L)
			Low Flo	w

			Low Flo	W	Average	Flow	High FI	ow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)	
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)	
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)	
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)	
ceu	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)	
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)	
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)	
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)	
င္မ င	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)	
			Low Flow		Average	Average Flow		High Flow	
ass balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)	
Mass	mass flux in river at PM-13	M_r13 =	0.01 Low Flo	(mg/s)		(mg/s)		(mg/s)	
			LOW FIO	W	Average	FIOW	High FI	ow	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)	
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)	

Case	Year 1			
Parameter	Aluminum			
		-		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
_	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.01	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.18	(mg/L)
Son	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
ğ	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
ıţra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
concentration	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.10	(mg/s)	0.90	(mg/s)	0.90	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	38.29	(mg/s)	355.65	(mg/s)	355.65	(mg/s
			Low Flo	w	Average	Flow	High FI	low
balance th node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
Mass ba at each		M_r13 =	41.98 Low Flo	(mg/s)	571.64 Average		2,755.13 High FI	
"			LOWIN		Avelage	1100	Ingiri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L
Convergillax to	concentration in river at PM-13	C r13 =	0.237	(mg/L)	0.218	(mg/L)	0.113	(ma/l

Case Parameter	Year 1 Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
n dâ	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.005946518	(mg/L)

ıti	concentration in Area 5 Pit NVV discharge	C_spit =	0.001325	(mg/L)				
centrati	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.005946518	(mg/L)				
ē	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)				
CO	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)				
Input	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)				
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)				
			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
traf	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
ö X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
Convert concentration to mass flux	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.06	(mg/s)		(mg/s)	0.54	(mg/s)
na:	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.07	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
9 0								
Mass balance at each node	mass flux in river at PM-12	M r12 =	0.07	(mg/s)	0.34	(mg/s)	3 11	(mg/s)
bal h n	THUSS HUX III TIVEL OLI TIVI-12	IVI_I IZ -	0.01	(mg/3)	0.54	(mg/s)	0.11	(mg/3)
ass								
Ma at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
SS L								
mas atic	concentration in river at PM-12	C r12 =	0 003	(mg/L)	0.001	(ma/L)	0.001	(mg/L)
ert:	CONCENTIATION IN TIVE ALT IVI-12	0_112 -	0.003	(IIIg/L)	0.001	(mg/L)	0.001	(mg/L)
Convert mass flux to concentration								
ა ≢ ვ	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case Parameter	Year 1 Boron		
	concentration of surface water into PM-12	C_s12 =	0.012
4 u		C_s13 =	0.012
֟֞֟֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֟		C_sBab =	0.012

ı		concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ı	ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
ı	ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
I	ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
I	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.138981444	(mg/L)
ı	Ser	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
ı	CO	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
ı	Ħ	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
I	Ē	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)
-					

			Low Flo	W	Average	Flow	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
Se	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.35	(mg/s)	12.53	(mg/s)	12.53	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High F	low
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)	4.91	(mg/s)	49.25	(mg/s)
		1112111	Low Flo		Average	, ,	High F	
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =		(mg/L)		(mg/L)		(mg/L)

Case	Year 1			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
d ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
5			0.0011	, ,,

ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
Ę.	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.29E-02	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
별	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)
			_	

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.51	(mg/s)	4.77	(mg/s)	4.77	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို့ ဍ		M_s2w =		(mg/s)	20.95	(mg/s)		(mg/s)
			Low Flow		Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
	mass flux in river at PM-13	M_r13 =	12.54	(mg/s)	58.92	(mg/s)	299.10	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	0.071	(mg/L)	0.022	(mg/L)	0.012	(mg/L)

Case	i eai i			
Parameter	Beryllium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000271356	(mg/L)
හු	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
CO	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
a K	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)		(mg/s)		(mg/s)
≥ ø	mass flux in river at PM-13	M_r13 =	Low Flo	(mg/s)	0.41 Average	(mg/s)	2.60 High Fl	(mg/s)
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =		(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 1 Calcium			
	concentration of surface water into PM-12	C s12 =	13	(mg/L)
data	concentration of surface water into PM-13	C_s13 =		(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
l tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	45.78662467	(mg/L)

=				(3. =/				
뱵	concentration in seepage from Tailings Basin Cells 1E and 2	E C_fs =	45.78662467	(mg/L)				
oncentrat	concentration in hydrometallurgical residue cells liner leakag	e C_rrs =	416	(mg/L)				
Ö	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)				
ŧ	concentration of ground water into PM-12	C q12 =	19	(mg/L)				
<u> </u>	concentration of ground water into PM-13	C g13 =		(mg/L)				
	· ·			, ,				
			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(ma/s)
	mass flux of ground water into PM-12	M q12 =	462.42	` ~ .	462.42	` '	462.42	
<u>o</u>	mass flux in Babbitt WWTP discharge	M sBab =	-	(mg/s)	121.41		121.41	
rat	mass flux of surface water into PM-13	M s13 =	_	(mg/s)	22,636.89	` • /	258,461	` ` `
concentration flux	mass flux of ground water into PM-13	M q13 =	2,263.72	` ~ .	2,263.72		2,263.72	
ou X	mass flux of Area 5 Pit NW discharge	M spit =		(mg/s)	5,369.83		5,369.83	` '
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	444.46		4,128.35	` • /	4,128.35	
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M rrs =		(mg/s)		(mg/s)		(mg/s)
<u>0</u> 5	mass flux in seepage from cell 2W	M s2w =	1,449.83		13,466.52			(mg/s)
	. 0		Low Flo		Average	Flow	High Fl	
9 <u>9</u>	mass flux in river at PM-12 mass flux in river at PM-13							
no ala	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
ch ba								
las: t ea								
<i>ā</i> ≤	mass flux in river at PM-13	M_r13 =	4,632.71 Low Flo		53,100.63 Average	,	323,489.12 High Fl	. 0 /
			LOWIIO		Average	I IOW	Ingiri	OW
iss								
rati	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
ivert mass to centration								
Convert mass flux to concentration								
o ∓ ŏ	concentration in river at PM-13	C_r13 =	26.104	(mg/L)	20.246	(mg/l)	13.227	(mg/l)

concentration of ourface water into DM 12	C a12 =	0.00008	(ma/L)
	C_s12 = C_s13 =	0.00008	,
concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000117453	(mg/L)
	concentration of surface water into PM-12 concentration of surface water into PM-13 concentration in Babbitt WWTP discharge concentration in Area 5 Pit NW discharge concentration in seepage from Tailings Basin Cells 1E and 2E	concentration of surface water into PM-13	concentration of surface water into PM-13 C_s13 = 0.00008 concentration in Babbitt WWTP discharge C_sBab = 0.00008 concentration in Area 5 Pit NW discharge C_spit = 0.0001

=	g-			(3. =/				
tr tr	concentration in seepage from Tailings Basin Cells 1E and 2	E C_fs =	0.000117453	(mg/L)				
oncentrat	concentration in hydrometallurgical residue cells liner leakag	e C_rrs =	0.0004	(mg/L)				
Ö	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)				
ž	concentration of ground water into PM-12	C q12 =	0.0003	(mg/L)				
	concentration of ground water into PM-13	C g13 =	0.0003					
			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
	mass flux of ground water into PM-12	M q12 =	0.01	(mg/s)	1	(mg/s)	1	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M sBab =	-	(mg/s)		(mg/s)		(mg/s)
rat	mass flux of surface water into PM-13	M s13 =	_	(mg/s)		(mg/s)	1	(mg/s)
Sen(mass flux of ground water into PM-13	M q13 =	0.04	(mg/s)		(mg/s)		(mg/s)
ë x	mass flux of Area 5 Pit NW discharge	M spit =	-	(mg/s)		(mg/s)		(mg/s)
r s	mass flux in seepage from Tailings Basin Cells 1E and 2E	M fs =	0.00	(mg/s)		(mg/s)		(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M rrs =		(mg/s)	1	(mg/s)	1	(mg/s)
5 5	mass flux in seepage from cell 2W	M_ns2w =		(mg/s)		(mg/s)		(mg/s)
	made nex in ecopage nom con 211	02	Low Flo		Average	(0)	High FI	
9.0								
alanc	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
s b								
las: t ea	n			ļ, ,, l		, ,,		, ,,
≥ ø	mass flux in river at PM-13	M_r13 =	Low Flo	(mg/s)	Average	(mg/s)	2.02 High FI	(mg/s)
			200110	i i	Avoiago		- Ingili	
ass								
t m	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
ivert mass to centration								_
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
0 4 0	בטווטבוונומנוטוו ווו וועבו מנ רועו- וט	10_113 -	0.000	(mg/L)	0.000	(mg/L)	0.000	(IIIg/L)

Case Parameter	Year 1 Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
g L	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C fs =	1.89E+01	(ma/L)

centr	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.89E+01	(mg/L)				
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)				
con	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)				
ŧ	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)				
Input	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)				
			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	=	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	=	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
uea	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
nt o	mass flux in seepage from Tailings Basin Cells 1E and 2E	M fs =	183.09	(mg/s)	1,700.65		1,700.65	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M rrs =	51.97	(mg/s)	51.97	(mg/s)	51.97	(mg/s)
ခဲ့ ပိ	mass flux in seepage from cell 2W	M_s2w =	522.40	(mg/s)	4,852.27	(mg/s)	4,852.27	
	•	•	Low Flo		Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass at ea	mass flux in river at PM-13	M_r13 =	1,015.74 Low Flo		28,273.26	, ,	246,621.91	` ' '
			LOW FIO	W	Average	FIOW	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	5.723	(mg/L)	10.780	(mg/L)	10.084	(mg/L)

Case Parameter	Year 1 Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
it a	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001174401	(mg/L)
e e	concentration in hydrometallurgical residue cells liner leakage	C rrs =	0.005	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
_	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =	0.04	(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)	0.25	(mg/s)	2.46	(mg/s)
at M	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
	T		Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Con	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Year 1			
Parameter	Copper			
				, ,,
_	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.005888719	(mg/L)
193	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
≝	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flor	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
Cer	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s
fix co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.06	(mg/s)	0.53	(mg/s)	0.53	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.11	(mg/s)	1.03	(mg/s)	1.03	(mg/s
			Low Flor	N	Average	Flow	High FI	ow
balance ch node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.74 Low Flo	(mg/s)	5.49 Average	(mg/s)	38.24 High Fl	
ss								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(ma/l

Case Parameter	Year 1 Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.57E+00	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
ם	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	44.38	(mg/s)	412.18	(mg/s)	412.18	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	37.59	(mg/s)	349.17	(mg/s)	349.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
balance ch node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s
Mass ba at each	mass flux in river at PM-13	M_r13 =	137.29 Low Flo		1,034.46 Average		3,217.94 High Fl	
ss			201110		Avoidgo			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/l
Converture flux to concer	concentration in river at PM-13	C r13 =	0.774	(mg/L)	0.394	(mg/L)	0.132	(mg/l

Case Parameter	Year 1 Iron			
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
u dê	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C fs =	4.00E-03	(mg/L)

centr	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.00E-03	(mg/L)				
92	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)				
üoo	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)				
Ę	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)				
Input	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)				
			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
trai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
uea	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ent c	mass flux in seepage from Tailings Basin Cells 1E and 2E	M fs =	0.04	(mg/s)		(mg/s)		(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ပို့ ခဲ့	mass flux in seepage from cell 2W	M_s2w =	111.42	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass	mass flux in river at PM-13	M_r13 =	116.49 Low Flo		7,154.16		70,475.26	, ,
		1	LOW FIO	W	Average	riow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Convertiux to	concentration in river at PM-13	C_r13 =	0.656	(mg/L)	2.728	(mg/L)	2.882	(mg/L)

Case	Year 1
Parameter	Hardness

	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
٦	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.15E+02	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
l 6	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
į	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
ij	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
it a	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,057.32	(mg/s)	28,397.48	(mg/s)	28,397.48	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	254.25	(mg/s)	254.25	(mg/s)	254.25	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	10,588.73	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	26,454.88 Low Flo	, ,	340,174.23		1,868,614.78	
	T		LOW FIO	w	Average	FIOW	High FI	ow
ivert mass to centration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
등속등	concentration in river at PM-13	C r13 =	149.066	(mg/L)	129.701	(mg/L)	76.402	(mg/L)

Case	Year 1			
Parameter	Potassium			
		-		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.15	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
ou co	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
į,	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
ë	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
it a	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	88.87	(mg/s)	825.45	(mg/s)	825.45	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	188.44	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	38.99	(mg/s)	1,359.39	(mg/s)	15,029.28	(mg/s)
iss	mass flux in river at PM-13	M_r13 =	506.94		13,633.01		94,422.01	
			Low Flo	w	Average	Flow	High FI	ow
ivert mass to centration	concentration in river at PM-12	C_r12 =	1.602	(mg/L)	3.481	(mg/L)	3.679	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =		(mg/L)	5 198	(mg/L)	3.861	(ma/l)

Case	Year 1			
Parameter	Magnesium			
		1		
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
,	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
÷ i	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
<u>.</u>	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
1		C_fs =	48.72	(mg/L)
a a		C_rrs =	213.00	(mg/L)
o de	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
Į i	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
È	concentration of ground water into DM 13	C a13 -	10.65	(ma/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	472.92	(mg/s)	4,392.66	(mg/s)	4,392.66	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	6.29	(mg/s)	6.29	(mg/s)	6.29	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,696.96	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	3,704.25 Low Flo		49,595.94 Average		180,605.13 High Fl	
" c			200110		Avoiago		g 1	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l
Conve	concentration in river at PM-13	C r13 =	20.872	(ma/L)	18.910	(mg/l)	7.384	(ma/l

concentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12 concentration of ground water into PM-13

Case	Year 1			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
44	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Iconcentration in Bappitt vvvv LP discharge	C_sBab =	0.30	(mg/L)
roite:		C_spit =	0.49	(mg/L)
7	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.29	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	·	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.81	(mg/s)	26.10	(mg/s)	26.10	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	266.49	(mg/s)	266.49	
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Ma: at e	mass flux in river at PM-13	M_r13 =	58.48	(mg/s)	979.13	(mg/s)	7,529.59	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Con	concentration in river at PM-13	C_r13 =	0.329	(mg/L)	0.373	(mg/l)	0.308	(mg/l)

C_s2w =

C_g12 =

C_g13 =

0.00 (mg/L)

0.19 (mg/L)

(mg/L) 0.19 (mg/L)

1.18

Case	Year 1			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	66.13	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
duj	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	641.91	(mg/s)	5,962.27	(mg/s)	5,962.27	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	7.53	(mg/s)	7.53	(mg/s)	7.53	(mg/s)
C.	mass flux in seepage from cell 2W	M_s2w =	1,074.64	(mg/s)	9,981.63	(mg/s)	9,981.63	
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Ma at	mass flux in river at PM-13	M_r13 =	2,427.13		30,760.62		107,182.65	
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Conver flux to	concentration in river at PM-13	C r13 =	13.676	(mg/L)	11.728	(mg/l)	4.382	(mg/l)

Case Parameter				
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L
n dat	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L
ō		0 "	0.0050	, ,

	Concentration of Surface water into 1 W-12	0_312 -	0.0012	(IIIg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.009513833	(mg/L)
Icel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
at	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
duı	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flor	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.09	(mg/s)	0.86	(mg/s)	0.86	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ე ე	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	1.55	(mg/s)		(mg/s)
			Low Flor	W	Average	Flow	High FI	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
<i>a</i> ≤	mass flux in river at PM-13	M_r13 =	1.27	(mg/s)	Average	(mg/s)	32.44 High FI	(mg/s)
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =		(mg/L)		(mg/L)	0.001	(mg/L)

Case	Year 1			
Parameter	Lead			
		-		
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
n di	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000585798	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.05	(mg/s)	0.05	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.27	(mg/s)	0.27	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.21 Low Flo	(mg/s)	0.51	(mg/s)	0.51 High Fl	(mg/s
SS C							g	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case Parameter	Year 1 Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
<u> </u>	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.83E-03	(mg/L)
e e	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
Ĭ	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.05	(mg/s)	0.44	(mg/s)	0.44	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္ပ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Mg at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Con	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 1				
Parameter	Selenium				
		_			
	concentration of surface water into PM-12	C_	_s12 =	0.0003	(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	0.0003	(mg/L)
	concentration in Babbitt WWTP discharge	C	_sBab =	0.0003	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C	_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C.	_fs =	0.000967892	(mg/L)
Φ.	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	0.054	(mg/L)
ouc	concentration in tailings basin cell 2W	C_	_s2w =	0.00109	(mg/L)
Input	concentration of ground water into PM-12	C.	_g12 =	0.00295	(mg/L)
<u> </u>	concentration of ground water into PM-13	C	_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.25	(mg/s)	0.25	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
balance h node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s
Mass ba at each		M_r13 =	0.46 Low Flo	(mg/s)	1.48 Average	(mg/s)	8.03 High Fl	(mg/s
nass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 = C_r13 =	0.003	(mg/L)		(mg/L)	0.000	

Case Parameter	Year 1 Sulfate			
i arameter	Junate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
tr	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	142.79	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	W	Average	Flow	High F	low	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)	
concentration flux	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)	
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)	
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)	
ceu	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)	
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)	
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,386.13	(mg/s)	12,874.84	(mg/s)	12,874.84	(mg/s)	
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	216.95	(mg/s)	216.95	(mg/s)	216.95	(mg/s)	
င္ ပိ	mass flux in seepage from cell 2W	M_s2w =	3,696.11	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)	
			Low Flow		Average Flow		High F	High Flow	
Mass balance at each node		M_r12 =	206.87		1,671.68		16,449.94		
at M	mass flux in river at PM-13	M_r13 =	6,518.78		115,994.83		203,334.29		
			Low Flow		Average Flow		High F	High Flow	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)	
Conve flux to concer	concentration in river at PM-13	C_r13 =	36.732	(mg/L)	44.226	(mg/l)	8.314	(mg/l)	

Case	Year 1			
Parameter	Thallium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
Ę.	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00096816	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
Son	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
ם	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	N	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s
			Low Flor	N	Average	Flow	High Fl	low
balance ch node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.01	(mg/s)	0.59	(mg/s)	4.96 High Fl	(mg/s
iss								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

concentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12 concentration of ground water into PM-13

Case Parameter	Year 1 Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
d,	Iconcentration in Bappitt VVVV LP discharge	C_sBab =	0.016	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.009842772	(mg/L)

			Low Flor	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.10	(mg/s)	0.89	(mg/s)	0.89	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flow		Average	Average Flow		ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)		(mg/s)		(mg/s)
at at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)	389.02	
	T		Low Flo	W	Average	Flow	High FI	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	0.012	(mg/L)	0.015	(mg/L)	0.016	(mg/L)

C_rrs =

C_s2w =

C_g12 =

C_g13 =

0.01 (mg/L)

0.0115 (mg/L)

(mg/L) 0.0115 (mg/L)

0.01435

Appendix F.2
Embarrass River
Proposed Action
Year 5

FLOWS

Case	Year 5				
Flows	Low Flow Conditions (no surface runoff)				Node
in s River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
low	flow in river at PM-13	Q_r13_L =	6.28	(cfs)	PM-13
Total flow in Embarrass F	flow check	Q_ck_L =	6.28	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.41	(cfs)	PM-13
v da	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.01	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_L =	0.79	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
μ	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 5				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass River	flow in river at PM-13	Q_r13_M =	93.61	(cfs)	PM-13
Tota	flow check	Q_ck_M =	93.61	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	4.10	(cfs)	PM-13
g v	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.01	(cfs)	PM-13
١٥	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
Input flow	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
μ	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 5				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	865.16	(cfs)	PM-13
Tota	flow check	Q_ck_H =	865.16	(cfs)	1
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
<u>t</u> a	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	4.10	(cfs)	PM-13
, da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.01	(cfs)	PM-13
flow data	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
<u>u</u>	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Year 5			
Parameter	Silver			
		1		
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00090	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_g13 =	0.000008	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
concentration	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s
Ceu	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.10	(mg/s)	0.10	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
မို ပိ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 5 Aluminum			
	concentration of surface water into PM-12	C s12 =	0.1	(mg/L)
data	concentration of surface water into PM-13	C s13 =		(mg/L)
_	concentration in Babbitt WWTP discharge	C_sBab =		(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.61E-02	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
<u> </u>	concentration of ground water into PM-13	C a13 =	0.025	(ma/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
Ceu	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
li co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.11	(mg/s)	11.16	(mg/s)	11.16	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	35.38	(mg/s)	355.65	(mg/s)	355.65	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
Mass balance at each node		M_r12 =		(mg/s)	37.23 581.97	(mg/s)	406.69 2,765.46	
	mass nax in river at 1 W-10	W_113 -	Low Flo		Average		High FI	_
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

Case Parameter	Year 5 Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
14 4	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
2	Iconcentration in Bannitt WWW LP discharge	C_sBab =	0.00075	(mg/L)
zatio.	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ri Tr	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.006775027	(mg/L)
rec	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
2				

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.08	(mg/s)	0.79	(mg/s)	0.79	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)		(mg/s)		(mg/s)
<i>v</i> i ≤	mass flux in river at PM-13	M_r13 =	0.54 Low Flo	(mg/s)	3.49 Average	(mg/s)	19.87 High FI	(mg/s)
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
ડ ≓ ડ	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

C_s2w =

C_g12 = C_g13 =

0.00273 (mg/L)

(mg/L) 0.00273 (mg/L)

0.00291

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

Case	rear 5			
Parameter	Boron			
		=		
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
βu	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.135355742	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C rrs =	0.11	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.56	(mg/s)	15.72	(mg/s)	15.72	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
င် င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)	74.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
at at	mass flux in river at PM-13	M_r13 =	12.05 Low Flo	(mg/s)	125.84		387.86	
			LOW FIO	W	Average	FIOW	High FI	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Converture flux to concer	concentration in river at PM-13	C r13 =	0.068	(mg/L)	0.048	(mg/L)	0.016	(mg/L)

C_s2w =

C_g12 =

C_g13 =

0.33 (mg/L)

0.0212 (mg/L)

0.0212 (mg/L)

Case	Year 5			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
2,42 4,42	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
		C_sBab =	0.011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ra Tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.03E-02	(mg/L)
192	Iconcentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
5	concentration in tailings basin cell 2W	C. s2w =	0.09298	(ma/L)

ខ	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)				
ă	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)				
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)				
			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s
ation	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s
li x	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.58	(mg/s)	5.84	(mg/s)	5.84	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	20.95	(mg/s)	20.95	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
alance	mass flux in river at Pivi-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s
Mass balance at each node		M_r13 =	12.44	(mg/s)	59.99	(mg/s)	300.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg
Convergillax to concer	concentration in river at PM-13	C r13 =	0.070	(mg/L)	0.023	(mg/L)	0.012	(ma/l

Case	Year 5			
Parameter	Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000454842	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.05	(mg/s)	0.05	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s
			Low Flo	w	Average	Flow	High FI	low
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s
Mass ba		M_r13 =	0.03 Low Flo	(mg/s)	0.44 Average	(mg/s)	2.62 High Fl	(mg/s
iass			200110		Avoiago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
S € 5	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/

Case Parameter	Year 5 Calcium			
		- -	1	
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
		C_sBab =	13	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	55.55427025	(mg/L)
0		C_rrs =	416	(mg/L)
၁။၀၁	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
<u> </u>	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
Inout	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	W	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
į	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	641.67	(mg/s)	6,450.21	(mg/s)	6,450.21	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	176.59	(mg/s)	176.59	(mg/s)	176.59	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,339.65	(mg/s)	13,466.52	(mg/s)	25.38	(mg/s)
			Low Flo	W	Average	Flow	High Fl	low
Mass balance at each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =	4,884.05		55,586.80		325,998.90	
			Low Flo	w	Average	Flow	High Fl	low
t mass tration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	27.459	(mg/L)	20.983	(mg/l)	13.315	(ma/l)

Case	Year 5			
Parameter	Cadmium			
		I		
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000238486	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
Ē	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
it a	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
2 10	Illass iiux iii livei at PW-13	IVI_I I 3 =	Low Flo		Average		High FI	(mg/s)
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =		(mg/L)		(mg/L)		(mg/L)
ರ ∓ ಕ	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 5			
Parameter	Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.07E+01	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)
	-			

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
Ceu	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
		M_fs =	123.84	(mg/s)	1,244.90	(mg/s)	1,244.90	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	747.10	(mg/s)	747.10	(mg/s)	747.10	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	482.71	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass ba at each		M_r13 =	1,611.91		28,512.64		246,861.29	
			Low Flo	w	Average	Flow	High FI	ow
mass	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	9.063	(mg/L)	10.763	(mg/L)	10.083	(ma/l

Case	Year 5			
Parameter	Cobalt			
		ı		
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00200513	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
Ceu	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.23	(mg/s)	0.23	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
္ မိ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)	0.35	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
	mass max in more act ini-10	IW_110 -	0.22 (mg/s)		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)		(mg/L)

Case	Year 5			
Parameter	Copper			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007797191	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
ČOU	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
at at	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s
co flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.09	(mg/s)	0.91	(mg/s)	0.91	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.10	(mg/s)	1.03	(mg/s)	1.03	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s
Mass ba at each		M_r13 =	0.77 Low Flo	(mg/s)	5.86	(mg/s)	38.61 High F l	
nass ation	and the state of t	C =12 =						
Convert mass flux to concentration	concentration in river at PM-12	C_r12 = C_r13 =		(mg/L)		(mg/L)	0.002	

Case	Year 5			
Parameter	Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ğ u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.25E+00	(mg/L)
Cei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ă,	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
흘	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	25.95	(mg/s)	260.89	(mg/s)	260.89	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.21	(mg/s)	1.21	(mg/s)	1.21	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	34.74	(mg/s)	349.17	(mg/s)	349.17	(mg/s
			Low Flo	w	Average	Flow	High FI	low
balance th node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s
Mass ba at each		M_r13 =	117.14 Low Flo		884.30 Average		3,067.79 High Fl	
			LOWITO	W	Average	liow	Ingiri	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L
Conver flux to concer	concentration in river at PM-13	C r13 =	0.659	(mg/L)	0.334	(mg/L)	0.125	(ma/L

on	l		
oncentration of surface water into PM-12	C s12 =	2.9	(mg/L
	C_s13 =		(mg/L
oncentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L
oncentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L
oncentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.96E-02	(mg/L
oncentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L
oncentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L
oncentration of ground water into PM-12	C_g12 =	0.035	(mg/L
oncentration of ground water into PM-13	C_g13 =	0.035	(mg/L
	oncentration in Babbitt WWTP discharge concentration in Area 5 Pit NW discharge concentration in seepage from Tailings Basin Cells 1E and 2E concentration in hydrometallurgical residue cells liner leakage concentration in tailings basin cell 2W concentration of ground water into PM-12	oncentration of surface water into PM-13 C_s13 = C_sBab = C_sBab = C_spit	oncentration of surface water into PM-13 C_s13 = 2.9 concentration in Babbitt WWTP discharge C_sBab = 2.9 concentration in Area 5 Pit NW discharge C_spit = 0.037761905 concentration in seepage from Tailings Basin Cells 1E and 2E C_fs = 5.96E-02 concentration in hydrometallurgical residue cells liner leakage C_rrs = 4.00E-01 concentration in tailings basin cell 2W C_s2w = 4.594 concentration of ground water into PM-12 C_g12 = 0.035

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
concentration	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.69	(mg/s)	6.92	(mg/s)	6.92	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ဒိ ဒိ	mass flux in seepage from cell 2W	M_s2w =	102.95	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	108.83	(mg/s)	7,160.87	(mg/s)	70,481.98	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	0.612	(mg/L)	2.703	(mg/L)	2.879	(mg/L)

Case	Year 5		
Parameter	Hardness		
	concentration of surface water into PM-12	C_s12 =	-
4		C_s13 =	7
7		C sBab =	-

concentration of surface water into PM-12	C_s12 =	70	(mg/L)
concentration of surface water into PM-13	C_s13 =	70	(mg/L)
concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.61E+02	(mg/L)
concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)
	concentration of surface water into PM-13 concentration in Babbitt WWTP discharge concentration in Area 5 Pit NW discharge concentration in seepage from Tailings Basin Cells 1E and 2E concentration in hydrometallurgical residue cells liner leakage concentration in tailings basin cell 2W concentration of ground water into PM-12	concentration of surface water into PM-13	concentration of surface water into PM-13

24,980.41 2,129.58 653.73 121,890.93 10,425.01	(mg/s) (mg/s) (mg/s)	283,600 2,129.58 653.73 1,391,712	(mg/s) (mg/s)
653.73 121,890.93 10,425.01	(mg/s) (mg/s)	653.73	(mg/s)
121,890.93 10,425.01	(mg/s)		
10,425.01	` • /	1,391,712	(ma/s
	(mg/s)		(ilig/3
E3 000 94		10,425.01	(mg/s
55,090.64	(mg/s)	53,090.84	(mg/s
30,336.71	(mg/s)	30,336.71	(mg/s
3,654.83	(mg/s)	3,654.83	(mg/s
98,352.01	(mg/s)	98,352.01	(mg/s
Average	Flow	High Fl	ow
27,763.72	(mg/s)	286,383.27	(mg/s
		1,873,954.60 High Fl	_
	98,352.01 Average 27,763.72 345,514.05	3,654.83 (mg/s) 98,352.01 (mg/s) Average Flow 27,763.72 (mg/s) 345,514.05 (mg/s) Average Flow	98,352.01 (mg/s) 98,352.01 Average Flow High Fl 27,763.72 (mg/s) 286,383.27 345,514.05 (mg/s) 1,873,954.60

Case	Year 5			
Parameter	Potassium			
		-		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
ρι	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.67	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
#	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.76	(mg/s)	0.76	(mg/s)	0.76	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s
flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	88.61	(mg/s)	890.78	(mg/s)	890.78	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	174.12	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
balance ch node	mass flux in river at PM-12	M_r12 =	39.70	(mg/s)	1,360.10	(mg/s)	15,029.99	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	493.07 Low Flo		13,699.05 Average		94,488.05 High Fl	
s c			2011110		71101490			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.631	(mg/L)	3.483	(mg/L)	3.679	(mg/l)
Conve flux to	concentration in river at PM-13	C r13 =	2.772	(mg/L)	5.171	(mg/L)	3.859	(ma/l)

concentration of ground water into PM-12

concentration of ground water into PM-13

Case	rear 5			
Parameter	Magnesium			
		_		
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	29.76	(mg/L)
Ser	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
<u> </u>	concentration in tailings basin cell 2W	C. s2w =	69 97	(ma/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
it	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	343.77	(mg/s)	3,455.69	(mg/s)	3,455.69	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	90.42	(mg/s)	90.42	(mg/s)	90.42	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	1,568.01	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
Mass balance at each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	3,530.27		48,743.09		179,752.28	, ,
			Low Flo	W	Average	Flow	High FI	low
t mass tration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	19.848	(mg/L)	18.400	(mg/l)	7 342	(mg/l)

C_g12 =

C_g13 =

10.65 (mg/L)

10.65 (mg/L)

Case	Year 5			
Parameter	Manganese			
		1		ı
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
Ē	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.31	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
u	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.58	(mg/s)	36.00	(mg/s)	36.00	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
င္မွ င္	mass flux in seepage from cell 2W	M_s2w =	26.51	(mg/s)	266.49	(mg/s)	266.49	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
	mass flux in river at PM-13	M_r13 =		(mg/s)	989.03		7,539.49	
ss			Low Flo	w	Average	Flow	High FI	0
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/
Conve flux to conce	concentration in river at PM-13	C r13 =	0.321	(mg/L)	0.373	(mg/l)	0.308	(mg/l

Case	Year 5			
Parameter	Sodium			
		-		
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	34.82	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
u o o	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
nd I	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	402.15	(mg/s)	4,042.46	(mg/s)	4,042.46	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	108.24	(mg/s)	108.24	(mg/s)	108.24	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	992.97	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s
			Low Flo	w	Average	Flow	High FI	low
balance h node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s
Mass ba at each		M_r13 =	2,206.42 Low Flo		28,941.52 Average		105,363.55 High Fl	
ø c			201110		Avoiago	1011	- Ingiri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	12.405	(mg/L)	10.925	(ma/l)	4.303	(ma/l

	Year 5 Nickel			
	and the state of a surface surface into DM 40	0 -10 -	0.0040	(/l \
	concentration of surface water into PM-12 concentration of surface water into PM-13	C_s12 = C s13 =	0.0012 0.0012	, ,
da	concentration in Babbitt WWTP discharge	C_sis =	0.0012	, ,
<u> </u>	concentration in Area 5 Pit NW discharge	C spit =	0.0052	
ıtrai	concentration in seepage from Tailings Basin Cells 1E and 2E		0.029814715	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
<u>≅</u> [concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.34	(mg/s)	3.46	(mg/s)	3.46	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
ဒိ ဒိ	mass flux in seepage from cell 2W	M_s2w =	0.15	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
at 8	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
		_	Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	0.009	(mg/L)	0.003	(mg/L)	0.001	(mg/L)

Case	Year 5				
Parameter	Lead				
	T				1
	concentration of surface water into PM-12	C_	_s12 =	0	(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	0	(mg/L)
	concentration in Babbitt WWTP discharge	C_	_sBab =	0	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C	_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C	_fs =	0.000769203	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	0.0005	(mg/L)
conc	concentration in tailings basin cell 2W	C_	_s2w =	0.0012	(mg/L)
Input	concentration of ground water into PM-12	C	_g12 =	0.0012	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_	_g13 =	0.0012	(mg/L)

•			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	_	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)		(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)		(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.27	(mg/s)	0.27	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
Mass ba		M_r13 =	0.21 Low Flo	(mg/s)	0.55	(mg/s)	0.55 High Fl	(mg/s
iass					Avoiago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/
္ မ ေ	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(ma/

Case	Year 5			
Parameter	Antimony			
		1	1	
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
Ę.	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.47E-03	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
lı	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.07	(mg/s)	0.75	(mg/s)	0.75	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
balance h node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s
Mass ba at each		M_r13 =	0.30 Low Flo	(mg/s)	1.08	(mg/s)	1.52 High F l	(mg/s
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =		(mg/L)		(mg/L)	0.000	
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(ma/

Case	Year 5	1		
Parameter	Selenium	1		
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
g u	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
atior	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001159434	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
<u>은</u>		C g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
င္မွိ ဒ္	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
	mass flux in river at PM-13	M_r13 =	0.48	(mg/s)	1.55	(mg/s)	8.10	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
S = 0	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(ma/L

Case Parameter	Year 5 Sulfate				
i arameter	Junate	I			
	concentration of surface water into PM-12	C.	_s12 =	4.00	(mg/L)
data	concentration of surface water into PM-13	C.	_s13 =	4.00	(mg/L)
	concentration in Babbitt WWTP discharge	C.	_sBab =	4.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C.	_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C.	_fs =	140.42	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	7347.00	(mg/L)
conc	concentration in tailings basin cell 2W	C.	_s2w =	152.40	(mg/L)
Input	concentration of ground water into PM-12	C.	_g12 =	8.50	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C	_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,621.93	(mg/s)	16,304.02	(mg/s)	16,304.02	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,118.71	(mg/s)	3,118.71	(mg/s)	3,118.71	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	3,415.24	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s
			Low Flo	W	Average	Flow	High FI	ow
balance th node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s
Mass ba at each		M_r13 =	9,375.46 Low Flo		122,325.77 Average		209,665.23 High Fl	
ss			LOWITIO		Avelage	low	Illgii I	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/
Convertion to concer	concentration in river at PM-13	C r13 =	52.711	(mg/L)	46.176	(mg/l)	8.563	(ma/l

Case	Year 5			
Parameter	Thallium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
Ф	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000906999	(mg/L)
ē	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
ij	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
concentration	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
a g	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
	1	1	Low Flo	W	Average	FIOW	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Con	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 5 Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
d at a	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
Ö L	Iconcentration in Bappitt vvvv LP discharge	C_sBab =	0.016	(mg/L)
iti o	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.017646569	(mg/L)

텉	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.017646569	(mg/L)				
centr		C_rrs =	0.01	(mg/L)				
Co	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)				
nout	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)				
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)				
			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)		(mg/s)		(mg/s)
ië	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
e .	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.20	(mg/s)	2.05	(mg/s)	2.05	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.32	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mas	mass flux in river at PM-13	M_r13 =	2.18 Low Flo	(mg/s)	40.82	, 0	390.18 High FI	,
			LOW FIO	vv	Average	FIOW	High Fi	UW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conver flux to	concentration in river at PM-13	C_r13 =	0.012	(mg/L)	0.015	(mg/L)	0.016	(mg/L)

Appendix F.3
Embarrass River
Proposed Action
Year 8

FLOWS

Case	Year 8			
Flows	Low Flow Conditions (no surface runoff)			Node
in River	flow in river at PM-12	Q_r12_L =	0.86 (cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.28 (cfs)	PM-13
Tota	flow check	Q_ck_L =	6.28 (cfs)	4
	surface water flow into PM-12	Q_s12_L =	0.00 (cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00 (cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00 (cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00 (cfs)	PM-13
ţa _	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.45 (cfs)	PM-13
flow data	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.01 (cfs)	PM-13
آو	seepage from cell 2W	Q_s2w_L =	0.75 (cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_L =	0.86 (cfs)	PM-12
n d	ground water flow into PM-13	Q_g13_L =	4.21 (cfs)	PM-13

Case	Year 8				
Flow	Average Flow Conditions (mean annual)				
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_M =	94.29	(cfs)	PM-13
Total	flow check	Q_ck_M =	94.29	(cfs)	_
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	4.79	(cfs)	PM-13
	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.01	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
Input 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
ם	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 8				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	865.84	(cfs)	PM-13
Tota	flow check	Q_ck_H =	865.84	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ţa	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	4.79	(cfs)	PM-13
flow data	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.01	(cfs)	PM-13
<u>[</u>	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
<u>u</u>	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Year 8	1			
Parameter	Silver				
	concentration of surface water into PM-12	_	s12 =	0.00044	(m=1)
t a	concentration of surface water into PM-12	_	s12 = s13 =	0.00011 0.00011	,
ם ח data	concentration in Babbitt WWTP discharge	_	_sBab =	0.00011	`
ration	concentration in Area 5 Pit NW discharge	C_	_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_	_fs =	0.00089	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	0.000125	(mg/L)
conc	concentration in tailings basin cell 2W	C_	_s2w =	0.000100	(mg/L)
Input	concentration of ground water into PM-12	C_	_g12 =	0.000008	(mg/L)
트	concentration of ground water into PM-13	C	_g13 =	0.000008	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
concentration flux	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
		M_fs =	0.01	(mg/s)	0.12	(mg/s)	0.12	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass b		M_r13 =	0.01 Low Flo	(mg/s)	0.38	(mg/s)	2.79 High Fl	(mg/s
			LOWIN		Avelage	1104	ingiiii	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Convergillation Concer	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case Parameter	Year 8 Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.01E-01	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
ទូ	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.28	(mg/s)	13.63	(mg/s)	13.63	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.06	(mg/s)	0.06	(mg/s)	0.06	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	33.47	(mg/s)	355.65	(mg/s)	355.65	(mg/s
			Low Flo	w	Average	Flow	High FI	low
Mass balance at each node		M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
a ğ	mass flux in river at PM-13	M_r13 =		(mg/s)	584.42		2,767.91	
	T		Low Flo	W	Average	Flow	High FI	low
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L
Conver flux to	concentration in river at PM-13	C r13 =	0.216	(mg/L)	0.219	(mg/L)	0.113	(ma/L

Case	Year 8			
Parameter	Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007035766	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
ouce	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
centration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.09	(mg/s)	0.95	(mg/s)	0.95	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)	0.65	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mass ba		M_r13 =	0.54 Low Flo	(mg/s)	3.66	(mg/s)	20.03 High Fl	
lass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/l
ರ ⊒ ೞ	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(ma/l

Case	Year 8			
Parameter	Boron			
		1	1	
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.140897597	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
duj	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.80	(mg/s)	19.10	(mg/s)	19.10	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ပို့ ဍ		M_s2w =	7.00	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Ma at	mass flux in river at PM-13	M_r13 =		(mg/s)	129.21		391.23	
			Low Flo	w	Average	Flow	High FI	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	0.067	(mg/L)	0.048	(mg/L)	0.016	(mg/L)

concentration of ground water into PM-13

Case	Year 8	i		
Parameter	Barium	1		
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
ğ		C_sBab =	0.011	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.04E-02	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
Ĕ	concentration in tailings basin cell 2W	C s2w =	0.09298	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.64	(mg/s)	6.84	(mg/s)	6.84	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င် င	mass flux in seepage from cell 2W	M_s2w =	1.97	(mg/s)	20.95	(mg/s)	20.95	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)		(mg/s)		(mg/s)
2 0	mass flux in river at PM-13	M_r13 =	Low Flo	(mg/s)	Average	(mg/s)	301.17 High FI	
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)

C_g12 =

C_g13 =

0.0681 (mg/L)

0.0681 (mg/L)

Case	Year 8			
Parameter	Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000543459	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
င္မွ င္	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
	mass flux in river at PM-13	M_r13 =	0.03	(mg/s)		(mg/s)		(mg/s)
ss uo			Low Flo	w	Average	Flow	High FI	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/L

Case	Year 8			
Parameter	Calcium	J		
	concentration of surface water into PM-12	C s12 =	13	(mg/L)
data	concentration of surface water into PM-13	 C_s13 =		(mg/L)
_	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	72.53696661	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
≝	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s
#	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	925.47	(mg/s)	9,833.30	(mg/s)	9,833.30	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	132.27	(mg/s)	132.27	(mg/s)	132.27	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,267.42	(mg/s)	13,466.52	(mg/s)	19.01	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s
Mass bat each		M_r13 =	5,051.30		58,925.58		329,331.31	
			Low Flo	W	Average	FIOW	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l
Conver flux to	concentration in river at PM-13	C r13 =	28.417	(mg/L)	22.082	(mg/l)	13.440	(ma/l

concentration of ground water into PM-12 concentration of ground water into PM-13

Case	Teal o			
Parameter	Cadmium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ätion	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000383404	(mg/L)
Ser	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
uo	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
it a	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
concentration flux	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.05 Low Flo	(mg/s)	0.31	(mg/s)	2.06 High Fl	(mg/s)
			LOW FIO	W	Average	FIOW	nigii ri	OW
ivert mass to centration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
등속등	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

C_g12 =

C_g13 =

0.0003 (mg/L)

0.0003 (mg/L)

Case Parameter	Year 8 Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
Ф	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.07E+00	(mg/L)
Ser	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
LO CO	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	77.48	(mg/s)	823.25	(mg/s)	823.25	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	559.62	(mg/s)	559.62	(mg/s)	559.62	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	456.68	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s
Mass ba at each		M_r13 =	1,352.05 Low Flo		27,903.51 Average		246,252.16 High FI	
ss			201110		Avoiago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/
Convergillax to concer	concentration in river at PM-13	C r13 =	7 606	(mg/L)	10.457	(mg/L)	10.050	(ma/l

Case	Year 8			
Parameter	Cobalt			
		1		
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
ρι	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002321539	(mg/L)
193	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
ם	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	W	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.31	(mg/s)	0.31	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မွ င	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
balance h node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass ba at each		M_r13 =	0.22 Low Flo	(mg/s)	2.12 Average	(mg/s)	15.22 High Fl	
s c			2011110		71101490			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(ma/L

Case Parameter	Year 8 Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00854201	(mg/L)
e	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
l o	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
<u>d</u>	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.11	(mg/s)	1.16	(mg/s)	1.16	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.10	(mg/s)	1.03	(mg/s)	1.03	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s
Mass ba at each		M_r13 =	0.78 Low Flo	(mg/s)	6.11 Average	(mg/s)	38.87 High Fl	
ss			2011 110		, troining o			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L
Convertill for to concer	concentration in river at PM-13	C r13 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(ma/L

Case	Year 8			
Parameter	Fluoride			
		ı		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.89E-01	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
Cor	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
but	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
concentration flux	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s
	mass flux in according from Tailings Dasin Calls 1E and 2E	M_fs =	10.06	(mg/s)	106.94	(mg/s)	106.94	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.91	(mg/s)	0.91	(mg/s)	0.91	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	32.86	(mg/s)	349.17	(mg/s)	349.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s
Mass ba at each		M_r13 =		(mg/s)	730.04		2,913.52	
			Low Flo	w	Average	FIOW	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L
Convergible Concer	concentration in river at PM-13	C r13 =	0.557	(mg/L)	0 274	(mg/L)	0.119	(ma/l

Case	Year 8	1			
Parameter	Iron				
		_	-10 -	2.0	(/l)
Ē	concentration of surface water into PM-12 concentration of surface water into PM-13	_	_s12 = _s13 =		(mg/L) (mg/L)
n data	concentration in Babbitt WWTP discharge	_	_sBab =		(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_	spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_	_fs =	5.80E-02	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	4.00E-01	(mg/L)
conce	concentration in tailings basin cell 2W	C_	_s2w =	4.594	(mg/L)
Input	concentration of ground water into PM-12	C_	_g12 =	0.035	(mg/L)
lu	concentration of ground water into PM-13	C_	_g13 =	0.035	(mg/L)

			Low Flo	W	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.74	(mg/s)	7.86	(mg/s)	7.86	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =		(mg/s)	0.13	(mg/s)		(mg/s)
္ င္		M_s2w =	97.40	(mg/s)	1,034.88		1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mas ate	mass flux in river at PM-13	M_r13 =	103.29	(mg/s)	7,161.77	(mg/s)	70,482.88	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
S H S	concentration in river at PM-13	C r13 =	0.581	(mg/L)	2.684	(mg/L)	2.876	(mg/L)

Case	Year 8			
Parameter	Hardness			
			Г	
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.52E+02	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,221.47	(mg/s)	34,228.62	(mg/s)	34,228.62	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	2,737.70	(mg/s)	2,737.70	(mg/s)	2,737.70	(mg/s)
င်	mass flux in seepage from cell 2W	M_s2w =	9,256.51	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	W	Average	Flow	High Flo	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =	2,129.58		27,763.72		286,383.27	
≥ ∞	Imass nux in river at PM-13	М_ГТЗ =	27,770.27 Low Flo		Average	, ,	1,876,929.38 High Flo	
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	87.500		71.091		70.104	

Case	Year 8			
Parameter	Potassium			
		-		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.73	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s
Ę	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.57	(mg/s)	0.57	(mg/s)	0.57	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	85.90	(mg/s)	912.75	(mg/s)	912.75	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	164.73	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	39.51	(mg/s)	1,359.91	(mg/s)	15,029.80	(mg/s
Mass		M_r13 =	480.78 Low Flo		13,720.83 Average		94,509.83 High Fl	
" c			201110		Avolugo		Tilgii Ti	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.624	(mg/L)	3.482	(mg/L)	3.679	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	2.705	(mg/L)	5 142	(mg/L)	3.857	(ma/l

Case Parameter	Year 8 Magnesium			
	concentration of surface water into PM-12	C s12 =	6.00	(mg/L)
data	concentration of surface water into PM-13	C_s13 =		(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	17.33	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
lu	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
		M_fs =	221.12	(mg/s)	2,349.41	(mg/s)	2,349.41	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	67.73	(mg/s)	67.73	(mg/s)	67.73	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,483.46	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mass b at each		M_r13 =	3,300.38		47,614.12		178,623.31	
			Low Flo	w	Average	Flow	High FI	ow
mass	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	18.567	(mg/L)	17.843	(mg/l)	7.290	(ma/l)

Case	Year 8			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
ρι	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.30	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.79	(mg/s)	40.29	(mg/s)	40.29	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	25.08	(mg/s)	266.49	(mg/s)	266.49	(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	55.85 Low Flo	(mg/s)	993.32 Average		7,543.78 High Fl	
			LOW FIO	W	Average	FIOW	High Fi	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l
Conver flux to	concentration in river at PM-13	C r13 =	0.314	(mg/L)	0.372	(mg/l)	0.308	(ma/l

Case Parameter	Year 8 Sodium			
	concentration of surface water into PM-12	C s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =		(mg/L)
ъ	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	18.93	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
		M_fs =	241.52	(mg/s)	2,566.23	(mg/s)	2,566.23	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	81.08	(mg/s)	81.08	(mg/s)	81.08	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	939.43	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mass bat eacl		M_r13 =	1,965.10		27,438.13		103,860.16	
			Low Flo	w	Average	riow	High Fl	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Conver flux to	concentration in river at PM-13	C r13 =	11.055	(mg/L)	10.282	(mg/l)	4.239	(mg/l)

Case	Year 8			
Parameter	Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.038551821	(mg/L)
0	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
ouc	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
g	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
ce	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.49	(mg/s)	5.23	(mg/s)	5.23	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.15	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mass ba	mass flux in river at PM-13	M_r13 =	1.67 Low Flo	(mg/s)	10.63	(mg/s)	36.84 High Fl	(mg/s)
			2011 1 10		71101490			
Convert mass flux to	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Conve flux to	concentration in river at PM-13	C_r13 =	0.009	(mg/L)	0.004	(mg/L)	0.002	(mg/L)

Case	Year 8			
Parameter	Lead			
	concentration of surface water into PM-12	C s12 =	0	(mg/L)
data	concentration of surface water into PM-13	C_s13 =		(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ıtr	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001239552	(mg/L
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
n nput	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	0.27	(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 8			
Parameter	Antimony			
		_		
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.28E-03	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
uo:	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
ıdu	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	many flux in according from Tailings Davin Calls 1E and 2E	M_fs =	0.11	(mg/s)	1.12	(mg/s)	1.12	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s
Mass k at eack		M_r13 =	0.33 Low Flo	(mg/s)	1.45	(mg/s)	1.89 High Fl	(mg/s
"			LOWIN		Avelage	liow	Ingilit	040
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.002	(mg/L)	0.001	(mg/L)	0.000	(mg/l

Case	Year 8			
Parameter	Selenium			
			1	
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
D C	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001331851	(mg/L)
Ser	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
LO CO	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
ă,	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
	mass flux in river at PM-13	M_r13 =	0.48	(mg/s)	1.59	(mg/s)	8.14	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 8			
Parameter	Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	153.28	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,955.65	(mg/s)	20,779.12	(mg/s)	20,779.12	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	2,336.11	(mg/s)	2,336.11	(mg/s)	2,336.11	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	3,231.09	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s
			Low Flo	W	Average	Flow	High FI	ow
balance th node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s
Mass ba		M_r13 =	8,742.44 Low Flo		126,018.27 Average		213,357.73 High FI	
SSI			LOWITIO		Avelage	low	riigii i	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/
Converture to concer	concentration in river at PM-13	C r13 =	49.181	(mg/L)	47.225	(mg/l)	8.707	(ma/i

Case Parameter	Year 8 Thallium			
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
Ф	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000934618	(mg/L)
Ser	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
LO CO	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
in	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.13	(mg/s)	0.13	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s
Mass ba at each		M_r13 =	0.02 Low Flo	(mg/s)	0.63	(mg/s)	4.99 High Fl	(mg/s
ass			LOWITO		Avelage	low	Illgiill	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Year 8			
Parameter	Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
D C	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.029073121	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flor	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.37	(mg/s)	3.94	(mg/s)	3.94	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.30	(mg/s)	3.23	(mg/s)	3.23	(mg/s
			Low Flor	W	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s
Mass ba at each I	mass flux in river at PM-13	M_r13 =	2.33 Low Flo	(mg/s)	42.72 Average	(mg/s)	392.07 High Fl	
" c			2011 110		Avoiugo		i iigii i i	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/l
Conve	concentration in river at PM-13	C r13 =	0.013	(mg/L)	0.016	(mg/L)	0.016	(ma/l

Appendix F.4
Embarrass River
Proposed Action
Year 9

FLOWS

Case	Year 9				
Flows	Low Flow Conditions (no surface runoff)				Node
n River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.28	(cfs)	PM-13
Total Emba	flow check	Q_ck_L =	6.28	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
ţ	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.48	(cfs)	PM-13
/ data	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.01	(cfs)	PM-13
jo N	seepage from cell 2W	Q_s2w_L =	0.72	(cfs)	PM-13
nput flow	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 9				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrace R	flow in river at PM-13	Q_r13_M =	94.76	(cfs)	PM-13
Total	flow check	Q_ck_M =	94.76	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ţ	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	5.26	(cfs)	PM-13
r etec	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.01	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
, tilda	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
2	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 9				
Flow	High Flow Conditions (avg. annual 1-day max flo	ow)			_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass R	flow in river at PM-13	Q_r13_H =	866.31	(cfs)	PM-13
Tota	flow check	Q_ck_H =	866.31	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
草	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	5.26	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.01	(cfs)	PM-13
flow data	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input 1	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case Parameter	Year 9 Silver				
	concentration of surface water into PM-12	С	s12 =	0.00011	(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	0.00011	(mg/L)
n n	concentration in Babbitt WWTP discharge	C_	_sBab =	0.00011	(mg/L)
	concentration in Area 5 Pit NW discharge	C_	_spit =	0.00015	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_	_fs =	0.00090	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	0.000125	(mg/L)
conce	concentration in tailings basin cell 2W	C_	_s2w =	0.000100	(mg/L)
Input	concentration of ground water into PM-12	C_	_g12 =	0.000008	(mg/L)
ļu	concentration of ground water into PM-13	C_	_g13 =	0.000008	(mg/L)
	-				
				Low Flor	

			Low Flo	W		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)		0.00	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)		0.00	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	ı	(mg/s)		0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)		0.13	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)			(mg/s)
			Low Flo	w		High Fl	ow
tss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)		0.45	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.02	(mg/s)			(mg/s)
			Low Flo	w	<u> </u>	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)		0.000	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	0.000	(mg/L)		0.000	(mg/L)

Case	Year 9			
Parameter	Aluminum			
		-		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
P	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.07E-01	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1,988	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.44	(mg/s)	15.88	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.07	(mg/s)	0.07	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	32.29	(mg/s)	355.65	(mg/s
		1	Low Flo	W	High F	low
balance th node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	406.69	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	37.38 Low Flo	(mg/s)	2,770.18 High F	
nass ation	concentration in river at PM-12	C r12 =	0.005	(12.21)	0.400	(mg/L
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.210	(mg/L)	0.100	

Case	Year 9			
Parameter	Arsenic			
		1	ſ	1
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
ρι	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007592467	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
≝	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	W	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	15	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.10	(mg/s)	1.13	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)
			Low Flo	w	High Fl	low
tss balance each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	3.11	(mg/s)
Mass at eac		M_r13 =	0.56	(mg/s)	20.21 High Fl	
iass						
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L
o X o	concentration in river at PM-13	C r13 =	0.003	(")	0.001	l

Case	Year 9			
Parameter	Boron			
			ı	
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
t to	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
, ,	concentration in Rabbitt WWTP discharge	C_sBab =	0.012	(mg/L)
<u>.</u>	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
, 2		C_fs =	0.145082047	(mg/L)
-		C_rrs =	0.11	(mg/L)
	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
•	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
Š	concentration of ground water into PM 13	C a13 -	0.0212	(ma/L)

			Low Flo	W	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.96	(mg/s)	21.59	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.04	(mg/s)	0.04	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	6.75	(mg/s)	74.34	(mg/s)
			Low Flo	w	High Fl	low
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	49.25	(mg/s)
Mass ba		M_r13 =	11.79 Low Flo	(mg/s)	393.72 High Fl	
rt mass ntration	concentration in river at PM-12	C r12 =	0.021	(mg/L)	0.012	
Convert mass flux to concentration		C r13 =	0.066		0.012	

Case	Year 9				
Parameter	Barium				
				1	
	concentration of surface water into PM-12	C_	_s12 =	0.011	(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	0.011	(mg/L)
	concentration in Babbitt WWTP discharge	C	_sBab =	0.011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C	_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C.	_fs =	5.05E-02	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	5.00E-03	(mg/L)
conc	concentration in tailings basin cell 2W	C_	_s2w =	0.09298	(mg/L)
Input	concentration of ground water into PM-12	C.	_g12 =	0.0681	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_	_g13 =	0.0681	(mg/L)

			Low Flo	w	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)
7	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	219	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)
u X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)
		M_fs =	0.68	(mg/s)	7.51	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1.90	(mg/s)	20.95	(mg/s)
			Low Flo	w	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	46.33	(mg/s)
Mass b		M_r13 =	12.36 Low Flo	(mg/s)	301.85 High Fl	
			LOWIN		riigii i	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.011	(mg/L
Conver flux to	concentration in river at PM-13	C r13 =	0.069	(mg/L)	0.012	(ma/l

Case Parameter	Year 9 Beryllium			
		- I		
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
Ē	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00056357	(mg/L)
Φ.	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
conç	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	W	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)
concentration flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)
flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)
	mana flux in according from Tailings Bosin Calls 1F and 2F	M_fs =	0.01	(mg/s)	0.08	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)		(mg/s)
င္မွ င	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)
			Low Flo	W	High FI	low
balance th node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.41	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.03 Low Flo	(mg/s)	2.66 High Fl	(mg/s
ssi						
せ	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L
Conve flux to conce	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(ma/l

Case Parameter	Year 9 Calcium			
	DM 40	0 -40	10	(
ata	concentration of surface water into PM-12 concentration of surface water into PM-13	C_s12 = C s13 =		(mg/L) (mg/L)
dat	concentration in Babbitt WWTP discharge	C sBab =		(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =		(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	75.53238205	(mg/L)
35	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
5	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
Ξ	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s
concentration flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	258,461	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s
L con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s
		M_fs =	1,020.37	(mg/s)	11,239.50	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	156.22	(mg/s)	156.22	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,222.55	(mg/s)	22.45	
			Low Flo	w	High FI	low
iss balance each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	53,252.39	(mg/s
Mass at eac		M_r13 =	5,125.29 Low Flo		330,764.89 High Fl	
ν <u>-</u>					_	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.036	(mg/l
Conve flux to conce	concentration in river at PM-13	C r13 =	28.823	(mg/L)	13.491	(ma/l

Case	Year 9			
Parameter	Cadmium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
D	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000407879	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
ıdul	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)
		M_fs =	0.01	(mg/s)	0.06	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)
Co to		M_s2w =	0.00	(mg/s)	0.04	(mg/s)
			Low Flo	w	High Fl	low
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)
"	I III ass ilux iii iivci atti Wi-10	W_110 -	Low Flo		High FI	
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.000	(mg/L)	0.000	(mg/L)
S ₽ 5	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)

Case	Year 9			
Parameter	Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.89E+00	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	40,514	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	198,816	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)
u X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)
		M_fs =	79.55	(mg/s)	876.22	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	660.93	(mg/s)	660.93	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	440.51	(mg/s)	4,852.27	(mg/s)
			Low Flo	W	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	40,651.48	(mg/s)
Mass balance at each node	mass flux in river at PM-13	M_r13 =	1,439.26		246,406.43	`
			Low Flo	w	High FI	ow
t mass tration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.951	(mg/L
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	8.094	(mg/L)	10.051	(ma/l

Case	Year 9	1			
Parameter	Cobalt				
		1		1	
	concentration of surface water into PM-12	C_	s12 =	0.0006	(mg/L)
data	concentration of surface water into PM-13	C_	s13 =	0.0006	(mg/L)
	concentration in Babbitt WWTP discharge	C_	sBab =	0.0006	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_	spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_	fs =	0.002481389	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	0.005	(mg/L)
conce	concentration in tailings basin cell 2W	C_	s2w =	0.001556	(mg/L)
Input	concentration of ground water into PM-12	C_	g12 =	0.0011	(mg/L)
빌	concentration of ground water into PM-13	C_	g13 =	0.0011	(mg/L)

			Low Flo	W	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	_	(mg/s)	0.01	(mg/s)
concentration flux	mass flux of surface water into PM-13	M_s13 =	_	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.37	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)
	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)
			Low Flo	W	High Fl	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)
2 0	mass flux in river at PM-13	M_r13 =	Low Flo	(mg/s)	15.28 High FI	(mg/s)
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =		(mg/L)		(mg/L)
S	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.001	(mg/L)

Case	Year 9			
Parameter	Copper			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.008625606	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	ŀ	ligh Fl	ow
	mass flux of surface water into PM-12	M_s12 =	1	(mg/s)		6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)		0.10	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)		0.48	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	ı	(mg/s)		0.19	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.12	(mg/s)		1.28	(mg/s)
Convert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)
ပို့ ၁	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)		1.03	(mg/s)
			Low Flo	w		ligh Fl	ow
Mass balance at each node		M_r12 =		(mg/s)			(mg/s)
M #	mass flux in river at PM-13	M_r13 =	0.78 Low Flo	(mg/s)		38.99 ligh Fl	(mg/s)
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)		0.002	(mg/L)
	concentration in river at PM-13	C_r13 =	0.004	(mg/L)		0.002	(mg/L)

Case Parameter	Year 9 Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
_	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.91E-01	(mg/L)
es	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
COD	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
a a	concentration of ground water into PM-13	C g13 =	0.385	(ma/L)

			Low Flo	w	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	405	(mg/s)
ntration	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1,988	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s
co Lix	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)
		M_fs =	9.34	(mg/s)	102.84	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.07	(mg/s)	1.07	(mg/s
	mass flux in seepage from cell 2W	M_s2w =	31.70	(mg/s)	349.17	(mg/s
			Low Flo	w	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	415.45	(mg/s
Mass		M_r13 =	97.35 Low Flo	(mg/s)	2,909.59 High Fl	
mass	concentration in river at PM-12	C r12 =	0.385	(mg/L)	0.102	(ma/l
Convert mass flux to concentration	concentration in river at PM-13	C r13 =		(mg/L)	0.119	

Case	Year 9			
Parameter	Iron			
		1	ı	
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.91E-02	(mg/L)
0	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	W	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	11,749	(mg/s)
E .	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)
concentration flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	57,657	(mg/s
Ceu	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s
tic ou	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.80	(mg/s)	8.80	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.15	(mg/s)	0.15	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	93.95	(mg/s)	1,034.88	(mg/s
			Low Flo	W	High FI	low
ss balance each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	11,777.08	(mg/s
Mass at eac		M_r13 =	99.92 Low Flo	(mg/s)	70,483.84 High Fl	
mass	concentration in river at PM-12	C r12 =	0.035	(mg/L)	2.883	(mg/L
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.562		2.875	

concentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

Case Parameter	Year 9 Hardness			
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
24 24	concentration of surface water into PM-13	C_s13 =		(mg/L)
<u>"</u>	Iconcentration in Bappitt WWVTP discharge	C_sBab =	70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
2	concentration in seepage from Tailings Basin Cells 1E and 2E	C fe =	2 56E±02	(ma/L)

			Low Flo	W		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)		2,129.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	·	(mg/s)		653.73	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	·	(mg/s)		1,391,712	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)		10,425.01	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		53,090.84	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,453.69	(mg/s)		38,042.63	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,233.31	(mg/s)		3,233.31	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =	8,928.86	(mg/s)		98,352.01	(mg/s)
			Low Flo	W		High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)		286,383.27	(mg/s)
Mas: at ea	mass flux in river at PM-13	M_r13 =	28,170.45			1,881,239.00	
	T		Low Flo	W		High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)		70.104	(mg/L)
5 4 5	concentration in river at PM-13	C_r13 =	158.424	(mg/L)		76.733	(mg/L)

8.61E+03

436.6

(mg/L)

(mg/L)

87.5 (mg/L)

87.5 (mg/L)

C_rrs =

C_s2w =

C_g12 =

C_g13 =

Case	Year 9			
Parameter	Potassium			
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
ğu	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.04	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
at	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
≝	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	W	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	14,990	(mg/s)
ď	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)
ţi	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.68	(mg/s)	0.68	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	73,562	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	95.16	(mg/s)	1,048.24	(mg/s)
င္မွ င	mass flux in seepage from cell 2W	M_s2w =	158.90	(mg/s)	1,750.33	(mg/s
			Low Flo	W	High F	low
balance th node	mass flux in river at PM-12	M_r12 =	39.62	(mg/s)	15,029.90	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	484.31 Low Flo		94,645.42 High F	
ss					3	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.628	(mg/L)	3.679	(mg/l)
Conve flux to conce	concentration in river at PM-13	C r13 =	2.724	(ma/L)	3.860	(ma/l)

Case	Year 9			
Parameter	Magnesium			
		-		
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	16.28	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,309	(mg/s
ation	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	119,290	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s
	many flux in according from Tailings Davin Calls 1E and 2E	M_fs =	219.96	(mg/s)	2,422.93	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	79.99	(mg/s)	79.99	(mg/s
ပိ ဍ		M_s2w =	1,430.95	(mg/s)	15,762.00	(mg/s
			Low Flo	w	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	24,623.80	(mg/s
Mass b		M_r13 =	3,258.97		178,709.09	
			Low Flo	W I	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.028	(mg/l)
Conver flux to	concentration in river at PM-13	C r13 =	18.328	(ma/L)	7.289	(ma/l

Case	Year 9			
Parameter	Manganese			
		1	1	
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.29	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	W	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	ı	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,964	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	·	(mg/s)	27.31	(mg/s)
		M_fs =	3.90	(mg/s)	42.96	(mg/s)
Convert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)
Co to		M_s2w =	24.19	(mg/s)	266.49	(mg/s)
			Low Flo	W	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)	1,222.81	
≥ 7	mass flux in river at PM-13	M_r13 =		(mg/s)	7,546.45	
			Low Flo	W	High FI	ow
Convert mass flux to	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.299	(mg/l)
Conve flux to	concentration in river at PM-13	C_r13 =	0.310	(mg/L)	0.308	(mg/l)

Case	Year 9			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
פר	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	22.11	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
lo S	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
ldul	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	W	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)
it a	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	69,586	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)
		M_fs =	298.66	(mg/s)	3,289.71	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	95.76	(mg/s)	95.76	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	906.18	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	14,331.94	(mg/s)
Mass b at each		M_r13 =	2,003.65		104,598.32	
			Low Flo	w	High FI	ow
mass	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.508	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	11.268		4.266	

Case	Year 9			
Parameter	Nickel			
	concentration of surface water into PM-12	C s12 =	0.0012	(ma/L)
data	concentration of surface water into PM-13	C_s13 =	0.0012	, ,
	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.041162911	(mg/L)
0	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	W		High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)		0.17	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)		0.83	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	ı	(mg/s)		0.29	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.56	(mg/s)		6.13	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.04	(mg/s)		0.04	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)			(mg/s)
			Low Flo	w		High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)		5.04	(mg/s)
a E	mass flux in river at PM-13	M_r13 =		(mg/s)			(mg/s)
	Т		Low Flo	w		High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)		0.001	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	0.010	(mg/L)		0.002	(mg/L)

Case	Year 9				
Parameter	Lead				
	I	_	40		, ",
_	concentration of surface water into PM-12	_	_s12 =		(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	0	(mg/L)
	concentration in Babbitt WWTP discharge	C_	_sBab =	0	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_	_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C	_fs =	0.001749429	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	0.0005	(mg/L)
conce	concentration in tailings basin cell 2W	C_	_s2w =	0.0012	(mg/L)
Input	concentration of ground water into PM-12	C	_g12 =	0.0012	(mg/L)
Ē	concentration of ground water into PM-13	C	_g13 =	0.0012	(mg/L)

			Low Flow			High Flow		
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)		-	(mg/s)	
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)		0.03	(mg/s)	
į	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		-	(mg/s)	
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)		-	(mg/s)	
ceu	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)		0.14	(mg/s)	
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		0.02	(mg/s)	
		M_fs =	0.02	(mg/s)		0.26	(mg/s)	
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		0.00	(mg/s)	
မို မိ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)		0.27	(mg/s)	
			Low Flo	w		High Fl	ow	
Mass balance at each node		M_r12 = M_r13 =		(mg/s)			(mg/s)	
	mass flux in river at PM-13	М_Г13 =	Low Flo	(mg/s)		0.72 High FI	(mg/s)	
Convert mass flux to	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.001	(mg/L)		0.000	(mg/L)	
ŭ Į.	concentration in river at PM-13	C_r13 =	0.001	(mg/L)		0.000	(mg/L)	

Case	Year 9				
Parameter	Antimony				
				T	
	concentration of surface water into PM-12	C_	_s12 =	2.00E-05	(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	2.00E-05	(mg/L)
	concentration in Babbitt WWTP discharge	C_	_sBab =	2.00E-05	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_	_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_	_fs =	8.83E-03	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	0.004	(mg/L)
conc	concentration in tailings basin cell 2W	C_	_s2w =	2.50E-04	(mg/L)
Input	concentration of ground water into PM-12	C_	_g12 =	1.50E-03	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_	_g13 =	1.50E-03	(mg/L)

			Low Flo	w	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.12	(mg/s)	1.31	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.06	(mg/s)
			Low Flo	W	High Fl	low
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)		(mg/s)
2 0	mass flux in river at PM-13	M_r13 =	Low Flo	(mg/s)	2.08 High Fl	(mg/s)
· · ·					g	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.002	(mg/L)	0.000	(ma/l

Case Parameter	Year 9 Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001403839	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
CO	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
ngu	concentration of ground water into PM 13	C a13 -	0.00205	(ma/L)

			Low Flo	W	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)
ē	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s
<u>i</u> ta	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6	(mg/s
Ceu	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.21	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s
			Low Flo	w	High F	low
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	1.29	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	0.48 Low Flo	(mg/s)	8.17 High F	(mg/s
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L

Case Parameter t concentration data	Year 9 Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ā	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ţ	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	166.62	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
lo S	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	W	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	79,526	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,250.82	(mg/s)	24,792.97	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	2,759.02	(mg/s)	2,759.02	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	3,116.72	(mg/s)	34,330.84	(mg/s
			Low Flo	W	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	16,449.94	(mg/s
Mass ba at each	mass flux in river at PM-13	M_r13 =	9,346.14 Low Flo		217,794.48 High Fl	
S =					g	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.027	(mg/l)
Conve flux to conce	concentration in river at PM-13	C r13 =	52.561	(mg/L)	8.884	(ma/l)

Case Parameter	Year 9 Thallium			
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000967503	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
ם	concentration of ground water into PM-13	C a13 =	0.000004	(ma/L)

			Low Flo	W	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	4	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s
		M_fs =	0.01	(mg/s)	0.14	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s
			Low Flo	w	High F	low
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.81	(mg/s)
Mass	mass flux in river at PM-13	M_r13 =	0.02 Low Flo	(mg/s)	5.01 High F	(mg/s
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/
Conver flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(ma/l

Case	Year 9			
Parameter	Zinc			
		0 -10 -	0.040	(m==/L)
œ	concentration of surface water into PM-12	C_s12 =		(mg/L)
data	concentration of surface water into PM-13	C_s13 =		(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
Ęi	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.039738069	(mg/L)
conce	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
In put	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flow				High Flow		
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)				65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)				0.28	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)				0.15	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)				318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)				1.37	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	ı	(mg/s)				0.17	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.54	(mg/s)				5.91	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)				0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)					(mg/s)
			Low Flo	w				High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)				65.25	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	2.48	(mg/s)				394.05	(mg/s)
			Low Flo	w				High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)				0.016	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	0.014	(mg/L)				0.016	(mg/L)

Appendix F.5
Embarrass River
Proposed Action
Year 15

FLOWS

Case	Year 15				
Flows	Low Flow Conditions (no surface runoff)				Node
in s River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.29	(cfs)	PM-13
Total	flow check	Q_ck_L =	6.29	(cfs)	_
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.50	(cfs)	PM-13
b /	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.02	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_L =	0.70	(cfs)	PM-13
Input 1	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
du	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 15				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass River	flow in river at PM-13	Q_r13_M =	95.15	(cfs)	PM-13
Tota	flow check	Q_ck_M =	95.15	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	5.65	(cfs)	PM-13
g v	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.02	(cfs)	PM-13
١٥	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
Input flow	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
μ	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 15				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	866.70	(cfs)	PM-13
Tota	flow check	Q_ck_H =	866.70	(cfs)	1
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
<u>t</u> a	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	5.65	(cfs)	PM-13
, da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.02	(cfs)	PM-13
flow data	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
<u>u</u>	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Year 15
Parameter	Silver

I		concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ı	ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
ı	ו da	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ı	ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ı	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00122	(mg/L)
ı	Cel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
ı		concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
ı	at o	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
ı	<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.000000	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
95	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)		(mg/s)		(mg/s)
at M	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
<i>ν</i> , ⊏			Low Flo	w	Average	riow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Col	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Teal 15			
Parameter	Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg
4		C_s13 =	0.1	(mg
<u> </u>	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg
<u>.</u>	concentration in Area 5 Pit NW discharge	C. snit =	0.01325	(m

		concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
	ip u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
	Itio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
	ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.43E-01	(mg/L)
	leol	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
I	cor	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
I	out	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
	Juj	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average I	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
concentration	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
Se	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	6.25	(mg/s)	70.86	(mg/s)	70.86	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.09	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	355.65		355.65	
			Low Flo	w	Average I	Flow	High FI	ow
Mass balance at each node		M_r12 =		(mg/s)	37.23		406.69	
≥ ø	mass flux in river at PM-13	M_r13 =	38.31 (mg/s)		638.71 Average I		2,822.19 High FI	
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)

Case	Year 15
Parameter	Arsenic

	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ıta	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
da da	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
tio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.015514819	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
l o	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
į	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
5	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
concentration	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
Se .	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.22	(mg/s)	2.48	(mg/s)	2.48	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទី ទ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
at ğ	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	FIOW	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
S ₽ S	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.002	(mg/L)	0.001	(mg/L)

Case	Year 15
Parameter	Boron

-					
		concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
	n da	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
	tio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.173169588	(mg/L)
	cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
	log	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
	ŧ	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
1	n	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
concentration flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
Se	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.44	(mg/s)	27.67	(mg/s)	27.67	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =	6.56	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
		Low Flow		w	Average	High Flow		
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass b at each		M_r13 =		(mg/s)	135.28		397.30	
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Conve flux to concer	concentration in river at PM-13	C r13 =	0.054	(mg/L)	0.050	(mg/L)	0.016	(mg/L

Case	Year 15
Parameter	Barium

-					
		concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
	n da	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
	ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.35E-02	(mg/L)
	Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
	log	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
	t e	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
	ᄪ	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	_	(mg/s)	-	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.89	(mg/s)	10.14	(mg/s)	10.14	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	20.95	(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
at M	mass flux in river at PM-13	M_r13 =	4.40 Low Flo	(mg/s)	56.18 Average	(mg/s)	296.36 High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)		(mg/L)

Case	Year 15
Parameter	Beryllium

	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
η da	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
Ē	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001410903	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
5	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
į	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
Ē	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
Ser	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	_	(mg/s)	_	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.23	(mg/s)	0.23	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	_	(mg/s)	_	(mg/s)
င္ပ ၁	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	0.17	(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Co flu	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 15
Parameter	Calcium

-					
		concentration of surface water into PM-12	C_s12 =	13	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
	n da	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
	tio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	95.38057957	(mg/L)
	cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
	log	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
	ŧ	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
	ᄪ	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
Ser	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,344.25	(mg/s)	15,242.69	(mg/s)	15,242.69	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	205.46	(mg/s)	205.46	(mg/s)	205.46	(mg/s)
င္မွ ဥ	mass flux in seepage from cell 2W	M_s2w =	1,187.61	(mg/s)	13,466.52	(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
at X	mass flux in river at PM-13	M_r13 =	3,199.75		62,144.43		332,560.68	
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
S ₽ S	concentration in river at PM-13	C_r13 =	17.983	(mg/L)	23.077	(mg/l)	13.559	(mg/l)

Case	Year 15
Parameter	Cadmium

-					
I		concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ı	data	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
ı	ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ı	tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ı	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000705708	(mg/L)
ı	cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
ı	on	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
۱	ţ	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
ı	n d	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High F	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
S .	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
Con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទី ទ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High F	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Ma at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High F	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
S ₽ 8	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 15			
Parameter	Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
ğ L	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.60E+00	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
i i	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
Se .	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	_	(mg/s)	-	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	107.17	(mg/s)	1,215.25	(mg/s)	1,215.25	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	869.24	(mg/s)	869.24	(mg/s)	869.24	(mg/s)
္မိ င္	mass flux in seepage from cell 2W	M_s2w =	427.92	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	1,448.15 Low Flo		28,390.67 Average		246,739.32 High FI	
ss			201110		Avoiago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L
Conve flux to conce	concentration in river at PM-13	C r13 =	8.139	(mg/L)	10.543	(mg/L)	10.060	(ma/L

Case	Year 15
Parameter	Cobalt

	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
da da	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
章	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.008661931	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
LO COL	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
Ē	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
Se .	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	_	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.12	(mg/s)	1.38	(mg/s)	1.38	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Ma at (mass flux in river at PM-13	M_r13 =	0.18	(mg/s)	3.06	(mg/s)	16.16	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
S T S	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case Parameter	Year 15 Copper		
	concentration of surface water into PM-12	C s12 =	
ţ.		C_s12 =	

ı		concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ı	data	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
ı	ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ı	_	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ı	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.020766721	(mg/L)
ı	ie.	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
ı	Con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
ı	ğ	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
l	n	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	·	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
it a	mass flux of surface water into PM-13	M_s13 =	·	(mg/s)	2.61	(mg/s)	30	(mg/s)
Se .	mass flux of ground water into PM-13	M_g13 =	ı	(mg/s)	-	(mg/s)	-	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.29	(mg/s)	3.32	(mg/s)	3.32	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ទី ទ	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
at at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
	ı		Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
Co f	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.003	(mg/L)	0.002	(mg/L)

Case	Year 15
Parameter	Fluoride

-					
		concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
	n da	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
		concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.26E-01	(mg/L)
	cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
	loo	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
	at o	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
1	Inp	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average l	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
Ęį	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
ē	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	_	(mg/s)	-	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	11.65	(mg/s)	132.08	(mg/s)	132.08	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.41	(mg/s)	1.41	(mg/s)	1.41	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	349.17		349.17	
			Low Flo	w	Average l	Flow	High FI	ow
Mass balance at each node		M_r12 =		(mg/s)	45.99	(mg/s)	415.45	(mg/s)
a ž	mass flux in river at PM-13	M_r13 =		(mg/s)	709.81		2,893.30	
	T		Low Flo	W	Average I	riow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
ပ္ပ 🚅 ပ္ပ	concentration in river at PM-13	C_r13 =	0.299	(mg/L)	0.264	(mg/L)	0.118	(mg/L)

Case	Year 15
Parameter	Iron

_					
		concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
	n da	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
	tion	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.82E-02	(mg/L)
	cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
	con	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
	nt	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
	Inp	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
E	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.38	(mg/s)	15.69	(mg/s)	15.69	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.20	(mg/s)	0.20	(mg/s)	0.20	(mg/s)
င့် င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =		(mg/s)	7,165.50		70,486.61	
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Co flu:	concentration in river at PM-13	C_r13 =	0.527	(mg/L)	2.661	(mg/L)	2.874	(mg/L)

Case	Year 15
Parameter	Hardness

-					
I		concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ı	ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ı	n da	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
ı	ţi	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ı	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.20E+02	(mg/L)
ı	cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
ı	con	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
ı	ort	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
	<u>li</u>	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
Ser	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	_	(mg/s)	-	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
	and a firm in an analysis from Tailings Davis Calls 45 and 05	M_fs =	4,507.05	(mg/s)	51,106.04	(mg/s)	51,106.04	(mg/s)
Convert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,252.38	(mg/s)	4,252.38	(mg/s)	4,252.38	(mg/s)
္မိ င္	mass flux in seepage from cell 2W	M_s2w =	8,673.67	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Mass		M_r13 =	19,562.68 Low Flo	,	356,455.91 Average		1,884,896.46 High Fl	
			2011110		71101290			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
Conve flux to	concentration in river at PM-13	C r13 =	109.943	(mg/L)	132.370	(mg/L)	76.848	(ma/L)

Case	Year 15			
Parameter	Potassium			
		-		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	14.58	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
Sor	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_g13 =	0.00	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
ţi	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.89	(mg/s)	0.89	(mg/s)	0.89	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
Ser	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
	mace flux of Area 5 Dit NIM discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	205.50	(mg/s)	2,330.24	(mg/s)	2,330.24	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	154.36	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	39.83	(mg/s)	1,360.22	(mg/s)	15,030.11	(mg/s)
Mass k at each		M_r13 =	399.70		14,948.01		95,737.01	
			Low Flo	W	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.637	(mg/L)	3.483	(mg/L)	3.679	(mg/l)
Conve flux to	concentration in river at PM-13	C r13 =	2.246	(mg/L)	5.551	(mg/L)	3.903	(ma/l)

Case	Year 15
Parameter	Magnesium

-					
ĺ		concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ı	ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
ı	n da	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ı	tio	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ı	ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	19.82	(mg/L)
ı	ce	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
I	COL	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
I	ont	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
l	ln q	concentration of ground water into PM-13	C_g13 =	0.00	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	_	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	279.37	(mg/s)	3,167.81	(mg/s)	3,167.81	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	105.20	(mg/s)	105.20	(mg/s)	105.20	(mg/s)
ე ლ	mass flux in seepage from cell 2W	M_s2w =	1,390.05	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	2,033.82	(mg/s)	47,201.12	(mg/s)	178,210.31	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
Co flui col	concentration in river at PM-13	C_r13 =	11.430	(mg/L)	17.528	(mg/l)	7.266	(mg/l)

Case	Year 15			
Parameter	Manganese			
		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.43	(mg/L)
le i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
LO COL	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_g13 =	0.00	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
Ser	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
		M_fs =	6.09	(mg/s)	69.10	(mg/s)	69.10	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	23.50	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =		(mg/s)	999.74		7,550.19	
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Conve flux to	concentration in river at PM-13	C r13 =	0.192	(mg/L)	0.371	(mg/l)	0.308	(mg/l)

Case	Year 15
Parameter	Sodium

-					
		concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
	n da	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
		concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	22.52	(mg/L)
	icei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
	con	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
	ont	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
1	Inp	concentration of ground water into PM-13	C_g13 =	0.00	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
E	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	_	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	317.45	(mg/s)	3,599.56	(mg/s)	3,599.56	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	125.94	(mg/s)	125.94	(mg/s)	125.94	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	880.28	, ,	9,981.63		9,981.63	
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Ma at (mass flux in river at PM-13	M_r13 =	1,442.92	(mg/s)	27,932.52	(mg/s)	104,354.55	(mg/s)
		1	Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
CO Flui	concentration in river at PM-13	C_r13 =	8.109	(mg/L)	10.373	(mg/l)	4.255	(mg/l)

Case	Year 15
Parameter	Nickel

-					
		concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
	n da	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
	tio	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.153655831	(mg/L)
	cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
	log	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
	t e	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
1	n	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average l	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
95	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.17	(mg/s)	24.56	(mg/s)	24.56	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average I	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)		(mg/s)		(mg/s)
at M	mass flux in river at PM-13	M_r13 =		(mg/s)	29.15			(mg/s)
s c			Low Flo	w	Average I	FIOW	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Coi flux	concentration in river at PM-13	C_r13 =	0.014	(mg/L)	0.011	(mg/L)	0.002	(mg/L)

Parameter Lead	Case	Year 15	
	Parameter	Lead	

	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
章	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002409879	(mg/L)
le cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
Los	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
at	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
道	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	_	(mg/s)
E	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	_	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.39	(mg/s)	0.39	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.27	(mg/s)	0.27	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mass b at each		M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to concer	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/L

Case	Year 15
Parameter	Antimony

ı		concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ı	ıta	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
ı	ם ח	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
ı	tion	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ı	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.13E-02	(mg/L)
ı	cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
ı	on	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
ı	nt o	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
ı	Inp	concentration of ground water into PM-13	C_g13 =	0.00E+00	(mg/L)

			Low Flo	w	Average l	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
Se	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.16	(mg/s)	1.81	(mg/s)	1.81	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.06	(mg/s)		(mg/s)
			Low Flo	w	Average I	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)	0.04	(mg/s)	0.12	(mg/s)
at X	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
	T		Low Flo	W	Average I	FIOW	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
S ⊕ 0	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Year 15
Parameter	Selenium

	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
章	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002521801	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
Los	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
į	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
d u	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
Ser	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	_	(mg/s)	-	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.04	(mg/s)	0.40	(mg/s)	0.40	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
္မင္မ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
	T		Low Flo	W	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to concer	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case	Year 15
Parameter	Sulfate

-					
I		concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ı	ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
ı	n da	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ı	ţi	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ı	ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	241.92	(mg/L)
ı	icei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
ı	Cor	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
ı	ont	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
	<u>li</u>	concentration of ground water into PM-13	C_g13 =	0.00	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
ē	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,409.53	(mg/s)	38,661.16	(mg/s)	38,661.16	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,628.60	(mg/s)	3,628.60	(mg/s)	3,628.60	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =	3,027.64	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flow		Average Flow		High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	10,272.65	(mg/s)	144,180.08	(mg/s)	231,519.54	(mg/s)
		1	Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
S E	concentration in river at PM-13	C_r13 =	57.733	(mg/L)	53.541	(mg/l)	9.439	(mg/l)

Case	Year 15
Parameter	Thallium
-	

	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
ı da	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
tior	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001193197	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
ut	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
Inp	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
fior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
9	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	_	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
Convert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
		1	Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mas		M_r13 =	0.02	(mg/s)	0.69	(mg/s)	5.06	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
ပိ≓့ဒ	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 15
Parameter	Zinc

ı		concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ı	ıta e	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
ı	n da	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
ı	tio	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ı	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.081197396	(mg/L)
ı	cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
ı	lo	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
ı	t e	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
ı	ם	concentration of ground water into PM-13	C_g13 =	0	(mg/L)

			Low Flo	W	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
Se .	mass flux of ground water into PM-13	M_g13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
Lo X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.14	(mg/s)	12.98	(mg/s)	12.98	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ဒိ ဒိ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	low
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Mas at e	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)	399.74	
			Low Flo	W	Average	Flow	High FI	low
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
S ₽ 8	concentration in river at PM-13	C r13 =	0.010	(mg/L)	0.019	(mg/L)	0.016	(mg/L)

Appendix F.6
Embarrass River
Proposed Action
Year 20

FLOWS

Case	Year 20				
Flows	Low Flow Conditions (no surface runoff)				Node
in River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.29	(cfs)	PM-13
Tota	flow check	Q_ck_L =	6.29	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
ţa _	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.51	(cfs)	PM-13
flow data	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.02	(cfs)	PM-13
آو	seepage from cell 2W	Q_s2w_L =	0.69	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
n d	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 20				
Flow	Average Flow Conditions (mean annual)				
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_M =	95.48	(cfs)	PM-13
Total	flow check	Q_ck_M =	95.48	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	5.97	(cfs)	PM-13
	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.02	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
Input 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
ם	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 20				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	867.03	(cfs)	PM-13
Tota	flow check	Q_ck_H =	867.03	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ţa _	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	5.97	(cfs)	PM-13
flow data	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.02	(cfs)	PM-13
١	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
<u> </u>	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Year 20			
Parameter	Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00124	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
ouo	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.000008	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.21	(mg/s)	0.21	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =		(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
	mass max in river at 1 m-10	IW_115 -	Low Flo		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =		(mg/L)		(mg/L)		(mg/L)

Case	Year 20			
Parameter	Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ğu	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.74E-01	(mg/L)
193	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
at	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s
		M_fs =	5.44	(mg/s)	63.12	(mg/s)	63.12	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	30.64	(mg/s)	355.65	(mg/s)	355.65	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
Mass b at eacl		M_r13 =	39.76 Low Flo	(mg/s)	633.96 Average		2,817.44 High Fl	
			LOW FIO	vv	Average	riow	High Fi	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L
Conver flux to	concentration in river at PM-13	C r13 =	0.223	(mg/L)	0.235	(mg/L)	0.115	(ma/l

Case Parameter	Year 20 Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.014389887	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C rrs =	0.004	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	ı	(mg/s)	1.31	(mg/s)	15	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.21	(mg/s)	2.43	(mg/s)	2.43	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)		(mg/s)	0.65	(mg/s)
		1	Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	0.66	(mg/s)	5.14	(mg/s)	21.51	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Con	concentration in river at PM-13	C_r13 =	0.004	(mg/L)	0.002	(mg/L)	0.001	(mg/L)

Case	Year 20			
Parameter	Boron			
		1	1	
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.174123916	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
duj	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
ē	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.53	(mg/s)	29.42	(mg/s)	29.42	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.06	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	74.34	(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	12.04	(mg/s)	139.56	(mg/s)	401.58	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	0.068	(mg/L)	0.052	(mg/L)	0.016	(mg/L)

Case	Year 20			
Parameter	Barium			
	Lancon destination of the form and the DM 40	0 -40	0.044	(fl)
_	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ıtr	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.60E-02	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
In put	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	_	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	_	(mg/s)	19.15	(mg/s)	219	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.96	(mg/s)	11.15	(mg/s)	11.15	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =	1.80	(mg/s)	20.95	(mg/s)	20.95	(mg/s)
			Low Flow		Average Flow		High Flow	
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
M. at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)	305.49	
	T		Low Flo	W	Average	FIOW	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.070	(mg/L)	0.024	(mg/L)	0.012	(mg/L)

Case Parameter	Year 20 Beryllium			
Tarameter	Dorymani			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00131326	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
ouo	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.22	(mg/s)	0.22	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	_	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.17	(mg/s)	0.17	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s
Mass ba at each i	mass flux in river at PM-13	M_r13 =	0.04 Low Flo	(mg/s)	0.61	(mg/s)	2.79 High Fl	(mg/s
SS C								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case Parameter	Year 20 Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
Ē	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	76.37590202	(mg/L)
92	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,111.71	(mg/s)	12,906.03	(mg/s)	12,906.03	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	227.25	(mg/s)	227.25	(mg/s)	227.25	(mg/s)
ပို့ ဍ		M_s2w =	1,159.99	(mg/s)	13,466.52	(mg/s)	32.66	(mg/s)
			Low Flow		Average	Average Flow		ow
Mass balance at each node		M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
M at	mass flux in river at PM-13	M_r13 =	5,225.09		62,093.28		332,512.66	
	1		Low Flo	w	Average	Flow	High FI	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
Conve	concentration in river at PM-13	C_r13 =	29.357	(mg/L)	22.980	(mg/l)	13.552	(mg/l)

concentration of ground water into PM-12

concentration of ground water into PM-13

Case	Year 20	1		
Parameter	Cadmium			
			1	
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
		C_sBab =	0.00008	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000534314	(mg/L)
93	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
Š	concentration in tailings basin cell 2W	C s2w =	0.000188	(ma/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
Ceu	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
		M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mass b at each		M_r13 =		(mg/s)		(mg/s)		(mg/s
			Low Flo	w	Average	Flow	High FI	ow
t mass	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

C_g12 =

C_g13 =

0.0003 (mg/L)

0.0003 (mg/L)

Case Parameter	Year 20 Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
u C	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.66E+00	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
<u></u>	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flow		Average	Flow	low High Flo	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
ē	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
concentration	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	111.46	(mg/s)	1,293.94	(mg/s)	1,293.94	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	961.45		961.45	(mg/s)	961.45	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	417.97	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s)
			Low Flow		Average	Flow	High Flow	
ass balance each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	1,749.14	(mg/s)	28,776.03	(mg/s)	247,124.68	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	9.827	(mg/L)	10.650	(mg/L)	10.072	(mg/L)

Case	Year 20				
Parameter	Cobalt				
	concentration of surface water into PM-12	C	_s12 =	0.0006	(mg/L)
data	concentration of surface water into PM-13	C.	_s13 =	0.0006	(mg/L)
	concentration in Babbitt WWTP discharge	C.	_sBab =	0.0006	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C.	_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C.	_fs =	0.007940593	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	0.005	(mg/L)
conc	concentration in tailings basin cell 2W	C_	_s2w =	0.001556	(mg/L)
Input	concentration of ground water into PM-12	C_	_g12 =	0.0011	(mg/L)
트	concentration of ground water into PM-13	C	_g13 =	0.0011	(mg/L)

	mass flux of surface water into PM-12							
	mass max or samass mater mis r m 12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.12	(mg/s)	1.34	(mg/s)	1.34	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)	0.35	(mg/s)
			Low Flo	W	Average	Flow	High FI	low
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)		(mg/s)		(mg/s)
_ ~ ~	Illiass liux iii livei at i ivi-13	IVI_I 13 -	Low Flo		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Year 20			
Parameter	Copper			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
n di	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.020208301	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
ă	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
ᅄ	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s
	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s
u X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s
	many flux in according from Tailings Davin Calls 1E and 2E	M_fs =	0.29	(mg/s)	3.41	(mg/s)	3.41	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)	1.03	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s
Mass k at eack		M_r13 =	0.96 Low Flo	(mg/s)	8.37	(mg/s)	41.12 High Fl	
			LOWIN		Avelage	1100	riigirri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L
Convergillax to	concentration in river at PM-13	C r13 =	0.005	(mg/L)	0.003	(mg/L)	0.002	(ma/l

Case Parameter	Year 20 Fluoride				
	concentration of surface water into PM-12	C	_s12 =	0.1	(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	0.1	(mg/L)
	concentration in Babbitt WWTP discharge	C_	_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_	_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_	_fs =	7.70E-01	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	2.85E+00	(mg/L)
conc	concentration in tailings basin cell 2W	C_	_s2w =	1.55	(mg/L)
Input	concentration of ground water into PM-12	C	_g12 =	0.385	(mg/L)
r d	concentration of ground water into PM-13	С	_g13 =	0.385	(mg/L)

•			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
centration	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
L con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	11.21	(mg/s)	130.19	(mg/s)	130.19	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.56	(mg/s)	1.56	(mg/s)	1.56	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	30.08	(mg/s)	349.17	(mg/s)	349.17	(mg/s
			Low Flo	w	Average	Flow	High FI	low
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)	45.99 753.94	(mg/s)	415.45 2,937.43	
			Low Flo		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)

Case Parameter	Year 20 Iron			
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C fs =	8.72E-02	(mg/L)

centr	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.72E-02	(mg/L)				
ē	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)				
con	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)				
Ę	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)				
Input	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)				
			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
Ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
uea	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
ort o	mass flux in seepage from Tailings Basin Cells 1E and 2E	M fs =	1.27	(mg/s)	14.74			(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.22	(mg/s)	0.22	(mg/s)	0.22	(mg/s)
မို ပိ	mass flux in seepage from cell 2W	M_s2w =	89.14	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass	mass flux in river at PM-13	M_r13 =	95.65 Low Flo	(mg/s)	7,168.74	, ,	70,489.85	,
			LOW FIO	w	Average	FIOW	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Convertiux to	concentration in river at PM-13	C_r13 =	0.537	(mg/L)	2.653	(mg/L)	2.873	(mg/L)

Case Parameter	1.550			
	concentration of surface water into PM-12	C_s12 =	70	(mg/l
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/l
n dat	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/l
ō		0	0.40 = 4.400 = =	, ,

C_s12 = /0 (mg/L)	concentration of surface water into PM-12
C_s13 = 70 (mg/L)	concentration of surface water into PM-13
C_sBab = 70 (mg/L)	concentration in Babbitt WWTP discharge
C_spit = 942.7142857 (mg/L)	concentration in Area 5 Pit NW discharge
2E C_fs = 2.71E+02 (mg/L)	concentration in seepage from Tailings Basin Cells 1E and 2E
age C_rrs = 8.61E+03 (mg/L)	concentration in hydrometallurgical residue cells liner leakage
C_s2w = 436.6 (mg/L)	concentration in tailings basin cell 2W
C_g12 = 87.5 (mg/L)	concentration of ground water into PM-12
C_g13 = 87.5 (mg/L)	concentration of ground water into PM-13
C_spit = 942.7142857 (m 2E C_fs = 2.71E+02 (m age C_rrs = 8.61E+03 (m C_s2w = 436.6 (m C_g12 = 87.5 (m	concentration in Area 5 Pit NW discharge concentration in seepage from Tailings Basin Cells 1E and 2E concentration in hydrometallurgical residue cells liner leakage concentration in tailings basin cell 2W concentration of ground water into PM-12

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
too Lix	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,941.56	(mg/s)	45,758.38	(mg/s)	45,758.38	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,703.46	(mg/s)	4,703.46	(mg/s)	4,703.46	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	8,471.90	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =	2,129.58 29,671.51		27,763.72 361,984.35		286,383.27 1,890,424.90	
	•		Low Flo	w	Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)

Case Parameter	Year 20 Potassium			
		ı		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	13.45	(mg/L)
<u></u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s
ţi	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.98	(mg/s)	0.98	(mg/s)	0.98	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s
concentration flux	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s
la co	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	195.74	(mg/s)	2,272.35	(mg/s)	2,272.35	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	150.77	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s
			Low Flo	W	Average	Flow	High FI	ow
balance th node	mass flux in river at PM-12	M_r12 =	39.92	(mg/s)	1,360.32	(mg/s)	15,030.21	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	577.06 Low Flo		15,080.85 Average		95,869.85 High Fl	
s c			2011 1 10		71101490			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.640	(mg/L)	3.483	(mg/L)	3.679	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	3.242	(mg/L)	5.581	(mg/L)	3.907	(mg/l

Case	Year 20			
Parameter	Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	19.45	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	ı	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	283.06	(mg/s)	3,286.07	(mg/s)	3,286.07	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	116.36	(mg/s)	116.36	(mg/s)	116.36	(mg/s)
င္ င	mass flux in seepage from cell 2W	M_s2w =	1,357.72	(mg/s)	15,762.00		15,762.00	(mg/s)
		1	Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mar at e	mass flux in river at PM-13	M_r13 =	3,285.20	(mg/s)	48,599.41	(mg/s)	179,608.60	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
Con	concentration in river at PM-13	C_r13 =	18.458	(mg/L)	17.986	(mg/l)	7.320	(mg/l)

Case Parameter	Year 20 Manganese				
	concentration of surface water into PM-12	C_	s12 =	0.30	(mg/L)
data	concentration of surface water into PM-13	C_	s13 =	0.30	(mg/L)
	concentration in Babbitt WWTP discharge	C_	sBab =	0.30	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_	spit =	0.49	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_	fs =	0.45	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_	rrs =	0.00	(mg/L)
conce	concentration in tailings basin cell 2W	C_	s2w =	1.18	(mg/L)
Input	concentration of ground water into PM-12	C_	g12 =	0.19	(mg/L)
ᇤ	concentration of ground water into PM-13	C_	g13 =	0.19	(mg/L)
	ponecination of ground water lifto 1 M-15	<u></u>	910-	0.19	(iiig
				Low Flor	A/

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	_	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	6.56	(mg/s)	76.11	(mg/s)	76.11	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ე ე	mass flux in seepage from cell 2W	M_s2w =	22.96	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
M _g	mass flux in river at PM-13	M_r13 =		(mg/s)	1,029.15		7,579.60	, ,
	T		Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Con	concentration in river at PM-13	C r13 =	0.317	(mg/L)	0.381	(mg/l)	0.309	(mg/l)

Case Parameter	Year 20 Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
n d	Iconcentration in Bannitt WWW LP discharge	C_sBab =	3.50	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	19.36	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)

	, ,							
concer	concentration in hydrometallurgical residue cells liner leakage	e C_rrs =	255.00	(mg/L)				
Ö	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)				
Input	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)				
<u>=</u>	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)				
				_				
			Low Flo	IN .	Average	Flow	High Fl	OW
	mass flux of surface water into PM-12	M s12 =	2011 1 10	(mg/s)	1,249.02		14,180	
	mass flux of ground water into PM-12	M q12 =	119.26	` • /	119.26		119.26	
ert concentration iss flux	-		119.20	` ` '				
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)		(mg/s)	32.69	
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	` • ·	69,586	` _
	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	`	583.80	
		M_spit =	-	(mg/s)	6,729.88	` • •	6,729.88	
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	281.86		3,272.20	(mg/s)	3,272.20	
ž š	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	139.30	` * /	139.30	` • ′	139.30	
2 ٽ	mass flux in seepage from cell 2W	M_s2w =	859.80		9,981.63		9,981.63	,
		1	Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s
Mass I at eacl	mass flux in river at PM-13	M_r13 =	1,984.02 Low Flo		28,202.32	,	104,624.34 High Fl	,
		1	LOW FIO	W	Average	FIOW	nigii ri	OW
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	11.147	(mg/L)	10.437	(mg/l)	4.264	(ma/l

Case Parameter	Year 20 Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.141786777	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.06	(mg/s)	23.96	(mg/s)	23.96	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)		(mg/s)	0.05	(mg/s)
္ ငိ	mass flux in seepage from cell 2W	M_s2w =	0.13	(mg/s)		(mg/s)	1.55	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
at at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	0.018	(mg/L)	0.011	(mg/L)	0.002	(mg/L)

Case	Year 20			
Parameter	Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001841737	(mg/L)
193	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
Sor	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
ם	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.31	(mg/s)	0.31	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.27	(mg/s)	0.27	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
balance th node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.22 Low Flo	(mg/s)	0.77	(mg/s)	0.77 High Fl	(mg/s
ss					Jugo		J	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/l

Case Parameter	Year 20 Antimony			
	concentration of surface water into PM-12	C s12 =	2.00E-05	(mg/L)
data	concentration of surface water into PM-12	C_s12 =	2.00E-05	
	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.02E-02	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
ļu	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.15	(mg/s)	1.73	(mg/s)	1.73	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င် င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)		(mg/s)		(mg/s)
		111_111	Low Flo		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 = C_r13 =		(mg/L)		(mg/L)		(mg/L)

Case	Year 20			
Parameter	Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002326015	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.39	(mg/s)	0.39	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
balance h node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s
Mass ba		M_r13 =	0.51 Low Flo	(mg/s)	1.81	(mg/s)	8.36 High F l	(mg/s
iass							Ĭ.	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/l
ರ≝೪	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(ma)

Case	Year 20			
Parameter	Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	211.97	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
itrai	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,085.44	(mg/s)	35,819.52	(mg/s)	35,819.52	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,013.51	(mg/s)	4,013.51	(mg/s)	4,013.51	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	2,957.21	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =	206.87		1,671.68		16,449.94	
<i>ā</i> ≤	mass flux in river at PM-13	M_r13 =	11,275.75 Low Flo		142,736.07		230,075.53	
			LOW FIO	W	Average	FIOW	High Fl	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
Converture flux to concer	concentration in river at PM-13	C_r13 =	63.351	(mg/L)	52.824	(mg/l)	9.377	(mg/l)

Case	Year 20			
Parameter	Thallium			
		1	1	
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001147722	(mg/L)
<u></u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
르	concentration of ground water into PM-13	C g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.19	(mg/s)	0.19	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s
Mass ba at each i	mass flux in river at PM-13	M_r13 =	0.02 Low Flo	(mg/s)	0.69	(mg/s)	5.06 High Fl	(mg/s
SS LC					- Taranaga		g	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Year 20			
Parameter	Zinc			
	concentration of surface water into PM-12	C s12 =	0.016	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.061124366	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.89	(mg/s)	10.33	(mg/s)	10.33	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ဒိ ဒိ	mass flux in seepage from cell 2W	M_s2w =	0.28	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	2.82	(mg/s)	49.11	(mg/s)	398.46	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	0.016	(mg/L)	0.018	(mg/L)	0.016	(mg/L)

Appendix F.7
Embarrass River
Proposed Action
Closure

FLOWS

Case	Closure				
Flows	Low Flow Conditions (no surface runoff)				Node
in : River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flow in Embarrass Ri	flow in river at PM-13	Q_r13_L =	6.27	(cfs)	PM-13
Tota	flow check	Q_ck_L =	6.27	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
ţa _	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.51	(cfs)	PM-13
\ dg	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
flow data	seepage from cell 2W	Q_s2w_L =	0.69	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
Įn I	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Closure				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass River	flow in river at PM-13	Q_r13_M =	87.35	(cfs)	PM-13
Total	flow check	Q_ck_M =	87.35	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	2.45	(cfs)	PM-13
	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
Input flow	seepage from cell 2W	Q_s2w_M =	3.37	(cfs)	PM-13
Ę	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
삡	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Closure				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	858.90	(cfs)	PM-13
Tota	flow check	Q_ck_H =	858.90	(cfs)	4
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ţa	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	2.45	(cfs)	PM-13
flow data	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
آو	seepage from cell 2W	Q_s2w_H =	3.37	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
<u>u</u>	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case Parameter	Closure Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
βr		C_sBab =	0.00011	(mg/L)
atior	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ıtr		C_fs =	0.00097	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
LO3	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
<u> </u>	concentration of ground water into PM-13	C a13 =	0.000008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	0 (mg/s) 00 (mg/s) 00 (mg/s) 2 (mg/s) 00 (mg/s) 00 (mg/s) 01 (mg/s) 07 (mg/s) 00 (mg/s) 01 (mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	man flux in according from Tailings Davin Calls 15 and 25	M_fs =	0.01	(mg/s)	0.07	(mg/s)	0.07	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s
			Low Flo	w	Average	Flow	High FI	low
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s
Mass ba at each		M_r13 =	0.02 Low Flo	(mg/s)	0.32	(mg/s)		
			LOWIN		Avelage	liow	Ingilit	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l

Case Parameter	Closure Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.37E-01	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
e e	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
į	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
<u> </u>	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	9.11	(mg/s)	44.20	(mg/s)	44.20	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	31.04	(mg/s)	150.57	(mg/s)	150.57	(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
tss balance each node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	43.75 Low Flo	(mg/s)	409.87 Average		2,593.35 High FI	
ss uo			LOW FIO	W	Average	Flow	High Fi	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/
Conve flux to	concentration in river at PM-13	C r13 =	0.246	(mg/L)	0.166	(mg/L)	0.107	(ma/L

Case	Closure			
Parameter	Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.012359831	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

		Low Flo	w	Average	Flow	High FI	ow
mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
mass flux of surface water into PM-13 mass flux of ground water into PM-13 mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	M_fs =	0.18	(mg/s)	0.86	(mg/s)	0.86	(mg/s)
mass flux in seepage from Tailings Basin Cells 1E and 2E mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
		Low Flo	w	Average	Flow	High Fl	ow
mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)		(mg/s)		(mg/s)
inlass ilux iii rivei at Pivi-13	W_113 =	Low Flo		Average		High FI	
concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L
concentration in river at PM-13	C r13 =	0.004	(ma/L)	0.001	(mg/L)	0.001	(ma/l

Case	Closure			
Parameter	Boron			
		-		
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.198832748	(mg/L)
leel	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
LOS	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
a t	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
uo X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.84	(mg/s)	13.79	(mg/s)	13.79	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	6.49	(mg/s)	31.47	(mg/s)	31.47	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass k		M_r13 =		(mg/s)		(mg/s)	343.02	
			Low Flo	w	Average	FIOW	High FI	low
ivert mass to centration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.070	(mg/L)	0.033	(mg/L)	0.014	(mg/L

Case	Closure			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.81E-02	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
00	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flor	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s
concentration flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s
-	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.69	(mg/s)	3.34	(mg/s)	3.34	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1.83	(mg/s)	8.87	(mg/s)	8.87	(mg/s
			Low Flor	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s
Mass ba at each I	mass flux in river at PM-13	M_r13 =	12.29 Low Flo	(mg/s)	45.41 Average	(mg/s)	285.59 High F l	
<u> </u>			LOWITO		Avelage	liow	riigirii	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.069	(mg/L)	0.018	(mg/L)	0.012	(ma/l

Case	Closure			
Parameter	Beryllium			
		1	ı	1
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000808254	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
, S	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flor	N	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
#	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.07	(mg/s)	0.07	(mg/s
			Low Flo	N	Average	Flow	High FI	low
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Mass ba at each		M_r13 =	0.03 Low Flo	(mg/s)	0.35	(mg/s)	2.53 High Fl	(mg/s
s c			2011 1 10		7.co.ugo			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/L

Case	Closure			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
n di	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	59.94387899	(mg/L)
92	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
5	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	W	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
a	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s
li co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	857.11	(mg/s)	4,157.57	(mg/s)	4,157.57	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	19.51	(mg/s)	19.51	(mg/s)	19.51	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,175.36	(mg/s)	5,701.28	(mg/s)	2.80	(mg/s
			Low Flo	W	Average	Flow	High FI	low
iss balance each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	4,778.13 Low Flo		45,371.84 Average		323,526.61 High FI	_
ss			LOW 1 10		Average	liow	Ingiri	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l
Convergillar to concer	concentration in river at PM-13	C r13 =	26.921	(mg/L)	18.354	(mg/l)	13.310	(ma/l

Case	Closure	ı		
Parameter	Cadmium	i		
		·		
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
7	concentration in Rabbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000227872	(mg/L)
ICEL	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
uos	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Mass ba at each		M_r13 =	0.05 Low Flo	(mg/s)	0.25	(mg/s)	2.00 High Fl	(mg/s
nass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)		(mg/L)	0.000	

Case	Closure			
Parameter	Chloride			
		-		
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.29E+00	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
20.	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	89.94	(mg/s)	436.24	(mg/s)	436.24	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	82.56	(mg/s)	82.56	(mg/s)	82.56	(mg/s)
္ င္	mass flux in seepage from cell 2W	M_s2w =	423.51	(mg/s)	2,054.29		2,054.29	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =	43.81 854.27	(mg/s)	3,705.83		40,651.48	
·		-	Low Flo		Average	, ,	High FI	, ,
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Con	concentration in river at PM-13	C r13 =	4 0 4 2	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Closure Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
n dâ	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001356866	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
l S	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C a13 =	0.0011	(ma/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s
	many flux in according from Tailings Davin Calls 1E and 2E	M_fs =	0.02	(mg/s)	0.09	(mg/s)	0.09	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.15	(mg/s)	0.15	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s
Mass k		M_r13 =	0.21 Low Flo	(mg/s)	1.70	(mg/s)	14.80 High Fl	
" c			201110		Avoiago		i i i gii i i	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/l

Case Parameter	Closure Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.018240705	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
l S	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.26	(mg/s)	1.27	(mg/s)	1.27	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	0.43	(mg/s)	0.43	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s
Mass ba at each I	mass flux in river at PM-13	M_r13 =	0.92 Low Flo	(mg/s)	5.63	(mg/s)	38.38 High Fl	_
"			LOWIIO		Average	liow	ingiiii	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L
Convergible Concer	concentration in river at PM-13	C r13 =	0.005	(mg/L)	0.002	(mg/L)	0.002	(ma/l

Case	Closure			
Parameter	Fluoride			
				1
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
p u	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.82E-02	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
20	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ă	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flor	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.26	(mg/s)	1.27	(mg/s)	1.27	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	30.48	(mg/s)	147.83	(mg/s)	147.83	(mg/s
			Low Flor	W	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	86.11 Low Flo	(mg/s)	422.25 Average		2,605.74 High Fl	
<i>w</i> -			2011 110		Avolugo		- Ingili	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.485	(mg/L)	0.171	(mg/L)	0.107	(ma/l

Case	Closure			
Parameter	Iron			
		-		
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.75E-01	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
00	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flor	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s
-	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	9.65	(mg/s)	46.80	(mg/s)	46.80	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	90.32	(mg/s)	438.13	(mg/s)	438.13	(mg/s
			Low Flor	w	Average	Flow	High FI	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	105.01		6,603.85 Average		69,924.96 High Fl	
			LOWITO	W .	Average	liow	ingiiii	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L
Conver flux to	concentration in river at PM-13	C r13 =	0.592	(mg/L)	2 671	(mg/L)	2.877	(ma/l

Case	Closure				
Parameter	Hardness				
		_		ı	
	concentration of surface water into PM-12	C_	s12 =	70	(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	70	(mg/L)
	concentration in Babbitt WWTP discharge	C	_sBab =	70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C.	_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C.	_fs =	227	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	8610	(mg/L)
S	concentration in tailings basin cell 2W	C_	_s2w =	436.6	(mg/L)
Input	concentration of ground water into PM-12	C_	_g12 =	87.5	(mg/L)
트	concentration of ground water into PM-13	C	_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,251.11	(mg/s)	15,770.06	(mg/s)	15,770.06	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	403.90	(mg/s)	403.90	(mg/s)	403.90	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	8,584.18	(mg/s)	41,638.98	(mg/s)	41,638.98	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
Mass balance at each node		M_r12 =	2,129.58		27,763.72		286,383.27	
a Š	mass flux in river at PM-13	M_r13 =	24,793.78		270,983.44		1,799,423.99	
			Low Flo	W	Average	FIOW	High FI	low
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	139.693	(mg/L)	109.618	(mg/L)	74.029	(ma/l

Case Parameter	Closure Potassium			
		-		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	13.37	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
e e	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
į	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
Ę	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	191.19	(mg/s)	927.38	(mg/s)	927.38	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	152.77	(mg/s)	741.03	(mg/s)	741.03	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	39.03	(mg/s)	1,359.42	(mg/s)	15,029.31	(mg/s
Ma at e	mass flux in river at PM-13	M_r13 =	573.61	(mg/s)	12,725.67	(mg/s)	93,514.67	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.603	(mg/L)	3.481	(mg/L)	3.679	(mg/l)

Case Parameter	Closure Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	18.87	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s
	mass flux in according from Tailings Dasin Calls 1E and 2E	M_fs =	269.77	(mg/s)	1,308.55	(mg/s)	1,308.55	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	9.99	(mg/s)	9.99	(mg/s)	9.99	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,375.71	(mg/s)	6,673.11	(mg/s)	6,673.11	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s
Mass k at each		M_r13 =	3,183.54 Low Flo		37,426.64		168,435.83	
			LOW FIO	W	Average	FIOW	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l
Conver flux to	concentration in river at PM-13	C r13 =	17.937	(mg/L)	15.140	(ma/l)	6.930	(ma/l

Case	Closure			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.28	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s
it	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.95	(mg/s)	19.17	(mg/s)	19.17	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	23.26	(mg/s)	112.82	(mg/s)	112.82	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s
Mass ba at each		M_r13 =	54.19 Low Flo	(mg/s)	818.53 Average		7,368.99 High Fl	
ass			LOW FIO	w	Average	Flow	High Fi	lov
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/
Conve flux to	concentration in river at PM-13	C r13 =	0.305	(mg/L)	0.331	(mg/l)	0.303	(ma/

Case Parameter	Closure Sodium			
		-	ı	
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	12.15	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s
Ē	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	173.73	(mg/s)	842.70	(mg/s)	842.70	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	11.96	(mg/s)	11.96	(mg/s)	11.96	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	871.20	(mg/s)	4,225.89	(mg/s)	4,225.89	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
balance h node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s
Mass ba at each		M_r13 =	1,759.95 Low Flo		19,889.75 Average		96,311.77 High F l	
			LOWITO	VV	Average	liow	riigirii	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l
Conver flux to	concentration in river at PM-13	C r13 =	9.916	(mg/L)	8.046	(mg/l)	3.962	(ma/l

Case Parameter	Closure Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.015125217	(mg/L)
leo l	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
co	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
5	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
	concentration of ground water into PM-13	C a13 =	0.007	(ma/L)

		Low Flo	W	Average	Flow	High FI	ow
mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
mass flux in Babbitt WWTP discharge	M_sBab =	_	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.22	(mg/s)	1.05	(mg/s)	1.05	(mg/s)
mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
mass flux in seepage from cell 2W	M_s2w =			0.66	(mg/s)	0.66	(mg/s)
		Low Flo	W	Average	Flow	High Fl	ow
mass flux in river at PM-12	M_r12 =						(mg/s)
mass flux in river at PM-13	M_r13 =						
concentration in river at PM-12	C_r12 =						(mg/L)
	mass flux of ground water into PM-12 mass flux in Babbitt WWTP discharge mass flux of surface water into PM-13 mass flux of ground water into PM-13 mass flux of Area 5 Pit NW discharge mass flux in seepage from Tailings Basin Cells 1E and 2E mass flux in hydrometallurgical residue cells liner leakage mass flux in seepage from cell 2W mass flux in river at PM-12 mass flux in river at PM-13	mass flux of ground water into PM-12	mass flux of surface water into PM-12 M_s12 = - mass flux of ground water into PM-12 M_g12 = 0.17 mass flux in Babbitt WWTP discharge M_sBab = - mass flux of surface water into PM-13 M_s13 = - mass flux of ground water into PM-13 M_g13 = 0.83 mass flux of Area 5 Pit NW discharge M_spit = - mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.22 mass flux in hydrometallurgical residue cells liner leakage M_rrs = 0.00 mass flux in seepage from cell 2W M_s2w = 0.14 Low Fio Mass flux in river at PM-12 M_r13 = 1.36 Low Fio	mass flux of ground water into PM-12 M_g12 = 0.17 (mg/s) mass flux in Babbitt WWTP discharge M_sBab = - (mg/s) mass flux of surface water into PM-13 M_s13 = - (mg/s) mass flux of ground water into PM-13 M_g13 = 0.83 (mg/s) mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.22 (mg/s) mass flux in hydrometallurgical residue cells liner leakage M_rrs = 0.00 (mg/s) mass flux in seepage from cell 2W M_s2w = 0.14 (mg/s) Low Flow mass flux in river at PM-12 mass flux in river at PM-13 M_r13 = 1.36 (mg/s) Low Flow	mass flux of surface water into PM-12 M_s12 = - (mg/s) 0.43 mass flux of ground water into PM-12 M_g12 = 0.17 (mg/s) 0.17 mass flux in Babbitt WWTP discharge M_sBab = - (mg/s) 0.01 mass flux of surface water into PM-13 M_s13 = - (mg/s) 2.09 mass flux of ground water into PM-13 M_g13 = 0.83 (mg/s) 0.83 mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 0.29 mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.22 (mg/s) 1.05 mass flux in hydrometallurgical residue cells liner leakage M_rrs = 0.00 (mg/s) 0.00 mass flux in seepage from cell 2W M_s2w = 0.14 (mg/s) 0.66 Low Flow Average M_r13 = 1.36 (mg/s) 5.54 Low Flow Average	mass flux of surface water into PM-12 M_s12 = - (mg/s) 0.43 (mg/s) mass flux of ground water into PM-12 M_g12 = 0.17 (mg/s) 0.17 (mg/s) mass flux in Babbitt WWTP discharge M_sBab = - (mg/s) 0.01 (mg/s) mass flux of surface water into PM-13 M_s13 = - (mg/s) 2.09 (mg/s) mass flux of ground water into PM-13 M_g13 = 0.83 (mg/s) 0.83 (mg/s) mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 0.29 (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.22 (mg/s) 1.05 (mg/s) mass flux in hydrometallurgical residue cells liner leakage M_rrs = 0.00 (mg/s) 0.00 (mg/s) mass flux in seepage from cell 2W M_s2w = 0.14 (mg/s) 0.66 (mg/s) Low Flow Average Flow M_r12 = 0.17 (mg/s) 5.54 (mg/s)	mass flux of surface water into PM-12 M_s12 = - (mg/s) 0.43 (mg/s) 5 mass flux of ground water into PM-12 M_g12 = 0.17 (mg/s) 0.17 (mg/s) 0.17 mass flux in Babbitt WWTP discharge M_sBab = - (mg/s) 0.01 (mg/s) 0.01 mass flux of surface water into PM-13 M_s13 = - (mg/s) 2.09 (mg/s) 24 mass flux of ground water into PM-13 M_g13 = 0.83 (mg/s) 0.83 (mg/s) 0.83 mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 0.29 (mg/s) 0.29 mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.22 (mg/s) 1.05 (mg/s) 0.09 mass flux in hydrometallurgical residue cells liner leakage M_rrs = 0.00 (mg/s) 0.00 (mg/s) 0.00 mass flux in seepage from cell 2W M_s2w = 0.14 (mg/s) 0.66 (mg/s) 0.60 mass flux in river at PM-12 M_r12 = 0.17 (mg/s) 0.61 (mg/s) 5.04 mass flux in river at PM-13 M_r13 = 1.36 (mg/s) 5.54 (mg/s) 31.74 Low Flow Average Flow H

Case	Closure			
Parameter	Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001097329	(mg/L)
93	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
CO	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.08	(mg/s)	0.08	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.11	(mg/s)	0.11	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
Mass ba at each		M_r13 =	0.21 Low Flo	(mg/s)	0.38	(mg/s)	0.38 High F l	(mg/s
ss			2011110		7. Olugo			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0 001	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Closure			
Parameter	Antimony			
		ı	Г	
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.37E-03	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
CO	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
ă,	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
<u>n</u>	concentration of ground water into PM-13	C q13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.08	(mg/s)	0.37	(mg/s)	0.37	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
င္မွိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
balance h node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s
Mass ba at each		M_r13 =	0.30 Low Flo	(mg/s)	0.67	(mg/s)	1.10 High F l	(mg/s
mass	concentration in river at PM-12	C r12 =		(mg/L)		(mg/L)	0.000	
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.002			(mg/L)	0.000	

Case	Closure			
Parameter	Selenium	i		
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
ğu	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001503093	(mg/L)
93	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.10	(mg/s)	0.10	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ဒိ ဒိ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.10	(mg/s)	0.10	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s
Mass ba at each		M_r13 =	0.47 Low Flo	(mg/s)	1.36	(mg/s)	7.91 High Fl	(mg/s
ass					·····		3.1.3	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(ma/l

Case	Closure			
Parameter	Sulfate			
		-		
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	110.25	(mg/L)
93	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
ıdu	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,576.45	(mg/s)	7,646.82	(mg/s)	7,646.82	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	344.66	(mg/s)	344.66	(mg/s)	344.66	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	2,996.40	(mg/s)	14,534.54	(mg/s)	14,534.54	(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s
Mass at eac		M_r13 =	6,137.09 Low Flo		91,098.21 Average		178,437.67 High Fl	
ss								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	34.578	(ma/L)	36.851	(mg/l)	7.341	(ma/l

Case	Closure	l		
Parameter	Thallium	1		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000917488	(mg/L)
ice.	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.02 Low Flo	(mg/s)	0.54	(mg/s)	4.91 High Fl	(mg/s
ass			2011 1 10		, troings		9	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case Parameter	Closure Zinc			
	concentration of surface water into PM-12	C s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =		(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.020231354	(mg/L)
- E	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s
		M_fs =	0.29	(mg/s)	1.40	(mg/s)	1.40	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.28	(mg/s)	1.37	(mg/s)	1.37	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s
Mass I at eacl		M_r13 =	2.22 Low Flo	(mg/s)	38.31 Average	(mg/s)	387.67 High Fl	
s c			2011 7 10		71101290		1119111	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.013	(mg/L)	0.015	(mg/L)	0.016	(ma/l

Appendix F.8
Embarrass River
Proposed Action
Post-Closure

FLOWS

Case	Post-Closure				
Flows	Low Flow Conditions (no surface runoff)				Node
n River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.27	(cfs)	PM-13
Total Emba	flow check	Q_ck_L =	6.27	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
ţ <u>a</u>	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.77	(cfs)	PM-13
/ data	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
<u>[</u>	seepage from cell 2W	Q_s2w_L =	0.43	(cfs)	PM-13
nput flow	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Post-Closure			
Flow	Average Flow Conditions (mean annual)			
n River	flow in river at PM-12	Q_r12_M =	13.80 (cfs) PM-12
Total flow in Embarrass R	flow in river at PM-13	Q_r13_M =	85.33 (cfs	PM-13
Total	flow check	Q_ck_M =	85.33 (cfs	,
	surface water flow into PM-12	Q_s12_M =	12.61 (cfs	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53 (cfs	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33 (cfs	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99 (cfs	PM-13
2	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	2.45 (cfs	PM-13
, data	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00 (cfs	PM-13
flow	seepage from cell 2W	Q_s2w_M =	1.35 (cfs	PM-13
lnout f	ground water flow into PM-12	Q_g12_M =	0.86 (cfs	PM-12
au au	ground water flow into PM-13	Q_g13_M =	4.21 (cfs	PM-13

Case	Post-Closure				
Flow	High Flow Conditions (avg. annual 1-day max flo			_	
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	856.88	(cfs)	PM-13
Tota	flow check	Q_ck_H =	856.88	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ā	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	2.45	(cfs)	PM-13
da /	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
flow data	seepage from cell 2W	Q_s2w_H =	1.35	(cfs)	PM-13
Input 1	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
du	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

Case Parameter	Post-Closure Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
n dá	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00097	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C rrs =	0.000125	(ma/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
it	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
concentration flux	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
con flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.02 Low Flo	(mg/s)	0.31	(mg/s)	2.71 High Fl	(mg/s)
			LOW 1 10	1	Average	1000	riigirri	
vert mass to centration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
등폭동	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

C_s2w =

C_g12 = C_g13 = 0.000100 (mg/L) 0.000008 (mg/L)

0.000008 (mg/L)

Case Parameter	Post-Closure Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.37E-01	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
l S	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	13.96	(mg/s)	44.20	(mg/s)	44.20	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =	19.04	(mg/s)	60.32	(mg/s)	60.32	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
tss balance each node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	36.59 Low Flo	(mg/s)	319.61 Average		2,503.10 High Fl	_
S =			201110		Avoiago		- Ingili	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.206	(mg/L)	0.132	(mg/L)	0.103	(ma/l

Case	Post-Closure			
Parameter	Arsenic			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.012359831	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
50	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
at	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	_	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	_	(mg/s)	1.31	(mg/s)	15	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
u X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.27	(mg/s)	0.86	(mg/s)	0.86	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.04	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)		(mg/s)		(mg/s)
a ≥	mass flux in river at PM-13	M_r13 =	0.70	(mg/s)		(mg/s)		(mg/s)
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.0027		0.001	(mg/L)	0.001	(mg/L)
S ∄ S	concentration in river at PM-13	C_r13 =	0.0039	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Post-Closure	Ī		
Parameter	Boron			
			1	
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.198832748	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
ă,	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
Indul	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4.35	(mg/s)	13.79	(mg/s)	13.79	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =		(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ပိ ခ်	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	12.61	(mg/s)	12.61	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)		(mg/s)		(mg/s)
<u> </u>	mass flux in river at PM-13	M_r13 =	Low Flo	(mg/s)	Average	(mg/s)	324.16 High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Con	concentration in river at PM-13	C_r13 =	0.064	(mg/L)	0.026	(mg/L)	0	.013

Case Parameter	Post-Closure Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
d,	Iconcentration in Bappitt vvvv LP discharge	C_sBab =	0.011	(mg/L)
ratio		C_spit =	0.0044	(mg/L)
2	concentration in coopers from Tailings Pasin Calls 1E and 2E	C fo =	4 91E 02	(ma/L)

entra	concentration in seepage from Tailings Basin Cells 1E and 2	E C_fs =	4.81E-02	(mg/L)				
9	concentration in hydrometallurgical residue cells liner leakage	e C_rrs =	5.00E-03	(mg/L)				
200	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)				
į	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)				
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)				
			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
	mass flux of ground water into PM-12	M g12 =	1.66	(mg/s)		(mg/s)		(mg/s)
io	mass flux in Babbitt WWTP discharge	M sBab =	-	(mg/s)	0.10	(mg/s)		(mg/s)
trat	mass flux of surface water into PM-13	M s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
concentration	mass flux of ground water into PM-13	M g13 =	8.11	(mg/s)	8.11	(mg/s)		(mg/s)
ŭ X	mass flux of Area 5 Pit NW discharge	M spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
in a	mass flux in seepage from Tailings Basin Cells 1E and 2E	M fs =	1.05	(mg/s)		(mg/s)		(mg/s)
Convert	mass flux in hydrometallurgical residue cells liner leakage	M rrs =		(mg/s)		(mg/s)		(mg/s)
ပိ နှ	mass flux in seepage from cell 2W	M_s2w =	1.12	(mg/s)	3.55	(mg/s)	3.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
0								
Mass balance at each node	mass flux in river at PM-12	M r12 =	1.66	(ma/a)	F 60	(ma/a)	46.22	(ma/a)
bal	Illiass ilux ili livel at PW-12	IVI_I 12 =	1.00	(mg/s)	5.09	(mg/s)	40.33	(mg/s)
SS								
Ma	mass flux in river at PM-13	M_r13 =		(mg/s)	40.09	(mg/s)	280.28	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
S C								
Convert mass flux to	concentration in river at PM-12	C r12 =	0.060	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
in the	Concentiation III liver at PW-12	0_112 =	0.068	(IIIg/L)	0.015	(IIIg/L)	0.011	(IIIg/L)
Conve flux to								
CO Fin	concentration in river at PM-13	C_r13 =	0.067	(mg/L)	0.017	(mg/L)	0.012	(mg/L)

Case	Post-Closure			
Parameter	Beryllium			
			,	
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ć	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
		C_spit =	0.0001	(mg/L)
	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000808254	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
Š	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
•	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
2	concentration of ground water into DM 13	C a13 -	0.000033	(ma/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
-	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.03	(mg/s)	0.03	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.03 Low Flo	(mg/s)	0.30	(mg/s)	2.49 High Fl	(mg/s
v c			2011 110		Avoiugo	11011	i iigii i i	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case Parameter	Post-Closure Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
d d		C_sBab =	13	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C fs =	59.94387899	(ma/L)

centra	concentration in seepage from Tailings Basin Cells 1E and 2l	E C_fs =	59.94387899	(mg/L)				
ē	concentration in hydrometallurgical residue cells liner leakage	e C_rrs =	416	(mg/L)				
ŝ	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)				
Input	concentration of ground water into PM-12	C_g12 =	19	(mg/L)				
	concentration of ground water into PM-13	C_g13 =	19	(mg/L)				
			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	1	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
Ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
concentration flux	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s)
ξ <u>x</u>	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,312.64	(mg/s)	4,157.57	(mg/s)	4,157.57	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	19.51	(mg/s)	19.51	(mg/s)	19.51	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	721.08	(mg/s)	2,283.89	(mg/s)	2.80	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
alance	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r13 =	4,779.37		41,954.45		323,526.61	
	I		Low Flo	W	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	26.928	(mg/L)	17.373	(mg/l)	13.341	(mg/l)

concentration of ground water into PM-12

concentration of ground water into PM-13

Case Parameter	Post-Closure Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
_	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000227872	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
ğ	concentration in tailings basin cell 2W	C s2w =	0.000188	(ma/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မွ ၁	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)		(mg/s)		(mg/s)
			Low Flow		Average	Flow	High FI	ow
Mass balance at each node		M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
at 🖫	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Co	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

C_g12 =

C_g13 =

0.0003 (mg/L)

0.0003 (mg/L)

Case Parameter	Post-Closure Chloride				
	concentration of surface water into PM-12	С	s12 =	10	(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	10	(mg/L)
ntration da	concentration in Babbitt WWTP discharge	C_	_sBab =	10	(mg/L)
	concentration in Area 5 Pit NW discharge	C_	_spit =	5.95	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_	_fs =	6.29E+00	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	1.76E+03	(mg/L)
conce	concentration in tailings basin cell 2W	C_	_s2w =	21.54	(mg/L)
Input	concentration of ground water into PM-12	C_	_g12 =	1.8	(mg/L)
트	concentration of ground water into PM-13	C_	_g13 =	1.8	(mg/L)
				Low Flo	

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
ē	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
concentration	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	137.73	(mg/s)	436.24	(mg/s)	436.24	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	82.56	(mg/s)	82.56	(mg/s)	82.56	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	259.82		822.94	(mg/s)	822.94	
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	738.38	(mg/s)	23,010.11	(mg/s)	241,358.76	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	4.160	(mg/L)	9.528	(mg/L)	9.953	(mg/L)

Case	Post-Closure			
Parameter	Cobalt			
	concentration of surface water into PM-12	C s12 =	0.0006	(mg/L)
n data	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001356866	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
соп	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
duj	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ဒိ ဒိ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
M at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
		1	Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Converture flux to concer	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case	Post-Closure			
Parameter	Copper			
		1		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.018240705	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
00	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
concentration flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.40	(mg/s)	1.27	(mg/s)	1.27	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.05	(mg/s)	0.17	(mg/s)	0.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s
Mass bat each		M_r13 =	1.03 Low Flo	(mg/s)		(mg/s)	38.12	
			LOW FIO	W	Average	FIOW	High FI	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.00400	(mg/L)	0.002	(mg/L)	0.002	(mg/L
Conver flux to	concentration in river at PM-13	C r13 =	0.00579	(ma/L)	0.002	(mg/L)	0.002	(ma/l

Case Parameter	Post-Closure Fluoride			
	Description of the control of the DM 40	0 -10	0.4	(# X
ā	concentration of surface water into PM-12 concentration of surface water into PM-13	C_s12 = C s13 =		(mg/L) (mg/L)
ם ח data	concentration in Babbitt WWTP discharge	C_sBab =		(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.82E-02	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
duı	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.40	(mg/s)	1.27	(mg/s)	1.27	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
င္မွ င္	mass flux in seepage from cell 2W	M_s2w =	18.70	(mg/s)	59.22	(mg/s)	59.22	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)	415.45	
2 0	mass flux in river at PM-13	М_г13 =	Low Flo	(mg/s)	333.65 Average		2,517.13 High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =		(mg/L)		(mg/L)		(mg/L)

Case	Post-Closure			
Parameter	Iron			
		-		
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.75E-01	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
Ceu	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
		M_fs =	14.78	(mg/s)	46.80	(mg/s)	46.80	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	55.41	(mg/s)	175.51	(mg/s)	175.51	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s)
Mass b at each		M_r13 =		(mg/s)	6,341.23		69,662.34	
			Low Flo	w	Average	Flow	High FI	ow
mass	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.424	(mg/L)	2.626	(ma/l)	2.873	(/I

Case Parameter	Post-Closure Hardness		
	concentration of surface water into PM-12	C_s12 =	

I		concentration of surface water into PM-12	C_s12 =	70	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
	ğ	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
	Ē	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.27E+02	(mg/L)
		concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
ı	LO3	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
	Ę	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
L	r d	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	_	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	_	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
l s	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4,978.97	(mg/s)	15,770.06	(mg/s)	15,770.06	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	403.90	(mg/s)	403.90	(mg/s)	403.90	(mg/s)
င္ င	mass flux in seepage from cell 2W	M_s2w =	5,266.36	(mg/s)	16,680.30	1	16,680.30	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
a g	mass flux in river at PM-13	M_r13 =	23,203.82		246,024.76		1,774,465.31	
	T		Low Flo	W	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	130.735	(mg/L)	101.877	(mg/L)	73.175	(mg/L)

Case	Post-Closure				
Parameter	Potassium				
		_		ı	1
	concentration of surface water into PM-12	C_	_s12 =	3.70	(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	3.70	(mg/L)
	concentration in Babbitt WWTP discharge	C	_sBab =	3.70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C.	_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C.	_fs =	13.37	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	1.80	(mg/L)
S	concentration in tailings basin cell 2W	C_	_s2w =	7.77	(mg/L)
Input	concentration of ground water into PM-12	C.	_g12 =	1.60	(mg/L)
트	concentration of ground water into PM-13	C	_g13 =	1.60	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
concentration flux	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
uo;	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	292.79	(mg/s)	927.38	(mg/s)	927.38	(mg/s)
Co to	mass flux in seepage from cell 2W	M_s2w =	93.72	(mg/s)	296.85		296.85	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)	1,359.42		15,029.31	
<i>ā</i> ≤	mass flux in river at PM-13	M_r13 =	616.17 Low Flo		12,281.49 Average		93,070.49 High FI	, ,
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =		(mg/L)	3.481	(mg/L)	3.679	

Case	Post-Closure	1			
Parameter	Magnesium				
				1	
	concentration of surface water into PM-12	C_	s12 =	6.00	(mg/L)
data	concentration of surface water into PM-13	C_	s13 =	6.00	(mg/L)
_	concentration in Babbitt WWTP discharge	C_	sBab =	6.00	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_	_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_	_fs =	18.87	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	213.00	(mg/L)
20.	concentration in tailings basin cell 2W	C_	_s2w =	69.97	(mg/L)
Input	concentration of ground water into PM-12	C_	_g12 =	10.65	(mg/L)
트	concentration of ground water into PM-13	C_	_g13 =	10.65	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	413.14	(mg/s)	1,308.55	(mg/s)	1,308.55	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	9.99	(mg/s)		(mg/s)	9.99	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	843.99	(mg/s)	2,673.20	(mg/s)	2,673.20	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	2,795.20		33,426.73		164,435.92	
	1		Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
Conver flux to concer	concentration in river at PM-13	C_r13 =	15.749	(mg/L)	13.842	(mg/l)	6.781	(mg/l)

oncentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12 concentration of ground water into PM-13

Input concer

Case Parameter	Post-Closure Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
n de	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
T I	concentration in seepage from Tailings Basin Cells 1F and 2F	C fs =	0.28	(ma/L)

			Low Flo	W	Average I	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	6.05	(mg/s)	19.17	(mg/s)	19.17	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မွ ၁	mass flux in seepage from cell 2W	M_s2w =	14.27	(mg/s)	45.20	(mg/s)		(mg/s)
			Low Flo	w	Average I	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mas at e	mass flux in river at PM-13	M_r13 =	47.30	(mg/s)	750.91	(mg/s)	7,301.36	(mg/s)
			Low Flo	w	Average I	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =		(mg/L)	0.293		0.299	
) 	concentration in river at PM-13	C_r13 =	0.266	(mg/L)	0.311	(mg/l)	0.301	(mg/l)

C_rrs =

C_s2w =

C_g12 =

C_g13 =

0.00 (mg/L)

1.18 (mg/L)

0.19 (mg/L)

0.19 (mg/L)

concentration of ground water into PM-12 concentration of ground water into PM-13

concentration of ground water into PM-13

Case Parameter	Post-Closure Sodium			
	concentration of surface water into PM-12	C s12 =	3 50	(mg/L)
data	concentration of surface water into PM-13	C_s13 =		(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	12.15	(mg/L)
ie.	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
l o	concentration in tailings basin cell 2W	C s2w =	44.31	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s
	man flux in according from Tailings Davin Calls 1E and 2E	M_fs =	266.06	(mg/s)	842.70	(mg/s)	842.70	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	11.96	(mg/s)	11.96	(mg/s)	11.96	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	534.48	(mg/s)	1,692.86	(mg/s)	1,692.86	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s
Mass k at each		M_r13 =	1,515.56		17,356.72		93,778.75	
			Low Flo	w l	Average	FIOW	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Conver flux to	concentration in river at PM-13	C r13 =	8.539	(mg/L)	7.187	(mg/l)	3.867	(ma/l

C_g12 =

C_g13 =

4.90 (mg/L)

4.90 (mg/L)

Case	Post-Closure			
Parameter	Nickel			
	concentration of surface water into PM-12	C s12 =	0.0012	(ma/L)
ıta	concentration of surface water into PM-13	C_s13 =	0.0012	, ,
on data	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.015125217	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
ron	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.33	(mg/s)	1.05	(mg/s)	1.05	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	0.26	(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	1.42	(mg/s)	5.14	(mg/s)	31.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Converture flux to concer	concentration in river at PM-13	C r13 =	0.008	(mg/L)	0.002	(mg/L)	0.001	(mg/L)

Case Parameter	Post-Closure Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
g L	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C fs =	0.001097329	(ma/L)

centra	concentration in seepage from Tailings Basin Cells 1E and 2E	E C_fs =	0.001097329	(mg/L)				
ē	concentration in hydrometallurgical residue cells liner leakage	e C_rrs =	0.0005	(mg/L)				
S	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)				
Input	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)				
<u>=</u>	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)				
		1	Low Flor	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
ξX	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
ss f	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)		(mg/s)		(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မွ င္	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
ance	more flux in river at DM 12	M r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
bal h n	Illass liux III livel at Fivi-12	IVI_I 12 -	0.03	(IIIg/s)	0.03	(IIIg/s)	0.03	(IIIg/S)
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M r13 =	0.21	(mg/s)	0.31	(mg/s)	0.31	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss on								
rt më ntrati	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

concentration of ground water into PM-12 concentration of ground water into PM-13

Case Parameter	Post-Closure Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
ņ u	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
atioı	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.37E-03	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
lo:	concentration in tailings basin cell 2W	C s2w =	2.50E-04	(mg/L)

			Low Flo	W	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
Ceu	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.12	(mg/s)	0.37	(mg/s)	0.37	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
alance	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Mass balance at each node	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	low
wert mass to centration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.002	(mg/L)	0,000	(mg/L)	0.000	(ma/L)

C_g12 =

C_g13 =

1.50E-03 (mg/L)

1.50E-03 (mg/L)

Case	Post-Closure			
Parameter	Selenium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
Ē	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001503093	(mg/L)
ncei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
00	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ე ე	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
at B	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	FIOW	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Convertilux to concer	concentration in river at PM-13	C_r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case Parameter	Post-Closure Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	110.25	(mg/L)
ncei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
00	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
ğ	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
In put	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	_	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
ē	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,414.28	(mg/s)	7,646.82	(mg/s)	7,646.82	(mg/s)
Convert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	344.66	(mg/s)	344.66	(mg/s)	344.66	(mg/s)
ပိ န		M_s2w =	1,838.28	(mg/s)	5,822.44	(mg/s)	5,822.44	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance		M_r12 =	206.87		1,671.68		16,449.94	
ž t	mass flux in river at PM-13	M_r13 =	5,816.80 Low Flo		82,386.11 Average	,	169,725.57 High FI	
Convert mass flux to	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
5	concentration in river at PM-13	C_r13 =	32.773	(mg/L)	34.116	(mg/l)	6.999	(mg/l)

Case	Post-Closure			
Parameter	Thallium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000917488	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
<u>ld</u>	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ij	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s) OW
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
u X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
		M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s
			Low Flo	w	Average	Flow	High FI	low
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s
Mass b		M_r13 =	0.02 Low Flo	(mg/s)	0.53	(mg/s)	4.89 High Fl	
" c			201110		Avolugo		ingiiii	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Post-Closure	1		
Parameter	Zinc]		
	concentration of surface water into PM-12	C s12 =	0.016	(mg/L)
data	concentration of surface water into PM-13	C_s13 =		(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.020231354	(mg/L)
concei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
roo	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)		(mg/s)	0.17	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.44	(mg/s)	1.40	(mg/s)	1.40	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =	0.17	(mg/s)	0.55	(mg/s)	0.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Ma at	mass flux in river at PM-13	M_r13 =		(mg/s)	37.49	(mg/s)	386.85	
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.013	(mg/L)	0.016	(mg/L)	0.016	(mg/L)

Appendix F.9
Embarrass River
Geotechnical Mitigation
Year 1

FLOWS

Case	Year 1				
Flows	Low Flow Conditions (no surface runoff)				Node
in River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Fotal flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.27	(cfs)	PM-13
Total flow Embarras	flow check	Q_ck_L =	6.27	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
īta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.37	(cfs)	PM-13
flow data	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
flov	seepage from cell 2W	Q_s2w_L =	0.83	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
n In	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 1				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_M =	93.06	(cfs)	PM-13
Total	flow check	Q_ck_M =	93.06	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	3.56	(cfs)	PM-13
da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
<u>8</u>	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
nput flow data	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
<u>u</u>	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 1				
Flow	High Flow Conditions (avg. annual 1-day max flo	ow)			_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	864.61	(cfs)	PM-13
Tota Emb	flow check	Q_ck_H =	864.61	(cfs)	1
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ţ,	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	3.56	(cfs)	PM-13
da /	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
flow data	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input 1	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
du	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case Parameter	Year 1 Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00086	(mg/L)

Ę	concentration in Area 5 Pit NVV discharge	C_spit =	0.00015	(mg/L)				
centrati	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00086	(mg/L)				
		C_rrs =	0.000125	(mg/L)				
Ö	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)				
th or	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)				
<u></u>	concentration of ground water into PM-13	C_g13 =	0.000008	(mg/L)				
			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Ö, X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
9 0								
Mass balance at each node	mass flux in river at PM-12	M r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
bal	Illass liux III livei at Fivi-12	IVI_I 12 -	0.00	(IIIg/S)	0.04	(IIIg/S)	0.45	(IIIg/S)
ISS								
Ma at		M_r13 =		(mg/s)		(mg/s)		(mg/s)
		1	Low Flo	w	Average	Flow	High FI	ow
ss c								
Convert mass flux to concentration	concentration in river at PM-12	C r12 =	0.000	(mg/L)	0.000	(ma/L)	0.000	(ma/L)
ert	CONCENTRATION III IIVCI ALT IVI-12	0_112 =	0.000	(111g/L)	0.000	(1119/L)	0.000	(111g/L)
Convertiux to								
<u>ა</u> ₽ ა	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Aluminum			
		-		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.01	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.18	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
nt	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
Ceu	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s)
		M_fs =	0.11	(mg/s)	1.01	(mg/s)	1.01	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	37.03	(mg/s)	355.65	(mg/s)	355.65	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s)
Mass b at each		M_r13 =		(mg/s)	571.75		2,755.24	
			Low Flo	w	Average	Flow	High FI	ow
mass	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.229	(mg/L)	0.217	(mg/L)	0.113	(ma/l

Case	Year 1			
Parameter	Arsenic			
	concentration of surface water into PM-12	C s12 =	0.00075	(ma/L)
data	concentration of surface water into PM-13	C_s13 =	0.00075	, ,
	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.006769615	(mg/L)
0	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
tion	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.07	(mg/s)	0.68	(mg/s)	0.68	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)		(mg/s)		(mg/s)
င့	mass flux in seepage from cell 2W	M_s2w =	0.07	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)		(mg/s)		(mg/s)
	mass nax in two act in to	<u>.</u>	Low Flo		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)

Case Parameter	Year 1 Boron		
- urumotor			
	concentration of surface water into PM-12	C_s12 =	0.012 (mg/L)
d ata	concentration of surface water into PM-13	C_s13 =	0.012 (mg/L)
n D	Iconcentration in Bappitt www.iP discharge	C_sBab =	0.012 (mg/L)
į	concentration in Area 5 Pit NW discharge	C_spit =	0.1315 (mg/L)

concentration in seepage from Tailings Basin Cells 1E and 2E C_fs = concentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.45	(mg/s)	13.91	(mg/s)	13.91	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	7.74	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =		(mg/s)	123.98		386.00	
	T		Low Flo	W	Average	Flow	High Fl	ow
onvert mass ux to oncentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Convertux to concer	concentration in river at PM-13	C_r13 =	0.069	(mg/L)	0.047	(mg/L)	0.016	(mg/L)

C_rrs =

C_s2w =

C_g12 =

C_g13 =

0.137838474 (mg/L)

0.11 (mg/L)

0.33

0.0212 (mg/L)

0.0212 (mg/L)

(mg/L)

Case Parameter	Year 1 Barium			
	concentration of surface water into PM-12	C s12 =	0.011	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
concentration	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.05E-02	(mg/L
i e	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L
	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
no nt	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)
a <u>u</u>	concentration of ground water into PM-13			
_			L avy Ela	

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.53	(mg/s)	5.09	(mg/s)	5.09	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ		M_s2w =		(mg/s)	20.95	(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	12.48	(mg/s)	59.24	(mg/s)	299.42	(mg/s)
		1	Low Flo	w	Average	Flow	High FI	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	0.070	(mg/L)	0.022	(mg/L)	0.012	(mg/L)

Case	Year 1			
Parameter	Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000376001	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
ouos	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
np ct	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
qrI	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

mass flux of surface water into PM-12 mass flux of ground water into PM-12	M_s12 = M_g12 =	-	(mg/s)	0.04	((-)		
	M a12 =		(g, 0)	0.04	(mg/s)	0	(mg/s)
	W_9 12 -	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
		Low Flo	W	Average	Flow	High Fl	ow
mass flux in river at PM-12	M_r12 =						(mg/s)
mass flux in river at PM-13	M_r13 =		, ,				(mg/s)
concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
1 1 1	mass flux of ground water into PM-13 mass flux of Area 5 Pit NW discharge mass flux in seepage from Tailings Basin Cells 1E and 2E mass flux in hydrometallurgical residue cells liner leakage mass flux in seepage from cell 2W mass flux in river at PM-12 mass flux in river at PM-13	mass flux of ground water into PM-13 M_g13 = mass flux of Area 5 Pit NW discharge M_spit = mass flux in seepage from Tailings Basin Cells 1E and 2E mass flux in hydrometallurgical residue cells liner leakage M_rrs = mass flux in seepage from cell 2W M_s2w = mass flux in river at PM-12 M_r12 = mass flux in river at PM-13 M_r13 = concentration in river at PM-12 C_r12 =	mass flux of ground water into PM-13 M_g13 = 0.00 mass flux of Area 5 Pit NW discharge M_spit = - mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.00 mass flux in hydrometallurgical residue cells liner leakage M_rrs = - mass flux in seepage from cell 2W M_s2w = 0.02 Low Flo mass flux in river at PM-12 M_r12 = 0.00 mass flux in river at PM-13 M_r13 = 0.02 Low Flo concentration in river at PM-12 C_r12 = 0.000	mass flux of ground water into PM-13 M_g13 = 0.00 (mg/s) mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.00 (mg/s) mass flux in hydrometallurgical residue cells liner leakage M_rrs = - (mg/s) mass flux in seepage from cell 2W M_s2w = 0.02 (mg/s) Low Flow mass flux in river at PM-12 M_r12 = 0.00 (mg/s) Low Flow Low Flow concentration in river at PM-12 C_r12 = 0.000 (mg/L)	mass flux of ground water into PM-13 M_g13 = 0.00 (mg/s) 0.00 mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 0.01 mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.00 (mg/s) 0.04 mass flux in hydrometallurgical residue cells liner leakage M_rrs = - (mg/s) - mass flux in seepage from cell 2W M_s2w = 0.02 (mg/s) 0.17 Low Flow Average mass flux in river at PM-12 M_r12 = 0.00 (mg/s) 0.04 mass flux in river at PM-13 M_r13 = 0.02 (mg/s) 0.43 Low Flow Average concentration in river at PM-12 C_r12 = 0.000 (mg/L) 0.000	mass flux of ground water into PM-13 M_g13 = 0.00 (mg/s) 0.00 (mg/s) mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 0.01 (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.00 (mg/s) 0.04 (mg/s) mass flux in hydrometallurgical residue cells liner leakage M_rrs = - (mg/s) - (mg/s) mass flux in seepage from cell 2W M_s2w = 0.02 (mg/s) 0.17 (mg/s) Low Flow Average Flow mass flux in river at PM-12 M_r12 = 0.00 (mg/s) 0.43 (mg/s) mass flux in river at PM-13 M_r13 = 0.02 (mg/s) 0.43 (mg/s) Low Flow Average Flow	mass flux of ground water into PM-13 M_g13 = 0.00 (mg/s) 0.00 (mg/s) 0.00 mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 0.01 (mg/s) 0.01 mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 0.00 (mg/s) 0.04 (mg/s) 0.04 mass flux in hydrometallurgical residue cells liner leakage M_rrs = - (mg/s) - (mg/s) - (mg/s) mass flux in seepage from cell 2W M_s2w = 0.02 (mg/s) 0.17 (mg/s) 0.17 Low Flow Average Flow High Fl mass flux in river at PM-12 M_r12 = 0.00 (mg/s) 0.43 (mg/s) 0.41 mass flux in river at PM-13 M_r13 = 0.02 (mg/s) 0.43 (mg/s) 2.61 Low Flow Average Flow High Fl concentration in river at PM-12 C_r12 = 0.000 (mg/L) 0.000 (mg/L) 0.000

Case	Year 1			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	77.28097689	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
ă	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	W	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	811.79	(mg/s)	7,796.40	(mg/s)	7,796.40	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	12.28	(mg/s)	12.28	(mg/s)	12.28	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,402.18	(mg/s)	13,466.52	(mg/s)	1.77	(mg/s
			Low Flo	N	Average	Flow	High Fl	low
iss balance each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	4,952.39 Low Flo		56,768.68 Average		327,157.17 High FI	
ss uc								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l
Converture flux to concer	concentration in river at PM-13	C r13 =	27.905	(ma/L)	21.557	(ma/l)	13.371	(ma/l

Case Parameter	Year 1 Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00032784	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)	
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)	
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)	
concentration	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)	
ceu	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)	
l s	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)	
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.03	(mg/s)	0.03	(mg/s)	
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)	
င္မွ ဥ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	0.04	(mg/s)	0.04	(mg/s)	
			Low Flo	w	Average	Flow	High FI	High Flow	
ass balance each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)	
Mass at eac	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)	
			Low Flo	W	Average	Flow	High FI	ow	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)	
S ‡ 5	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)	

oncentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

Case Parameter	Year 1 Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
n dâ	Iconcentration in Bappitt WWVTP discharge	C_sBab =	10	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C fs =	1.52E+01	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	160.16	(mg/s)	1,538.17	(mg/s)	1,538.17	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	51.97	(mg/s)	51.97	(mg/s)	51.97	(mg/s)
ဒိ ဒိ	mass flux in seepage from cell 2W	M_s2w =	505.23	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =	43.81 975.63	(mg/s)	3,705.83		40,651.48	
		M	Low Flo		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L)

1.76E+03

(mg/L)

21.54 (mg/L)

1.8 (mg/L)

1.8 (mg/L)

C_rrs =

C_s2w =

C_g12 =

C_g13 =

concentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12 concentration of ground water into PM-13

Case

Year 1

Parameter	Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
g c	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
atior	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
i.	concentration in seenage from Tailings Basin Cells 1F and 2F	C fe =	0 001495727	(ma/L)

			Low Flo	w	Average	Flow	High FI	ow		
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)		
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)		
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)		
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)		
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)		
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)		
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.15	(mg/s)	0.15	(mg/s)		
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)		
င္ င	mass flux in seepage from cell 2W	M_s2w =	0.04	(mg/s)	0.35	(mg/s)	0.35	(mg/s)		
			Low Flo	w	Average	Flow	High FI	High Flow		
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)		
at at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)		
			Low Flo	W	Average	FIOW	High FI	OW		
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)		
Con	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)		

C_rrs =

C_s2w =

C_g12 =

C_g13 =

0.005 (mg/L)

0.0011 (mg/L)

0.0011 (mg/L)

0.001556

(mg/L)

concentration of ground water into PM-12

concentration of ground water into PM-13

Case	i eai i			
Parameter	Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
at a	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.0068095	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
ő	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)

mass flux of surface water into PM-12	M -40 -						
	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
mass flux in Babbitt WWTP discharge	M_sBab =	_	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.07	(mg/s)	0.69	(mg/s)	0.69	(mg/s)
mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)			0.00	(mg/s)
mass flux in seepage from cell 2W	M_s2w =						(mg/s)
		Low Flo	w	Average	Flow	High Fl	ow
mass flux in river at PM-12	M_r12 =						(mg/s)
mass flux in river at PM-13	M_r13 =		` •	_	, ,		
concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
	mass flux of surface water into PM-13 mass flux of ground water into PM-13 mass flux of Area 5 Pit NW discharge mass flux in seepage from Tailings Basin Cells 1E and 2E mass flux in hydrometallurgical residue cells liner leakage mass flux in seepage from cell 2W mass flux in river at PM-12 mass flux in river at PM-13 concentration in river at PM-12	mass flux of surface water into PM-13	mass flux of surface water into PM-13 M_s13 = mass flux of ground water into PM-13 M_g13 = mass flux of Area 5 Pit NW discharge M_spit = mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = mass flux in hydrometallurgical residue cells liner leakage M_rrs = mass flux in seepage from cell 2W M_s2w = 0.11 Low Flo mass flux in river at PM-12 M_r12 = 0.75 Low Flo concentration in river at PM-12 C_r12 = 0.004 0.004	mass flux of surface water into PM-13 M_s13 =	mass flux of surface water into PM-13 M_s13 =	mass flux of surface water into PM-13 M_s13 =	mass flux of surface water into PM-13 M s13 =

C_g12 =

C_g13 =

0.004 (mg/L)

0.004 (mg/L)

Case Parameter	Year 1 Fluoride			
	concentration of surface water into PM-12	C s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-12	C_s12 =		(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.90E+00	(mg/L)
oncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
Ξ	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
į	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	30.50	(mg/s)	292.90	(mg/s)	292.90	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	36.36	(mg/s)	349.17	(mg/s)	349.17	(mg/s
			Low Flo	W	Average	Flow	High FI	ow
balance n node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s
Mass balance at each node		M_r13 =	122.18 Low Flo		915.18 Average		3,098.67 High Fl	
			LOWIN		Avelage	l	riigii i	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L
Convergillax to	concentration in river at PM-13	C r13 =	0.688	(mg/L)	0.348	(mg/L)	0.127	(ma/L

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

Case	Year 1			
Parameter	Iron			
·		-		
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
2. 4. 4.	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
		C_sBab =	2.9	(mg/L)
i i i	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
<u>t</u>	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.00E-03	(mg/L)
100		C_rrs =	4.00E-01	(mg/L)
2				

			Low Flo	W	Average	Flow	High FI	Flow	
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)	
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)	
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)	
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)	
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)	
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)	
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.04	(mg/s)	0.40	(mg/s)	0.40	(mg/s)	
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)	
င့်	mass flux in seepage from cell 2W	M_s2w =	107.76		1,034.88		1,034.88		
			Low Flo	w	Average	Flow	High Fl	ow	
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =	0.85	(mg/s)	1,062.84 7,154.20		11,777.08		
	Inlass liux in river at Pivi-13	IVI_I I 3 -	Low Flo		Average	` •	70,475.31 High F l		
Convert mass flux to concentration	concentration in river at PM-12	C_r12 = C_r13 =		(mg/L)	2.721	(mg/L)	2.883	(mg/L)	

C_s2w =

C_g12 =

C_g13 =

0.035 (mg/L)

0.035 (mg/L)

4.594 (mg/L)

Case	Year 1		
Parameter	Hardness		
		•	
	concentration of surface water into PM-12	C_s12 =	
_			

I		concentration of surface water into PM-12	C_s12 =	70	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
	ğ	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
	Ē	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.74E+02	(mg/L)
	9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
	CO	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
	Ę	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
	드	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average l	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,931.55	(mg/s)	37,758.64	(mg/s)	37,758.64	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	254.25	(mg/s)	254.25	(mg/s)	254.25	(mg/s)
ပို့ ခဲ့	mass flux in seepage from cell 2W	M_s2w =	10,240.73		98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	W	Average l	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Ağ at	mass flux in river at PM-13	M_r13 =	26,981.12	,	349,535.40		1,877,975.95	
			Low Flo	W	Average I	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
Con	concentration in river at PM-13	C_r13 =	152.032	(mg/L)	132.728	(mg/L)	76.751	(mg/L)

Case	Year 1			
Parameter	Potassium	i		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
		C_sBab =	3.70	(mg/L)
:	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
to cite	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.31	(mg/L)
		C_rrs =	1.80	(mg/L)
900	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
	concentration of ground water into PM-12 concentration of ground water into PM-13	C_g12 =	1.60	(mg/L)
5	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
ţi	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s)
Ceu	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s)
		M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s)
onvert	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	97.76	(mg/s)	938.93	(mg/s)	938.93	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	182.25	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	38.99	(mg/s)	1,359.39	(mg/s)	15,029.28	(mg/s)
Mass k at eack		M_r13 =	509.64		13,746.49		94,535.49	
			Low Flo	w	Average	Flow	High FI	ow
t mass tration	concentration in river at PM-12	C_r12 =	1.602	(mg/L)	3.481	(mg/L)	3.679	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	2 872	(mg/L)	5 220	(mg/L)	3.864	(ma/l)

C_g12 = C_g13 =

1.60 (mg/L)

Case	Year 1			
Parameter	Magnesium			
	concentration of surface water into PM-12	C s12 =	6.00	(mg/L)
data	concentration of surface water into PM-13	C_s13 =		(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	44.03	(mg/L)
Ф	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	_	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	462.49	(mg/s)	4,441.73	(mg/s)	4,441.73	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	6.29	(mg/s)	6.29	(mg/s)	6.29	(mg/s)
Co to	mass flux in seepage from cell 2W	M_s2w =	1,641.19	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node		M_r12 =	259.20		2,456.41		24,623.80	
M _e	mass flux in river at PM-13	M_r13 =	3,638.04		49,645.00		180,654.19	
	T	1	Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
Conver flux to concer	concentration in river at PM-13	C r13 =	20.499	(mg/L)	18.851	(mg/l)	7.383	(mg/l)

Case Parameter	Year 1 Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
ρυ	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
atior	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
מַ				

concentration in seepage from Tailings Basin Cells 1E and 2E C_fs =

concentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12 concentration of ground water into PM-13

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
c on	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.52	(mg/s)	24.25	(mg/s)	24.25	(mg/s)
onvert mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Co to	mass flux in seepage from cell 2W	M_s2w =	27.75	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)	114.44		1,222.81	(mg/s)
M. at	mass flux in river at PM-13	M_r13 =		(mg/s)	977.28		7,527.74	
			Low Flo	W	Average	Flow	High FI	ow
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.323	(mg/L)	0.371	(mg/l)	0.308	(mg/l)

C_rrs =

C_s2w =

C_g12 =

C_g13 =

0.24 (mg/L)

0.19 (mg/L)

0.19 (mg/L)

(mg/L)

(mg/L)

0.00

1.18

oncentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12 concentration of ground water into PM-13

Case Parameter	Year 1 Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
ď	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ē	concentration in coopege from Tailings Pagin Calls 1E and 2E	C fo =	F2 0F	(ma/L)

			Low Flo	W	Average I	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	556.20	(mg/s)	5,341.70	(mg/s)	5,341.70	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	7.53	(mg/s)	7.53	(mg/s)	7.53	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,039.32		9,981.63		9,981.63	(mg/s)
			Low Flo	w	Average I	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	2,306.10	(mg/s)	30,140.04	(mg/s)	106,562.07	(mg/s)
		T	Low Flo	w	Average I	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Con	concentration in river at PM-13	C_r13 =	12.994	(mg/L)	11.445	(mg/l)	4.355	(mg/l)

255.00

44.31

(mg/L)

(mg/L)

4.90 (mg/L)

4.90 (mg/L)

C_rrs =

C_s2w =

C_g12 =

C_g13 =

Case	Year 1			
Parameter	Nickel			
		_		
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
t t	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
Š	concentration in Bahhitt WWTP discharge	C_sBab =	0.0012	(mg/L)
<u>.</u>	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
, 2		C_fs =	0.019144051	(mg/L)
-		C_rrs =	0.098	(mg/L)
000	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
1	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
È	concentration of ground water into PM 13	C a13 -	0.007	(ma/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
Con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.20	(mg/s)	1.93	(mg/s)	1.93	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.16	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
M, at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
	I	1	Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.008	(mg/L)	0.003	(mg/L)	0.001	(mg/L)

Case

Year 1

Parameter	Lead			
			_	
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
entration da	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000886329	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
ouo	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
Ĕ	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)
			-	
			I . FI	

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္ပ ၁	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)		(mg/s)	0.27	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mag at 6	mass flux in river at PM-13	M_r13 =	0.21	(mg/s)	0.55	(mg/s)	0.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Con	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 1			
Parameter	Antimony			
		-		
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
g u	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.05E-03	(mg/L)
ē	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
uo S	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.08	(mg/s)	0.81	(mg/s)	0.81	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Ma		M_r13 =	0.31	(mg/s)	1.14	(mg/s)	1.58	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case Parameter	Year 1 Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001106406	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
_	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
concentration Flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Co to	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)	0.25	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)		(mg/s)		(mg/s)
2 0	mass flux in river at PM-13	M_F13 =	Low Flo		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =		(mg/L)		(mg/L)		(mg/L)

Case Parameter	Year 1 Sulfate			
	concentration of surface water into PM-12	C s12 =	4.00	(mg/L)
ıta	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
n dat	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	190.00	(mg/L)

Ξ	concentration in Area 5 Pit NVV discharge	C_spit =	1046.27	(mg/L)				
ntrati	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	190.00	(mg/L)				
92	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)				
ō	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)				
5	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)				
트	concentration of ground water into PM-13	C_g13 =		(mg/L)				
			Low Flo	W	Average	Flow	High Flo	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87		206.87	(mg/s)
i.	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
concentration	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
eu	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
i xi	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,995.81	(mg/s)	19,167.71	(mg/s)	19,167.71	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	216.95	(mg/s)	216.95	(mg/s)	216.95	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =	3,574.64	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	w	Average	Flow	High Flo	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
Mass balance at each node	mass flux in river at PM-13	M_r13 =	7,006.99	, ,	122,287.70	, ,	209,627.16	
			Low Flo	w	Average	Flow	High Flo	ow
t mass tration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C_r13 =	39.483	(mg/L)	46.436	(mg/l)	8.567	(mg/l)

Case	Year 1			
Parameter	Thallium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000907911	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
ğ	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
ndul	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ţį	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
		M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass b at each		M_r13 =		(mg/s)		(mg/s)		(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Year 1		
Parameter	Zinc		
	concentration of surface water into PM-12	C_s12 =	
ņ	concentration of surface water into PM 13	0 - 10	

I		concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ı	ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
ı	ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
ı	ē.	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ı	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.0182086	(mg/L)
ı	ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
	COL	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
ı	Ę	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
	트	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flow		Average Flow		High Flow	
Convert concentration to mass flux	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.19	(mg/s)	1.84	(mg/s)	1.84	(mg/s)
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ		M_s2w =		(mg/s)	3.23	(mg/s)		(mg/s)
			Low Flow		Average	Flow	High Flow	
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =	2.18	(mg/s)	40.61	(mg/s)	389.97	(mg/s)
			Low Flow		Average	Flow	High Flow	
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	0.012	(mg/L)	0.015	(mg/L)	0.016	(mg/L)

Appendix F.10
Embarrass River
Geotechnical Mitigation
Year 5

FLOWS

Case	Year 5				
Flows	Low Flow Conditions (no surface runoff)				Node
' in s River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
ilow	flow in river at PM-13	Q_r13_L =	6.28	(cfs)	PM-13
Total flow in Embarrass R	flow check	Q_ck_L =	6.28	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
at a	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.46	(cfs)	PM-13
flow data	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.01	(cfs)	PM-13
<u></u>	seepage from cell 2W	Q_s2w_L =	0.74	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
'n	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 5				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_M =	94.54	(cfs)	PM-13
Tota	flow check	Q_ck_M =	94.54	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
<u>t</u> a	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	5.04	(cfs)	PM-13
g da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.01	(cfs)	PM-13
lo N	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
nput flow data	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
<u> </u>	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 5				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	866.09	(cfs)	PM-13
Tota	flow check	Q_ck_H =	866.09	(cfs)	1
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ţa _	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	5.04	(cfs)	PM-13
flow data	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.01	(cfs)	PM-13
<u>6</u>	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
n In	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Year 5			
Parameter	Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
D	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00086	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
ıdı	concentration of ground water into PM-13	C_g13 =	0.000008	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.12	(mg/s)	0.12	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s
			Low Flo	w	Average	Flow	High FI	low
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s
Mass ba at each		M_r13 =	0.01 Low Flo	(mg/s)	0.39	(mg/s)	2.79 High Fl	(mg/s
Convert mass flux to concentration								
Convert n flux to concentra	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l

Case	Year 5			
Parameter	Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.00E-02	(mg/L)
5	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
lo S	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
concentration flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
co flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.13	(mg/s)	1.42	(mg/s)	1.42	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	32.84	(mg/s)	355.65	(mg/s)	355.65	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
Mass ba at each	mass flux in river at PM-13	M_r13 =	36.64 Low Flo	(mg/s)	572.24 Average		2,755.72 High Fl	
ss			2011 110		71101490		9	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/l
Conver flux to concer	concentration in river at PM-13	C r13 =	0.206	(mg/L)	0.214	(mg/L)	0.112	(ma/l

Case	Year 5			
Parameter	Arsenic			
		-		
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.006769615	(mg/L)
Ser	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
ă,	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
直	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
concentration flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s
co flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.09	(mg/s)	0.96	(mg/s)	0.96	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
င္မွ င	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)	0.65	(mg/s
			Low Flo	w	Average	Flow	High F	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s
Mass ba at each		M_r13 =		(mg/s)		(mg/s)	20.04 High F	
mass ation	concentration in river at PM-12	C r12 =	0.003		Average 0.001		High F	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	

Case Parameter	Year 5 Boron			
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
concentration	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.137838474	(mg/L)
Ser	concentration in hydrometallurgical residue cells liner leakage	C rrs =	0.11	(mg/L
lo S	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
in put	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
르	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.81	(mg/s)	19.64	(mg/s)	19.64	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
င့် ၁	mass flux in seepage from cell 2W	M_s2w =	6.86	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mas	mass flux in river at PM-13	M_r13 =		(mg/s)	129.76		391.78	
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Con	concentration in river at PM-13	C_r13 =	0.066	(mg/L)	0.049	(mg/L)	0.016	(mg/L)

Case	Year 5			
Parameter	Barium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.05E-02	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
lux qu	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.66	(mg/s)	7.19	(mg/s)	7.19	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မွ င္	mass flux in seepage from cell 2W	M_s2w =	1.93	(mg/s)	20.95	(mg/s)	20.95	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
	mass flux in river at PM-13	M_r13 =	12.37 Low Flo	(mg/s)		(mg/s)	301.52	
ω -			LOW FIO	W	Average	FIOW	High FI	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L
Conver flux to concer	concentration in river at PM-13	C r13 =	0.070	(mg/L)	0.023	(mg/L)	0.012	(ma/L

Case	Year 5			
Parameter	Beryllium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
ъ	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000376001	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s
	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
u X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	man flux in according from Tailings Davin Calls 1E and 2E	M_fs =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s
Mass k at eack		M_r13 =	0.02 Low Flo	(mg/s)	0.44 Average	(mg/s)	2.63 High Fl	(mg/s
			LOWIIO		Avelage	1100	riigirri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Convertion to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Year 5			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	77.28097689	(mg/L)
O)	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s
	man flux in according from Tailings Davin Calls 1E and 2E	M_fs =	1,016.90	(mg/s)	11,012.42	(mg/s)	11,012.42	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	176.59	(mg/s)	176.59	(mg/s)	176.59	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,243.51	(mg/s)	13,466.52	(mg/s)	25.38	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s
Mass I at eacl		M_r13 =	5,163.14 Low Flo		60,149.00 Average		330,561.10 High FI	
			LOWITO	VV	Average	liow	Tilgiri	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l
Convergible Concer	concentration in river at PM-13	C r13 =	29.028	(ma/L)	22.481	(mg/l)	13.487	(ma/l

concentration of ground water into PM-12

concentration of ground water into PM-13

Parameter	Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
β	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00032784	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
Ö	concentration in tailings basin cell 2W	C s2w =	0.000188	(ma/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s)
concentration	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
Con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မွ ၁	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
Ma at	mass flux in river at PM-13	M_r13 =		(mg/s)	0.31	(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
ပ္သ ∄ ပ္	concentration in river at PM-13	C_r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

C_g12 =

C_g13 =

0.0003 (mg/L)

0.0003 (mg/L)

Case Parameter	Year 5 Chloride			
Parameter	Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.52E+01	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
트	concentration of ground water into PM-13	C g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	200.63	(mg/s)	2,172.67	(mg/s)	2,172.67	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	747.10	(mg/s)	747.10	(mg/s)	747.10	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	448.06	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s
			Low Flo	w	Average	Flow	High FI	low
balance th node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s
Mass ba at each		M_r13 =	1,654.05 Low Flo		29,440.40 Average		247,789.05 High Fl	
"			LOWIN		Average	liow	Ingiri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L
Conve flux to conce	concentration in river at PM-13	C r13 =	9.299	(ma/L)	11.004	(mg/L)	10.110	(ma/l

Case	Year 5			
Parameter	Cobalt			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001495727	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.21	(mg/s)	0.21	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass k		M_r13 =		(mg/s)		(mg/s)	15.12	
			Low Flo	W	Average	Flow	High FI	ow
ivert mass to centration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L

Case	Year 5			
Parameter	Copper			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
ъ	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.0068095	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.09	(mg/s)	0.97	(mg/s)	0.97	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို့ ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)	1.03	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Ma	mass flux in river at PM-13	M_r13 =		(mg/s)	5.93	(mg/s)	38.68	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
Con	concentration in river at PM-13	C_r13 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)

Case Parameter	Year 5 Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.90E+00	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
Input	concentration of ground water into PM-13	C a13 =	0.385	(ma/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	38.20	(mg/s)	413.72	(mg/s)	413.72	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.21	(mg/s)	1.21	(mg/s)	1.21	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	32.24	(mg/s)	349.17	(mg/s)	349.17	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s
	mass flux in river at PM-13	M_r13 =	126.90		1,037.13		3,220.61	
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L
Convergillax to	concentration in river at PM-13	C r13 =	0.713	(mg/L)	0.388	(mg/L)	0.131	(ma/L

Case	Year 5			
Parameter	Iron			
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.00E-03	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
dul	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.05	(mg/s)	0.57	(mg/s)	0.57	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	95.56	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =		(mg/s)	1,062.84		11,777.08	
<i>5</i> ≤	mass flux in river at PM-13	M_r13 =	100.81 Low Flo		7,154.52 Average		70,475.63 High FI	
ss uc			200 110		Avoiago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.567	(mg/L)	2.674	(mg/L)	2.875	(ma/L

Case Parameter	Year 5 Hardness		
	concentration of surface water into PM-12	C_s12 =	70
at a	concentration of surface water into PM-13	C_s13 =	70
da da	concentration in Babbitt WWTP discharge	C_sBab =	70
7			

	Concentration of Surface water into 1 W-12	0_312 -	10	(1119/12)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
Ē	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.74E+02	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
ă	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
Ē	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)
put con	concentration in seepage from Tailings Basin Cells 1E and 2E concentration in hydrometallurgical residue cells liner leakage concentration in tailings basin cell 2W concentration of ground water into PM-12	C_fs = C_rrs = C_s2w = C_g12 =	3.74E+02 8.61E+03 436.6 87.5	(n (n (n (n

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4,924.93	(mg/s)	53,334.08	(mg/s)	53,334.08	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,654.83	(mg/s)	3,654.83	(mg/s)	3,654.83	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	9,081.94	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node		M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
M∂ at	mass flux in river at PM-13	M_r13 =	30,216.30	, ,	368,511.42		1,896,951.97	
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
Co	concentration in river at PM-13	C_r13 =	169.883	(mg/L)	137.736	(mg/L)	77.394	(mg/L)

Case	Year 5			
Parameter	Potassium			
		1		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.31	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
LO CO	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
ğ	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s)
ţ	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.76	(mg/s)	0.76	(mg/s)	0.76	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	122.47	(mg/s)	1,326.24	(mg/s)	1,326.24	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	161.63	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	39.70	(mg/s)	1,360.10	(mg/s)	15,029.99	(mg/s
	mass flux in river at PM-13	M_r13 =	514.43	(mg/s)	14,134.51	(mg/s)	94,923.51	(mg/s
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.631	(mg/L)	3.483	(mg/L)	3.679	(mg/l)

Case	Year 5		
Parameter	Magnesium		
		· 	
	concentration of surface water into PM-12	C_s12 =	6.00 (mg/L
ata	concentration of surface water into PM-13	C_s13 =	6.00 (mg/L
pι	concentration in Babbitt WWTP discharge	C_sBab =	6.00 (mg/L
ratio	concentration in Area 5 Pit NW discharge	C_spit =	271.00 (mg/L
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	44.03 (mg/L
i e	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00 (mg/L
COL	concentration in tailings basin cell 2W	C_s2w =	69.97 (mg/L
nput	concentration of ground water into PM-12	C_g12 =	10.65 (mg/L
宣	concentration of ground water into PM-13	C_g13 =	10.65 (mg/L

			Low Flo	W	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	579.34	(mg/s)	6,273.94	(mg/s)	6,273.94	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	90.42	(mg/s)	90.42	(mg/s)	90.42	(mg/s)
ဒ္ ဒ	mass flux in seepage from cell 2W	M_s2w =	1,455.48	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High Fl	low
balance th node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
iss	mass flux in river at PM-13	M_r13 =	3,653.31		51,561.34		182,570.53	
			Low Flo	w	Average	Flow	High Fl	low
ivert mass to centration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	20.540	(mg/L)	19.272	(mg/l)	7.449	(ma/l)

Case	Year 5			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.24	(mg/L)
ie i	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
LO CO	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s
-	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.16	(mg/s)	34.25	(mg/s)	34.25	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	24.61	(mg/s)	266.49	(mg/s)	266.49	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	54.75 Low Flo	(mg/s)	987.28 Average		7,537.74 High Fl	
ν, c			200 110		Avoiago		- Ingili	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.308	(mg/L)	0.369	(mg/l)	0.308	(mg/l

Case	Year 5			
Parameter	Sodium			
		_		
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	52.95	(mg/L)
50	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
ם	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
Ē	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
u v u	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
		M_fs =	696.73	(mg/s)	7,545.15	(mg/s)	7,545.15	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	108.24	(mg/s)	108.24	(mg/s)	108.24	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	921.72	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Mass b at each		M_r13 =	2,429.74	` • /	32,444.21	(mg/s)	108,866.24	
			Low Flo	w	Average	Flow	High Fl	ow
mass	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	13.661	(mg/L)	12.126	(mg/l)	4.442	(ma/l)

C_g13 =

Case	Teal 3			
Parameter	Nickel			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.019144051	(mg/L)
8	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
uo	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
qu	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
		M_fs =	0.25	(mg/s)	2.73	(mg/s)	2.73	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
္ မ		M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
Ma	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L)
Conve flux to	concentration in river at PM-13	C r13 =	0.008	(mg/L)	0.003	(mg/L)	0.001	(mg/L)

Case	Year 5				
Parameter	Lead				
	concentration of surface water into PM-12	C_	_s12 =	0	(mg/L)
data	concentration of surface water into PM-13	C_	_s13 =	0	(mg/L)
	concentration in Babbitt WWTP discharge	C_	_sBab =	0	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_	_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_	_fs =	0.000886329	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	С	rrs =	0.0005	(mg/L)
conc	concentration in tailings basin cell 2W	C_	_s2w =	0.0012	(mg/L)
Input	concentration of ground water into PM-12	C	_g12 =	0.0012	(mg/L)
트	concentration of ground water into PM-13	C	_g13 =	0.0012	(mg/L)

			Low Flo	W	Average	Flow	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	_	(mg/s)
Cer	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High F	low
tss balance each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High F	low
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Year 5			
Parameter	Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.05E-03	(mg/L)
ē	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
ů O	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	W	Average I	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.11	(mg/s)	1.15	(mg/s)	1.15	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မ ပိ	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	0.06	(mg/s)		(mg/s)
			Low Flo	W	Average I	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
Ma at c	mass flux in river at PM-13	M_r13 =	0.33	(mg/s)	1.48	(mg/s)	1.91	(mg/s)
			Low Flo	w	Average l	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
၀ ၂။ ၀	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

Case Parameter	Year 5 Selenium			
r drumotor	Cooman	<u> </u>		
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001106406	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
LO CO	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
=	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s
	man flux in according from Tailings Davin Calls 1E and 2E	M_fs =	0.01	(mg/s)	0.16	(mg/s)	0.16	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s
Mass k at eack		M_r13 =	0.48 Low Flo	(mg/s)	1.57	(mg/s)	8.12 High Fl	(mg/s
"			LOWING		Avelage	liow	Ingilit	-
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/l

Case	Year 5			
Parameter	Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	190.00	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s
u X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,500.08	(mg/s)	27,074.39	(mg/s)	27,074.39	(mg/s
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,118.71	(mg/s)	3,118.71	(mg/s)	3,118.71	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	3,170.15	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s
Mass b at eacl		M_r13 =	10,008.53 Low Flo		133,096.13 Average		220,435.59 High Fl	
			LOW FIO	VV	Average	riow	High Fi	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
Conver flux to	concentration in river at PM-13	C r13 =	56.270	(mg/L)	49.746	(mg/l)	8.994	(ma/l)

Case	Year 5			
Parameter	Thallium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000907911	(mg/L)
ē	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မွ င္	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)		(mg/s)		(mg/s)
2 0	mass flux in river at PW-13	M_F13 =	Low Flo	(mg/s)	Average	(mg/s)	High FI	(mg/s)
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =		(mg/L)		(mg/L)	0.000	

Case Parameter	Year 5 Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
concentration	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.0182086	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.24	(mg/s)	2.59	(mg/s)	2.59	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	3.23	(mg/s)		(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	2.19	(mg/s)	41.37	(mg/s)	390.73	(mg/s)
		1	Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
CO Flui	concentration in river at PM-13	C_r13 =	0.012	(mg/L)	0.015	(mg/L)	0.016	(mg/L)

Appendix F.11
Embarrass River
Geotechnical Mitigation
Year 10

FLOWS

Case	Year 10			
Flows	Low Flow Conditions (no surface runoff)			Node
in River	flow in river at PM-12	Q_r12_L =	0.86 (cfs)	PM-12
Fotal flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.29 (cfs)	PM-13
Total flow Embarras	flow check	Q_ck_L =	6.29 (cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00 (cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00 (cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00 (cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00 (cfs)	PM-13
ţ.	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.49 (cfs)	PM-13
/ data	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.02 (cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_L =	0.71 (cfs)	PM-13
Input 1	ground water flow into PM-12	Q_g12_L =	0.86 (cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_L =	4.21 (cfs)	PM-13

Case	Year 10				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass River	flow in river at PM-13	Q_r13_M =	95.05	(cfs)	PM-13
Total Emb	flow check	Q_ck_M =	95.05	(cfs)	_
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	5.55	(cfs)	PM-13
	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.02	(cfs)	PM-13
- Jo	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
Input flow	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
<u>n</u>	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 10				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass R	flow in river at PM-13	Q_r13_H =	866.60	(cfs)	PM-13
Tota	flow check	Q_ck_H =	866.60	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ita et	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	5.55	(cfs)	PM-13
flow data	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.02	(cfs)	PM-13
١٥	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
<u> </u>	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Year 10			
Parameter	Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00084	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000008	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
Mass ba at each		M_r13 =	0.01 Low Flo	(mg/s)	0.40	(mg/s)	2.80 High Fl	(mg/s)
ν <u>-</u>			2011 7 10		7 tronugo			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/L

Case	Year 10			
Parameter	Aluminum			
			ı	
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.25E-01	(mg/L)
<u></u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
Lon Lon	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.75	(mg/s)	19.65	(mg/s)	19.65	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.09	(mg/s)	0.09	(mg/s)	0.09	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	31.60	(mg/s)	355.65	(mg/s)	355.65	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	37.02 Low Flo	(mg/s)	590.47 Average		2,773.96 High Fl	
iss								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.208	(mg/L)	0.220	(mg/L)	0.113	(ma/i

Case	Year 10	i		
Parameter	Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.009432521	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
Los	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
Ē		C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
7	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.13	(mg/s)	1.48	(mg/s)	1.48	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)	0.65	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.58 Low Flo	(mg/s)	4.18 Average	(mg/s)	20.56 High Fl	
ssi					·····			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.002	(mg/L)	0.001	(ma/l

Case	Year 10			
Parameter	Boron			
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.149974322	(mg/L)
193	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
LO CO	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
ם	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
con flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.09	(mg/s)	23.55	(mg/s)	23.55	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	6.60	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
ass balance each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass at eac		M_r13 =	11.79 Low Flo	(mg/s)	133.68 Average		395.69 High Fl	
ο c			201110		Avolugo	1.0	ı ilgiri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.066	(mg/L)	0.050	(mg/L)	0.016	(ma/L

Case	Year 10			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.92E-02	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.69	(mg/s)	7.73	(mg/s)	7.73	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1.86	(mg/s)	20.95	(mg/s)	20.95	(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s
Mass ba at each i		M_r13 =	12.32 Low Flo	(mg/s)	61.88	(mg/s)	302.06 High Fl	
ass							J	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.069	(mg/L)	0.023	(mg/L)	0.012	(ma/L

Case	Year 10			
Parameter	Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000587308	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
7	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
Lou Lou	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
		M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.17	(mg/s)	0.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	0.03 Low Flo	(mg/s)	0.48	(mg/s)	2.66 High Fl	(mg/s
nass	concentration in river at PM 12	C r12 -						
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =		(mg/L)		(mg/L)	0.000	

Case	Year 10			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	107.272439	(mg/L)
Ieei	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
ă,	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,496.20	(mg/s)	16,841.82	(mg/s)	16,841.82	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	202.28	(mg/s)	202.28	(mg/s)	202.28	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,196.34	(mg/s)	13,466.52	(mg/s)	29.07	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s
Ma		M_r13 =	5,620.95	(mg/s)	66,004.10	(mg/s)	336,419.89	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l)
Conve flux to	concentration in river at PM-13	C r13 =	31.591	(mg/L)	24.536	(mg/l)	13.717	(ma/l)

Case	Year 10			
Parameter	Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000645923	(mg/L)
193	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.10	(mg/s)	0.10	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.06 Low Flo	(mg/s)	0.36	(mg/s)	2.11 High Fl	(mg/s
ss			2011110		7. C. u.g.			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Year 10			
Parameter	Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
Ę.	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
	rameter Chloride concentration of surface water into PM-12 concentration of surface water into PM-13 concentration in Babbitt WWTP discharge C_sBab =			
- E	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
ă	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

mass flux of ground water into PM-12				Low Flo	w	Average	Flow	High FI	ow
mass flux in Babbitt WWTP discharge		mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 71.00 (mg/s) 799.23 (mg/s) 799.24 (mg/s) 799.25 (mg/s) 799.25 (mg/s) 799.26 (mg/s) 799.26 (mg/s) 799.27 (mg/s) 799.27 (mg/s) 799.28 (mg/s) 799.28 (mg/s) 799.28 (mg/s) 799.29 (m	-	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s
mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 71.00 (mg/s) 799.23 (mg/s)	ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s
mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 71.00 (mg/s) 799.23 (mg/s)	ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s
Mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 71.00 (mg/s) 799.23 (mg/s)	cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s
Mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 71.00 (mg/s) 799.23 (mg/s)	o X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s
M_s2w = 431.07 (mg/s) 4,852.27 (mg/s) 4,		mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	71.00	(mg/s)	799.23	(mg/s)	799.23	(mg/s
Low Flow Average Flow High	n v	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	855.78	(mg/s)	855.78	(mg/s)	855.78	(mg/s
mass flux in river at PM-12	ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	431.07	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s
M_r13 = 1,616.12 (mg/s) 28,175.65 (mg/s) 246,524				Low Flo	W	Average	Flow	High FI	ow
M_r13 = 1,616.12 (mg/s) 28,175.65 (mg/s) 246,524	balance th node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s
			M_r13 =			_		246,524.30 High FI	
C_r12 = 1.800 (mg/L) 9.489 (mg/L) 9.1	lass			LOWITO	-	Avelage	liow		
C_r13 = 9.083 (mg/L) 10.474 (mg/L) 10.10	Convert m flux to concentra	concentration in river at PM-12						9.951	

Case	Year 10			
Parameter	Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001629161	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
at	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
ldu	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.26	(mg/s)	0.26	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass ba at each		M_r13 =	0.21 Low Flo	(mg/s)	2.06	(mg/s)	15.16 High Fl	(mg/s)
φ <u></u>			2011 7 10		7 tronago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(ma/L

concentration of ground water into PM-12

concentration of ground water into PM-13

Case Parameter	Year 10 Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
atior	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.006983188	(mg/L)
cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
lo:	concentration in tailings basin cell 2W	C s2w =	0.004555	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
concentration flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
		M_fs =	0.10	(mg/s)	1.10	(mg/s)	1.10	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Mass b at each		M_r13 =		(mg/s)		(mg/s)	38.80	
			Low Flo	w	Average	Flow	High FI	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0 004	(mg/L)	0.002	(mg/L)	0.002	(ma/l

C_g12 =

C_g13 =

0.004 (mg/L)

0.004 (mg/L)

concentration of ground water into PM-12 concentration of ground water into PM-13

Case	Year 10			
Parameter	concentration of surface water into PM-12			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ţ	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.07E-01	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
lo	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	7.07	(mg/s)	79.61	(mg/s)	79.61	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.39	(mg/s)	1.39	(mg/s)	1.39	(mg/s
င္မွိ ဒ္	mass flux in seepage from cell 2W	M_s2w =	31.02	(mg/s)	349.17		349.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s)
at at	mass flux in river at PM-13	M_r13 =	94.72	(mg/s)	703.19	(mg/s)	2,886.67	
	T		Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/L)
Conve flux to	concentration in river at PM-13	C r13 =	0.532	(mg/L)	0.261	(mg/L)	0.118	(mg/L

C_g12 =

C_g13 =

0.385 (mg/L)

0.385 (mg/L)

Case	Year 10]		
Parameter	oncentration of surface water into PM-12 oncentration of surface water into PM-13 oncentration in Babbitt WWTP discharge oncentration in Area 5 Pit NW discharge oncentration in seepage from Tailings Basin Cells 1E and oncentration in hydrometallurgical residue cells liner leake	<u> </u>		
	concentration of surface water into PM-12	C s12 =	2.9	(mg/L)
data	concentration of surface water into PM-13	C_s13 =		(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.97E-02	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
once	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
nout	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s
Ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.55	(mg/s)	6.24	(mg/s)	6.24	(mg/s
onvert mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.19	(mg/s)	0.19	(mg/s)	0.19	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	91.94	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s
Me at	mass flux in river at PM-13	M_r13 =		(mg/s)	7,160.21		70,481.32	
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L

		2 42
		-
Parameter	Hardness	
Case	Year 10	

ı		concentration of surface water into PM-12	C_s12 =	70	(mg/L)
	ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
	ğ	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
	Ę.	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
	ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.11E+02	(mg/L)
	ie.	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
	Ö	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
	ğ	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
	直	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4,335.31	(mg/s)	48,800.08	(mg/s)	48,800.08	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,186.52	(mg/s)	4,186.52	(mg/s)	4,186.52	(mg/s)
င္မွ ၁	mass flux in seepage from cell 2W	M_s2w =	8,737.40	(mg/s)	98,352.01		98,352.01	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	29,813.82	(mg/s)	364,509.11	(mg/s)	1,892,949.66	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L)
ა ≅ მ	concentration in river at PM-13	C_r13 =	167.562	(mg/L)	135.503	(mg/L)	77.185	(mg/L)

Case	Year 10			
Parameter	Potassium			
		-		
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	7.98	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
ů	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

hass flux of surface water into PM-12 hass flux of ground water into PM-12 hass flux in hydrometallurgical residue cells liner leakage hass flux of surface water into PM-13 hass flux of ground water into PM-13 hass flux in Babbitt WWTP discharge hass flux of Area 5 Pit NW discharge hass flux in seepage from Tailings Basin Cells 1E and 2E hass flux in seepage from cell 2W	M_s12 = M_g12 = M_rrs = M_s13 = M_g13 = M_sBab = M_spit = M_fs =		(mg/s) (mg/s) (mg/s) (mg/s) (mg/s) (mg/s) (mg/s)	0.88 6,442.81 190.63	(mg/s) (mg/s) (mg/s) (mg/s) (mg/s)	0.88 73,562 190.63 34.55	(mg/s) (mg/s) (mg/s) (mg/s)
hass flux in hydrometallurgical residue cells liner leakage hass flux of surface water into PM-13 hass flux of ground water into PM-13 hass flux in Babbitt WWTP discharge hass flux of Area 5 Pit NW discharge hass flux in seepage from Tailings Basin Cells 1E and 2E	M_rrs = M_s13 = M_g13 = M_sBab = M_spit = M_fs =	0.88 - 190.63 - -	(mg/s) (mg/s) (mg/s) (mg/s)	0.88 6,442.81 190.63 34.55	(mg/s) (mg/s) (mg/s) (mg/s)	0.88 73,562 190.63 34.55	(mg/s) (mg/s) (mg/s) (mg/s)
nass flux of surface water into PM-13 nass flux of ground water into PM-13 nass flux in Babbitt WWTP discharge nass flux of Area 5 Pit NW discharge nass flux in seepage from Tailings Basin Cells 1E and 2E	M_s13 = M_g13 = M_sBab = M_spit = M_fs =	- 190.63 - -	(mg/s) (mg/s) (mg/s)	6,442.81 190.63 34.55	(mg/s) (mg/s) (mg/s)	73,562 190.63 34.55	(mg/s) (mg/s) (mg/s)
nass flux of ground water into PM-13 nass flux in Babbitt WWTP discharge nass flux of Area 5 Pit NW discharge nass flux in seepage from Tailings Basin Cells 1E and 2E	M_g13 = M_sBab = M_spit = M_fs =		(mg/s) (mg/s)	190.63 34.55	(mg/s) (mg/s)	190.63 34.55	(mg/s) (mg/s)
nass flux in Babbitt WWTP discharge nass flux of Area 5 Pit NW discharge nass flux in seepage from Tailings Basin Cells 1E and 2E	M_sBab = M_spit = M_fs =		(mg/s)	34.55	(mg/s)	34.55	(mg/s)
nass flux of Area 5 Pit NW discharge nass flux in seepage from Tailings Basin Cells 1E and 2E	M_spit = M_fs =	-	` * '				
nass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	- 111.28	(mg/s)	3,029.85	(mg/s)	0.000.05	
		111.28			\g, \./	3,029.85	(mg/s)
nass flux in seepage from cell 2W	14 . 0		(mg/s)	1,252.62	(mg/s)	1,252.62	(mg/s)
	$M_s2w =$	155.50		1,750.33		1,750.33	(mg/s)
		Low Flo	w	Average	Flow	High Flo	ow
nass flux in river at PM-12	M_r12 =						
add lidx iii liver at l iii lo	IM_110						,
oncentration in river at PM-12	C_r12 =						
0	ass flux in river at PM-13	ass flux in river at PM-13 M_r13 = ncentration in river at PM-12 C_r12 =	ass flux in river at PM-13 M_r13 = 497.22 Low Flo ncentration in river at PM-12 C_r12 = 1.636	ass flux in river at PM-13 M_r13 = 497.22 (mg/s) Low Flow ncentration in river at PM-12 C_r12 = 1.636 (mg/L)	ass flux in river at PM-13	M_r13 = 497.22 (mg/s) 14,061.01 (mg/s) Low Flow Average Flow	ass flux in river at PM-13

Case Parameter	Year 10 Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
ů,	Iconcentration in Bappitt VVVV LP discharge	C_sBab =	6.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	10.43	(mg/L)
Zer.	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	145.53	(mg/s)	1,638.19	(mg/s)	1,638.19	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	103.57	(mg/s)	103.57	(mg/s)	103.57	(mg/s)
ဒိ ဒိ	mass flux in seepage from cell 2W	M_s2w =	1,400.27	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 = M_r13 =	259.20 3,177.44		2,456.41 46,938.74		24,623.80	
		-	Low Flo		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650			(mg/l)		(mg/l)
ပ ≓ ပ	concentration in river at PM-13	C r13 =	17.858	(mg/L)	17.449	(mg/l)	7.256	(mg/l)

C_s2w =

C_g12 = C_g13 = 69.97 (mg/L) 10.65 (mg/L)

10.65 (mg/L)

concentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

Case Parameter	Year 10 Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
n d	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
tration	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C fs =	0.16	(ma/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
tio	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.21	(mg/s)	24.88	(mg/s)	24.88	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ဗ ပိ	mass flux in seepage from cell 2W	M_s2w =	23.67	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	w	Average	Average Flow High Flow		
Mass balance at each node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
M _i at	mass flux in river at PM-13	M_r13 =		(mg/s)	977.91		7,528.37	
		_	Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	0.297	(mg/L)	0.364	(mg/l)	0.307	(mg/l)

C_rrs =

C_s2w =

C_g12 =

C_g13 =

0.00 (mg/L)

1.18 (mg/L)

0.19 (mg/L)

0.19 (mg/L)

Case Parameter	Year 10 Sodium			
- urumotor	Coulding			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
Ē	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	31.37	(mg/L)
concentration	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
nout	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
<u> </u>	concentration of ground water into PM-13	C g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High F	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	437.49	(mg/s)	4,924.53	(mg/s)	4,924.53	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	123.99	(mg/s)	123.99	(mg/s)	123.99	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	886.75	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s
			Low Flo	w	Average	Flow	High F	low
Mass balance at each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
Ma at e		M_r13 =	2,151.28	(mg/s)	29,839.34	(mg/s)	106,261.36	(mg/s
			Low Flo	W	Average	Flow	High F	low
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)

Case	Year 10			
Parameter	Nickel			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
D	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.024818317	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
Inpu	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
		M_fs =	0.35	(mg/s)	3.90	(mg/s)	3.90	(mg/s)
onvert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.14	(mg/s)	1.55	(mg/s)	1.55	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s)
Mass k at each		M_r13 =	1.54 Low Flo	(mg/s)	9.32 Average	(mg/s)	35.52 High Fl	
			LOWIIO	VV	Average	Tiow	ingiiii	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L
Conver flux to	concentration in river at PM-13	C r13 =	0.009	(mg/L)	0.003	(mg/L)	0.001	(ma/l

concentration of surface water into PM-13	
concentration in Babbitt WW1P discharge C_sbab = Concentration in Area 5 Pit NW discharge C_spit = 0.0000	(mg/L)
concentration in Babbitt WW1P discharge C_sbab = Concentration in Area 5 Pit NW discharge C_spit = 0.0000	(mg/L)
concentration in Area 5 Pit NW discharge C_spit = 0.000:	(mg/L)
	(mg/L)
concentration in seepage from Tailings Basin Cells 1E and 2E C_fs = 0.00299876	(mg/L)
	(mg/L)

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.04	(mg/s)	0.47	(mg/s)	0.47	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =		(mg/s)	0.27	(mg/s)	0.27	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =		(mg/s)		(mg/s)		(mg/s)
<i>s</i> i ≤	mass flux in river at PM-13	M_r13 =	0.24 Low Flo	(mg/s)		(mg/s)	0.93 High FI	(mg/s)
			LOW FIO	vv	Average	FIUW	High Fi	OW
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
Conver flux to concer	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

C_s2w =

C_g12 = C_g13 = 0.0012

0.0012 (mg/L)

(mg/L) 0.0012 (mg/L)

concentration of ground water into PM-13

Case	Year 10	i		
Parameter	Antimony	1		
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
βr		C_sBab =	2.00E-05	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.17E-02	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
Ö	concentration in tailings basin cell 2W	C s2w =	2.50E-04	(ma/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
tior	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.16	(mg/s)	1.84	(mg/s)	1.84	(mg/s)
Convert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င်		M_s2w =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
Mass balance		M_r12 =		(mg/s)		(mg/s)		(mg/s)
ž	mass flux in river at PM-13	M_r13 =	0.39	(mg/s)	2.17 Average	(mg/s)	2.61 High F I	(mg/s)
Convert mass flux to	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L)
5 ≒ ک	concentration in river at PM-13	C_r13 =	0.002	(mg/L)	0.001	(mg/L)	0.000	(mg/L)

C_g12 =

C_g13 =

1.50E-03 (mg/L)

1.50E-03 (mg/L)

Case	Year 10			
Parameter	Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00156894	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
ů o	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
Ē	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s
cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s
Mass ba at each		M_r13 =	0.49 Low Flo	(mg/s)	1.66	(mg/s)	8.21 High Fl	(mg/s
nass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/l

Case Parameter	Year 10 Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
ρι	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
centra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	223.12	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
lo S	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,111.94	(mg/s)	35,029.37	(mg/s)	35,029.37	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,572.40	(mg/s)	3,572.40	(mg/s)	3,572.40	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	3,049.89	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s)
Mass ba at each		M_r13 =	10,953.82 Low Flo	,	141,504.80		228,844.26	
			LOW FIO	W	Average	FIOW	High FI	OW
t mass tration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	61.563	(ma/L)	52.603	(ma/l)	9.331	(ma/l)

Case	Year 10			
Parameter	Thallium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001032064	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flor	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ţ	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.16	(mg/s)	0.16	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို့ ခဲ့	mass flux in seepage from cell 2W	M_s2w =		(mg/s)		(mg/s)		(mg/s)
			Low Flor	W	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)		(mg/s)		(mg/s)
2 0	mass flux in river at PW-13	M_F13 =	Low Flo		Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)		(mg/L)		(mg/L)

Case	Year 10]		
Parameter	Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.063569909	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	_	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
		M_fs =	0.89	(mg/s)	9.98	(mg/s)	9.98	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ		M_s2w =	0.29	(mg/s)	3.23	(mg/s)	3.23	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
Ma	mass flux in river at PM-13	M_r13 =		(mg/s)	48.76	, ,	398.11	, ,
			Low Flor	W	Average	riow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Conve flux to	concentration in river at PM-13	C_r13 =	0.016	(mg/L)	0.018	(mg/L)	0.016	(mg/L)

Appendix F.12
Embarrass River
Geotechnical Mitigation
Year 15

FLOWS

Case	Year 15				
Flows	Low Flow Conditions (no surface runoff)				Node
n River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.29	(cfs)	PM-13
Total Emba	flow check	Q_ck_L =	6.29	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.52	(cfs)	PM-13
	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.02	(cfs)	PM-13
lo N	seepage from cell 2W	Q_s2w_L =	0.68	(cfs)	PM-13
nput flow	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
<u>u</u>	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 15				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_M =	95.52	(cfs)	PM-13
Total	flow check	Q_ck_M =	95.52	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	6.02	(cfs)	PM-13
da da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.02	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
nput	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
du	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 15				
Flow	High Flow Conditions (avg. annual 1-day max flow)				_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	867.07	(cfs)	PM-13
Tota	flow check	Q_ck_H =	867.07	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ţ	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	6.02	(cfs)	PM-13
eb /	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.02	(cfs)	PM-13
lo S	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input flow data	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
ם	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Year 15			
Parameter	Silver			
		ı	1	
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00089	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
≝	concentration of ground water into PM-13	C_g13 =	0.000008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
⊆	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
u X	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
onvert	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.15	(mg/s)	0.15	(mg/s
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.02 Low Flo	(mg/s)	0.42	(mg/s)	2.82 High Fl	(mg/s
ass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Year 15			
Parameter	Aluminum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.74E-02	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
⊆	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s
onvert	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.28	(mg/s)	14.87	(mg/s)	14.87	(mg/s
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.09	(mg/s)	0.09	(mg/s)	0.09	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	30.54	(mg/s)	355.65	(mg/s)	355.65	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	35.49 Low Flo	(mg/s)	585.70 Average		2,769.19 High Fl	
iss					- The stage			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.199	(mg/L)	0.217	(mg/L)	0.113	(ma/l

Case	Year 15			
Parameter	Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007825647	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
į	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
nvert	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.11	(mg/s)	1.33	(mg/s)	1.33	(mg/s)
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.06	(mg/s)	0.65	(mg/s)	0.65	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)	_	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
mass	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/l

Case	Year 15			
Parameter	Boron			
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.153530941	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
<u> </u>	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s
<u>it</u>	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s
co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s
/ert		M_fs =	2.24	(mg/s)	26.14	(mg/s)	26.14	(mg/s
n ve	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	6.38	(mg/s)	74.34	(mg/s)	74.34	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s
Mass	mass flux in river at PM-13	M_r13 =	11.72 Low Flo	(mg/s)	136.27 Average		398.29 High Fl	
mass	concentration in river at PM-12	C_r12 =		(mg/L)		(mg/L)	0.012	
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.066	(mg/L)	0.050	(mg/L)	0.016	(ma/

Case	Year 15			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.00E-02	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s
		M_fs =	0.73	(mg/s)	8.50	(mg/s)	8.50	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1.80	(mg/s)		(mg/s)	20.95	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s
Mass	mass flux in river at PM-13	M_r13 =	12.30 Low Flo	(mg/s)	62.65	(mg/s)	302.84 High Fl	
nass		0.40						
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)		(mg/L)	0.011	

Case	Year 15			
Parameter	Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000487063	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
		M_fs =	0.01	(mg/s)	0.08	(mg/s)	0.08	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.17	(mg/s)	0.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.02 Low Flo	(mg/s)	0.47	(mg/s)	2.66 High F l	(mg/s
mass	concentration in river at PM 12	C r12 -	0.000	(mg/L)	0.000	(ma/l)		
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 = C_r13 =	0.000	(mg/L)		(mg/L)	0.000	

Case	Year 15			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	81.6110992	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,192.96	(mg/s)	13,893.59	(mg/s)	13,893.59	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	205.46	(mg/s)	205.46	(mg/s)	205.46	(mg/s
င္မွ င	mass flux in seepage from cell 2W	M_s2w =	1,156.29	(mg/s)	13,466.52	(mg/s)	29.52	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s
Ma		M_r13 =	5,280.84	(mg/s)	63,059.05	(mg/s)	333,475.30	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/L)	13.036	(mg/l)
Conve flux to	concentration in river at PM-13	C r13 =	29.679	(mg/L)	23.327	(mg/L)	13.590	(ma/l)

Case Parameter	Year 15 Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
n da	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000567381	(mg/L)
50	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
Ö	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
<u> </u>	concentration of ground water into PM-13	C a13 =	0.0003	(ma/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.10	(mg/s)	0.10	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
ISS eac	mass flux in river at PM-13	M_r13 =	0.06 Low Flo	(mg/s)	0.36	(mg/s)	2.10 High Fl	(mg/s
<u>ν</u> =			20		Monago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l

Case	Year 15			
Parameter	Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.66E+00	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	82.77	(mg/s)	963.96	(mg/s)	963.96	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	869.24	(mg/s)	869.24	(mg/s)	869.24	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	416.64	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	1,626.91 Low Flo		28,353.84 Average		246,702.49 High Fl	
S C			20		7.00.430			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	9.143	(mg/L)	10.489	(mg/L)	10.054	(ma/l

Case Parameter	Year 15 Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001926627	(mg/L)
Ser	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
l o	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
į	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မွ င	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
a Ž	mass flux in river at PM-13	M_r13 =	0.22 Low Flo	(mg/s)	2.13 Average	(mg/s)	15.24 High FI	(mg/s)
S =			LOW I IO		Average	1000	Ingiri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(ma/l

Case	Year 15			
Parameter	Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.009053616	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.13	(mg/s)	1.54	(mg/s)	1.54	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)	1.03	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s)
Mass ba at each		M_r13 =	0.80 Low Flo	(mg/s)	6.50	(mg/s)	39.25 High Fl	
ls s								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(ma/L

Case	Year 15			
Parameter	Fluoride			
		-"		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.63E-01	(mg/L)
193	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s
		M_fs =	8.23	(mg/s)	95.87	(mg/s)	95.87	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.41	(mg/s)	1.41	(mg/s)	1.41	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	29.98	(mg/s)	349.17	(mg/s)	349.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	94.86 Low Flo	(mg/s)	719.47 Average		2,902.96 High Fl	
nass	and the first in the set PM 40	0.740 -	0.205	(
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.385	(mg/L)		(mg/L)	0.102	

Case	Year 15			
Parameter	Iron			
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.86E-02	(mg/L)
192	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.56	(mg/s)	6.57	(mg/s)	6.57	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.20	(mg/s)	0.20	(mg/s)	0.20	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	88.86	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	94.64 Low Flo	(mg/s)	7,160.55 Average		70,481.66 High Fl	
ss c			20		7 to tugo			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.532	(mg/L)	2.649	(mg/L)	2.872	(ma/l

Case	Year 15			
Parameter	Hardness			
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.55E+02	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
ů	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High Flo	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,722.89	(mg/s)	43,358.02	(mg/s)	43,358.02	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,252.38	(mg/s)	4,252.38	(mg/s)	4,252.38	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	8,444.89	(mg/s)	98,352.01		98,352.01	(mg/s
			Low Flo	W	Average	Flow	High Flo	ow
balance h node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s
Mass ba at each i		M_r13 =	28,974.75 Low Flo		359,132.91 Average		1,887,573.46 High Flo	
SS								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	162.839	(mg/L)	132.850	(mg/L)	76.924	(ma/L

Case	Year 15			
Parameter	Potassium			
		1	1	
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.68	(mg/L)
i Ge	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s
ë	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.89	(mg/s)	34.55	(mg/s)	0.89	(mg/s
it a	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	3,029.85	(mg/s)	34.55	(mg/s
		M_spit =	-	(mg/s)	1,137.30	(mg/s)	3,029.85	(mg/s
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	97.65	(mg/s)	0.89	(mg/s)	1,137.30	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	150.29	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	39.83	(mg/s)	1,393.89	(mg/s)	15,030.11	(mg/s
	mass flux in river at PM-13	M_r13 =	478.40	(mg/s)	13,945.70	(mg/s)	94,734.70	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.637	(mg/L)	3.569	(mg/L)	3.679	(mg/l)

Case Parameter	Year 15 Magnesium			
Farameter	wagnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	12.36	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
Ē	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s)
it	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	180.69	(mg/s)	2,104.35	(mg/s)	2,104.35	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	105.20	(mg/s)	105.20	(mg/s)	105.20	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	1,353.39	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s)
iss eac	mass flux in river at PM-13	M_r13 =	3,167.35		47,406.54		178,415.73	` '
	T		Low Flo	W	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/L)	6.028	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	17.801	(mg/L)	17.537	(mg/L)	7.271	(ma/l)

Case	Year 15			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
þ	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.19	(mg/L)
ē	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
nt o	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
Input	concentration of ground water into PM-13	C g13 =	0.19	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.83	(mg/s)	33.00	(mg/s)	33.00	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	22.88	(mg/s)	266.49	(mg/s)	266.49	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
balance h node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s)
Mass ba at each		M_r13 =	52.69 Low Flo	(mg/s)	986.03 Average		7,536.49 High Fl	_
s c			2011 110		7o.ugo			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/L)	0.299	(mg/l)
Conve flux to	concentration in river at PM-13	C r13 =	0.296	(mg/L)	0.365	(mg/L)	0.307	(ma/l)

Case Parameter	Year 15 Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	26.02	(mg/L)
0	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
ouc	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
Ę	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	380.42	(mg/s)	4,430.53	(mg/s)	4,430.53	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	125.94	(mg/s)	125.94	(mg/s)	125.94	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	857.06	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	2,066.48 Low Flo		29,347.29 Average		105,769.32 High Flo	
s c			2011 7 10		- Triblings			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/L)	3.508	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	11.614	(ma/L)	10.856	(mg/L)	4.310	(ma/i

Case	Year 15			
Parameter	Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.022174447	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.32	(mg/s)	3.78	(mg/s)	3.78	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.13	(mg/s)	1.55	(mg/s)	1.55	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	1.51 Low Flo	(mg/s)	9.20 Average	(mg/s)	35.40 High Fl	
S =			2011 1 10		7.ttorage			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.008	(mg/L)	0.003	(mg/L)	0.001	(ma/l

Case Parameter	Year 15 Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L
data	concentration of surface water into PM-13	C_s13 =	0	(mg/L
	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
ntration	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002700416	(mg/L
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L
conce	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L
in put	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	W	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.04	(mg/s)	0.46	(mg/s)	0.46	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ე ე	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.27	(mg/s)	0.27	(mg/s)
		1	Low Flo	w	Average	Flow	High Fl	low
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
at at	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s)
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.001	(mg/L)	0.000		0.000	(mg/L)
Convertiux to concer	concentration in river at PM-13	C_r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L)

concentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

Case Parameter	Year 15 Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
n de	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
tra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.29E-03	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.14	(mg/s)	1.58	(mg/s)	1.58	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.06	(mg/s)	0.06	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s
Mass		M_r13 =		(mg/s)		(mg/s)		(mg/s
nass	Description in the PM 40	0.40	Low Flo		Average		High F	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(

C_rrs =

C_s2w =

C_g12 =

C_g13 =

0.004 (mg/L)

2.50E-04 (mg/L)

1.50E-03 (mg/L)

1.50E-03 (mg/L)

Case	Year 15			
Parameter	Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001534421	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
at	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.26	(mg/s)	0.26	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s
			Low Flo	w	Average	Flow	High FI	low
balance th node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s)
Mass ba at each		M_r13 =	0.49 Low Flo	(mg/s)	1.68	(mg/s)	8.23 High F l	(mg/s
ν c							- January - Janu	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(mg/l

concentration in hydrometallurgical residue cells liner leakage

concentration in tailings basin cell 2W

concentration of ground water into PM-12

concentration of ground water into PM-13

Case Parameter	Year 15 Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
2. 4.	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
2	Iconcentration in Bappitt VVVV LP discharge	C_sBab =	4.00	(mg/L)
i. i.c.	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ra Fra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	183.93	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
tra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s)
concentration	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,688.59	(mg/s)	31,312.16	(mg/s)	31,312.16	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	3,628.60		3,628.60	(mg/s)	3,628.60	(mg/s)
င္မ င	mass flux in seepage from cell 2W	M_s2w =	2,947.78	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	206.87		1,671.68	, ,	16,449.94	
ă ≥	mass flux in river at PM-13	M_r13 =	10,484.55		137,843.80		225,183.26	
	T		Low Flo	W	Average	FIOW	High Fl	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/L)	4.027	(mg/l)
Conve flux to conce	concentration in river at PM-13	C_r13 =	58.924	(mg/L)	50.991	(mg/L)	9.177	(mg/l)

C_s2w =

C_g12 =

C_g13 =

7347.00 (mg/L) 152.40 (mg/L)

8.50 (mg/L)

8.50 (mg/L)

Case	Year 15 Thallium			
Parameter	Thailium			
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
_	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001032291	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
ם	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.18	(mg/s)	0.18	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s
			Low Flo	w	Average	Flow	High Fl	low
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s
Mass ba		M_r13 =	0.02 Low Flo	(mg/s)	0.68	(mg/s)	5.04 High F l	(mg/s
ν ₀ =			2011 1 10		7110111110			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case Parameter	Year 15 Zinc			
	concentration of surface water into PM-12	C s12 =	0.016	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
ntration da	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.066565637	(mg/L
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L
conce	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L
Input	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L
<u>=</u>	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L

			Low Flo	W	Average I	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
cer	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.97	(mg/s)	11.33	(mg/s)	11.33	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
င္မွ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.28	(mg/s)		(mg/s)		(mg/s)
			Low Flo	w	Average I	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
Ma at e	mass flux in river at PM-13	M_r13 =	2.91	(mg/s)	50.11	(mg/s)	399.47	(mg/s)
			Low Flo	w	Average l	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Con	concentration in river at PM-13	C_r13 =	0.016	(mg/L)	0.019	(mg/L)	0.016	(mg/L)

Appendix F.13
Embarrass River
Geotechnical Mitigation
Year 20

FLOWS

Case	Year 20				
Flows	Low Flow Conditions (no surface runoff)				Node
in River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.29	(cfs)	PM-13
Total Emba	flow check	Q_ck_L =	6.29	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.54	(cfs)	PM-13
	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.02	(cfs)	PM-13
Į§	seepage from cell 2W	Q_s2w_L =	0.66	(cfs)	PM-13
nput flow	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
ıng	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Year 20				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass R	flow in river at PM-13	Q_r13_M =	95.97	(cfs)	PM-13
Total	flow check	Q_ck_M =	95.97	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ţ.	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	6.46	(cfs)	PM-13
data	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.02	(cfs)	PM-13
flow	seepage from cell 2W	Q_s2w_M =	7.96	(cfs)	PM-13
1	ground water flow into PM-12 ground water flow into PM-13	Q_g12_M =	0.86	(cfs)	PM-12
2	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Year 20				
Flow	High Flow Conditions (avg. annual 1-day max flo	ow)			_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	867.52	(cfs)	PM-13
Tota	flow check	Q_ck_H =	867.52	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ţ,	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	6.46	(cfs)	PM-13
da /	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.02	(cfs)	PM-13
flow data	seepage from cell 2W	Q_s2w_H =	7.96	(cfs)	PM-13
Input 1	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Year 20			
Parameter	Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
Ф	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00095	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
		M_fs =	0.01	(mg/s)	0.17	(mg/s)	0.17	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s)
ISS	mass flux in river at PM-13	M_r13 =	0.02 Low Flo	(mg/s)	0.44 Average	(mg/s)	2.84 High Fl	(mg/s
SSI			2011110		Attorago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case Parameter	Year 20 Aluminum			
i arameter	Aummum			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.88E-02	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
cou	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s
-		M_fs =	1.05	(mg/s)	12.58	(mg/s)	12.58	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	29.59	(mg/s)	355.65	(mg/s)	355.65	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	34.33 Low Flo	(mg/s)	583.41 Average		2,766.90 High Fl	
ss			20		7 to tugo			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.193	(mg/L)	0.215	(mg/L)	0.113	(ma/l

Case Parameter	Year 20 Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.007453418	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
uos	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
ndu	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s
-		M_fs =	0.11	(mg/s)	1.36	(mg/s)	1.36	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.05	(mg/s)	0.65	(mg/s)	0.65	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	0.56 Low Flo	(mg/s)	4.07	(mg/s)	20.44 High Fl	
nass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)		(mg/L)	0.001	

Case	Year 20			
Parameter	Boron			
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.158659552	(mg/L)
<u></u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.41	(mg/s)	29.01	(mg/s)	29.01	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.06	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	6.19	(mg/s)	74.34	(mg/s)	74.34	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =		(mg/s)	139.15		401.17	
	1		Low Flo	w	Average	Flow	High Fl	ow
t mass tration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.066	(mg/L)	0.051	(mg/L)	0.016	(mg/l

Case	Year 20			
Parameter	Barium			
		1		
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.40E-02	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s
		M_fs =	0.82	(mg/s)	9.87	(mg/s)	9.87	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1.74	(mg/s)	20.95	(mg/s)	20.95	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	12.34 Low Flo	(mg/s)	64.02	(mg/s)	304.21 High FI	
S =			2011710		Monago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.069	(mg/L)	0.024	(mg/L)	0.012	(ma/l

Case	Year 20			
Parameter	Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000472927	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s)
Mass ba at each		M_r13 =	0.02 Low Flo	(mg/s)	0.48	(mg/s)	2.66 High Fl	(mg/s)
s c			201110		Avolugo	1.0	i i i gii i i	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/L

Case	Year 20			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	65.23766506	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s
L co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	992.61	(mg/s)	11,928.83	(mg/s)	11,928.83	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	227.25	(mg/s)	227.25	(mg/s)	227.25	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,120.56	(mg/s)	13,466.52	(mg/s)	32.66	(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
balance th node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s
Mass ba at each i		M_r13 =	5,066.56 Low Flo		61,116.09 Average		331,535.47 High Flo	`
SS								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	28.466	(ma/L)	22.503	(mg/l)	13.504	(ma/l

Case	Year 20			
Parameter	Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000503271	(mg/L)
leo l	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
cor	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Ē	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
		M_fs =	0.01	(mg/s)	0.09	(mg/s)	0.09	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.04	(mg/s)	0.04	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	0.05 Low Flo	(mg/s)	0.35	(mg/s)	2.10 High Fl	(mg/s
SS LO								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Year 20			
Parameter	Chloride			
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.85E+00	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High FI	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	89.08	(mg/s)	1,070.58	(mg/s)	1,070.58	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	961.45	(mg/s)	961.45	(mg/s)	961.45	(mg/s
င္မွ င	mass flux in seepage from cell 2W	M_s2w =	403.76	(mg/s)	4,852.27	(mg/s)	4,852.27	(mg/s
			Low Flo	w	Average	Flow	High FI	low
iss balance each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	1,712.56 Low Flo		28,552.66 Average		246,901.31 High FI	
mass ation	concentration in river at PM 12	C r12 -	1 800	(mg/L)				
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =		(mg/L)	9.489	(mg/L)	9.951	

Case Parameter	Year 20 Cobalt			
rarameter	COSUR			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00218589	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
Los	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.40	(mg/s)	0.40	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.35	(mg/s)	0.35	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
Mass ba at each		M_r13 =	0.22 Low Flo	(mg/s)	2.21	(mg/s)	15.31 High Fl	(mg/s)
s c			2011110		71101490		9	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(ma/L

Case	Year 20			
Parameter	Copper			
		1	T	
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.011428793	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

•			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.17	(mg/s)	2.09	(mg/s)	2.09	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
င္မွ င	mass flux in seepage from cell 2W	M_s2w =	0.09	(mg/s)	1.03	(mg/s)	1.03	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s
ıss	mass flux in river at PM-13	M_r13 =	0.83 Low Flo	(mg/s)	7.05	(mg/s)	39.80 High Fl	
ass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.005	(mg/L)	0.003	(mg/L)	0.002	(ma/

Case Parameter	Year 20 Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	5.99E-01	(mg/L)
- σ	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
ouos	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
Ę	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s
lo d	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	9.12	(mg/s)	109.60	(mg/s)	109.60	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	1.56	(mg/s)	1.56	(mg/s)	1.56	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	29.05	(mg/s)	349.17	(mg/s)	349.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	94.97 Low Flo	(mg/s)	733.35 Average		2,916.84 High Fl	
ss			2011110		7.tto.ugo			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/
Conve flux to	concentration in river at PM-13	C r13 =	0.534	(mg/L)	0.270	(mg/L)	0.119	(ma/i

Case	Year 20			
Parameter	Iron			
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.17E-02	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
<u>r</u>	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	W	Average	Flow	High Fl	low
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s
ţ	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.33	(mg/s)	3.97	(mg/s)	3.97	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.22	(mg/s)	0.22	(mg/s)	0.22	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	86.11	(mg/s)	1,034.88	(mg/s)	1,034.88	(mg/s
			Low Flo	W	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s
	mass flux in river at PM-13	M_r13 =	91.68 Low Flo	(mg/s)	7,157.97 Average		70,479.08 High Fl	
mass ation	concentration in river at PM-12	C r12 =						
Convert mass flux to concentration	concentration in river at PM-12	C_r12 = C_r13 =	0.035	(mg/L)		(mg/L)	2.883	

Case	Year 20			
Parameter	Hardness			
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	2.18E+02	(mg/L)
an an	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
<u>ri</u>	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

man floor of confess contacted DM 40							
mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s)
mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s)
mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s)
mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s)
mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3,320.52	(mg/s)	39,904.86	(mg/s)	39,904.86	(mg/s)
mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,703.46	(mg/s)	4,703.46	(mg/s)	4,703.46	(mg/s)
mass flux in seepage from cell 2W	M_s2w =	8,183.95	(mg/s)	98,352.01	(mg/s)	98,352.01	(mg/s)
		Low Flor	W	Average	Flow	High Fl	ow
mass flux in river at PM-12	M_r12 =					286,383.27	
mass flux in river at PM-13	M_r13 =		,		, ,		` • /
concentration in river at PM-12	C_r12 =					70.104	
	mass flux in Babbitt WWTP discharge mass flux of surface water into PM-13 mass flux of ground water into PM-13 mass flux of Area 5 Pit NW discharge mass flux in seepage from Tailings Basin Cells 1E and 2E mass flux in hydrometallurgical residue cells liner leakage mass flux in seepage from cell 2W mass flux in river at PM-12 mass flux in river at PM-13	mass flux in Babbitt WWTP discharge mass flux of surface water into PM-13 mass flux of ground water into PM-13 mass flux of Area 5 Pit NW discharge mass flux in seepage from Tailings Basin Cells 1E and 2E mass flux in hydrometallurgical residue cells liner leakage mass flux in seepage from cell 2W mass flux in river at PM-12 mass flux in river at PM-13 M_r12 = mass flux in river at PM-13 M_r13 =	mass flux in Babbitt WWTP discharge M_sBab =	mass flux in Babbitt WWTP discharge M_sBab = - (mg/s) mass flux of surface water into PM-13 M_s13 = - (mg/s) mass flux of ground water into PM-13 M_g13 = 10,425.01 (mg/s) mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 3,320.52 (mg/s) mass flux in hydrometallurgical residue cells liner leakage M_rrs = 4,703.46 (mg/s) mass flux in seepage from cell 2W M_s2w = 8,183.95 (mg/s) Low Flow M_r12 = 2,129.58 (mg/s) M_r13 = 28,762.52 (mg/s) Low Flow	mass flux in Babbitt WWTP discharge M_sBab = - (mg/s) 653.73 mass flux of surface water into PM-13 M_s13 = - (mg/s) 121,890.93 mass flux of ground water into PM-13 M_g13 = 10,425.01 (mg/s) 10,425.01 mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 53,090.84 mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 3,320.52 (mg/s) 39,904.86 mass flux in hydrometallurgical residue cells liner leakage M_rrs = 4,703.46 (mg/s) 4,703.46 mass flux in seepage from cell 2W M_s2w = 8,183.95 (mg/s) 98,352.01 Low Flow Average M_r12 = 2,129.58 (mg/s) 27,763.72 mass flux in river at PM-13 M_r13 = 28,762.52 (mg/s) 356,130.83 Low Flow Average	mass flux in Babbitt WWTP discharge M_sBab = - (mg/s) 653.73 (mg/s) mass flux of surface water into PM-13 M_s13 = - (mg/s) 121,890.93 (mg/s) mass flux of ground water into PM-13 M_g13 = 10,425.01 (mg/s) 10,425.01 (mg/s) mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 53,090.84 (mg/s) mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 3,320.52 (mg/s) 39,904.86 (mg/s) mass flux in hydrometallurgical residue cells liner leakage M_rrs = 4,703.46 (mg/s) 4,703.46 (mg/s) mass flux in seepage from cell 2W M_s2w = 8,183.95 (mg/s) 98,352.01 (mg/s) Low Flow Average Flow mass flux in river at PM-12 M_r12 = 2,129.58 (mg/s) 28,762.52 (mg/s) 356,130.83 (mg/s) Low Flow Average Flow	mass flux in Babbitt WWTP discharge M_sBab = - (mg/s) 653.73 (mg/s) 653.73 mass flux of surface water into PM-13 M_s13 = - (mg/s) 121,890.93 (mg/s) 1,391,712 mass flux of ground water into PM-13 M_g13 = 10,425.01 (mg/s) 10,425.01 (mg/s) 10,425.01 mass flux of Area 5 Pit NW discharge M_spit = - (mg/s) 53,090.84 (mg/s) 53,090.84 mass flux in seepage from Tailings Basin Cells 1E and 2E M_fs = 3,320.52 (mg/s) 39,904.86 (mg/s) 39,904.86 mass flux in hydrometallurgical residue cells liner leakage M_rrs = 4,703.46 (mg/s) 4,703.46 (mg/s) 4,703.46 (mg/s) 98,352.01 mass flux in seepage from cell 2W M_s2w = 8,183.95 (mg/s) 98,352.01 (mg/s) 98,352.01 (mg/s) 98,352.01 mass flux in river at PM-12 M_r12 = 2,129.58 (mg/s) 27,763.72 (mg/s) 286,383.27 mass flux in river at PM-13 M_r13 = 28,762.52 (mg/s) 356,130.83 (mg/s) 1,884,571.38 Low Flow Average Flow High Fl

Case	Year 20			
Parameter	Potassium			
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.23	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.98	(mg/s)	0.98	(mg/s)	0.98	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s
lo d	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	94.77	(mg/s)	1,138.87	(mg/s)	1,138.87	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	145.65	(mg/s)	1,750.33	(mg/s)	1,750.33	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	39.92	(mg/s)	1,360.32	(mg/s)	15,030.21	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	470.97 Low Flo		13,947.36 Average		94,736.36 High Fl	
ss			LOWITIO		Avelage	I IOW	riigiiri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.640	(mg/L)	3.483	(mg/L)	3.679	(mg/
Conve flux to	concentration in river at PM-13	C r13 =	2.646	(mg/L)	5.135	(mg/L)	3.859	(ma/i

Case	Year 20			
Parameter	Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
Ę	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntration	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	13.44	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
ţ	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
In put	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	204.46	(mg/s)	2,457.15	(mg/s)	2,457.15	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	116.36	(mg/s)	116.36	(mg/s)	116.36	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,311.57	(mg/s)	15,762.00	(mg/s)	15,762.00	(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	3,160.46 Low Flo		47,770.50 Average		178,779.69 High Fl	
ي د			200 110		Avoiago		- Ingiri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	17.757	(ma/L)	17.589	(mg/l)	7.282	(ma/l

Case	Year 20			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.23	(mg/L)
- σ	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
ouo	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	3.51	(mg/s)	42.20	(mg/s)	42.20	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	22.18	(mg/s)	266.49	(mg/s)	266.49	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	52.66 Low Flo	(mg/s)	995.23 Average		7,545.69 High Fl	
ς, <u>-</u>			200 110		Avoiago	11011		
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.296	(mg/L)	0.366	(mg/l)	0.307	(mg/l

Case Parameter	Year 20 Sodium			
		ı		
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	22.22	(mg/L)
Se le	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
5	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
nbut	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
르	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	338.03	(mg/s)	4,062.28	(mg/s)	4,062.28	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	139.30	(mg/s)	139.30	(mg/s)	139.30	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	830.58	(mg/s)	9,981.63	(mg/s)	9,981.63	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s)
iss	mass flux in river at PM-13	M_r13 =	2,010.96		28,992.40		105,414.43	` '
		_	Low Flo	w	Average	Flow	High FI	ow
mass	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	11.298	(mg/L)	10.675	(mg/l)	4.294	(mg/l)

Case	Year 20			
Parameter	Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.023571036	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
COL	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s
lo d	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.36	(mg/s)	4.31	(mg/s)	4.31	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.05	(mg/s)	0.05	(mg/s)	0.05	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.13	(mg/s)	1.55	(mg/s)	1.55	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	1.55 Low Flo	(mg/s)	9.74 Average	(mg/s)	35.94 High Fl	
ss					- Transgr			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.009	(mg/L)	0.004	(mg/L)	0.001	(ma/l

Case	Year 20			
Parameter	Lead			
	T		1	ı
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002295615	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s
concentration flux	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s
L con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.42	(mg/s)	0.42	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.27	(mg/s)	0.27	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ISS eac	mass flux in river at PM-13	M_r13 =	0.23 Low Flo	(mg/s)	0.88	(mg/s)	0.88 High Fl	(mg/s
φ -			2011 110		71101000			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case Parameter	Year 20 Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	8.78E-03	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
centration	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
-	The second secon	M_fs =	0.13	(mg/s)	1.61	(mg/s)	1.61	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.06	(mg/s)	0.06	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
at 🖫	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)		(mg/s
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.002	(ma/L)	0.001	(mg/L)	0.000	(ma/l

Case Parameter	Year 20 Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001434159	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
conc	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
į	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s
concentration flux	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s
COU	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s
		M_fs =	0.02	(mg/s)	0.26	(mg/s)	0.26	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.25	(mg/s)	0.25	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	0.50 Low Flo	(mg/s)	1.68	(mg/s)	8.23 High Fl	(mg/s
<i>ω</i> -			LOWIN		Average	I low	Ingiri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(ma/l

Case	Year 20			
Parameter	Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	163.33	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
eouco	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
ntration	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s
	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s
lo d	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,485.06	(mg/s)	29,864.60	(mg/s)	29,864.60	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	4,013.51	(mg/s)	4,013.51	(mg/s)	4,013.51	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	2,856.70	(mg/s)	34,330.84	(mg/s)	34,330.84	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s
	mass flux in river at PM-13	M_r13 =	10,574.86 Low Flo		136,781.15 Average		224,120.61 High Flo	
ass					- The stage		- Ingilia	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/
Conve flux to	concentration in river at PM-13	C r13 =	59.414	(mg/L)	50.362	(mg/l)	9.129	(ma/l

Case Parameter	Year 20 Thallium			
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001001115	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C rrs =	0.0002	(mg/L)
5	concentration in tailings basin cell 2W	C s2w =	0.0002	(mg/L)
	concentration of ground water into PM-12	C g12 =	0.000004	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.02 Low Flo	(mg/s)	0.68	(mg/s)	5.05 High Fl	(mg/s)
s c			2011 7 10		7 tronago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case Parameter	Year 20 Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.058688337	(mg/L)
8	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
con	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C g13 =	0.0115	(ma/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
centration	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s
	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.89	(mg/s)	10.73	(mg/s)	10.73	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.27	(mg/s)	3.23	(mg/s)	3.23	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	2.82 Low Flo	(mg/s)	49.51 Average	(mg/s)	398.87 High Fl	
ss					- The stage			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.016	(mg/L)	0.018	(mg/L)	0.016	(ma/l

Appendix F.14
Embarrass River
Geotechnical Mitigation
Closure

FLOWS

Case	Closure				
Flows	Low Flow Conditions (no surface runoff)		Node		
in River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.27	(cfs)	PM-13
Total Emba	flow check	Q_ck_L =	6.27	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.41	(cfs)	PM-13
	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
Į§	seepage from cell 2W	Q_s2w_L =	0.79	(cfs)	PM-13
nput flow	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Closure				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80 ((cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_M =	86.63 ((cfs)	PM-13
Total	flow check	Q_ck_M =	86.63 ((cfs)	1
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33 ((cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99 ((cfs)	PM-13
ţ,	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	1.73 ((cfs)	PM-13
da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
<u> </u>	seepage from cell 2W	Q_s2w_M =	3.37 ((cfs)	PM-13
nout flow data	ground water flow into PM-12	Q_g12_M =	0.86 ((cfs)	PM-12
au u	ground water flow into PM-13	Q_g13_M =	4.21 ((cfs)	PM-13

Case	Closure				
Flow	High Flow Conditions (avg. annual 1-day max flo	w)			_
in River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	858.18	(cfs)	PM-13
Tota	flow check	Q_ck_H =	858.18	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ţ,	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	1.73	(cfs)	PM-13
da /	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
flow data	seepage from cell 2W	Q_s2w_H =	3.37	(cfs)	PM-13
Input 1	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
du	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Closure			
Parameter	Silver			
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00124	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000008	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
=	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
L con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.02 Low Flo	(mg/s)	0.31	(mg/s)	2.71 High Fl	(mg/s
ss					- The state of the			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Closure			
Parameter	Aluminum			
		1		1
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.15E-01	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	7.09	(mg/s)	30.13	(mg/s)	30.13	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	35.42	(mg/s)	150.57	(mg/s)	150.57	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	46.10 Low Flo	(mg/s)	395.79 Average		2,579.28 High Fl	
ass			201110		Avoiago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.260	(mg/L)	0.161	(mg/L)	0.106	(ma/l

Case	Closure			
Parameter	Arsenic			
		-"		1
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.027915158	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
50	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.32	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	0.07	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s)
Mass ba at each	mass flux in river at PM-13	M_r13 =	0.78 Low Flo	(mg/s)	3.69	(mg/s)	20.07 High Fl	
s c					, o g		g	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.004	(mg/L)	0.002	(mg/L)	0.001	(ma/L

Case	Closure			
Parameter	Boron			
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.150573845	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
Sor	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s
		M_fs =	1.74	(mg/s)	7.38	(mg/s)	7.38	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	7.40	(mg/s)	31.47	(mg/s)	31.47	(mg/s
			Low Flo	W	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	12.19 Low Flo	(mg/s)	74.59 Average	(mg/s)	336.61 High FI	
iass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/l

Case	Closure			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.95E-02	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
50	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.22	(mg/s)	0.95	(mg/s)	0.95	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	2.09	(mg/s)	8.87	(mg/s)	8.87	(mg/s)
			Low Flo	w	Average	Flow	High FI	ow
balance h node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass ba at each		M_r13 =	12.08 Low Flo	(mg/s)	43.02	(mg/s)	283.21 High FI	
σ c			2011110		71101490		9	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L
Conver flux to	concentration in river at PM-13	C r13 =	0.068	(mg/L)	0.018	(mg/L)	0.012	(mg/L

Case	Closure			
Parameter	Beryllium			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001323498	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ē	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
it a	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s)
Cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.07	(mg/s)	0.07	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
Mass balance at each node		M_r12 =		(mg/s)		(mg/s)		(mg/s)
a ŭ	mass flux in river at PM-13	M_r13 =	0.04 Low Flo	(mg/s)		(mg/s)		(mg/s)
"			LOW FIO	W .	Average	FIOW	High FI	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Closure			
Parameter	Calcium			
	T		1	ı
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	68.73996034	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s
lo u	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	792.25	(mg/s)	3,367.90	(mg/s)	3,367.90	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	19.51	(mg/s)	19.51	(mg/s)	19.51	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,341.15	(mg/s)	5,701.28	(mg/s)	2.80	(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	4,879.05 Low Flo		44,582.17 Average		322,736.94 High Fl	
ass on			LOW FIO	W	Average	riow	High Fi	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/
Conve flux to	concentration in river at PM-13	C r13 =	27.489	(mg/L)	18.184	(ma/l)	13.289	(ma/

Case	Closure			
Parameter	Cadmium			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001182282	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0003	(mg/L)

•			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
ISS	mass flux in river at PM-13	M_r13 =	0.06 Low Flo	(mg/s)	0.29	(mg/s)	2.04 High Fl	(mg/s
ss				-	·····			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l

Case Parameter	Closure Chloride			
		•		
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.97E+00	(mg/L)
Ser	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
l 8	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s
		M_fs =	45.80	(mg/s)	194.68	(mg/s)	194.68	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	82.56	(mg/s)	82.56	(mg/s)	82.56	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	483.24	(mg/s)	2,054.29	(mg/s)	2,054.29	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s
Mass	mass flux in river at PM-13	M_r13 =	869.87 Low Flo		23,999.89 Average		242,348.54 High Fl	
mass	concentration in river at PM-12	C r12 =		(mg/L)		(mg/L)	9.951	
Convert mass flux to concentration	concentration in river at PM-13	C r13 =		(mg/L)		(mg/L)	9.979	

Case Parameter	Closure Cobalt			
i arameter	CODAIL			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0006	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002707554	(mg/L)
nce	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
du	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s
L con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.13	(mg/s)	0.13	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.15	(mg/s)	0.15	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s)
ISS eac	mass flux in river at PM-13	M_r13 =	0.22 Low Flo	(mg/s)	1.73	(mg/s)	14.84 High Fl	
lss on					·····			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(ma/L

Case	Closure			
Parameter	Copper			
		1		
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.014116893	(mg/L)
lo lo	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
Sor	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
벌	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

•			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.16	(mg/s)	0.69	(mg/s)	0.69	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.10	(mg/s)	0.43	(mg/s)	0.43	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.84 Low Flo	(mg/s)	5.06 Average	(mg/s)	37.81 High Fl	
ass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.005	(mg/L)	0.002	(mg/L)	0.002	(ma/l

Case Parameter	Closure Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.14E+00	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
e e	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s
con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s
		M_fs =	13.10	(mg/s)	55.70	(mg/s)	55.70	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	34.77	(mg/s)	147.83	(mg/s)	147.83	(mg/s
			Low Flo	W	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	103.25 Low Flo		476.69 Average		2,660.18 High Fl	
" c			LOWIN		Avelage	1100	riigii i	-
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.385	(mg/L)	0.118	(mg/L)	0.102	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.582	(mg/L)	0.194	(mg/L)	0.110	(mg/l

Case	Closure			
Parameter	Iron			
		-"		
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	2.9	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.94E-02	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	4.00E-01	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.035	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.15	(mg/s)	4.87	(mg/s)	4.87	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	103.06	(mg/s)	438.13	(mg/s)	438.13	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
tss balance each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s
Mass at eac		M_r13 =	109.25		6,561.92		69,883.03	
			Low Flo	w	Average	Flow	High FI	ow
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/L
Conver flux to concen	concentration in river at PM-13	C r13 =	0.616	(mg/L)	2.676	(mg/L)	2.877	(mg/L

Case	Closure			
Parameter	Hardness			
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	402	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8610	(mg/L)
103	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	4,633.95	(mg/s)	19,699.16	(mg/s)	19,699.16	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	403.90	(mg/s)	403.90	(mg/s)	403.90	(mg/s
င္မွ င	mass flux in seepage from cell 2W	M_s2w =	9,794.98	(mg/s)	41,638.98	(mg/s)	41,638.98	(mg/s
			Low Flo	W	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s
ıss	mass flux in river at PM-13	M_r13 =	27,387.42 Low Flo		274,912.54 Average		1,803,353.09 High FI	
ass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	154.306	(mg/L)	112.131	(ma/L)	74.253	(ma/i

Case	Closure			
Parameter	Potassium			
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	21.31	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
concentration flux	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s
co	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s
-		M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	245.57	(mg/s)	1,043.93	(mg/s)	1,043.93	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	174.32	(mg/s)	741.03	(mg/s)	741.03	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	39.03	(mg/s)	1,359.42	(mg/s)	15,029.31	(mg/s
ıss	mass flux in river at PM-13	M_r13 =	649.54 Low Flo		12,842.22 Average		93,631.22 High Fl	
SS			201110		Avoiago	11011		
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.603	(mg/L)	3.481	(mg/L)	3.679	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	3.660	(mg/L)	5.238	(mg/L)	3.855	(ma/l

Case	Closure			
Parameter	Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	6.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	55.96	(mg/L)
193	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	213.00	(mg/L)
Con	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	10.65	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s
		M_fs =	644.90	(mg/s)	2,741.51	(mg/s)	2,741.51	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	9.99	(mg/s)	9.99	(mg/s)	9.99	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,569.75	(mg/s)	6,673.11	(mg/s)	6,673.11	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	3,752.72 Low Flo		38,859.59 Average		169,868.78 High Fl	
σ c			LOWING		Average	liow	riigii i	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	21.144	(ma/L)	15.850	(mg/l)	6.994	(mg/l

Case	Closure			
Parameter	Manganese			
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.14	(mg/L)
5	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.00	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.19	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.65	(mg/s)	7.03	(mg/s)	7.03	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	26.54	(mg/s)	112.82	(mg/s)	112.82	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	4.58	(mg/s)	114.44	(mg/s)	1,222.81	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	55.17 Low Flo	(mg/s)	806.39 Average		7,356.85 High Fl	
ass			2011110		, troingo		9	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.311	(mg/L)	0.329	(mg/l)	0.303	(ma/i

Case	Closure			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	26.63	(mg/L)
<u> </u>	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
Souc	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
<u>ri</u>	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	306.88	(mg/s)	1,304.55	(mg/s)	1,304.55	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	11.96	(mg/s)	11.96	(mg/s)	11.96	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	994.08	(mg/s)	4,225.89	(mg/s)	4,225.89	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	2,015.98 Low Flo		20,351.60 Average		96,773.63 High Fl	
s c			200 110		Avoiago	11000	Ingiri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	11.358	(ma/L)	8.301	(mg/l)	3.985	(ma/l

Case	Closure			
Parameter	Nickel			
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.005498724	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.007	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
ē	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.06	(mg/s)	0.27	(mg/s)	0.27	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.15	(mg/s)	0.66	(mg/s)	0.66	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.17	(mg/s)	0.61	(mg/s)	5.04	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	1.23 Low Flo	(mg/s)	4.76	(mg/s)	30.96 High Fl	
ass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(ma/l

Case	Closure			
Parameter	Lead			
		-"		,
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00095888	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
103	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.05	(mg/s)	0.05	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.03	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Mass ba at each		M_r13 =	0.21 Low Flo	(mg/s)	0.35	(mg/s)	0.35 High Fl	(mg/s)
ν <u>-</u>							g	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L

Case	Closure			
Parameter	Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.16E-03	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s)
ţį	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
ceu	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.01	(mg/s)	0.06	(mg/s)	0.06	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance at each node	mass flux in river at PM-12 mass flux in river at PM-13	M_r12 = M_r13 =		(mg/s)		(mg/s)		(mg/s)
2 10	Illiass liux iii livei at i ivi-13	IVI_I 13 -	Low Flo	,	Average		High FI	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =		(mg/L)	0.000	(mg/L)	0.000	(mg/L)

Case	Closure			
Parameter	Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.003346354	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
103	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
it a	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s
		M_fs =	0.04	(mg/s)	0.16	(mg/s)	0.16	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.10	(mg/s)	0.10	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	0.49 Low Flo	(mg/s)	1.42	(mg/s)	7.97 High Fl	(mg/s
nass		0.40						
Convert mass flux to concentration	concentration in river at PM-12	C_r12 = C_r13 =		(mg/L)		(mg/L)	0.000	

Case	Closure			
Parameter	Sulfate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	176.50	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s
flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s) (mg/s) (mg/s) (mg/s) (mg/s) (mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2,034.18	(mg/s)	8,647.39	(mg/s)	8,647.39	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	344.66	(mg/s)	344.66	(mg/s)	344.66	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	3,419.05	(mg/s)	14,534.54	(mg/s)	14,534.54	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
tss balance each node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s
Mass at eac		M_r13 =	7,017.47 Low Flo		92,098.78 Average		179,438.24	`
υ c			LOW 1 10	W	Average	I IOW	riigirri	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l)
Conve flux to conce	concentration in river at PM-13	C r13 =	39.538	(mg/L)	37.565	(mg/l)	7.388	(mg/l)

Case	Closure			
Parameter	Thallium			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000106288	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
50	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
<u>u</u>	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
concentration flux	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s)
	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	00 (mg/s) 00 (mg/s) 4 (mg/s) 00 (mg/s) 03 (mg/s) 11 (mg/s) 10 (mg/s) 12 (mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
			Low Flo	W	Average	Flow	High Fl	ow
balance h node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s)
Mass ba at each		M_r13 =	0.01 Low Flo	(mg/s)	0.48 Average	(mg/s)		
S =			2011 7 10		7 troining o			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/L

Case	Closure			
Parameter	Zinc			
		-"		1
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.016	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.012754048	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.01	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	W	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
Ö	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s)
č×	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.15	(mg/s)	0.62	(mg/s)	0.62	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.32	(mg/s)	1.37	(mg/s)	1.37	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s)
	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)	386.89	
			Low Flo	w	Average	Flow	High FI	ow
t mass	concentration in river at PM-12	C_r12 =	0.012	(mg/L)	0.016	(mg/L)	0.016	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.012	(mg/L)	0.015	(mg/L)	0.016	(ma/l

Appendix F.15
Embarrass River
Geotechnical Mitigation
Post-Closure

FLOWS

Case	Post-Closure				
Flows	Low Flow Conditions (no surface runoff)				Node
in River	flow in river at PM-12	Q_r12_L =	0.86	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_L =	6.27	(cfs)	PM-13
Total Emba	flow check	Q_ck_L =	6.27	(cfs)	
	surface water flow into PM-12	Q_s12_L =	0.00	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_L =	0.00	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_L =	0.00	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_L =	0.00	(cfs)	PM-13
data	seepage from Tailings Basin Cells 1E and 2E	Q_fs_L =	0.67	(cfs)	PM-13
	hydrometallurgical residue cells liner leakage	Q_rrs_L =	0.00	(cfs)	PM-13
Į§	seepage from cell 2W	Q_s2w_L =	0.53	(cfs)	PM-13
nput flow	ground water flow into PM-12	Q_g12_L =	0.86	(cfs)	PM-12
dul	ground water flow into PM-13	Q_g13_L =	4.21	(cfs)	PM-13

Case	Post-Closure				
Flow	Average Flow Conditions (mean annual)				_
n River	flow in river at PM-12	Q_r12_M =	13.80	(cfs)	PM-12
Total flow in Embarrass Ri	flow in river at PM-13	Q_r13_M =	84.61	(cfs)	PM-13
Total	flow check	Q_ck_M =	84.61	(cfs)	
	surface water flow into PM-12	Q_s12_M =	12.61	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_M =	61.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_M =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_M =	1.99	(cfs)	PM-13
ta	seepage from Tailings Basin Cells 1E and 2E	Q_fs_M =	1.73	(cfs)	PM-13
da	hydrometallurgical residue cells liner leakage	Q_rrs_M =	0.00	(cfs)	PM-13
nput flow data	seepage from cell 2W	Q_s2w_M =	1.35	(cfs)	PM-13
ut 1	ground water flow into PM-12	Q_g12_M =	0.86	(cfs)	PM-12
au	ground water flow into PM-13	Q_g13_M =	4.21	(cfs)	PM-13

Case	Post-Closure				
Flow	High Flow Conditions (avg. annual 1-day max flo	w)			_
n River	flow in river at PM-12	Q_r12_H =	144.35	(cfs)	PM-12
Total flow in Embarrass F	flow in river at PM-13	Q_r13_H =	856.16	(cfs)	PM-13
Tota	flow check	Q_ck_H =	856.16	(cfs)	
	surface water flow into PM-12	Q_s12_H =	143.16	(cfs)	PM-12
	surface water flow into PM-13	Q_s13_H =	702.53	(cfs)	PM-13
	Babbitt WWTP discharge	Q_sBab_H =	0.33	(cfs)	PM-12
	Area 5 Pit NW discharge	Q_spit_H =	1.99	(cfs)	PM-13
ţ,	seepage from Tailings Basin Cells 1E and 2E	Q_fs_H =	1.73	(cfs)	PM-13
/ da	hydrometallurgical residue cells liner leakage	Q_rrs_H =	0.00	(cfs)	PM-13
flow data	seepage from cell 2W	Q_s2w_H =	1.35	(cfs)	PM-13
Input 1	ground water flow into PM-12	Q_g12_H =	0.86	(cfs)	PM-12
du	ground water flow into PM-13	Q_g13_H =	4.21	(cfs)	PM-13

Case	Post-Closure			
Parameter	Silver			
		1	ı	
	concentration of surface water into PM-12	C_s12 =	0.00011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00011	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.00011	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00015	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00124	(mg/L)
	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.000125	(mg/L)
conce	concentration in tailings basin cell 2W	C_s2w =	0.000100	(mg/L)
ţ	concentration of ground water into PM-12	C_g12 =	0.000008	(mg/L)
Input	concentration of ground water into PM-13	C g13 =	0.000008	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.19	(mg/s)	2	(mg/s
flux	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	0.00 (mg/s) 2 (mg/s) 0.00 (mg/s) 0.01 (mg/s) 0.06 (mg/s) 0.00 (mg/s)
		M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.45	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	0.03 Low Flo	(mg/s)	0.31	(mg/s)	2.71 High Fl	(mg/s
nass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 = C_r13 =	0.000	(mg/L)		(mg/L)	0.000	

Case	Post-Closure			
Parameter	Aluminum			
		-"		
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.01325	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	6.15E-01	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80E-01	(mg/L)
50	concentration in tailings basin cell 2W	C_s2w =	1.5788	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.025	(mg/L)
<u>=</u>	concentration of ground water into PM-13	C_g13 =	0.025	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.61	(mg/s)	0.61	(mg/s)	0.61	(mg/s) (mg/s) (mg/s) (mg/s) (mg/s) (mg/s) (mg/s) (mg/s) (mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
č × ľ	mass flux of ground water into PM-13	M_g13 =	2.98	(mg/s)	2.98	(mg/s)	2.98	(mg/s
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.75	(mg/s)	0.75	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	11.73	(mg/s)	30.13	(mg/s)	30.13	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	23.49	(mg/s)	60.32	(mg/s)	60.32	(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.61	(mg/s)	37.23	(mg/s)	406.69	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	38.82 Low Flo	(mg/s)	305.54 Average		2,489.02 High Fl	
ass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.025	(mg/L)	0.095	(mg/L)	0.100	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.219	(mg/L)	0.128	(mg/L)	0.103	(ma/l

Case	Post-Closure			
Parameter	Arsenic			
	concentration of surface water into PM-12	C_s12 =	0.00075	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00075	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	0.00075	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.001325	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.027915158	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	0.00291	(mg/L)
at	concentration of ground water into PM-12	C_g12 =	0.00273	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.00273	(mg/L)

•			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.27	(mg/s)	3	(mg/s)
Ē	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.31	(mg/s)	15	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	0.33	(mg/s)	0.33	(mg/s)	0.33	(mg/s
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.07	(mg/s)	0.07	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.53	(mg/s)	1.37	(mg/s)	1.37	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.04	(mg/s)	0.11	(mg/s)	0.11	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.34	(mg/s)	3.11	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	0.97 Low Flo	(mg/s)	3.53	(mg/s)	19.90 High Fl	
ass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.001	(mg/L)	0.001	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.005	(mg/L)	0.001	(mg/L)	0.001	(ma/l

Case	Post-Closure			
Parameter	Boron			
	concentration of surface water into PM-12	C_s12 =	0.012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.012	(mg/L)
ğ u	concentration in Babbitt WWTP discharge	C_sBab =	0.012	(mg/L)
atio	concentration in Area 5 Pit NW discharge	C_spit =	0.1315	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.150573845	(mg/L)
192	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.11	(mg/L)
20	concentration in tailings basin cell 2W	C_s2w =	0.33	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0212	(mg/L)
ln	concentration of ground water into PM-13	C_g13 =	0.0212	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4.28	(mg/s)	49	(mg/s)
concentration flux	mass flux of ground water into PM-12	M_g12 =	0.52	(mg/s)	0.52	(mg/s)	0.52	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.11	(mg/s)	0.11	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	20.90	(mg/s)	239	(mg/s)
Cer	mass flux of ground water into PM-13	M_g13 =	2.53	(mg/s)	2.53	(mg/s)	2.53	(mg/s)
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.41	(mg/s)	7.41	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	2.87	(mg/s)	7.38	(mg/s)	7.38	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	4.91	(mg/s)	12.61	(mg/s)	12.61	(mg/s
			Low Flo	W	Average	Flow	High FI	ow
balance th node	mass flux in river at PM-12	M_r12 =	0.52	(mg/s)	4.91	(mg/s)	49.25	(mg/s
Mass ba at each		M_r13 =	10.83 Low Flo	(mg/s)	55.73	(mg/s)	317.75 High Fl	
ss			2011110		rttotago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.021	(mg/L)	0.013	(mg/L)	0.012	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.061	(mg/L)	0.023	(mg/L)	0.013	(mg/L

Case	Post-Closure			
Parameter	Barium			
	concentration of surface water into PM-12	C_s12 =	0.011	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.011	(mg/L)
ρι	concentration in Babbitt WWTP discharge	C_sBab =	0.011	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	0.0044	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.95E-02	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	5.00E-03	(mg/L)
20	concentration in tailings basin cell 2W	C_s2w =	0.09298	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0681	(mg/L)
宣	concentration of ground water into PM-13	C_g13 =	0.0681	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3.93	(mg/s)	45	(mg/s)
ation	mass flux of ground water into PM-12	M_g12 =	1.66	(mg/s)	1.66	(mg/s)	1.66	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.10	(mg/s)	0.10	(mg/s)
	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	19.15	(mg/s)	219	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	8.11	(mg/s)	8.11	(mg/s)	8.11	(mg/s)
L con	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.25	(mg/s)	0.25	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.37	(mg/s)	0.95	(mg/s)	0.95	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1.38	(mg/s)	3.55	(mg/s)	3.55	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
Mass balance at each node	mass flux in river at PM-12	M_r12 =	1.66	(mg/s)	5.69	(mg/s)	46.33	(mg/s)
Mass b at each	mass flux in river at PM-13	M_r13 =		(mg/s)		(mg/s)	277.89	` '
			Low Flo	w	Average	Flow	High FI	ow
t mass	concentration in river at PM-12	C_r12 =	0.068	(mg/L)	0.015	(mg/L)	0.011	(mg/L)
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.065	(mg/L)	0.016	(mg/L)	0.011	(ma/l

Case Parameter	Post-Closure Beryllium			
	• •			
	concentration of surface water into PM-12	C_s12 =	0.0001	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0001	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0001	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001323498	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0	(mg/L)
l os	concentration in tailings basin cell 2W	C_s2w =	0.00075	(mg/L)
	concentration of ground water into PM-12	C_g12 =	0.000023	(mg/L)
Input	concentration of ground water into PM-13	C a13 =	0.000023	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.04	(mg/s)	0	(mg/s)
Ē	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.17	(mg/s)	2	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
i co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.03	(mg/s)	0.06	(mg/s)	0.06	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	-	(mg/s)	-	(mg/s)	-	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.01	(mg/s)	0.03	(mg/s)	0.03	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.04	(mg/s)	0.41	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.04 Low Flo	(mg/s)	0.31	(mg/s)	2.50 High Fl	(mg/s
ass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Post-Closure			
Parameter	Calcium			
	concentration of surface water into PM-12	C_s12 =	13	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	13	(mg/L)
0	concentration in Babbitt WWTP discharge	C_sBab =	13	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	95.35	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	68.73996034	(mg/L)
8	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	416	(mg/L)
ūos	concentration in tailings basin cell 2W	C_s2w =	59.78	(mg/L)
į	concentration of ground water into PM-12	C_g12 =	19	(mg/L)
In put	concentration of ground water into PM-13	C_g13 =	19	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	4,639.22	(mg/s)	52,669	(mg/s)
Ē	mass flux of ground water into PM-12	M_g12 =	462.42	(mg/s)	462.42	(mg/s)	462.42	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	121.41	(mg/s)	121.41	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	22,636.89	(mg/s)	258,461	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	2,263.72	(mg/s)	2,263.72	(mg/s)	2,263.72	(mg/s
lo d	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	5,369.83	(mg/s)	5,369.83	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1,311.63	(mg/s)	3,367.90	(mg/s)	3,367.90	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	19.51	(mg/s)	19.51	(mg/s)	19.51	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	889.46	(mg/s)	2,283.89	(mg/s)	2.80	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	462.42	(mg/s)	5,223.05	(mg/s)	53,252.39	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	4,946.75 Low Flo		41,164.78 Average		322,736.94 High Fl	
SS			20		7.volugo			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	19.000	(mg/L)	13.374	(mg/l)	13.036	(mg/
Conve flux to	concentration in river at PM-13	C r13 =	27.871	(ma/L)	17.191	(mg/l)	13.320	(ma/l

Case Parameter	Post-Closure Cadmium			
r urumotor	- Carrier - Carr			
	concentration of surface water into PM-12	C_s12 =	0.00008	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.00008	(mg/L)
n dâ	concentration in Babbitt WWTP discharge	C_sBab =	0.00008	(mg/L)
ţi	concentration in Area 5 Pit NW discharge	C_spit =	0.0001	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.001182282	(mg/L)
Cer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0004	(mg/L)
Los	concentration in tailings basin cell 2W	C_s2w =	0.000188	(mg/L)
5	concentration of ground water into PM-12	C_g12 =	0.0003	(mg/L)
2		C a13 -	0.0003	(ma/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.01	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
ij	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.14	(mg/s)	2	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
-		M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.01	(mg/s)	0.04	(mg/s)	0.33	(mg/s)
ISS	mass flux in river at PM-13	M_r13 =	0.07 Low Flo	(mg/s)	0.28	(mg/s)	2.03 High Fl	(mg/s
S C			2011.10		Monago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/L

Case Parameter	Post-Closure Chloride			
			1	
	concentration of surface water into PM-12	C_s12 =	10	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	10	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	10	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	5.95	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	3.97E+00	(mg/L)
50	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.76E+03	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	21.54	(mg/L)
nput	concentration of ground water into PM-12	C_g12 =	1.8	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	1.8	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	3,568.63	(mg/s)	40,514	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	43.81	(mg/s)	43.81	(mg/s)	43.81	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	93.39	(mg/s)	93.39	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	17,412.99	(mg/s)	198,816	(mg/s)
Cen	mass flux of ground water into PM-13	M_g13 =	214.46	(mg/s)	214.46	(mg/s)	214.46	(mg/s)
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	335.09	(mg/s)	335.09	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	75.82	(mg/s)	194.68	(mg/s)	194.68	(mg/s)
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	82.56	(mg/s)	82.56	(mg/s)	82.56	(mg/s)
ပို ဍ	mass flux in seepage from cell 2W	M_s2w =	320.49	(mg/s)	822.94	(mg/s)	822.94	(mg/s)
			Low Flo	w	Average	Flow	High Fl	ow
tss balance each node	mass flux in river at PM-12	M_r12 =	43.81	(mg/s)	3,705.83	(mg/s)	40,651.48	(mg/s)
Mass at eac	mass flux in river at PM-13	M_r13 =	737.14 Low Flo		22,768.54 Average		241,117.19 High Fl	
ass			LOWITO		Avelage	l low		
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.800	(mg/L)	9.489	(mg/L)	9.951	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	4.153	(mg/L)	9.509	(mg/L)	9.951	(ma/L

Case	Post-Closure			
Parameter	Cobalt			
	concentration of surface water into PM-12	C_s12 =	0.0006	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0006	(mg/L)
7	concentration in Rabbitt WW/TD discharge	C_sBab =	0.0006	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.000555	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.002707554	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.005	(mg/L)
u os	concentration in tailings basin cell 2W	C_s2w =	0.001556	(mg/L)
ŧ	concentration of ground water into PM-12	C_g12 =	0.0011	(mg/L)
nout	concentration of ground water into PM-13	C_g13 =	0.0011	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.21	(mg/s)	2	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	1.04	(mg/s)	12	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s
		M_fs =	0.05	(mg/s)	0.13	(mg/s)	0.13	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.25	(mg/s)	2.46	(mg/s
Mass	mass flux in river at PM-13	M_r13 =	0.23 Low Flo	(mg/s)	1.65	(mg/s)	14.75 High Fl	
onvert mass ux to oncentration	concentration in river at PM-12	C_r12 =		(mg/L)		(mg/L)	0.001	
Convert mass flux to concentration	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.001	(mg/L)	0.001	(ma/

Case	Post-Closure			
Parameter	Copper			
	concentration of surface water into PM-12	C_s12 =	0.0015	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0015	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	0.0015	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.00345	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.014116893	(mg/L)
loce	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0015	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	0.004555	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.004	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.54	(mg/s)	6	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.10	(mg/s)	0.10	(mg/s)	0.10	(mg/s
ij	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.61	(mg/s)	30	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.48	(mg/s)	0.48	(mg/s)	0.48	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.19	(mg/s)	0.19	(mg/s
		M_fs =	0.27	(mg/s)	0.69	(mg/s)	0.69	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.07	(mg/s)	0.17	(mg/s)	0.17	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.10	(mg/s)	0.65	(mg/s)	6.19	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	0.91 Low Flo	(mg/s)	4.80	(mg/s)	37.55 High Fl	
ss			2011110		Attorago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.004	(mg/L)	0.002	(mg/L)	0.002	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.005	(mg/L)	0.002	(mg/L)	0.002	(ma/l

Case	Post-Closure			
Parameter	Fluoride			
	concentration of surface water into PM-12	C_s12 =	0.1	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.1	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.1	(mg/L)
tion	concentration in Area 5 Pit NW discharge	C_spit =	0.125	(mg/L)
ntratic	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.14E+00	(mg/L)
193	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	2.85E+00	(mg/L)
eouce	concentration in tailings basin cell 2W	C_s2w =	1.55	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	0.385	(mg/L)
트	concentration of ground water into PM-13	C g13 =	0.385	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	35.69	(mg/s)	405	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	9.37	(mg/s)	9.37	(mg/s)	9.37	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.93	(mg/s)	0.93	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	174.13	(mg/s)	1,988	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	45.87	(mg/s)	45.87	(mg/s)	45.87	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	7.04	(mg/s)	7.04	(mg/s
		M_fs =	21.69	(mg/s)	55.70	(mg/s)	55.70	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.13	(mg/s)	0.13	(mg/s)	0.13	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	23.06	(mg/s)	59.22	(mg/s)	59.22	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	9.37	(mg/s)	45.99	(mg/s)	415.45	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	100.13		388.09 Average		2,571.57 High Fl	
nass		0.40						
Convert mass flux to concentration	concentration in river at PM-12 concentration in river at PM-13	C_r12 = C_r13 =	0.385	(mg/L)		(mg/L)	0.102	

Case	Post-Closure			
Parameter	concentration of surface water into PM-12			
		I		l
	concentration of surface water into PM-12	C_s12 =	2.9	(mg/L)
4	concentration of surface water into PM-13	C_s13 =	2.9	(mg/L)
7	concentration in Rabbitt WW/TD discharge	C_sBab =	2.9	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.037761905	(mg/L)
1	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	9.94E-02	(mg/L)
100		C_rrs =	4.00E-01	(mg/L)
200	concentration in tailings basin cell 2W	C_s2w =	4.594	(mg/L)
, indu	concentration of ground water into PM-12	C_g12 =	0.035	(mg/L)
2	concentration of ground water into PM-13	C a13 =	0.035	(ma/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,034.90	(mg/s)	11,749	(mg/s
_	mass flux of ground water into PM-12	M_g12 =	0.85	(mg/s)	0.85	(mg/s)	0.85	(mg/s
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	27.08	(mg/s)	27.08	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	5,049.77	(mg/s)	57,657	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	4.17	(mg/s)	4.17	(mg/s)	4.17	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	2.13	(mg/s)	2.13	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	1.90	(mg/s)	4.87	(mg/s)	4.87	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.02	(mg/s)	0.02	(mg/s)	0.02	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	68.35	(mg/s)	175.51	(mg/s)	175.51	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.85	(mg/s)	1,062.84	(mg/s)	11,777.08	(mg/s
iss eac	mass flux in river at PM-13	M_r13 =	75.29 Low Flo	(mg/s)	6,299.30 Average		69,620.41 High Fl	
iass								
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.035	(mg/L)	2.721	(mg/L)	2.883	(mg/l

Case	Post-Closure			
Parameter	Hardness			
	concentration of surface water into PM-12	C_s12 =	70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	70	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	942.7142857	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	4.02E+02	(mg/L)
95	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	8.61E+03	(mg/L)
20.	concentration in tailings basin cell 2W	C_s2w =	436.6	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	87.5	(mg/L)
ᇤ	concentration of ground water into PM-13	C_g13 =	87.5	(mg/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	24,980.41	(mg/s)	283,600	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	2,129.58	(mg/s)	2,129.58	(mg/s)	2,129.58	(mg/s)
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	653.73	(mg/s)	653.73	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	121,890.93	(mg/s)	1,391,712	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	10,425.01	(mg/s)	10,425.01	(mg/s)	10,425.01	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	53,090.84	(mg/s)	53,090.84	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	7,671.85	(mg/s)	19,699.16	(mg/s)	19,699.16	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	403.90	(mg/s)	403.90	(mg/s)	403.90	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	6,496.16	(mg/s)	16,680.30	(mg/s)	16,680.30	(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	2,129.58	(mg/s)	27,763.72	(mg/s)	286,383.27	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	27,126.50 Low Flo		249,953.86 Average		1,778,394.41 High Fl	_
ass			20.1.10		71101490			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	87.500	(mg/L)	71.091	(mg/L)	70.104	(mg/l
Conve flux to conce	concentration in river at PM-13	C r13 =	152.836	(mg/L)	104.385	(mg/L)	73.398	(ma/L

Case	Post-Closure			
Parameter	Potassium			
	concentration of surface water into PM-12	C_s12 =	3.70	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.70	(mg/L)
Ф	concentration in Babbitt WWTP discharge	C_sBab =	3.70	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	53.80	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	21.31	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	1.80	(mg/L)
20	concentration in tailings basin cell 2W	C_s2w =	7.77	(mg/L)
t t	concentration of ground water into PM-12	C_g12 =	1.60	(mg/L)
<u>I</u>	concentration of ground water into PM-13	C_g13 =	1.60	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,320.39	(mg/s)	14,990	(mg/s)
Ē	mass flux of ground water into PM-12	M_g12 =	38.94	(mg/s)	38.94	(mg/s)	38.94	(mg/s
	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.08	(mg/s)	0.08	(mg/s)	0.08	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,442.81	(mg/s)	73,562	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	190.63	(mg/s)	190.63	(mg/s)	190.63	(mg/s
L con	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	34.55	(mg/s)	34.55	(mg/s
	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	3,029.85	(mg/s)	3,029.85	(mg/s
Convert to mass	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	406.56	(mg/s)	1,043.93	(mg/s)	1,043.93	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	115.61	(mg/s)	296.85	(mg/s)	296.85	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	39.03	(mg/s)	1,359.42	(mg/s)	15,029.31	(mg/s
	mass flux in river at PM-13	M_r13 =	751.82 Low Flo		12,398.04 Average		93,187.04 High Fl	
ss uc			LOWITIO		Average	liow	Ingiri	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	1.603	(mg/L)	3.481	(mg/L)	3.679	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	4.236	(mg/L)	5.178	(mg/L)	3.846	(ma/l

Case Parameter	Post-Closure Magnesium			
Farameter	Magnesium			
	concentration of surface water into PM-12	C_s12 =	6.00	(mg/L)
400	concentration of surface water into PM-13	C_s13 =	6.00	(mg/L)
7	concentration in Rabbitt WW/TD discharge	C_sBab =	6.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	271.00	(mg/L)
nt ra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	55.96	(mg/L)
Cer		C_rrs =	213.00	(mg/L)
200	concentration in tailings basin cell 2W	C_s2w =	69.97	(mg/L)
, indu	concentration of ground water into PM-12	C_g12 =	10.65	(mg/L)
2	concentration of ground water into PM-13	C g13 =	10.65	(ma/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	2,141.18	(mg/s)	24,309	(mg/s)
Ē	mass flux of ground water into PM-12	M_g12 =	259.20	(mg/s)	259.20	(mg/s)	259.20	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	56.03	(mg/s)	56.03	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	10,447.79	(mg/s)	119,290	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	1,268.87	(mg/s)	1,268.87	(mg/s)	1,268.87	(mg/s
cou	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	15,261.91	(mg/s)	15,261.91	(mg/s
		M_fs =	1,067.68	(mg/s)	2,741.51	(mg/s)	2,741.51	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	9.99	(mg/s)	9.99	(mg/s)	9.99	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	1,041.08	(mg/s)	2,673.20	(mg/s)	2,673.20	(mg/s
			Low Flo	W	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	259.20	(mg/s)	2,456.41	(mg/s)	24,623.80	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	3,646.83 Low Flo		34,859.69 Average		165,868.88 High Fl	
" c			LOWIIO	VV	Average	liow	riigii i	OW
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	10.650	(mg/L)	6.290	(mg/l)	6.028	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	20.547	(ma/L)	14.558	(mg/l)	6.846	(ma/l

Case	Post-Closure			
Parameter	Manganese			
		-		
	concentration of surface water into PM-12	C_s12 =	0.30	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.30	(mg/L)
n dê	concentration in Babbitt WWTP discharge	C_sBab =	0.30	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.49	(mg/L)
ntra		C_fs =	0.14	(mg/L)
ncer		C_rrs =	0.00	(mg/L)
Los	concentration in tailings basin cell 2W	C_s2w =	1.18	(mg/L)
ont	concentration of ground water into PM-12	C_g12 =	0.19	(mg/L)
2	concentration of ground water into DM 13	C ~12 =	0.10	(ma/L)

			Low Flo	W	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	107.06	(mg/s)	1,215	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	4.58	(mg/s)	4.58	(mg/s)	4.58	(mg/s)
concentration	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	2.80	(mg/s)	2.80	(mg/s)
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	522.39	(mg/s)	5,964	(mg/s)
cen	mass flux of ground water into PM-13	M_g13 =	22.40	(mg/s)	22.40	(mg/s)	22.40	(mg/s)
COD	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	27.31	(mg/s)	27.31	(mg/s)
		M_fs =	2.74	(mg/s)	7.03	(mg/s)	7.03	(mg/s)
Convert	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s)
ပိ န		M_s2w =	17.60	(mg/s)	45.20	(mg/s)	45.20	(mg/s)
			Low Flo	W	Average	Flow	High FI	ow
Mass balance	mass flux in river at PM-12	M_r12 =		(mg/s)	114.44		1,222.81	
2 m	mass flux in river at PM-13	M_r13 =	Low Flo	(mg/s)	738.77 Average		7,289.23 High FI	
Convert mass flux to	concentration in river at PM-12	C_r12 =	0.188	(mg/L)	0.293	(mg/l)	0.299	(mg/l)
0 = 0	concentration in river at PM-13	C_r13 =	0.267	(mg/L)	0.309	(mg/I)	0.301	(mg/I)

Case	Post-Closure			
Parameter	Sodium			
	concentration of surface water into PM-12	C_s12 =	3.50	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	3.50	(mg/L)
ਰ	concentration in Babbitt WWTP discharge	C_sBab =	3.50	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	119.50	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	26.63	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	255.00	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	44.31	(mg/L)
Input	concentration of ground water into PM-12	C_g12 =	4.90	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	4.90	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,249.02	(mg/s)	14,180	(mg/s)
Ē	mass flux of ground water into PM-12	M_g12 =	119.26	(mg/s)	119.26	(mg/s)	119.26	(mg/s
	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	32.69	(mg/s)	32.69	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,094.55	(mg/s)	69,586	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	583.80	(mg/s)	583.80	(mg/s)	583.80	(mg/s
la co	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	6,729.88	(mg/s)	6,729.88	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	508.06	(mg/s)	1,304.55	(mg/s)	1,304.55	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	11.96	(mg/s)	11.96	(mg/s)	11.96	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	659.29	(mg/s)	1,692.86	(mg/s)	1,692.86	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	119.26	(mg/s)	1,400.96	(mg/s)	14,331.94	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	1,882.37 Low Flo		17,818.57 Average		94,240.60 High Fl	
ss			2011110		71101000			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	4.900	(mg/L)	3.587	(mg/l)	3.508	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	10.606	(mg/L)	7.441	(mg/l)	3.890	(ma/i

Case	Post-Closure			
Parameter	Nickel			
		-		
	concentration of surface water into PM-12	C_s12 =	0.0012	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0012	(mg/L)
ق ق	concentration in Babbitt WWTP discharge	C_sBab =	0.0012	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0052	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.005498724	(mg/L)
193	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.098	(mg/L)
, s	concentration in tailings basin cell 2W	C_s2w =	0.00688	(mg/L)
Ħ	concentration of ground water into PM-12	C_g12 =	0.007	(mg/L)
Input	concentration of ground water into PM-13	C a13 =	0.007	(ma/L)

		Low Flo	w	Average	Flow	High Fl	ow
mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.43	(mg/s)	5	(mg/s)
mass flux of ground water into PM-12	M_g12 =	0.17	(mg/s)	0.17	(mg/s)	0.17	(mg/s)
mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s)
mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	2.09	(mg/s)	24	(mg/s)
mass flux of ground water into PM-13	M_g13 =	0.83	(mg/s)	0.83	(mg/s)	0.83	(mg/s)
mass flux in Babbitt WWTP discharge mass flux of surface water into PM-13 mass flux of ground water into PM-13 mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.29	(mg/s)	0.29	(mg/s)
	M_fs =	0.10	(mg/s)	0.27	(mg/s)	0.27	(mg/s
mass flux in seepage from Tailings Basin Cells 1E and 2E mass flux in hydrometallurgical residue cells liner leakage mass flux in seepage from cell 2W mass flux in seepage from cell 2W	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
mass flux in seepage from cell 2W	M_s2w =	0.10	(mg/s)	0.26	(mg/s)	0.26	(mg/s
		Low Flo	w	Average	Flow	High Fl	ow
mass flux in river at PM-12 mass flux in river at PM-13	M_r12 =		(mg/s)		(mg/s)		(mg/s)
Z to mass flux in river at PM-13	M_r13 =	Low Flo	(mg/s)	Average	(mg/s)	30.56 High FI	
concentration in river at PM-12 concentration in river at PM-13	C_r12 =	0.007	(mg/L)	0.002	(mg/L)	0.001	(mg/L
Concentration in river at PM-13	C r13 =	0.007	(ma/L)	0.002	(mg/L)	0.001	(ma/l

Case	Post-Closure			
Parameter	Lead			
	concentration of surface water into PM-12	C_s12 =	0	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.00095888	(mg/L)
5	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0005	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	0.0012	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.0012	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.0012	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	-	(mg/s)	-	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
Ęi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	-	(mg/s)	-	(mg/s)
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	-	(mg/s)	-	(mg/s
ceu	mass flux of ground water into PM-13	M_g13 =	0.14	(mg/s)	0.14	(mg/s)	0.14	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.02	(mg/s)	0.02	(mg/s)
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.05	(mg/s)	0.05	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.05	(mg/s)	0.05	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.03	(mg/s)	0.03	(mg/s)	0.03	(mg/s)
ISS eac	mass flux in river at PM-13	M_r13 =	0.21 Low Flo	(mg/s)	0.28	(mg/s)	0.28 High Fl	(mg/s
" c			LOWIN		Avelage	liow	Ingilit	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(mg/L
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(ma/L

Case	Post-Closure			
Parameter	Antimony			
	concentration of surface water into PM-12	C_s12 =	2.00E-05	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	2.00E-05	(mg/L)
ğ	concentration in Babbitt WWTP discharge	C_sBab =	2.00E-05	(mg/L)
ratio	concentration in Area 5 Pit NW discharge	C_spit =	2.50E-04	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	1.16E-03	(mg/L)
9	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.004	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	2.50E-04	(mg/L)
at	concentration of ground water into PM-12	C_g12 =	1.50E-03	(mg/L)
ğ	concentration of ground water into PM-13	C_g13 =	1.50E-03	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.01	(mg/s)	0	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.04	(mg/s)	0.04	(mg/s)	0.04	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.03	(mg/s)	0	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.18	(mg/s)	0.18	(mg/s)	0.18	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.01	(mg/s)	0.01	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.02	(mg/s)	0.06	(mg/s)	0.06	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.04	(mg/s)	0.04	(mg/s)	0.12	(mg/s)
ISS eac	mass flux in river at PM-13	M_r13 =	0.24 Low Flo	(mg/s)	0.34	(mg/s)	0.77 High Fl	(mg/s
ν <u>-</u>			2011 1 10		Monago			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.002	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.001	(mg/L)	0.000	(mg/L)	0.000	(ma/l

Case	Post-Closure			
Parameter	Selenium			
	concentration of surface water into PM-12	C_s12 =	0.0003	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0003	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0003	(mg/L)
ation	concentration in Area 5 Pit NW discharge	C_spit =	0.0016	(mg/L)
ıtra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.003346354	(mg/L)
200	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.054	(mg/L)
202	concentration in tailings basin cell 2W	C_s2w =	0.00109	(mg/L)
put	concentration of ground water into PM-12	C_g12 =	0.00295	(mg/L)
트	concentration of ground water into PM-13	C_g13 =	0.00295	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.11	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.07	(mg/s)	0.07	(mg/s)	0.07	(mg/s)
ţi	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
itra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.52	(mg/s)	6	(mg/s
Cer	mass flux of ground water into PM-13	M_g13 =	0.35	(mg/s)	0.35	(mg/s)	0.35	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.09	(mg/s)	0.09	(mg/s
		M_fs =	0.06	(mg/s)	0.16	(mg/s)	0.16	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.02	(mg/s)	0.04	(mg/s)	0.04	(mg/s
			Low Flo	w	Average	Flow	High FI	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.07	(mg/s)	0.18	(mg/s)	1.29	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.51 Low Flo	(mg/s)	1.35	(mg/s)	7.90 High Fl	(mg/s
ss					- The stage			
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.003	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.003	(mg/L)	0.001	(mg/L)	0.000	(ma/l

Case Parameter	Post-Closure Sulfate			
i arameter	Junate			
	concentration of surface water into PM-12	C_s12 =	4.00	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	4.00	(mg/L)
	concentration in Babbitt WWTP discharge	C_sBab =	4.00	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	1046.27	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	176.50	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	7347.00	(mg/L)
S	concentration in tailings basin cell 2W	C_s2w =	152.40	(mg/L)
į	concentration of ground water into PM-12	C_g12 =	8.50	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	8.50	(mg/L)

			Low Flo	w	Average	Flow	High FI	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	1,427.45	(mg/s)	16,206	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	206.87	(mg/s)	206.87	(mg/s)	206.87	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	37.36	(mg/s)	37.36	(mg/s
ıţra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	6,965.20	(mg/s)	79,526	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	1,012.72	(mg/s)	1,012.72	(mg/s)	1,012.72	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	58,922.60	(mg/s)	58,922.60	(mg/s
		M_fs =	3,367.73	(mg/s)	8,647.39	(mg/s)	8,647.39	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	344.66	(mg/s)	344.66	(mg/s)	344.66	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	2,267.55	(mg/s)	5,822.44	(mg/s)	5,822.44	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	206.87	(mg/s)	1,671.68	(mg/s)	16,449.94	(mg/s
ISS	mass flux in river at PM-13	M_r13 =	7,199.53 Low Flo		83,386.68 Average		170,726.14 High Fl	
ø c			201110		Avoiago		g	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	8.500	(mg/L)	4.280	(mg/l)	4.027	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	40.563	(ma/L)	34.824	(mg/l)	7.046	(ma/l

Case Parameter	Post-Closure Thallium			
	concentration of surface water into PM-12	C_s12 =	0.0002	(mg/L)
ata	concentration of surface water into PM-13	C_s13 =	0.0002	(mg/L)
7	concentration in Babbitt WWTP discharge	C_sBab =	0.0002	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.0006	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.000106288	(mg/L)
ncer	concentration in hydrometallurgical residue cells liner leakage	C_rrs =	0.0002	(mg/L)
ő	concentration in tailings basin cell 2W	C_s2w =	0.0002	(mg/L)
Ę	concentration of ground water into PM-12	C_g12 =	0.000004	(mg/L)
Input	concentration of ground water into PM-13	C_g13 =	0.000004	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	0.07	(mg/s)	1	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
Ę	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ıtra	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	0.35	(mg/s)	4	(mg/s
cer	mass flux of ground water into PM-13	M_g13 =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.03	(mg/s)	0.03	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.00	(mg/s)	0.01	(mg/s)	0.01	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.00	(mg/s)	0.07	(mg/s)	0.81	(mg/s
ISS eac	mass flux in river at PM-13	M_r13 =	0.01 Low Flo	(mg/s)	0.47	(mg/s)	4.84 High Fl	(mg/s
σ c			200 110		Avolugo	1100	i i i gii i i	
Convert mass flux to concentration	concentration in river at PM-12	C_r12 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(mg/l
Conve flux to	concentration in river at PM-13	C r13 =	0.000	(mg/L)	0.000	(mg/L)	0.000	(ma/l

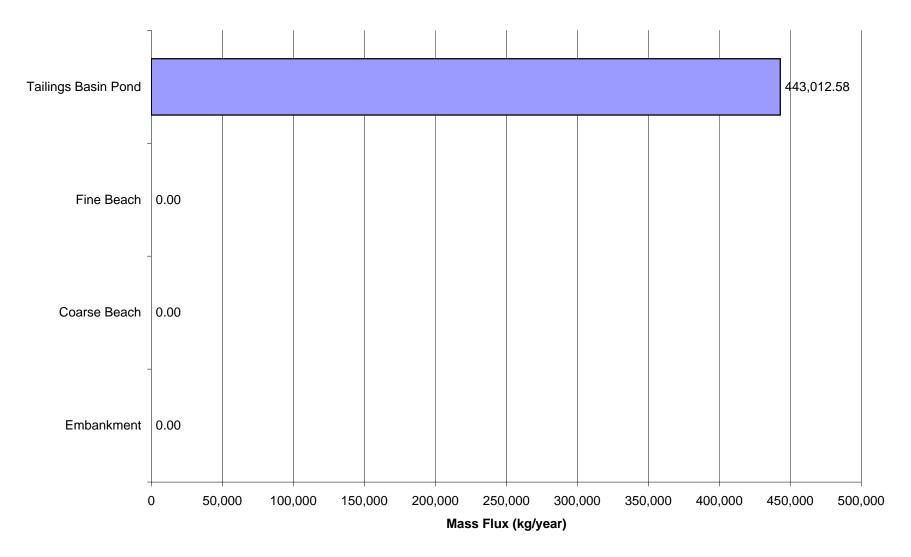
Case Parameter	Post-Closure Zinc			
	concentration of surface water into PM-12	C_s12 =	0.016	(mg/L)
data	concentration of surface water into PM-13	C_s13 =	0.016	(mg/L)
		C_sBab =	0.016	(mg/L)
ration	concentration in Area 5 Pit NW discharge	C_spit =	0.003	(mg/L)
ntra	concentration in seepage from Tailings Basin Cells 1E and 2E	C_fs =	0.012754048	(mg/L)
193		C_rrs =	0.01	(mg/L)
200	concentration in tailings basin cell 2W	C_s2w =	0.01435	(mg/L)
nout	concentration of ground water into PM-12	C_g12 =	0.0115	(mg/L)
<u> </u>	concentration of ground water into PM-13	C_g13 =	0.0115	(mg/L)

			Low Flo	w	Average	Flow	High Fl	ow
	mass flux of surface water into PM-12	M_s12 =	-	(mg/s)	5.71	(mg/s)	65	(mg/s)
_	mass flux of ground water into PM-12	M_g12 =	0.28	(mg/s)	0.28	(mg/s)	0.28	(mg/s)
ë	mass flux in Babbitt WWTP discharge	M_sBab =	-	(mg/s)	0.15	(mg/s)	0.15	(mg/s
it a	mass flux of surface water into PM-13	M_s13 =	-	(mg/s)	27.86	(mg/s)	318	(mg/s
Cen	mass flux of ground water into PM-13	M_g13 =	1.37	(mg/s)	1.37	(mg/s)	1.37	(mg/s
concentration flux	mass flux of Area 5 Pit NW discharge	M_spit =	-	(mg/s)	0.17	(mg/s)	0.17	(mg/s
	mass flux in seepage from Tailings Basin Cells 1E and 2E	M_fs =	0.24	(mg/s)	0.62	(mg/s)	0.62	(mg/s
Convert to mass	mass flux in hydrometallurgical residue cells liner leakage	M_rrs =	0.00	(mg/s)	0.00	(mg/s)	0.00	(mg/s
ပိ ဍ	mass flux in seepage from cell 2W	M_s2w =	0.21	(mg/s)	0.55	(mg/s)	0.55	(mg/s
			Low Flo	w	Average	Flow	High Fl	ow
iss balance each node	mass flux in river at PM-12	M_r12 =	0.28	(mg/s)	6.14	(mg/s)	65.25	(mg/s
Mass at eac	mass flux in river at PM-13	M_r13 =	2.11 Low Flo	(mg/s)	36.71 Average	(mg/s)	386.07 High Fl	
nass	and the state of t	0.40						
Convert mass flux to concentration	concentration in river at PM-12	C_r12 = C r13 =		(mg/L)		(mg/L)	0.016	

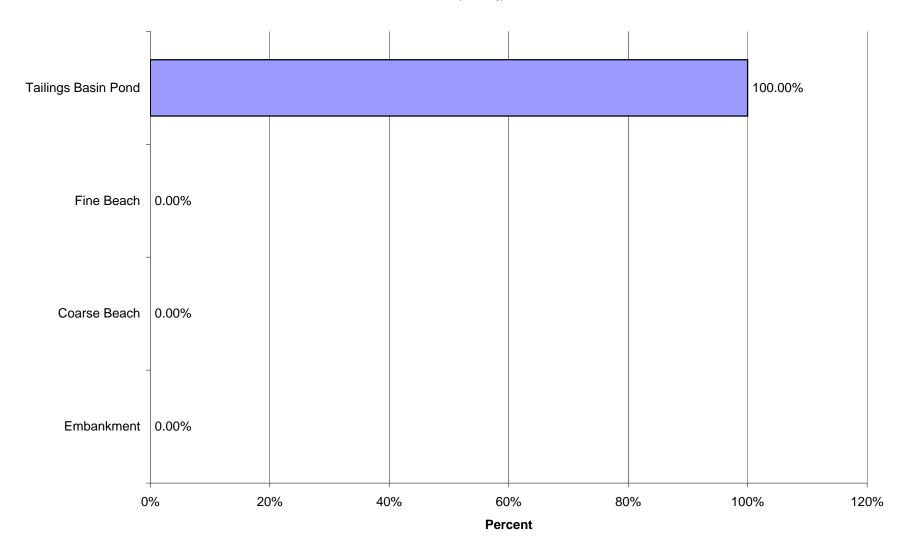
Appendix G

Culpability Analysis of Plant Site, Tailings Basin and Embarrass River Watershed

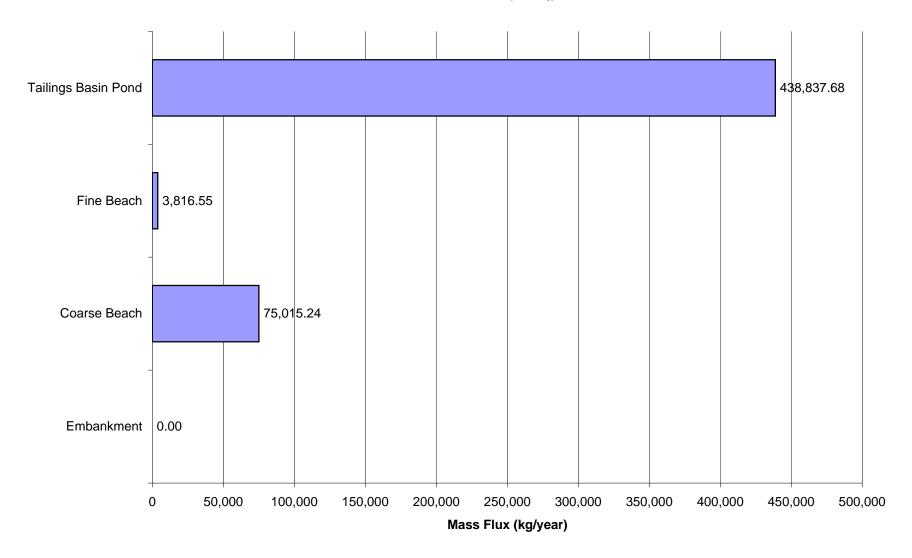
Tailings Basin - Proposed Action

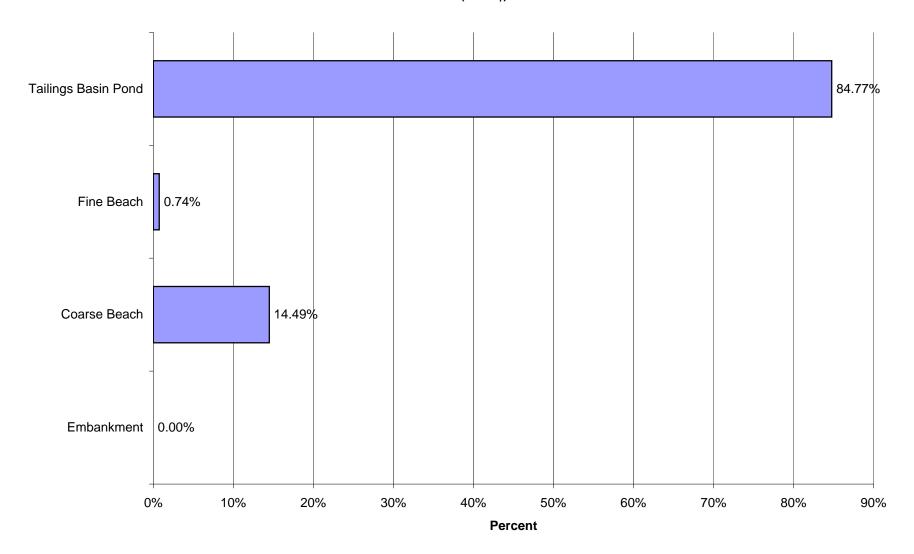

- G.1 Tailings Basin
- G.2 Embarrass River Watershed

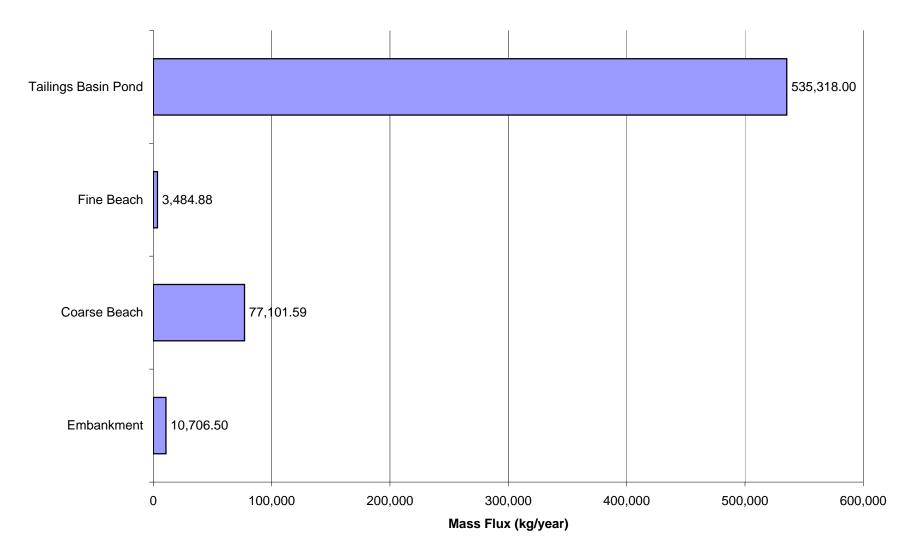
Tailings Basin - Geotechnical Mitigation

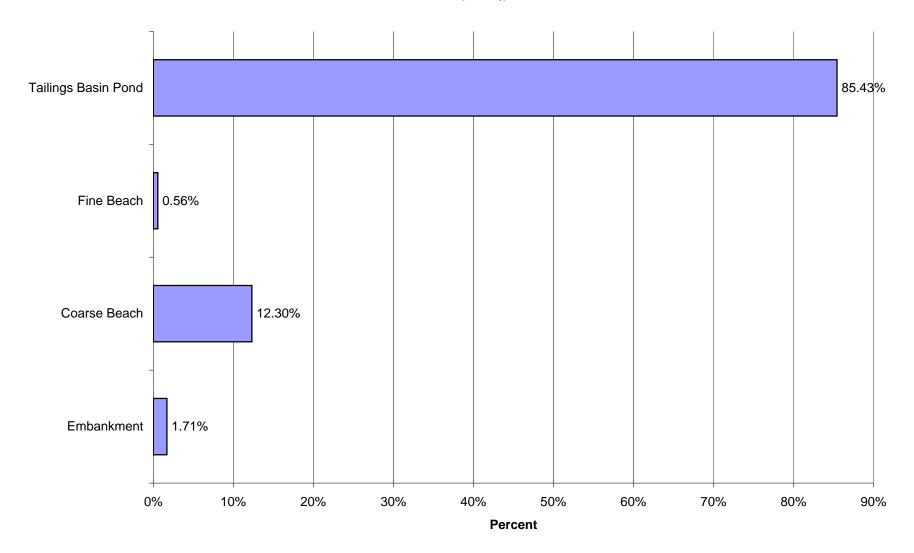

- G.3 Tailings Basin
- G.4 Embarrass River Watershed

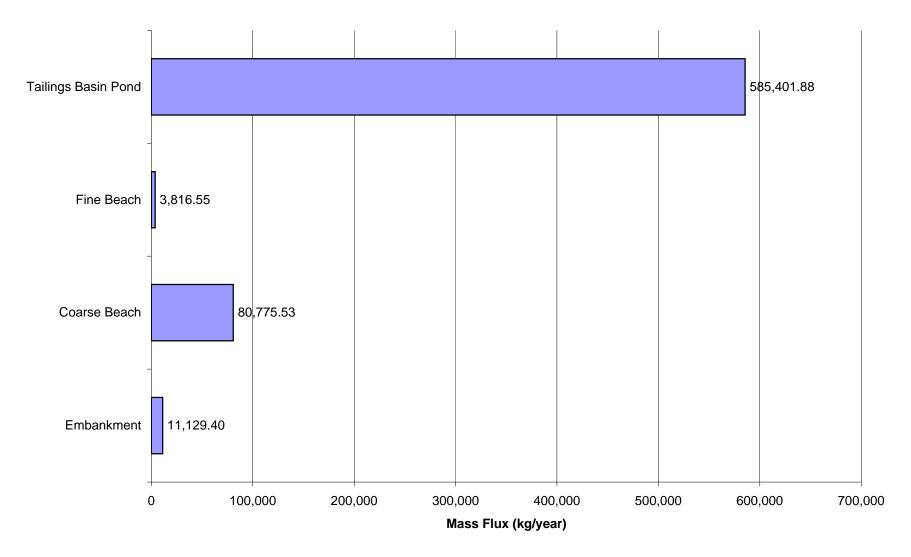
Appendix G.1
Tailings Basin
Proposed Action

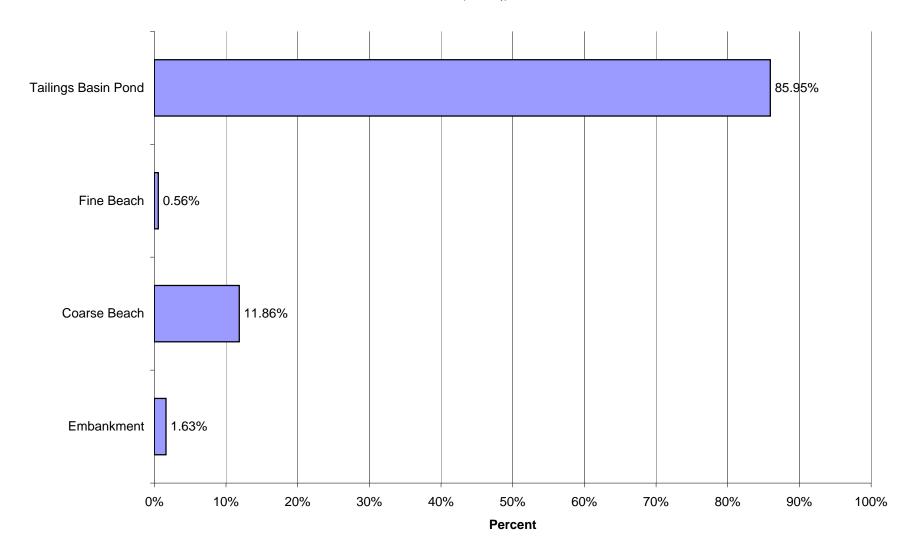

Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 1 for Sulfate (SO₄)

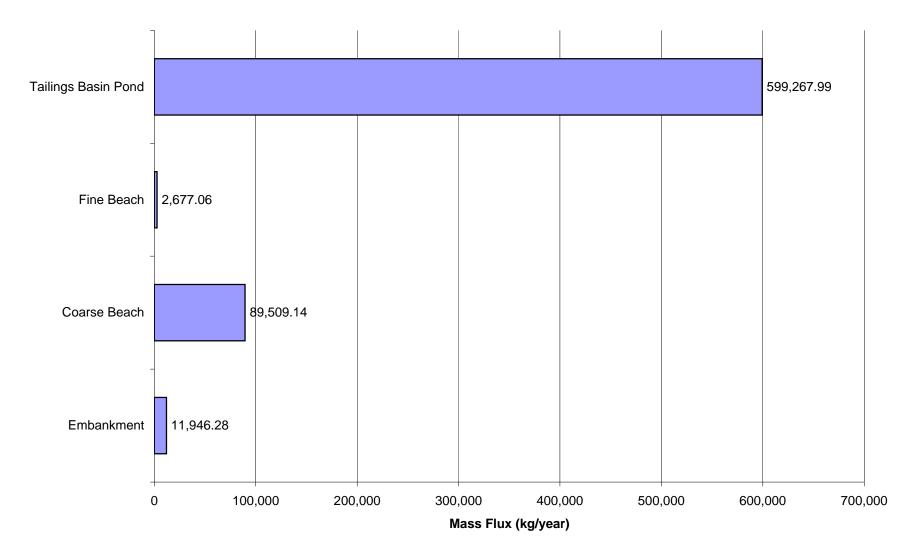

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 1 for Sulfate (SO₄)


Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 5 for Sulfate (SO₄)

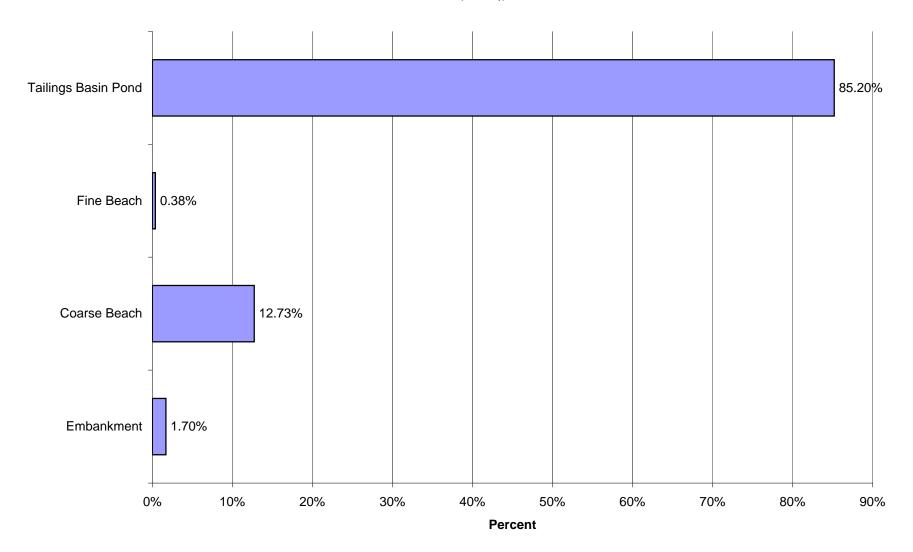

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 5 for Sulfate (SO₄)


Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 8 for Sulfate (SO₄)

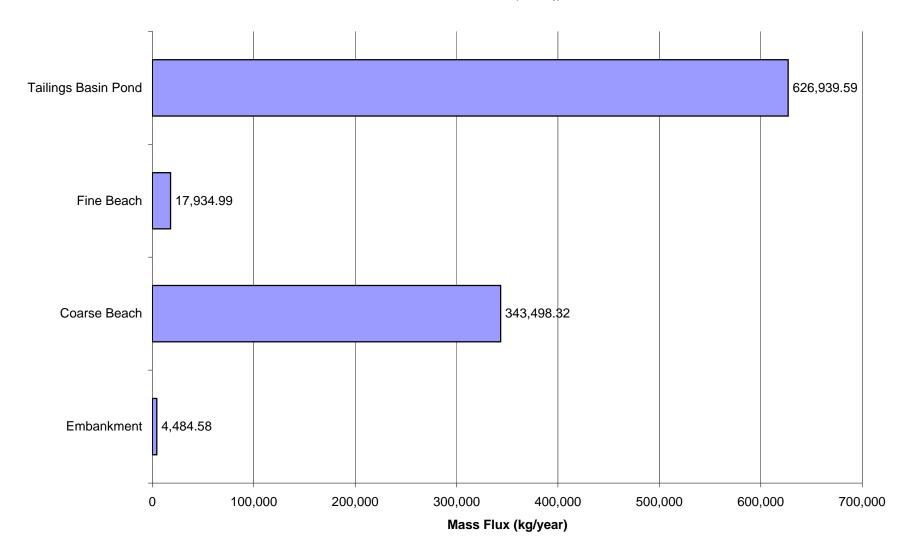

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 8 for Sulfate (SO₄)

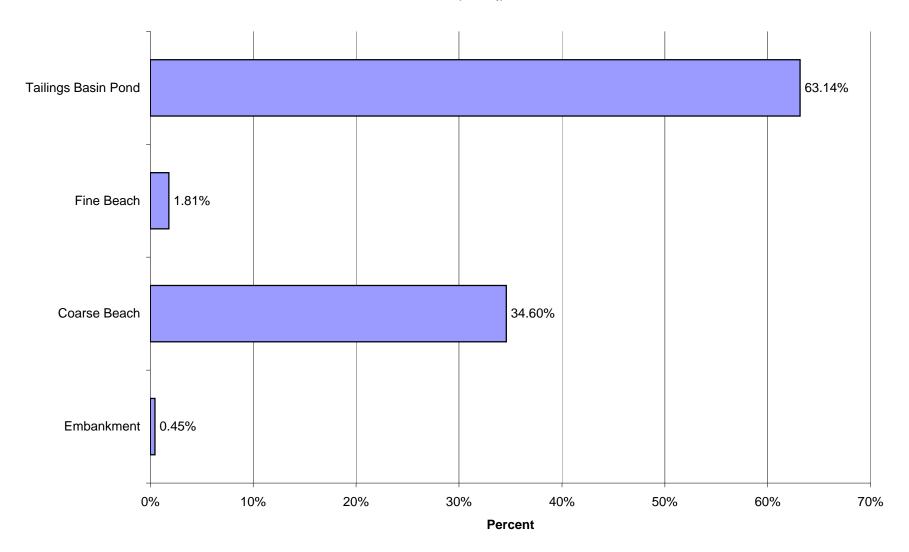


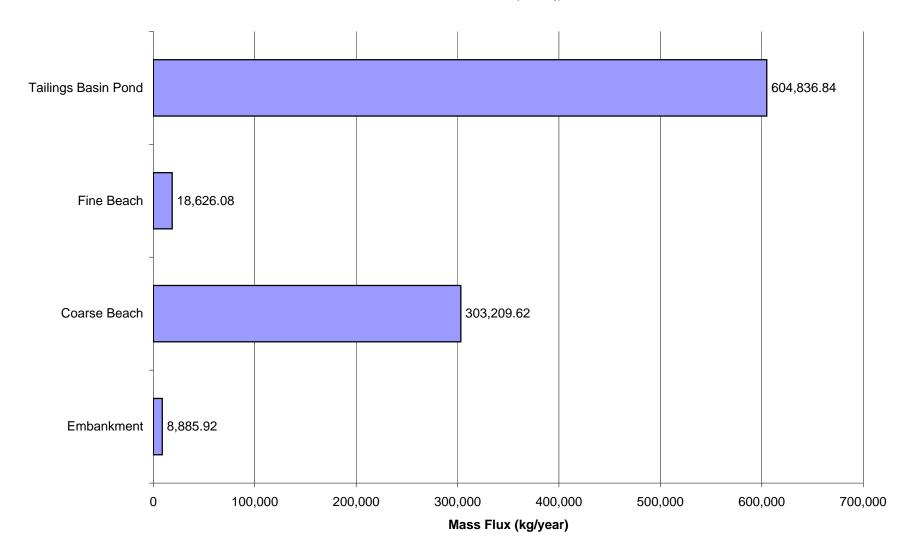
Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 9 for Sulfate (SO₄)

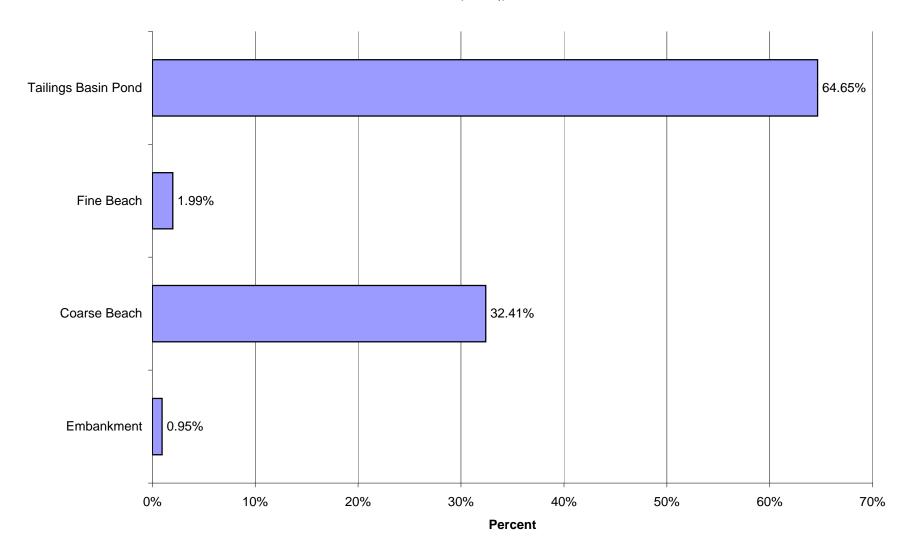


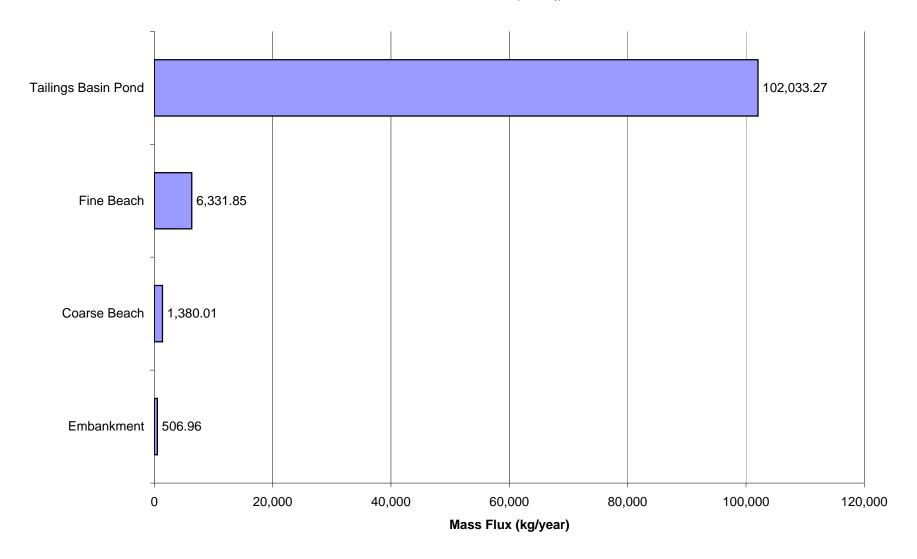
Proposed Action: Percent of Tailings Basin Features' Impacts in Year 9 for Sulfate (SO₄)

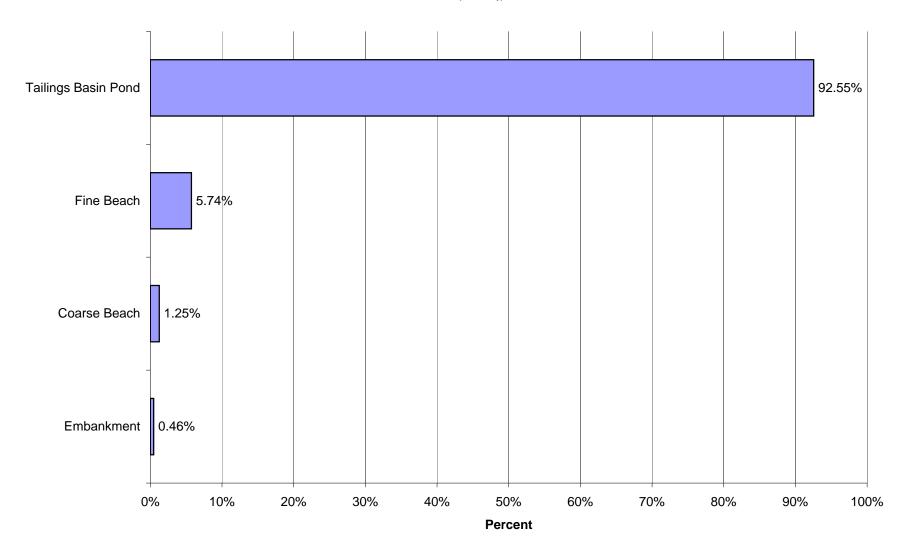


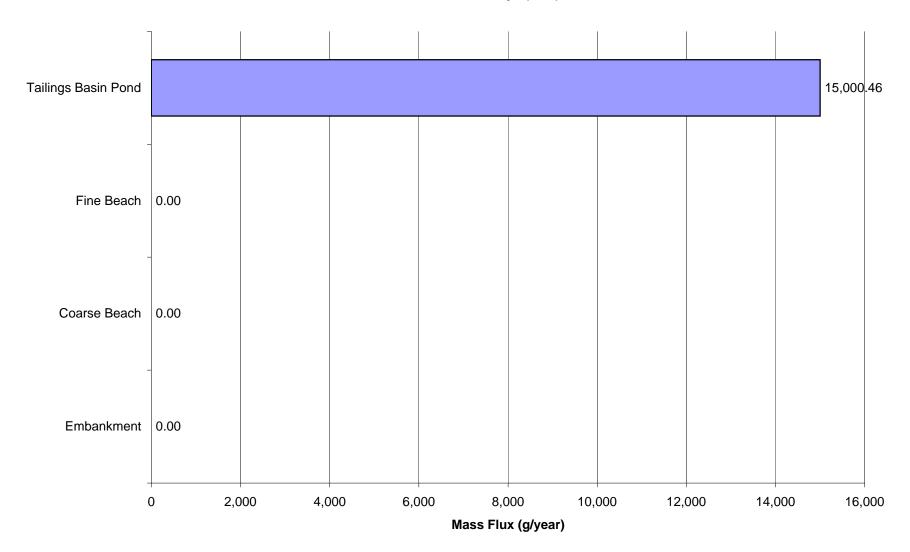

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 10 for Sulfate (SO₄)

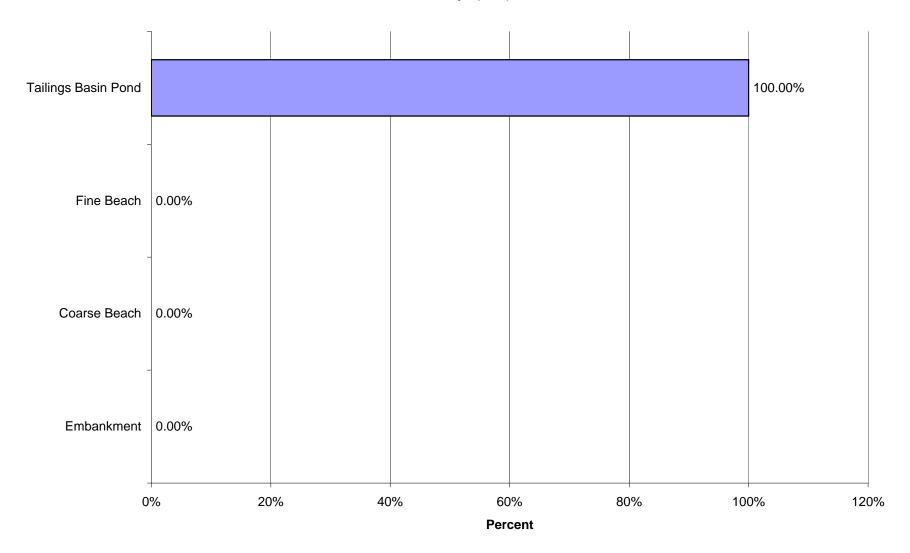

Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 15 for Sulfate (SO₄)

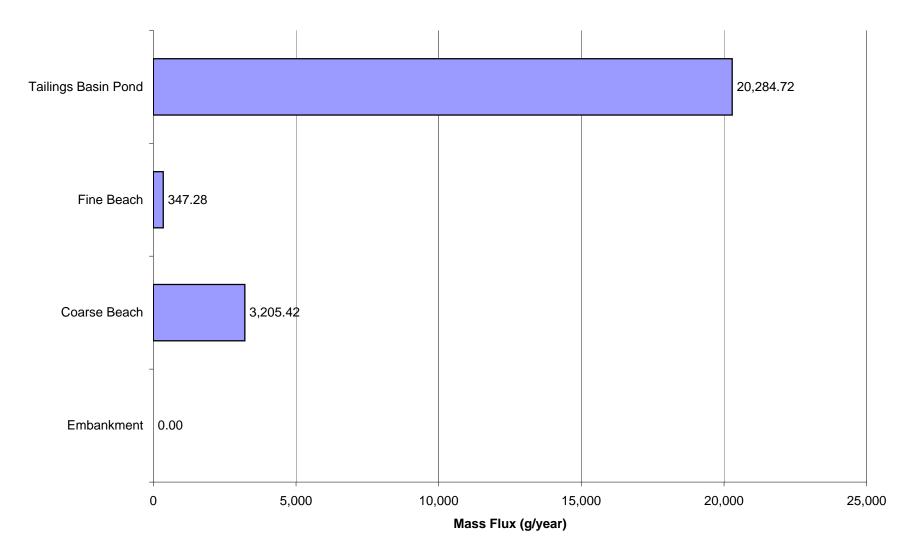

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 15 for Sulfate (SO₄)

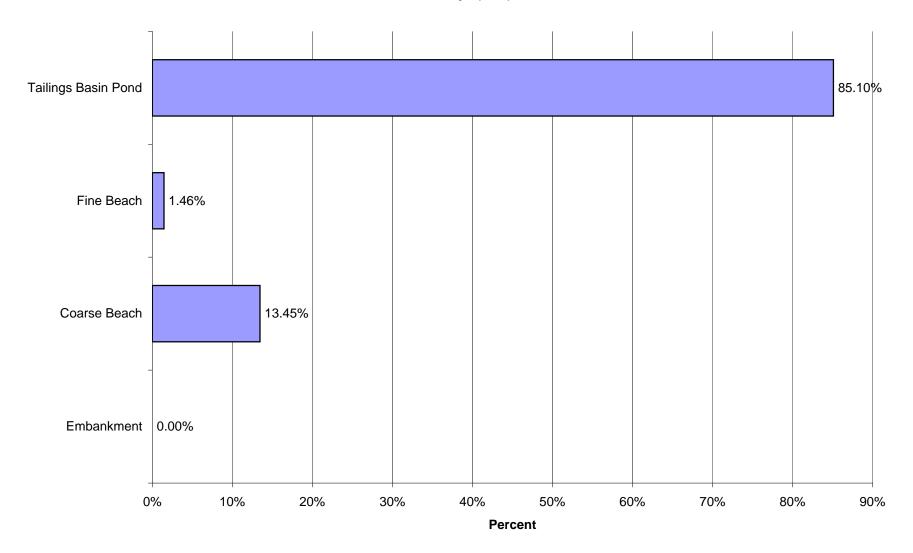

Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Year 20 for Sulfate (SO₄)

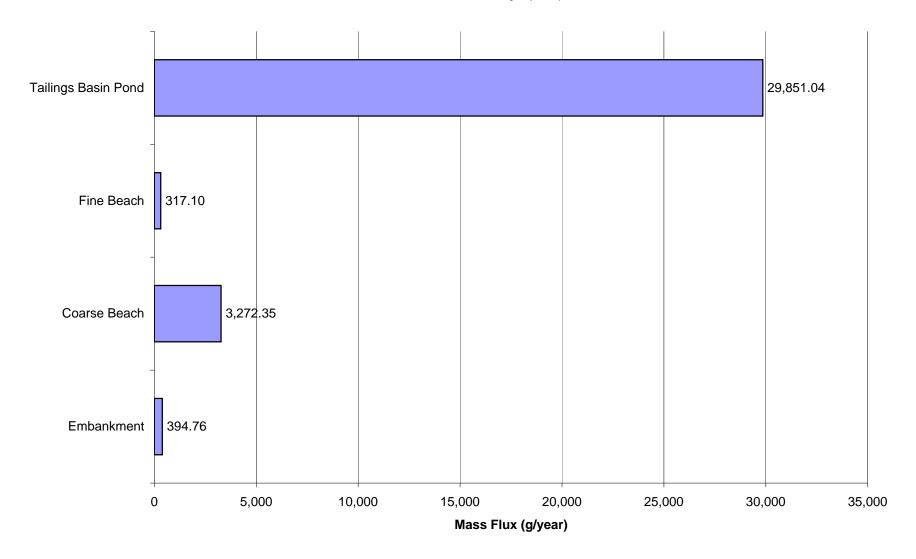

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 20 for Sulfate (SO₄)

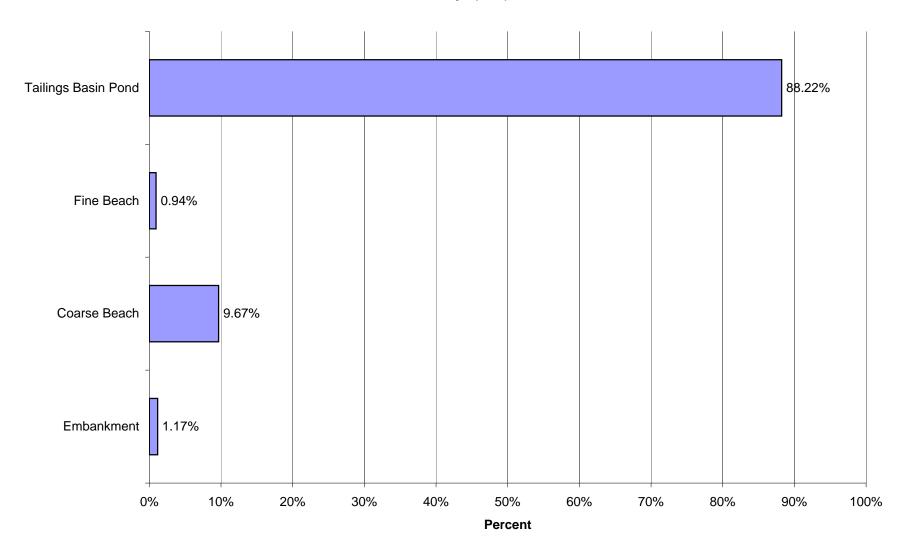

Proposed Action: Mass Flux (kg/year) of Tailings Basin Features in Closure for Sulfate (SO₄)

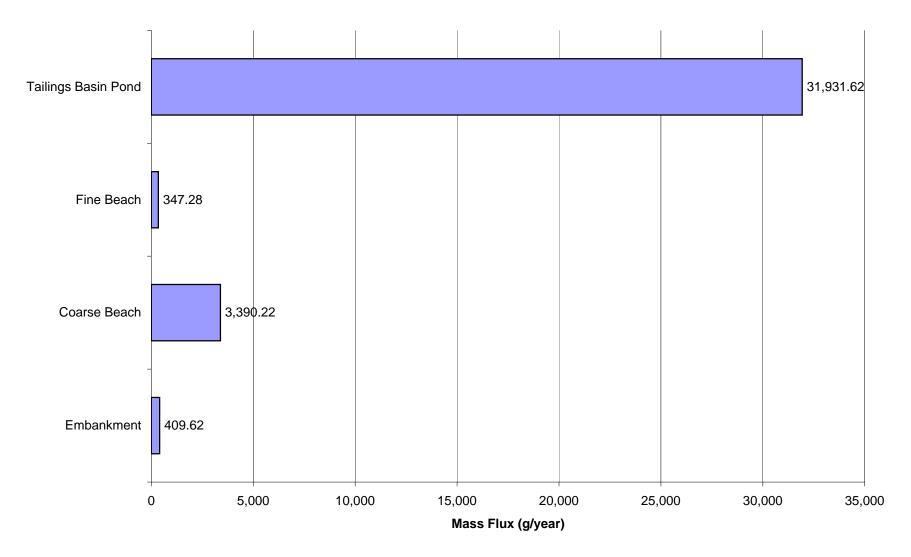

Proposed Action: Percent of Tailings Basin Features' Impacts in Closure for Sulfate (SO₄)

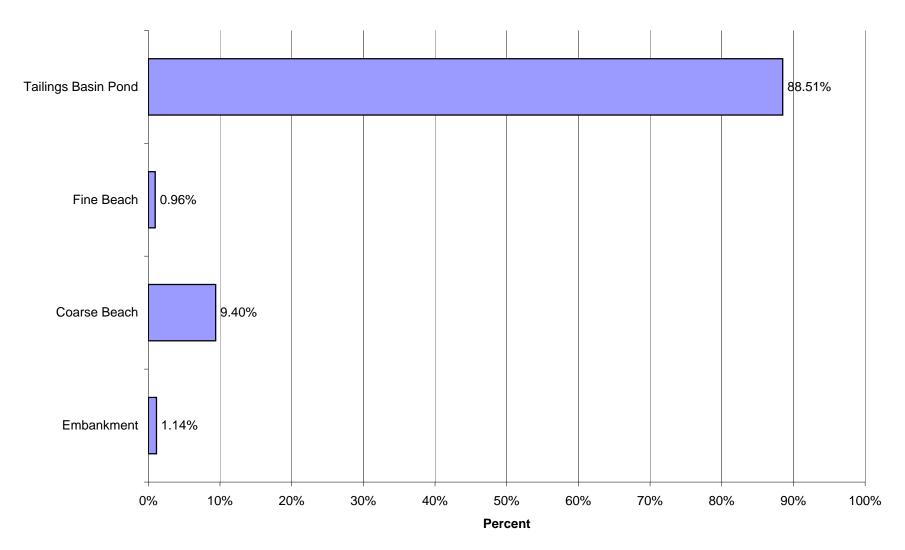

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Antimony (Sb)

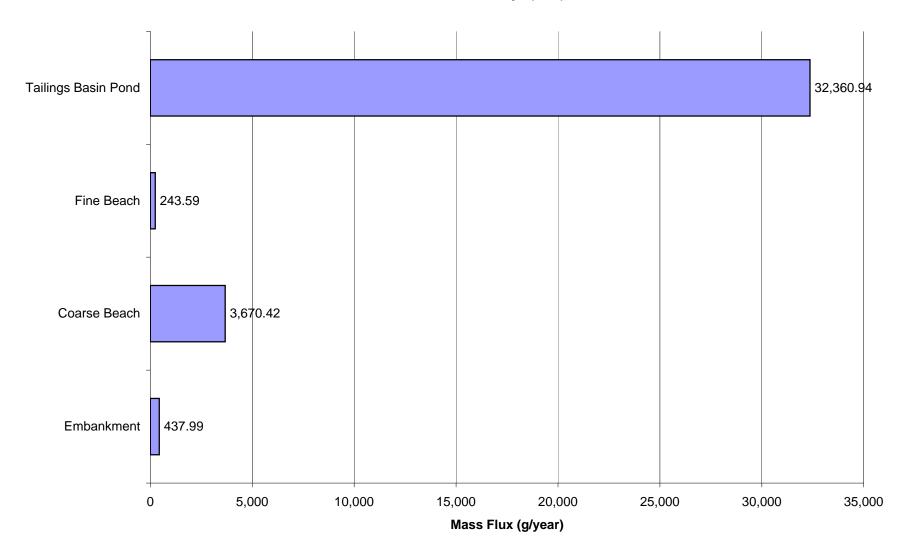

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 1 for Antimony (Sb)

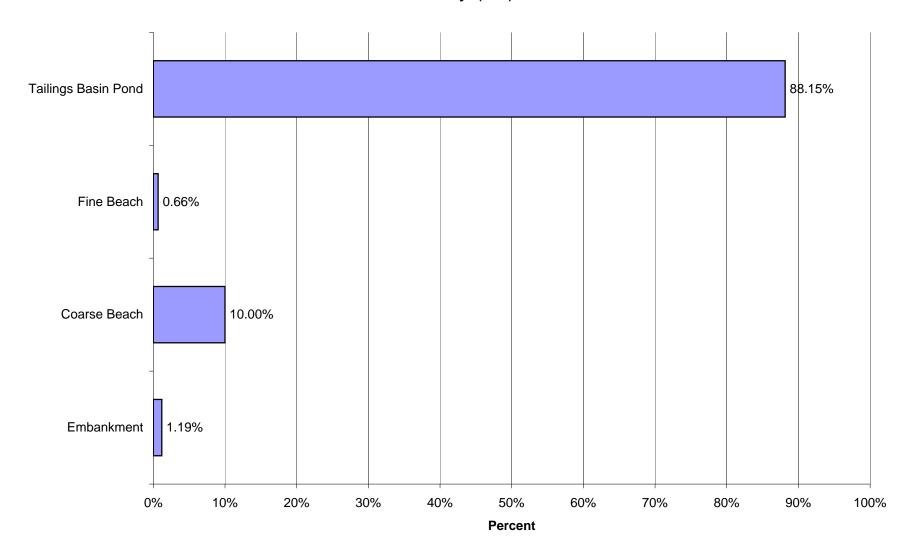

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Antimony (Sb)

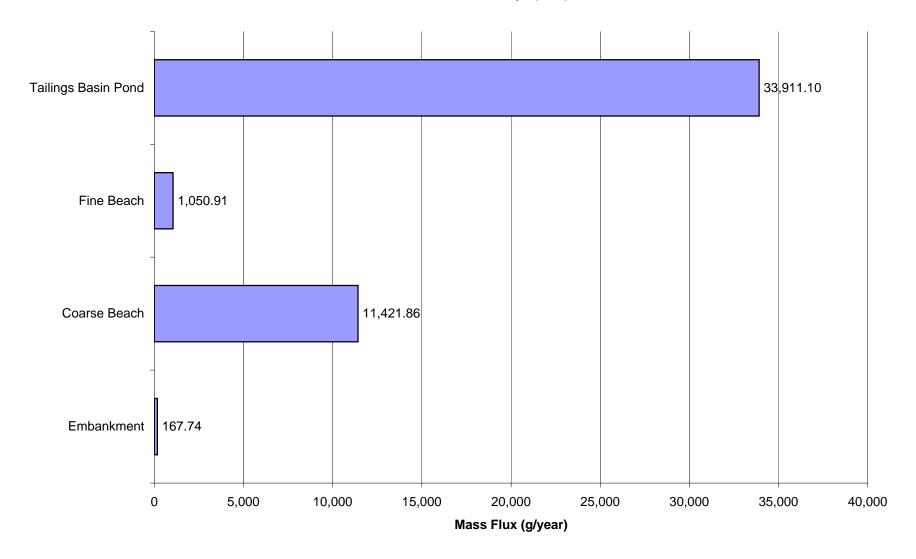

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 5 for Antimony (Sb)

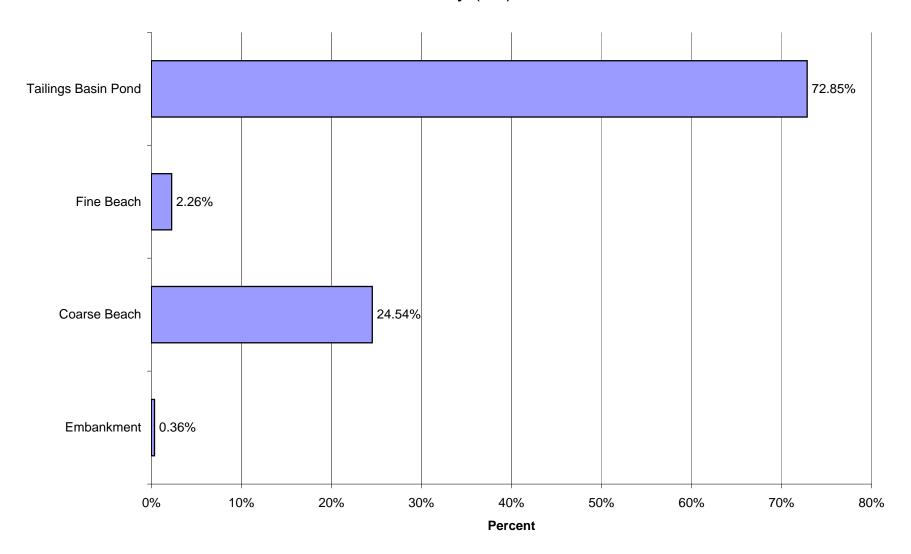

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 8 for Antimony (Sb)

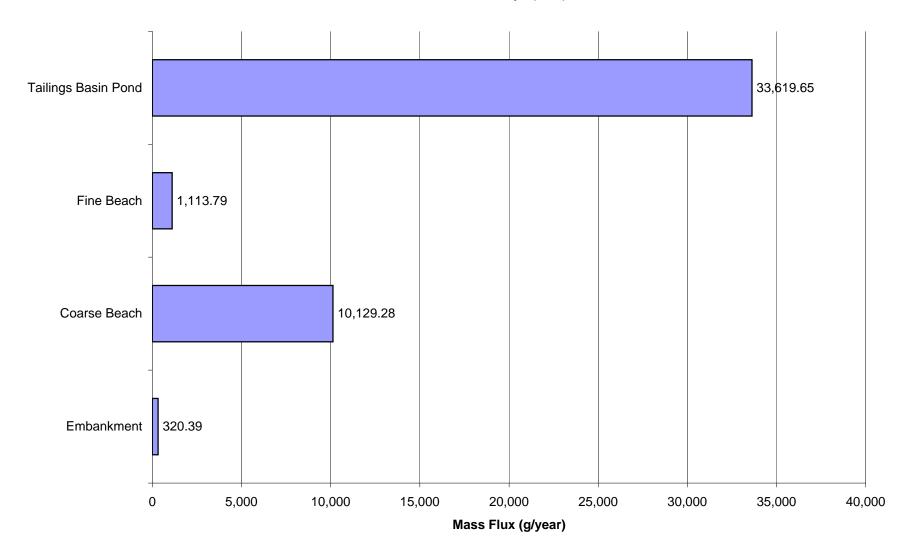

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 8 for Antimony (Sb)

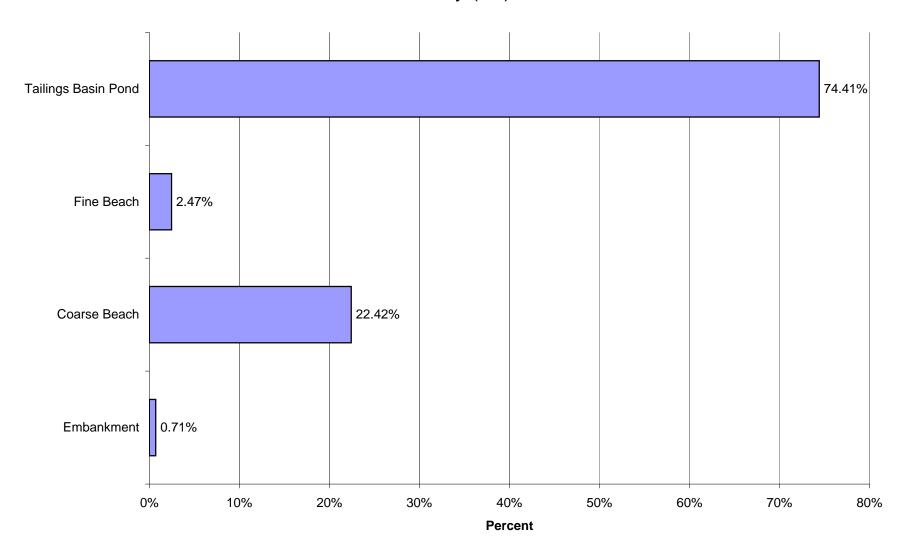

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 9 for Antimony (Sb)

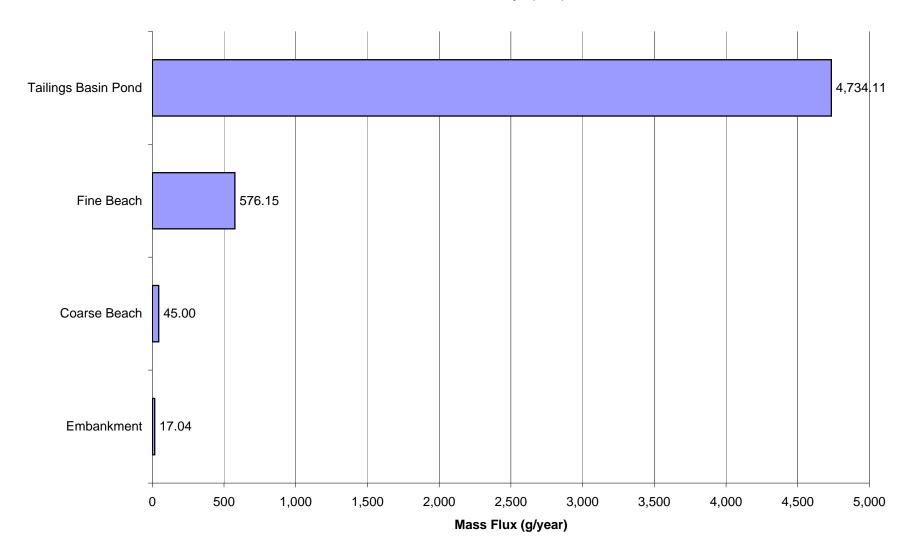

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 9 for Antimony (Sb)

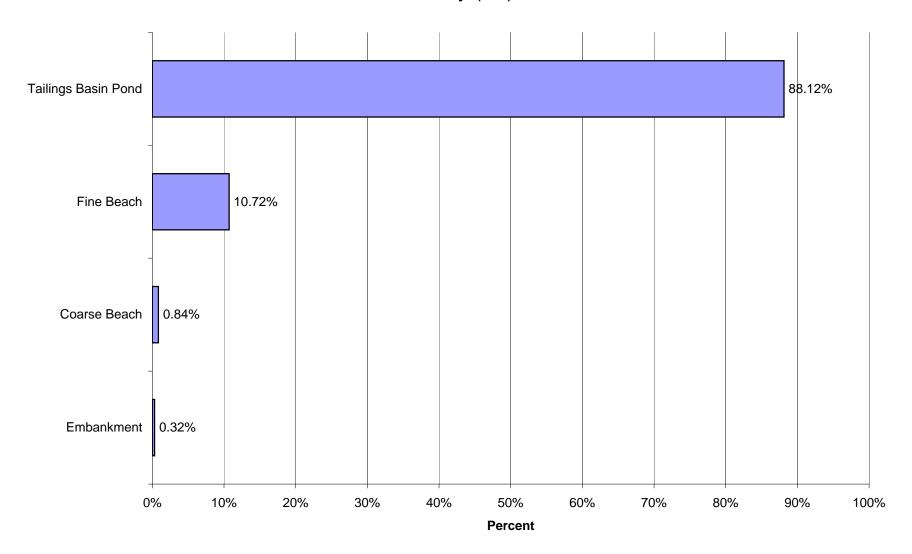

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Antimony (Sb)

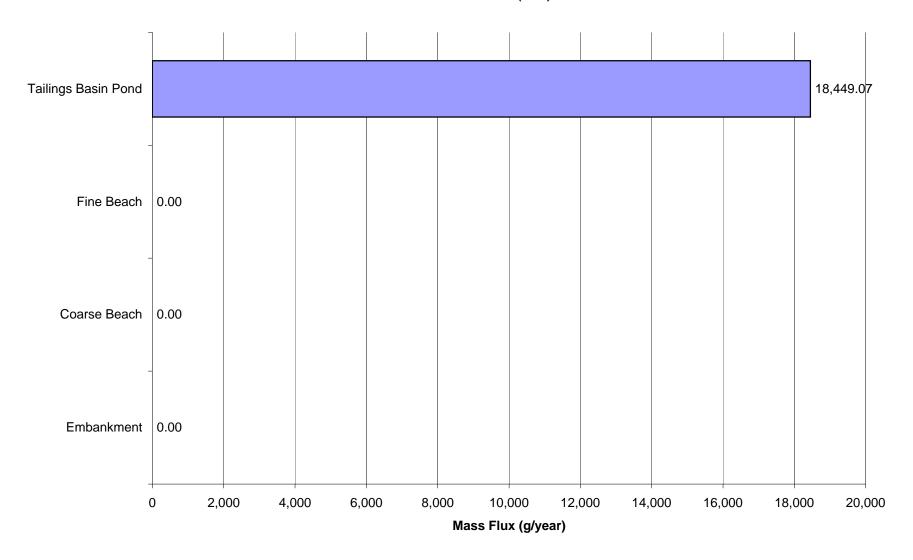

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 10 for Antimony (Sb)

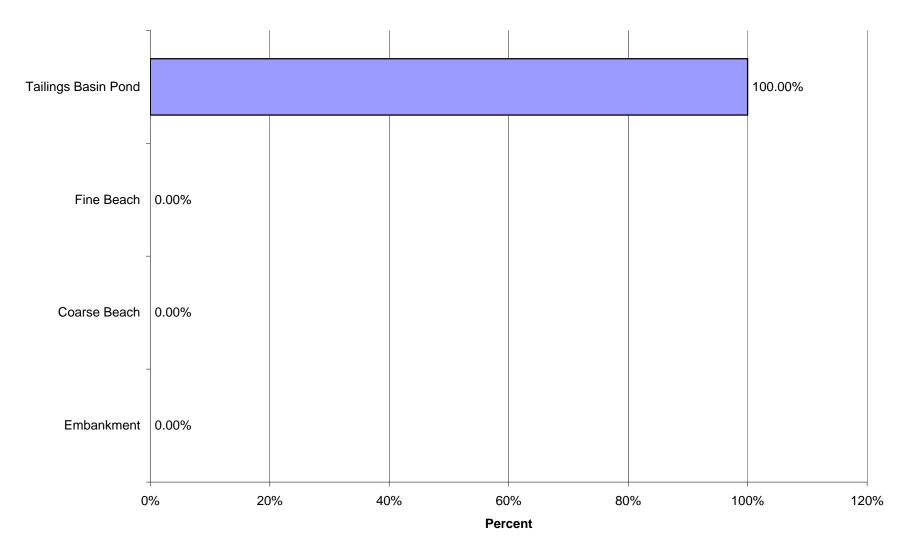

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Antimony (Sb)

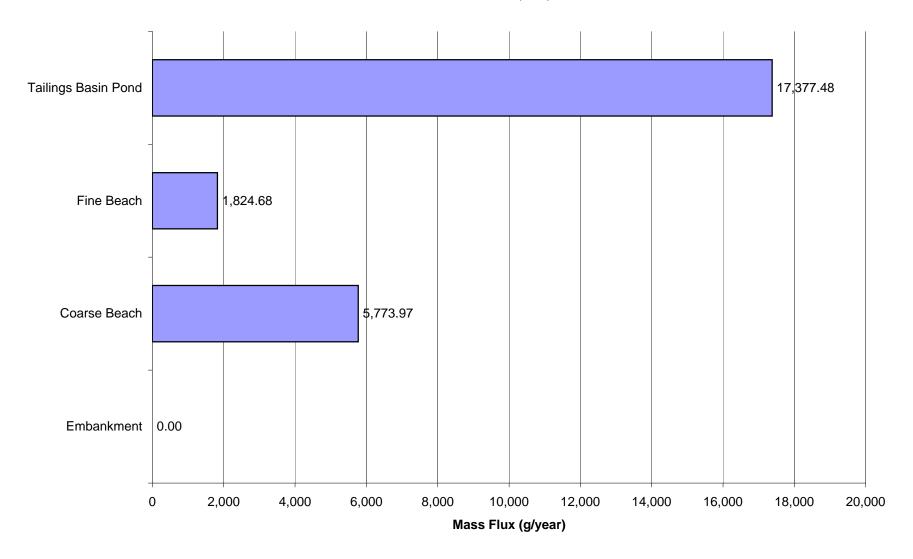

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 15 for Antimony (Sb)

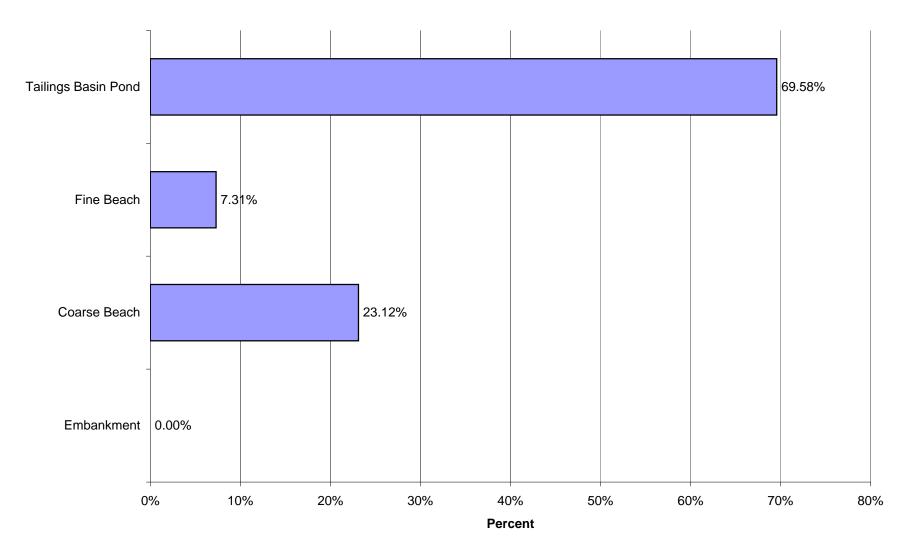

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Antimony (Sb)

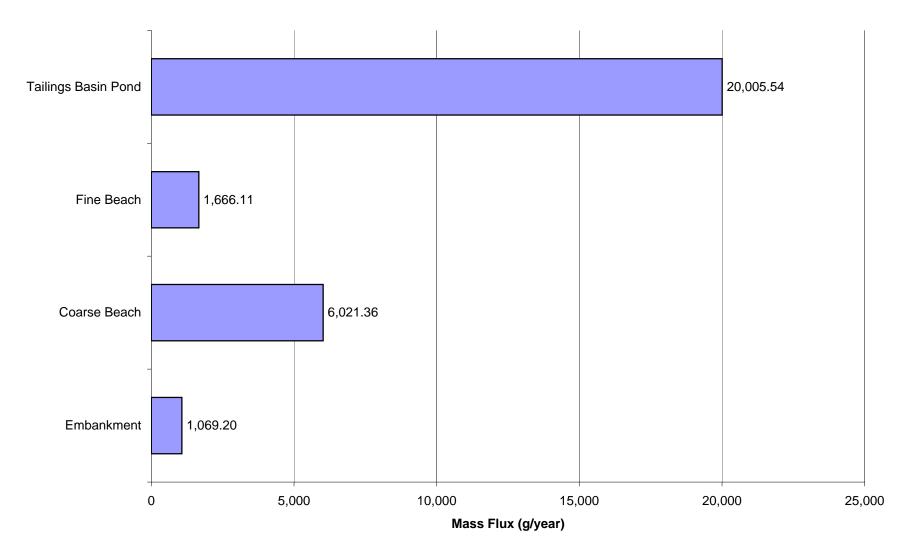

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 20 for Antimony (Sb)

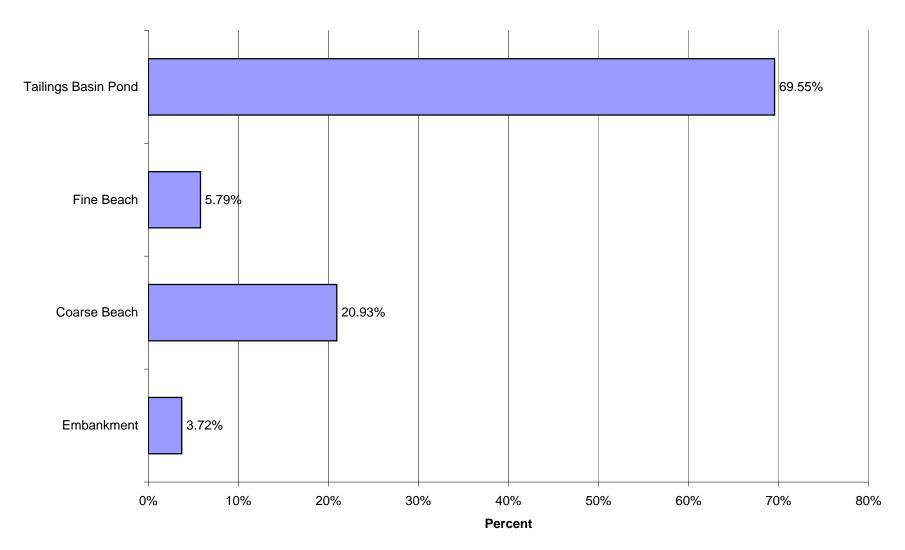

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Closure for Antimony (Sb)

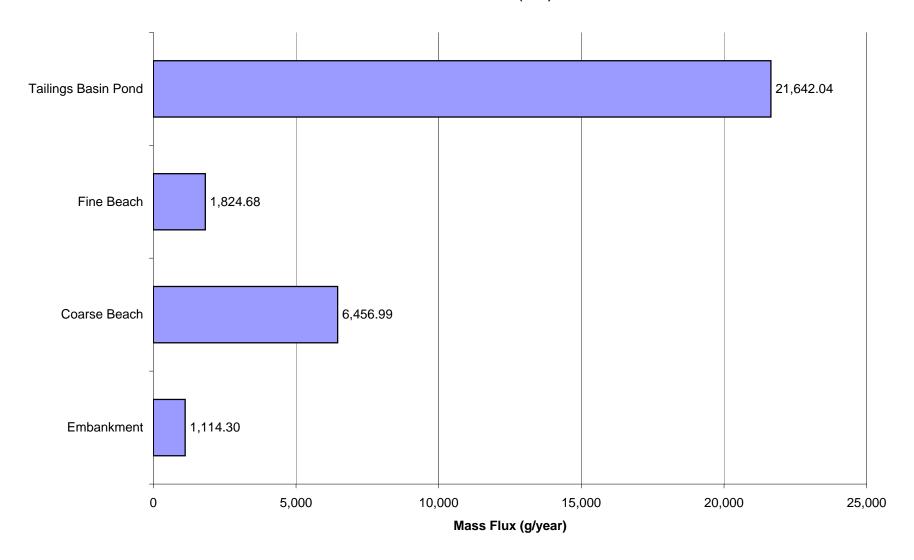

Proposed Action: Percent of Tailings Basin Features' Impacts in Closure for Antimony (Sb)

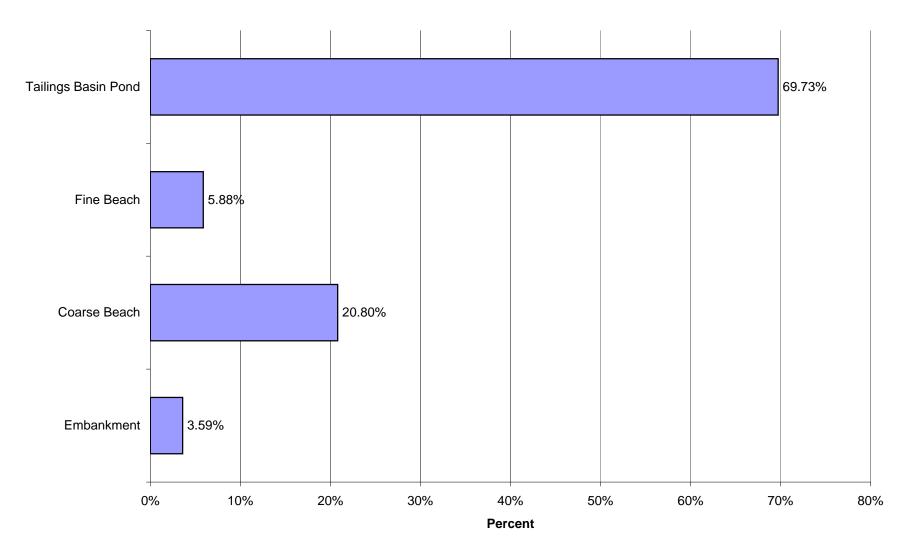

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Arsenic (As)

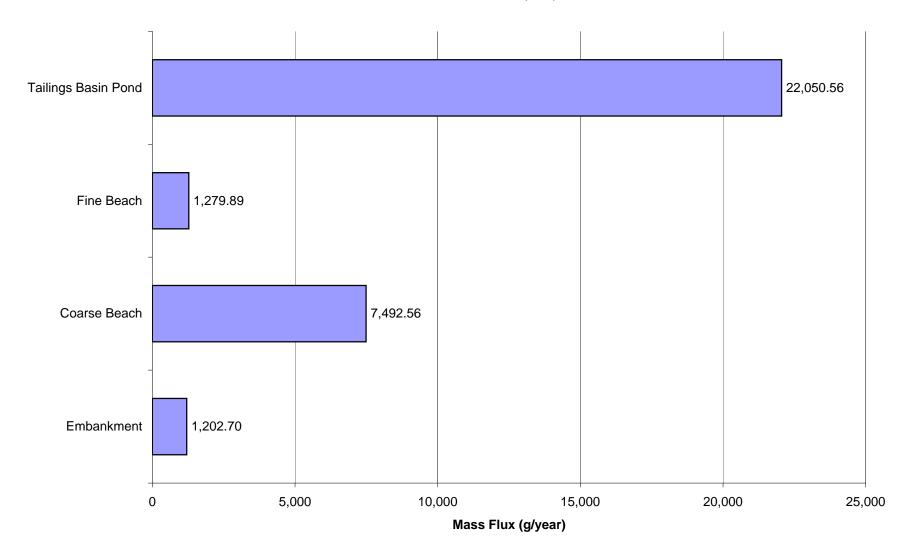

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 1 for Arsenic (As)

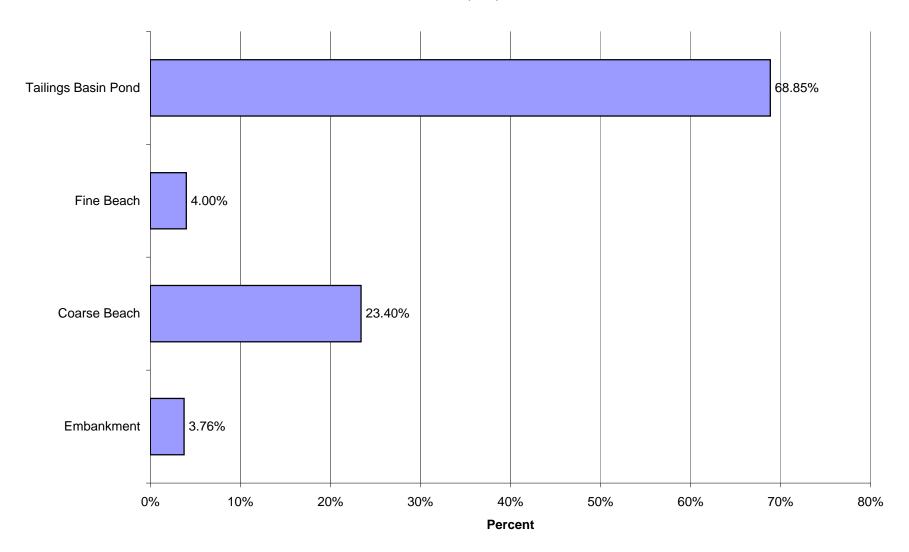

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Arsenic (As)

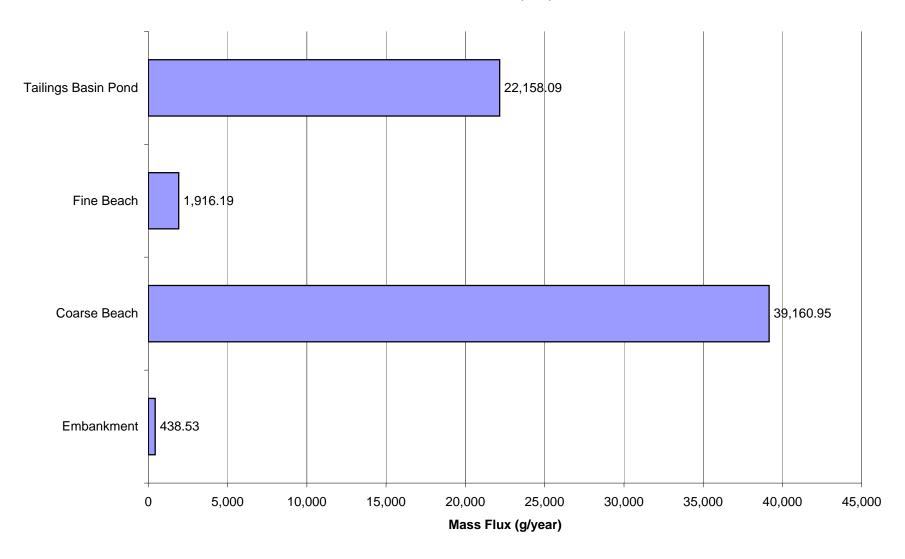

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 5 for Arsenic (As)

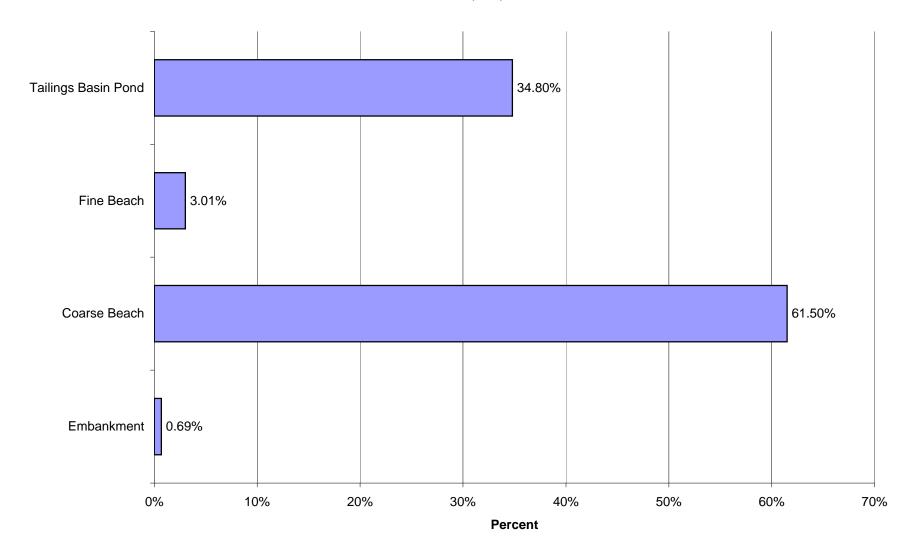

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 8 for Arsenic (As)

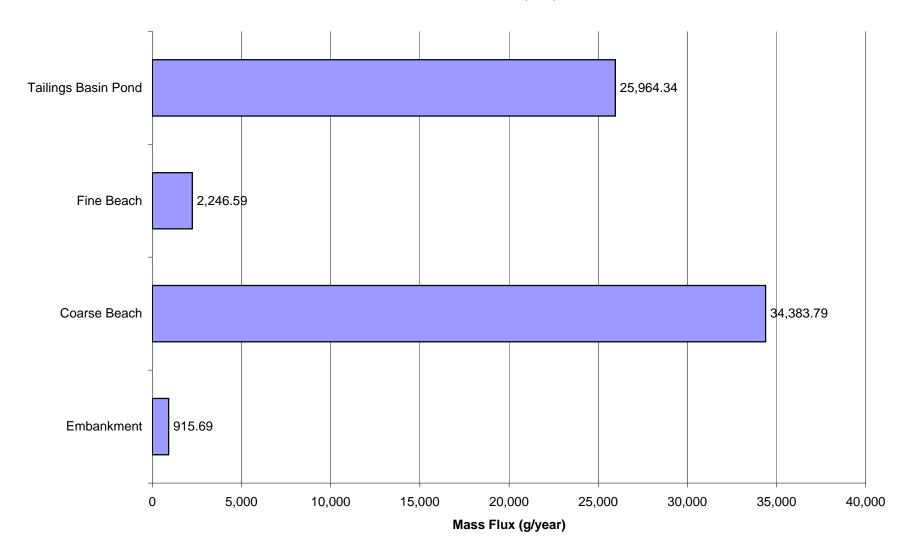

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 8 for Arsenic (As)

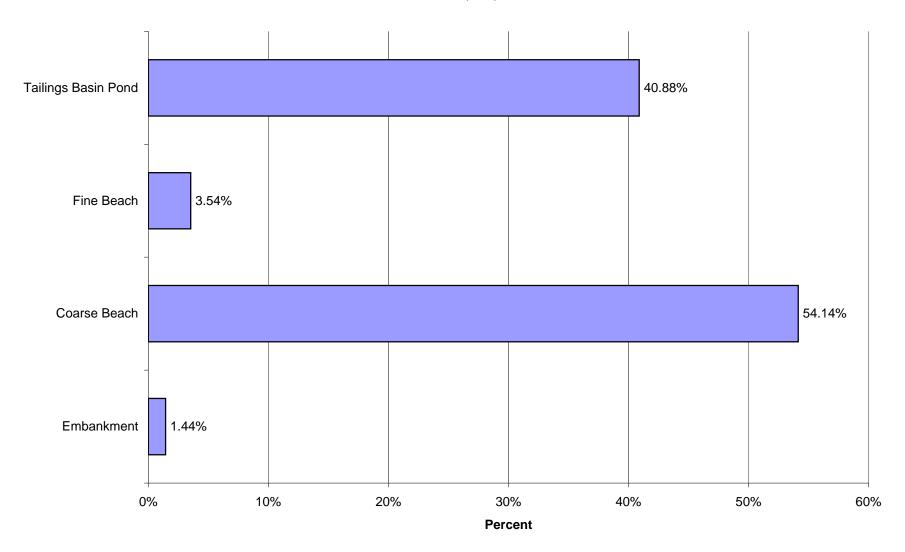

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 9 for Arsenic (As)

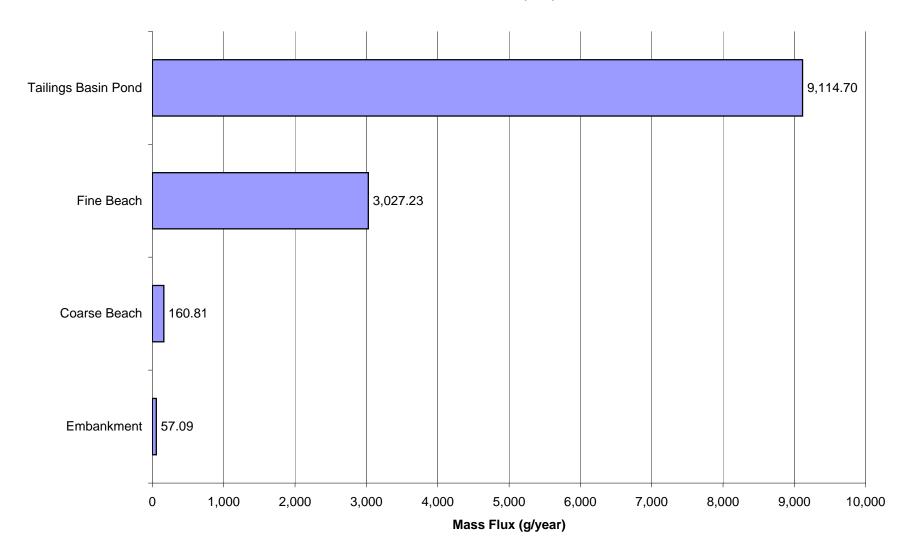

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 9 for Arsenic (As)

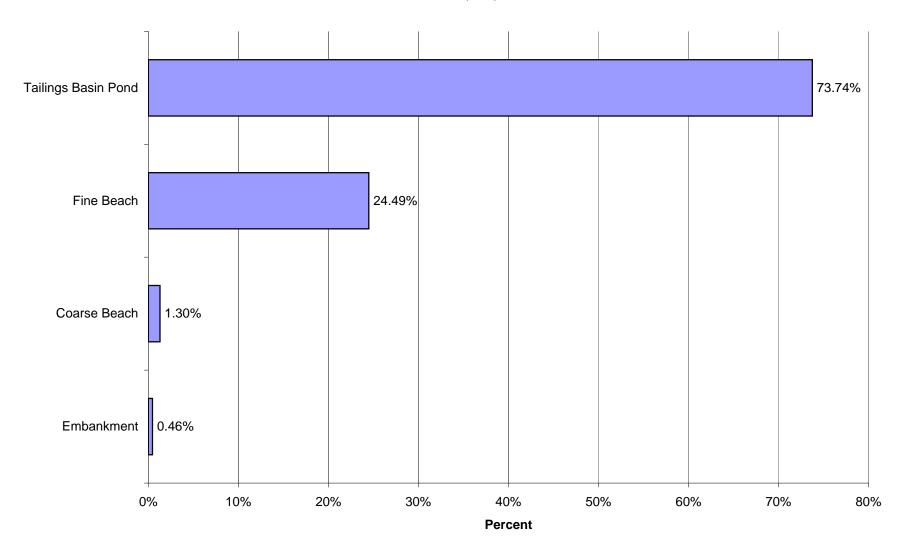

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Arsenic (As)

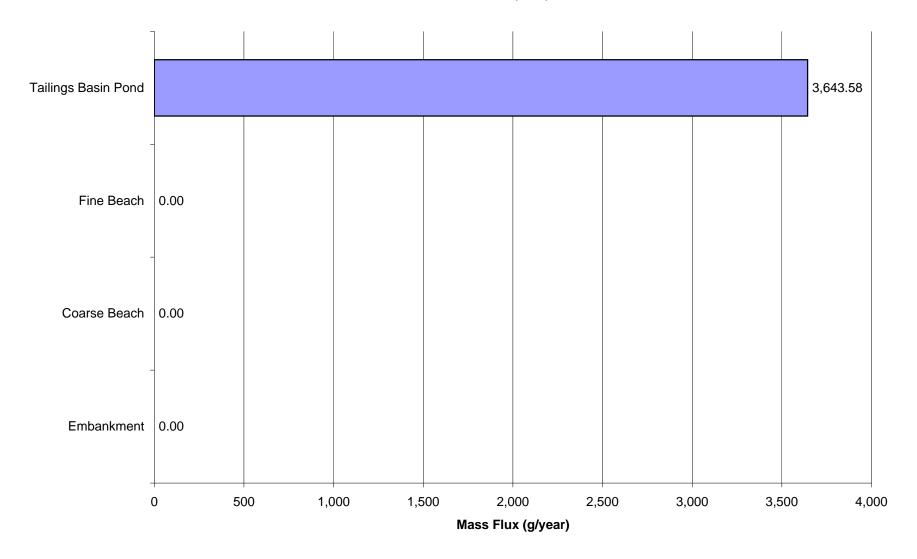

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 10 for Arsenic (As)

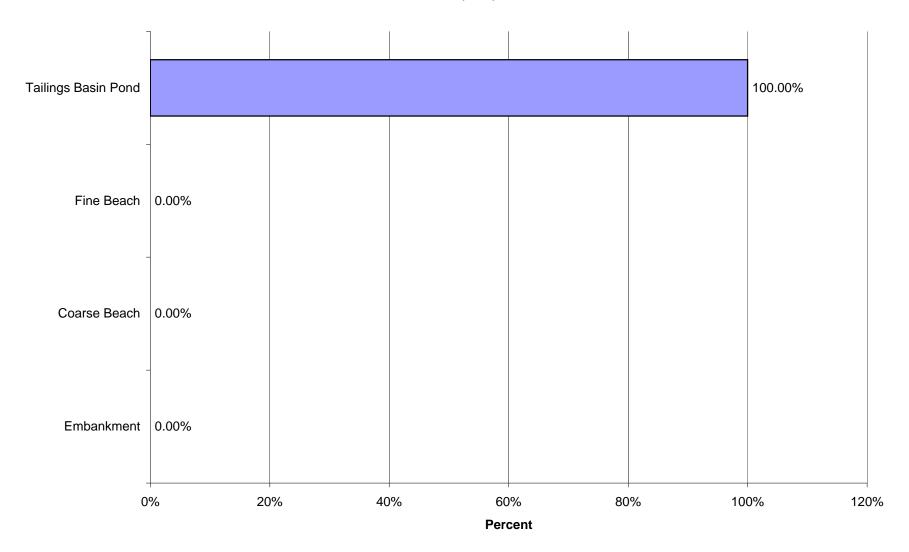

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Arsenic (As)

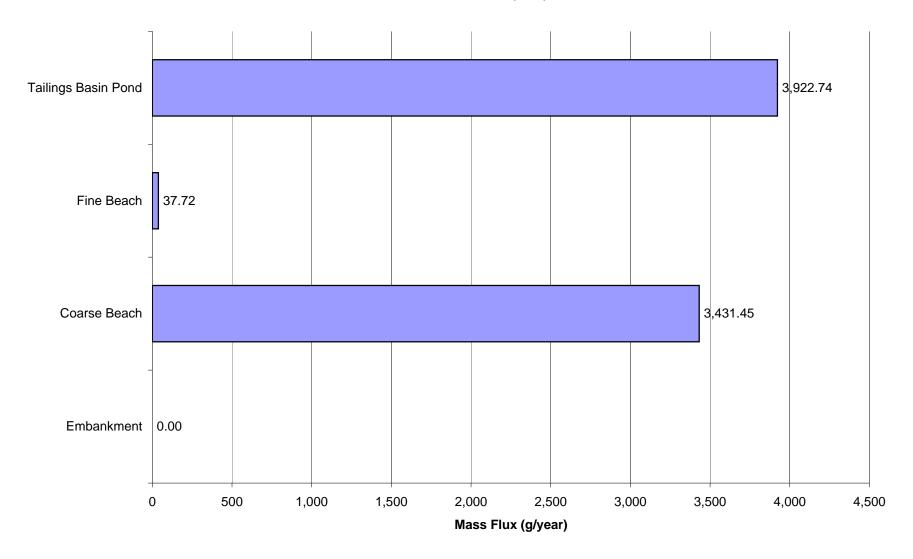

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 15 for Arsenic (As)

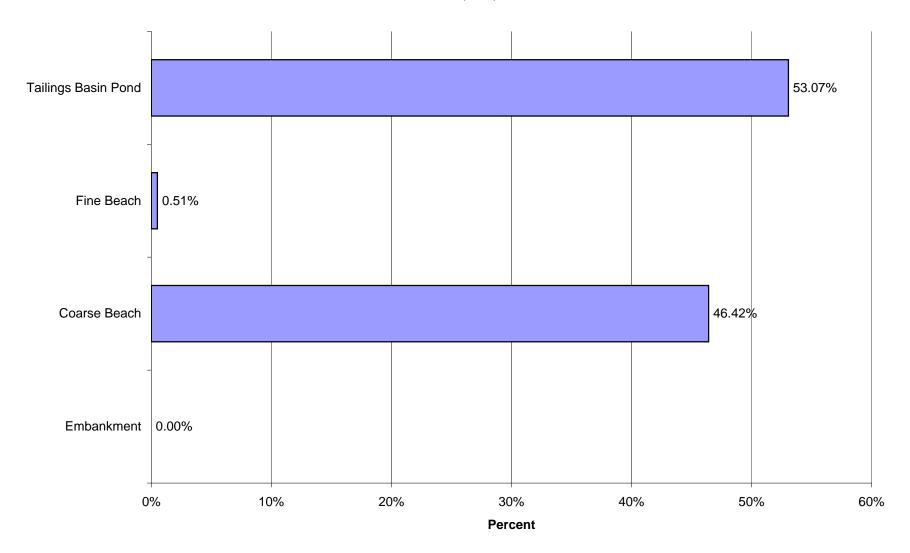

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Arsenic (As)

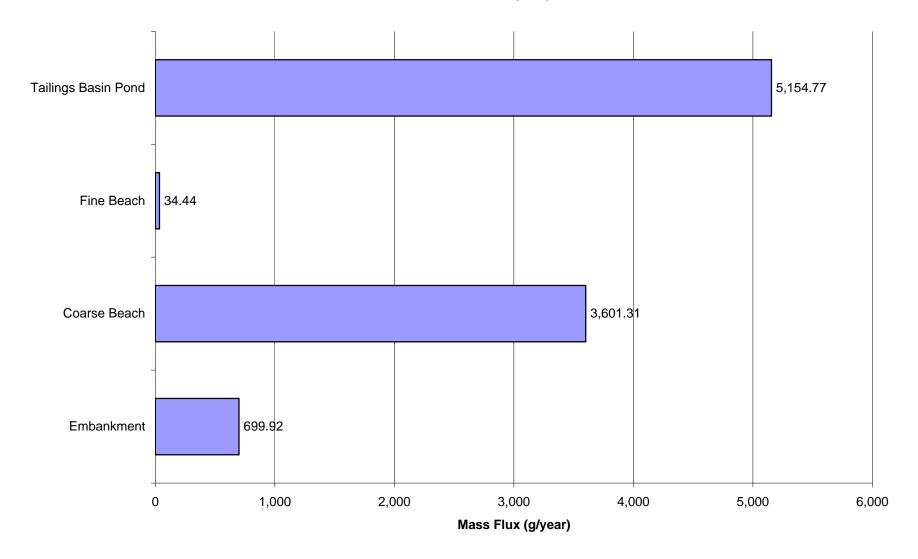

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 20 for Arsenic (As)

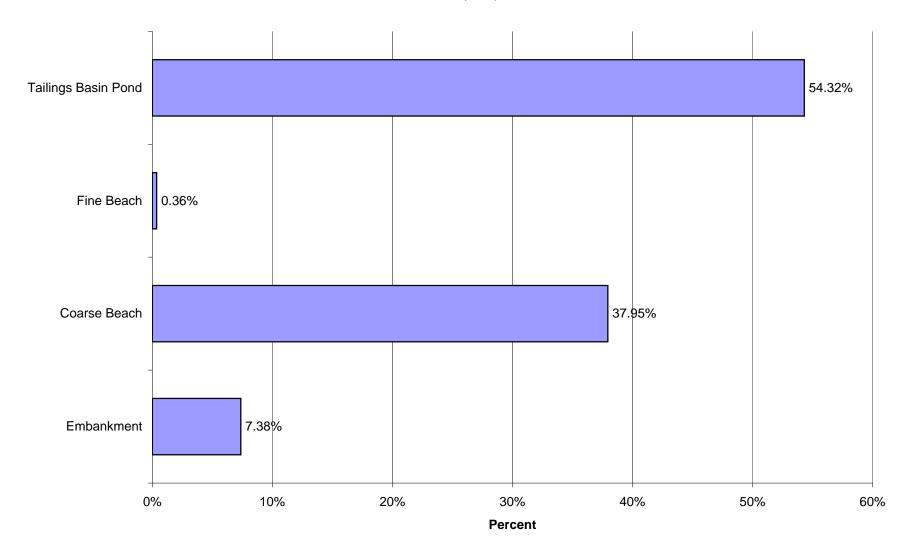

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Closure for Arsenic (As)

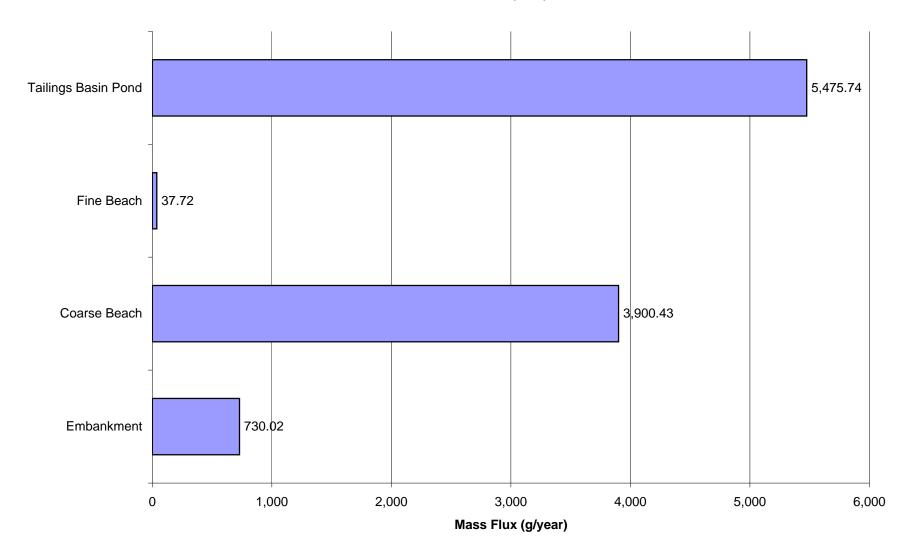

Proposed Action: Percent of Tailings Basin Features' Impacts in Closure for Arsenic (As)

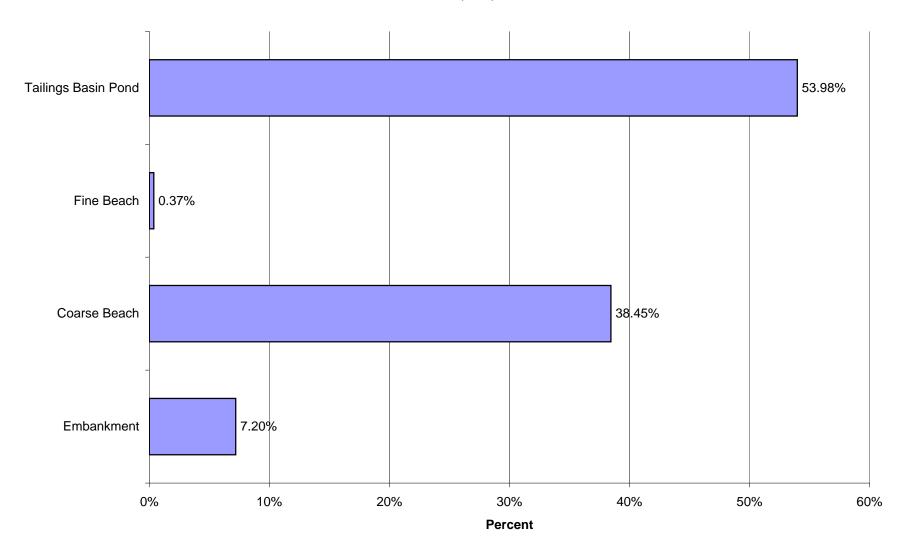

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Cobalt (Co)

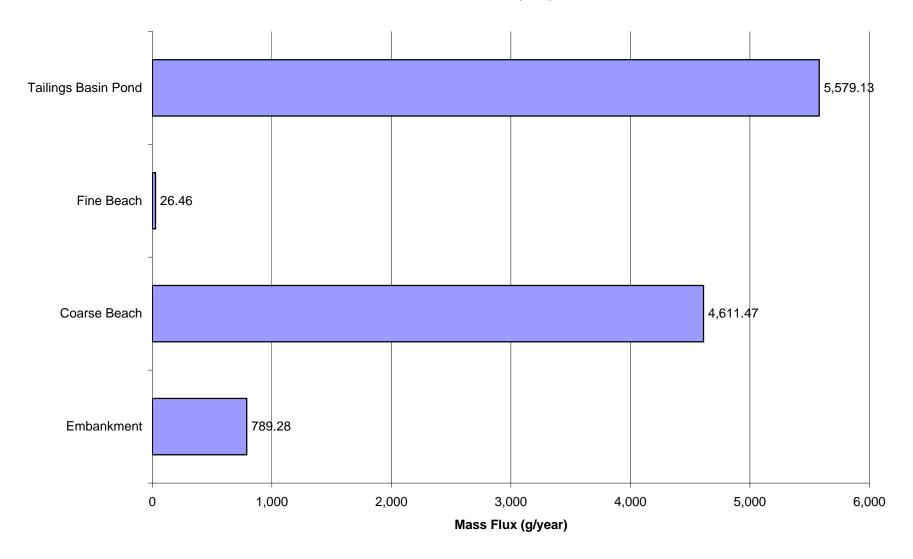

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 1 for Cobalt (Co)


Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Cobalt (Co)

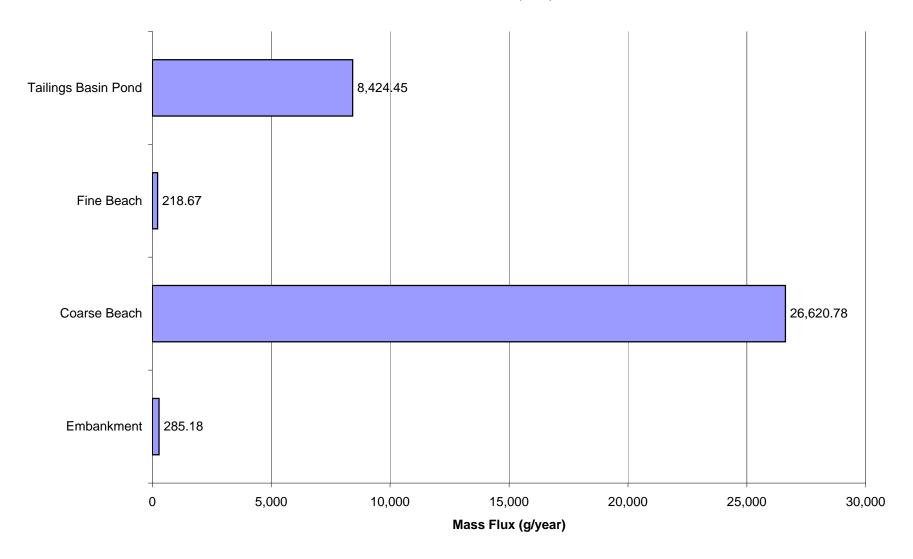

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 5 for Cobalt (Co)

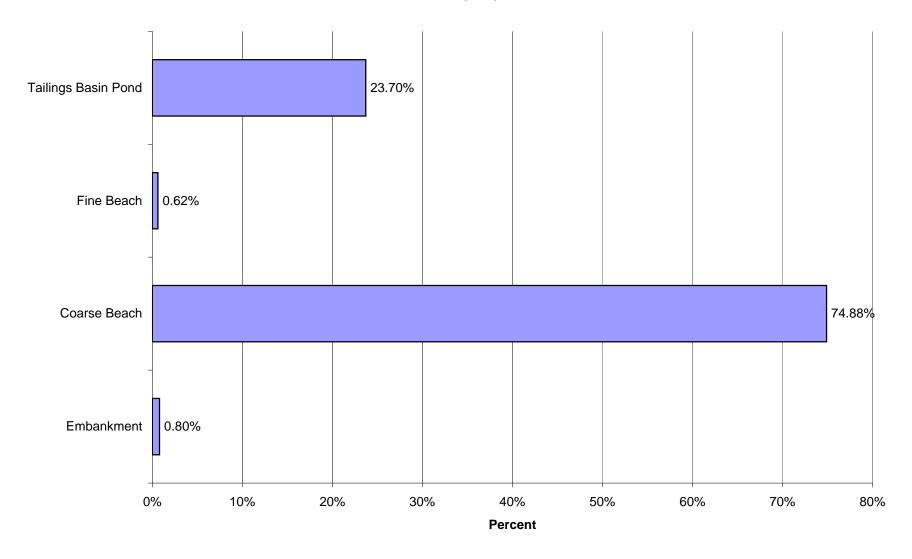

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 8 for Cobalt (Co)

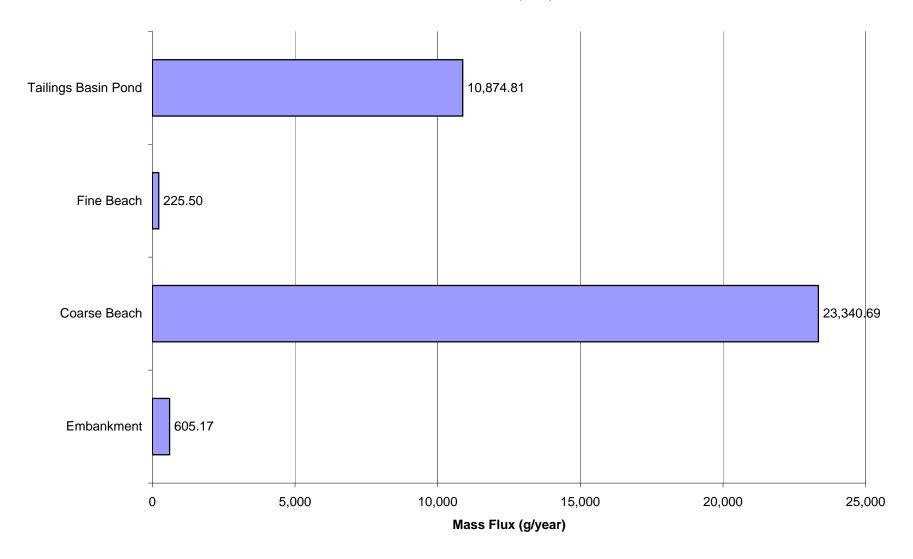

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 8 for Cobalt (Co)

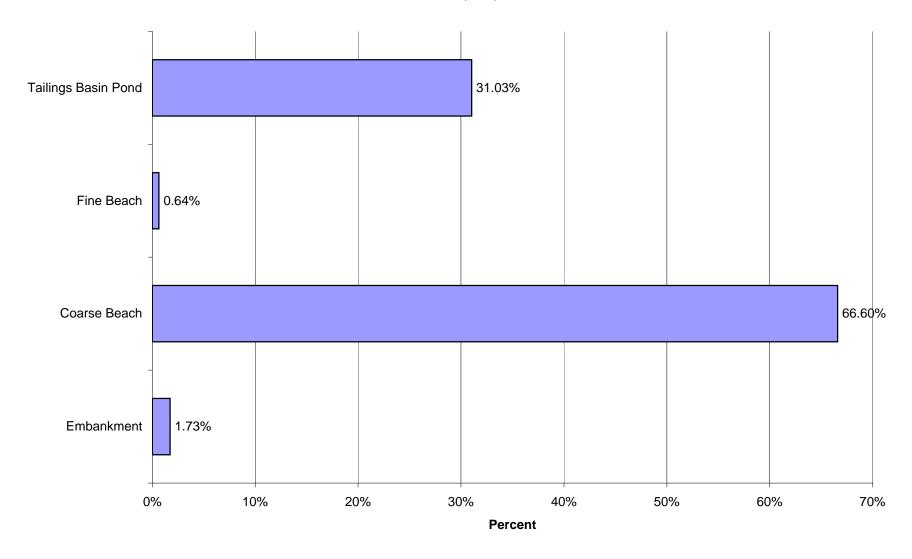

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 9 for Cobalt (Co)

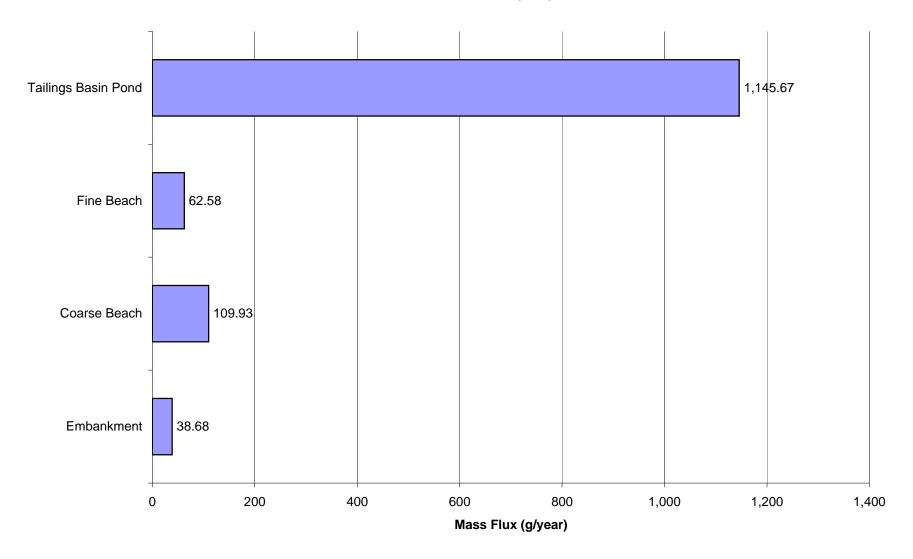

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 9 for Cobalt (Co)

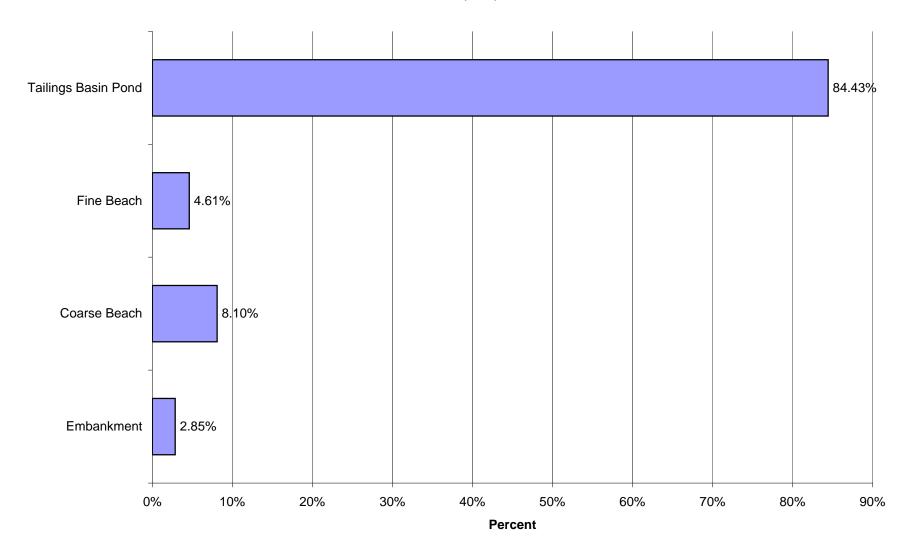

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Cobalt (Co)

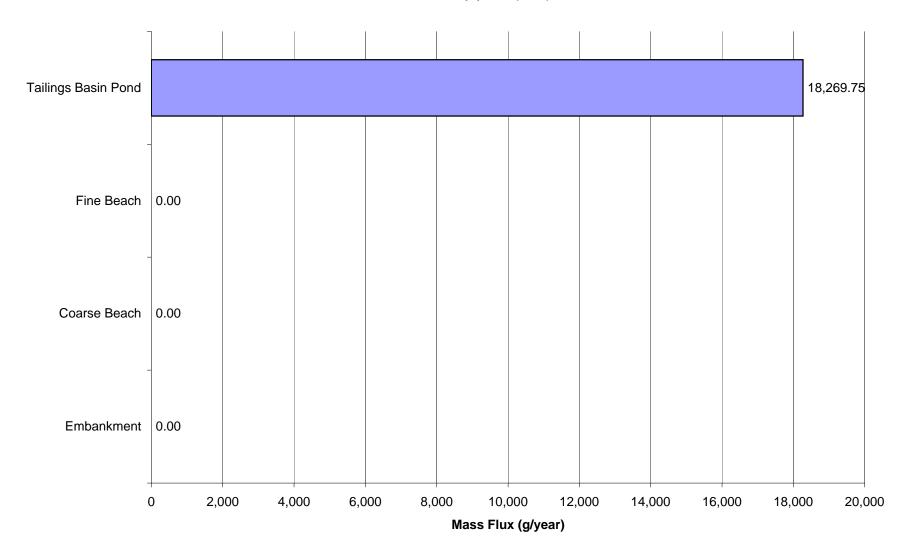

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 10 for Cobalt (Co)

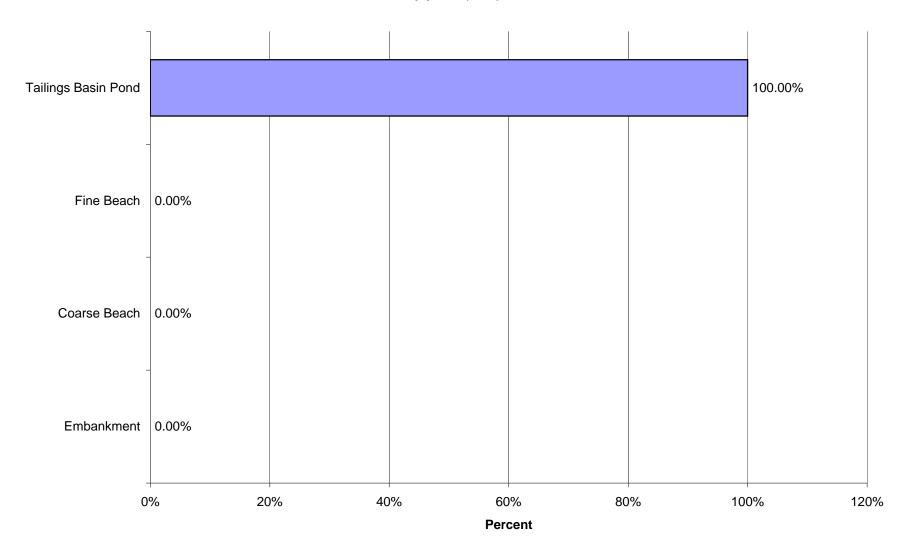

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Cobalt (Co)

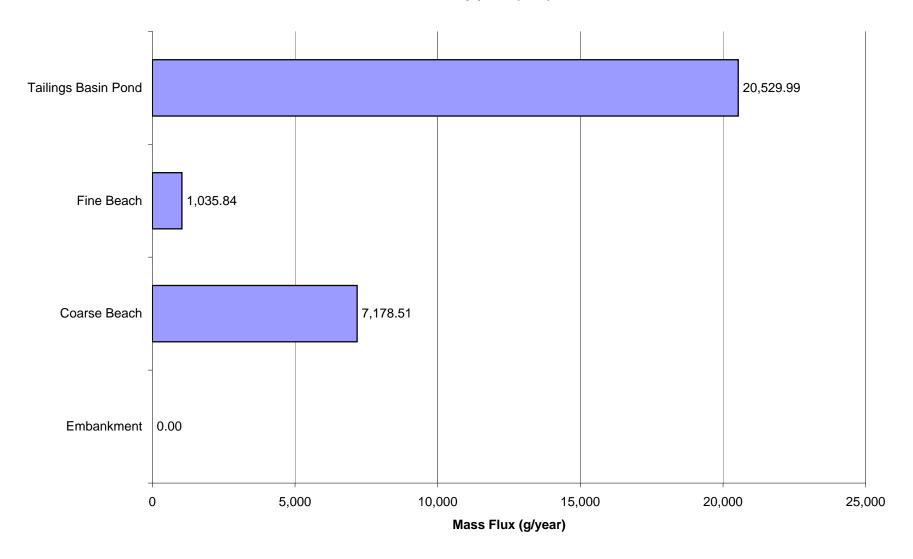

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 15 for Cobalt (Co)

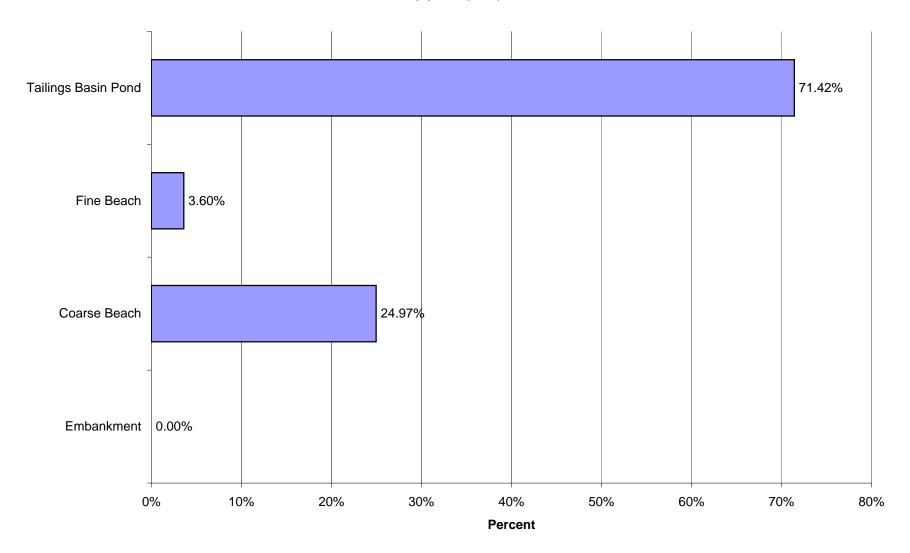

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Cobalt (Co)

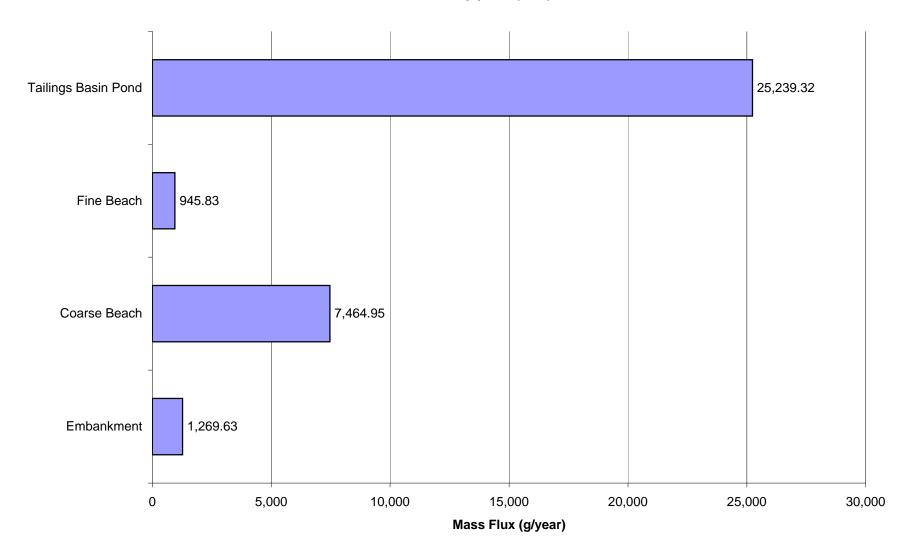

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 20 for Cobalt (Co)

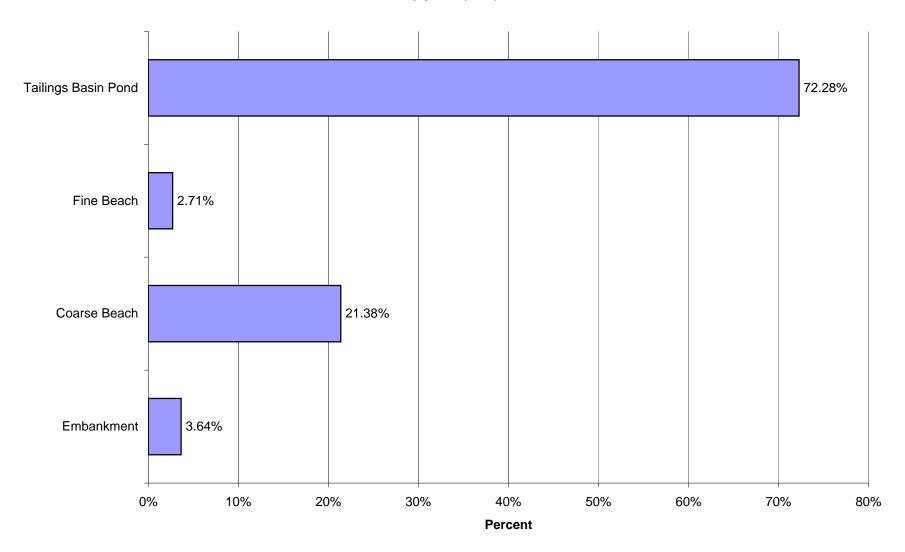

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Closure for Cobalt (Co)

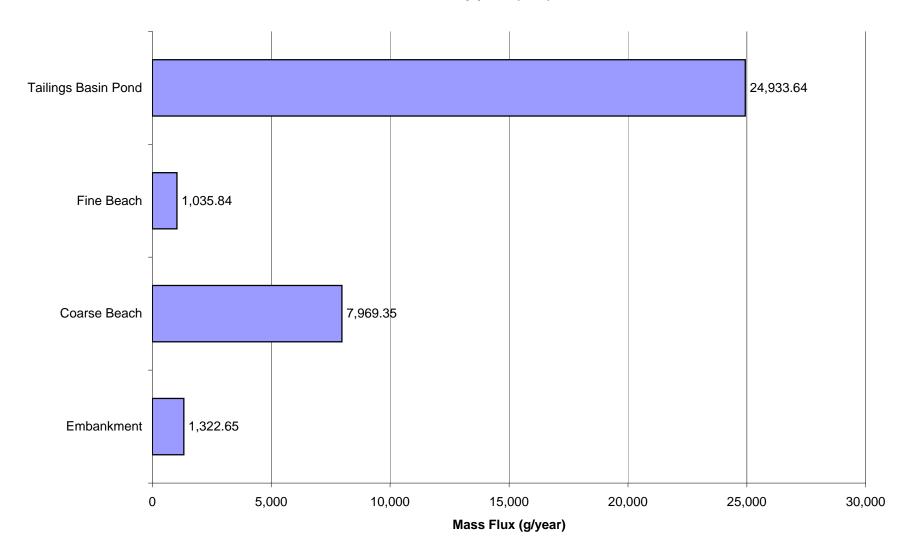

Proposed Action: Percent of Tailings Basin Features' Impacts in Closure for Cobalt (Co)

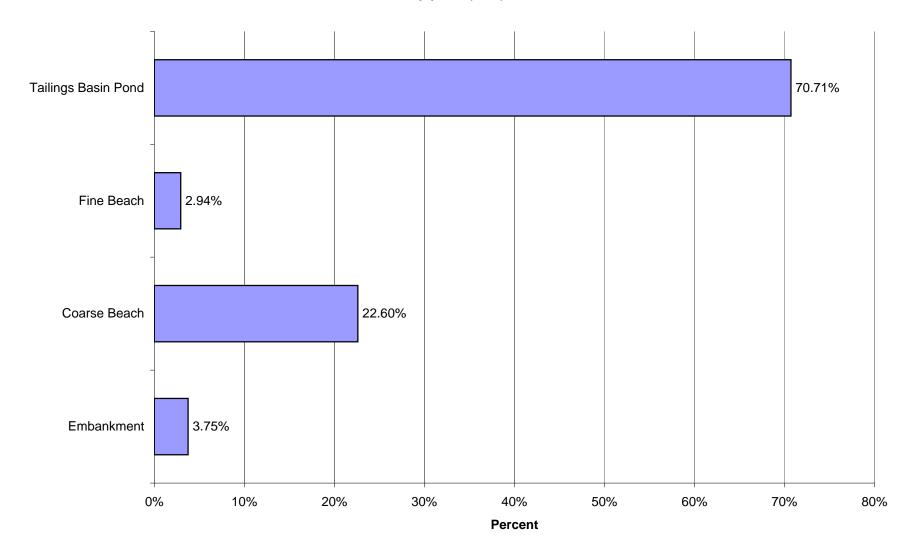

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Copper (Cu)

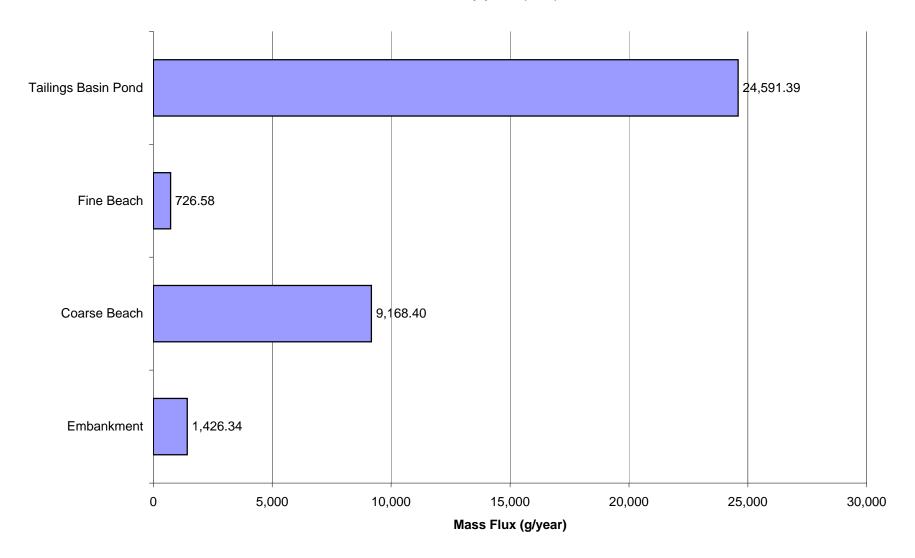

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 1 for Copper (Cu)

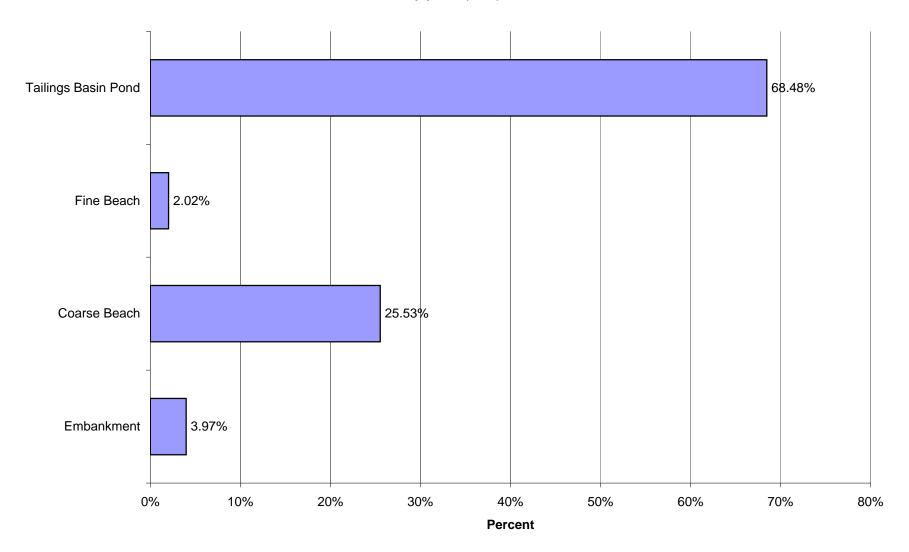

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Copper (Cu)

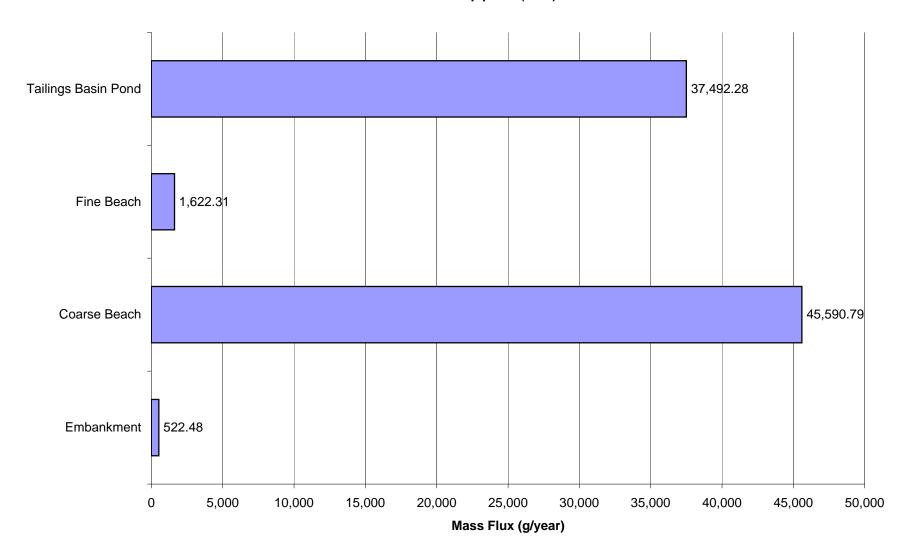

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 5 for Copper (Cu)

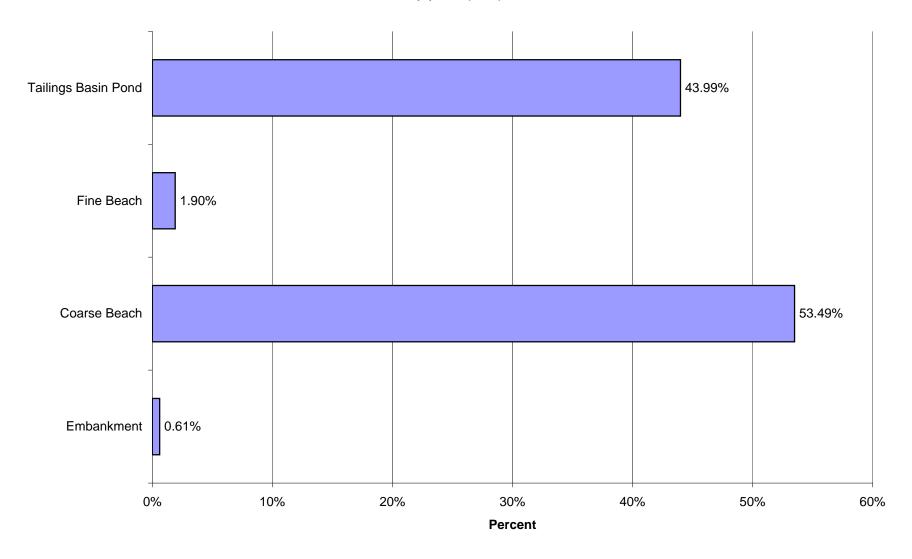

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 8 for Copper (Cu)

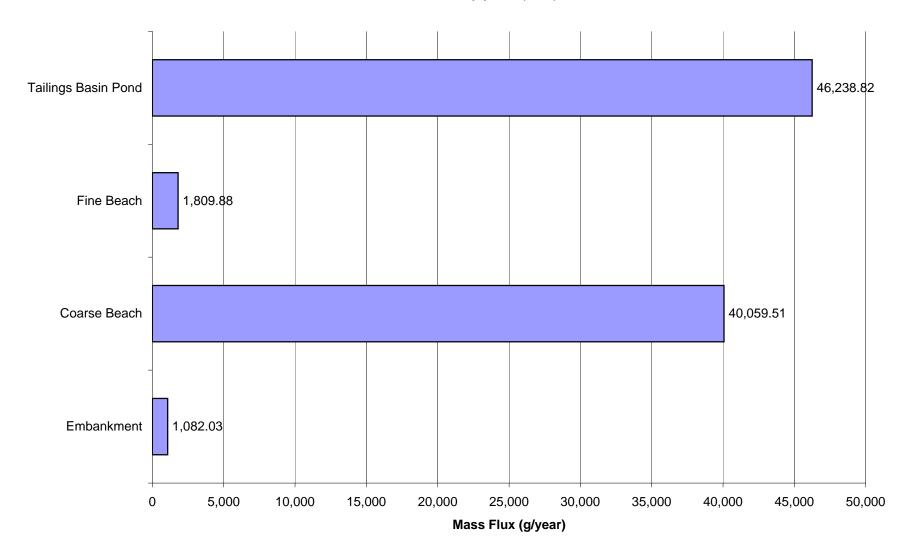

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 8 for Copper (Cu)

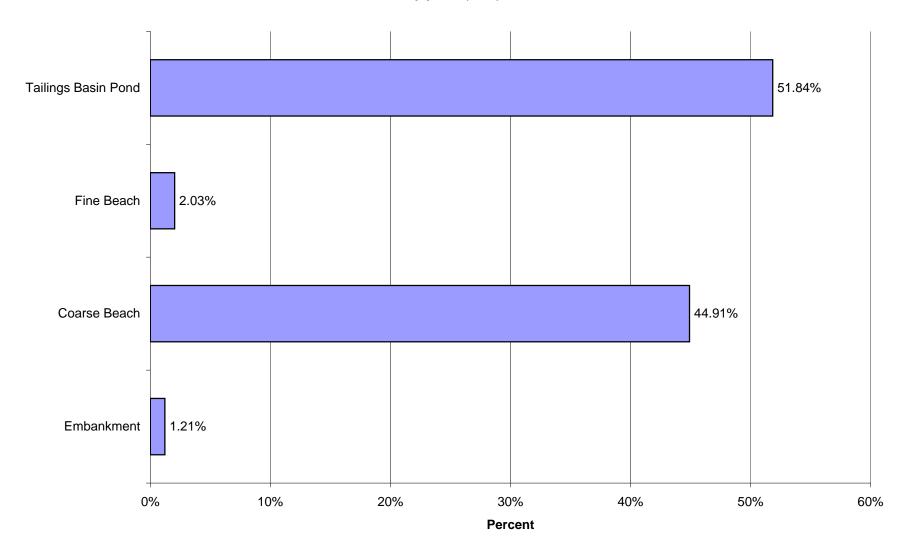

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 9 for Copper (Cu)

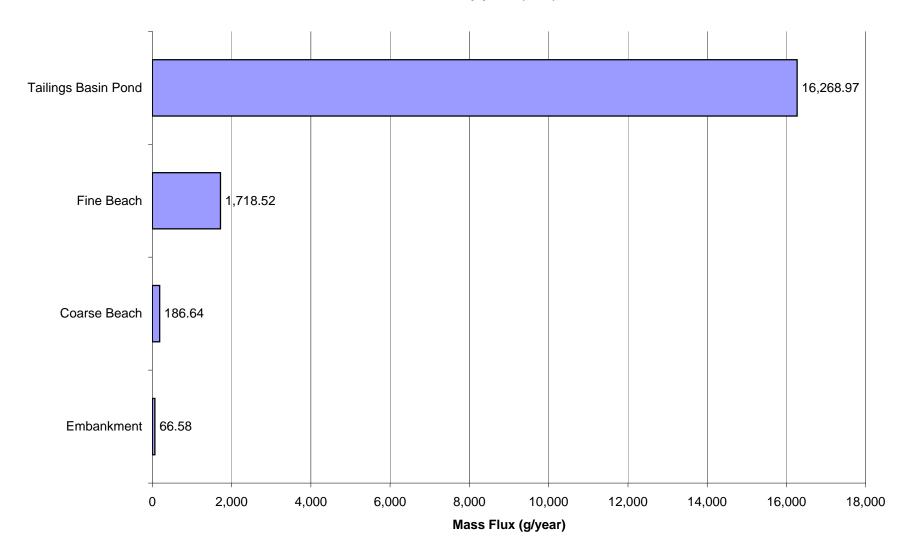

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 9 for Copper (Cu)

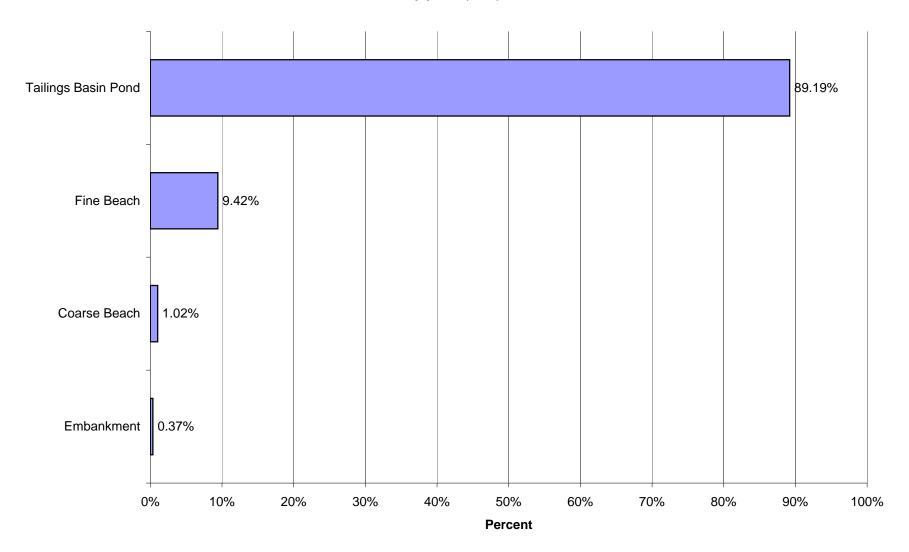

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Copper (Cu)

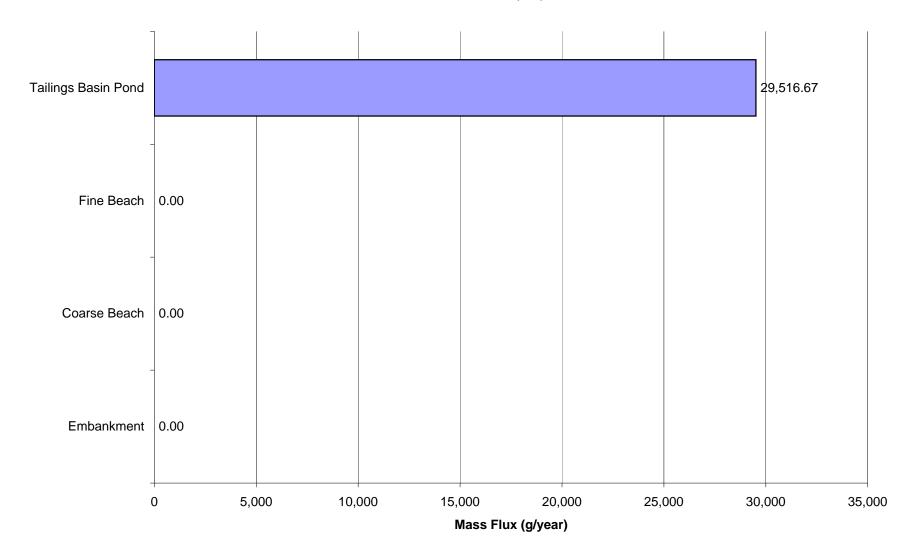

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 10 for Copper (Cu)

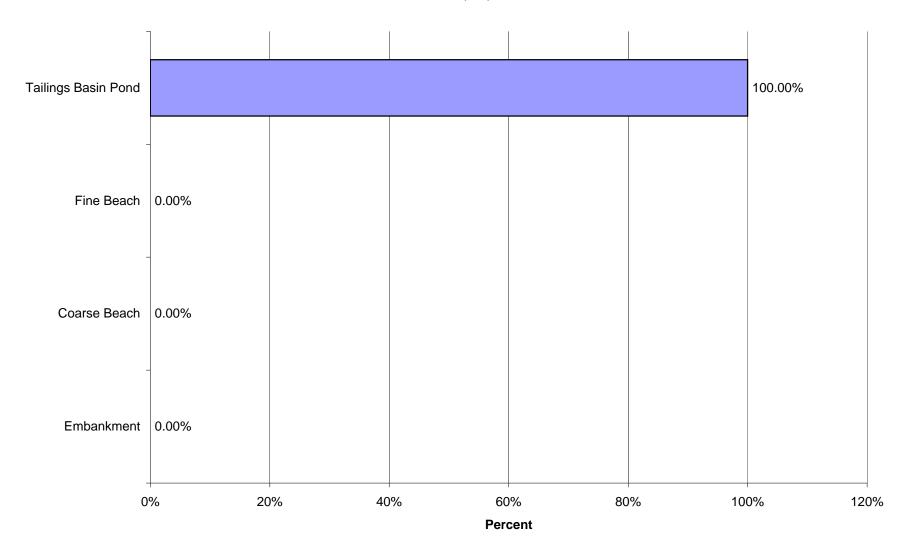

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Copper (Cu)

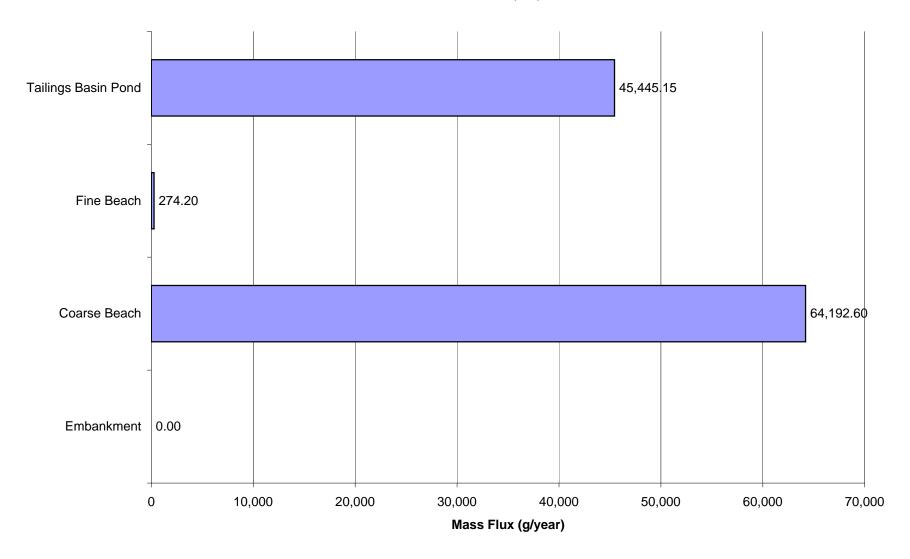

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 15 for Copper (Cu)

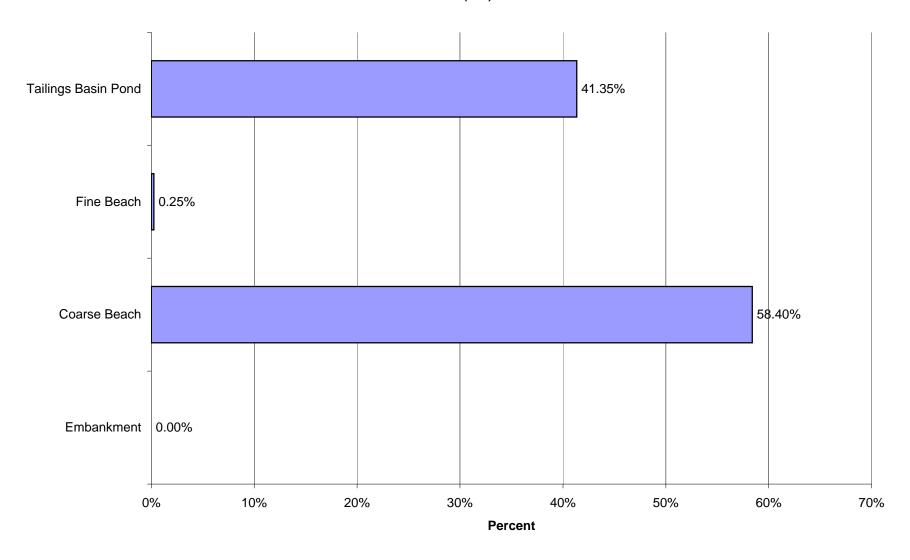

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Copper (Cu)

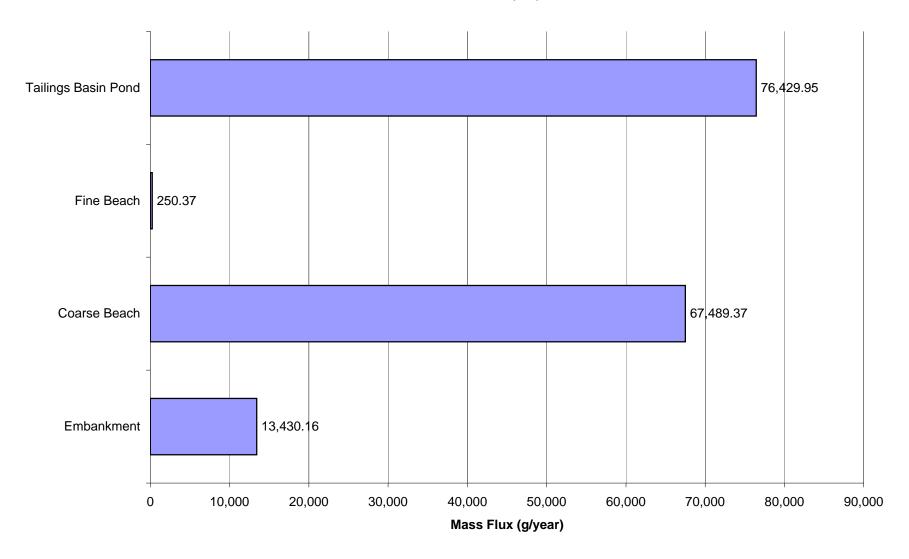

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 20 for Copper (Cu)

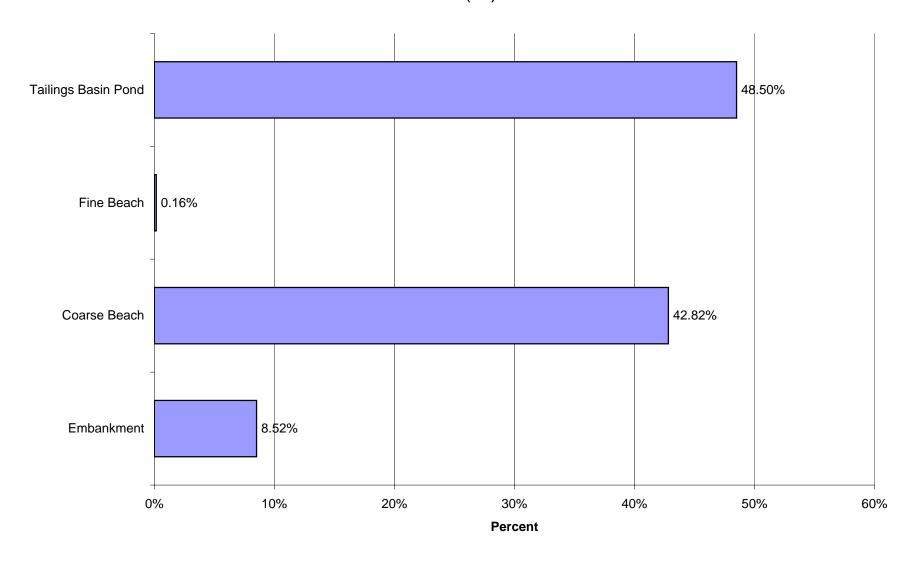

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Closure for Copper (Cu)

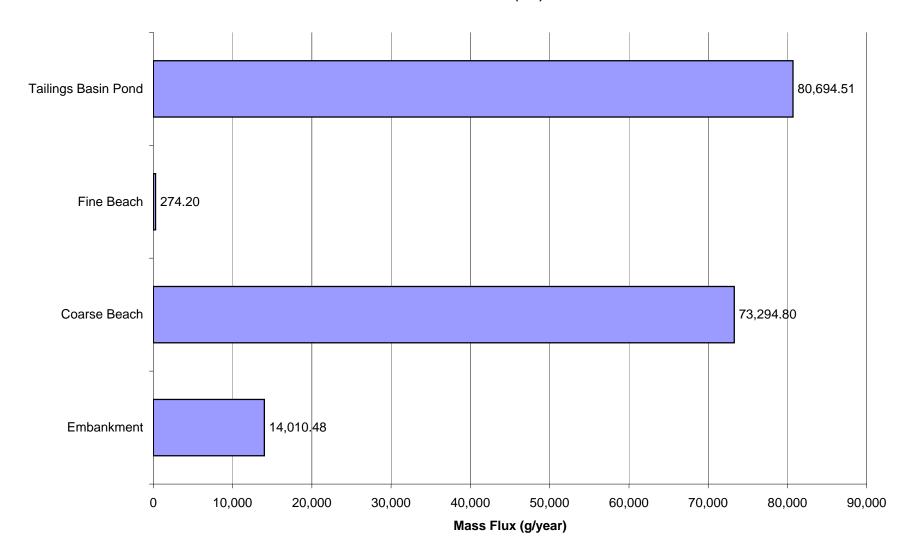

Proposed Action: Percent of Tailings Basin Features' Impacts in Closure for Copper (Cu)

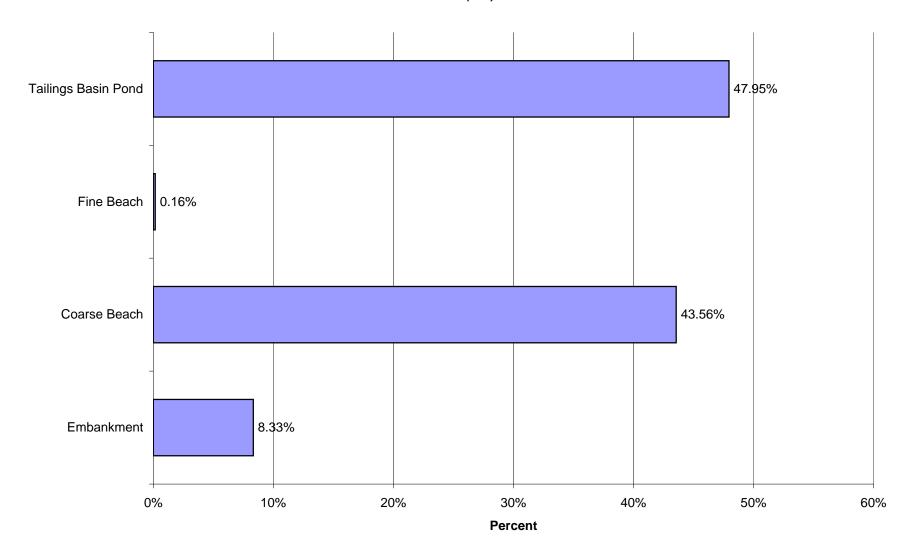

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Nickel (Ni)

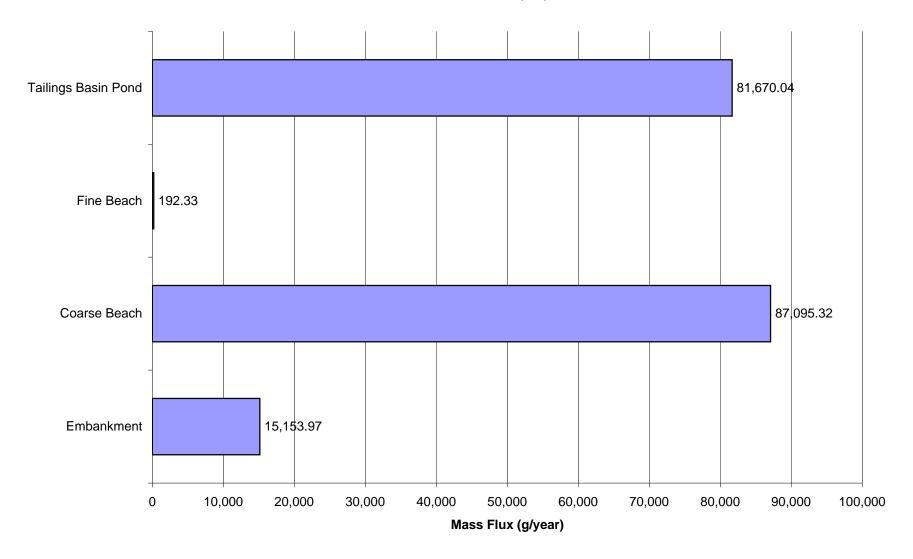

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 1 for Nickel (Ni)

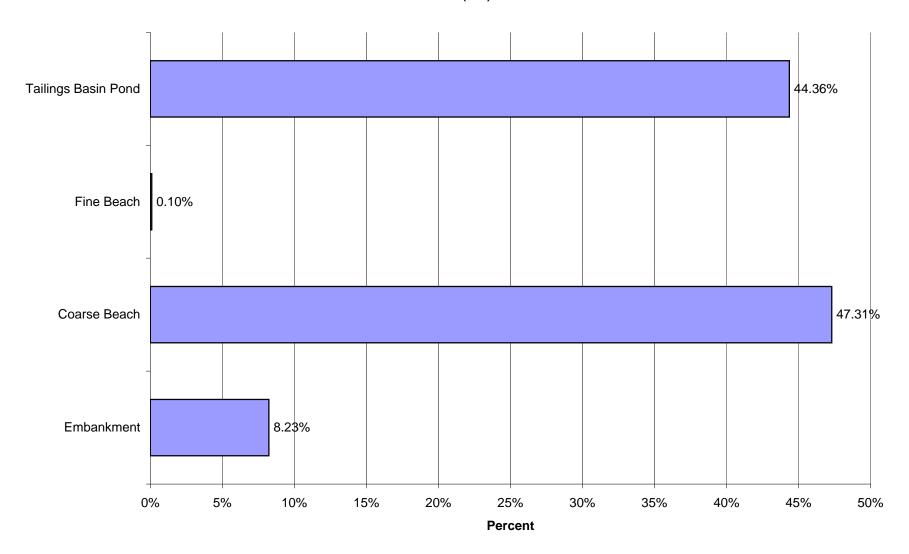

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Nickel (Ni)

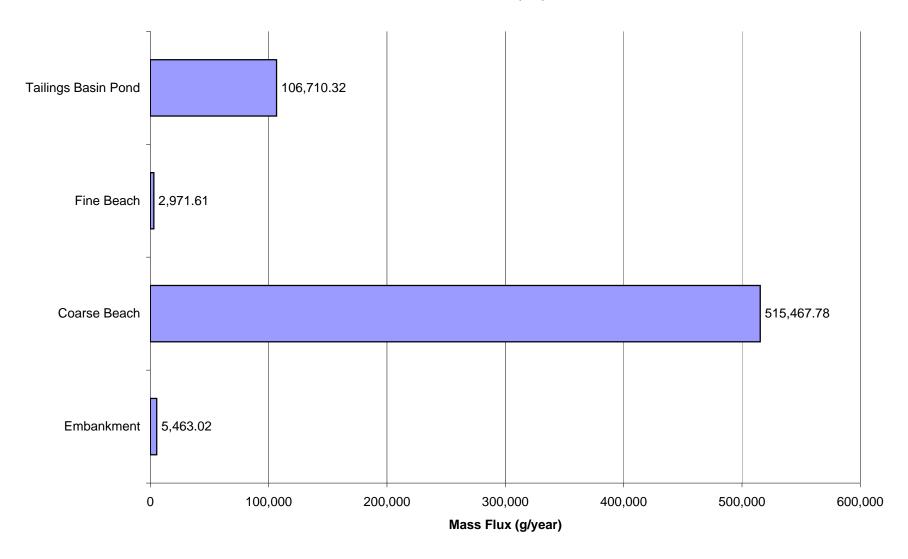

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 5 for Nickel (Ni)

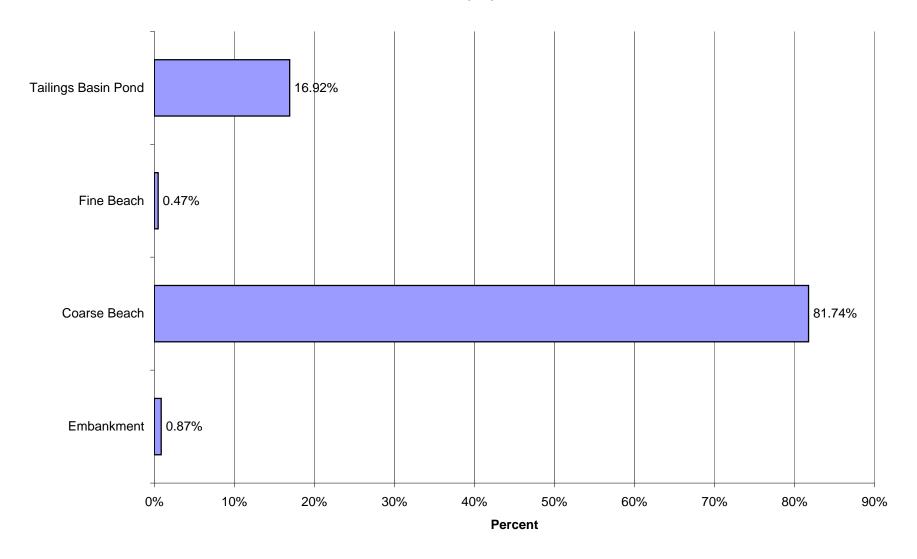

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 8 for Nickel (Ni)

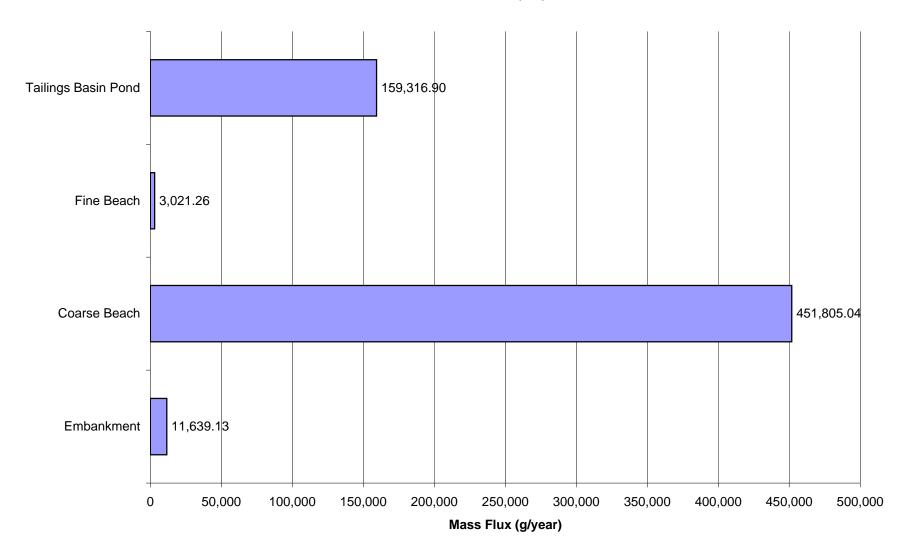

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 8 for Nickel (Ni)

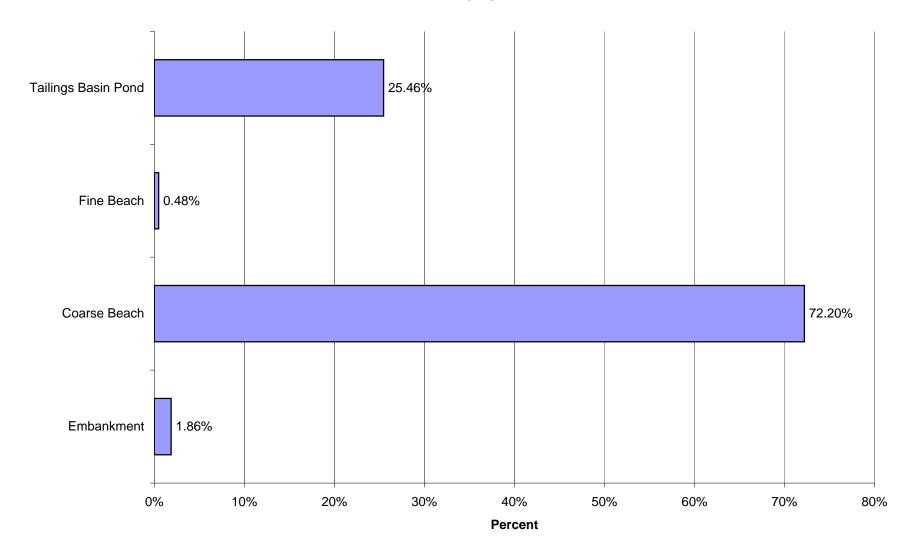

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 9 for Nickel (Ni)

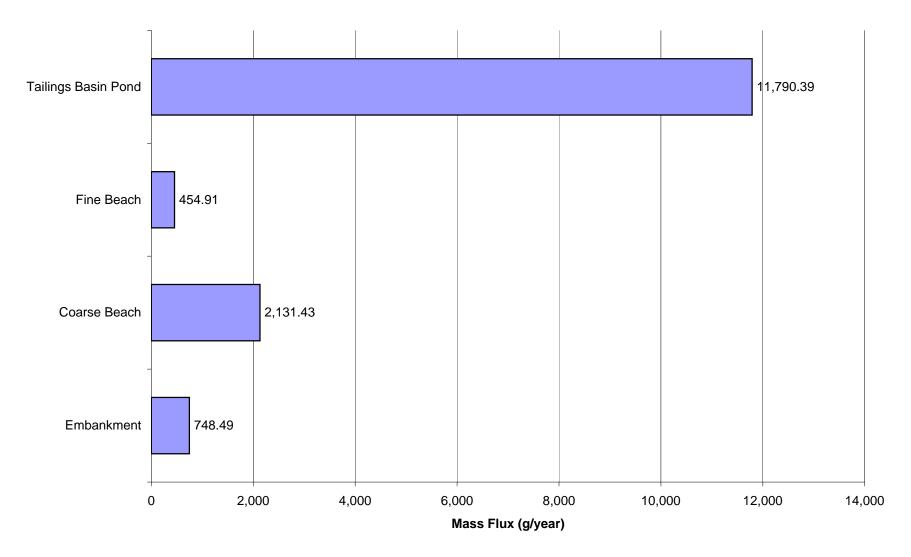

Proposed Action: Percent of Tailings Basin Features' Impacts in Year 9 for Nickel (Ni)

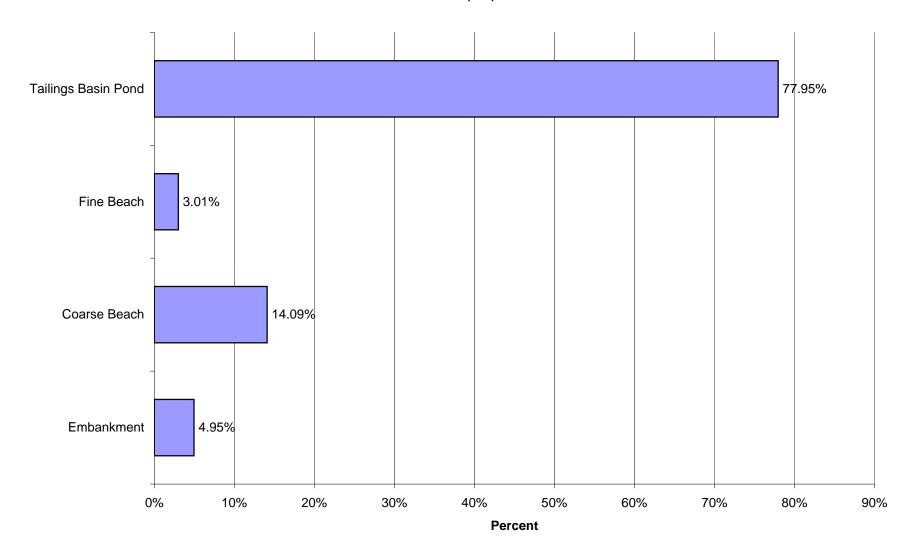

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Nickel (Ni)


Proposed Action: Percent of Tailings Basin Features' Impacts in Year 10 for Nickel (Ni)

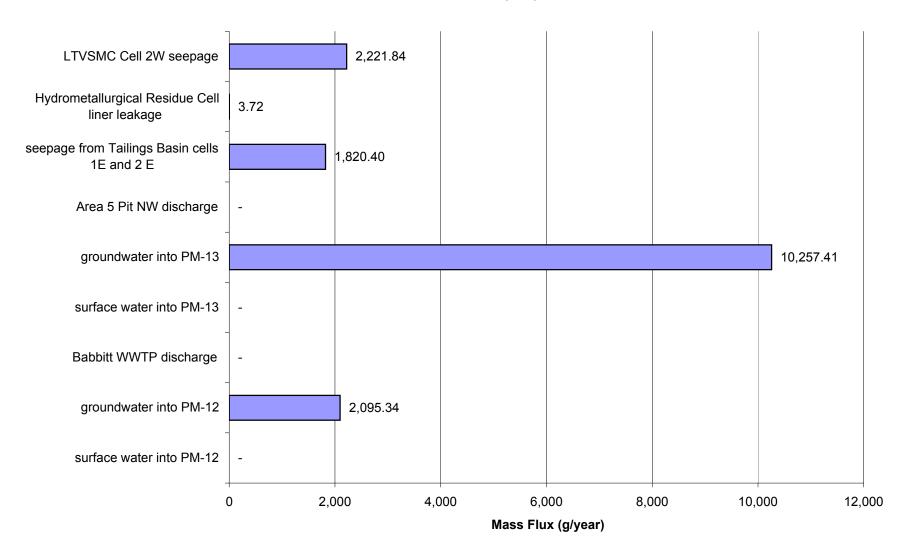

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Nickel (Ni)


Proposed Action: Percent of Tailings Basin Features' Impacts in Year 15 for Nickel (Ni)

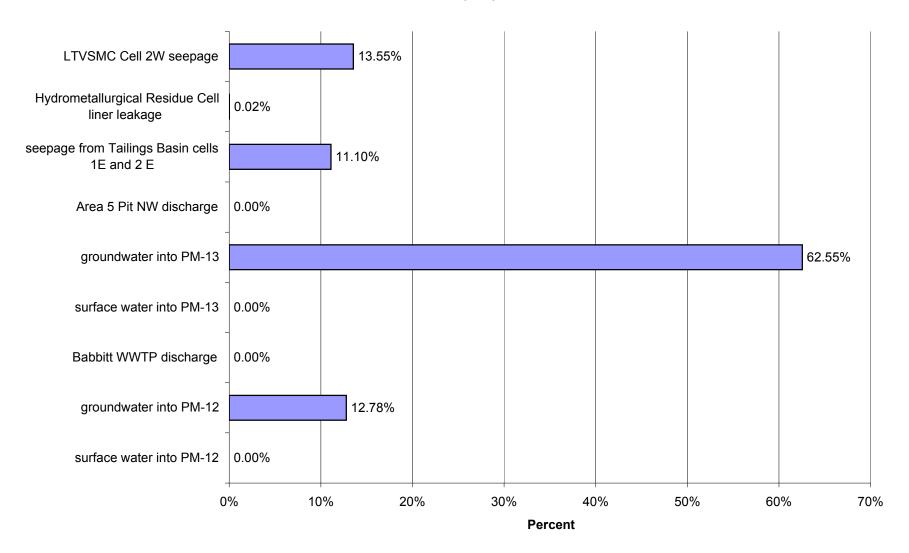

Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Nickel (Ni)


Proposed Action: Percent of Tailings Basin Features' Impacts in Year 20 for Nickel (Ni)

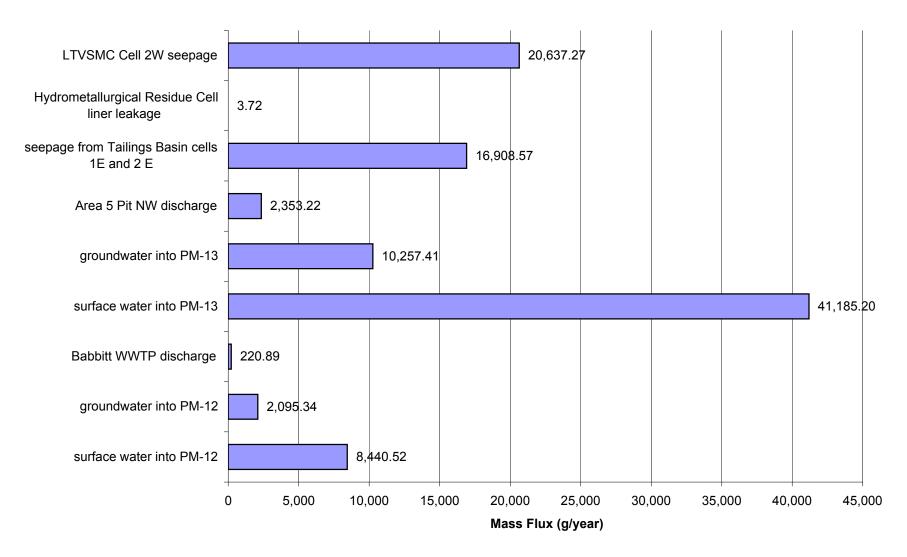
Proposed Action: Mass Flux (g/year) of Tailings Basin Features in Closure for Nickel (Ni)

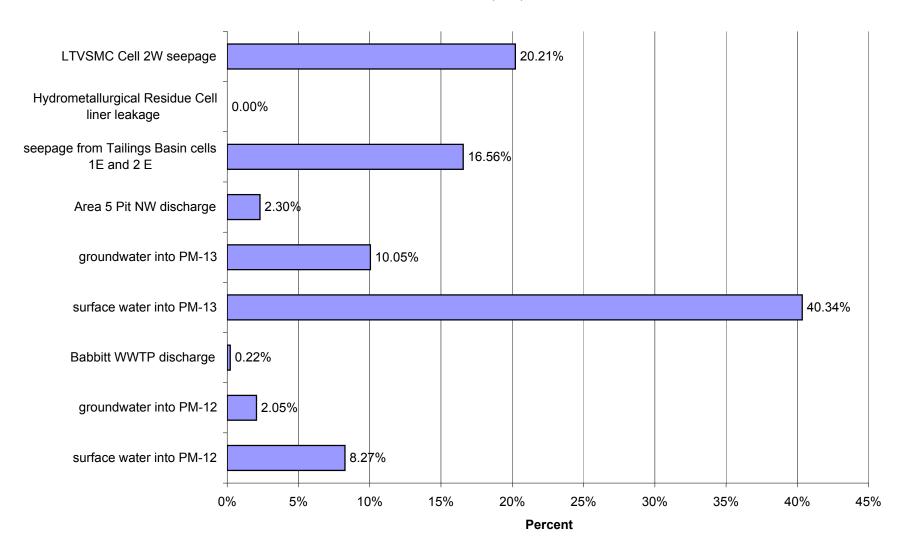


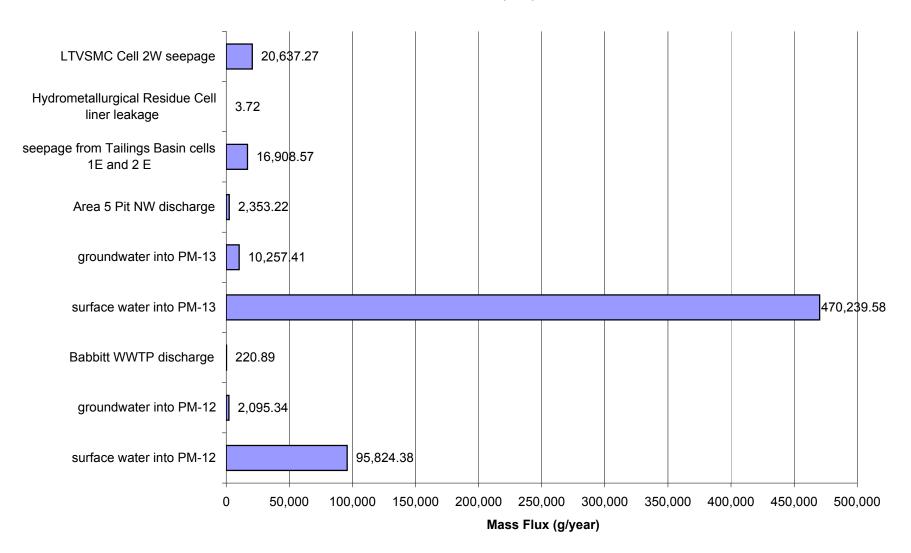
Proposed Action: Percent of Tailings Basin Features' Impacts in Closure for Nickel (Ni)

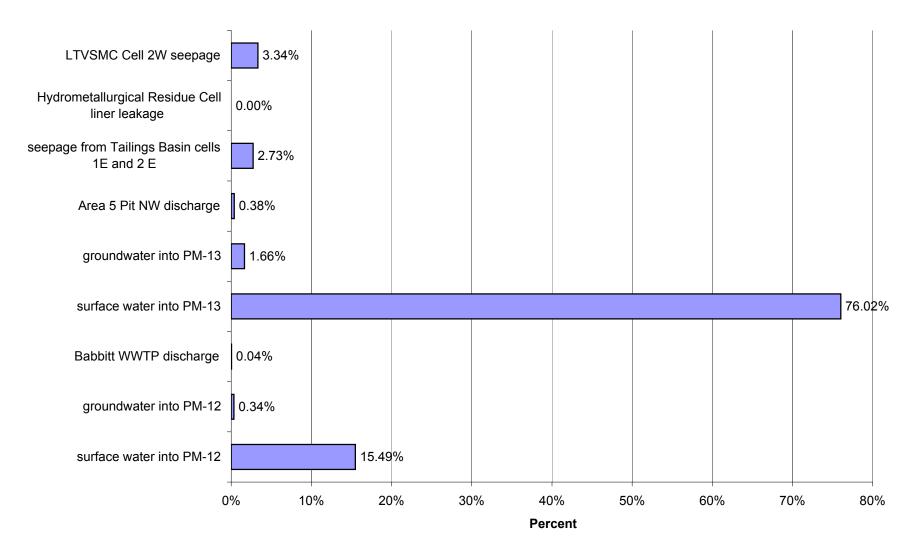


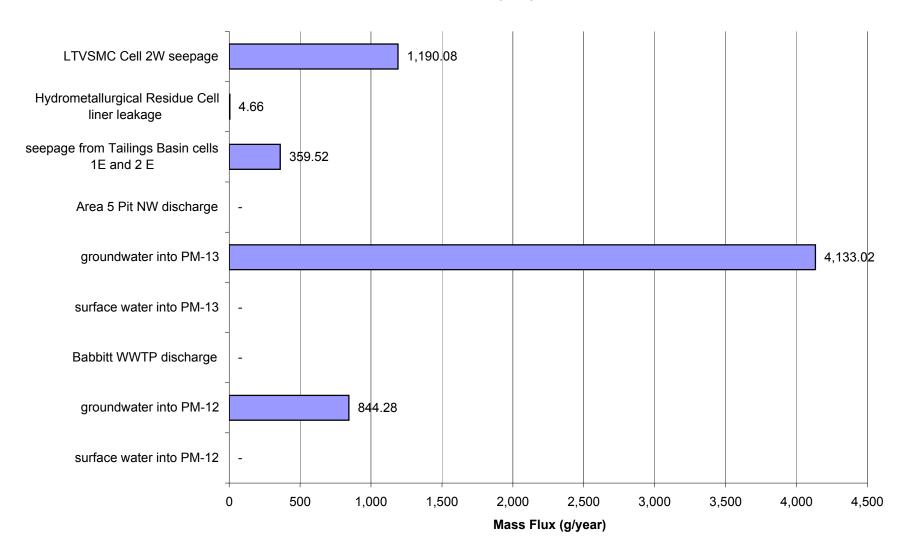
Appendix G.2
Embarrass River Watershed
Proposed Action

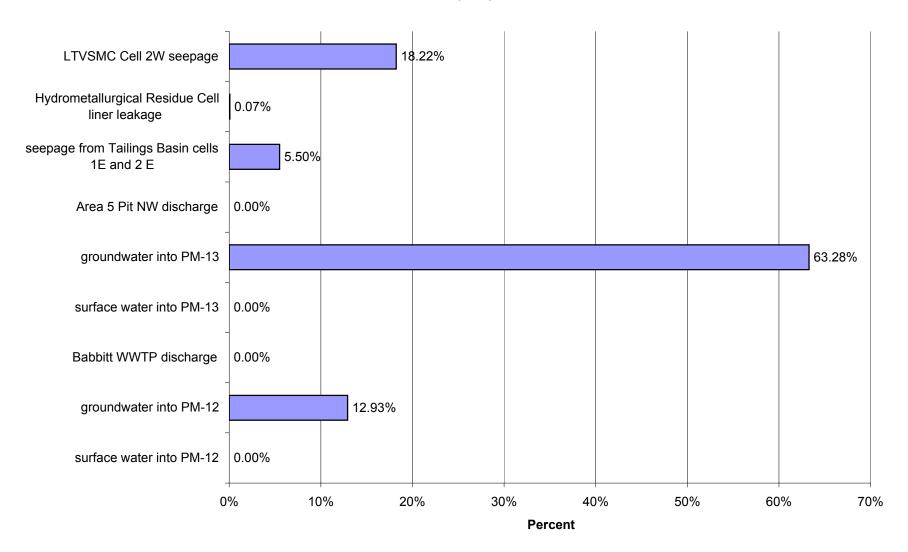

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Arsenic (As)

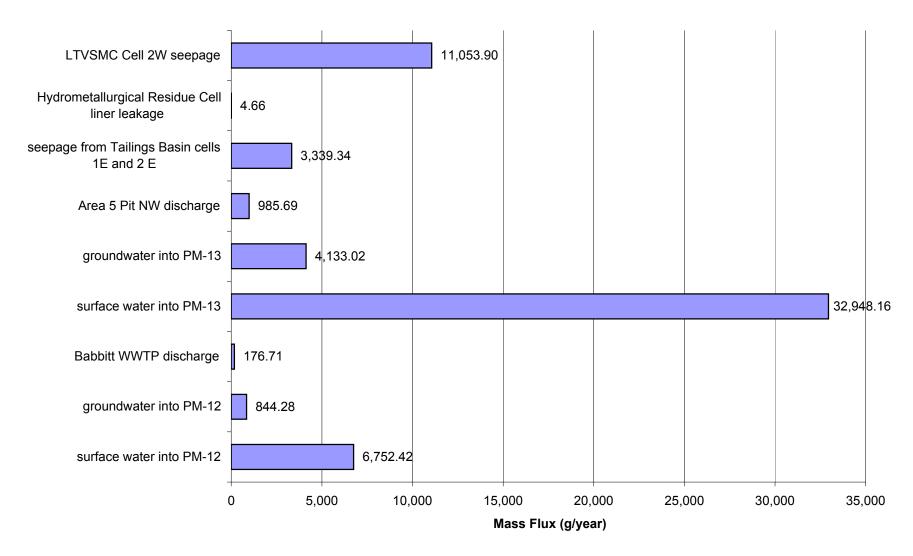

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Low Flow for Arsenic (As)

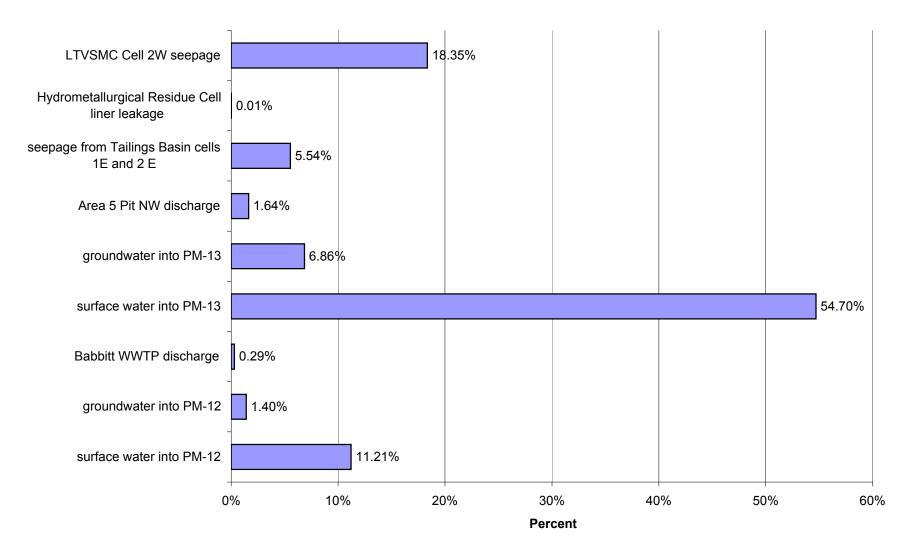

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Arsenic (As)

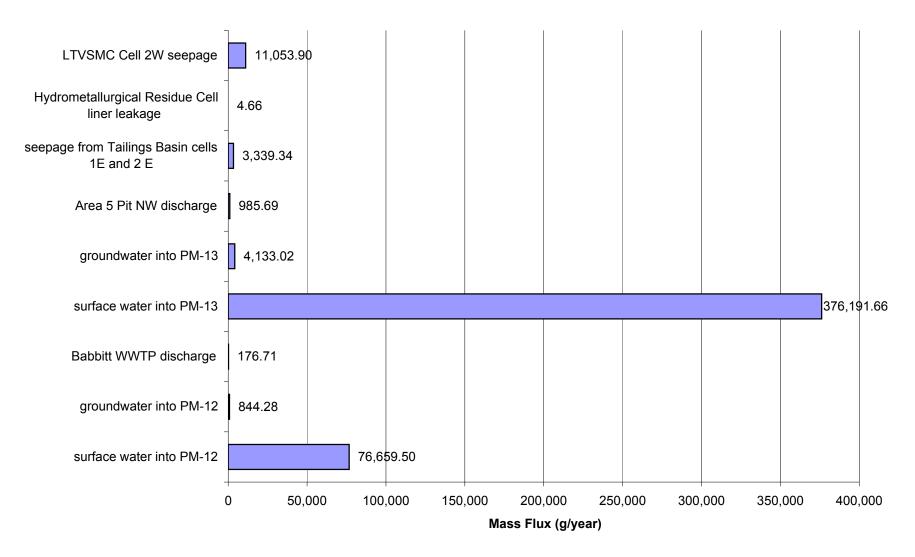

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Average Flow for Arsenic (As)

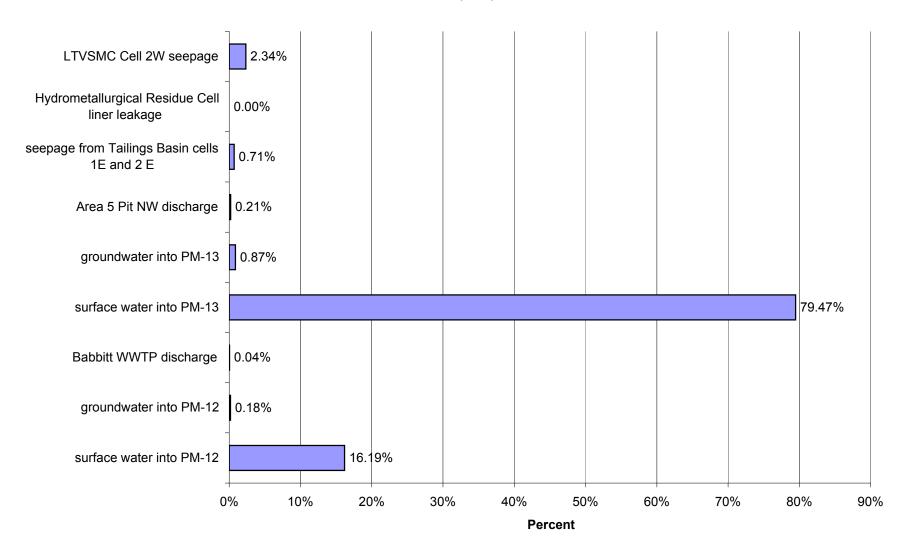

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Arsenic (As)

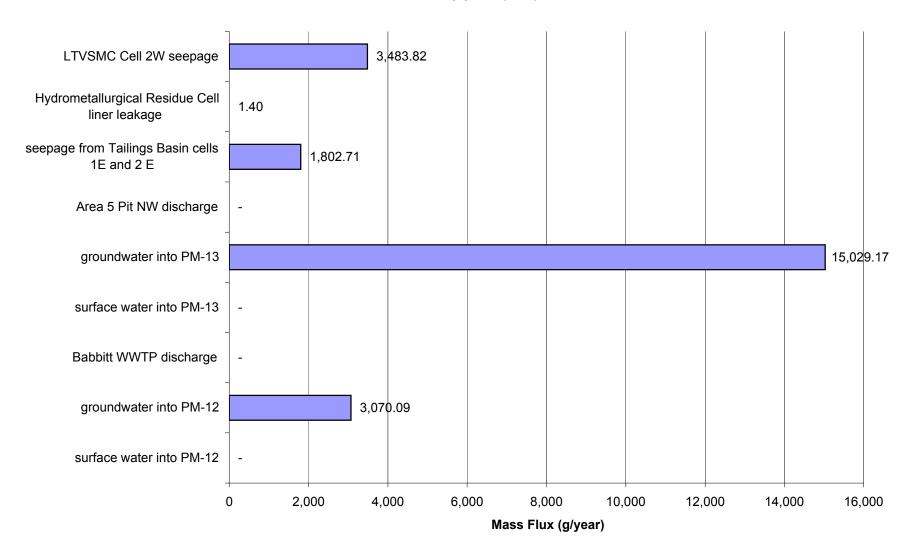

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Arsenic (As)

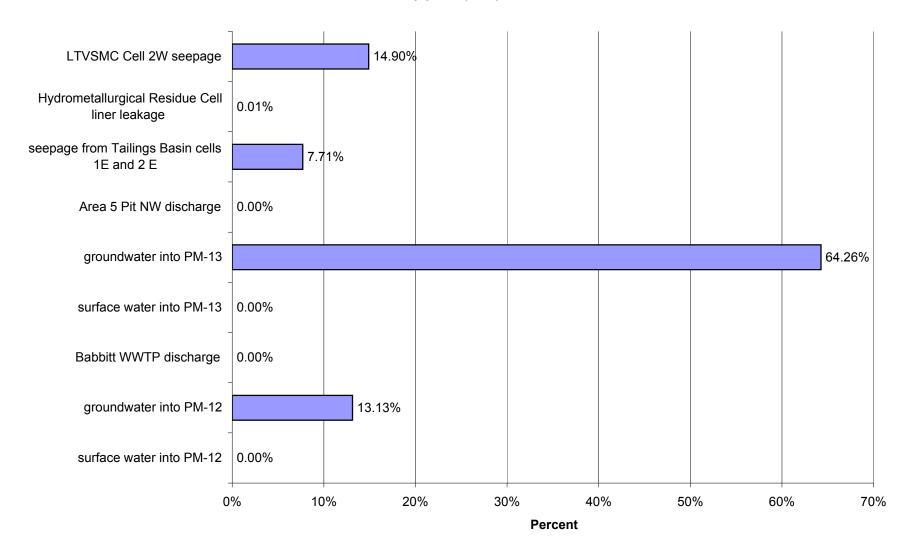

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Cobalt (Co)

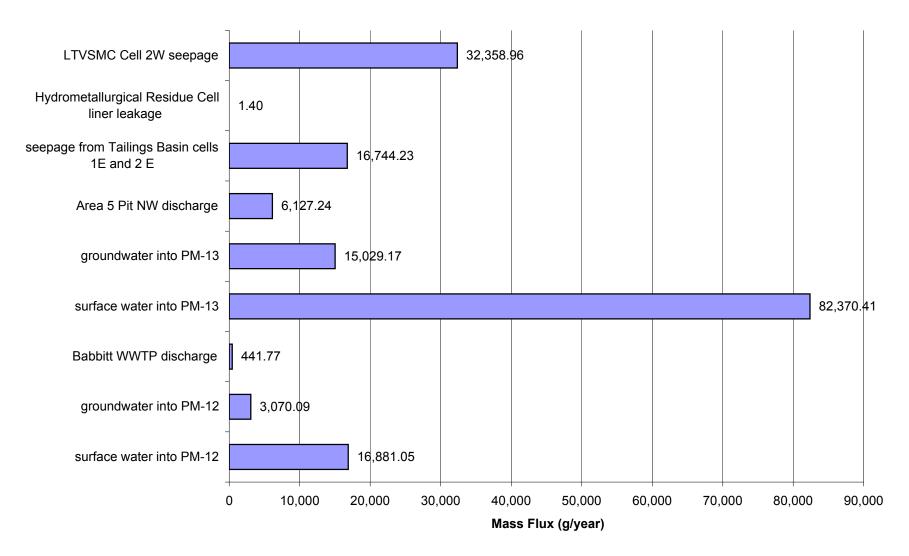

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Low Flow for Cobalt (Co)

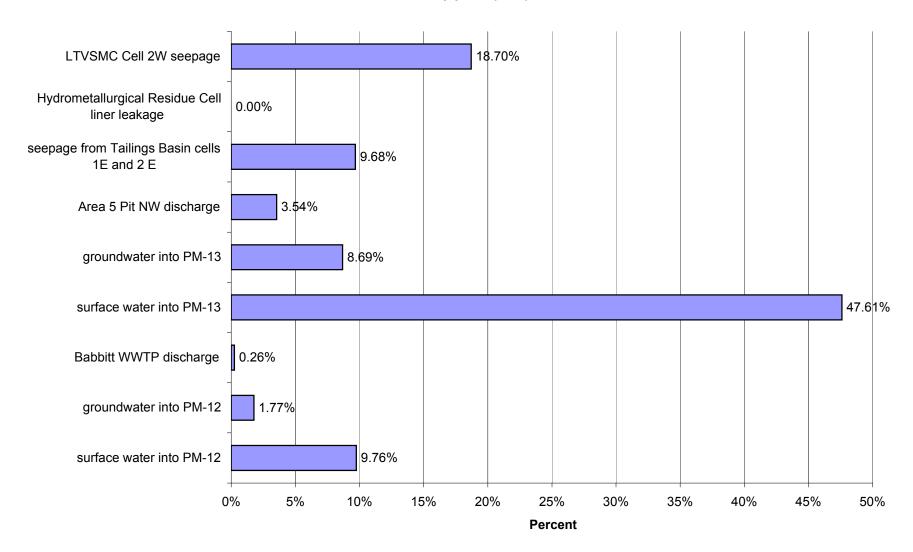

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Cobalt (Co)

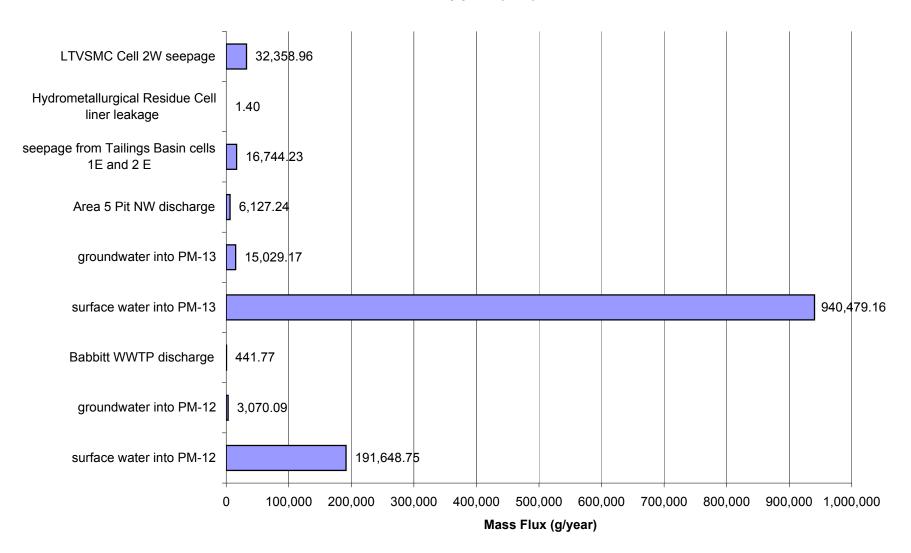

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Average Flow for Cobalt (Co)

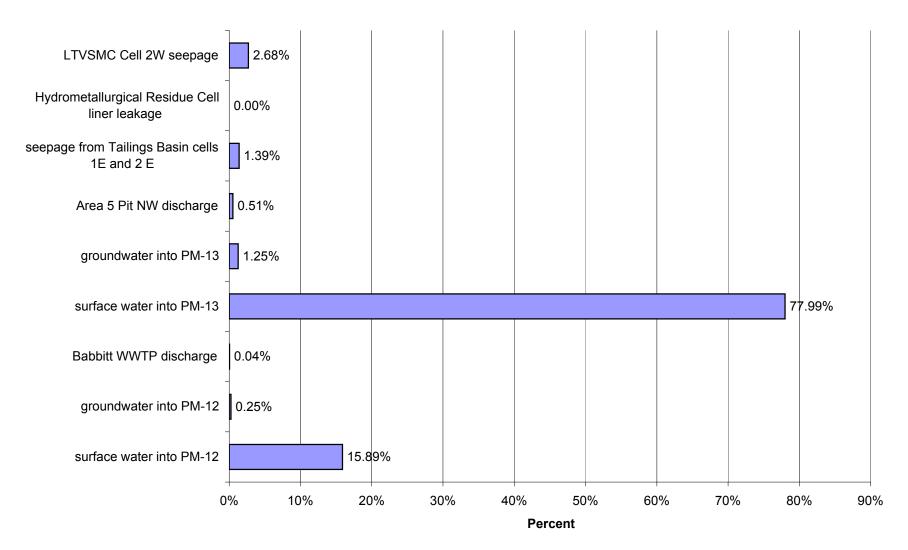

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Cobalt (Co)

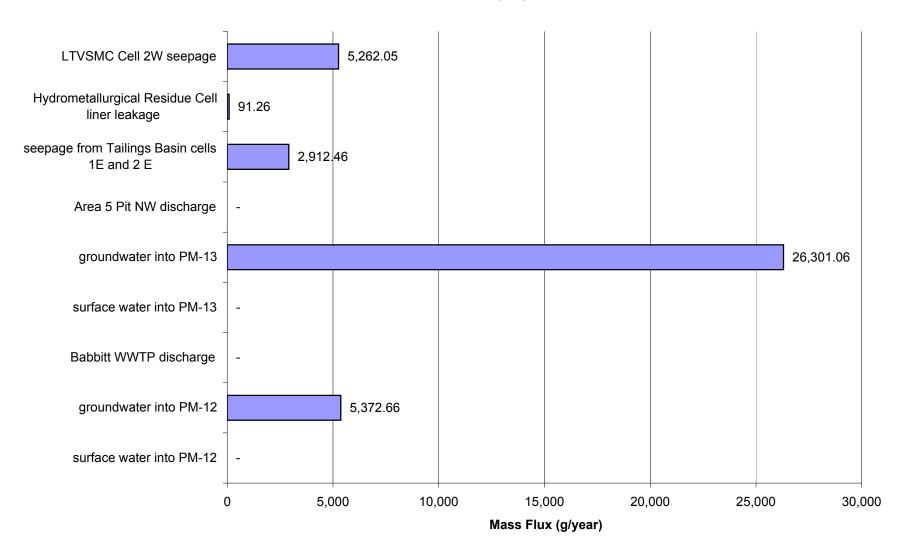

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Cobalt (Co)

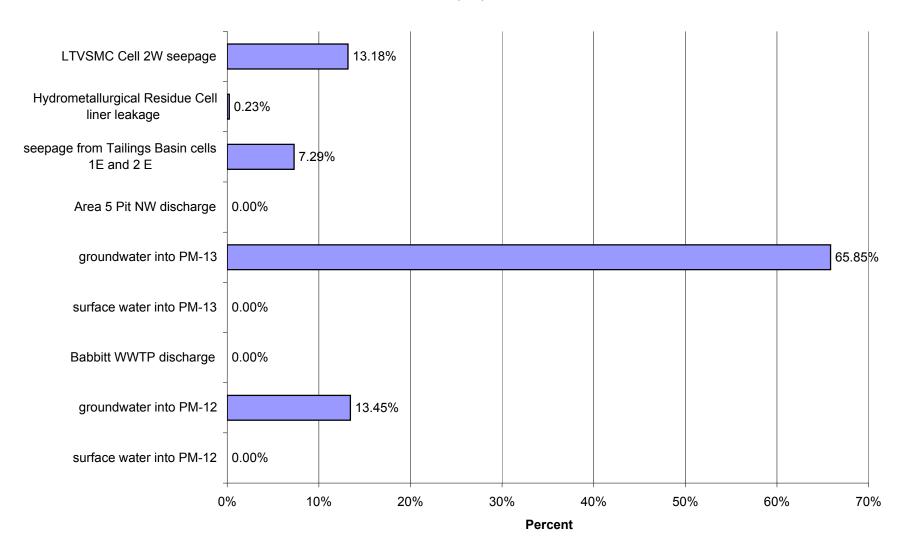

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Copper (Cu)

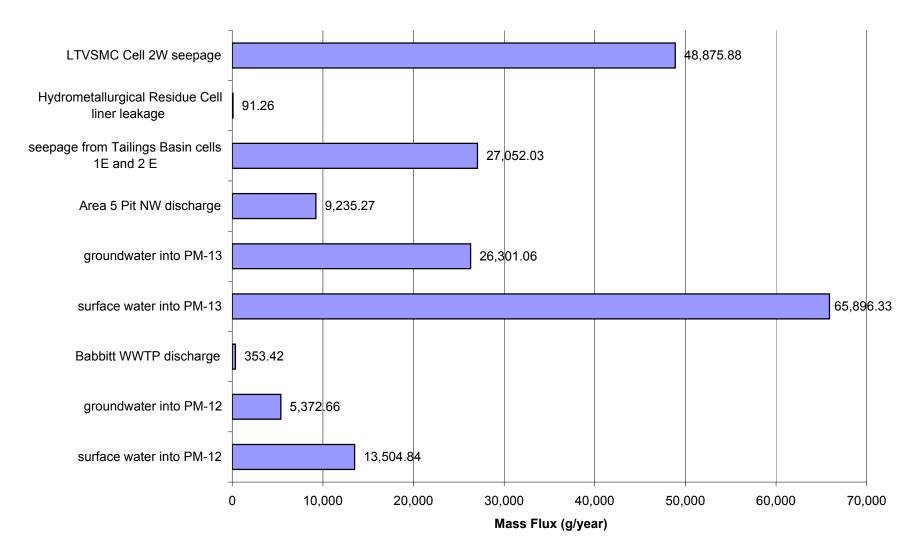

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Low Flow for Copper (Cu)

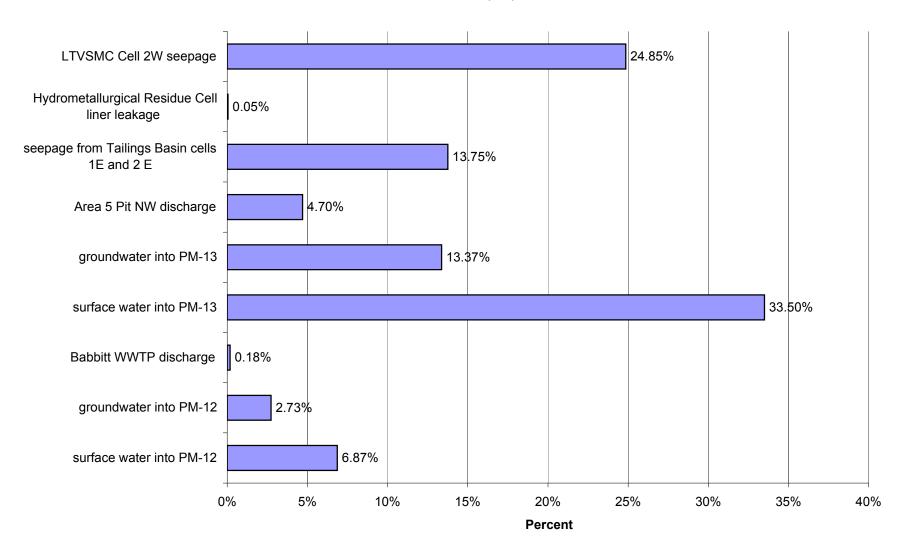

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Copper (Cu)


Proposed Action: Percent of Impacts at PM-13 in Year 1 for Average Flow for Copper (Cu)

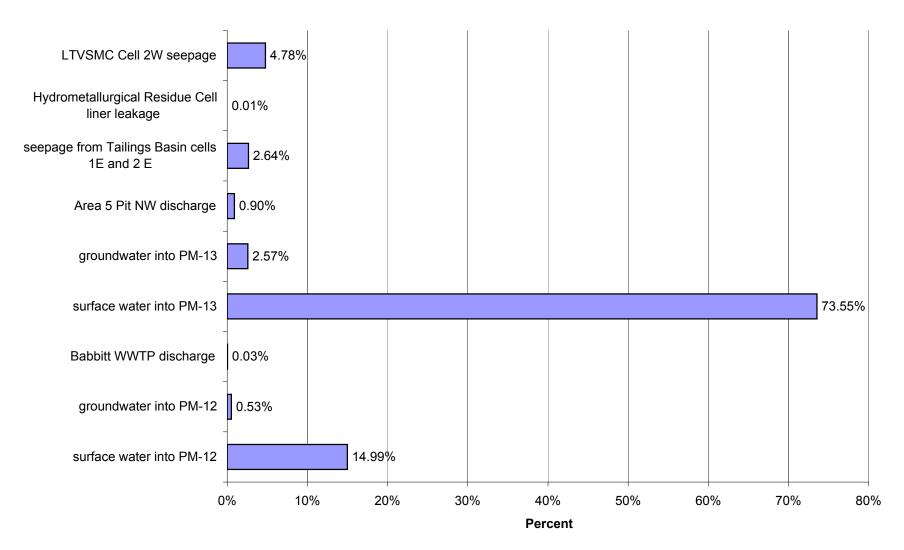

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Copper (Cu)

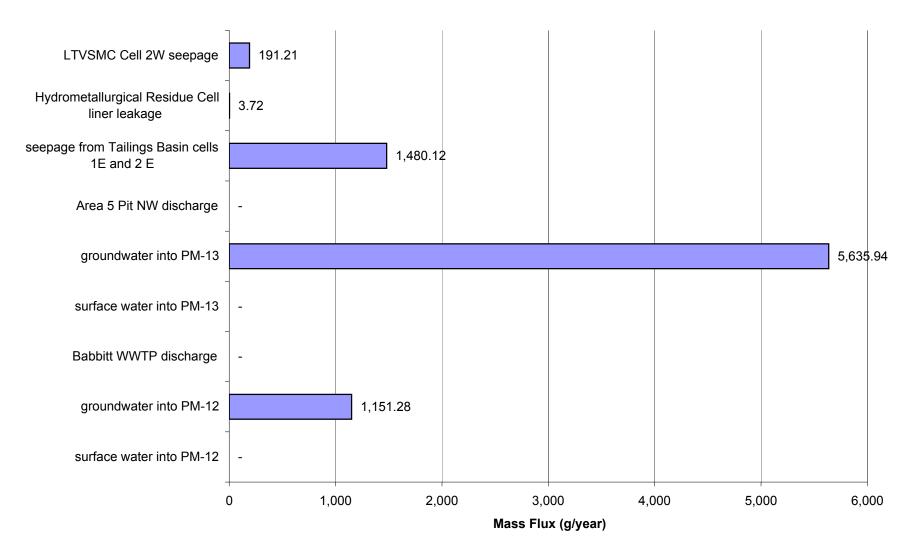

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Copper (Cu)

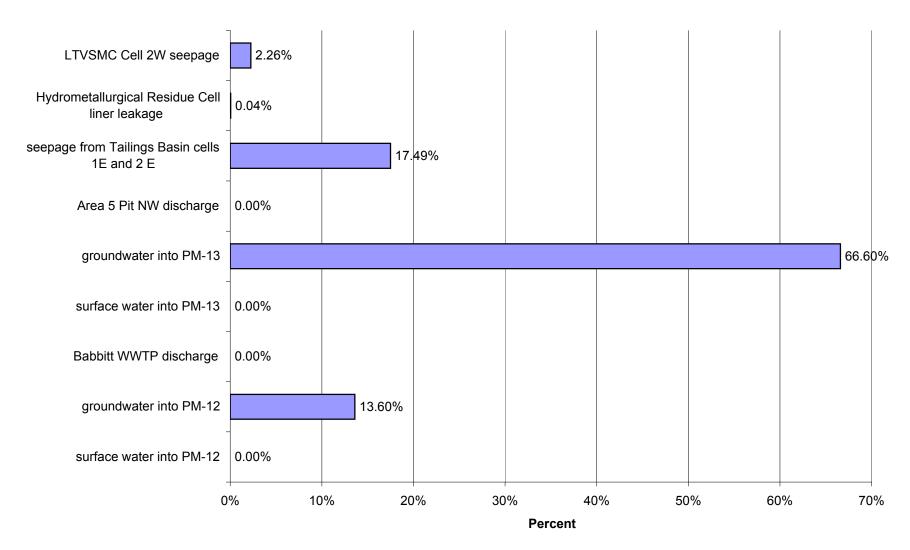

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Nickel (Ni)

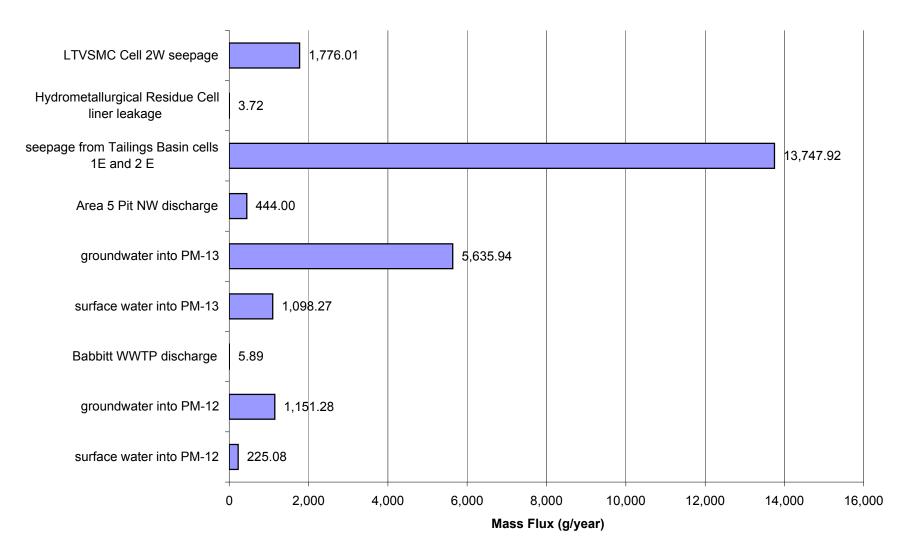

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Low Flow for Nickel (Ni)

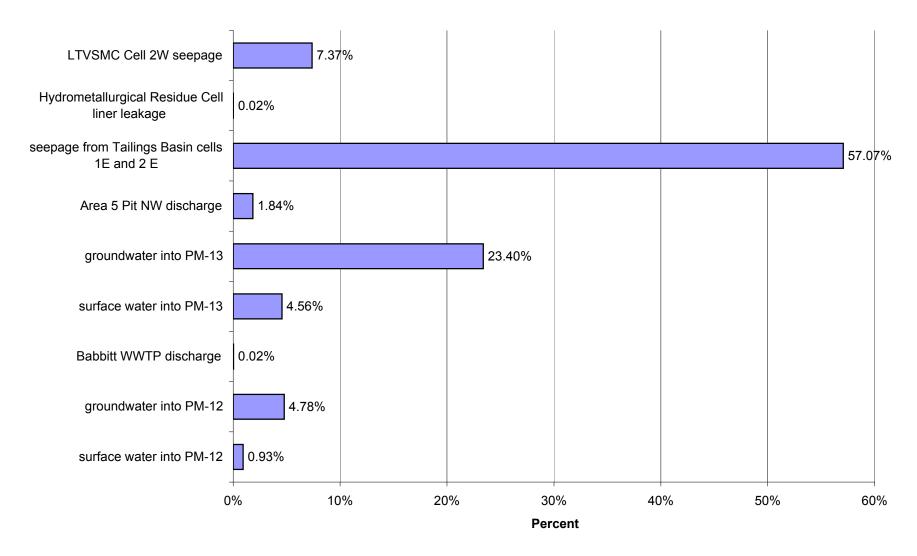
Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Nickel (Ni)

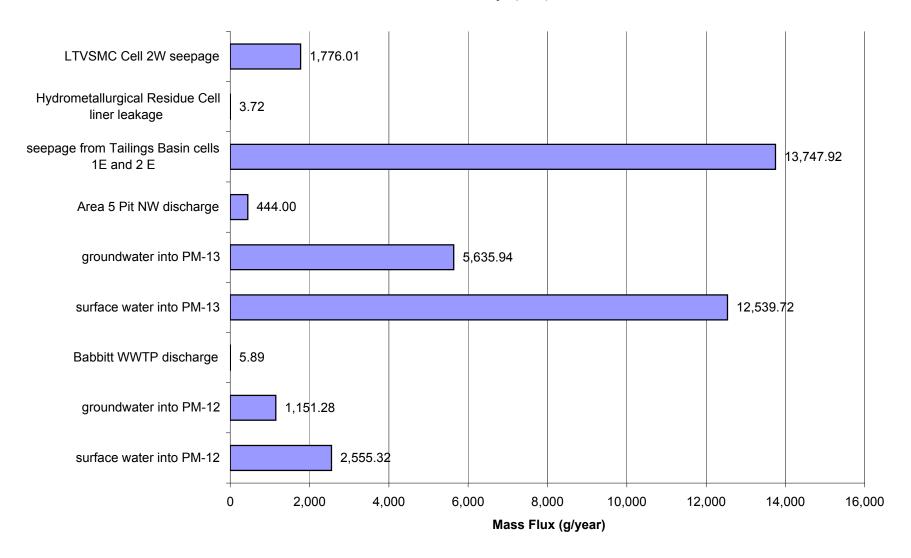

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Average Flow for Nickel (Ni)

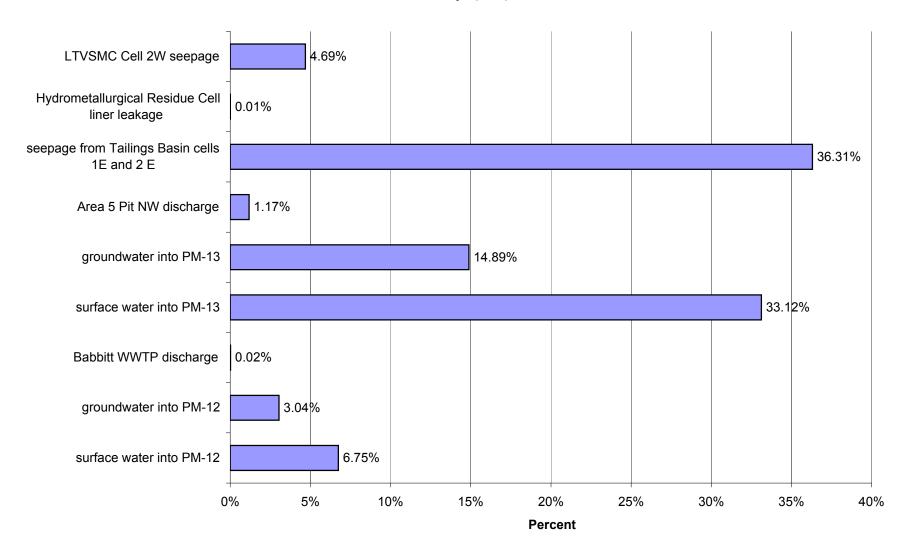

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Nickel (Ni)

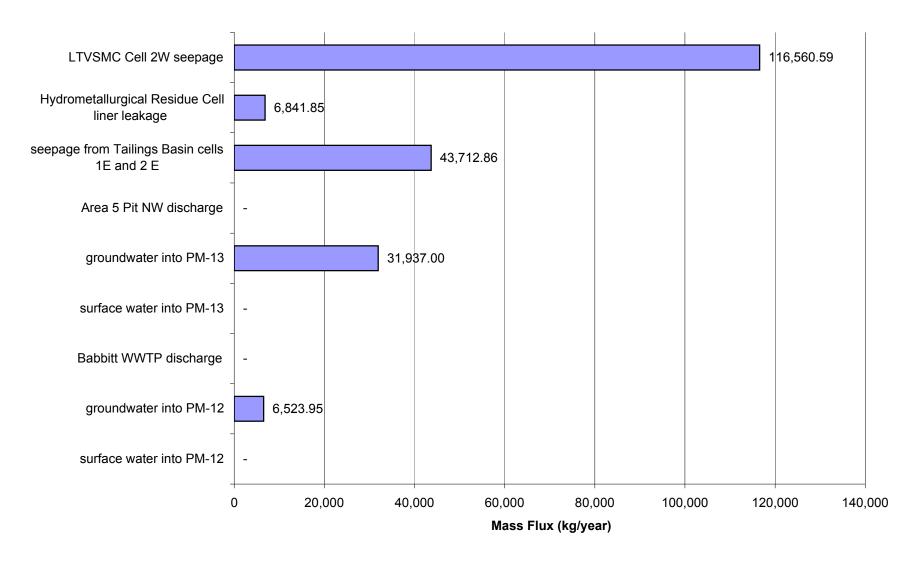

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Nickel (Ni)

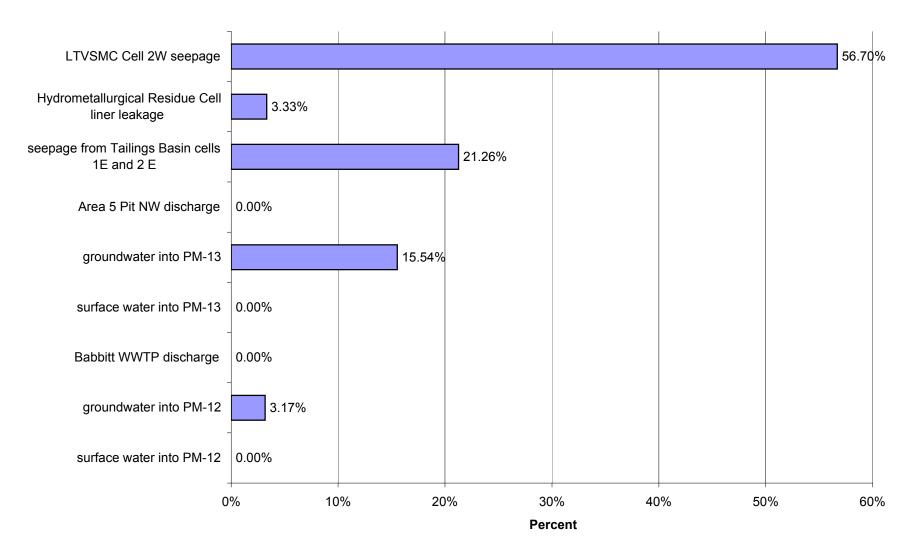

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Antimony (Sb)

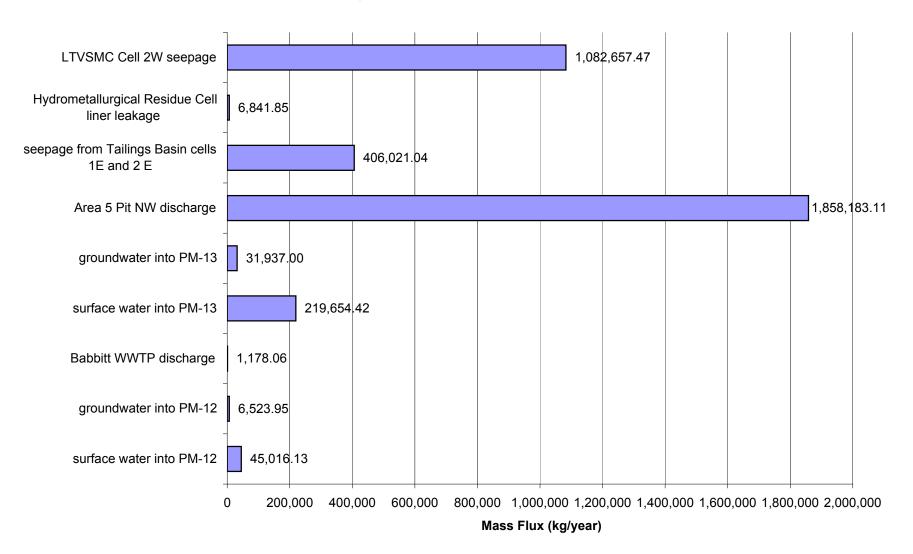

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Low Flow for Antimony (Sb)

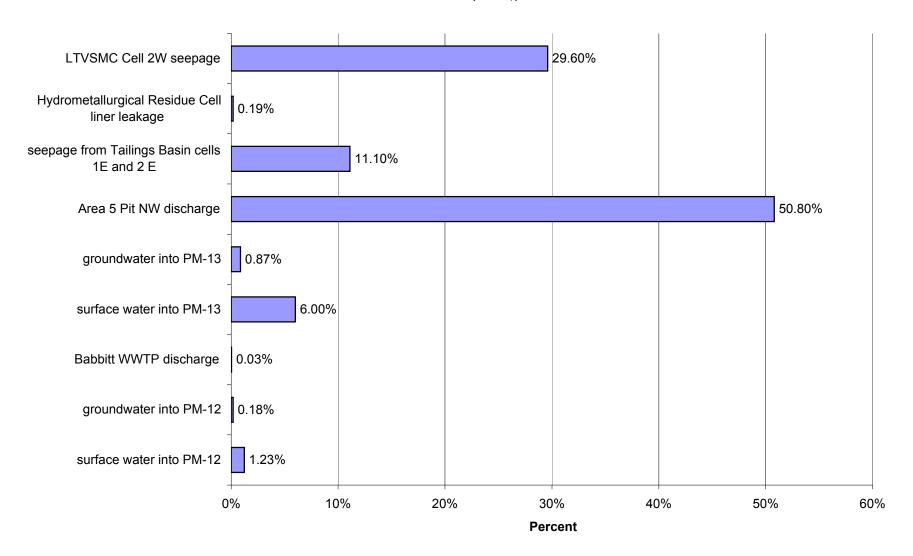

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Antimony (Sb)

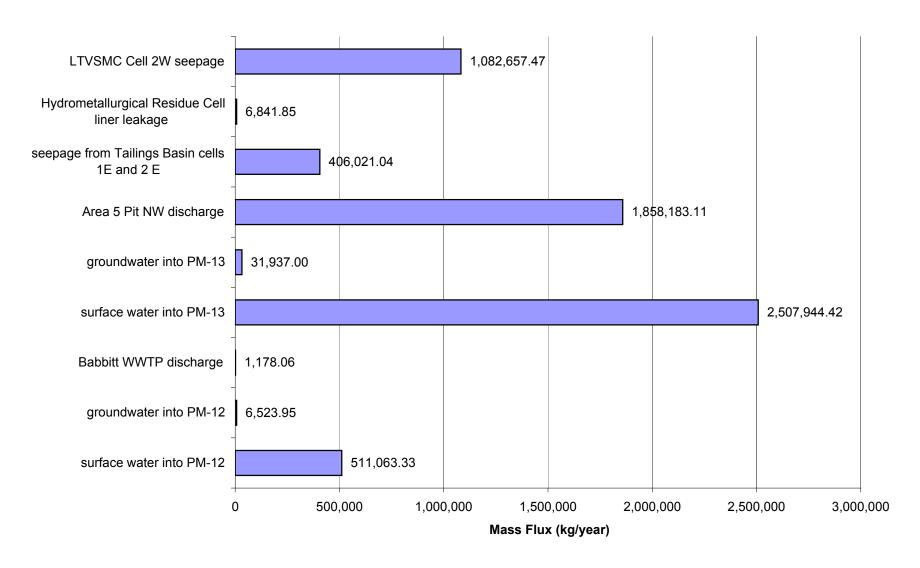

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Average Flow for Antimony (Sb)

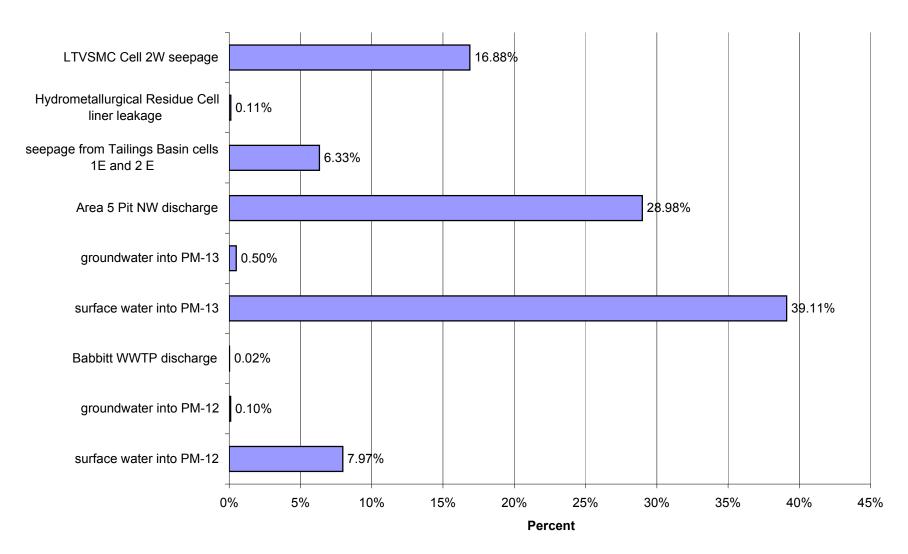

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Antimony (Sb)

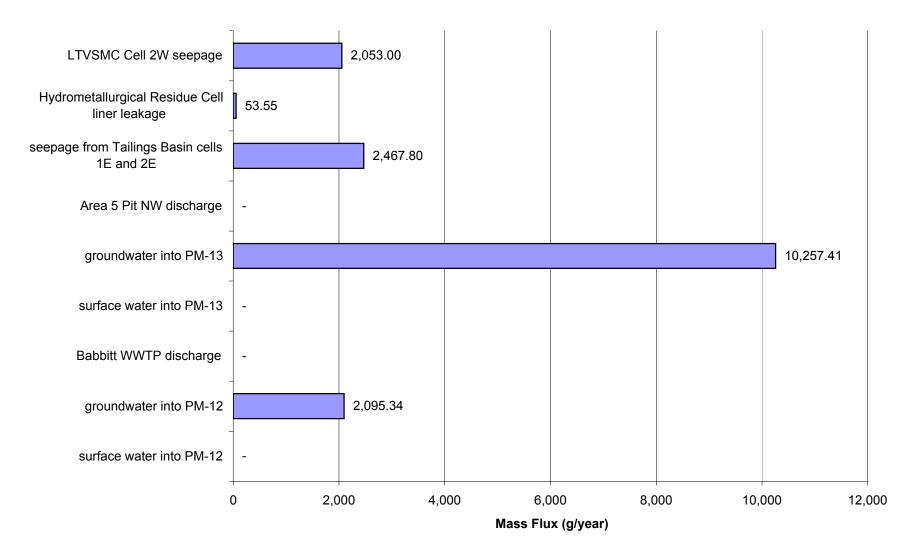

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Antimony (Sb)

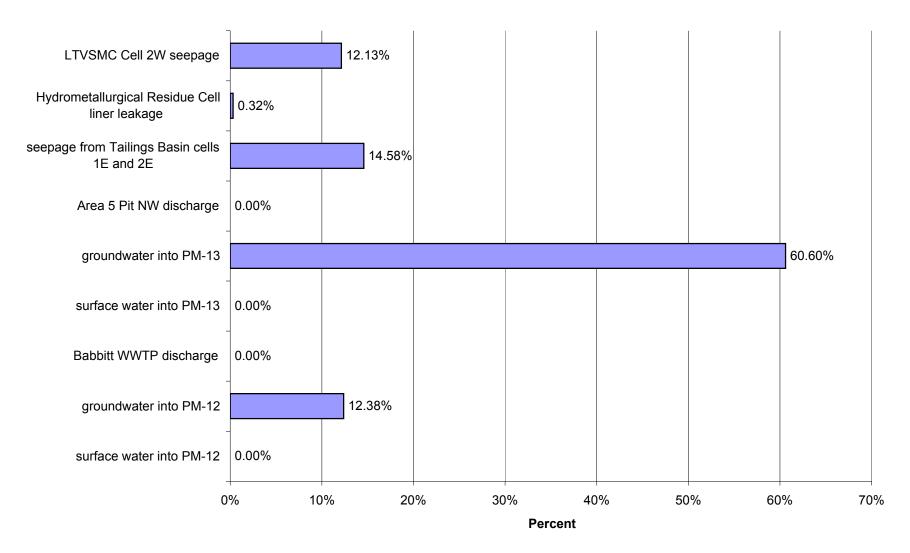

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for Low Flow for Sulfate (SO₄)

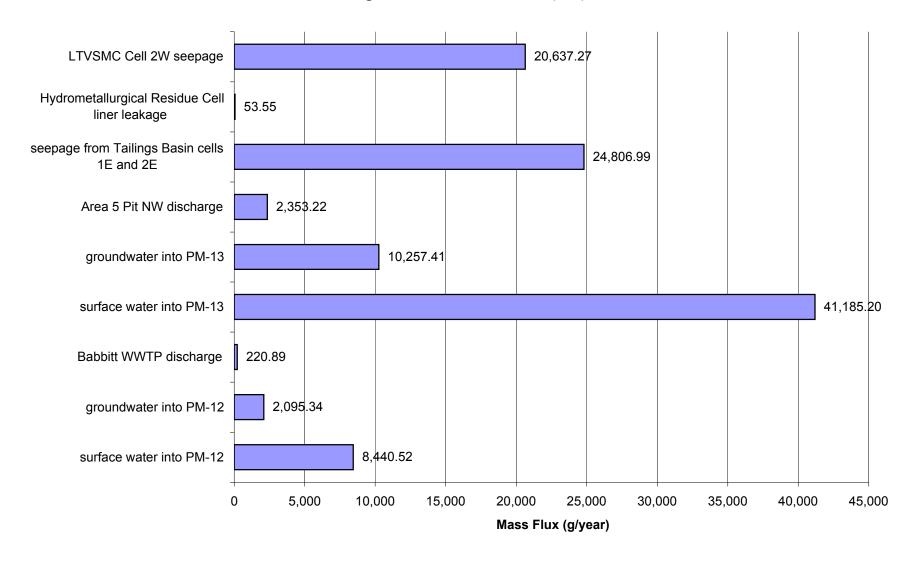

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Low Flow for Sulfate (SO₄)

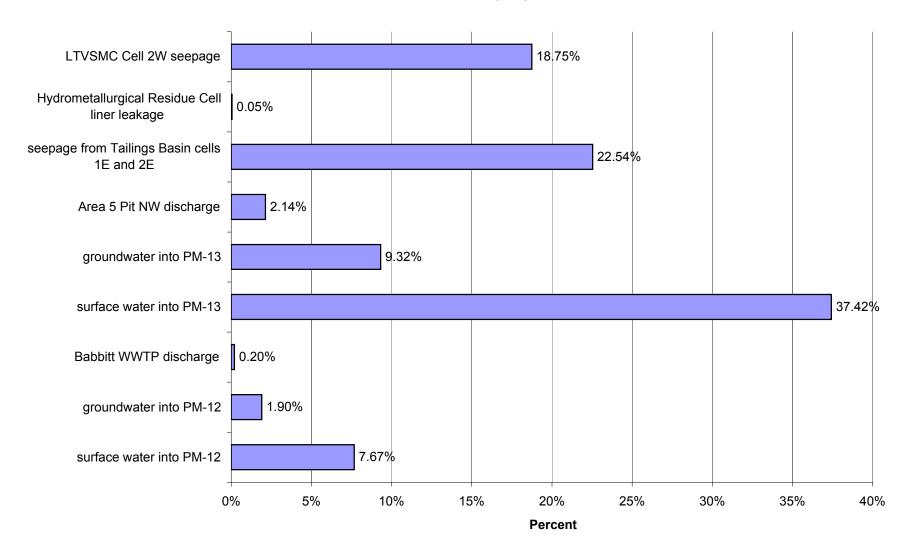

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for Average Flow for Sulfate (SO₄)

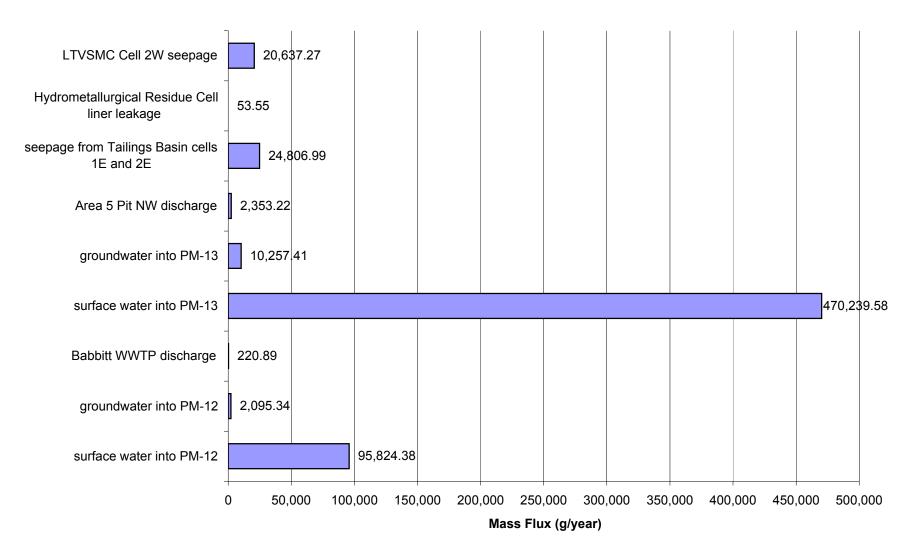

Proposed Action: Percent of Impacts at PM-13 in Year 1 for Average Flow for Sulfate (SO₄)

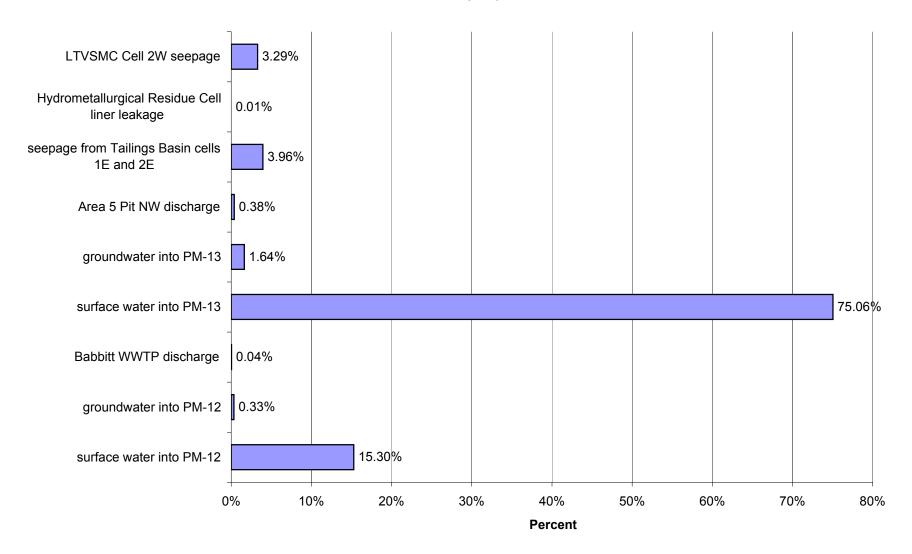

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for High Flow for Sulfate (SO₄)

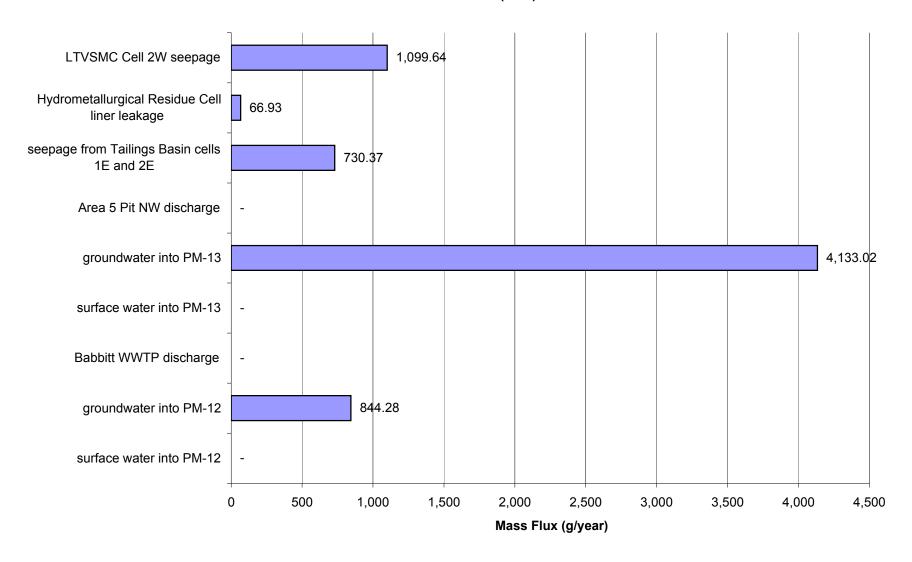

Proposed Action: Percent of Impacts at PM-13 in Year 1 for High Flow for Sulfate (SO₄)

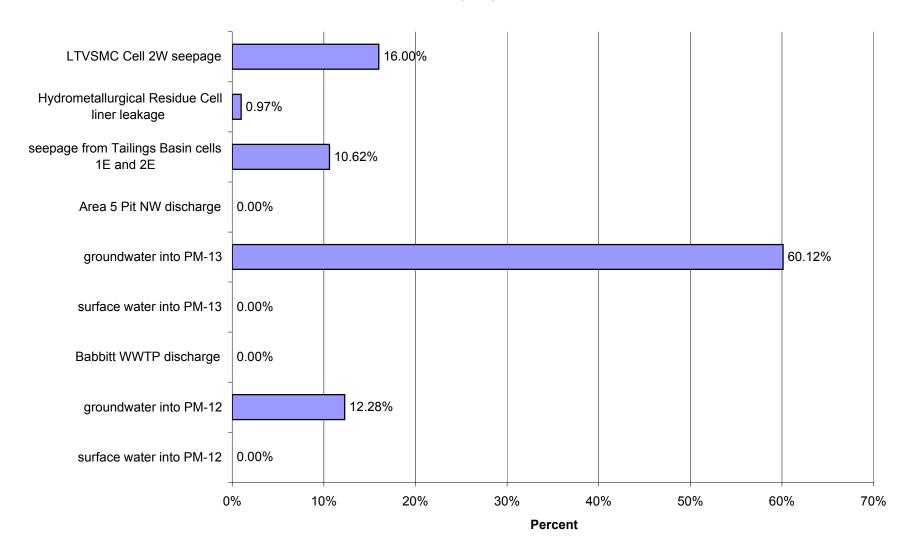

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Arsenic (As)

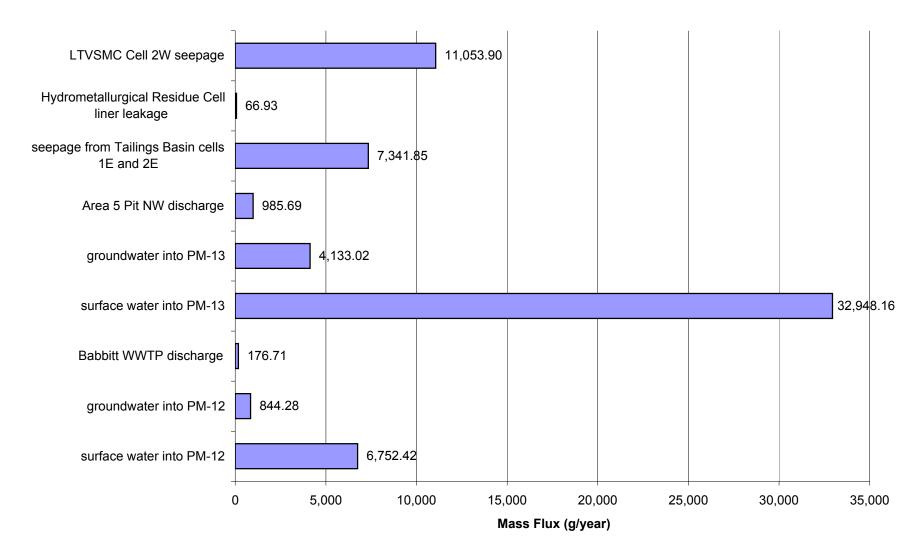

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Low Flow for Arsenic (As)

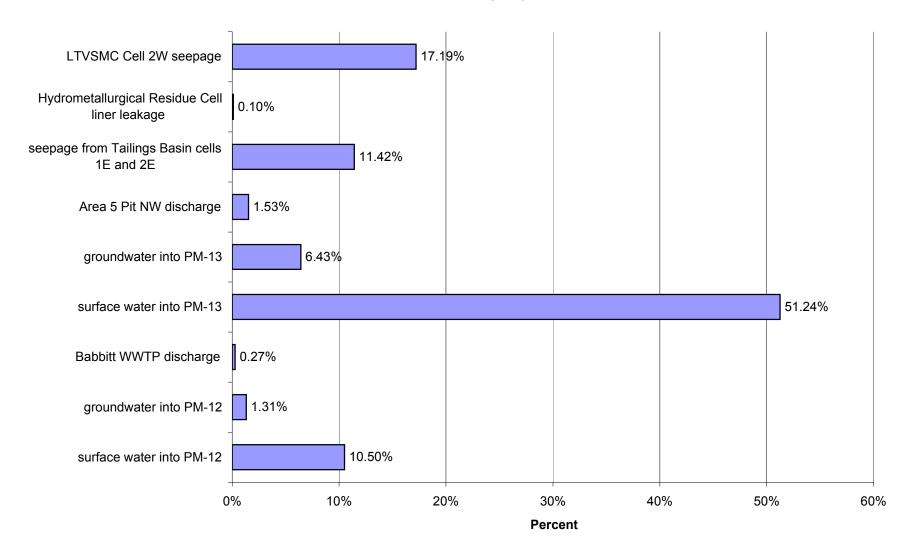

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Arsenic (As)

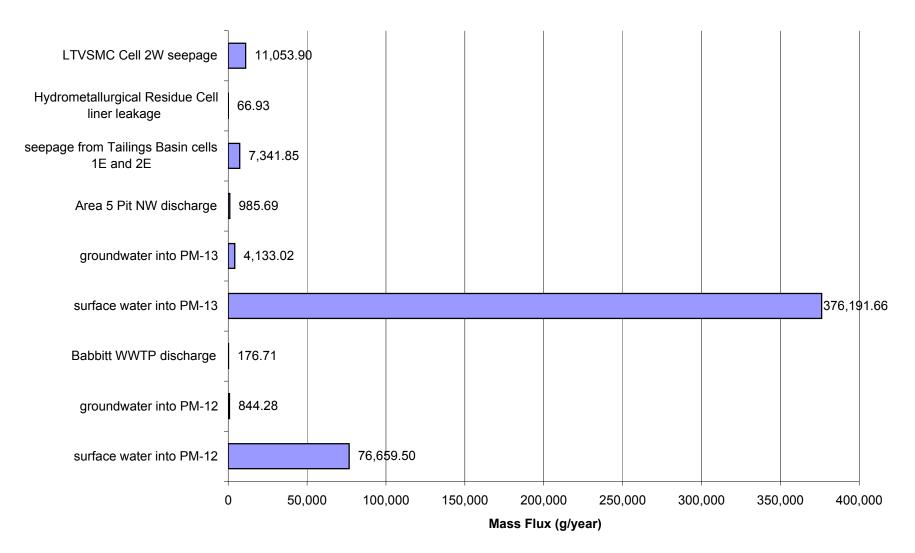

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Average Flow for Arsenic (As)

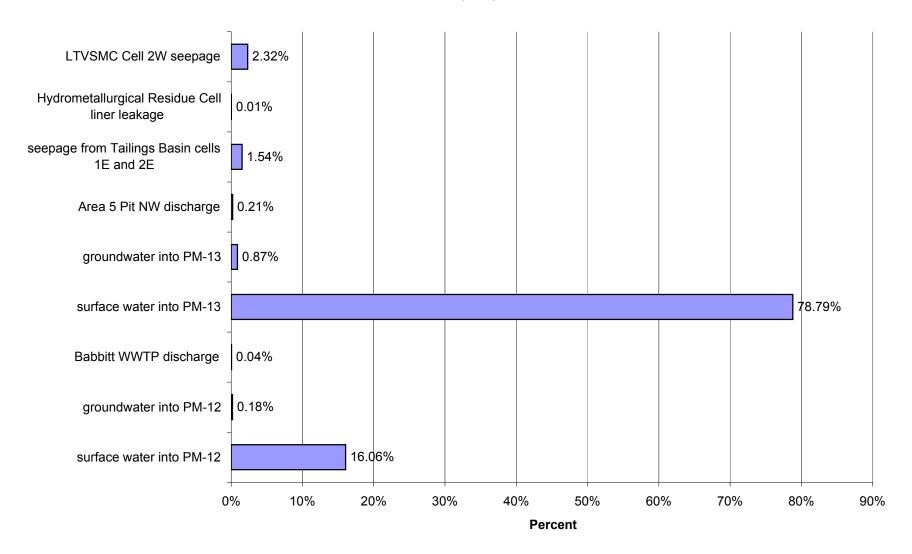

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Arsenic (As)

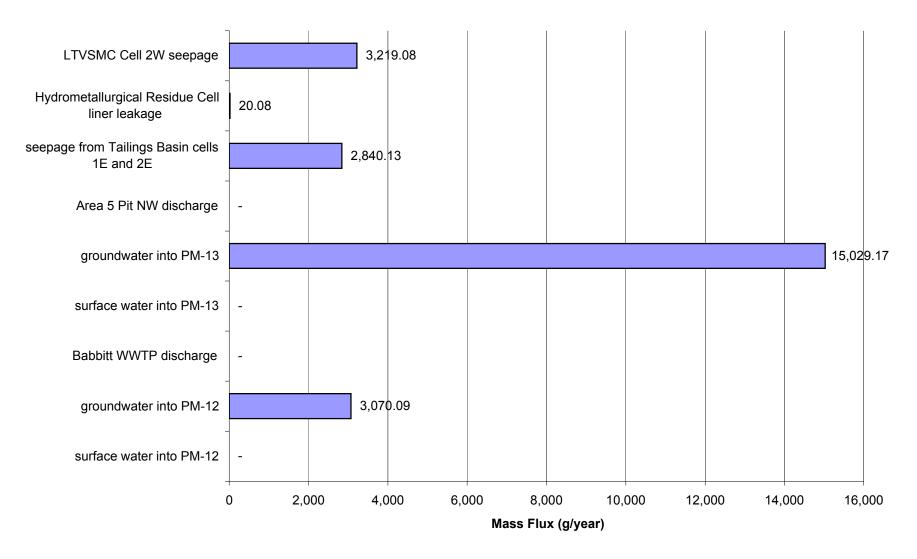

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Arsenic (As)

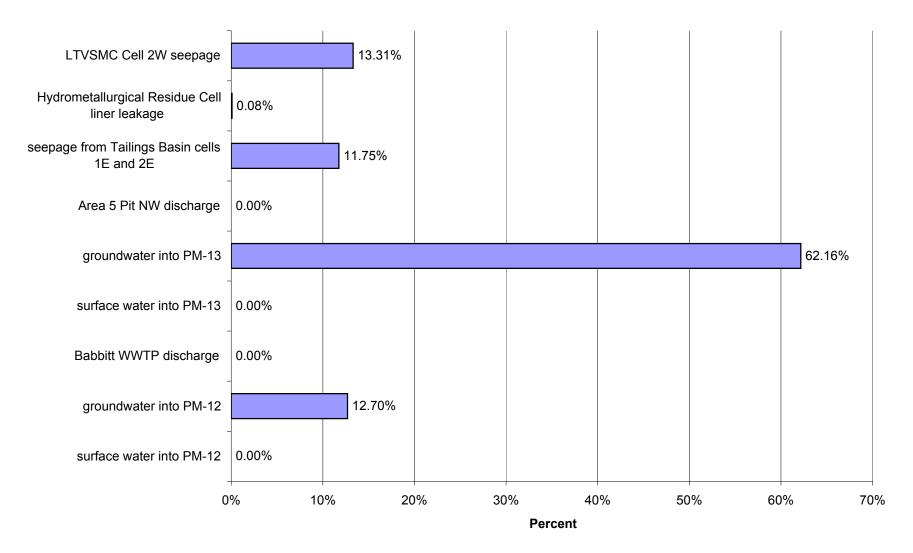

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Cobalt (Co)

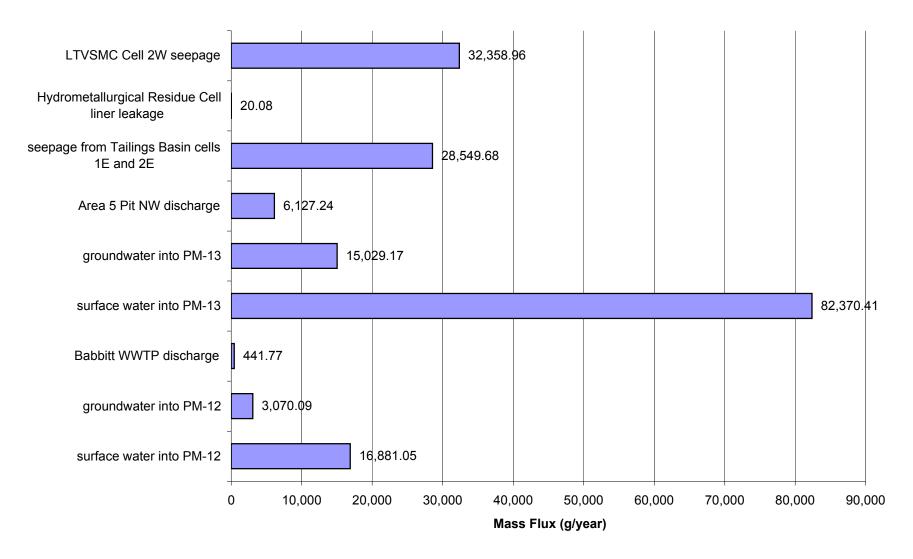

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Low Flow for Cobalt (Co)

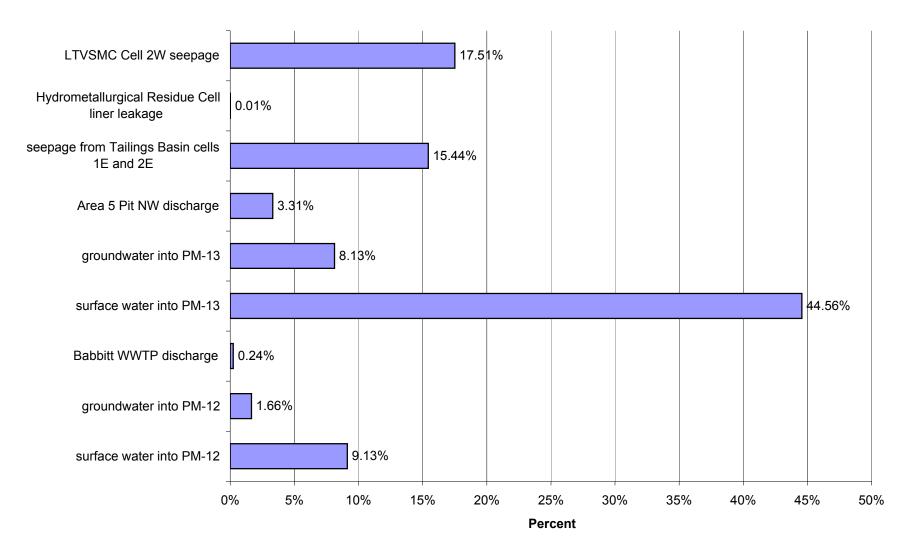

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Cobalt (Co)

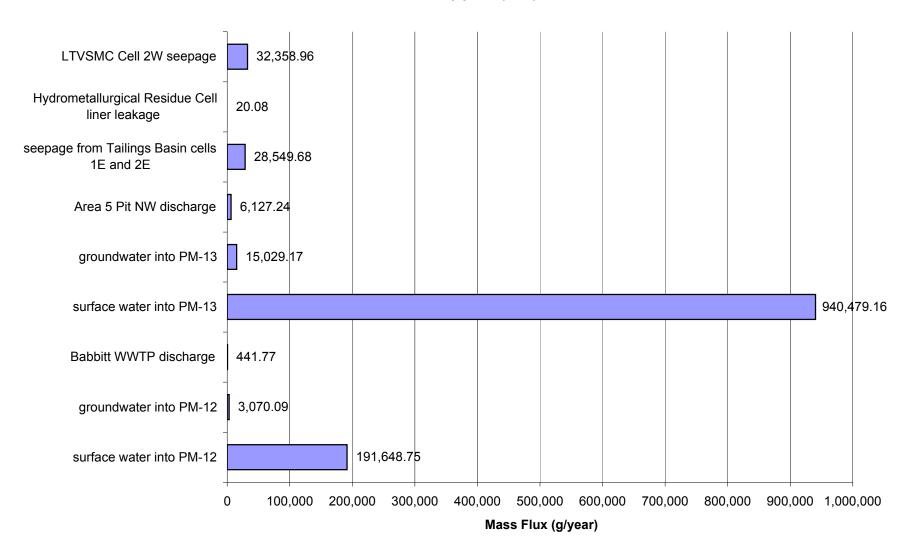

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Average Flow for Cobalt (Co)

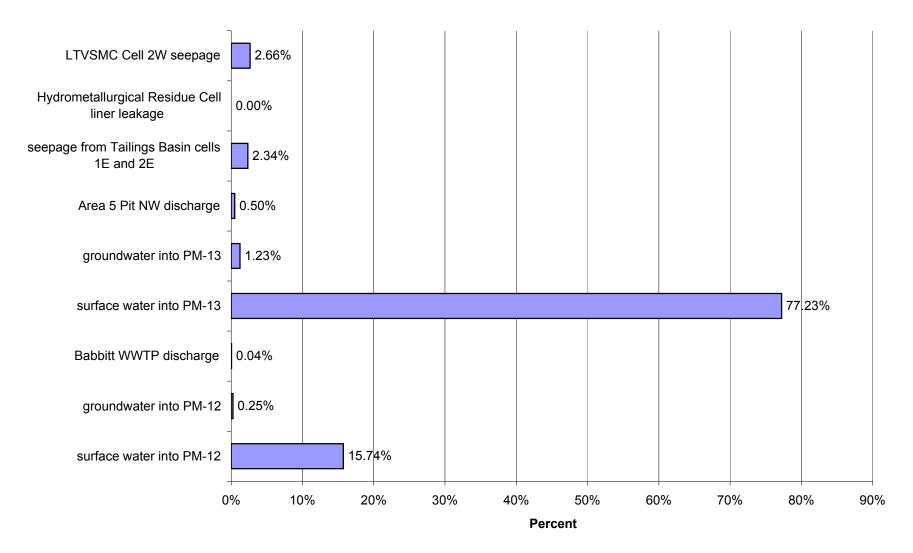

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Cobalt (Co)

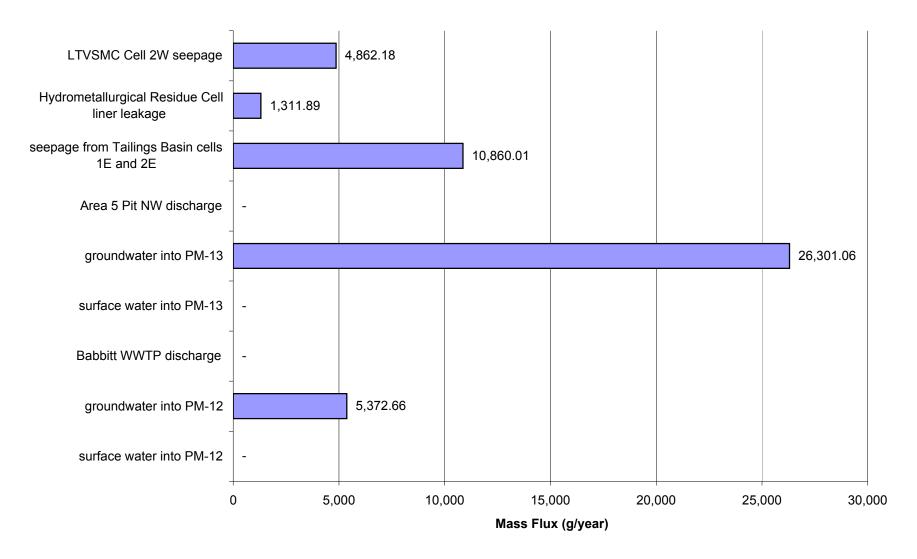

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Cobalt (Co)

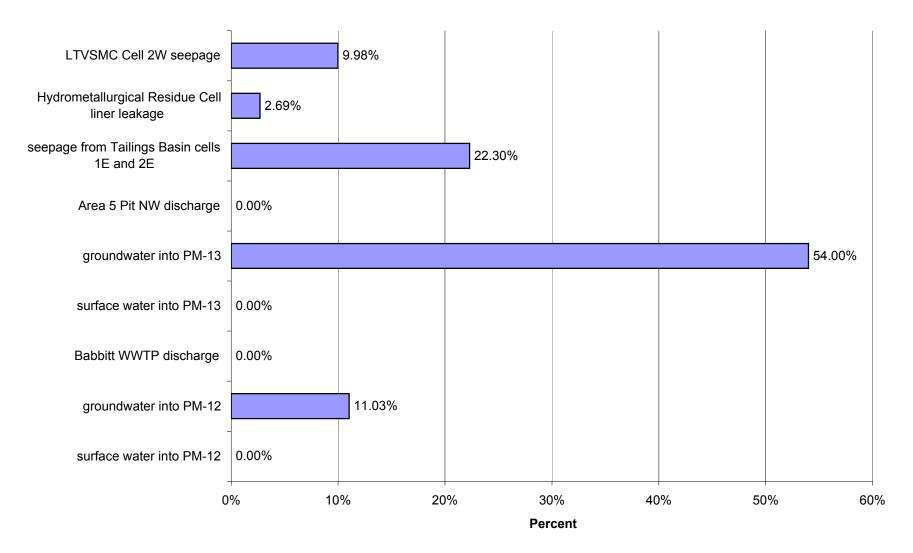

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Copper (Cu)

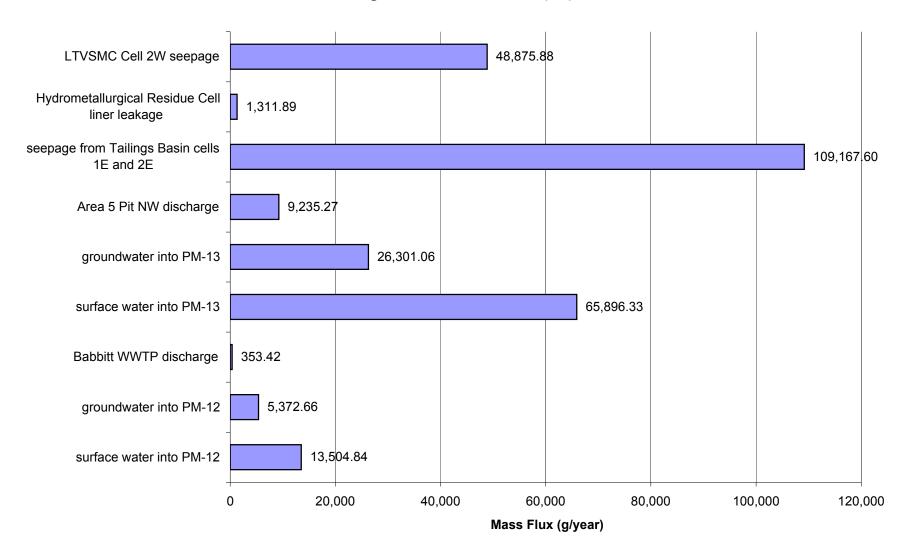

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Low Flow for Copper (Cu)

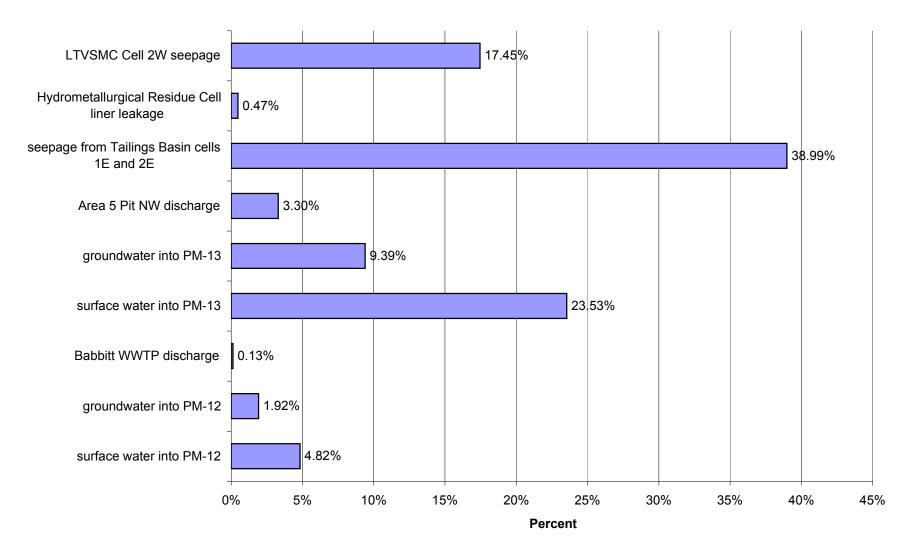

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Copper (Cu)

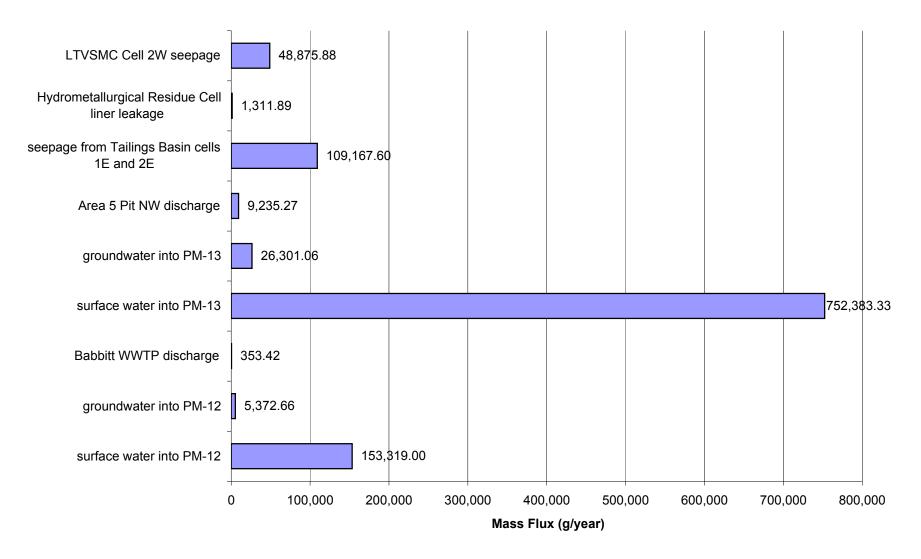

Proposed Action: Percent of Impacts at PM-13 in Closure for Year 5 Flow for Copper (Cu)

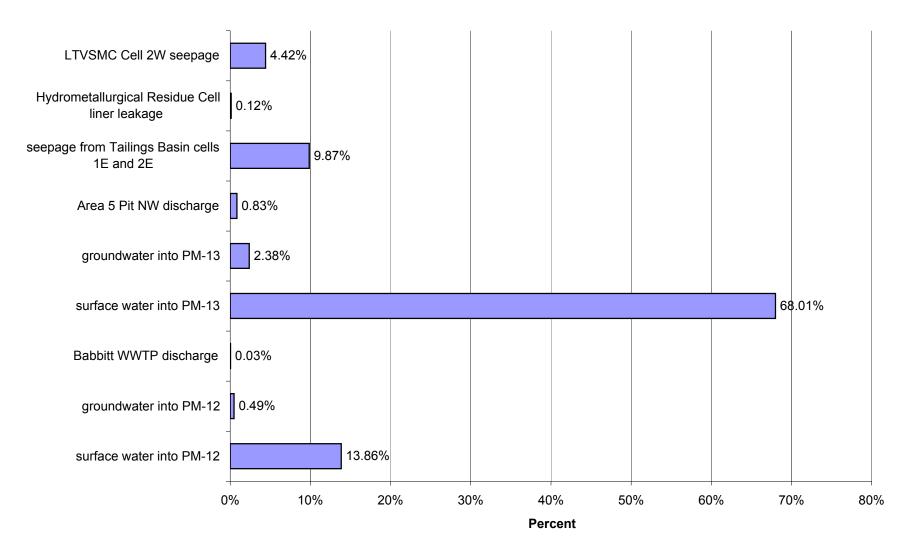

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Copper (Cu)

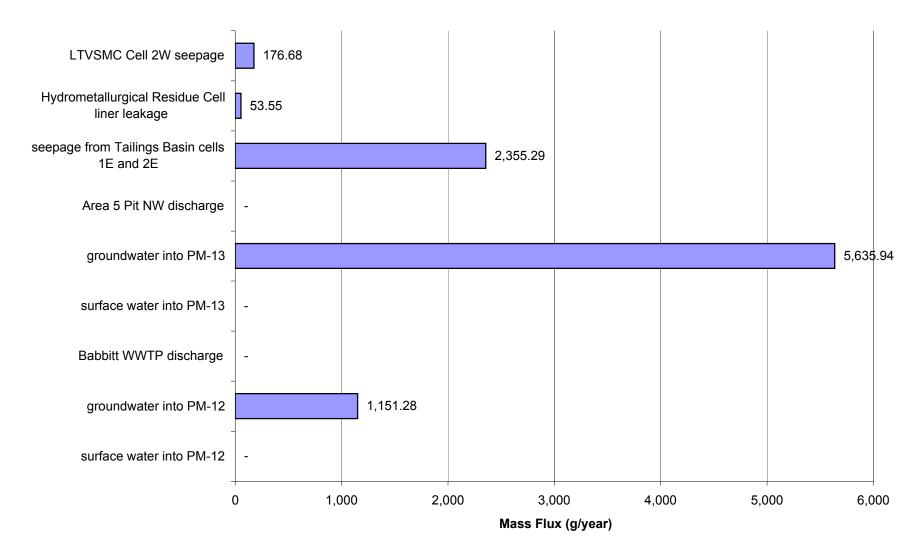

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Copper (Cu)

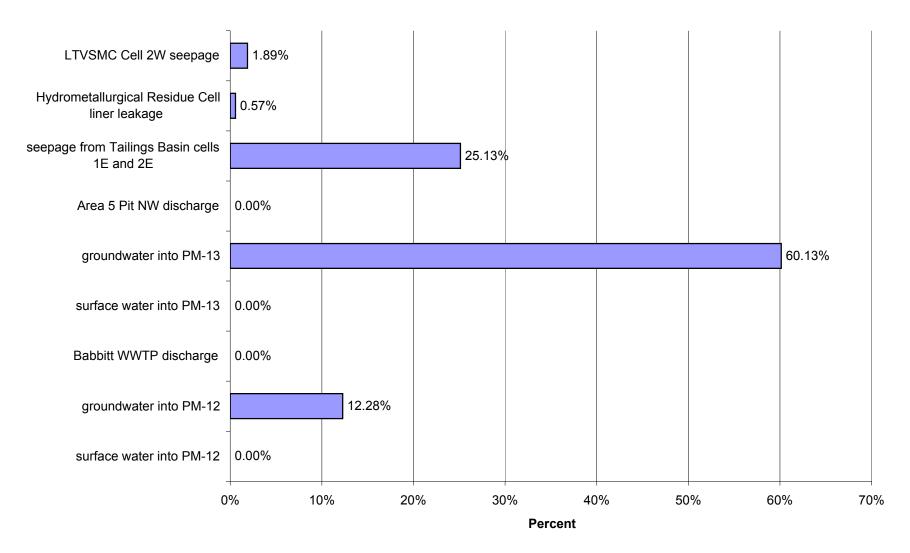

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Nickel (Ni)

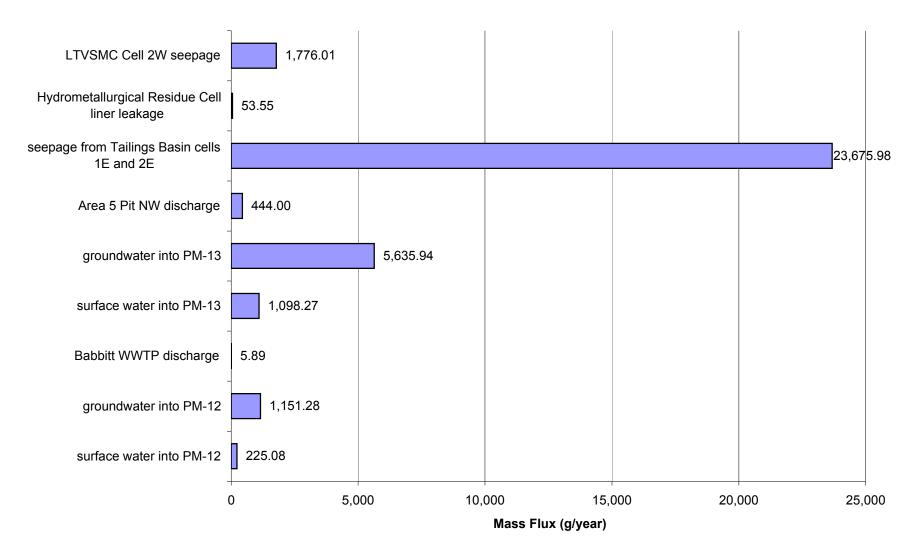

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Low Flow for Nickel (Ni)

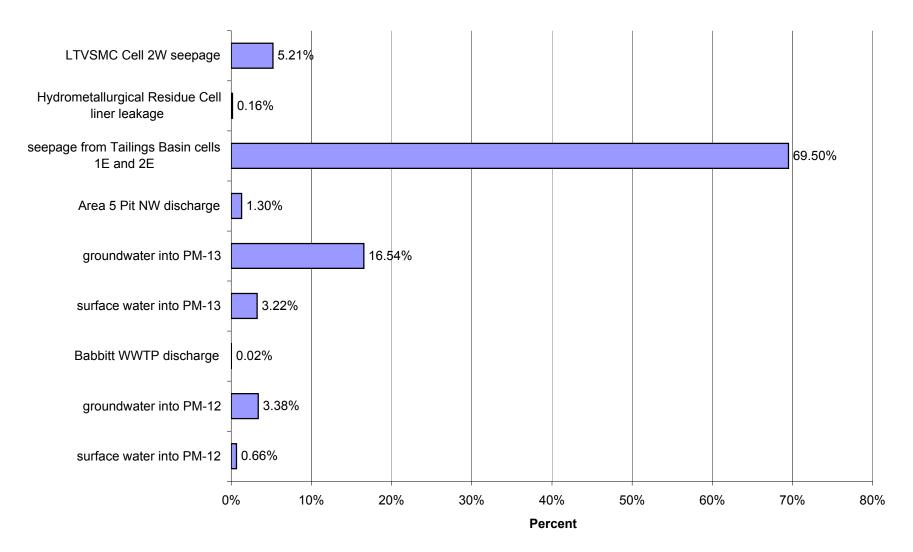

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Nickel (Ni)

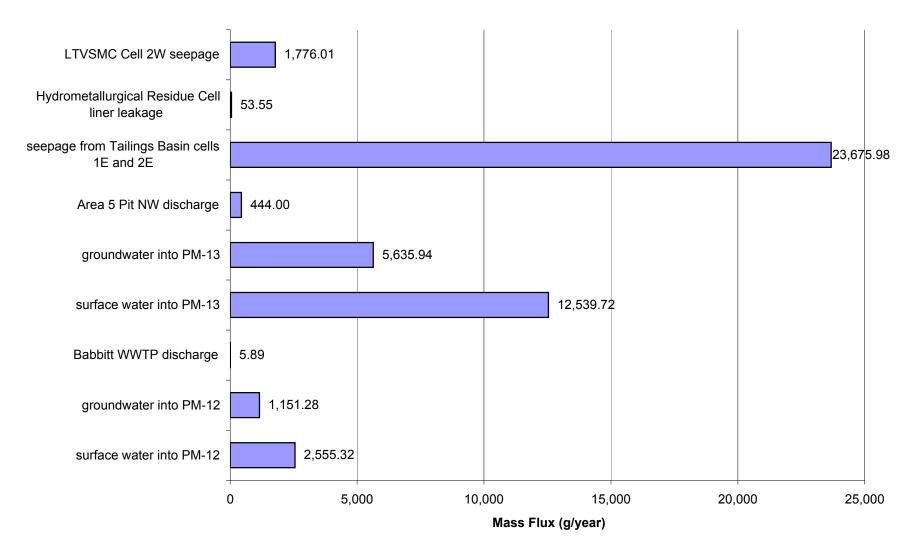

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Average Flow for Nickel (Ni)

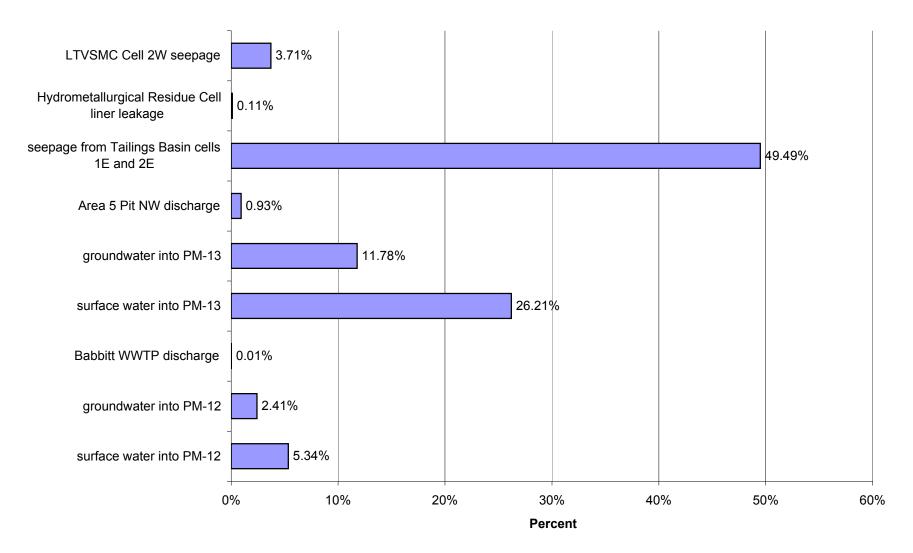

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Nickel (Ni)

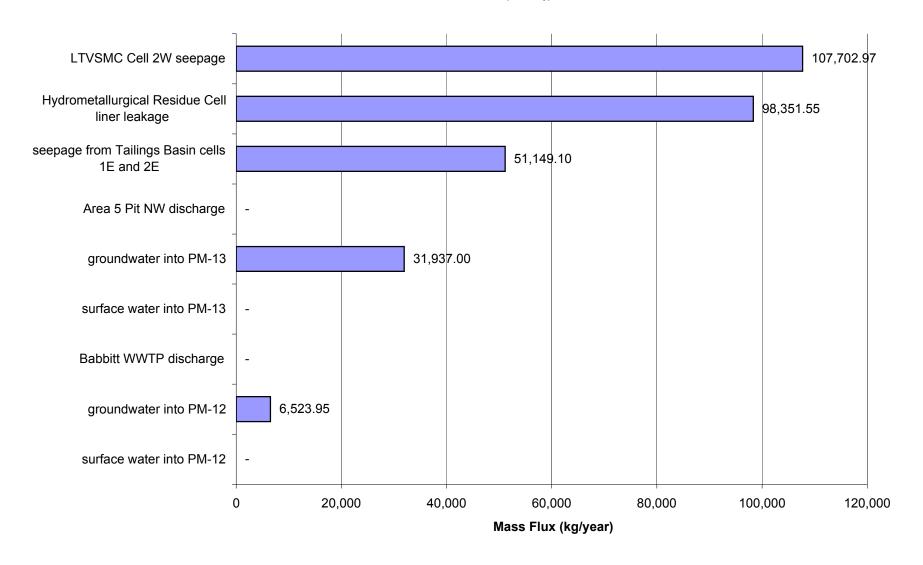

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Nickel (Ni)

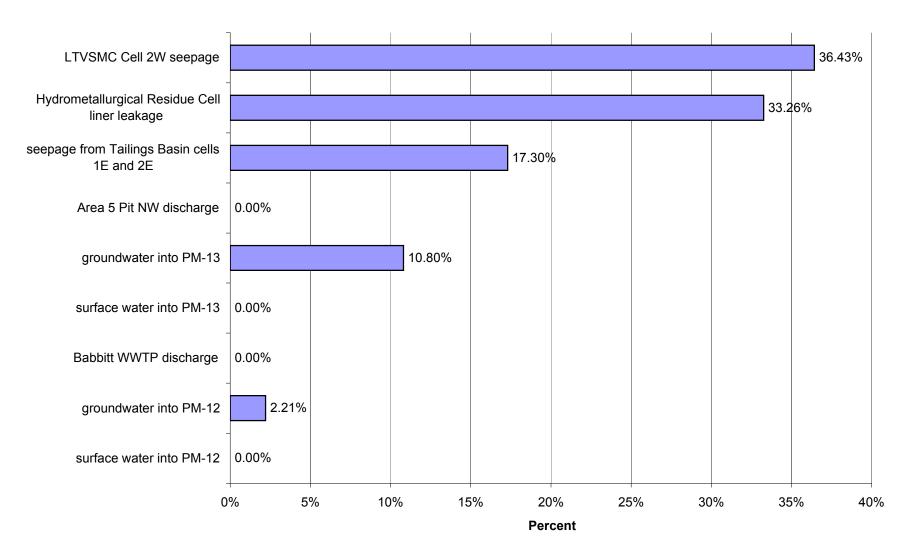

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Antimony (Sb)

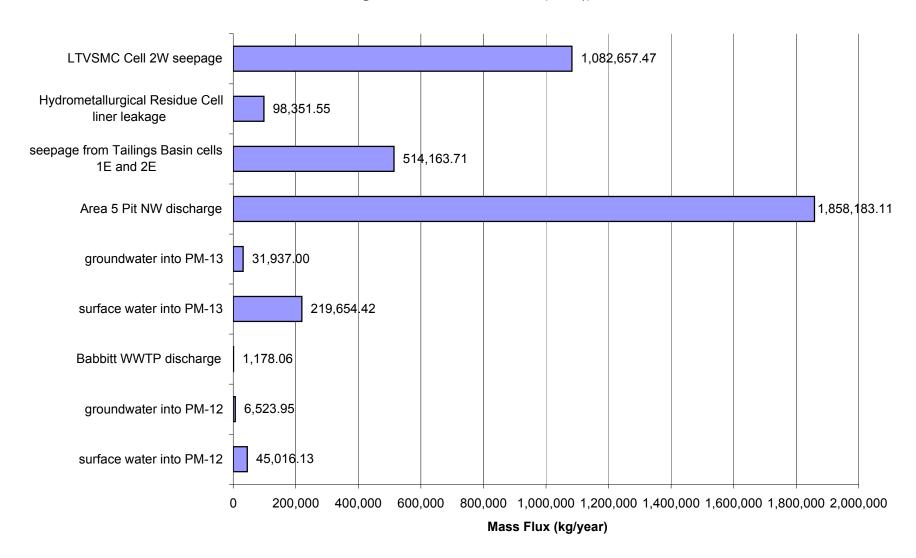

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Low Flow for Antimony (Sb)

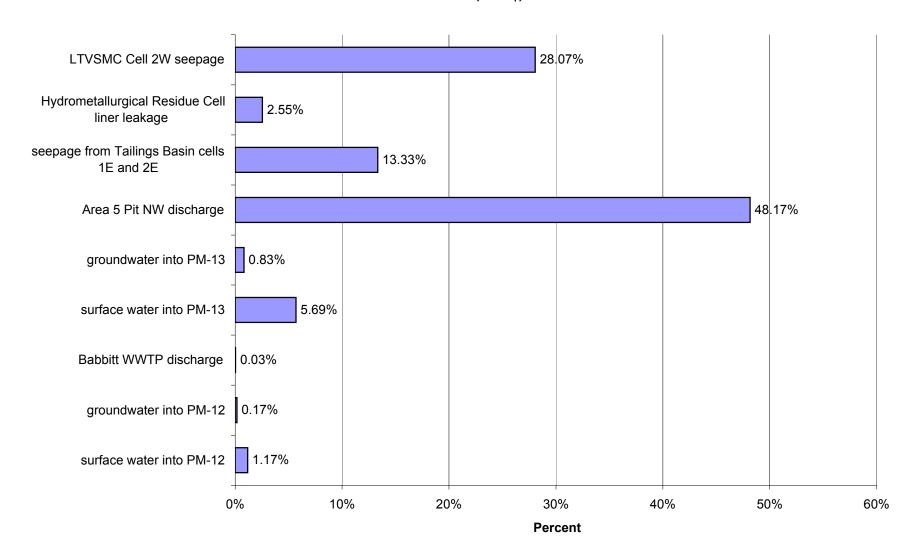

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Antimony(Sb)

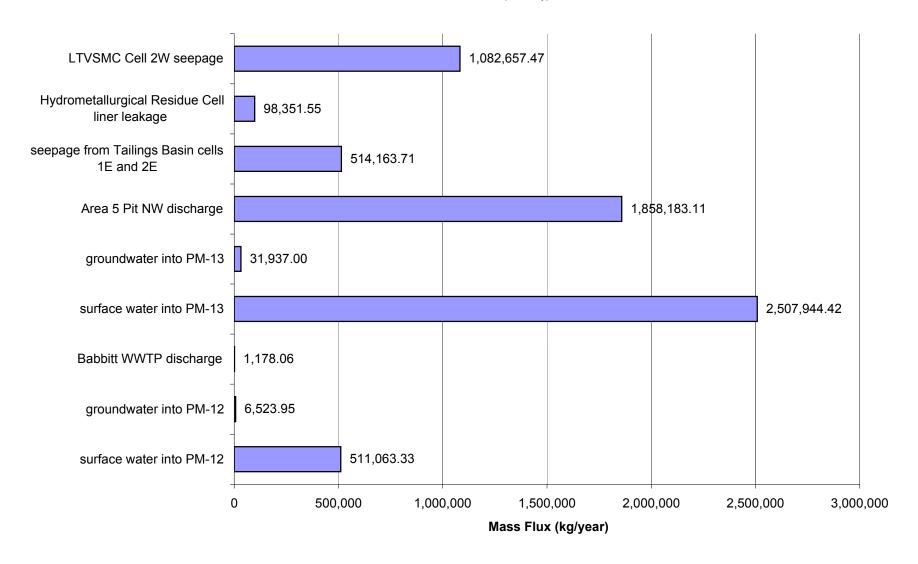

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Average Flow for Antimony (Sb)

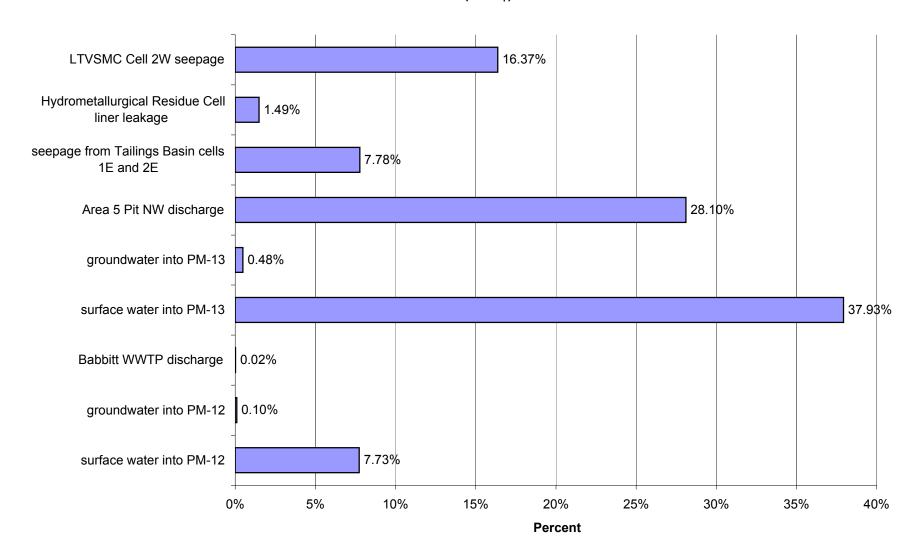

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Antimony (Sb)

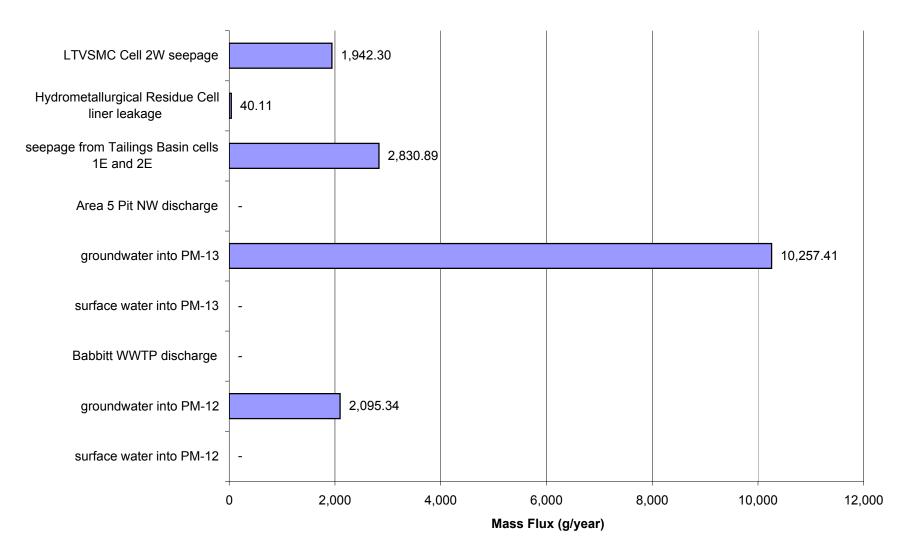

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Antimony (Sb)

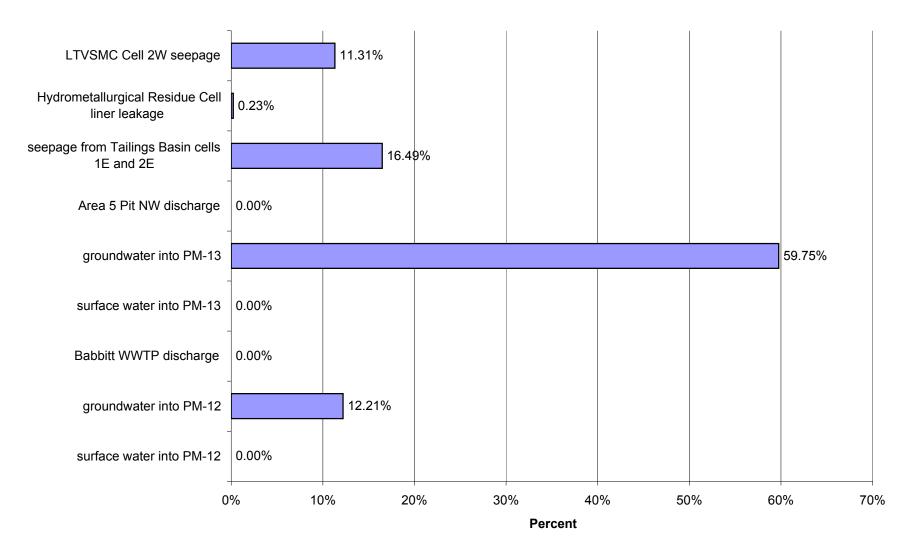

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for Low Flow for Sulfate (SO₄)

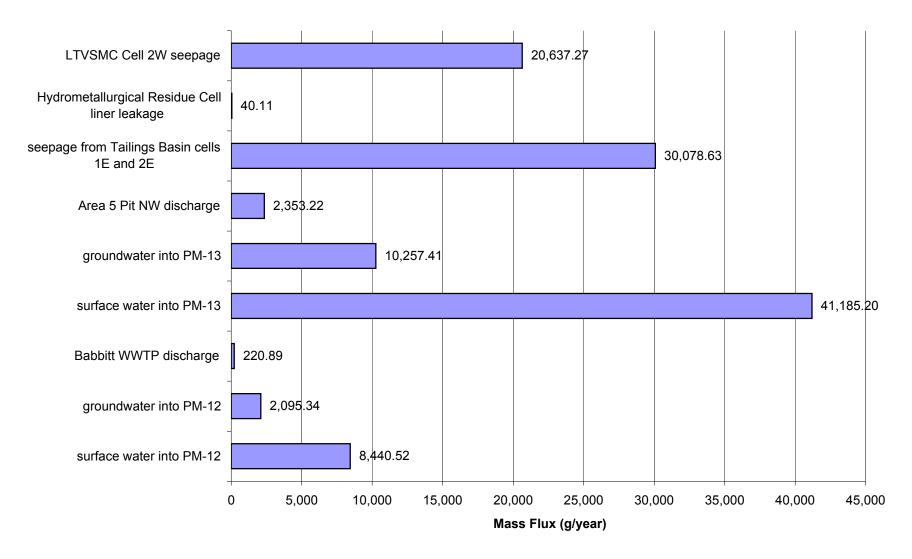

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Low Flow for Sulfate (SO₄)

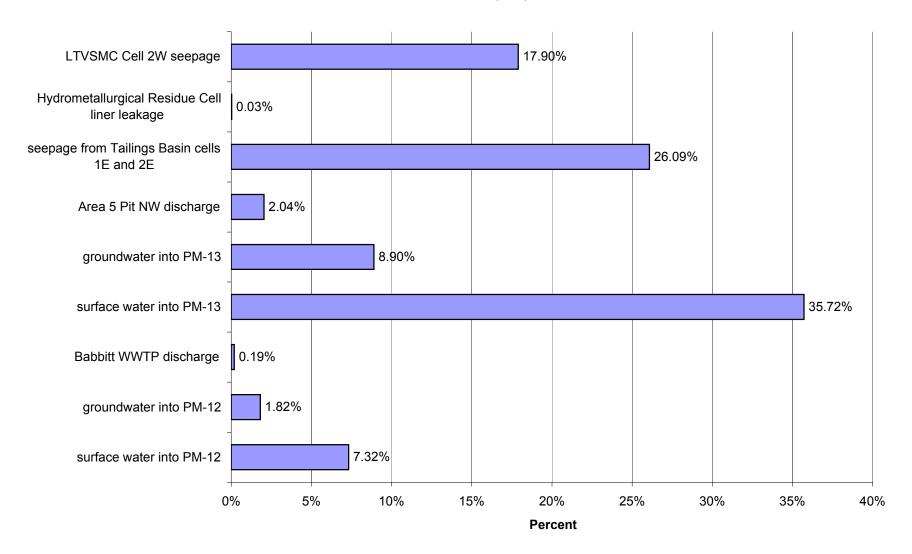

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for Average Flow for Sulfate (SO₄)

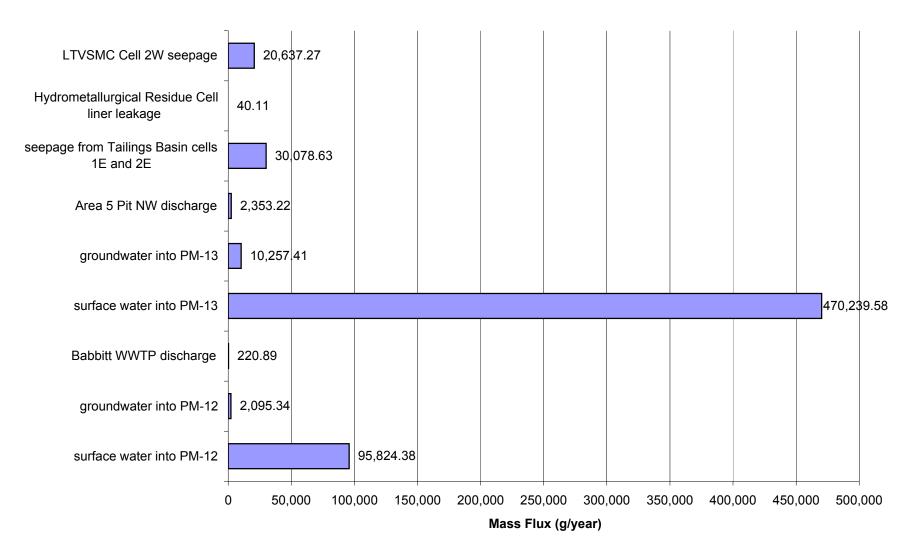

Proposed Action: Percent of Impacts at PM-13 in Year 5 for Average Flow for Sulfate (SO₄)

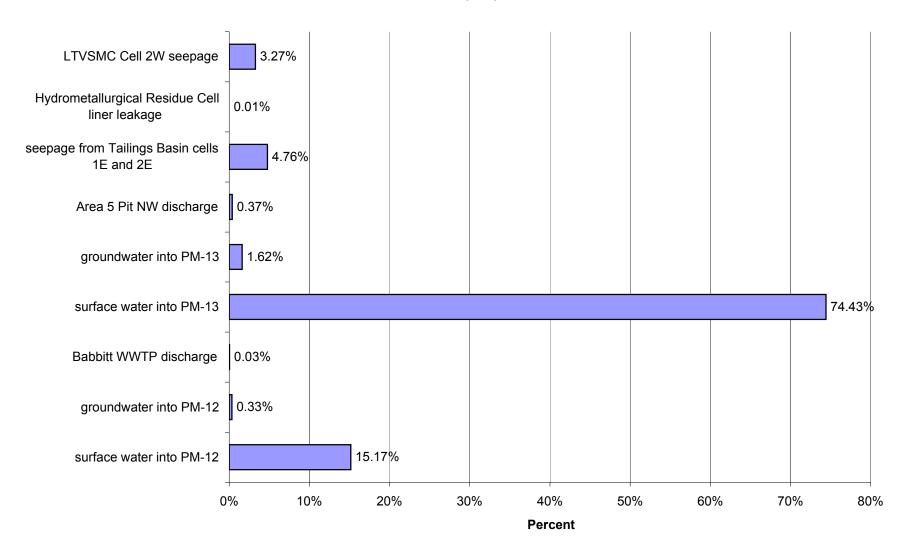

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for High Flow for Sulfate (SO₄)

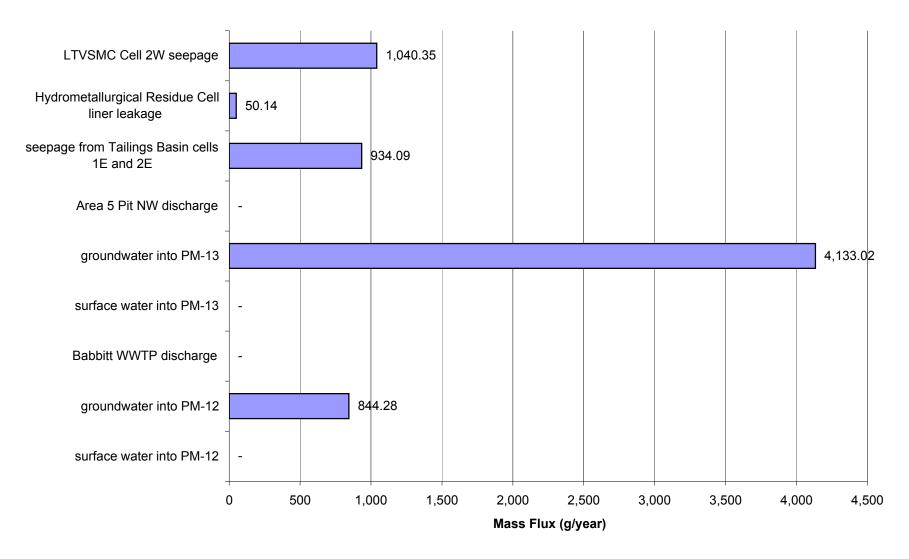

Proposed Action: Percent of Impacts at PM-13 in Year 5 for High Flow for Sulfate (SO₄)

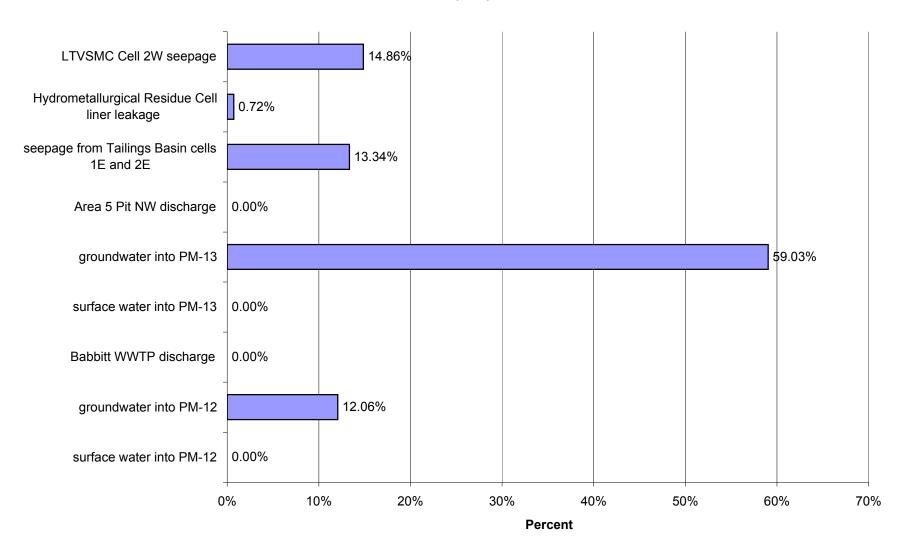

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Low Flow for Arsenic (As)

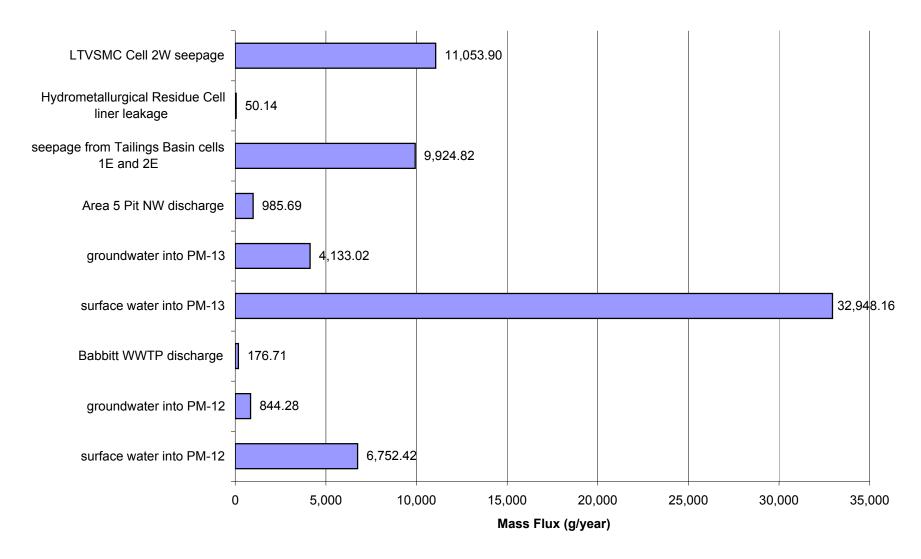

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Low Flow for Arsenic (As)

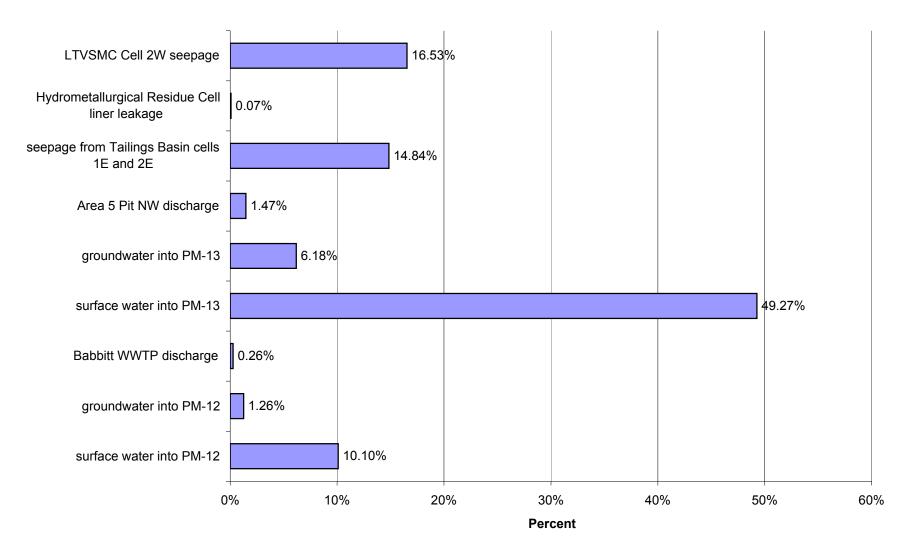

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Average Flow for Arsenic (As)

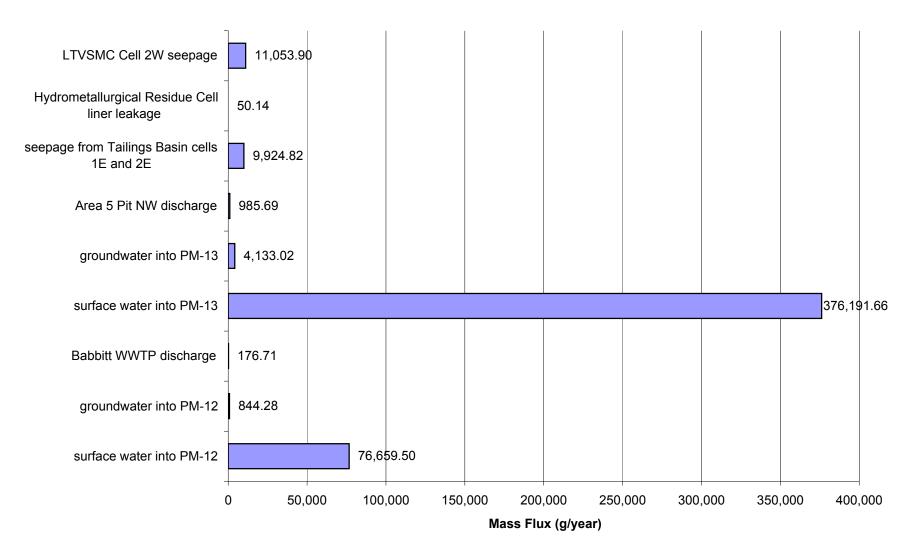

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Average Flow for Arsenic (As)

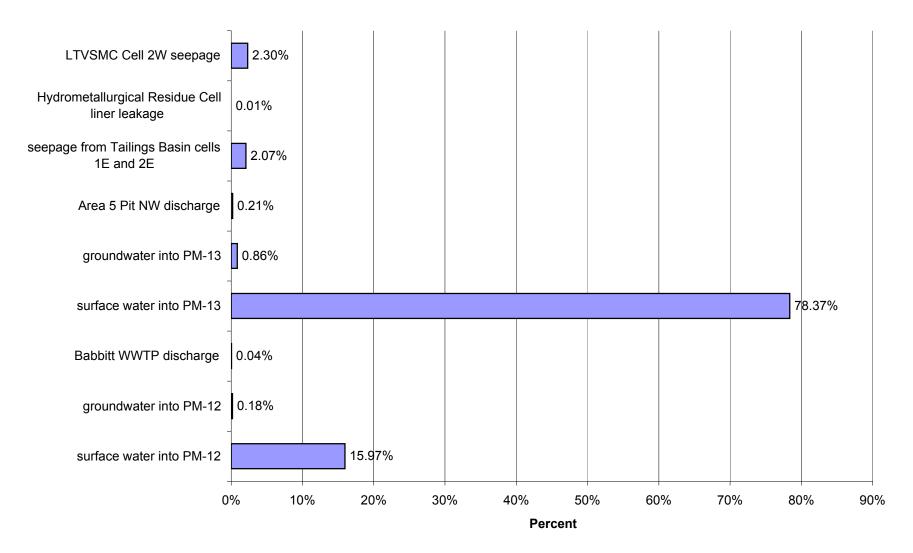

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for High Flow for Arsenic (As)

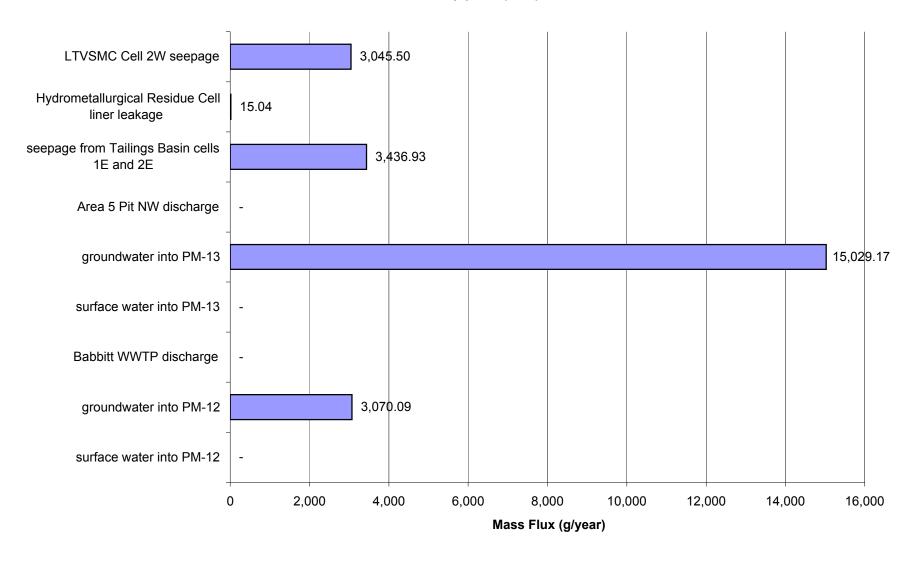

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Arsenic (As)

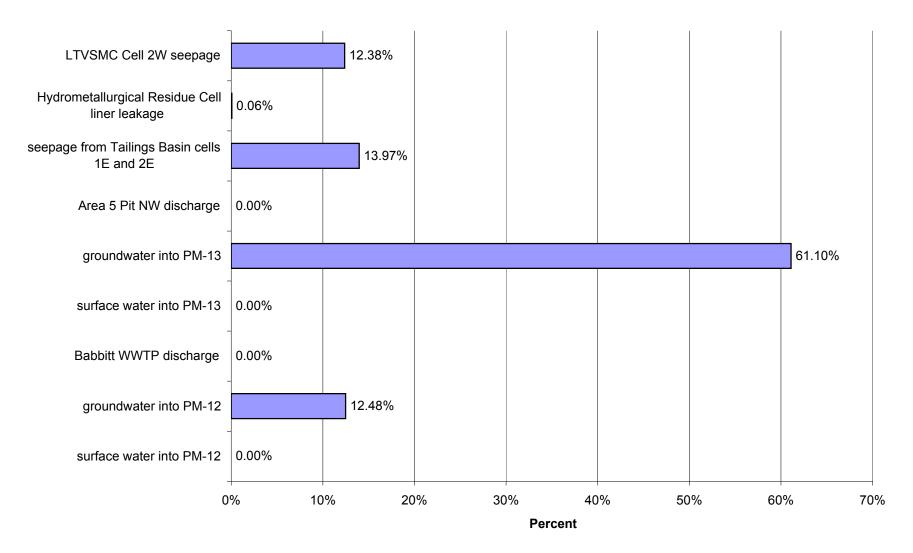

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Low Flow for Cobalt (Co)

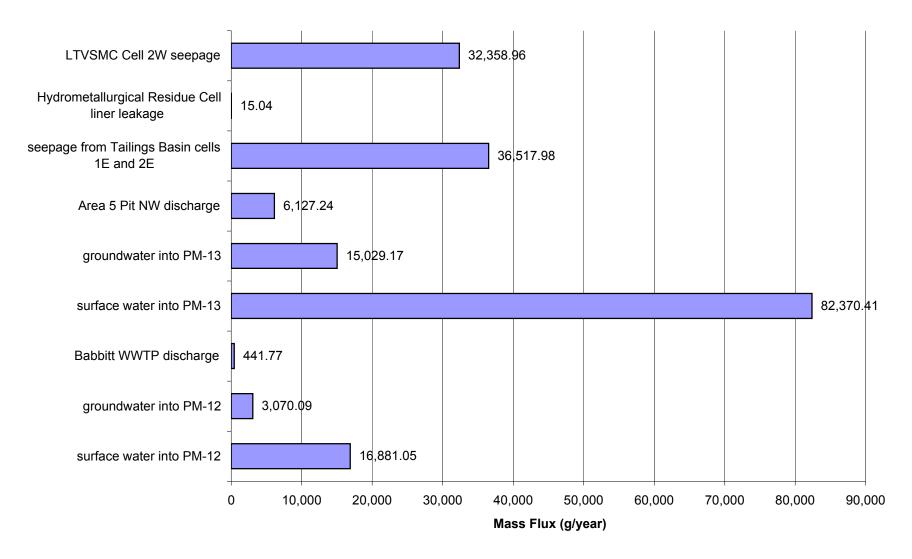

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Low Flow for Cobalt (Co)

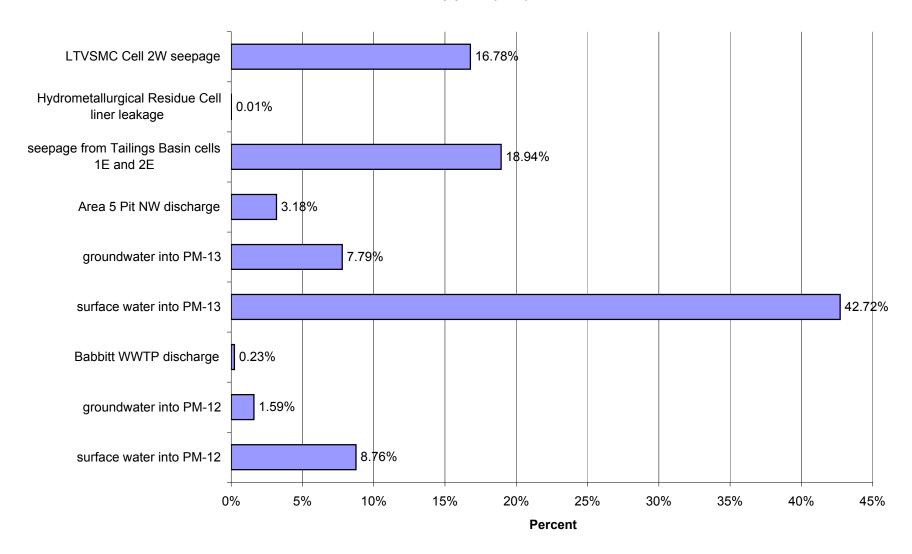

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Average Flow for Cobalt (Co)

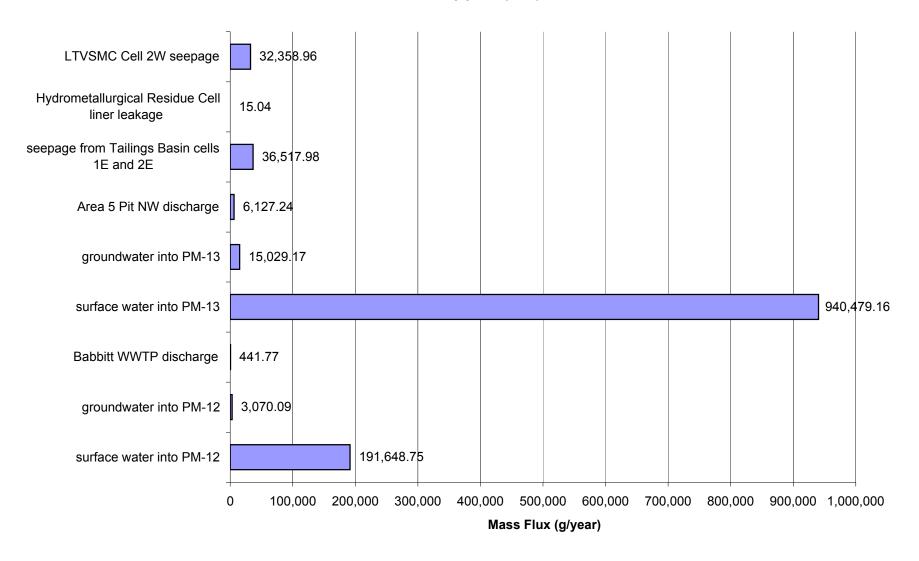

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Average Flow for Cobalt (Co)

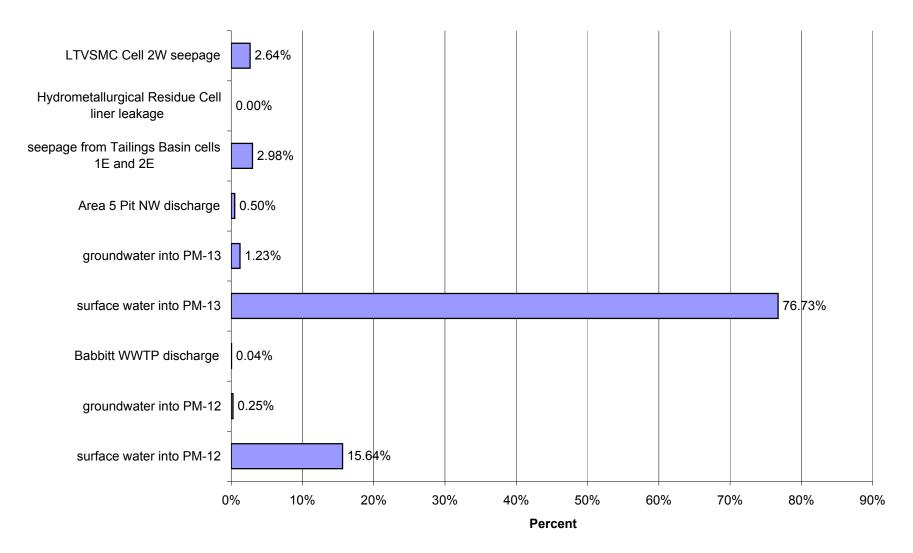

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for High Flow for Cobalt (Co)

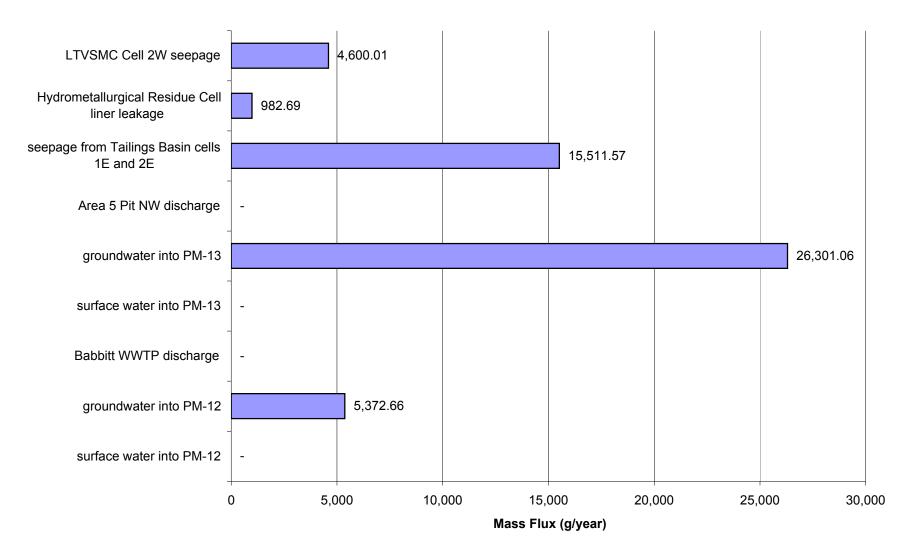

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Cobalt (Co)

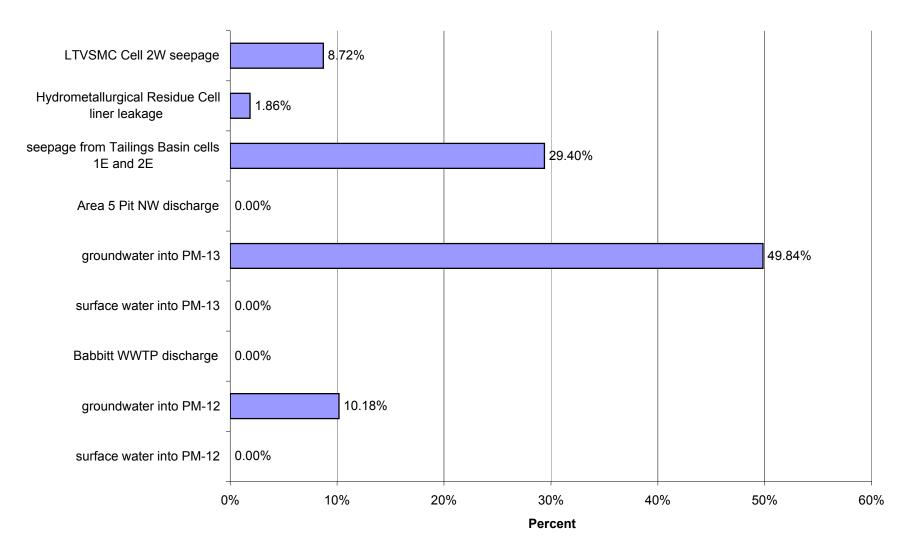

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Low Flow for Copper (Cu)

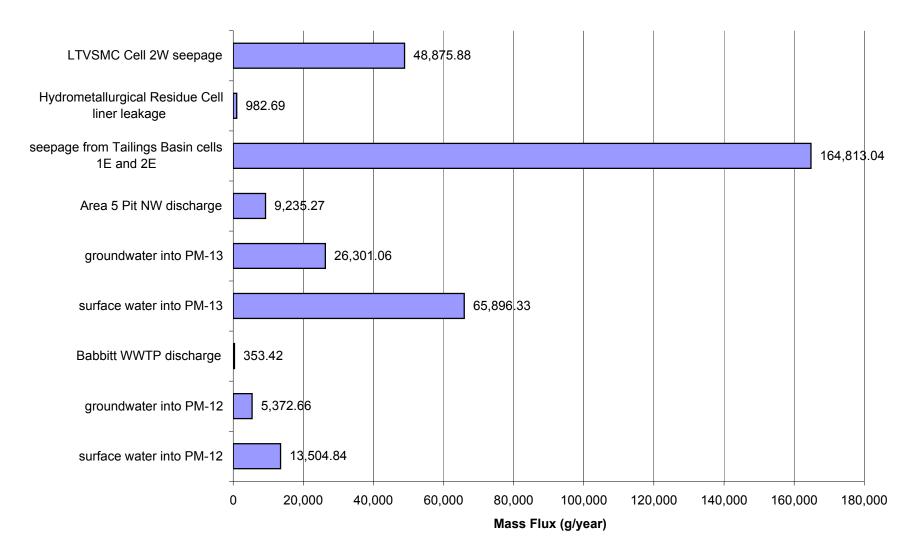

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Low Flow for Copper (Cu)

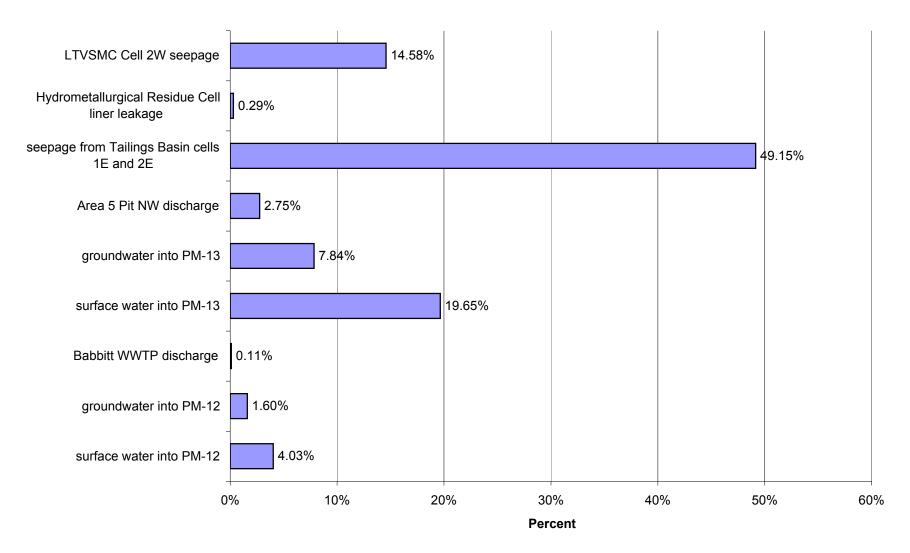

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Average Flow for Copper (Cu)

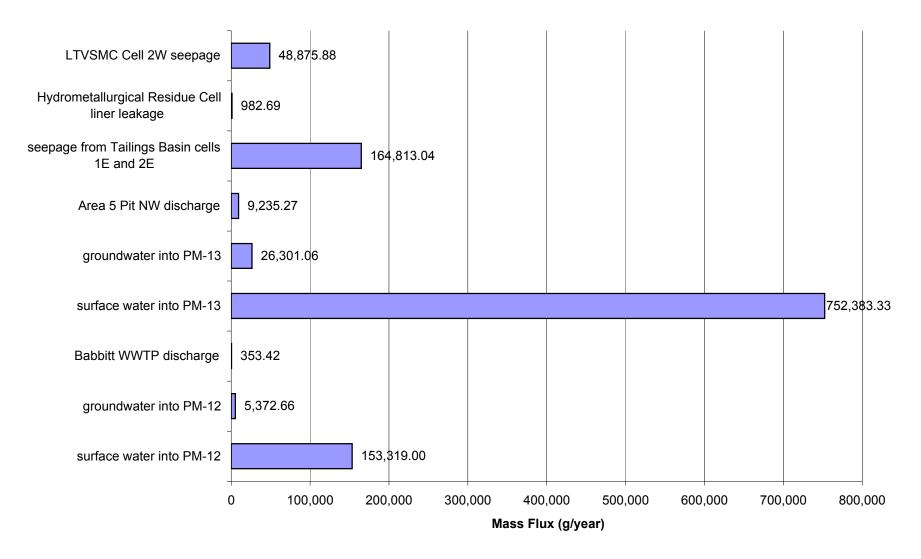

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Average Flow for Copper (Cu)

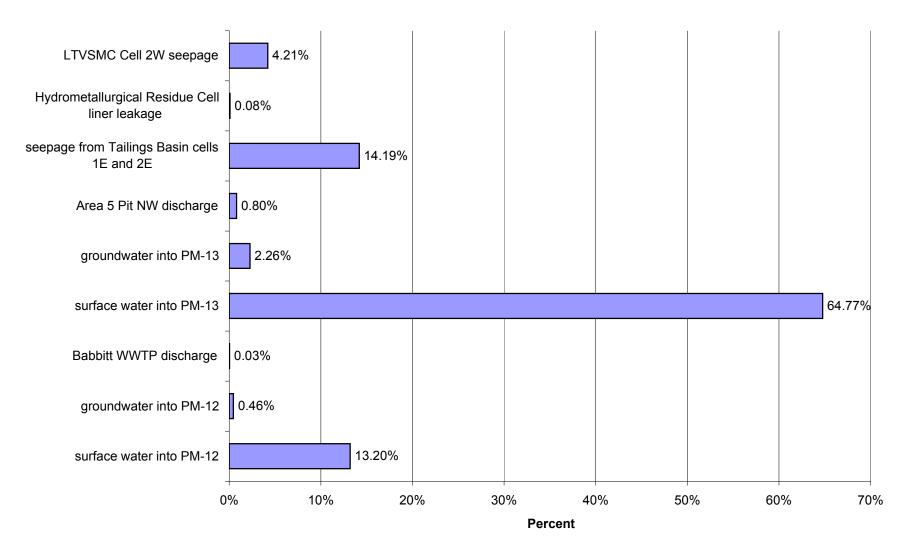

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for High Flow for Copper (Cu)

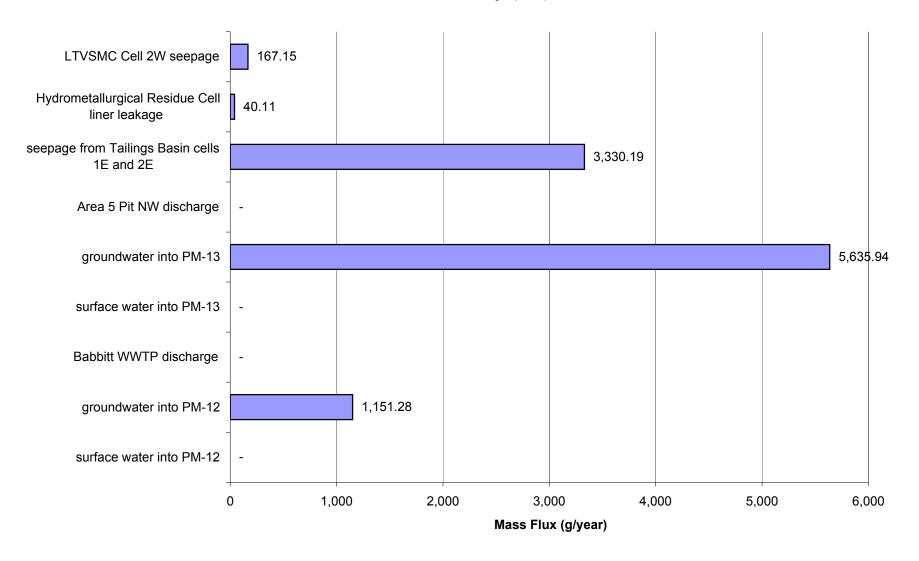

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Copper (Cu)

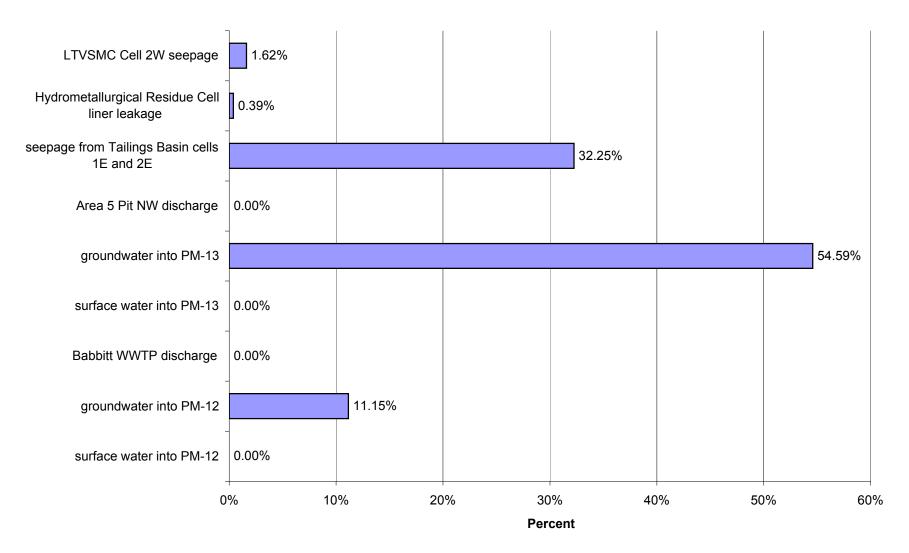

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Low Flow for Nickel (Ni)

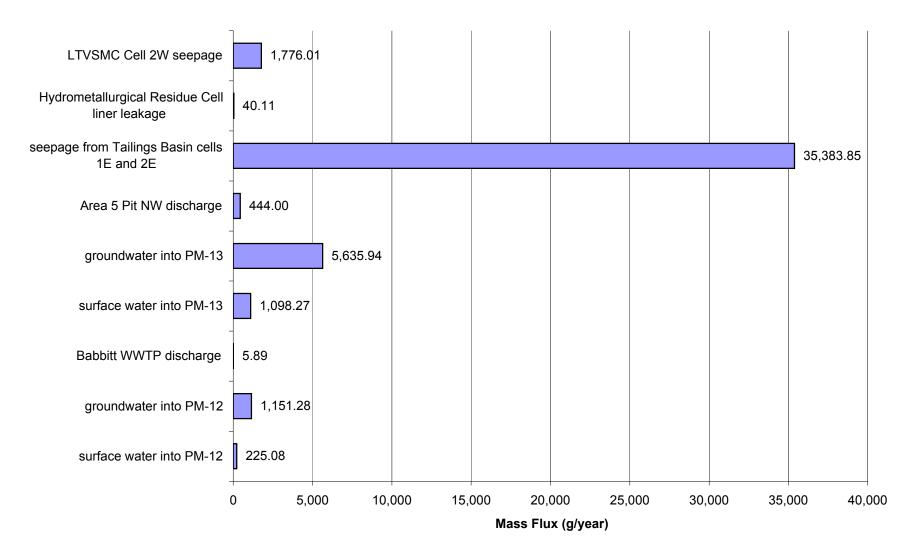

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Low Flow for Nickel (Ni)

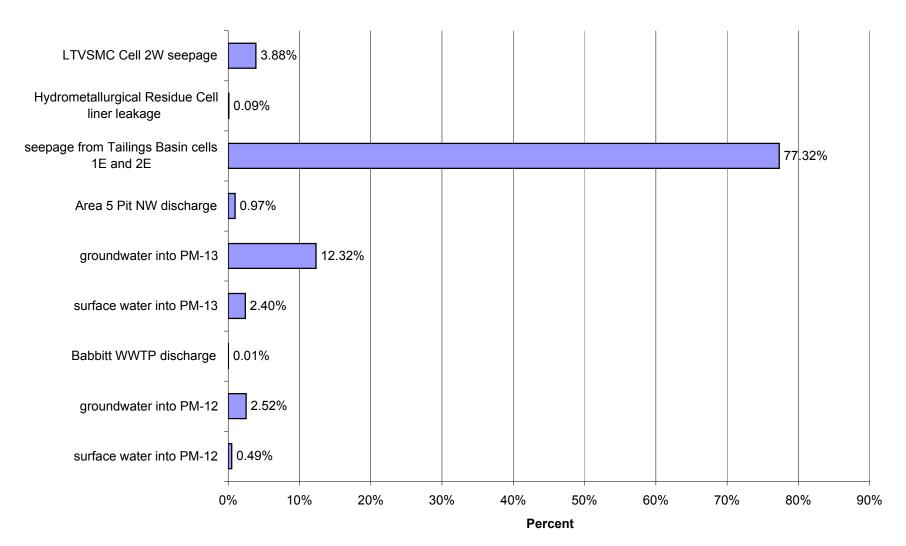

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Average Flow for Nickel (Ni)

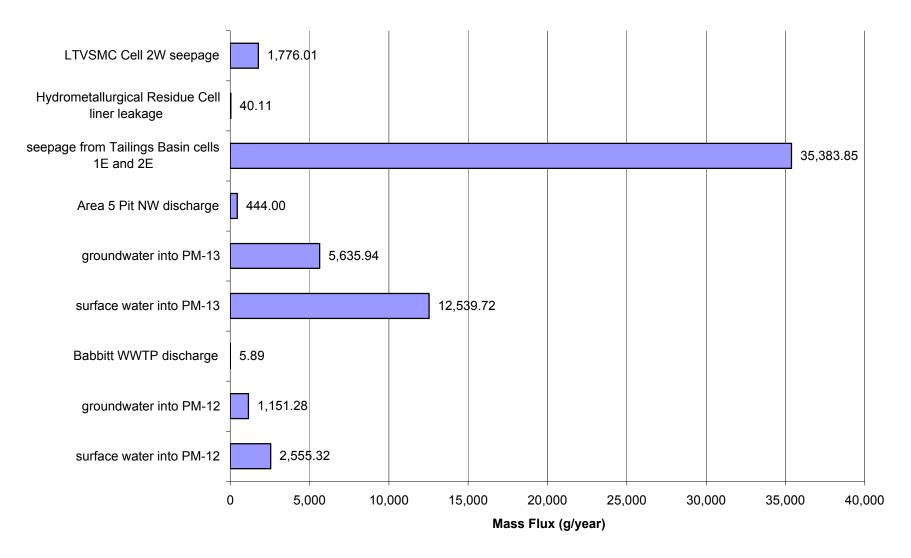

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Average Flow for Nickel (Ni)

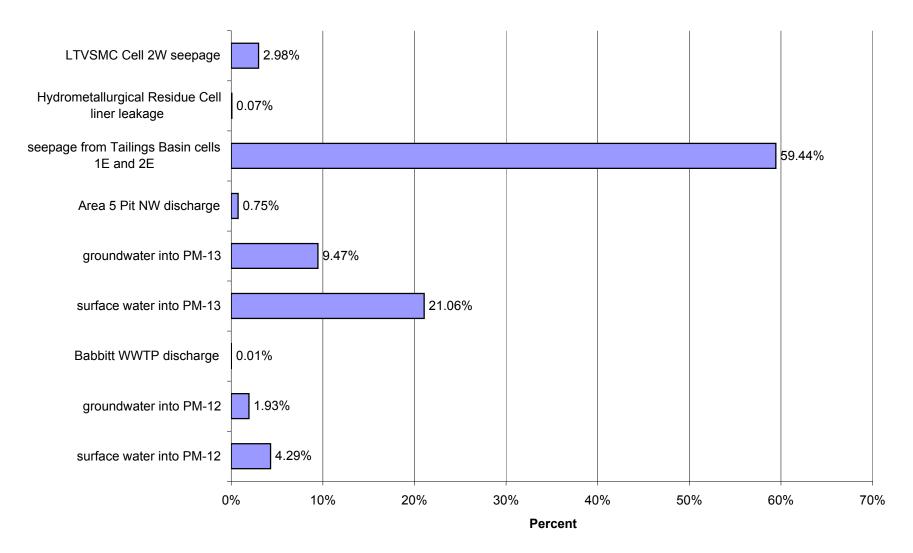

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for High Flow for Nickel (Ni)

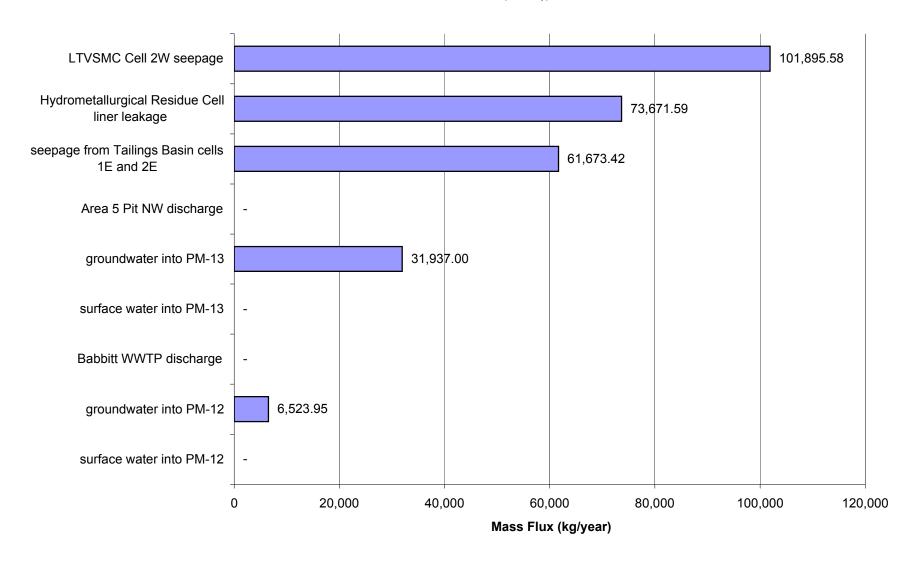

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Nickel (Ni)

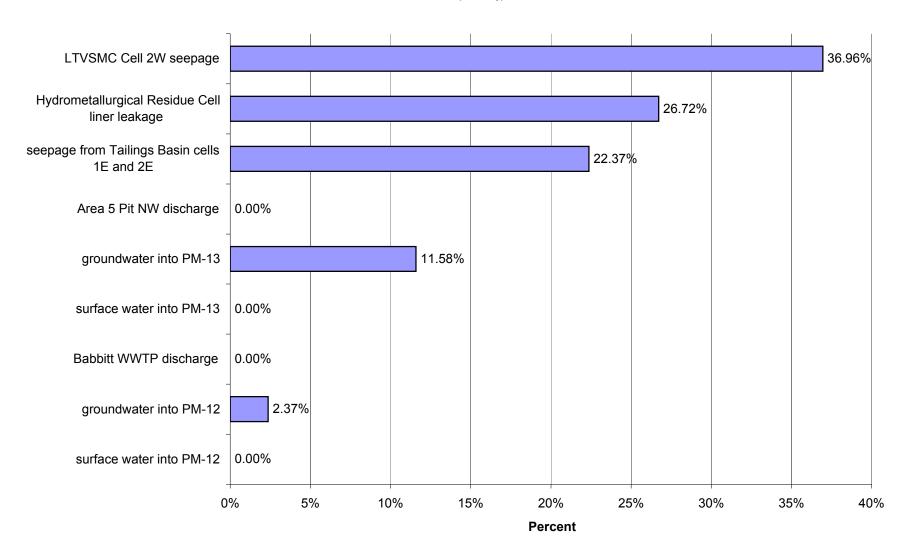

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Low Flow for Antimony (Sb)

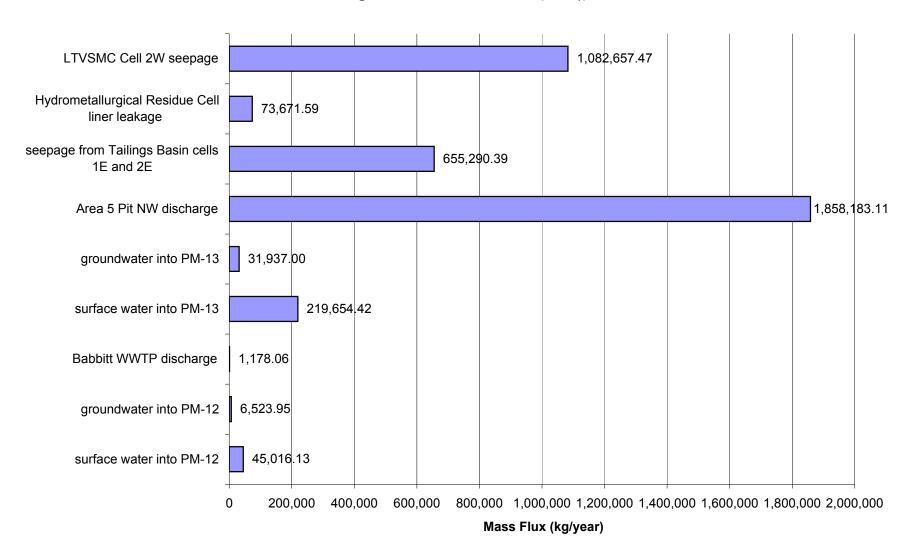

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Low Flow for Antimony (Sb)

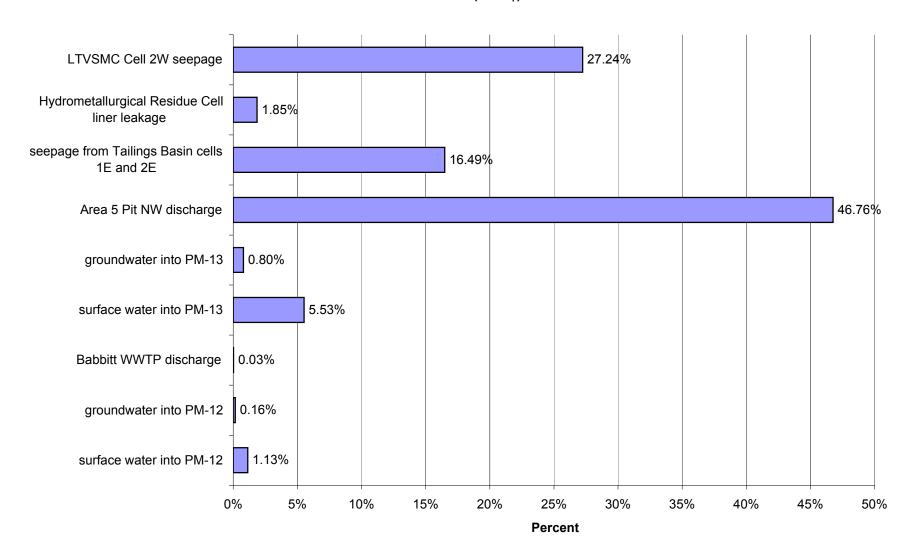

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for Average Flow for Antimony (Sb)

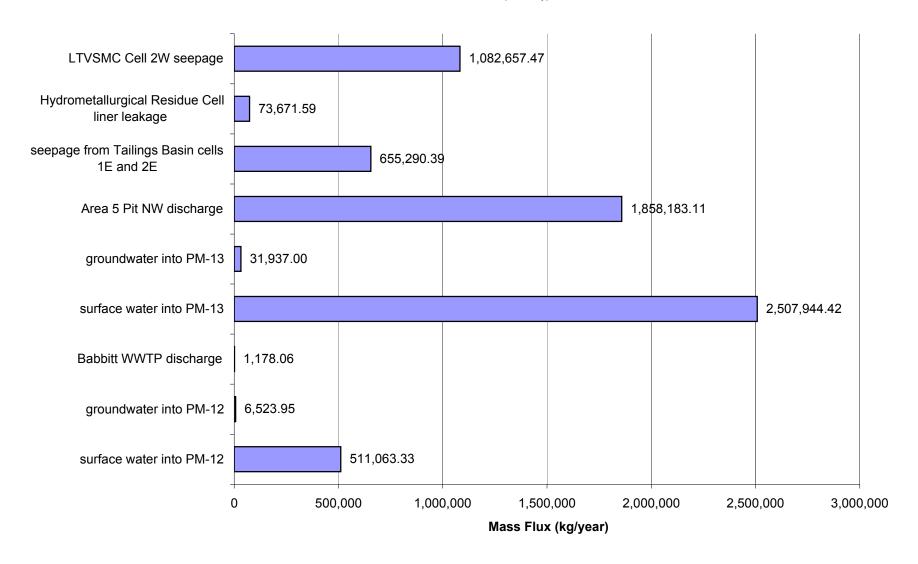

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Average Flow for Antimony (Sb)

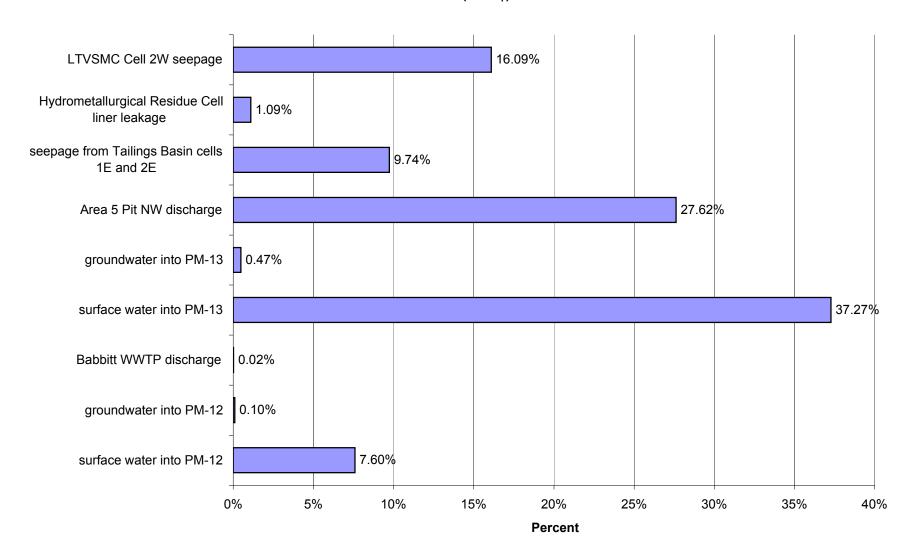

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 8 for High Flow for Antimony (Sb)

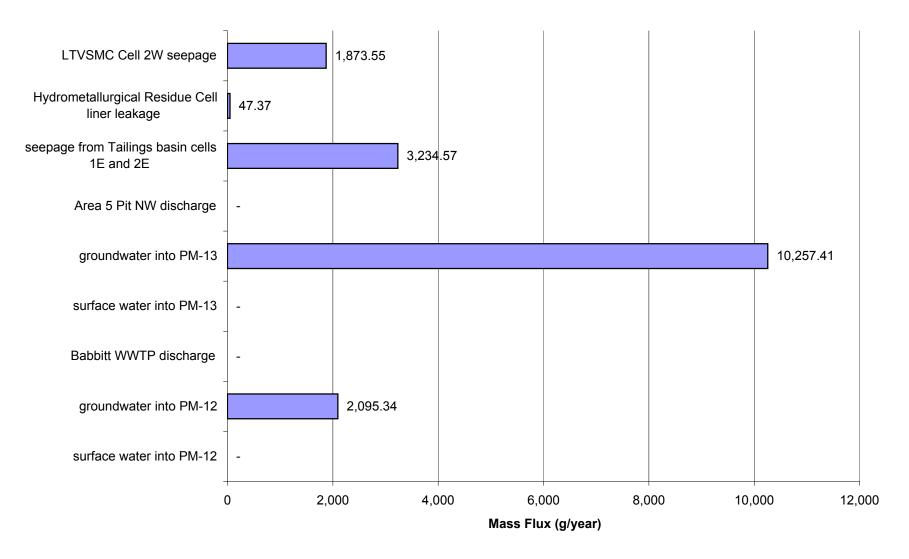

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Antimony (Sb)

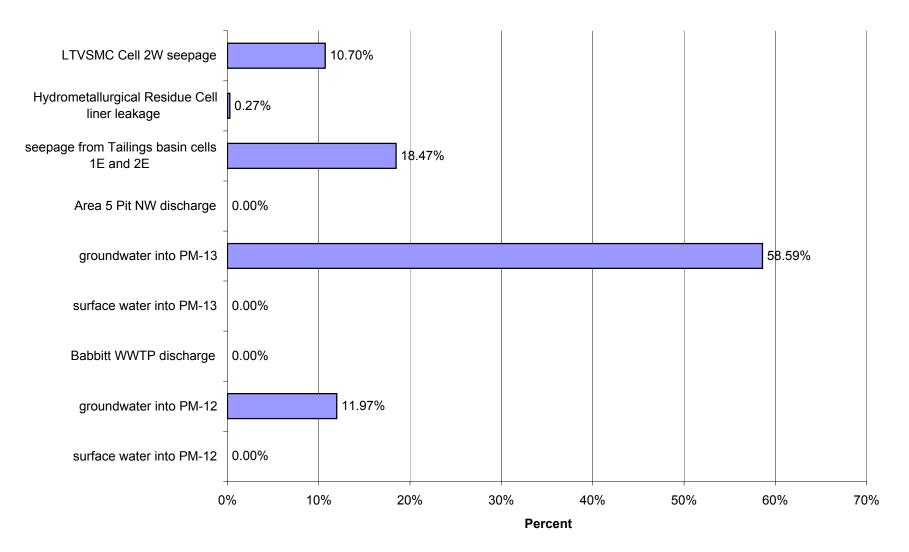

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 8 for Low Flow for Sulfate (SO₄)

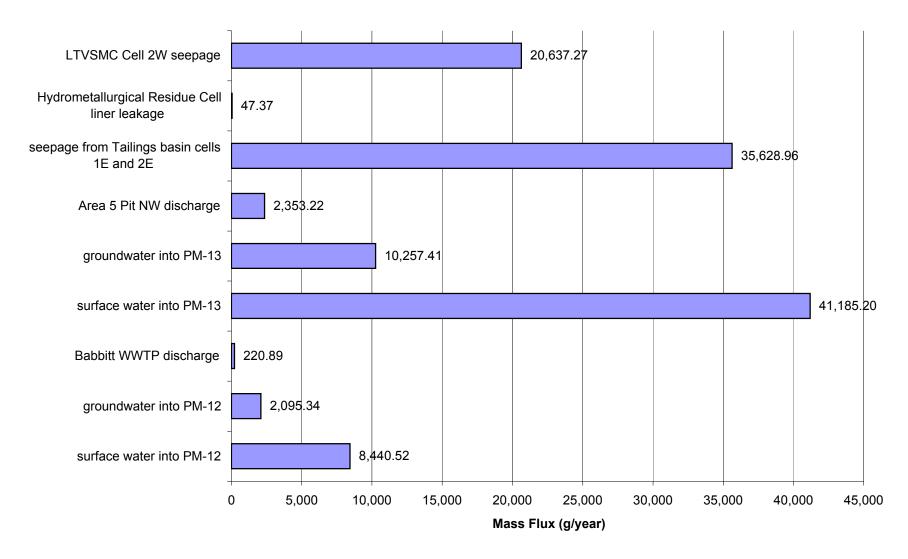

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Low Flow for Sulfate (SO₄)

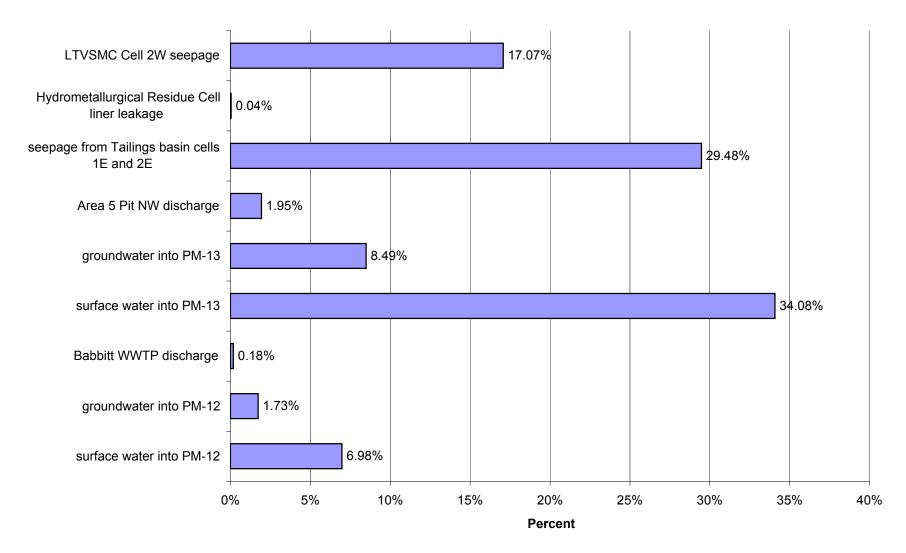

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 8 for Average Flow for Sulfate (SO₄)

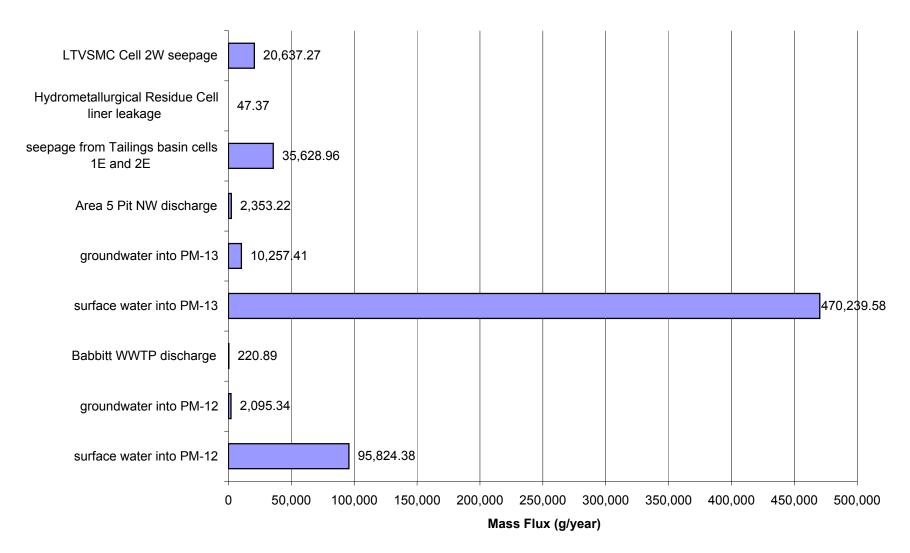

Proposed Action: Percent of Impacts at PM-13 in Year 8 for Average Flow for Sulfate (SO₄)

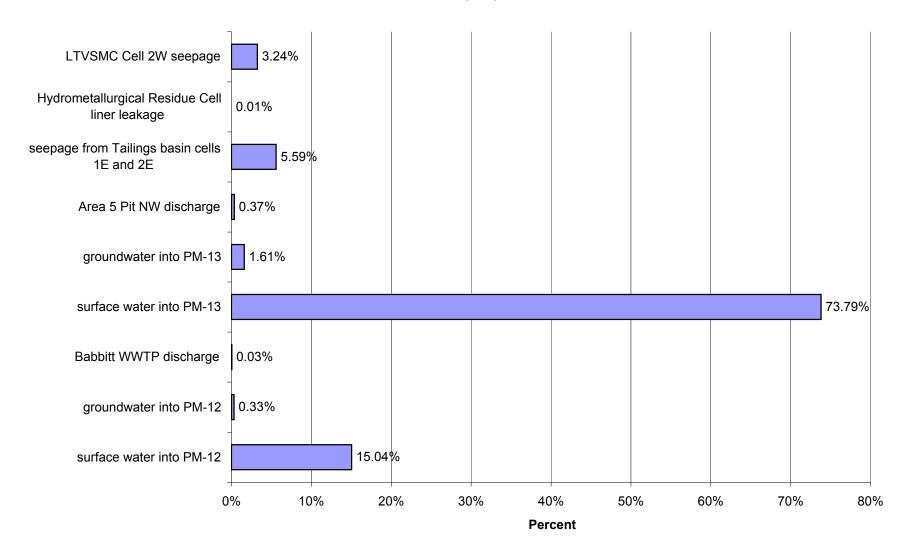

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 8 for High Flow for Sulfate (SO₄)

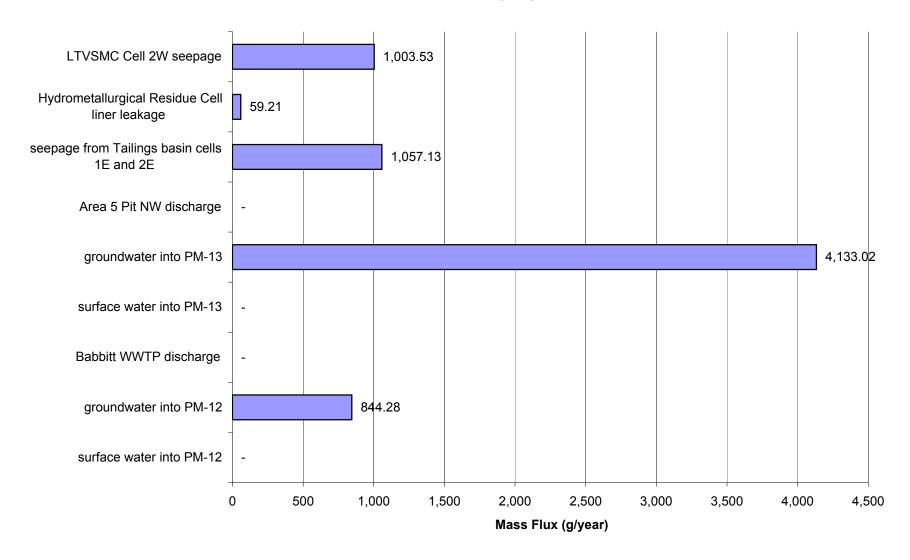

Proposed Action: Percent of Impacts at PM-13 in Year 8 for High Flow for Sulfate (SO₄)

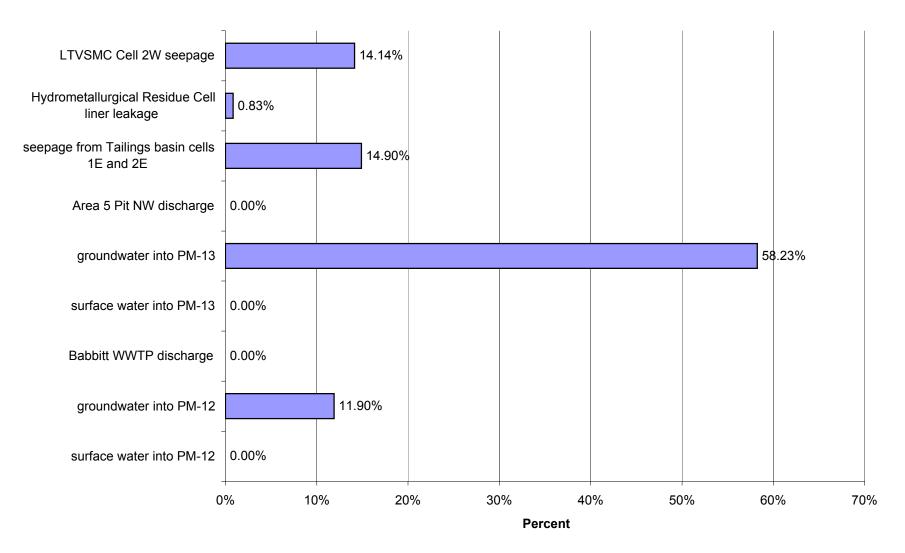

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Low Flow for Arsenic (As)

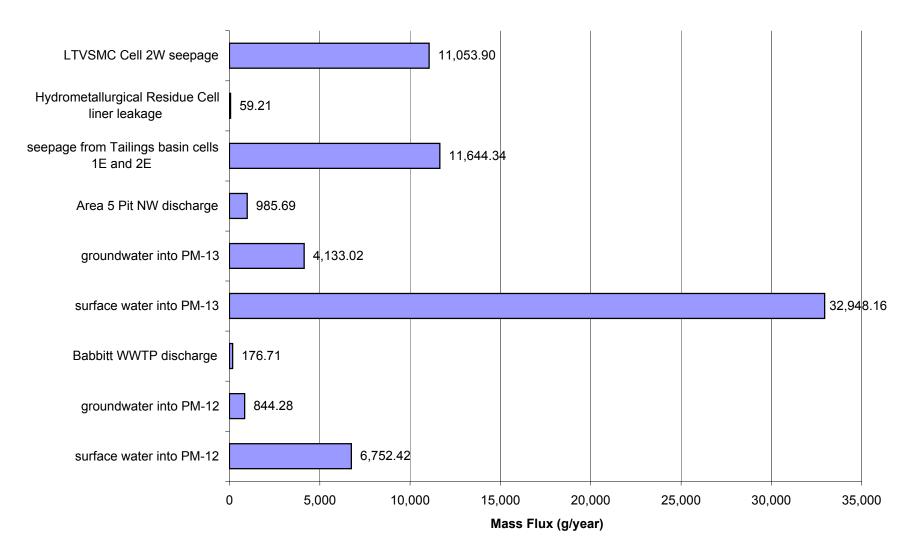

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Low Flow for Arsenic (As)

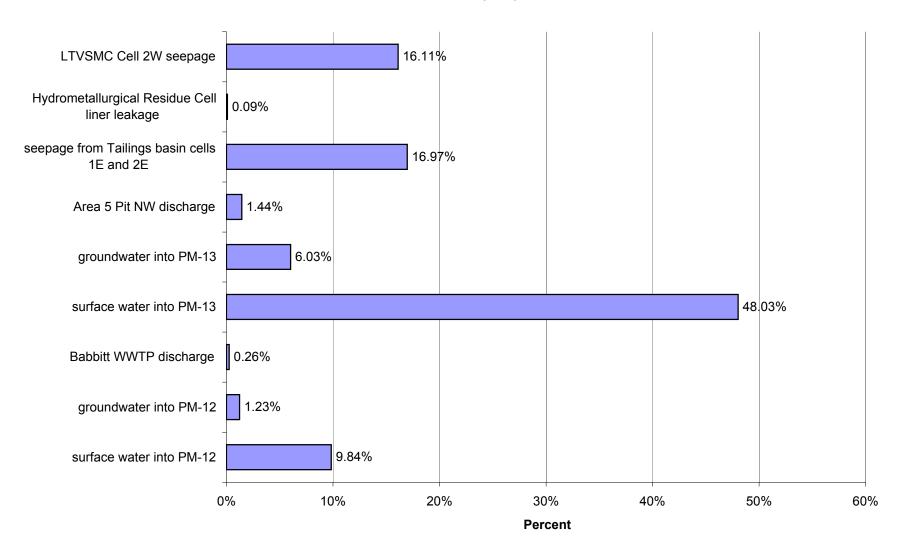

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Average Flow for Arsenic (As)

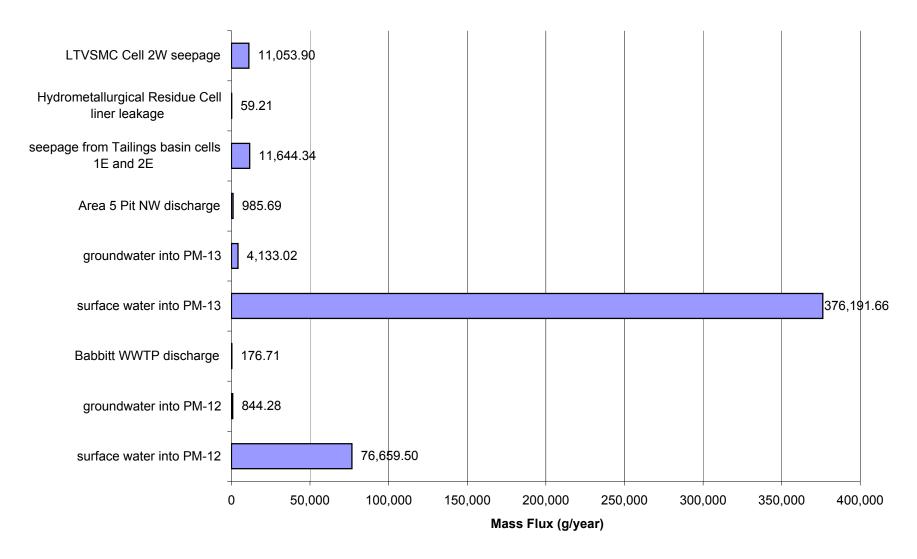

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Average Flow for Arsenic (As)

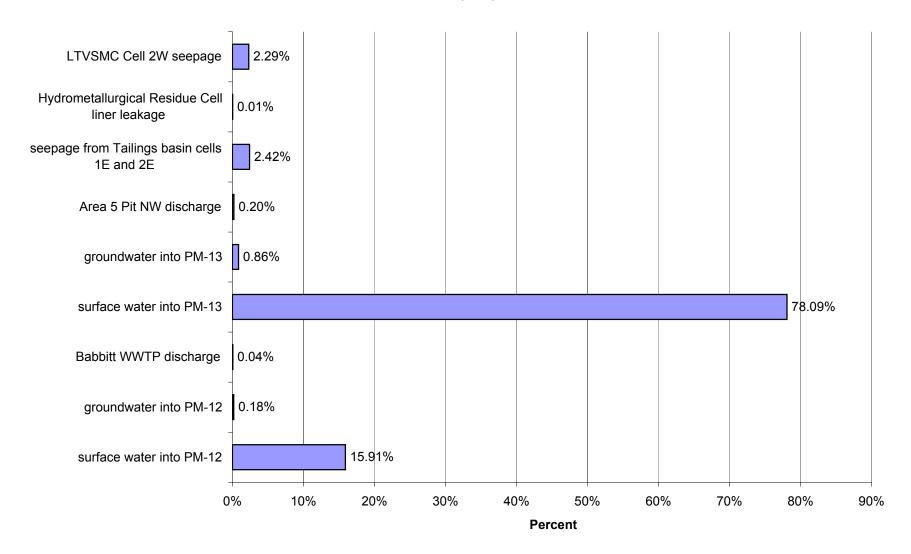

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for High Flow for Arsenic (As)

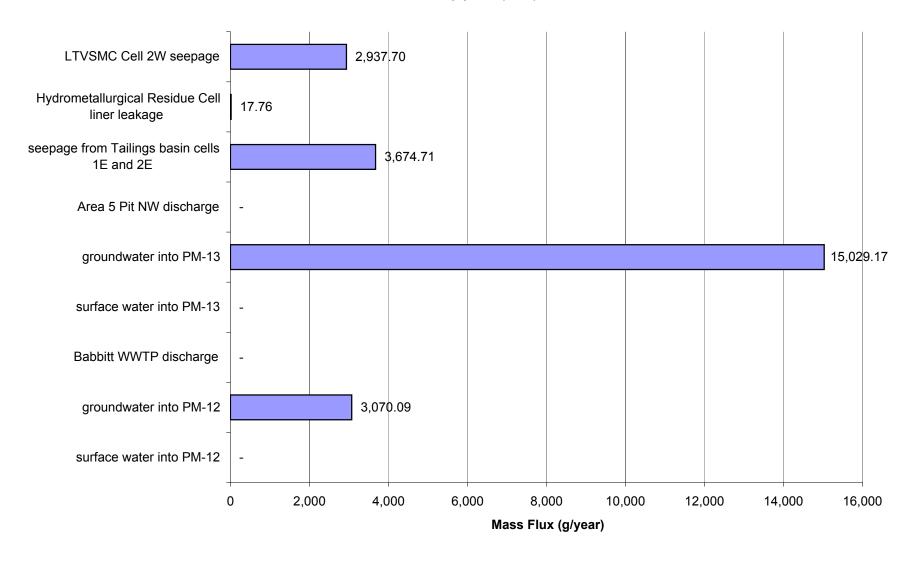

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Arsenic (As)

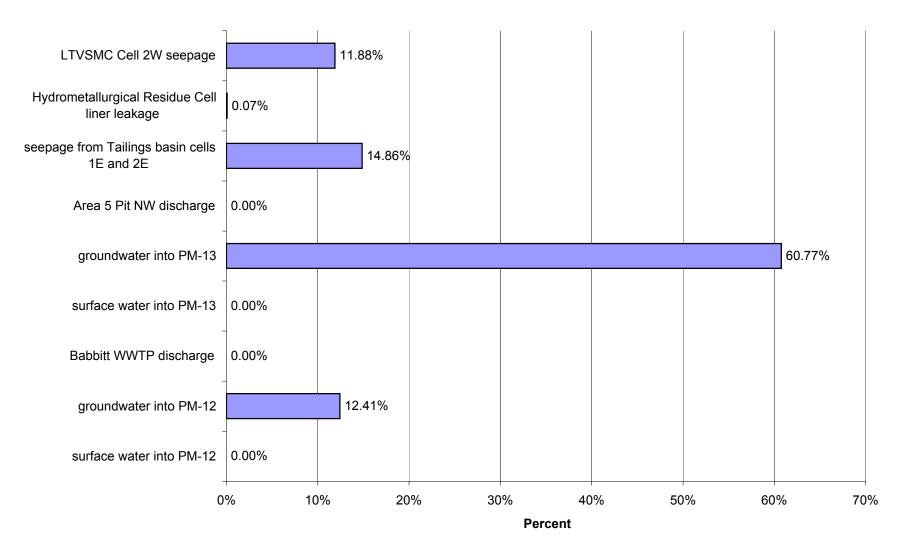

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Low Flow for Cobalt (Co)

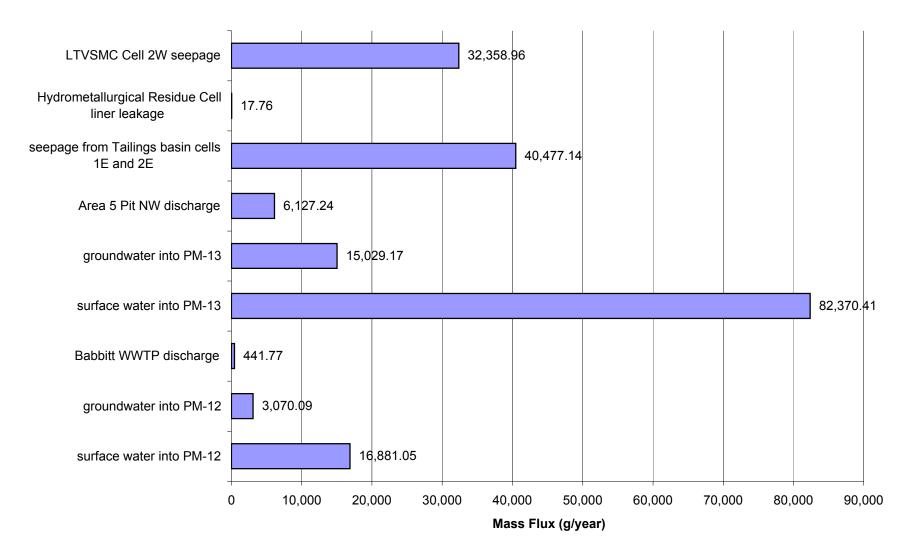

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Low Flow for Cobalt (Co)

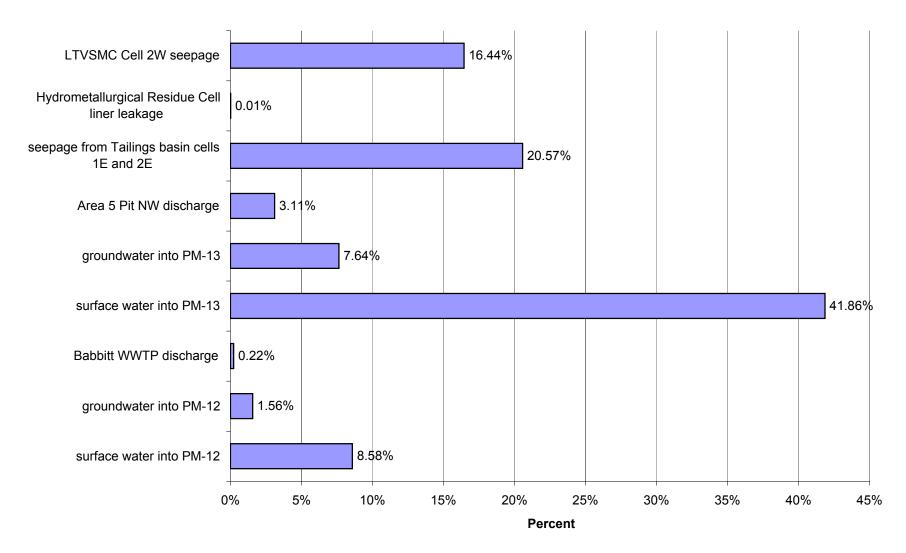

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Average Flow for Cobalt (Co)

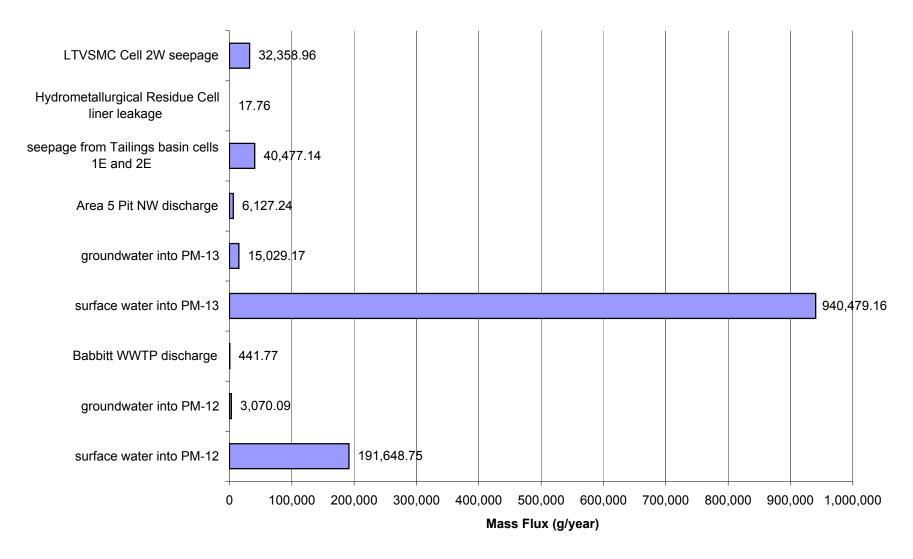

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Average Flow for Cobalt (Co)

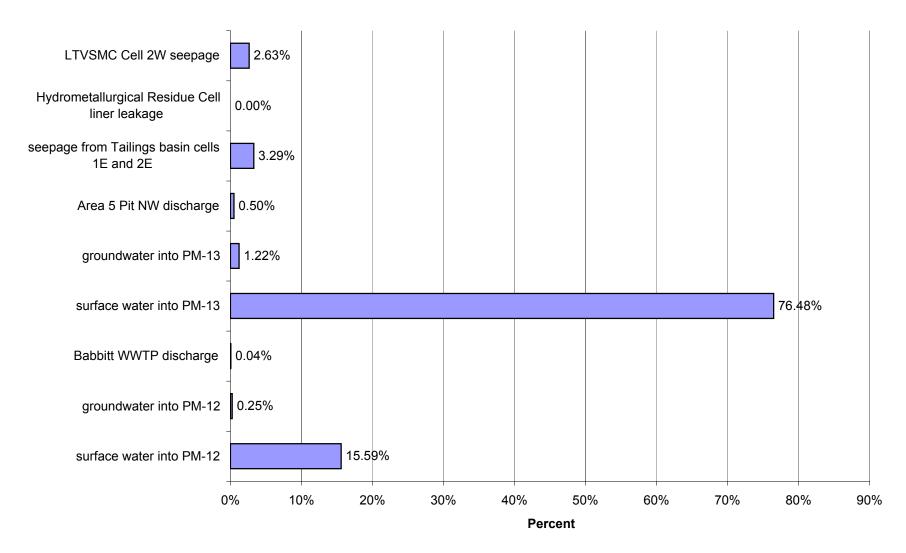

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for High Flow for Cobalt (Co)

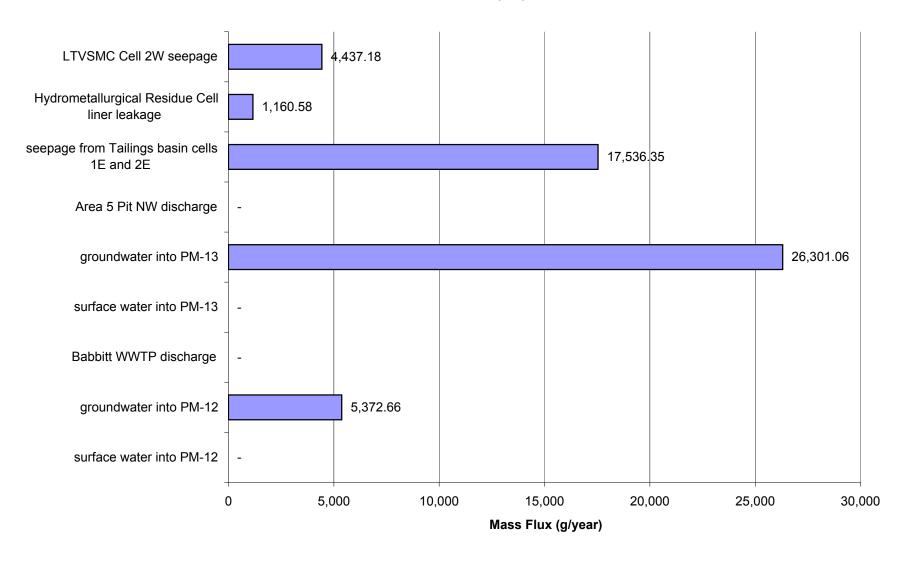

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Cobalt (Co)

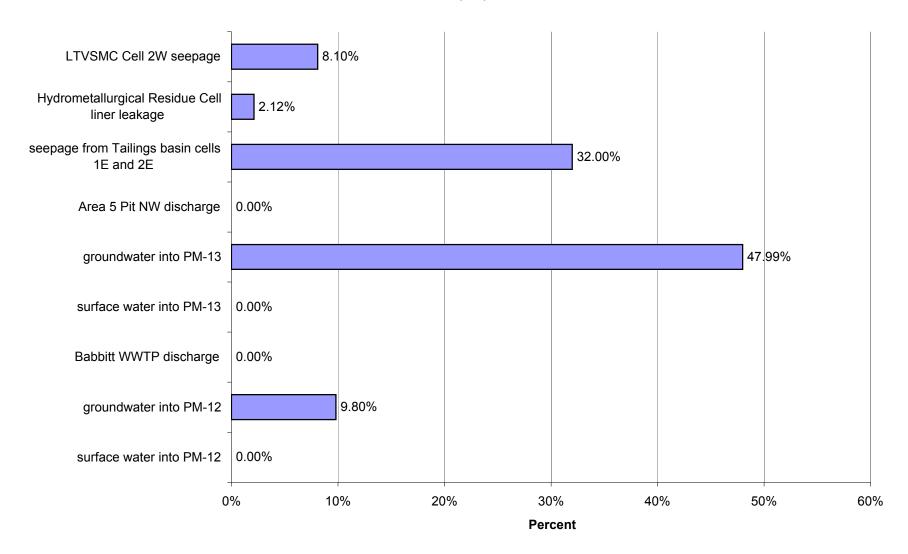

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Low Flow for Copper (Cu)

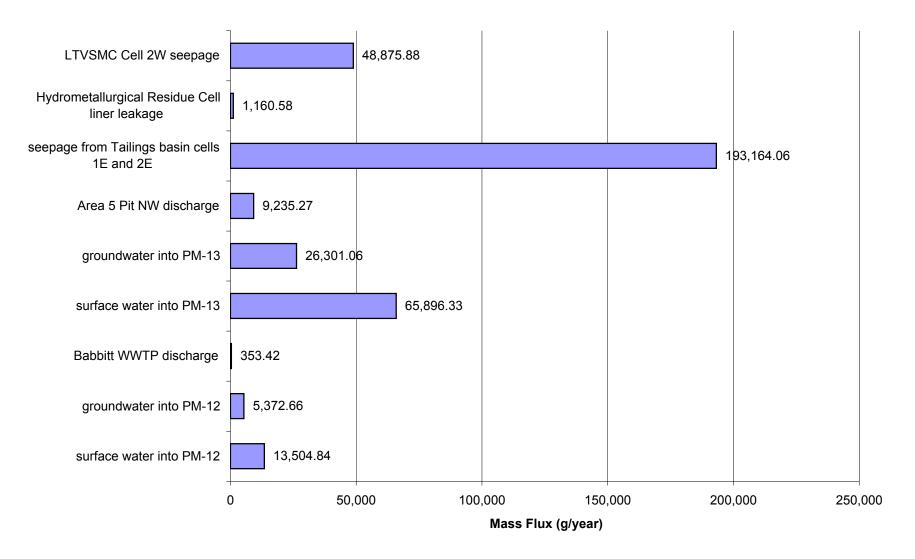

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Low Flow for Copper (Cu)

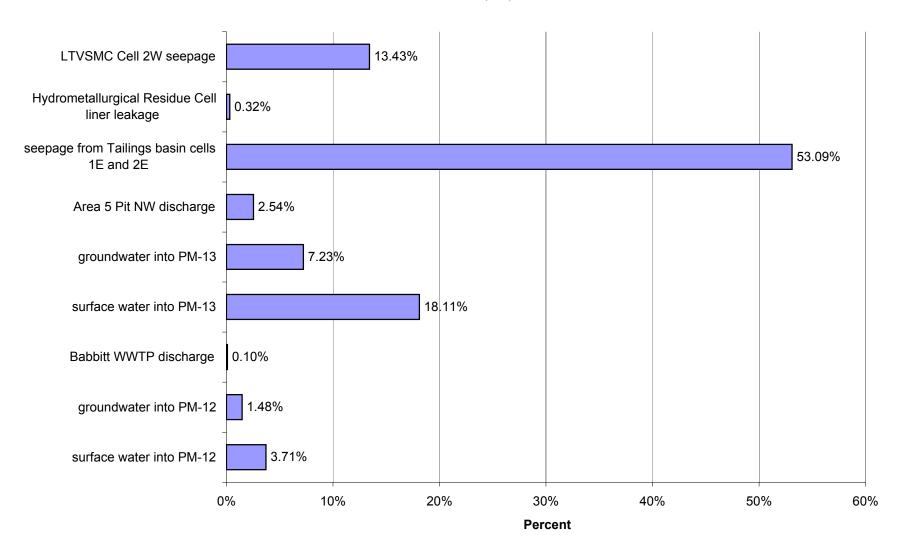

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Average Flow for Copper (Cu)

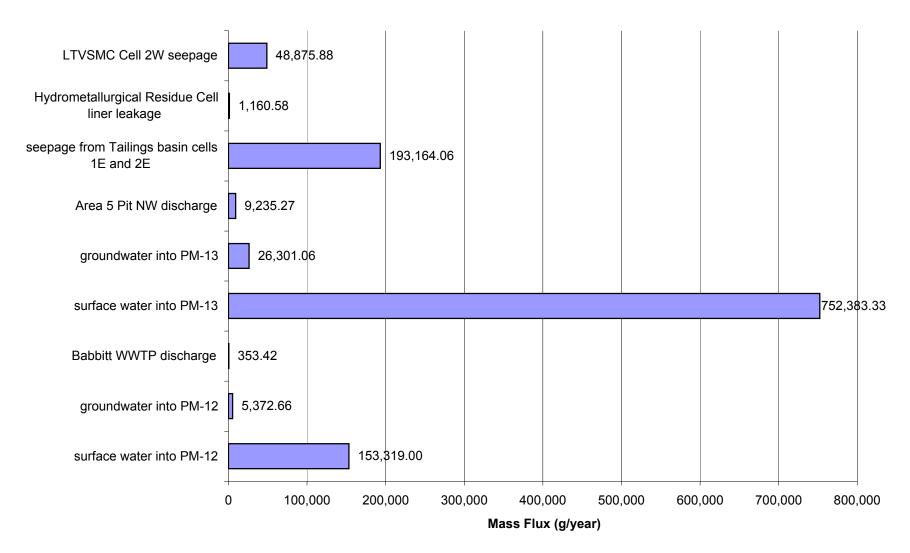

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Average Flow for Copper (Cu)

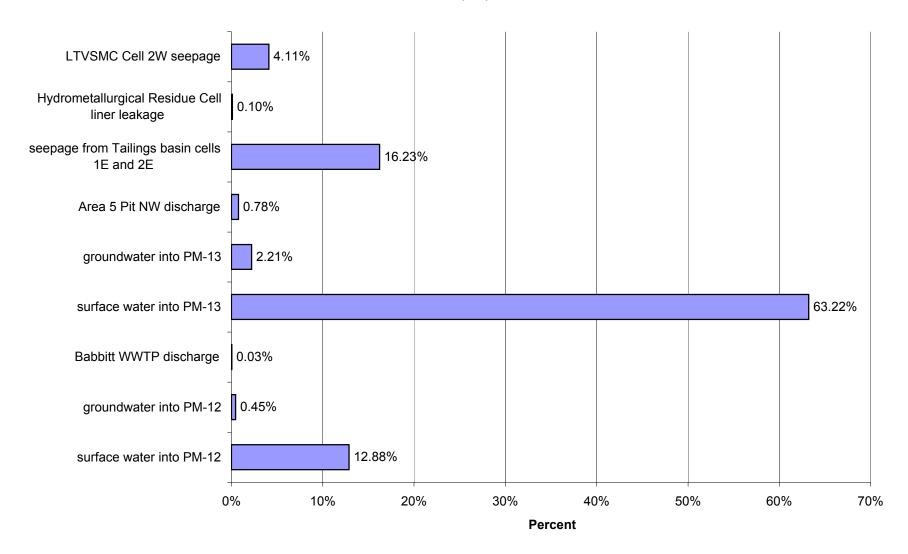

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for High Flow for Copper (Cu)

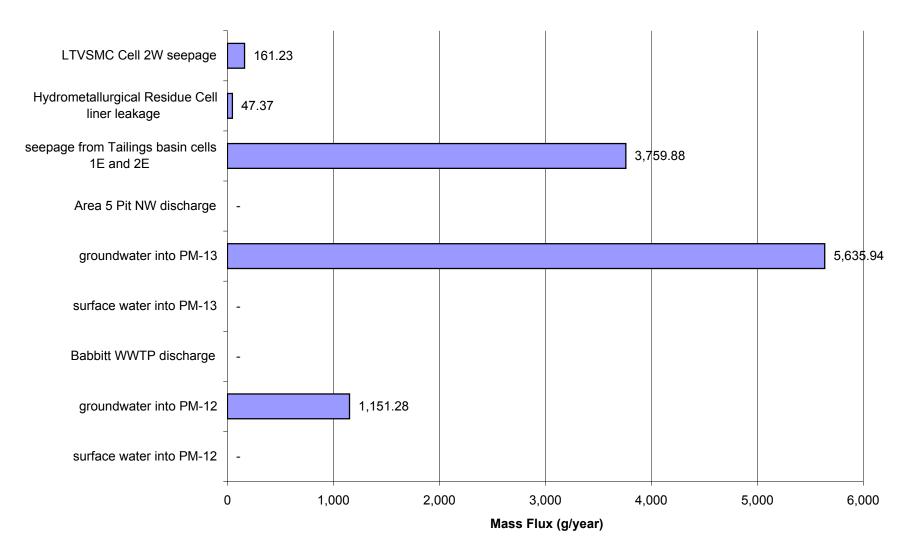

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Copper (Cu)

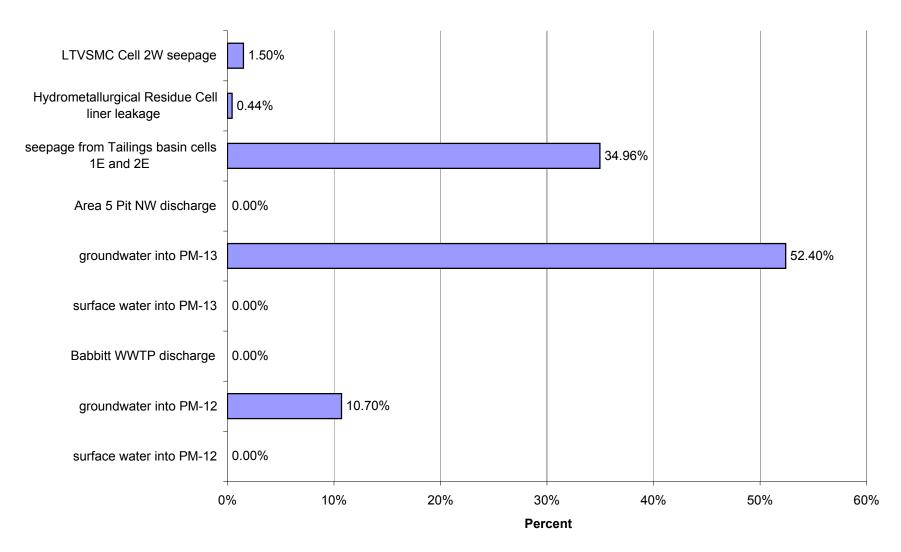

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Low Flow for Nickel (Ni)

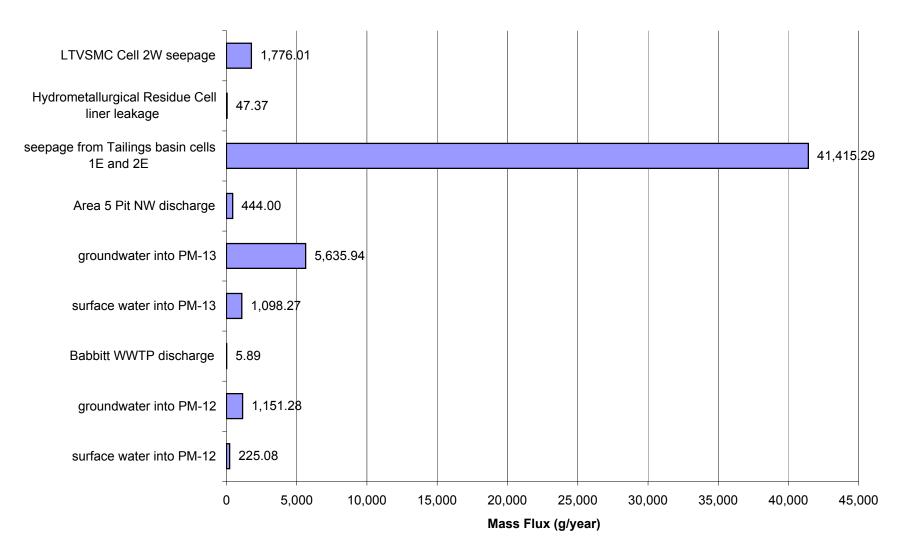

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Low Flow for Nickel (Ni)

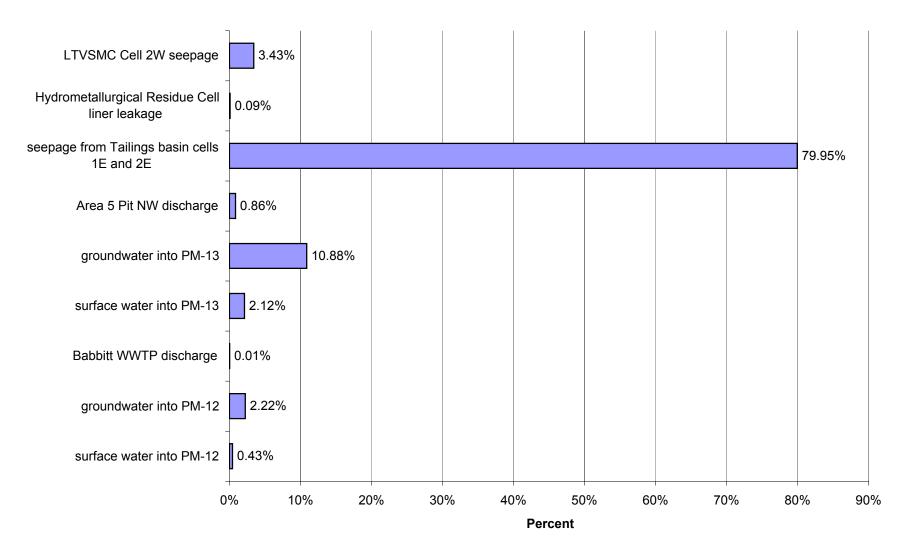

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Average Flow for Nickel (Ni)

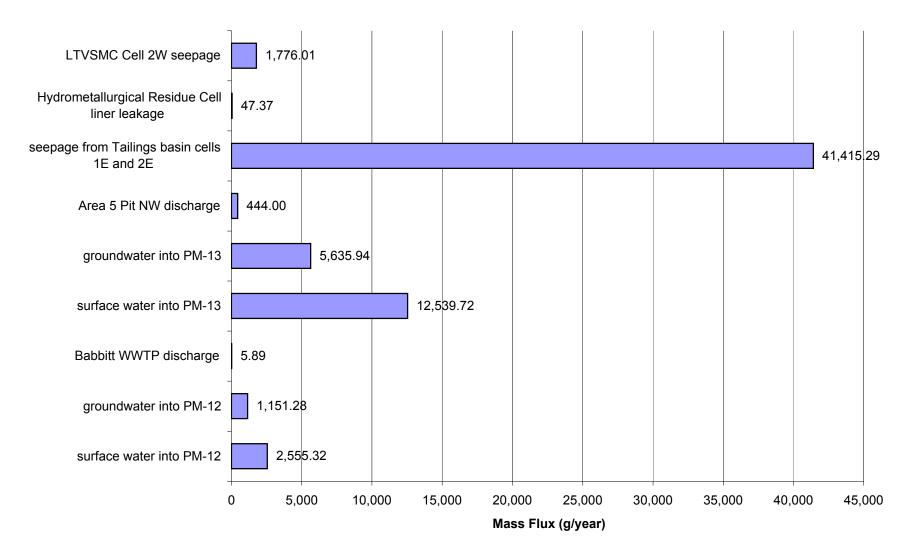

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Average Flow for Nickel (Ni)

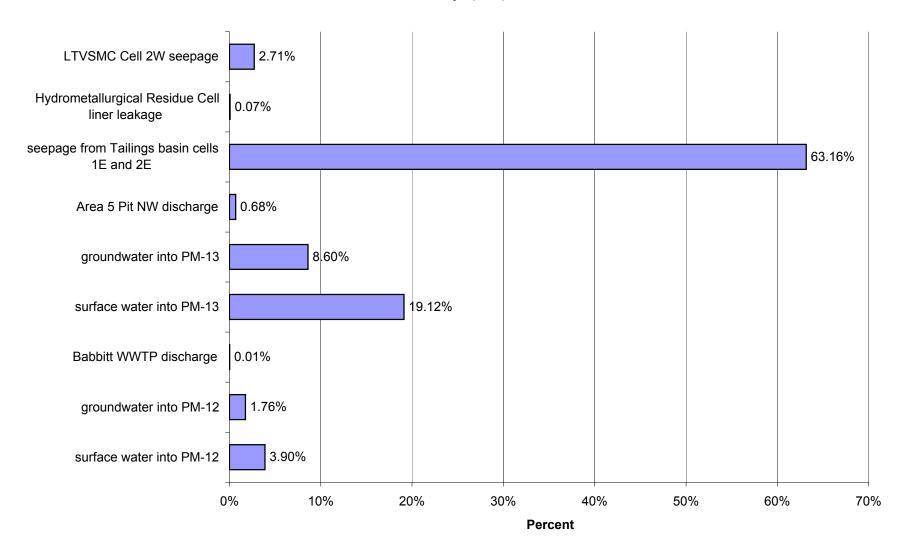

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for High Flow for Nickel (Ni)

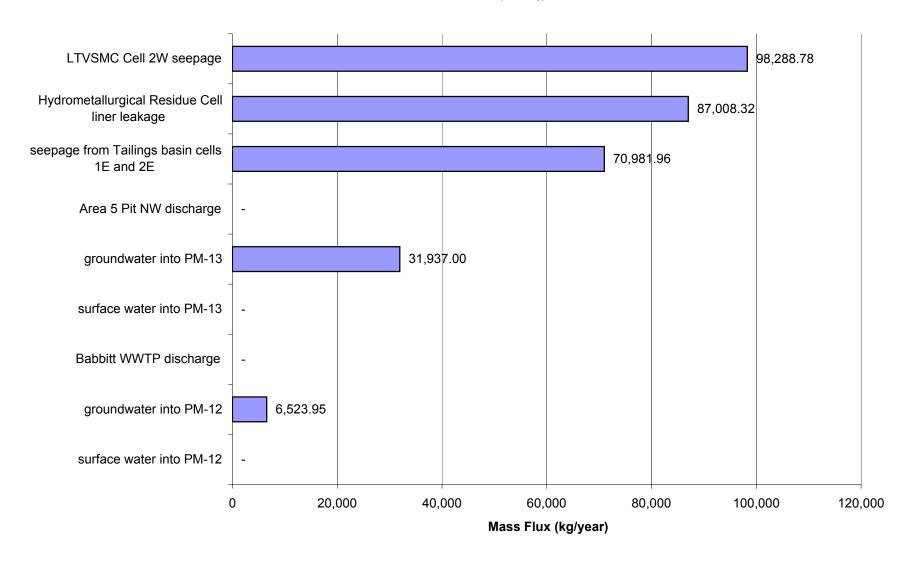

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Nickel (Ni)

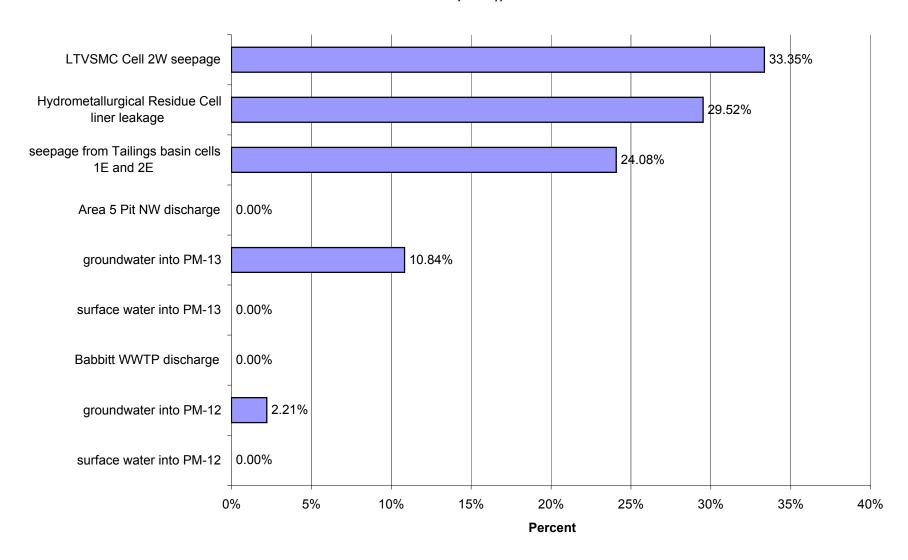

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Low Flow for Antimony (Sb)

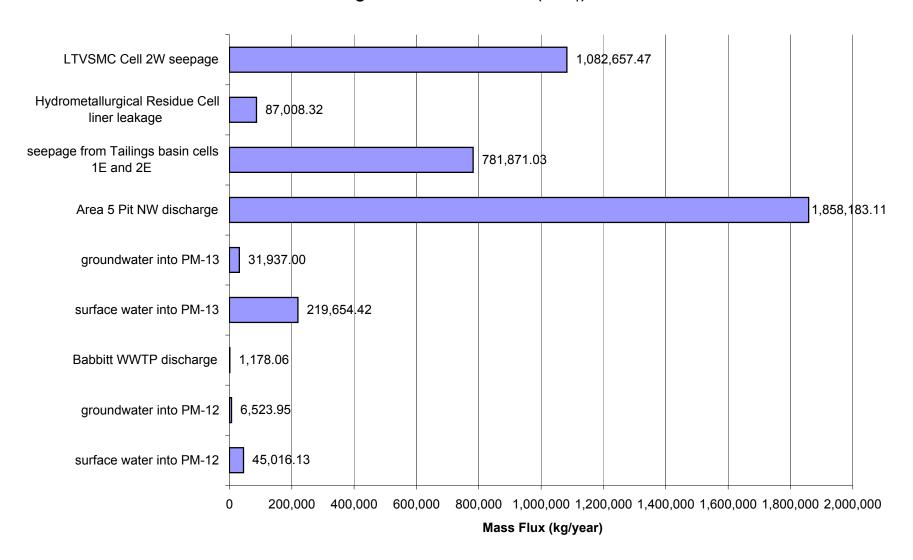

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Low Flow for Antimony (Sb)

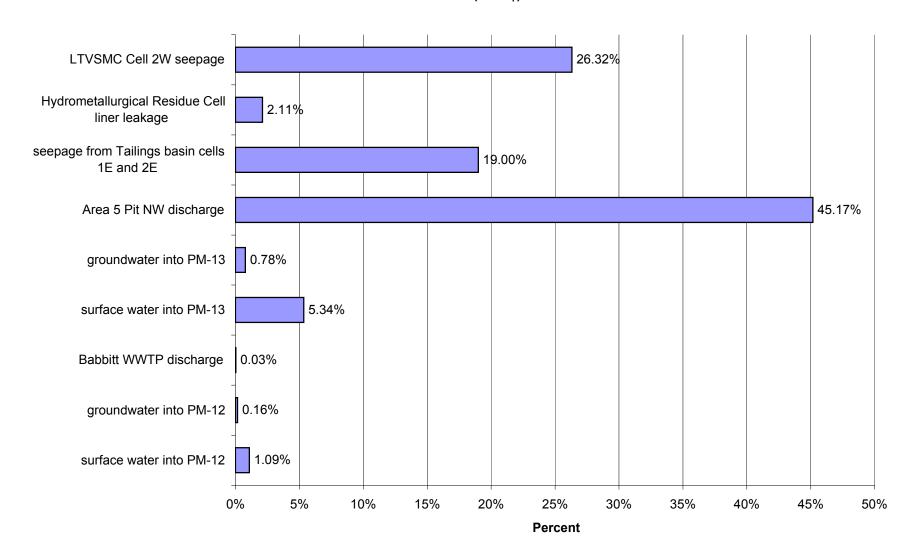

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for Average Flow for Antimony (Sb)

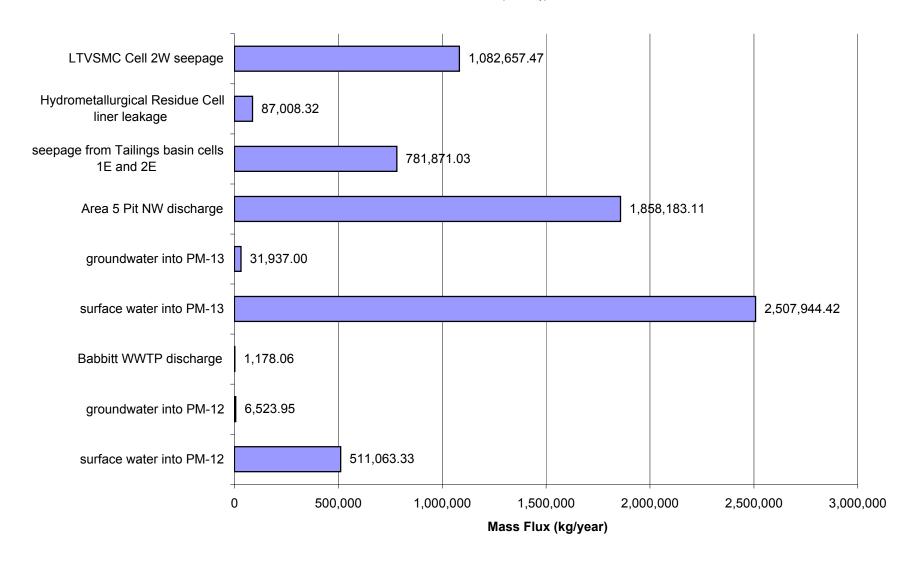

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Average Flow for Antimony (Sb)

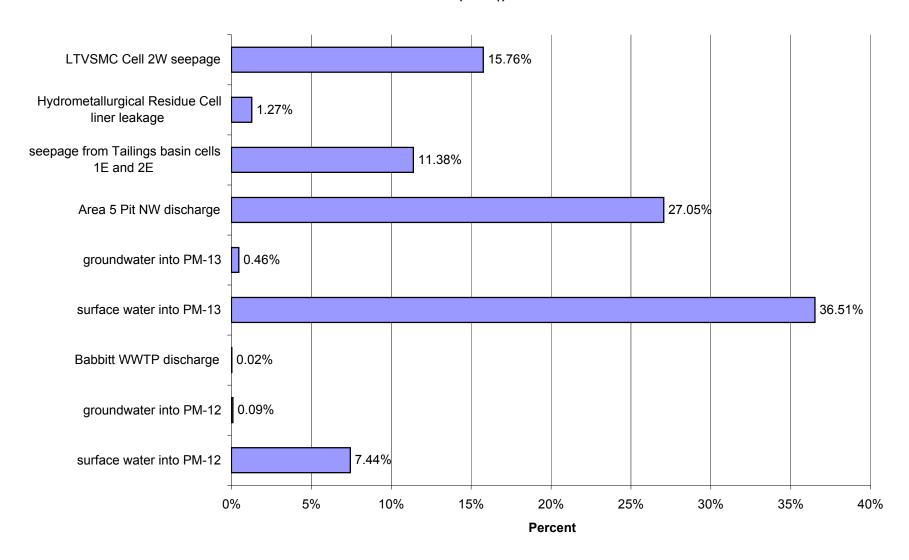

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 9 for High Flow for Antimony (Sb)

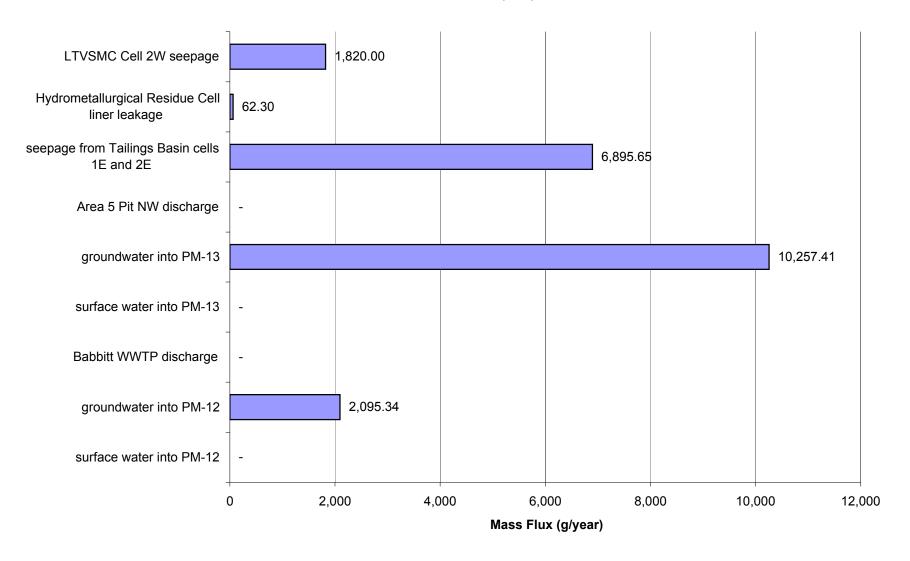

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Antimony (Sb)

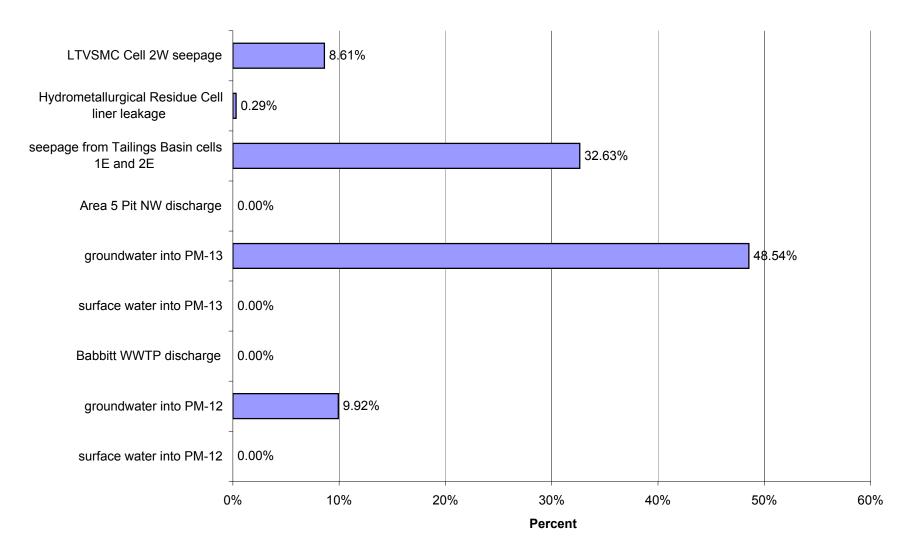

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 9 for Low Flow for Sulfate (SO₄)

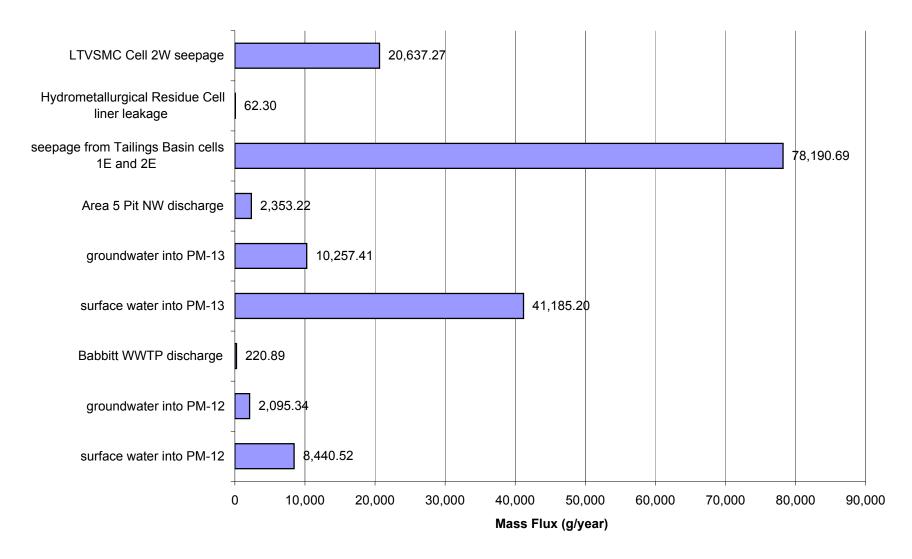

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Low Flow for Sulfate (SO₄)

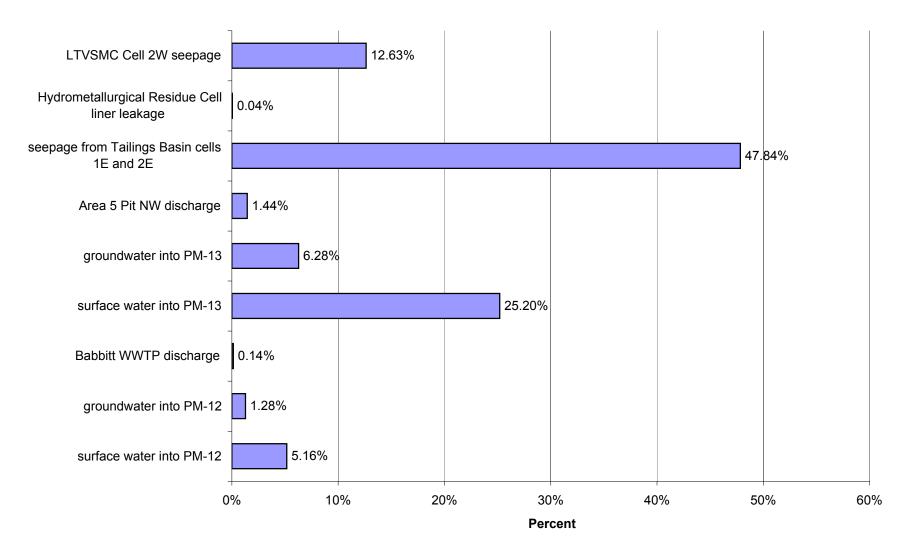

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 9 for Average Flow for Sulfate (SO₄)

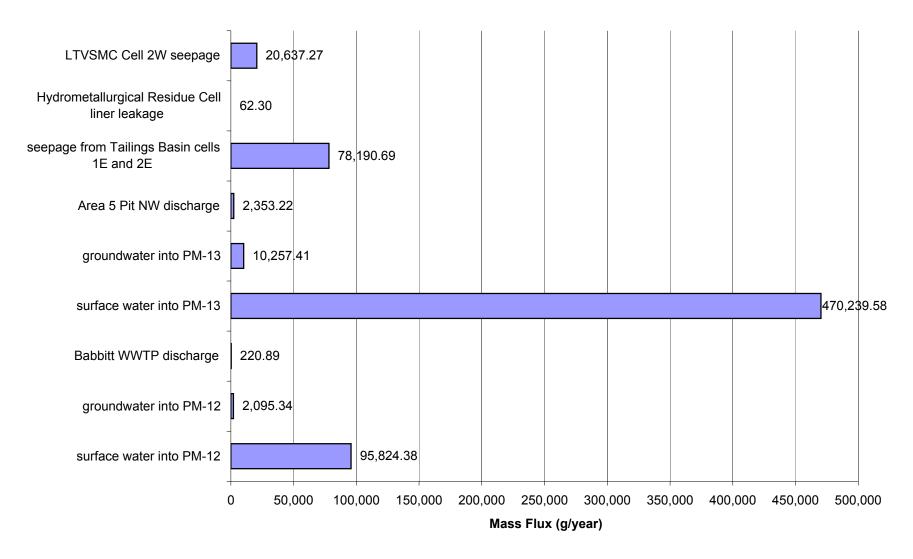

Proposed Action: Percent of Impacts at PM-13 in Year 9 for Average Flow for Sulfate (SO₄)

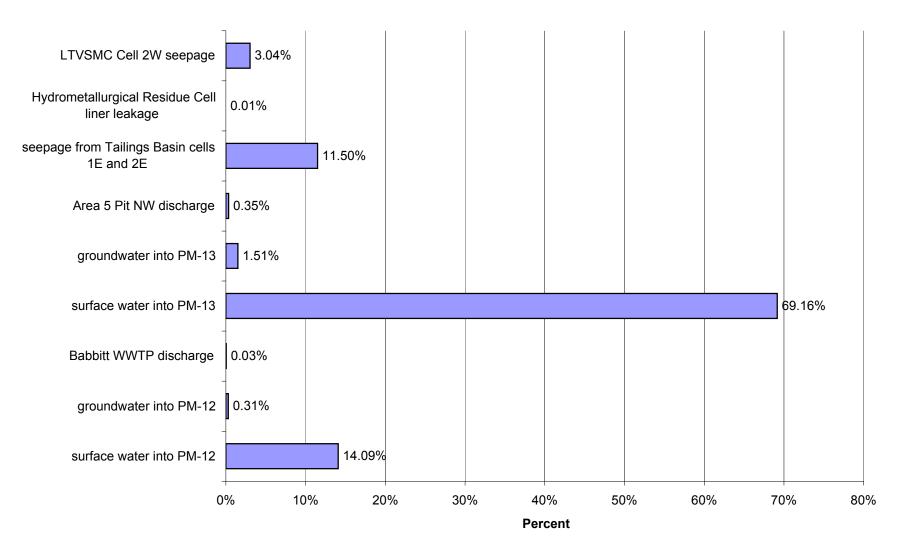

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 9 for High Flow for Sulfate (SO₄)

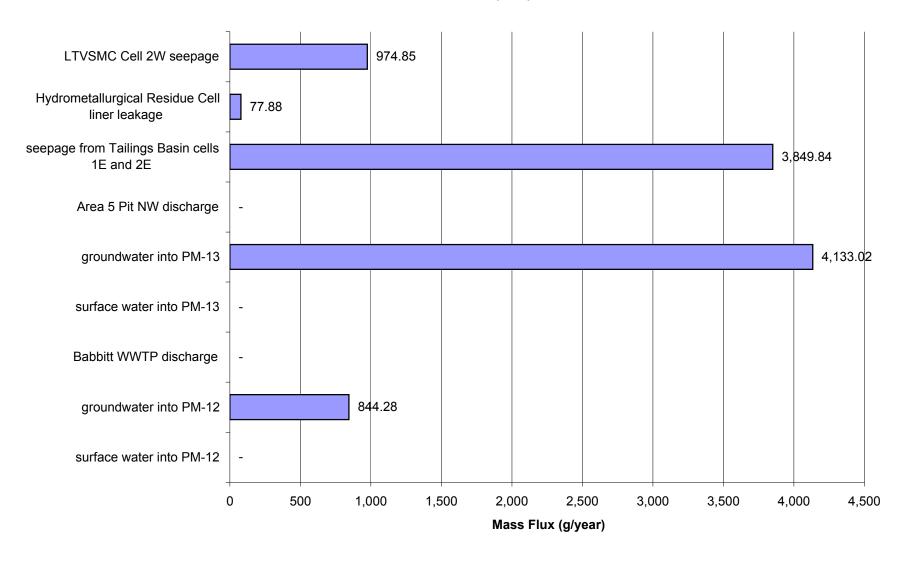

Proposed Action: Percent of Impacts at PM-13 in Year 9 for High Flow for Sulfate (SO₄)

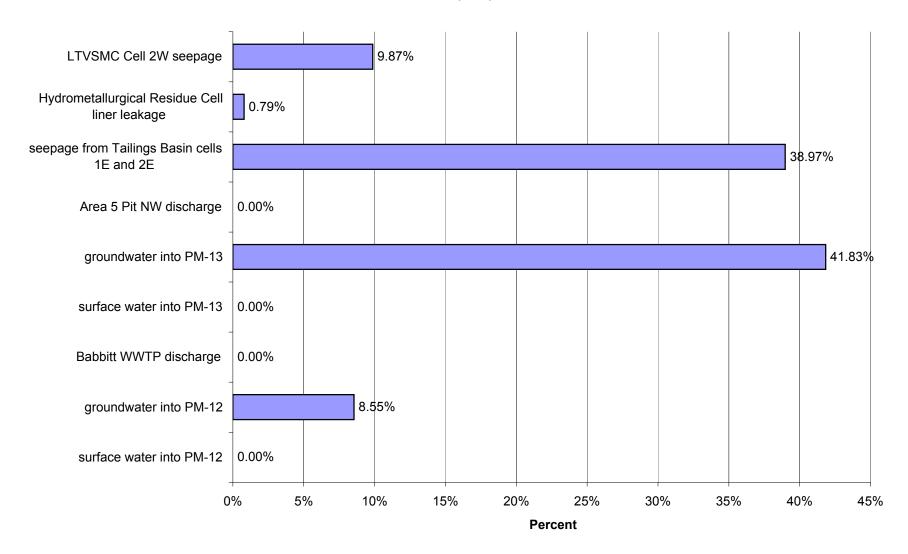

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Arsenic (As)

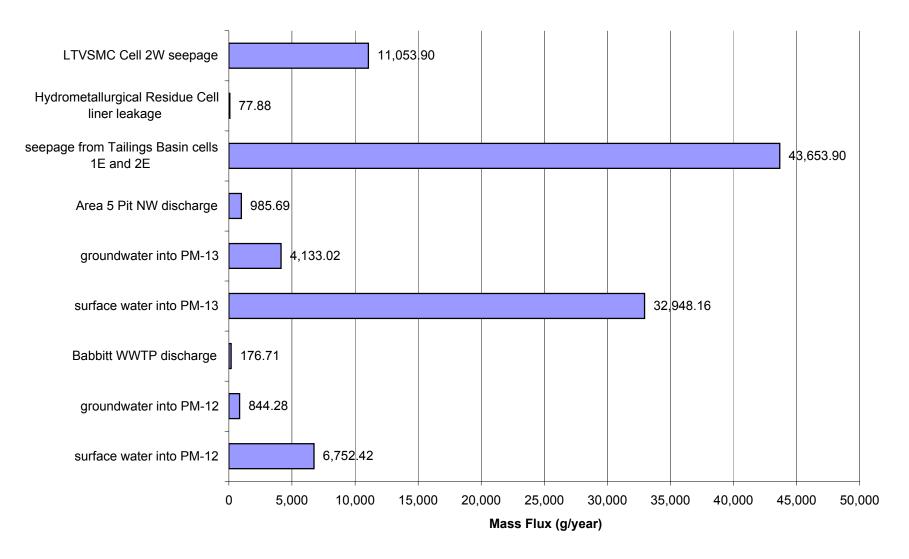

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Arsenic (As)

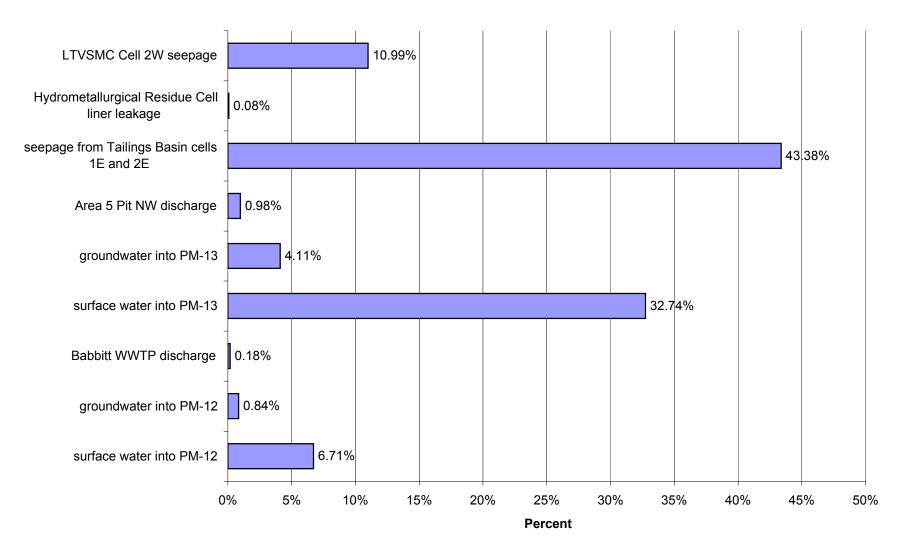

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Arsenic (As)

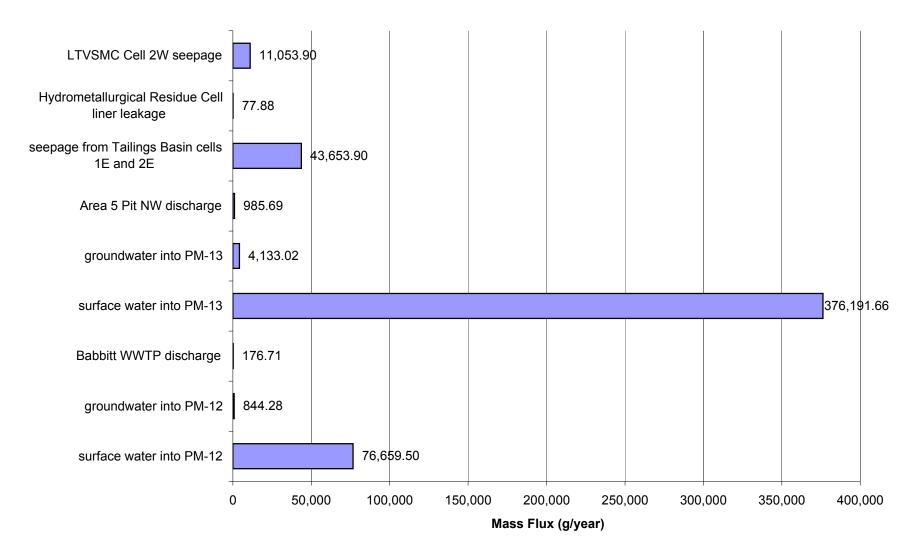

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Arsenic (As)

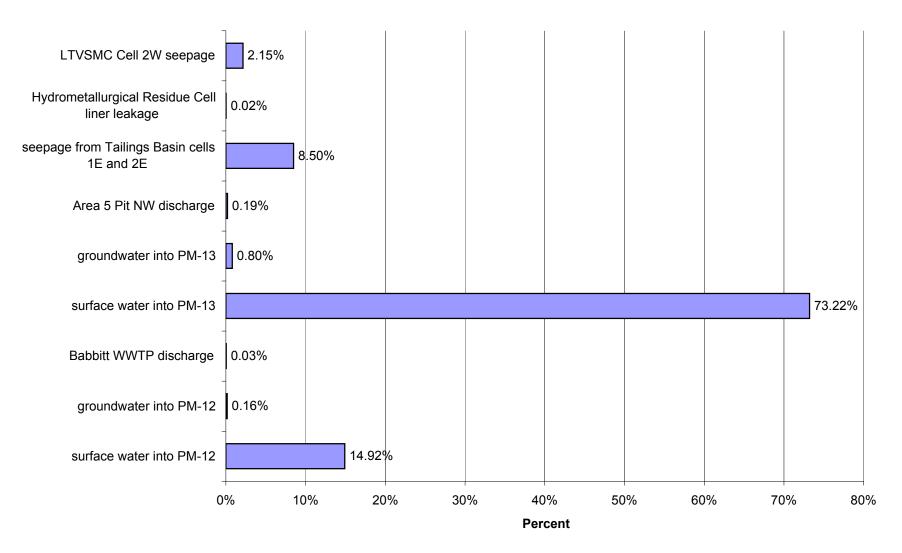

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Arsenic (As)

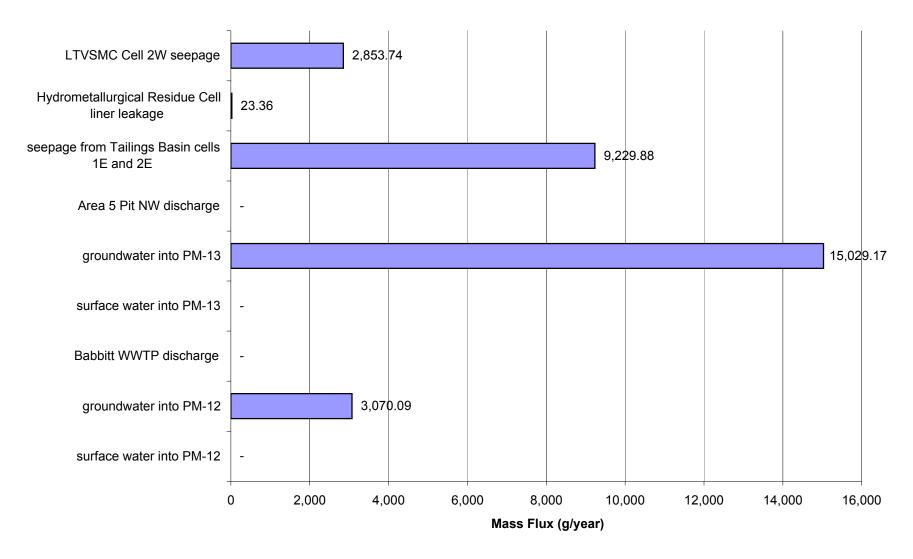

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Arsenic (As)

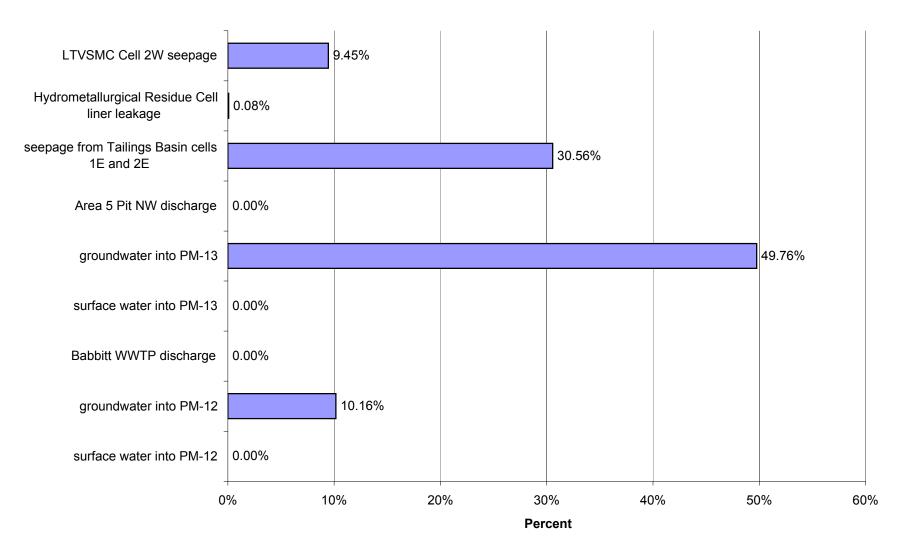

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Cobalt (Co)

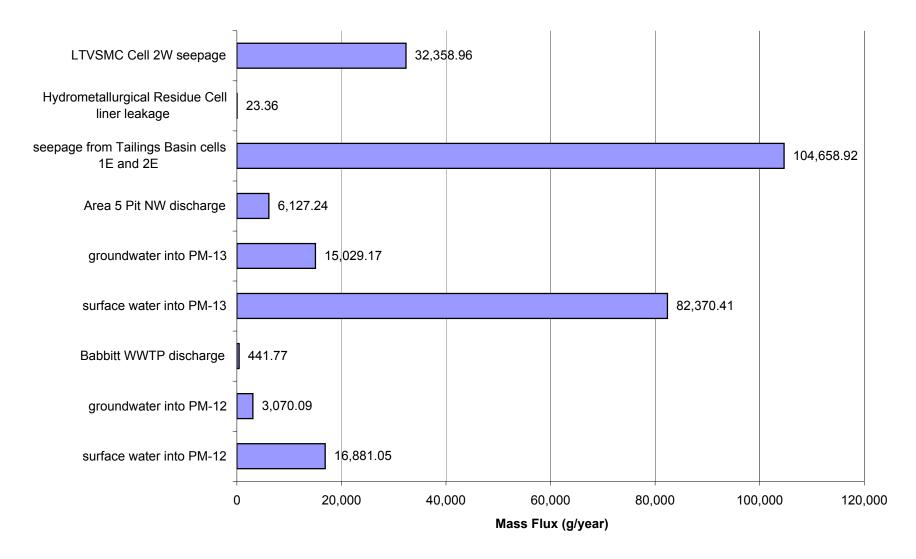

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Cobalt (Co)

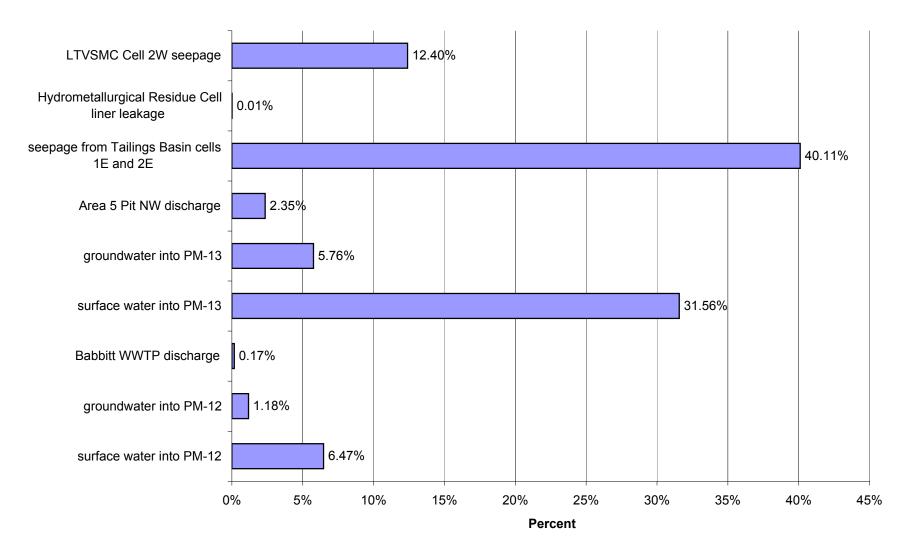

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Cobalt (Co)

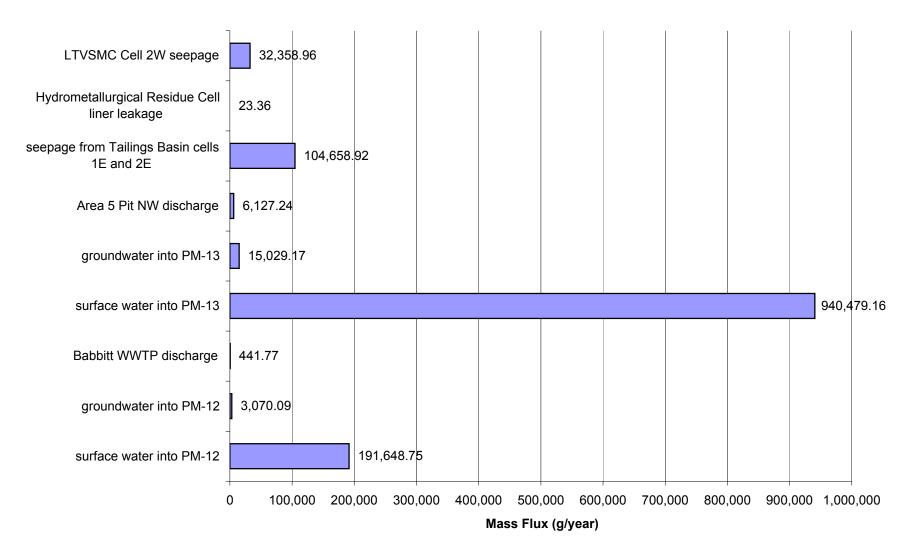

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Cobalt (Co)

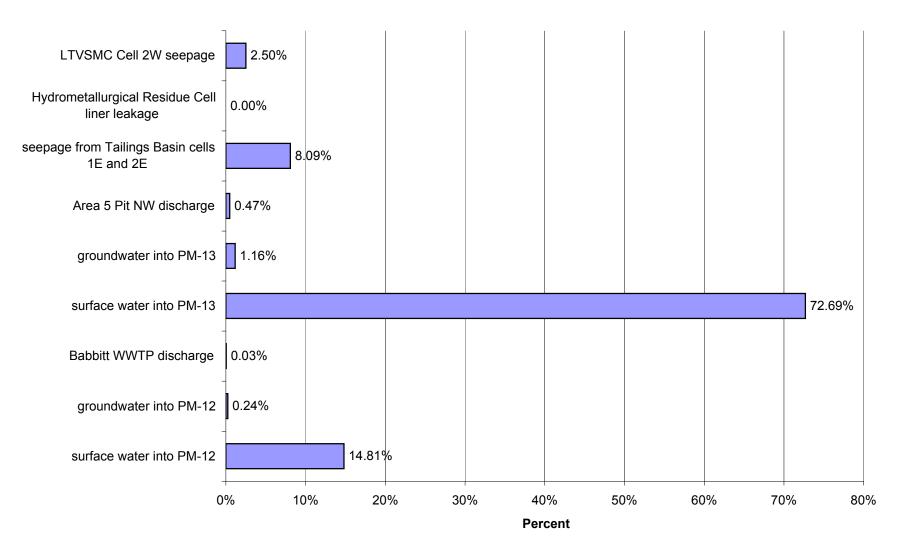

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Cobalt (Co)

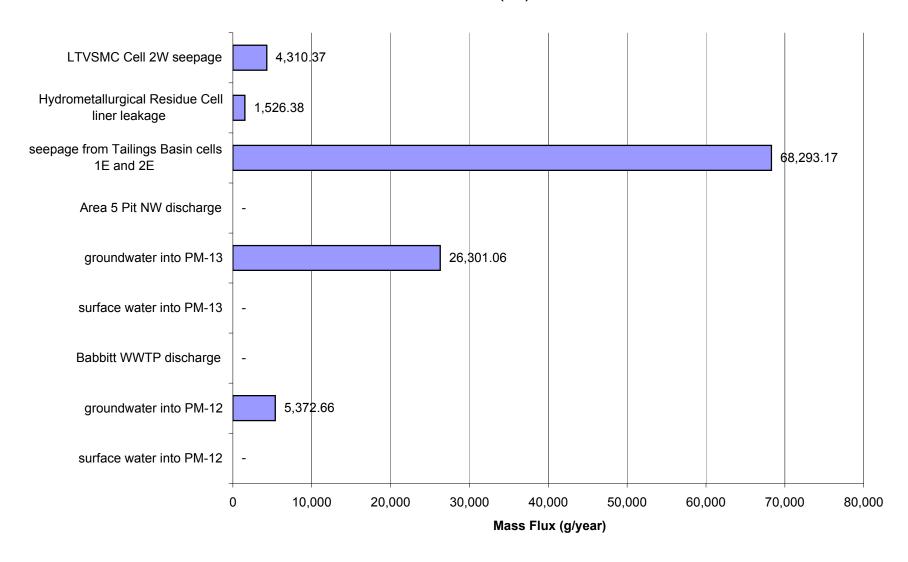

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Cobalt (Co)

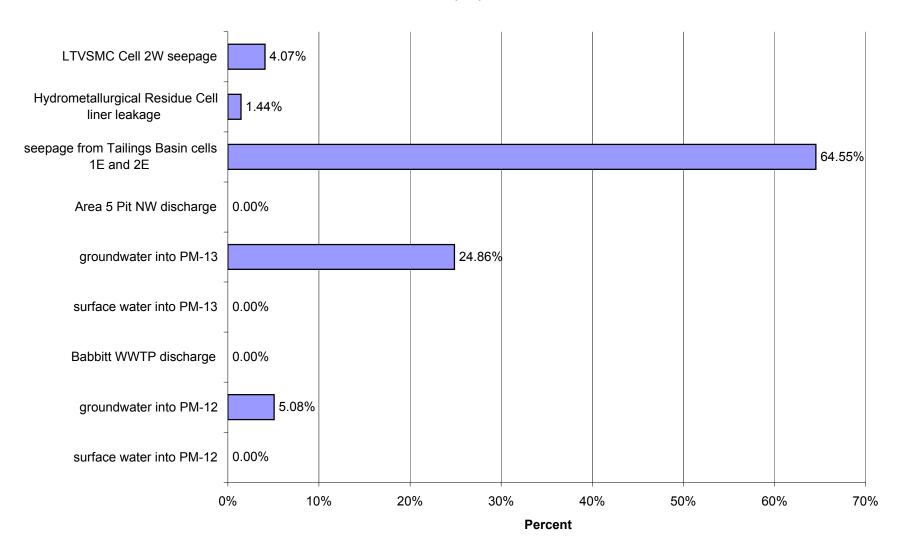

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Copper (Cu)

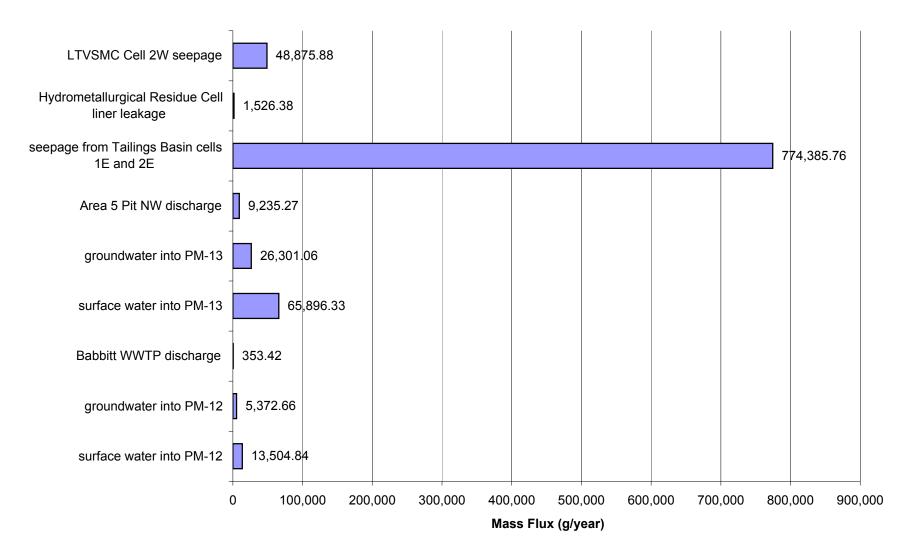

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Copper (Cu)

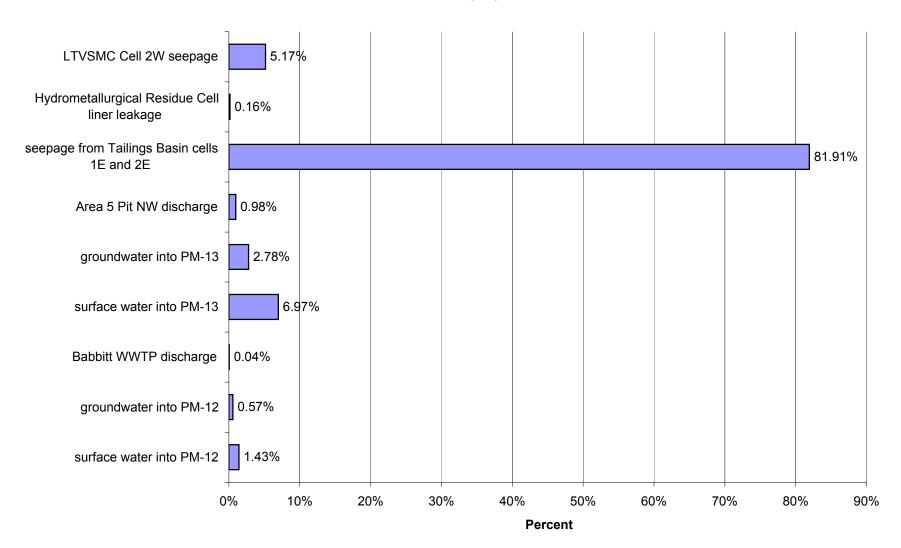

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Copper (Cu)

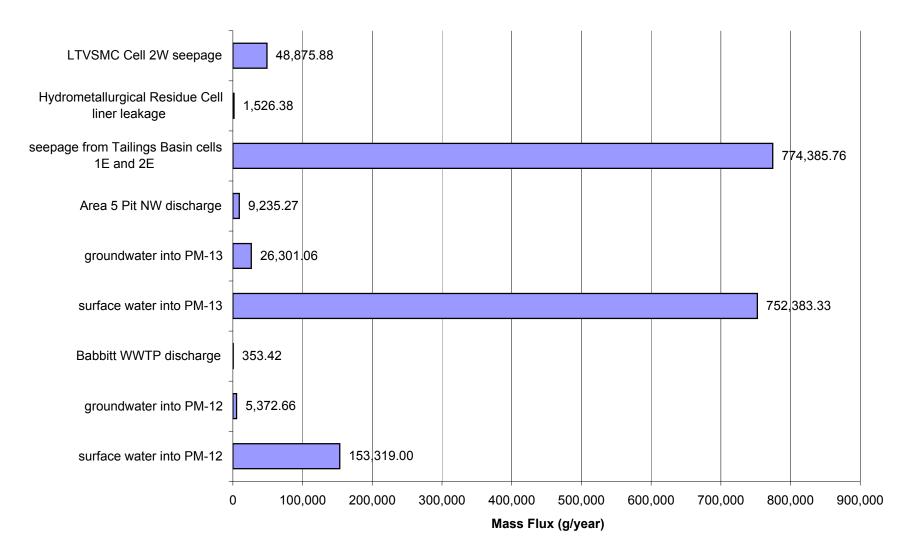

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Copper (Cu)

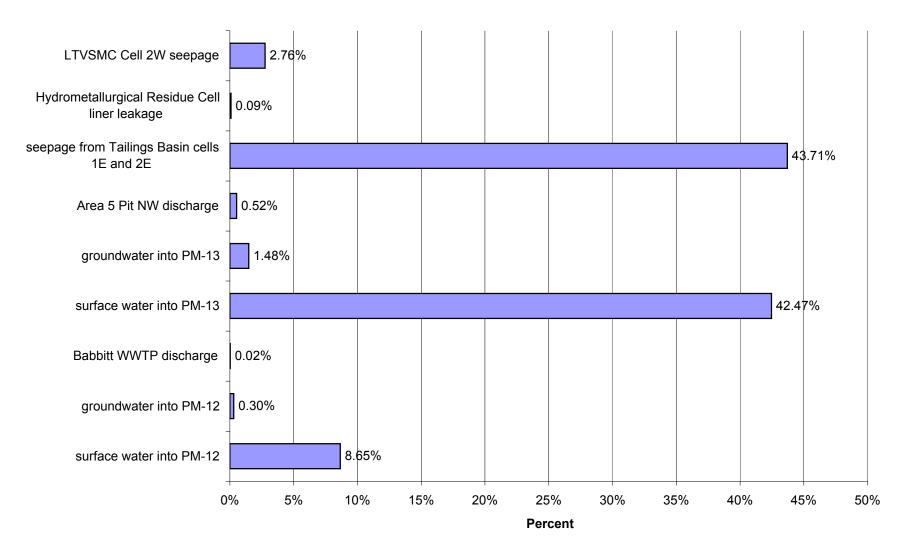

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Copper (Cu)

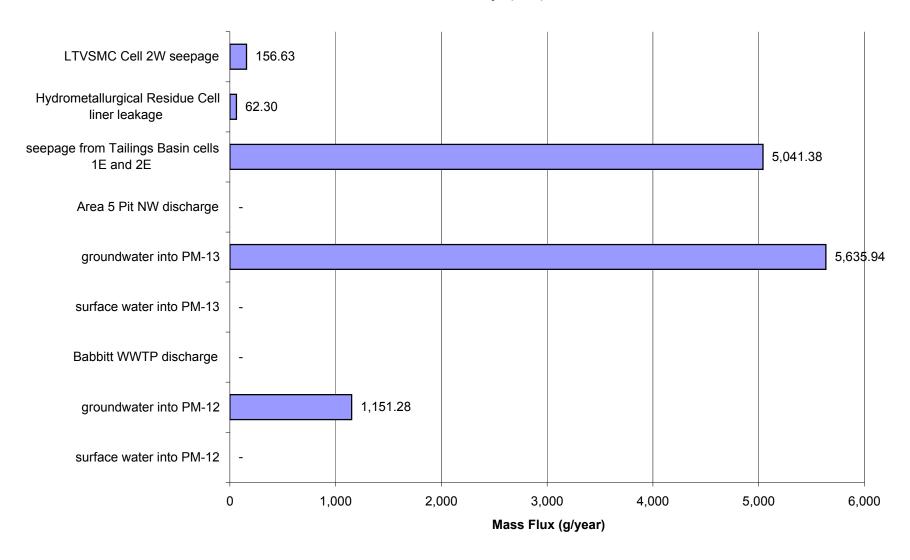

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Copper (Cu)

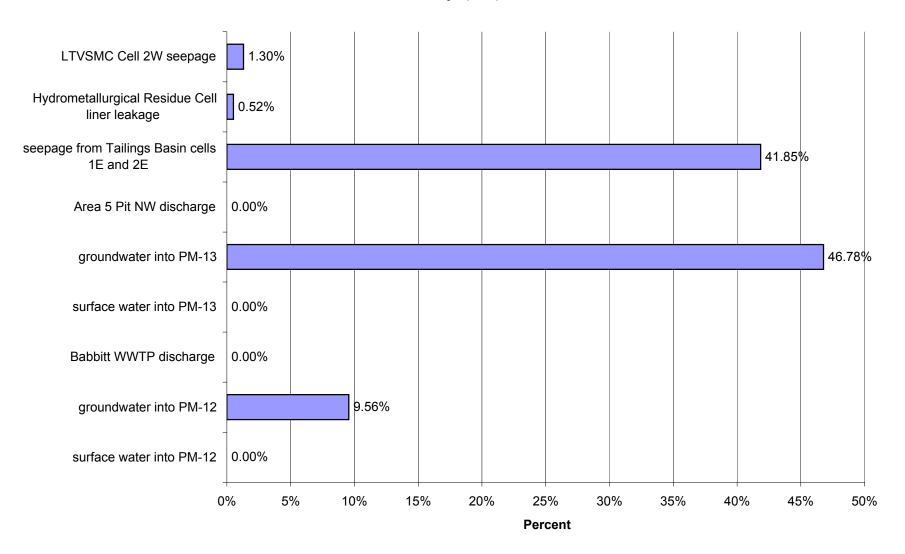

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Nickel (Ni)

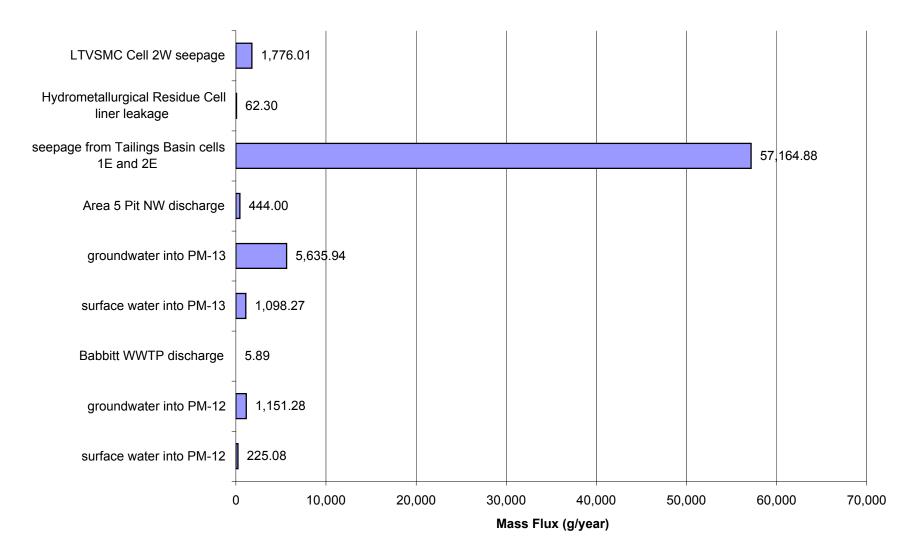

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Nickel (Ni)

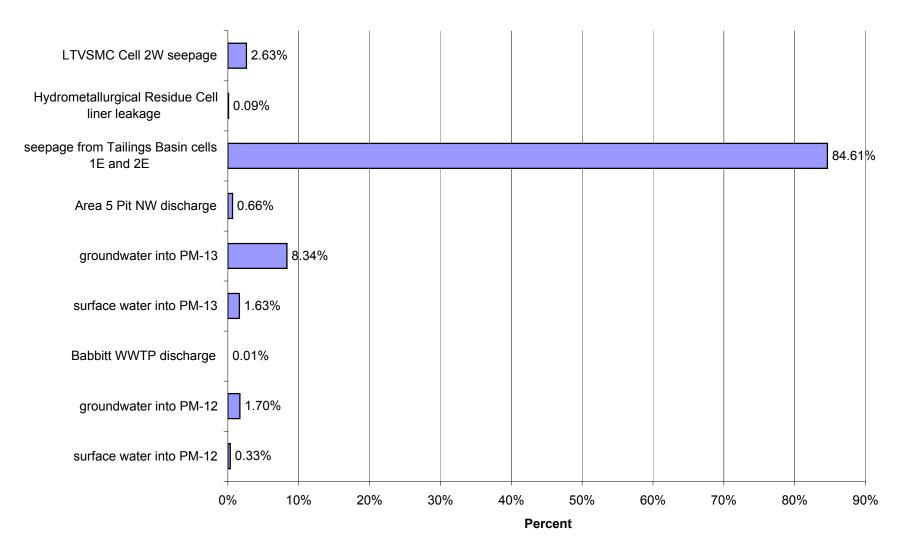

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Nickel (Ni)

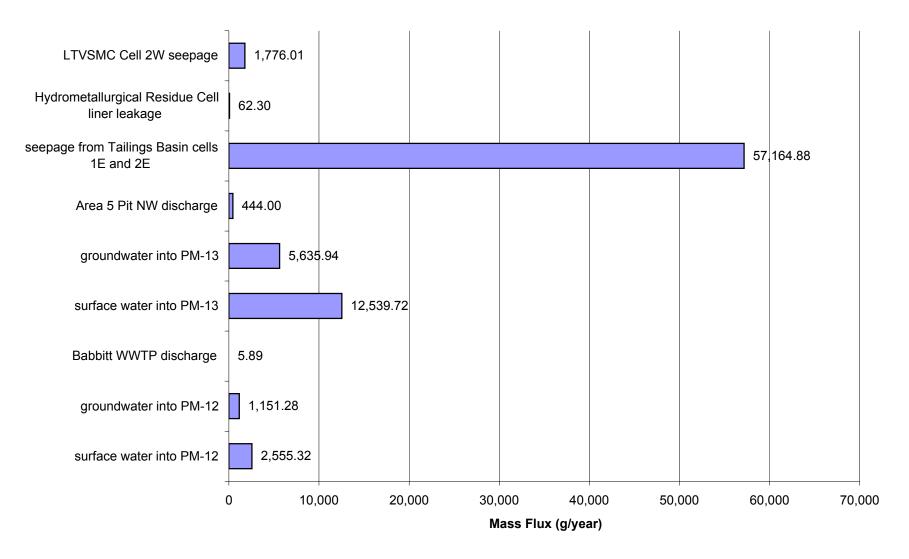

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Nickel (Ni)

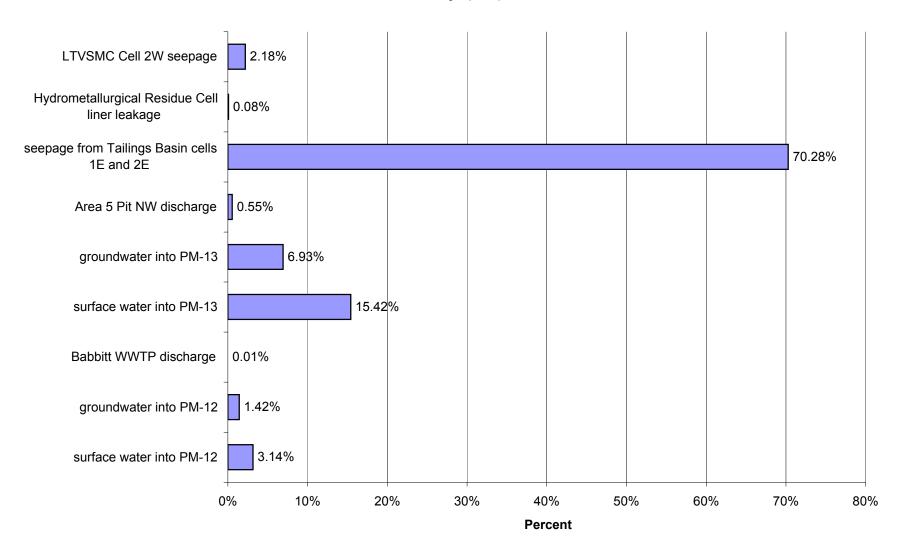

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Nickel (Ni)

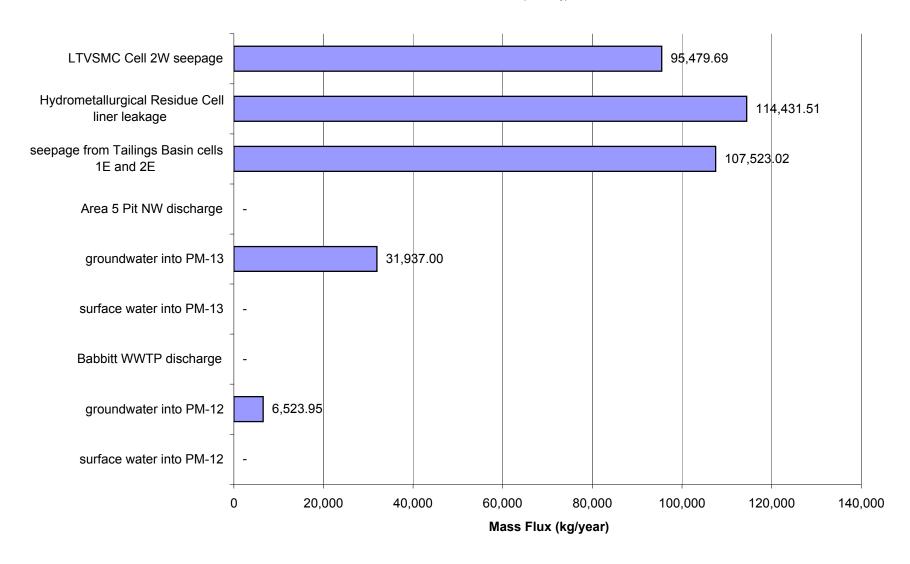

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Nickel (Ni)

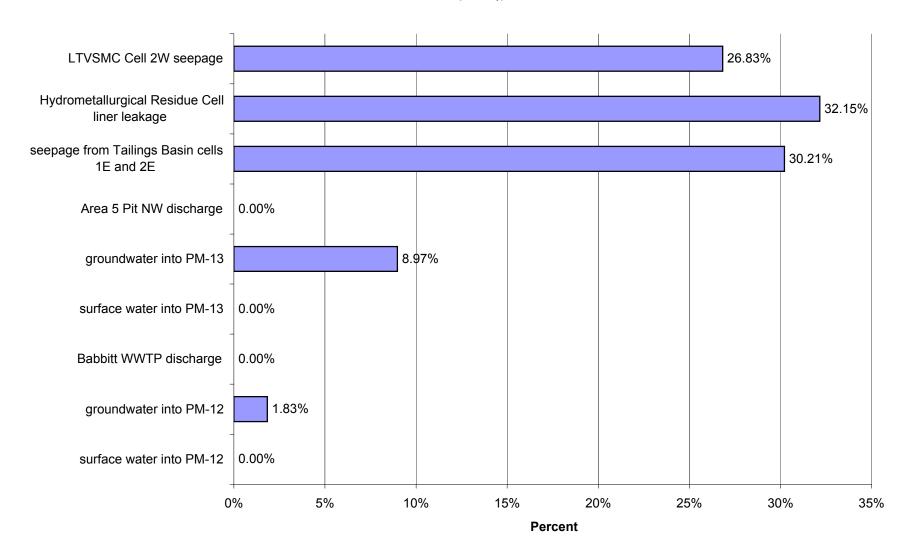

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Antimony (Sb)

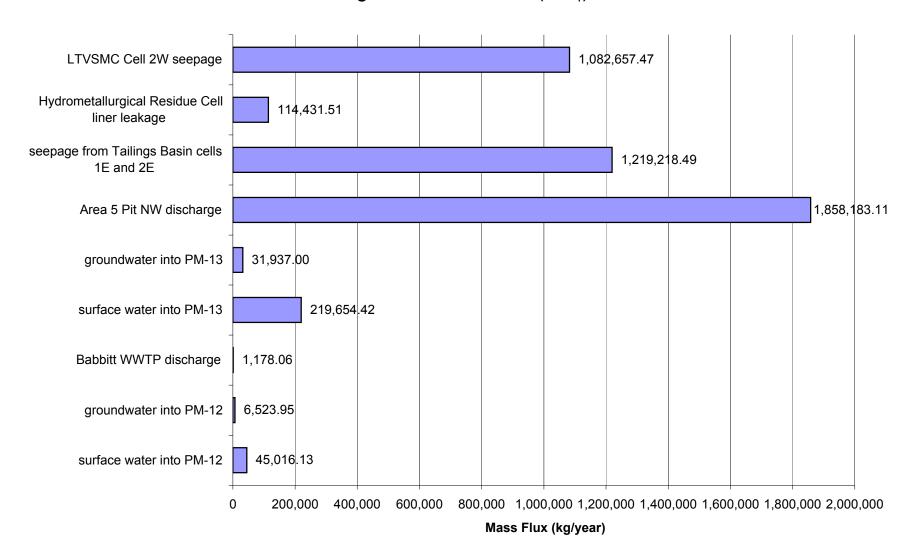

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Antimony (Sb)

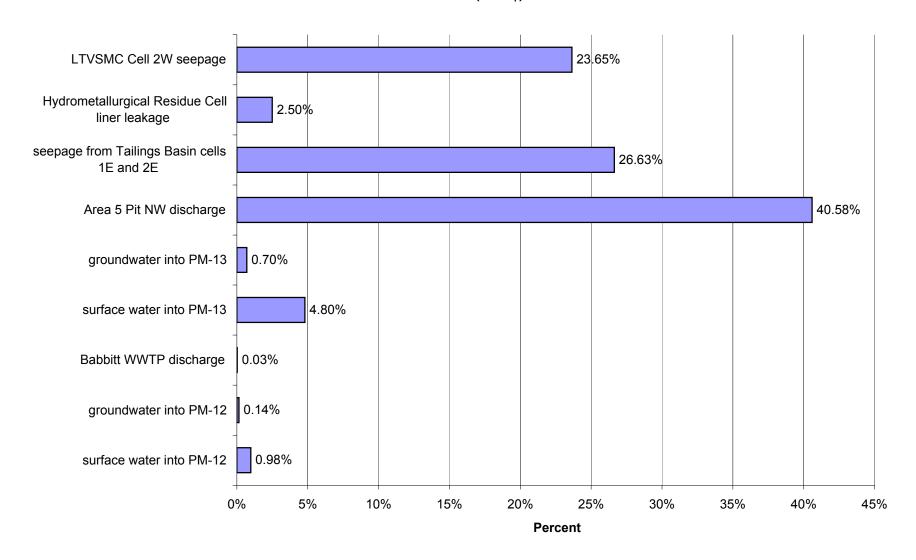

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Antimony (Sb)

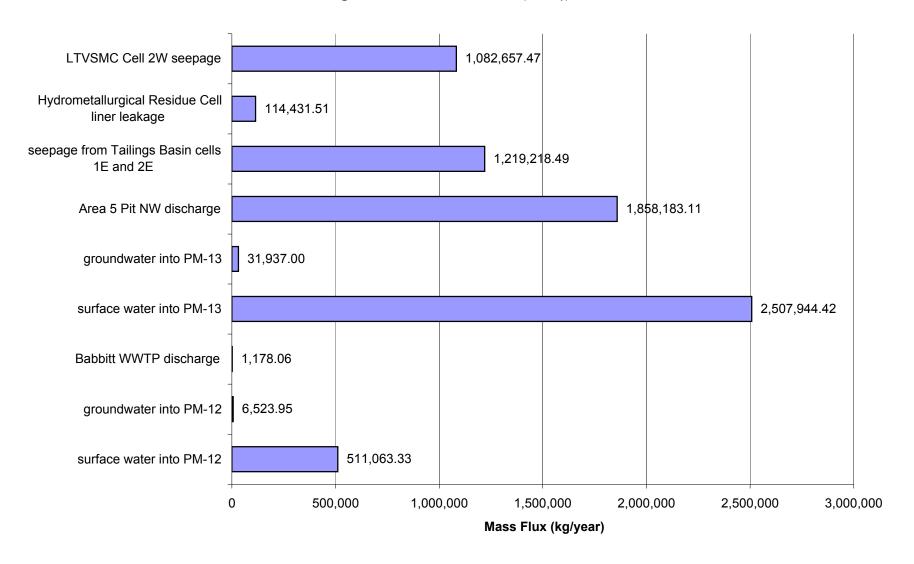

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Antimony (Sb)

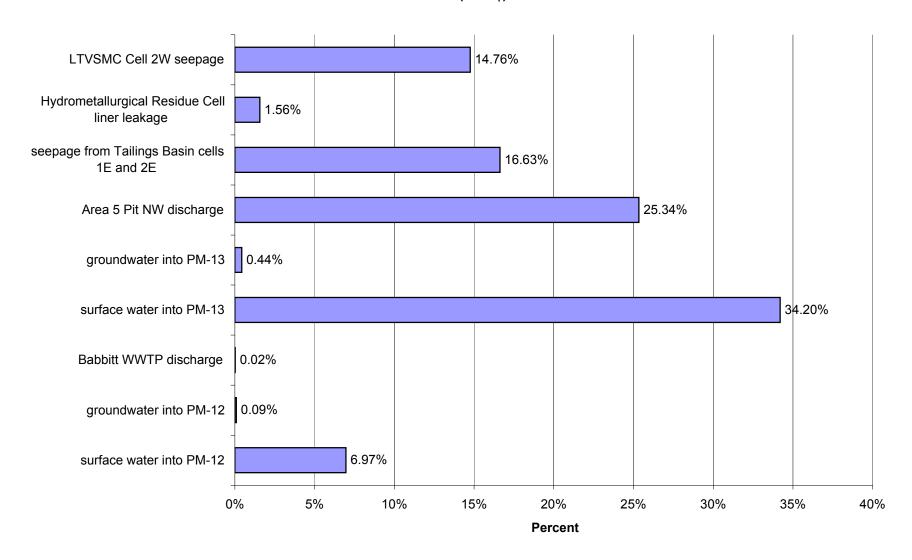

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Antimony (Sb)

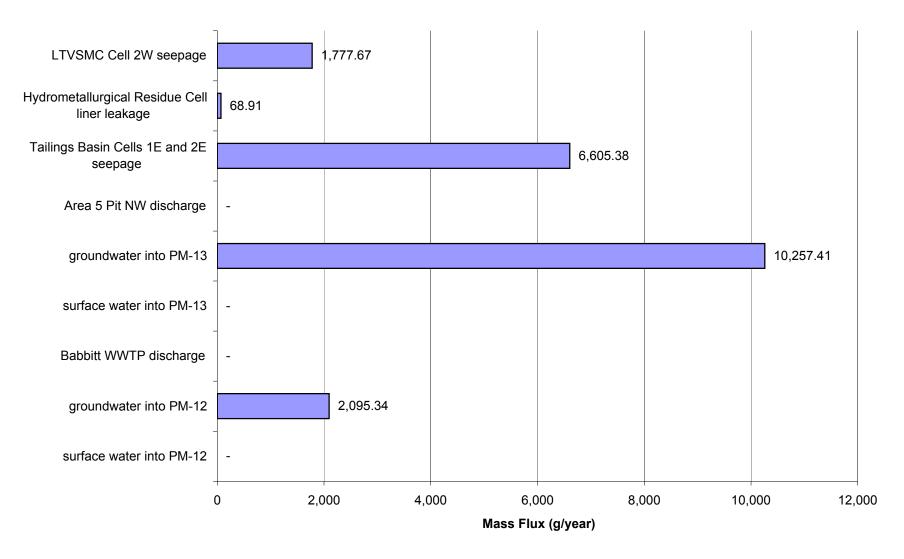

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Antimony (Sb)

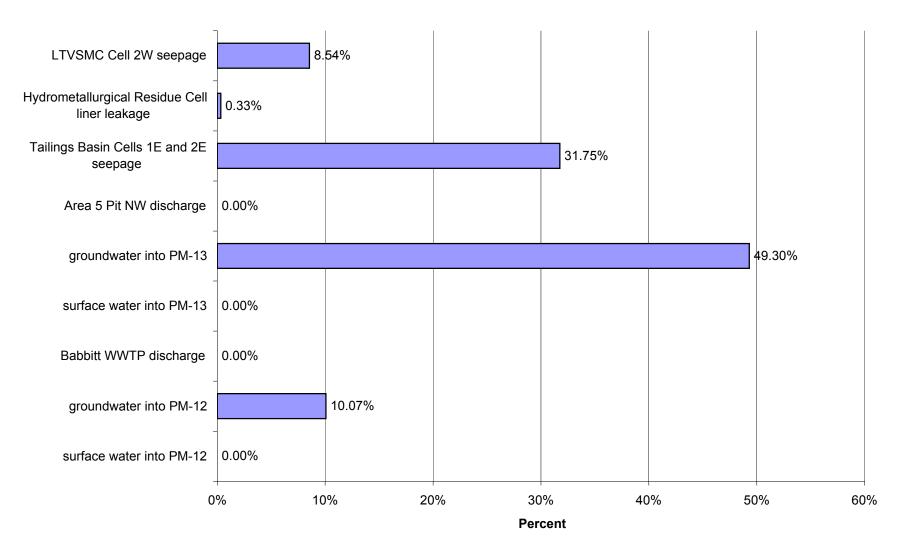

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for Low Flow for Sulfate (SO₄)

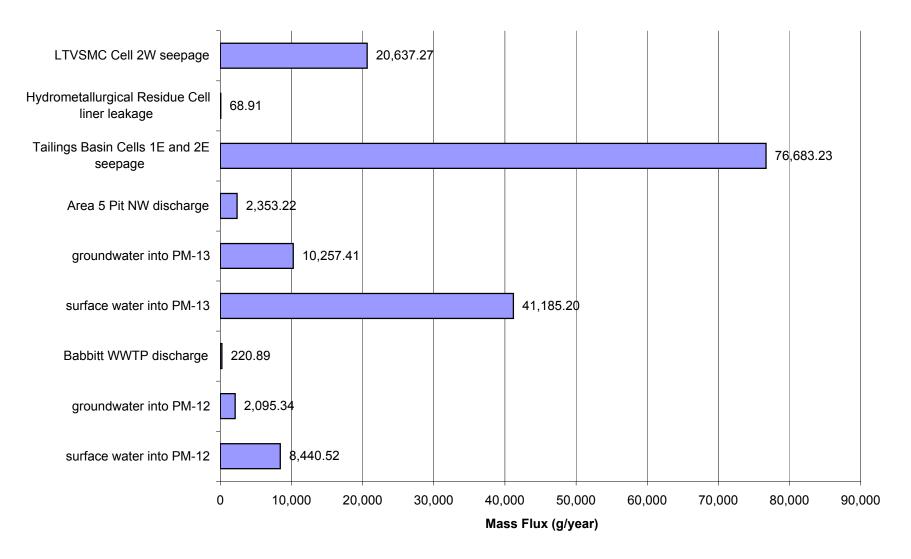

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Low Flow for Sulfate (SO₄)

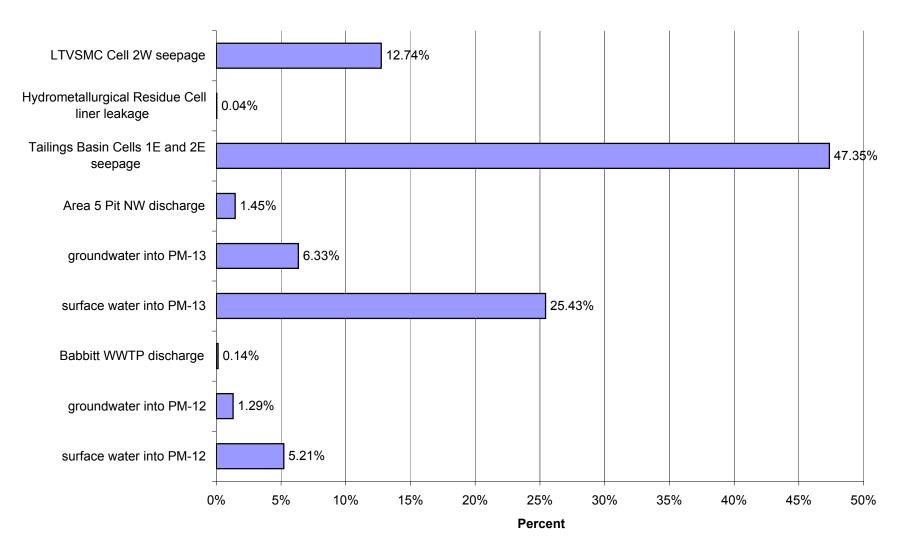

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for Average Flow for Sulfate (SO₄)

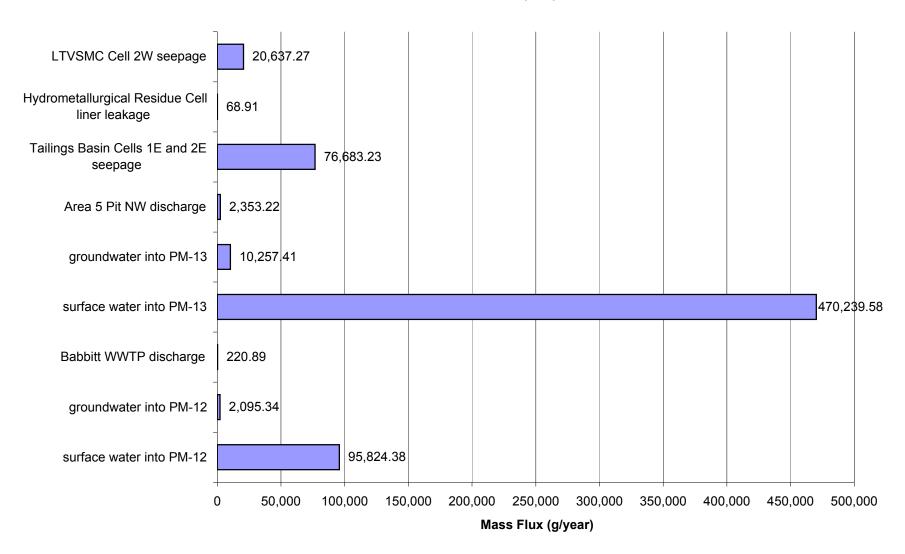

Proposed Action: Percent of Impacts at PM-13 in Year 15 for Average Flow for Sulfate (SO₄)

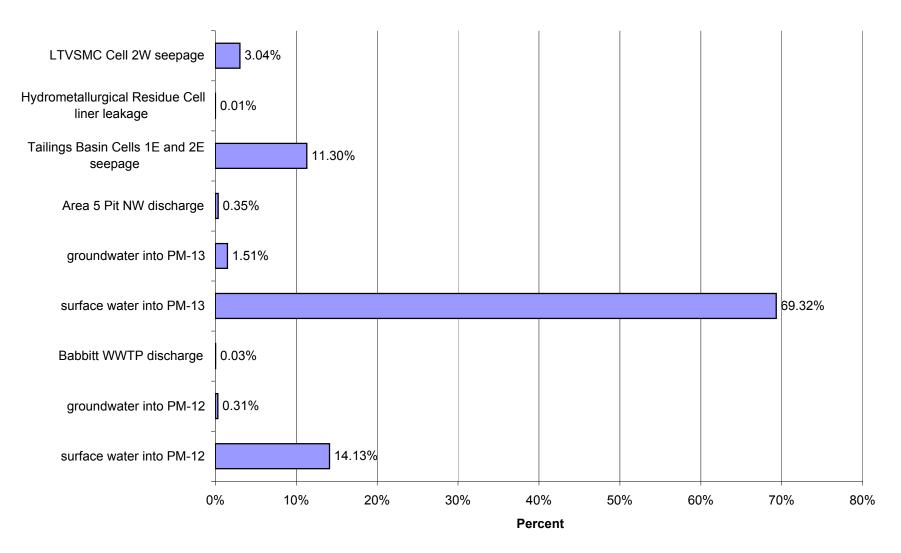

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for High Flow for Sulfate (SO₄)

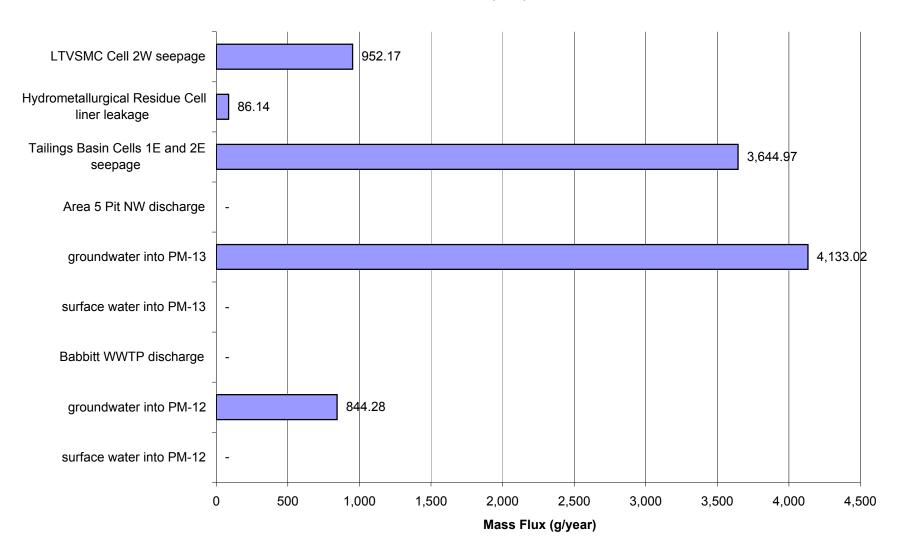

Proposed Action: Percent of Impacts at PM-13 in Year 15 for High Flow for Sulfate (SO₄)

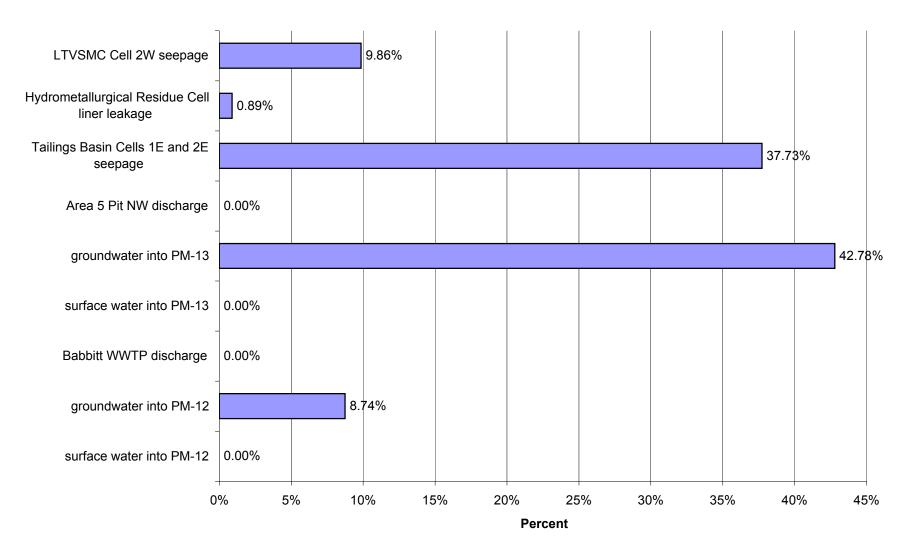

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Arsenic (As)

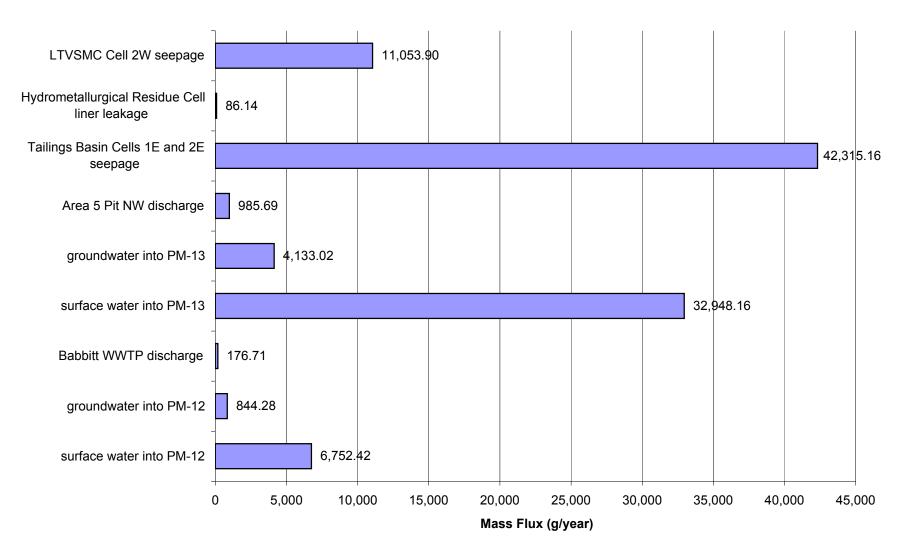

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Low Flow for Arsenic (As)

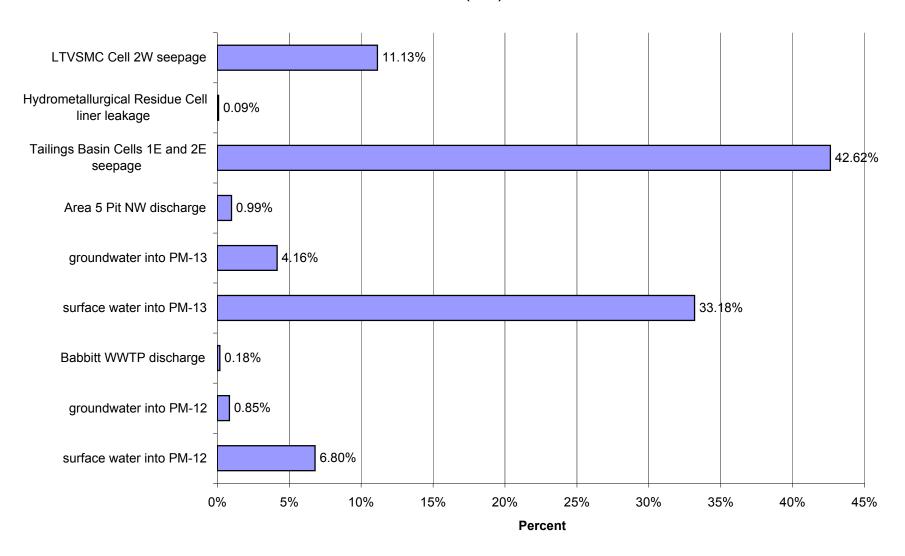

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Arsenic (As)

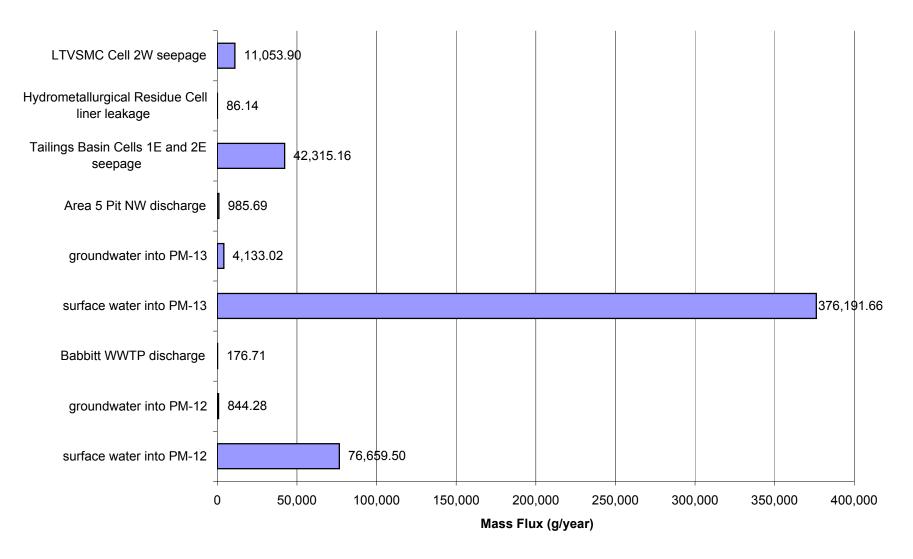

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Arsenic (As)

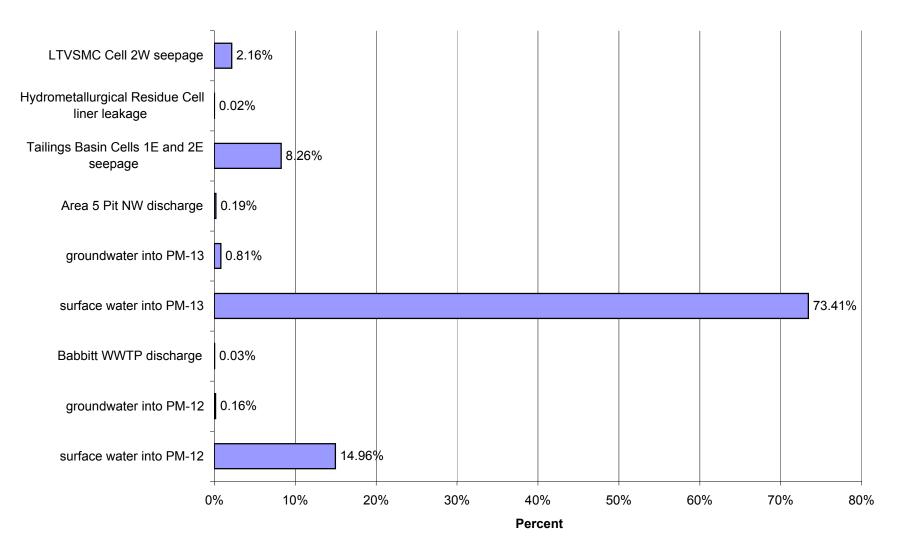

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Arsenic (As)

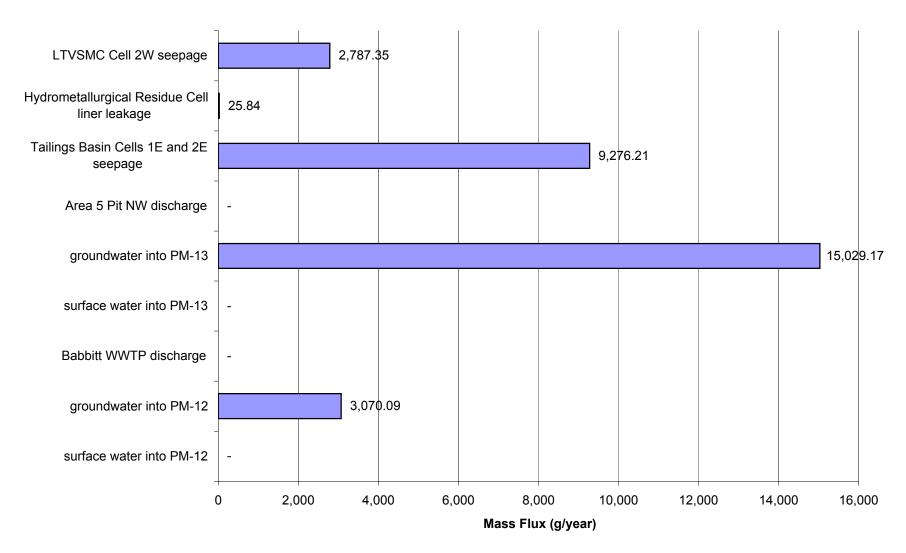

Proposed Action: Percent of Impacts at PM-13 in Year 20 for High Flow for Arsenic (As)

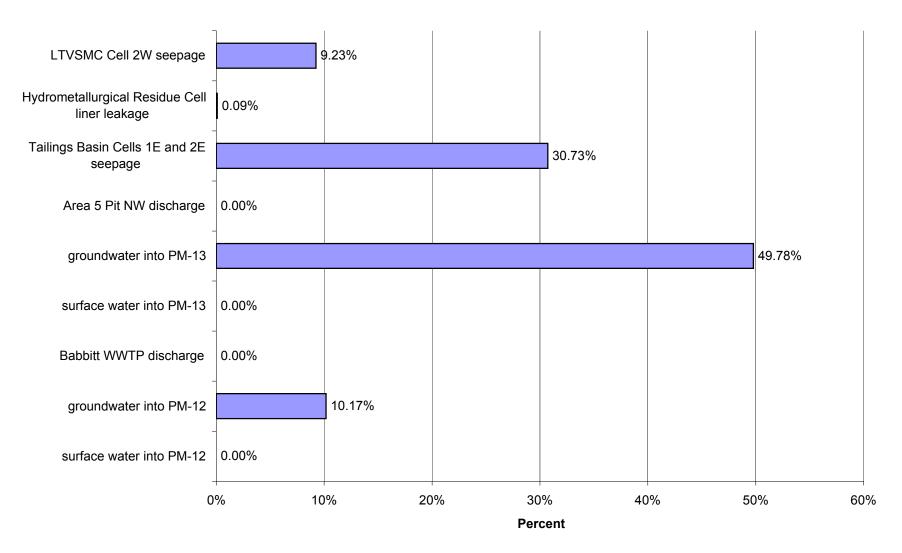

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Cobalt (Co)

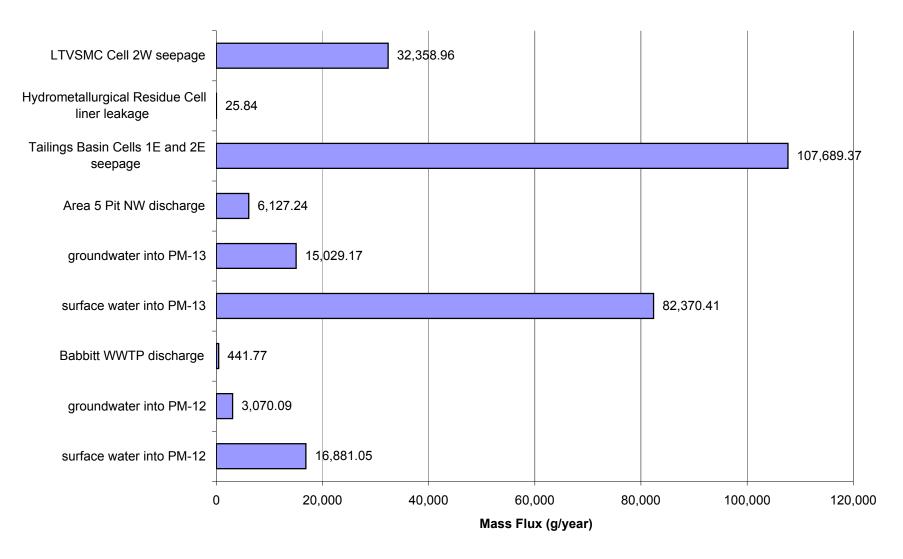

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Low Flow for Cobalt (Co)

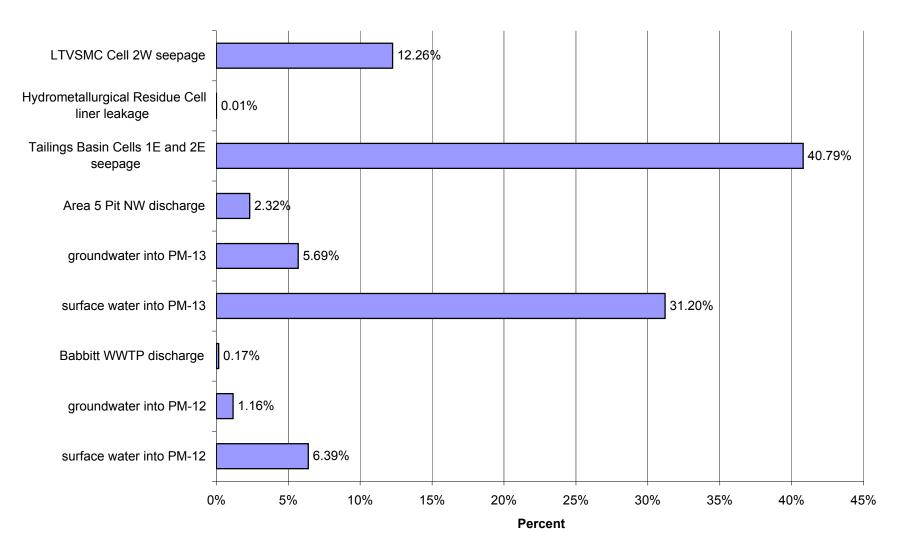

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Cobalt (Co)

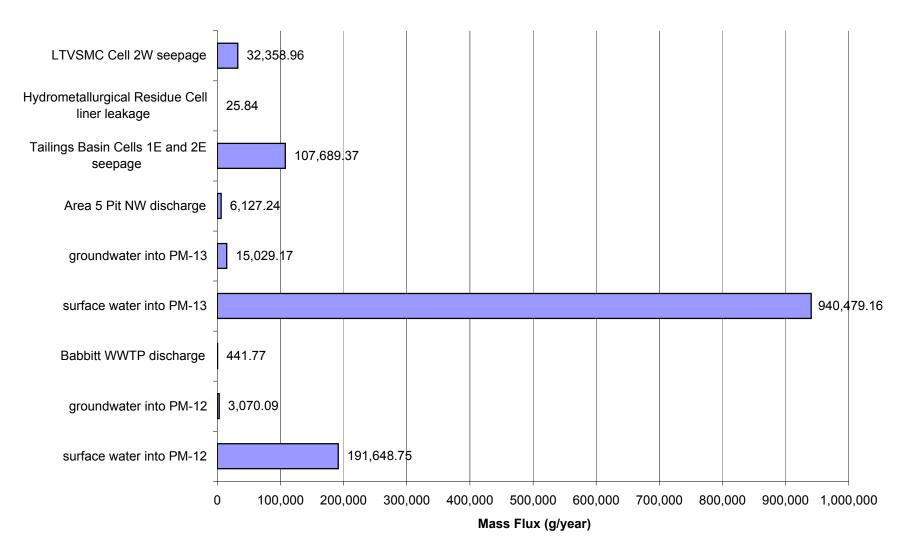

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Cobalt (Co)

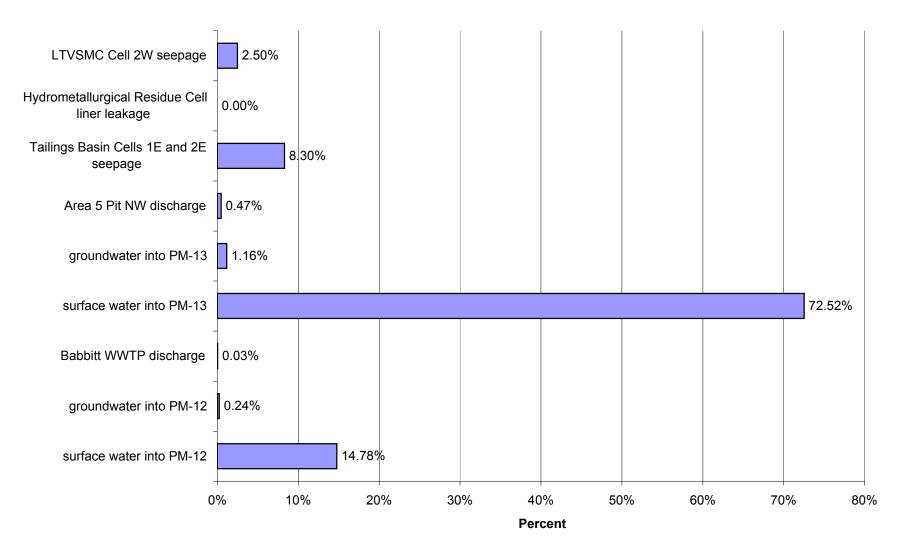

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Cobalt (Co)

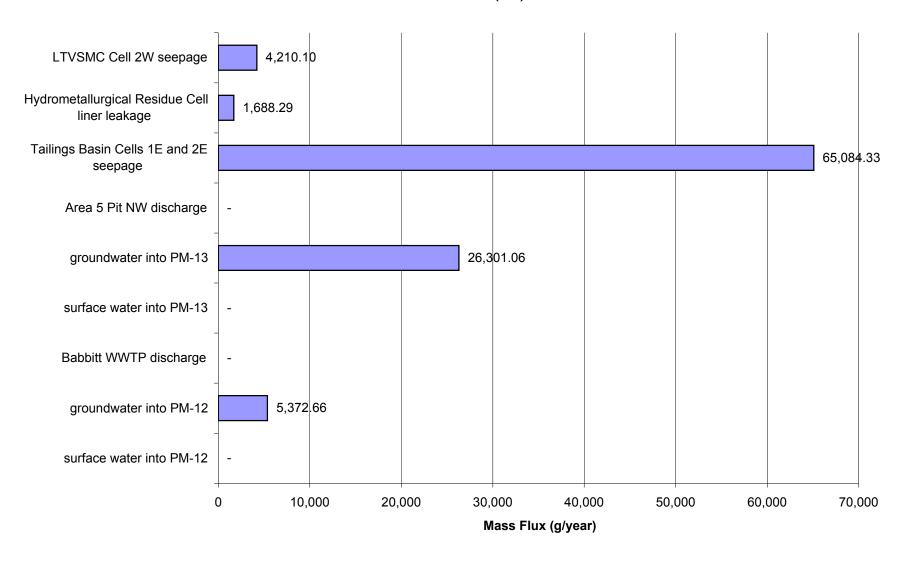

Proposed Action: Percent of Impacts at PM-13 in Year 20 for High Flow for Cobalt (Co)

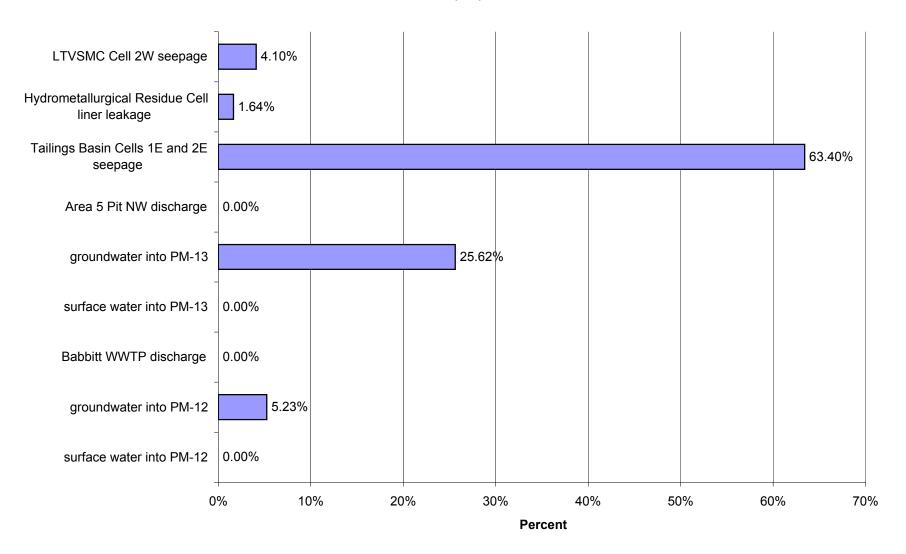

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Copper (Cu)

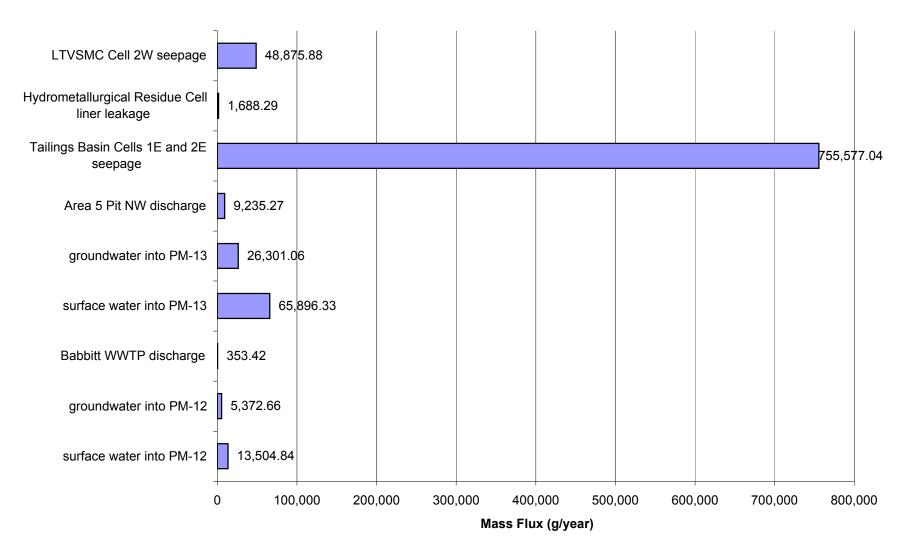

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Low Flow for Copper (Cu)

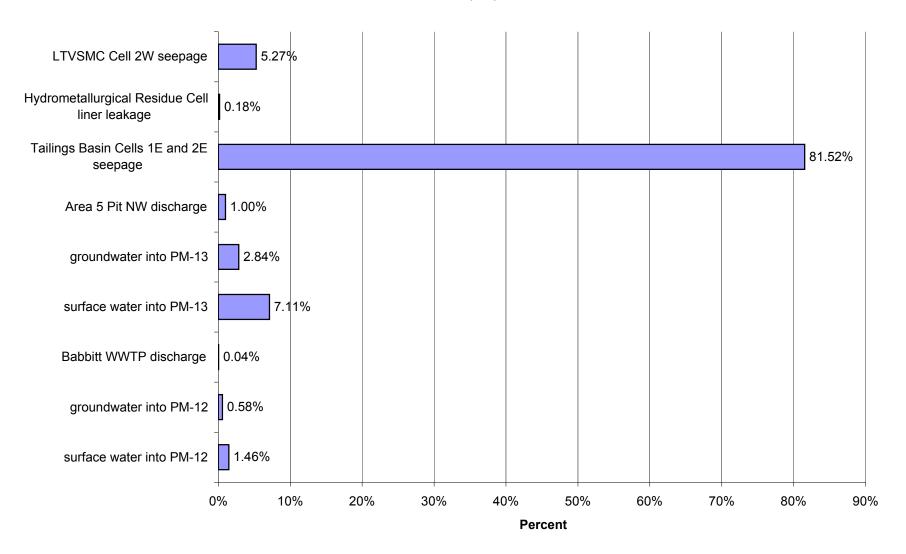

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Copper (Cu)

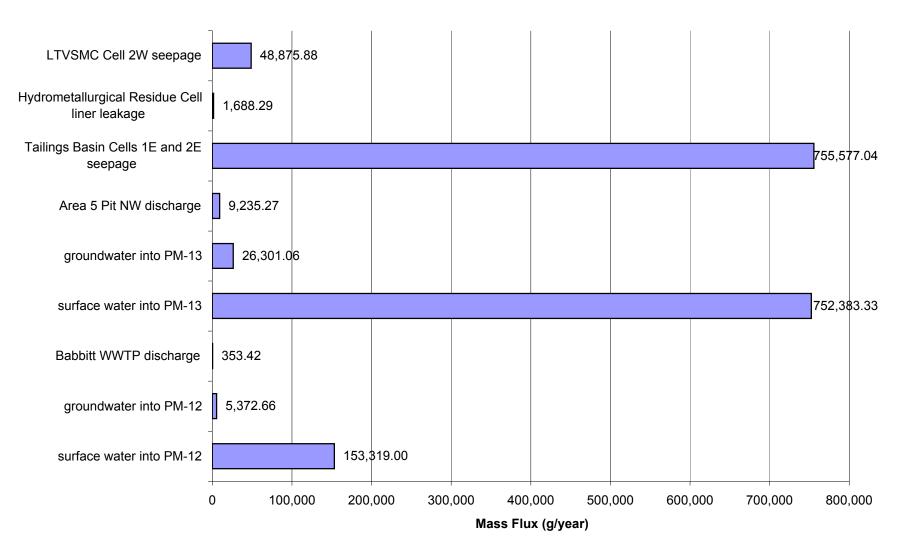

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Copper (Cu)

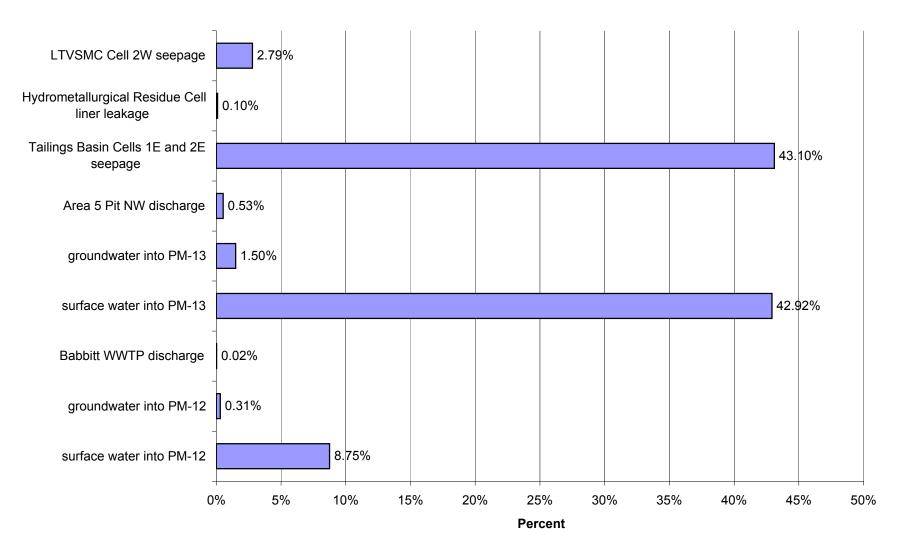

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Copper (Cu)

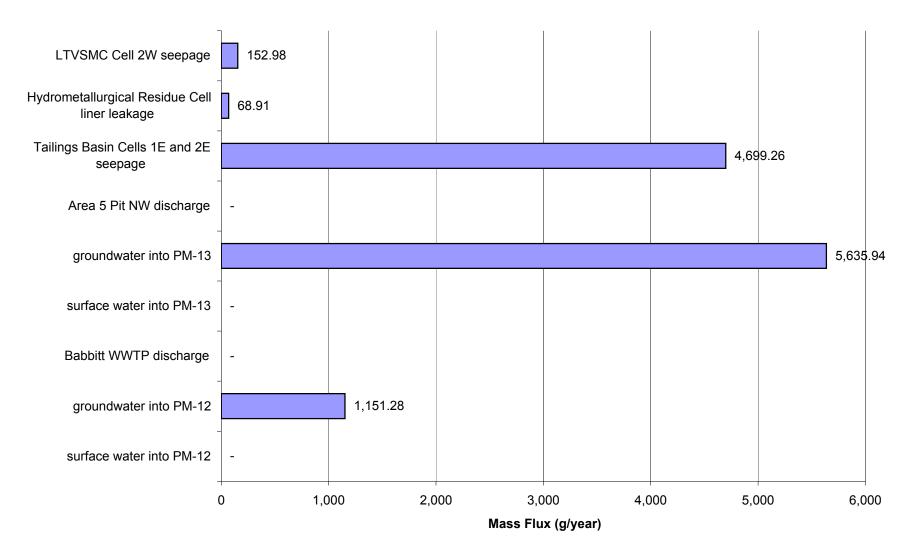

Proposed Action: Percent of Impacts at PM-13 in Year 20 for High Flow for Copper (Cu)

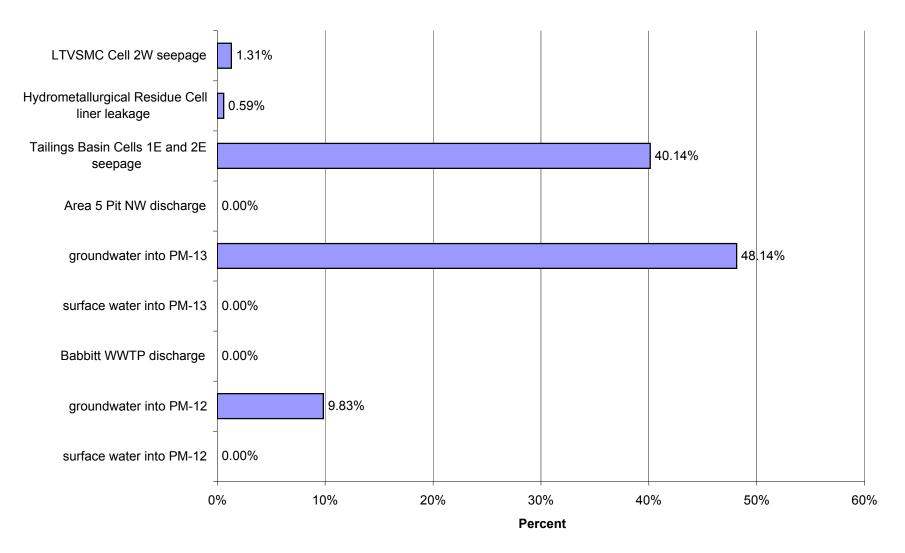

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Nickel (Ni)

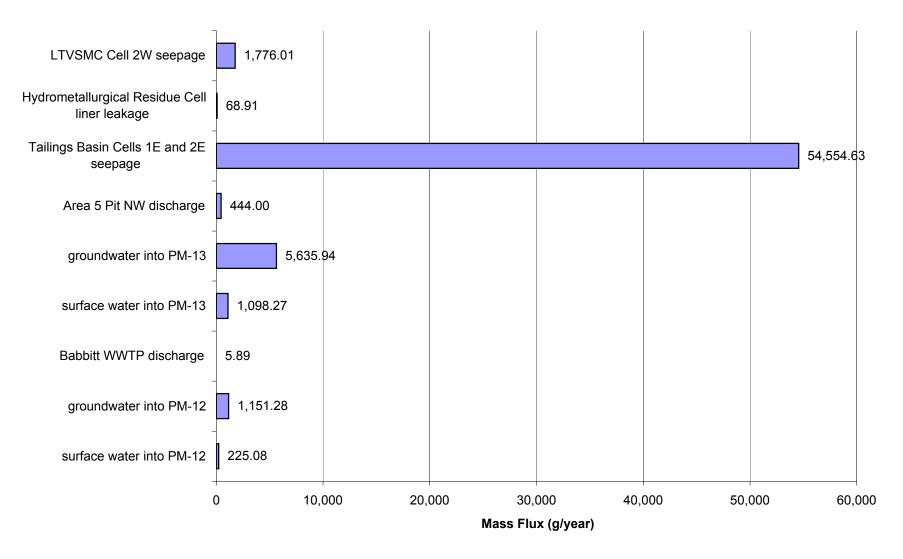

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Low Flow for Nickel (Ni)

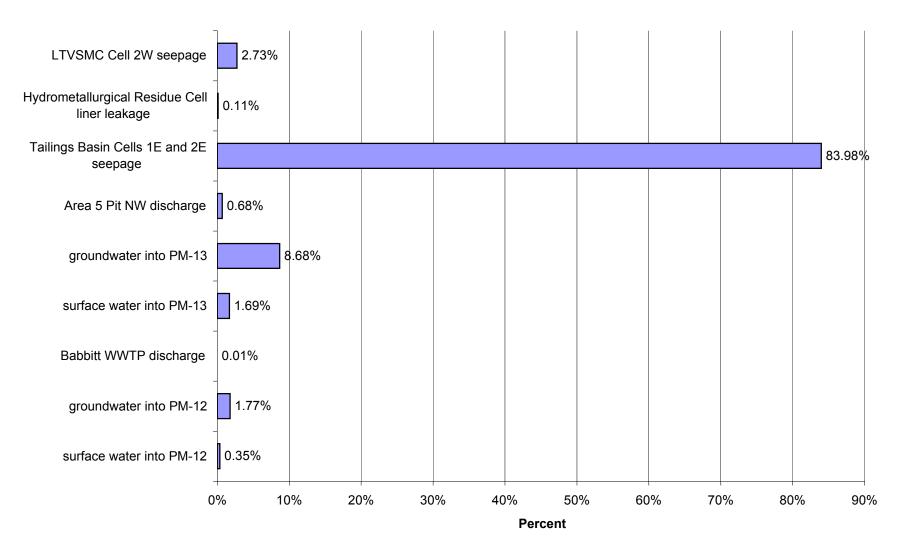

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Nickel (Ni)


Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Nickel (Ni)

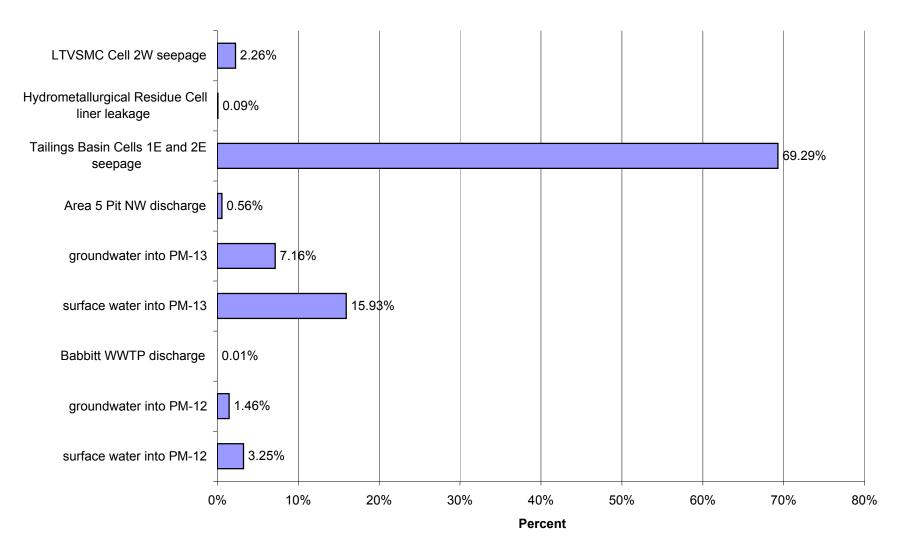

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Nickel (Ni)

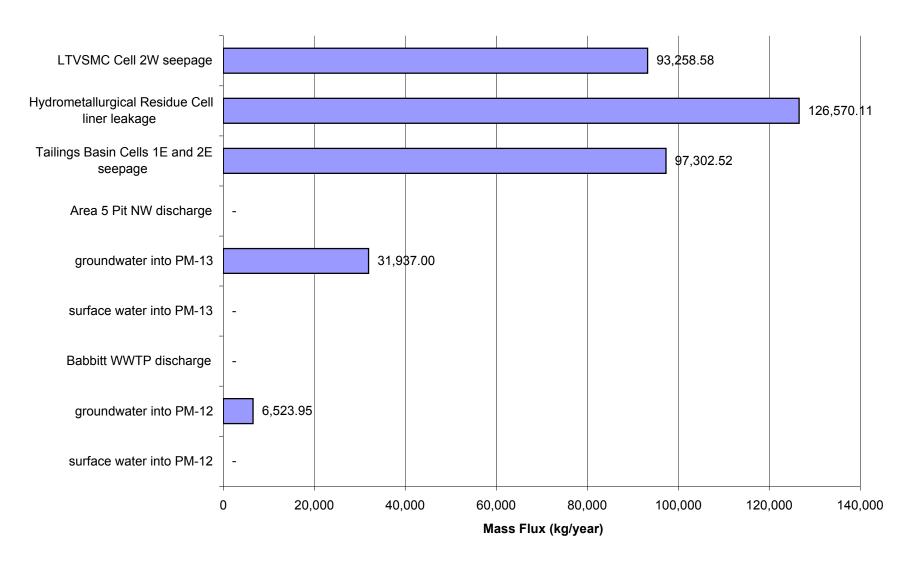

Proposed Action: Percent of Impacts at PM-13 in Year 20 for High Flow for Nickel (Ni)

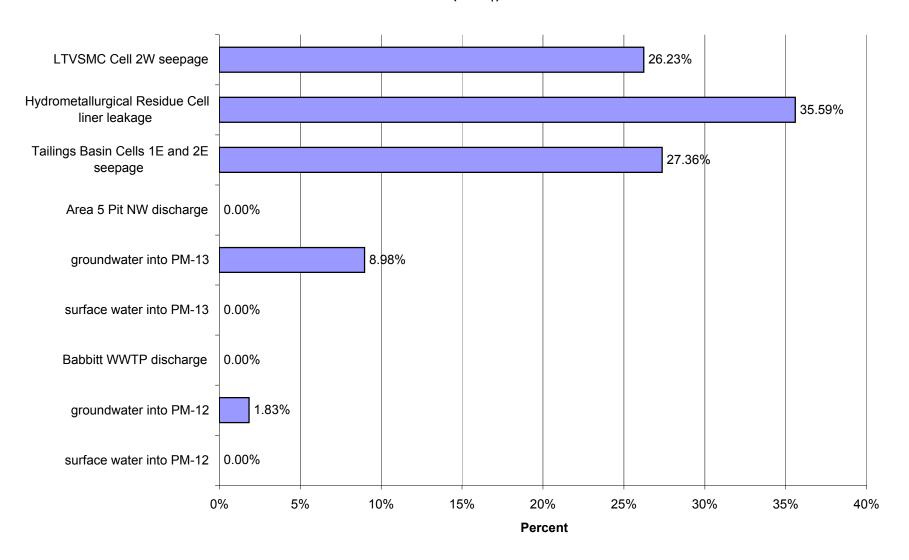

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Antimony (Sb)

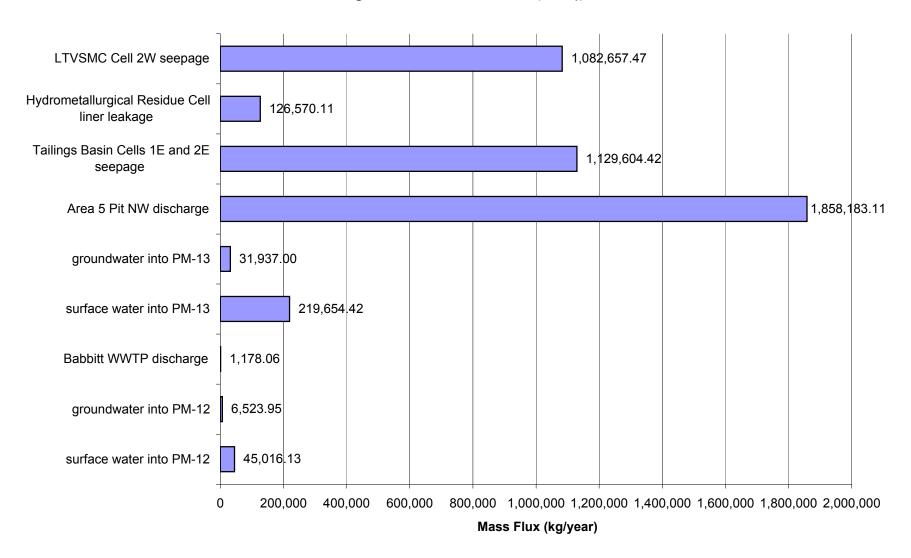

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Low Flow for Antimony (Sb)

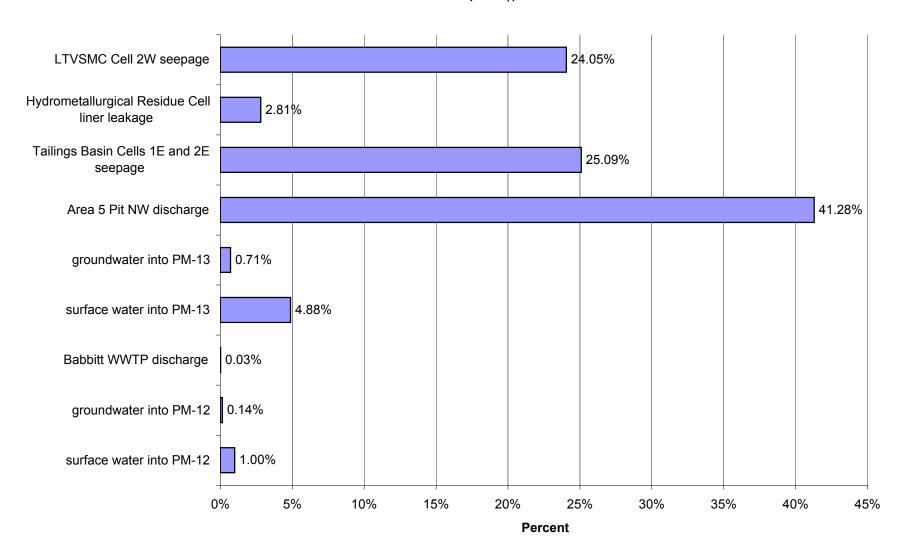

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Antimony (Sb)

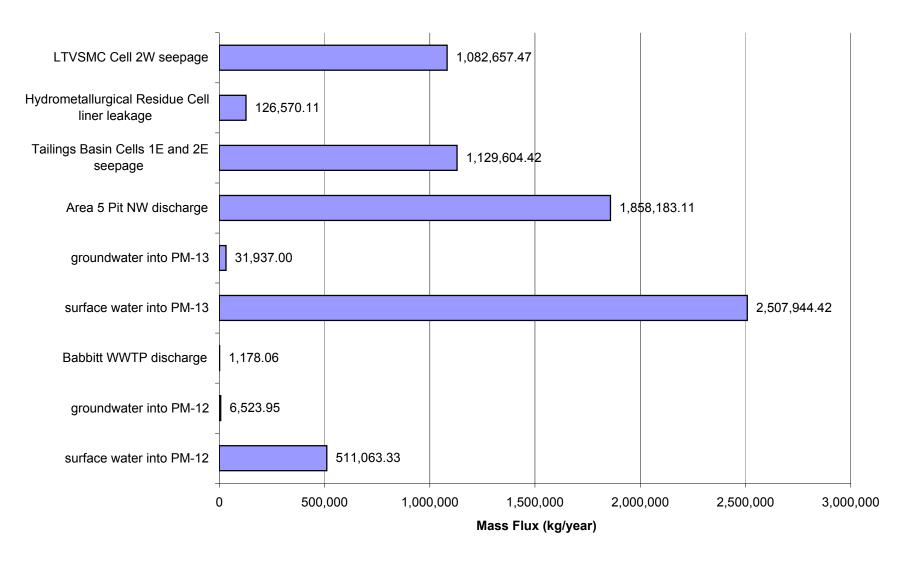

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Antimony (Sb)

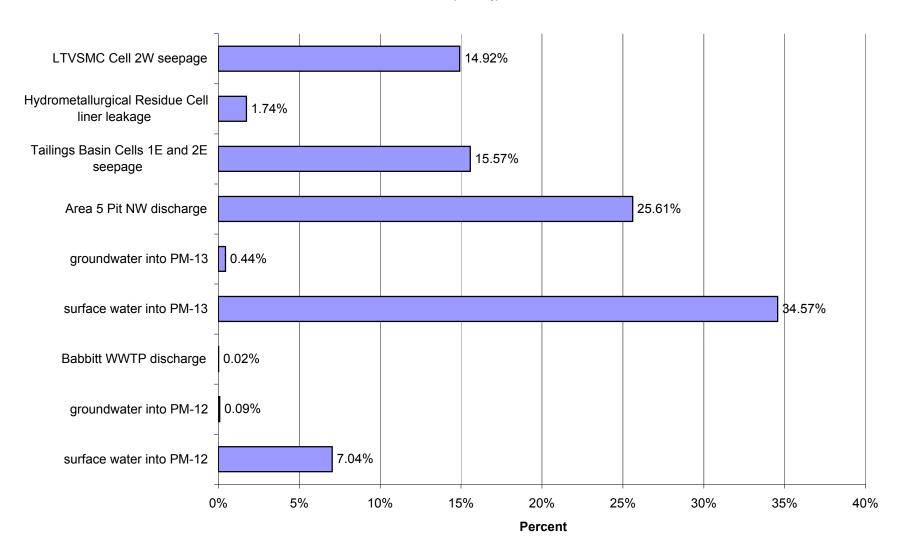

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Antimony (Sb)

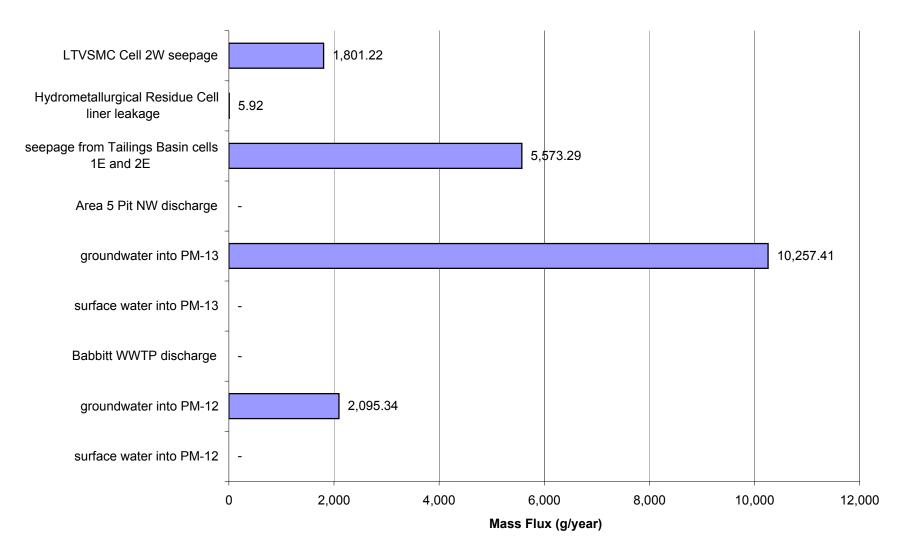

Proposed Action: Percent of Impacts at PM-13 in Year 20 for High Flow for Antimony (Sb)

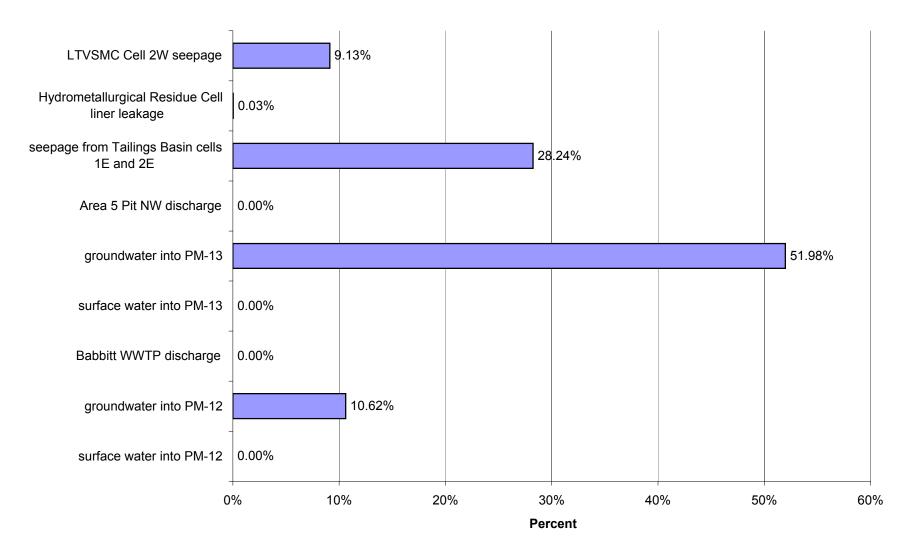

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for Low Flow for Sulfate (SO₄)

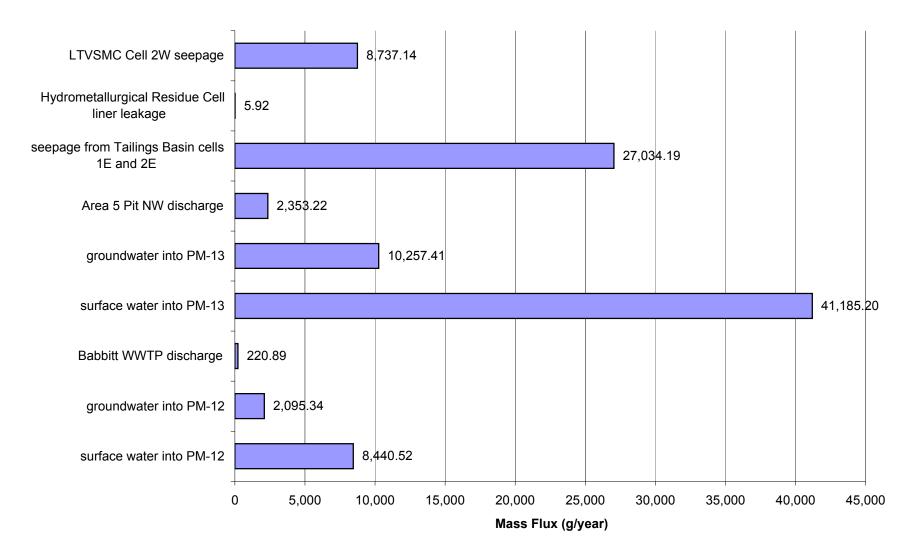

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Low Flow for Sulfate (SO₄)

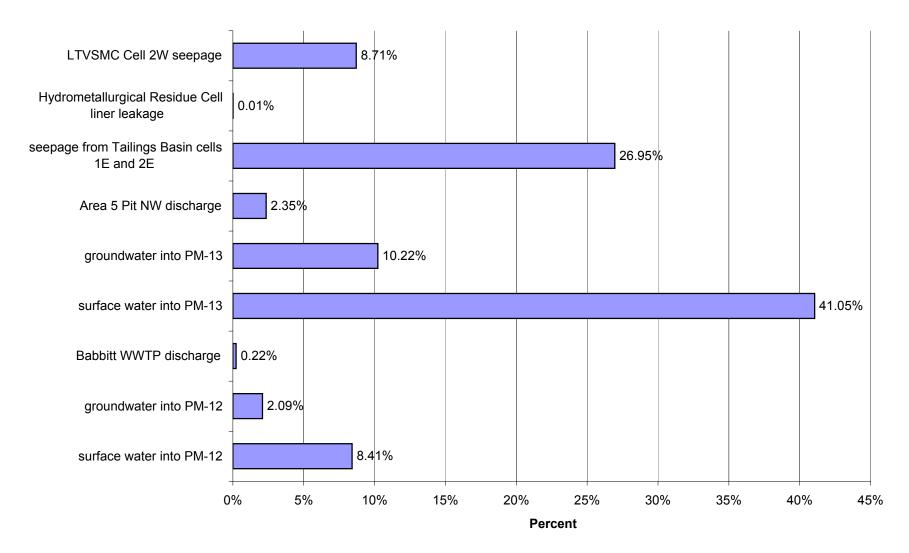

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for Average Flow for Sulfate (SO₄)

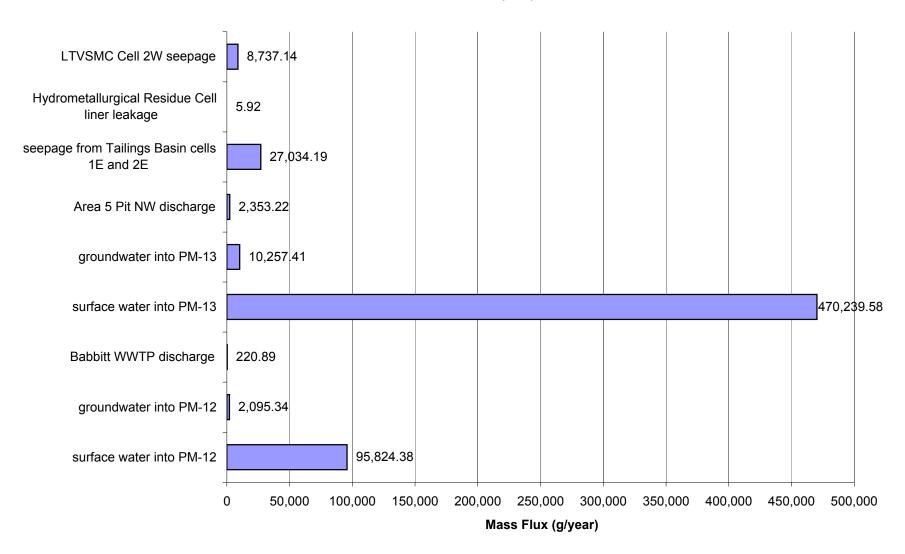

Proposed Action: Percent of Impacts at PM-13 in Year 20 for Average Flow for Sulfate (SO₄)

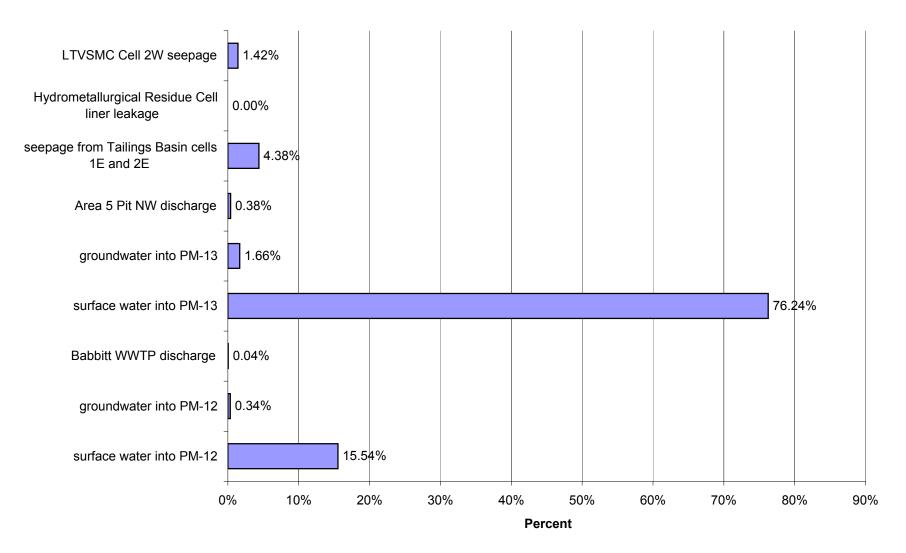

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for High Flow for Sulfate (SO₄)

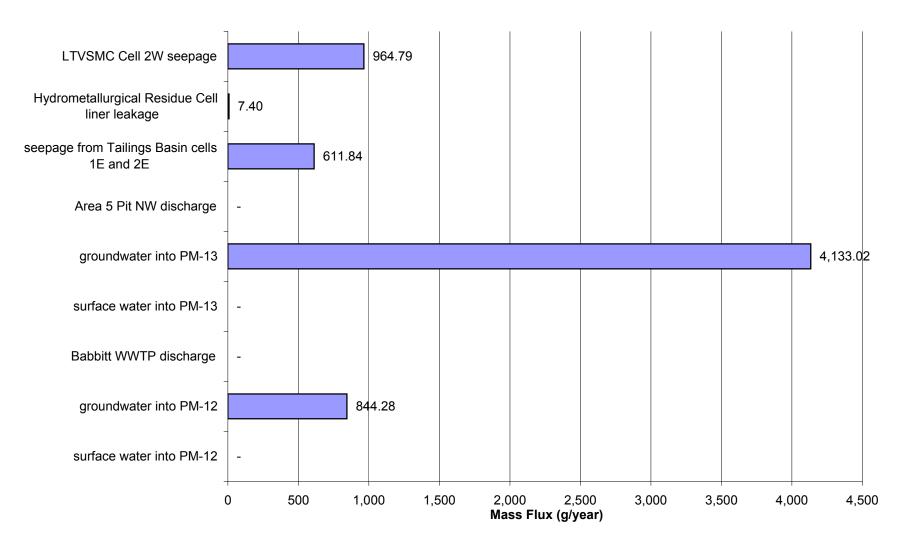

Proposed Action: Percent of Impacts at PM-13 in Year 20 for High Flow for Sulfate (SO₄)

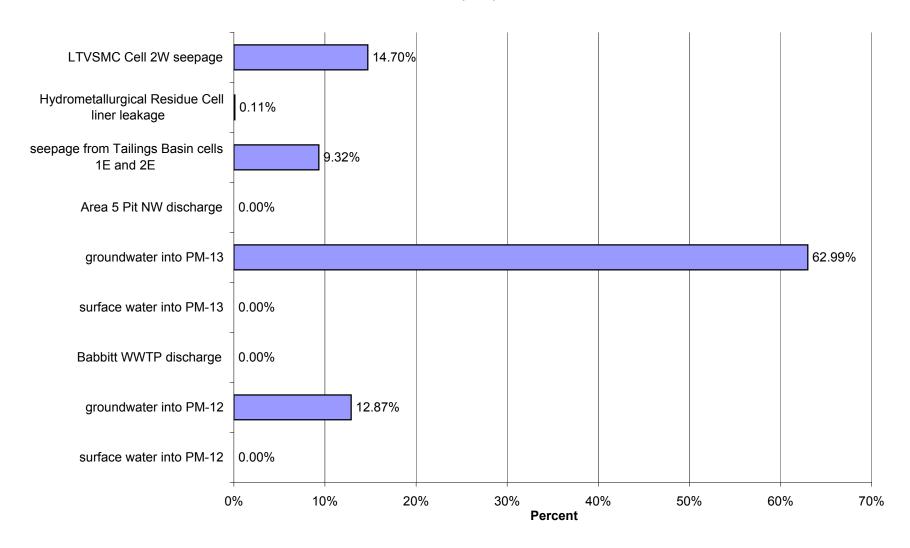

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Arsenic (As)

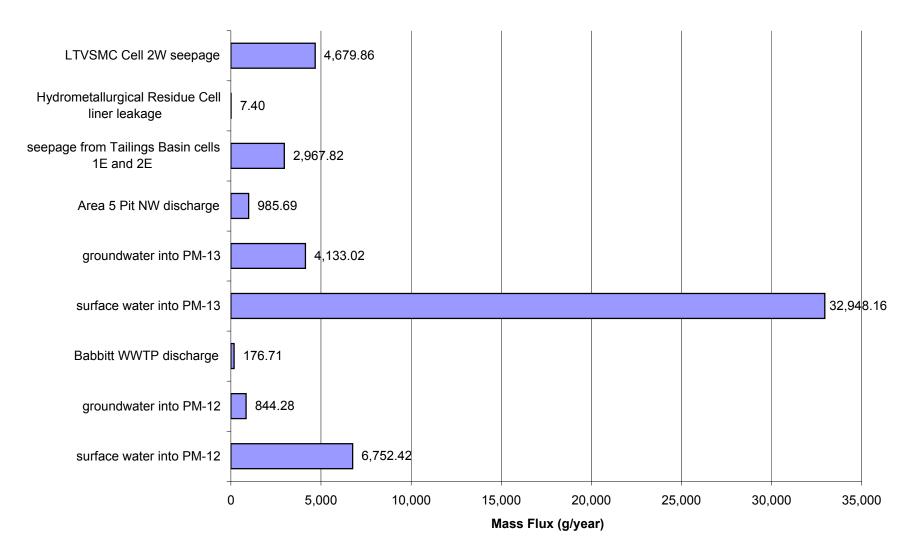

Proposed Action: Percent of Impacts at PM-13 in Closure for Low Flow for Arsenic (As)

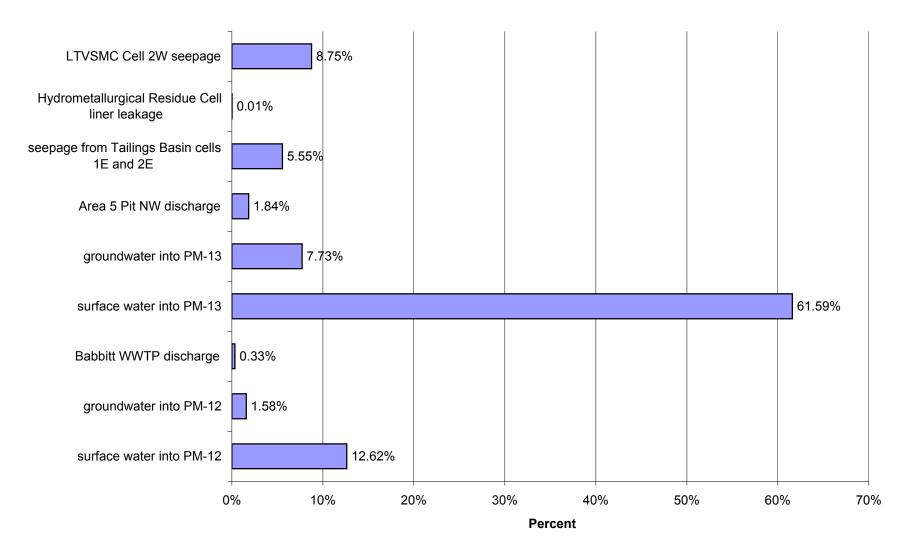

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Arsenic (As)

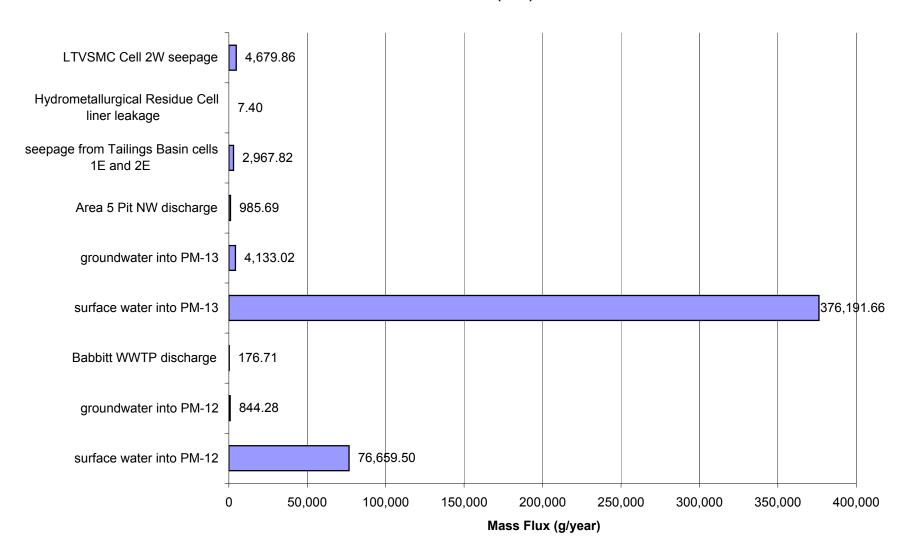

Proposed Action: Percent of Impacts at PM-13 in Closure for Average Flow for Arsenic (As)

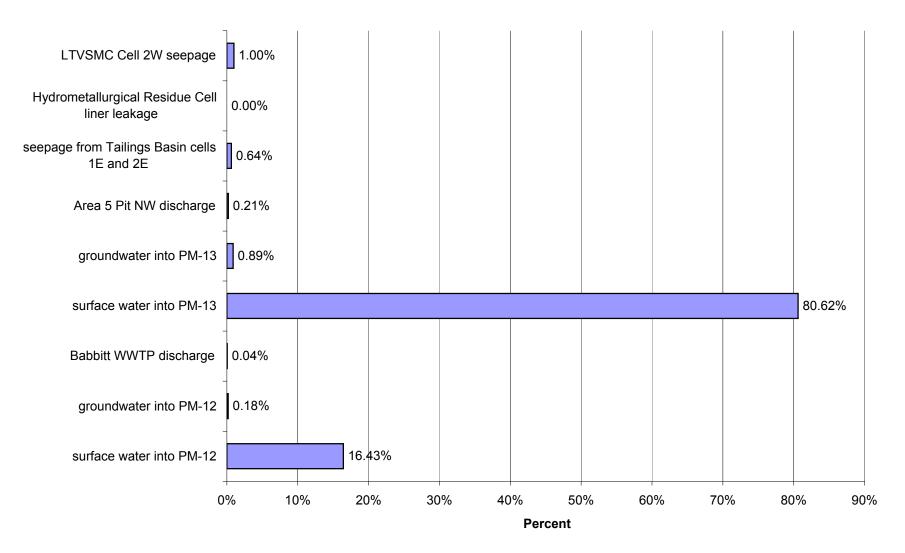

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Arsenic (As)

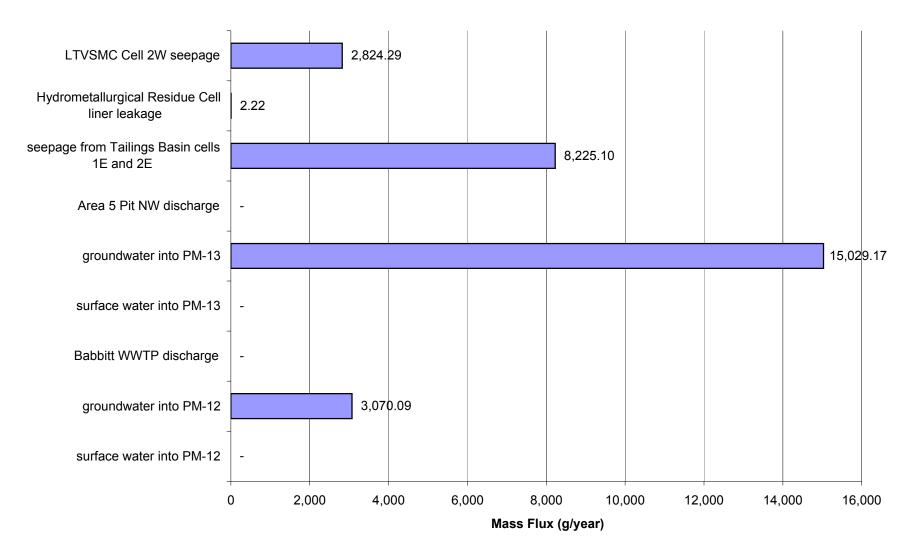

Proposed Action: Percent of Impacts at PM-13 in Closure for High Flow for Arsenic (As)

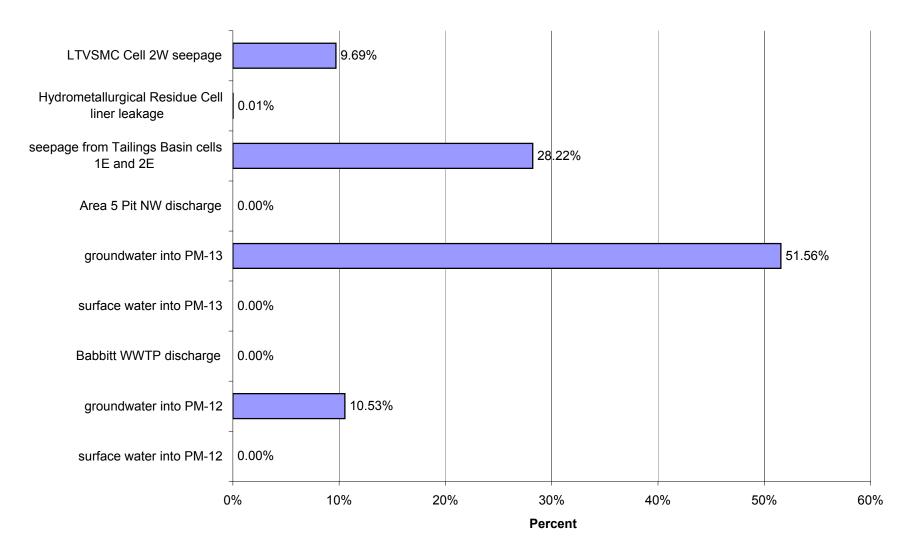

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Cobalt (Co)

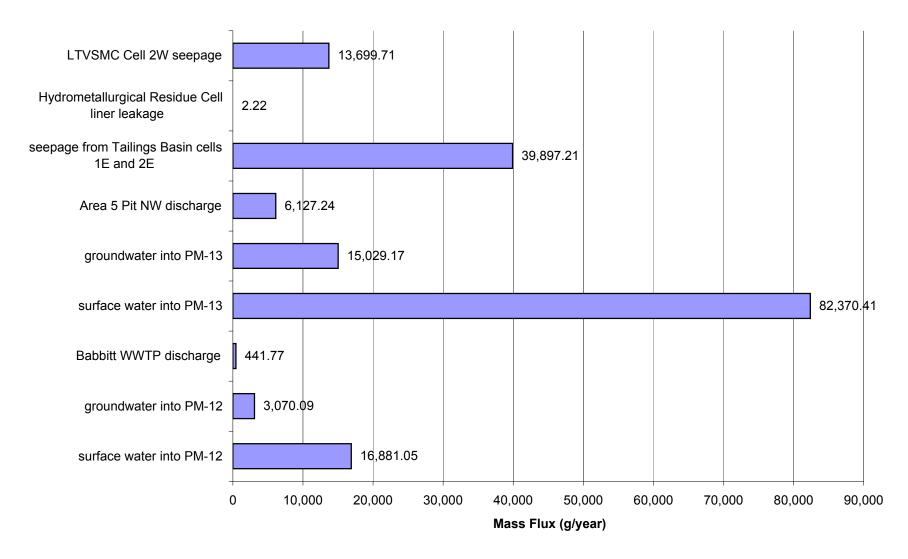

Proposed Action: Percent of Impacts at PM-13 in Closure for Low Flow for Cobalt (Co)

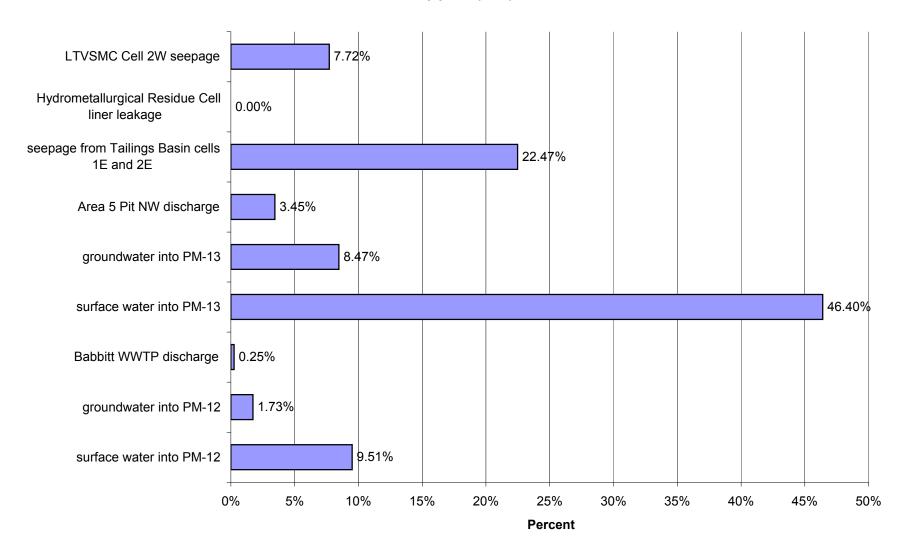

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Cobalt (Co)

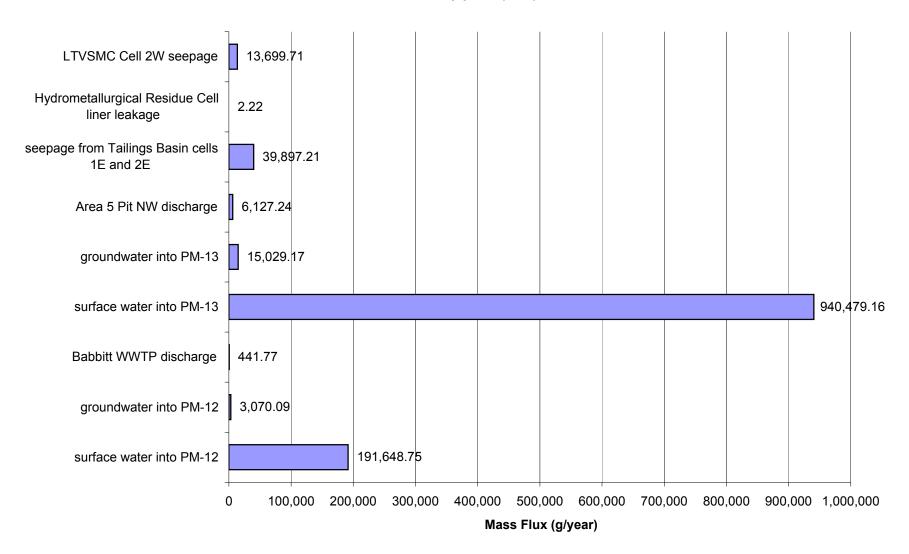

Proposed Action: Percent of Impacts at PM-13 in Closure for Average Flow for Cobalt (Co)

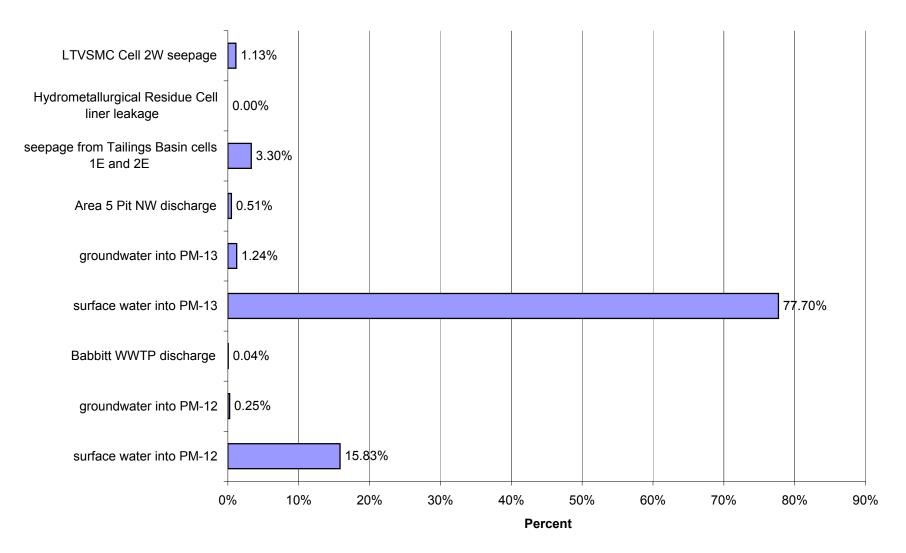

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Cobalt (Co)

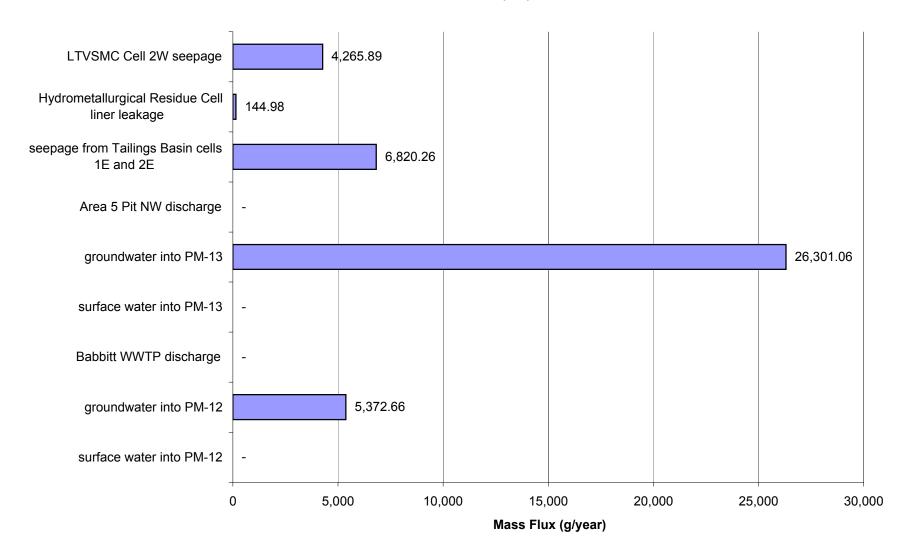

Proposed Action: Percent of Impacts at PM-13 in Closure for High Flow for Cobalt (Co)

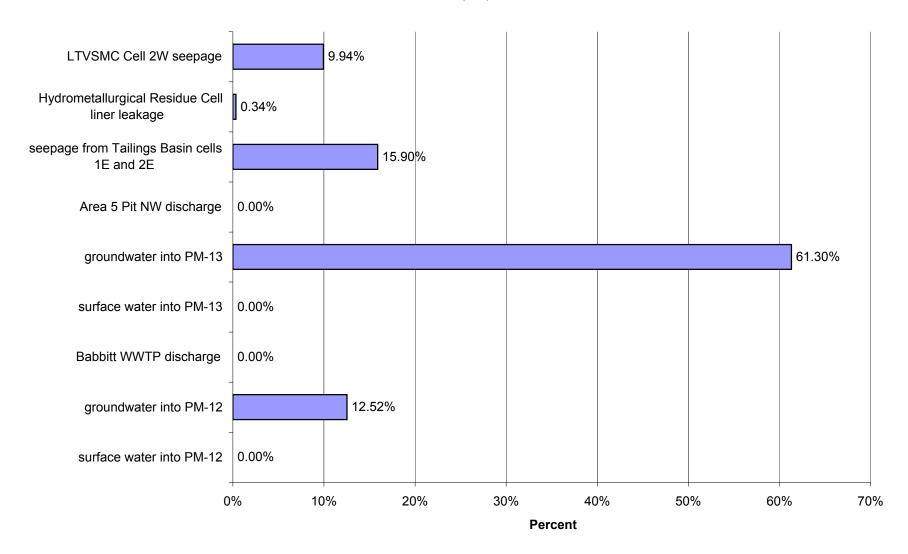

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Copper (Cu)

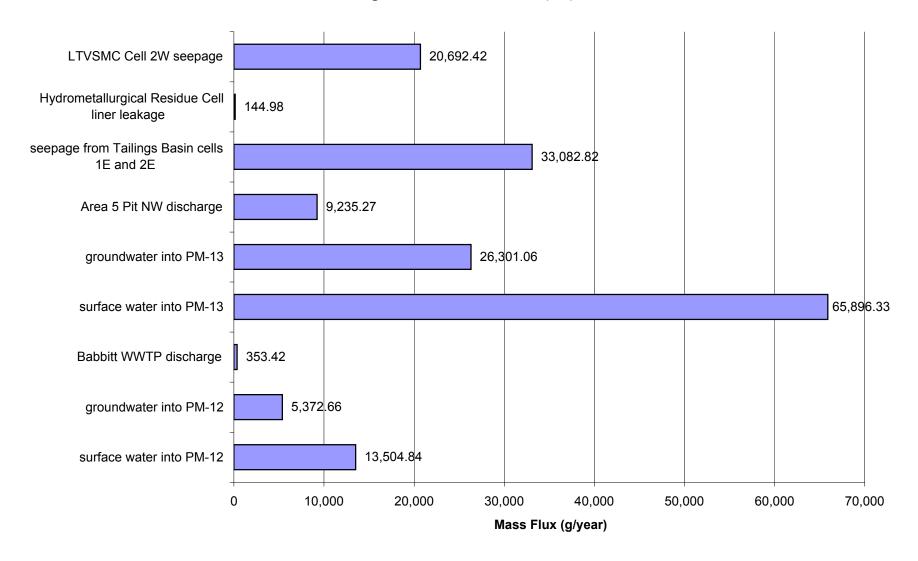

Proposed Action: Percent of Impacts at PM-13 in Closure for Low Flow for Copper (Cu)

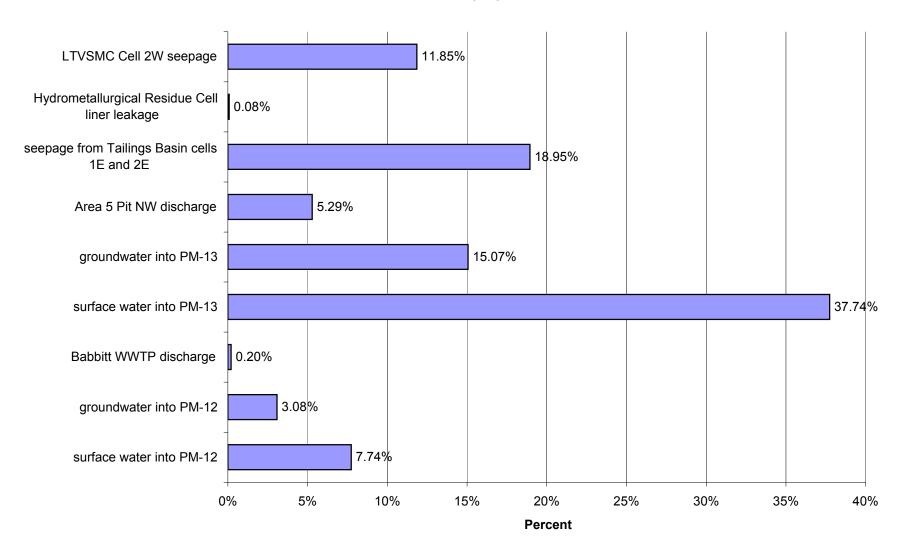

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Copper (Cu)

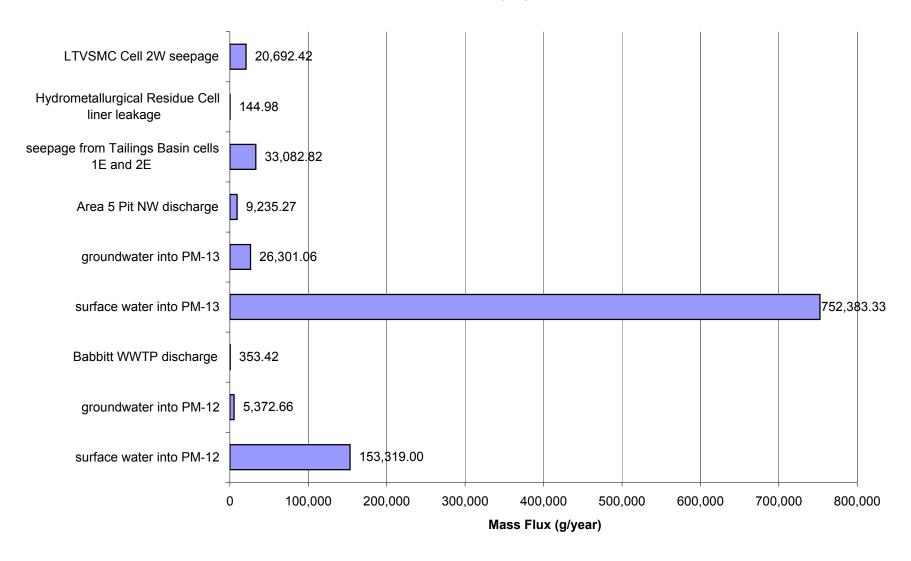

Proposed Action: Percent of Impacts at PM-13 in Closure for Average Flow for Copper (Cu)

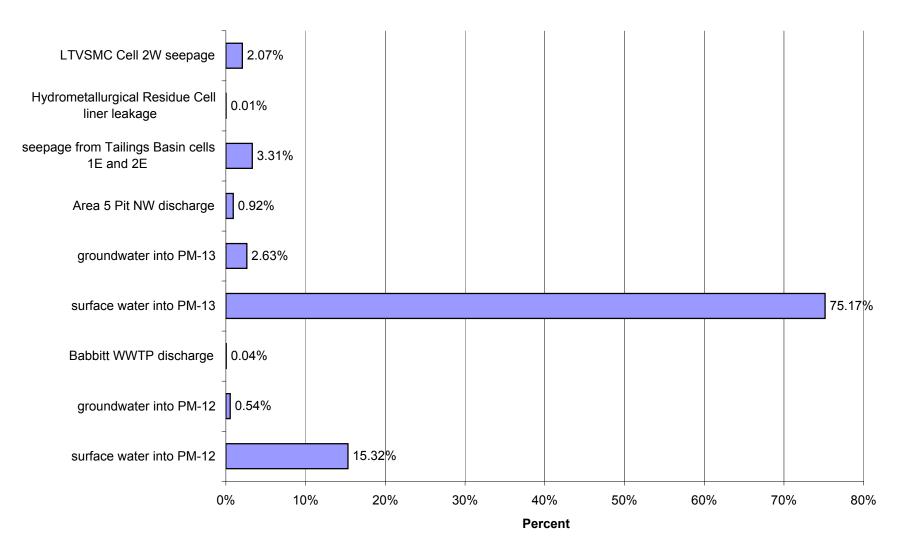

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Copper (Cu)

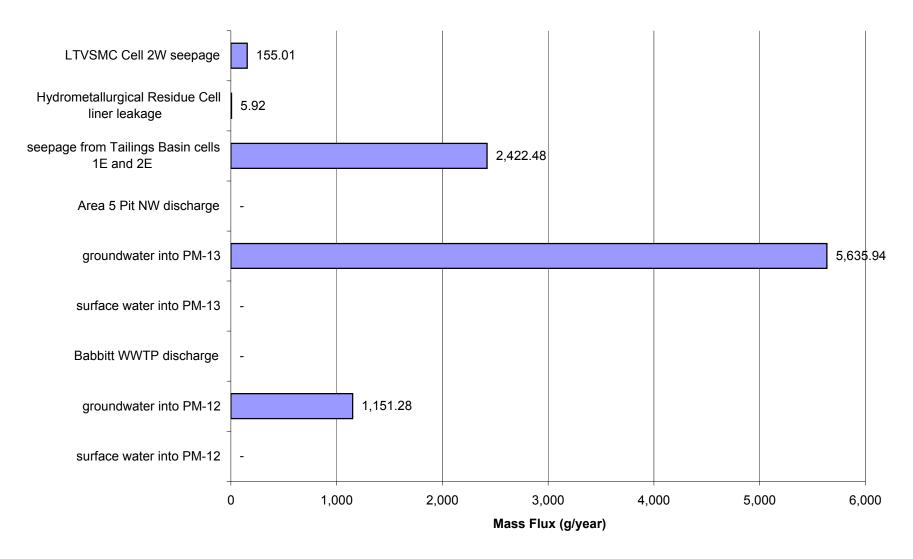

Proposed Action: Percent of Impacts at PM-13 in Closure for High Flow for Copper (Cu)

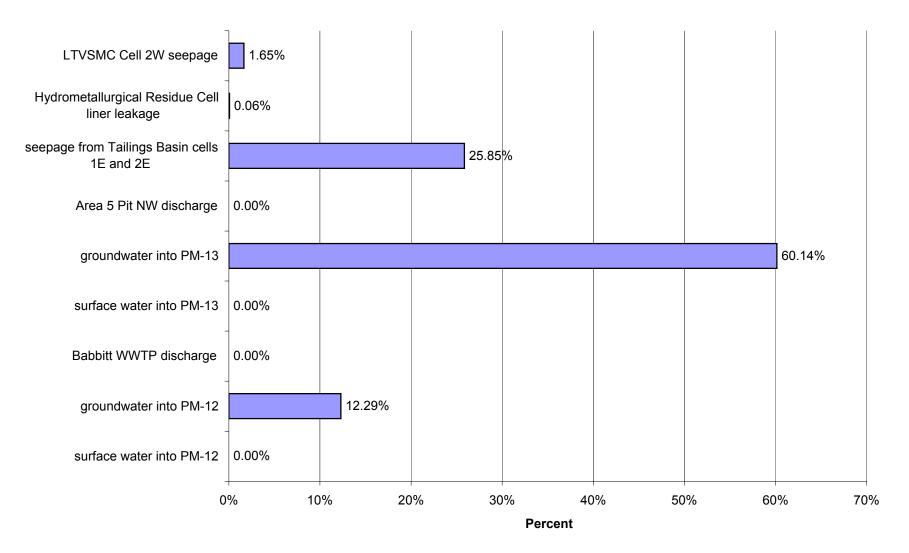

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Nickel (Ni)


Proposed Action: Percent of Impacts at PM-13 in Closure for Low Flow for Nickel (Ni)

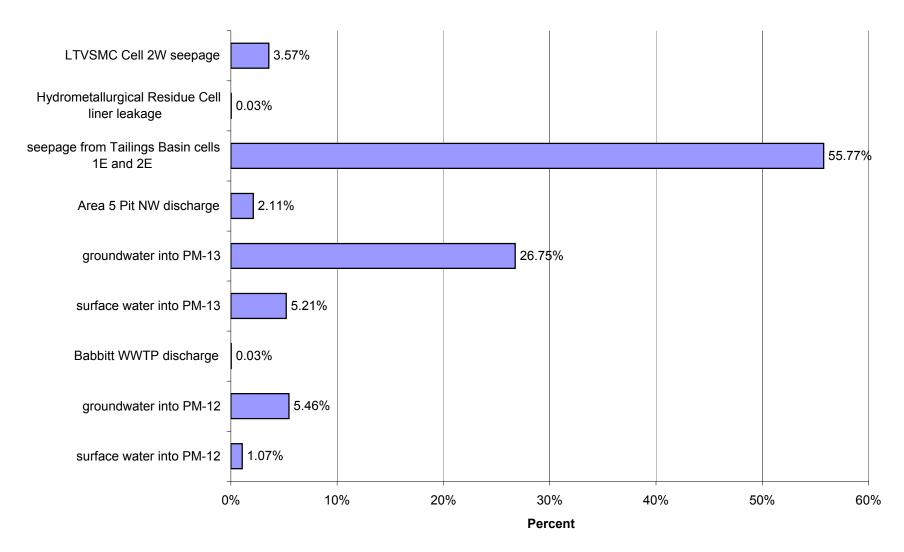

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Nickel (Ni)

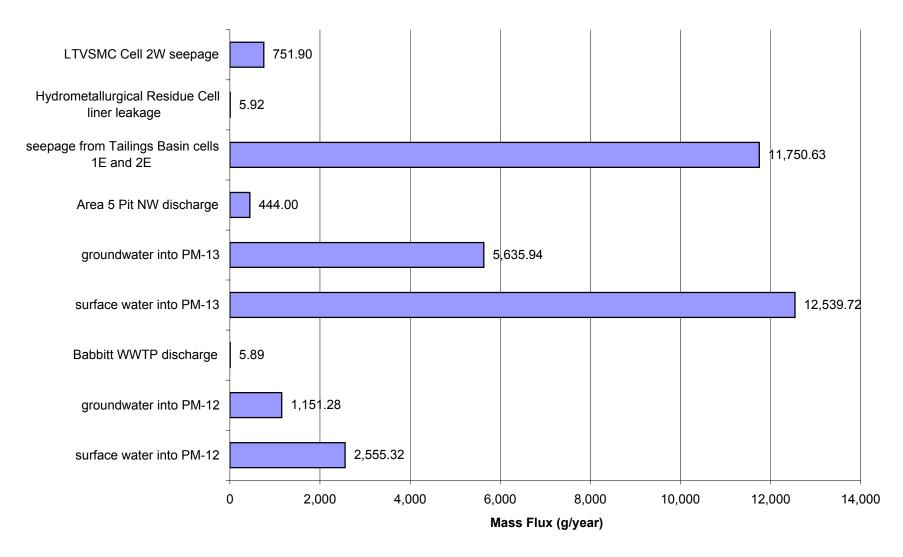

Proposed Action: Percent of Impacts at PM-13 in Closure for Average Flow for Nickel (Ni)

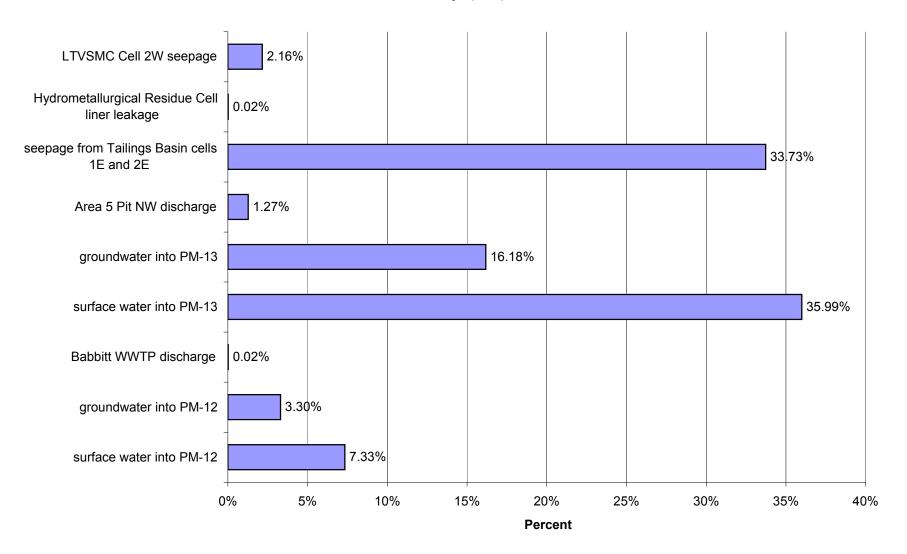

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Nickel (Ni)

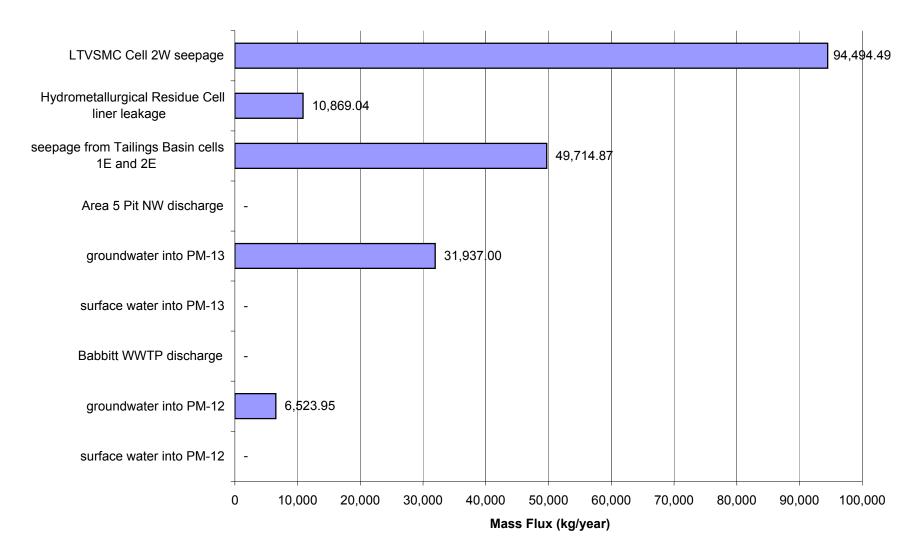

Proposed Action: Percent of Impacts at PM-13 in Closure for High Flow for Nickel (Ni)

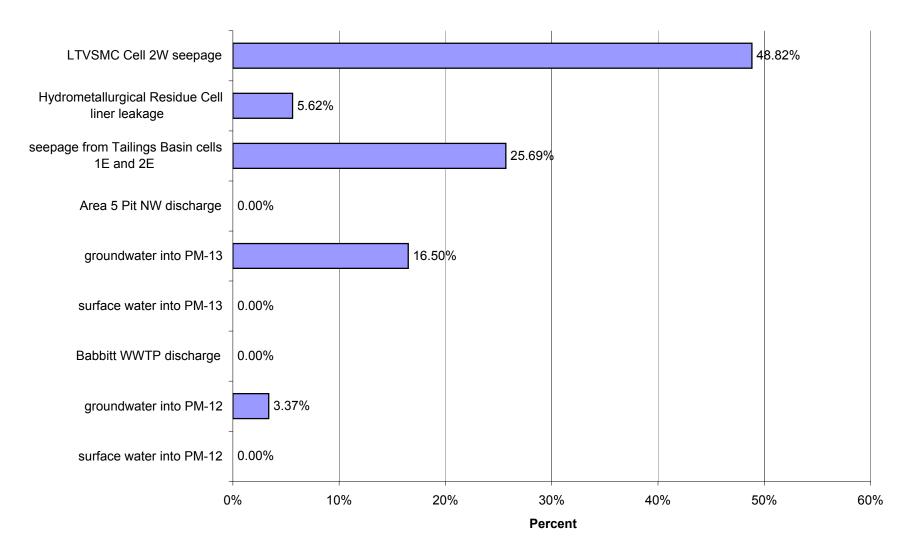

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Antimony (Sb)

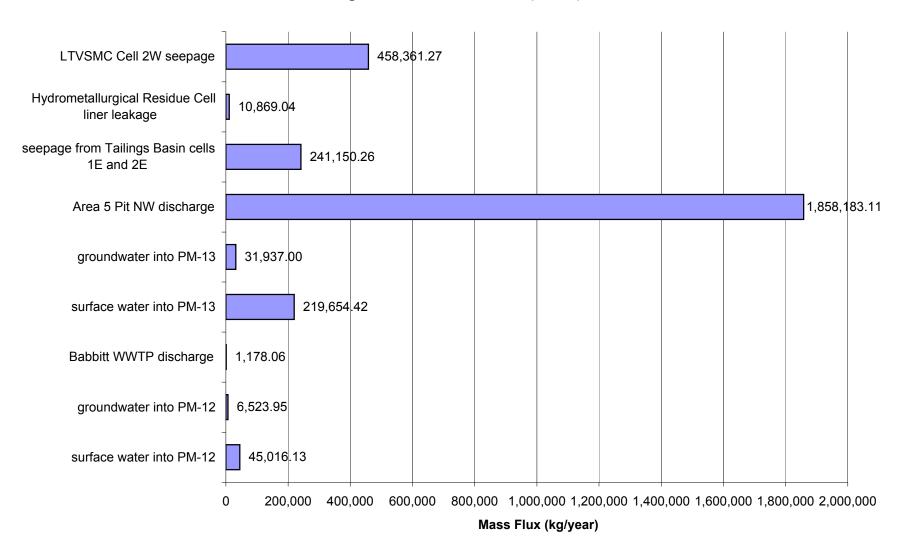

Proposed Action: Percent of Impacts at PM-13 in Closure for Low Flow for Antimony (Sb)

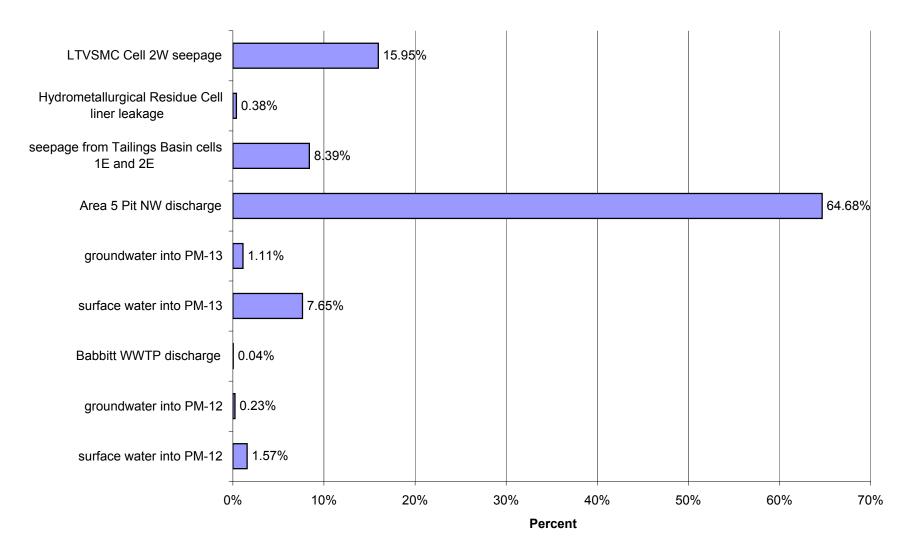

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Antimony (Sb)

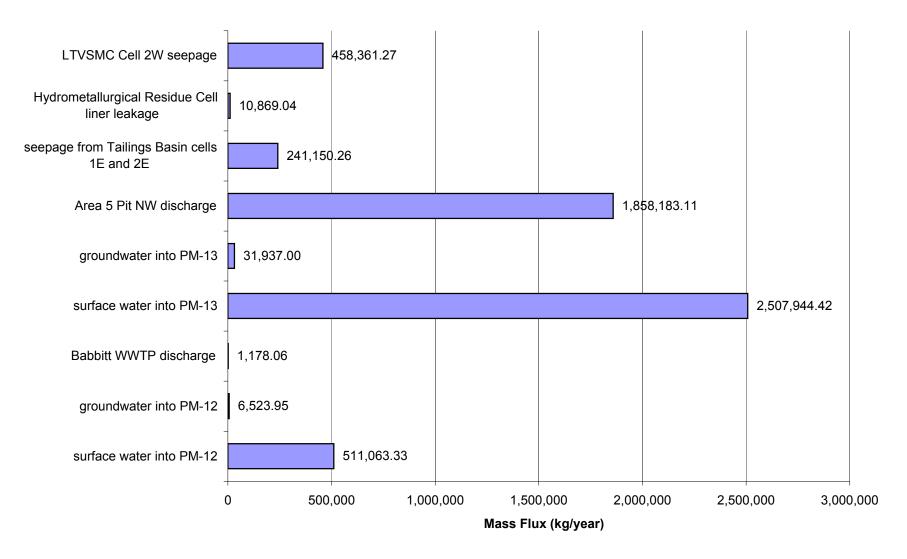

Proposed Action: Percent of Impacts at PM-13 in Closure for Average Flow for Antimony (Sb)

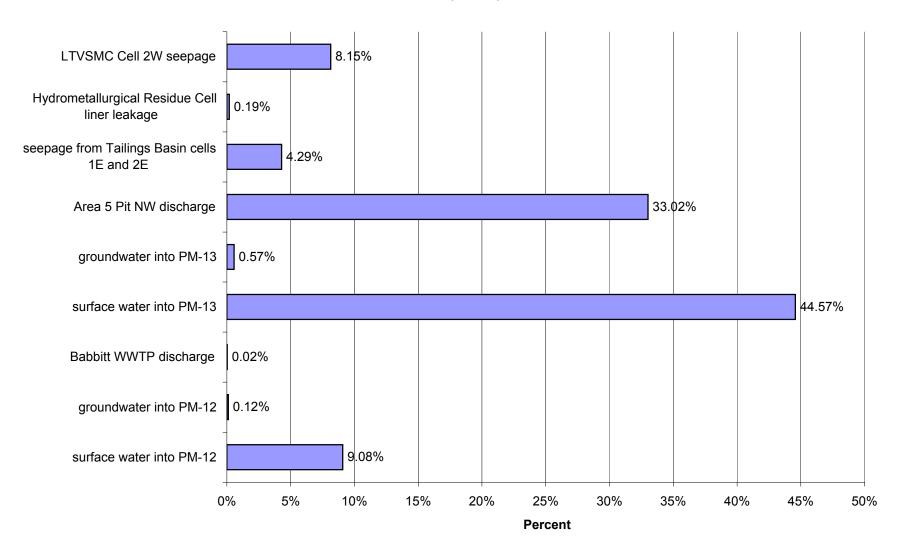

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Antimony (Sb)

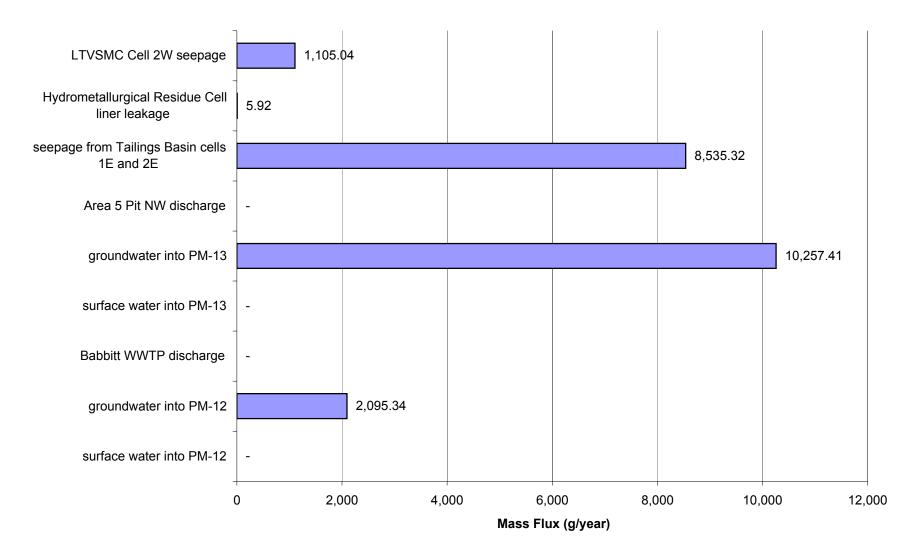

Proposed Action: Percent of Impacts at PM-13 in Closure for High Flow for Antimony (Sb)

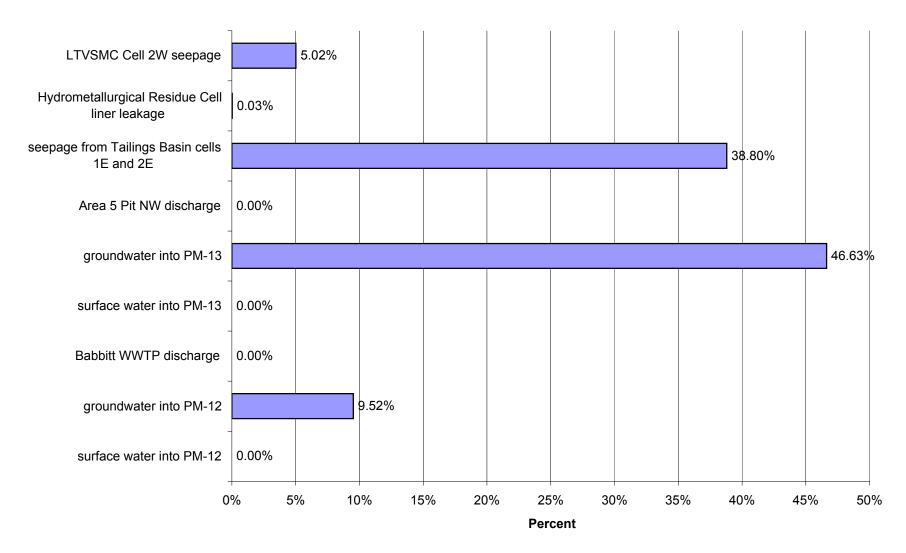

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Closure for Low Flow for Sulfate (SO4)

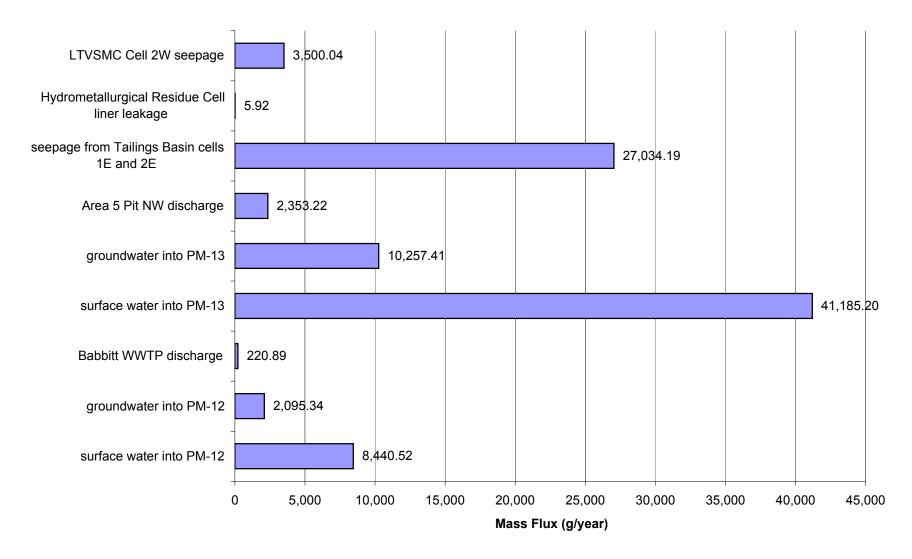

Proposed Action: Percent of Impacts at PM-13 in Closure for Low Flow for Sulfate (SO4)

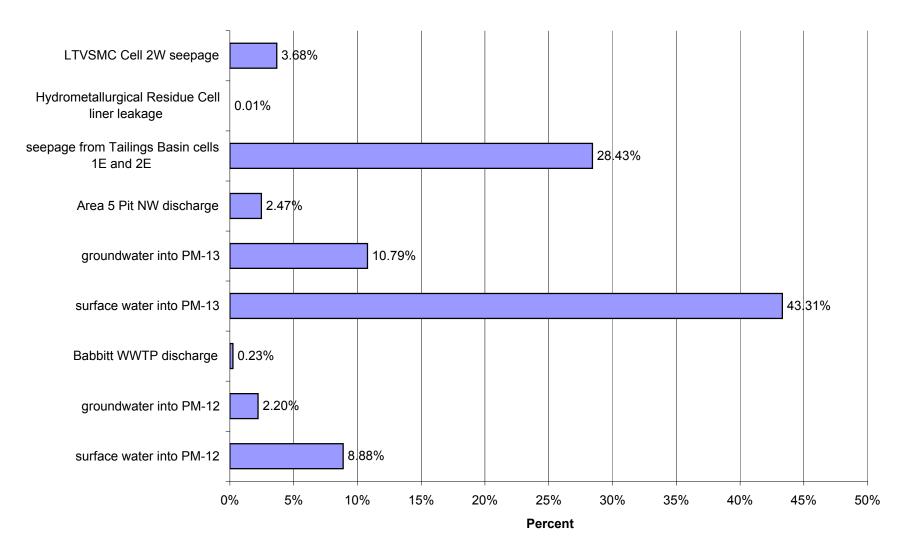

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Closure for Average Flow for Sulfate (SO4)

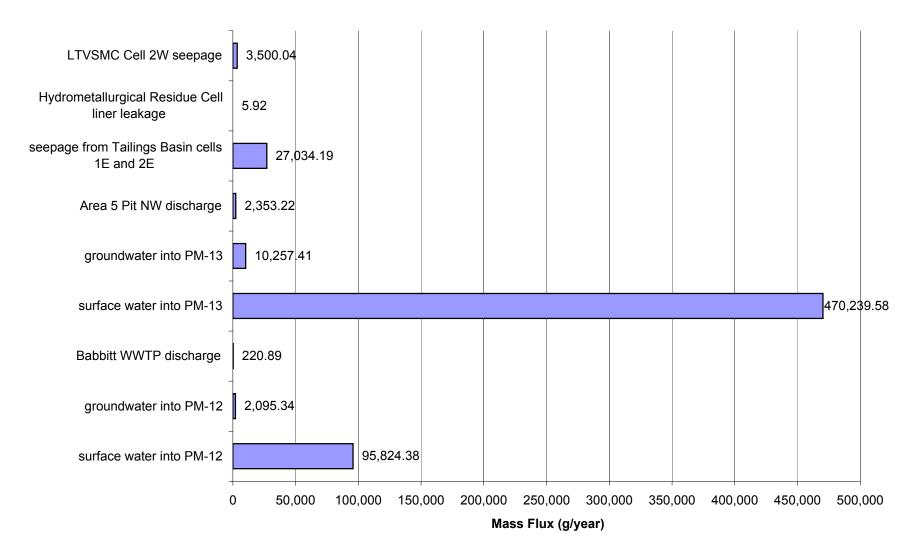

Proposed Action: Percent of Impacts at PM-13 in Closure for Average Flow for Sulfate (SO4)

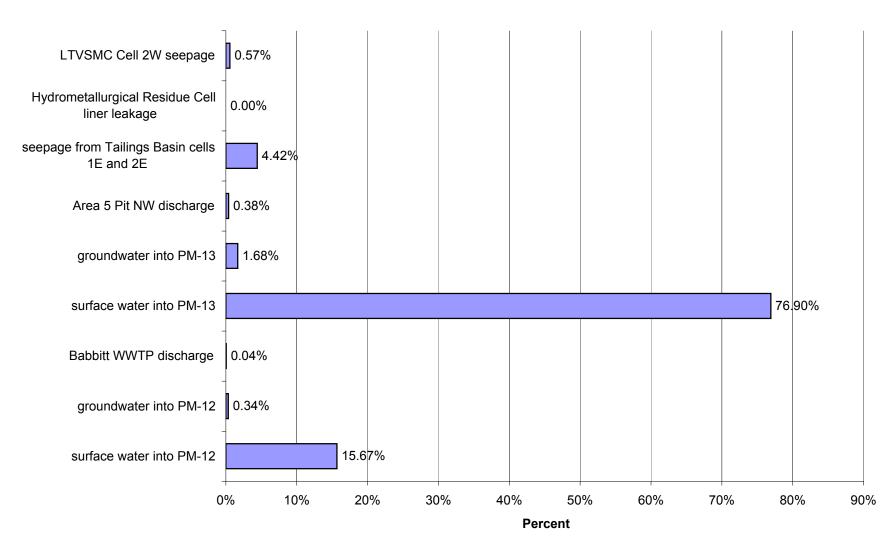

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Closure for High Flow for Sulfate (SO4)

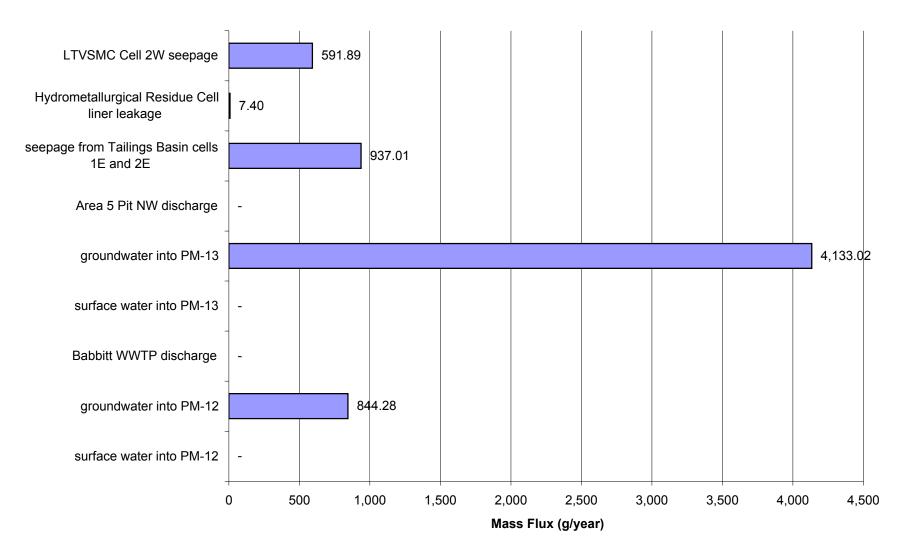

Proposed Action: Percent of Impacts at PM-13 in Closure for High Flow for Sulfate (SO4)

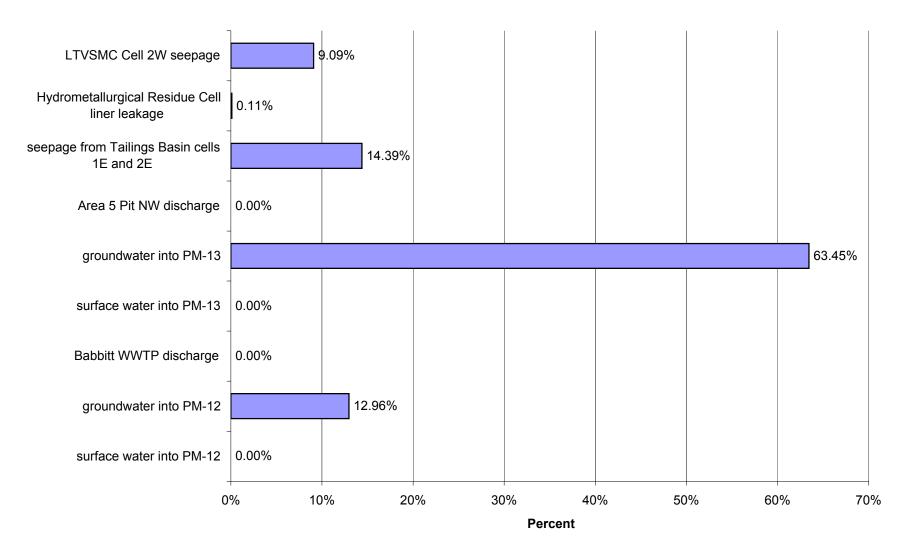

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Arsenic (As)

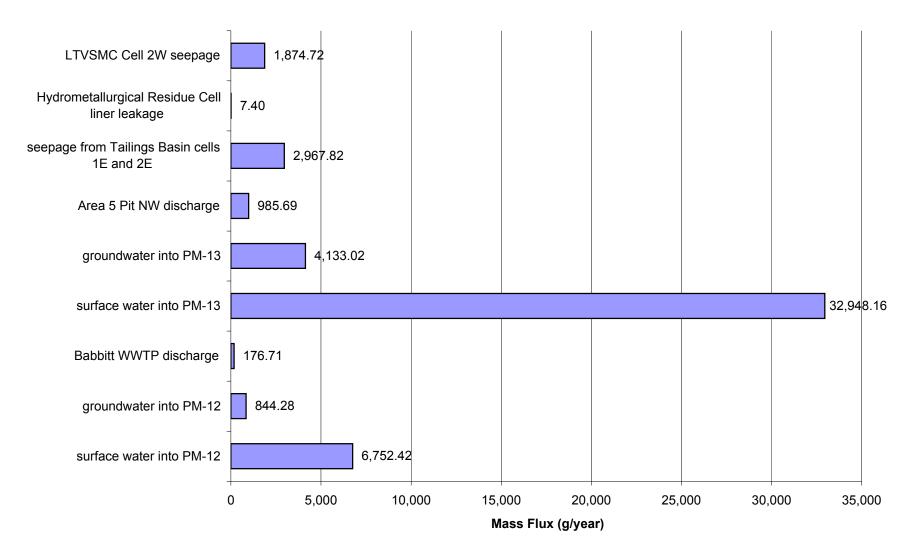

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Arsenic (As)

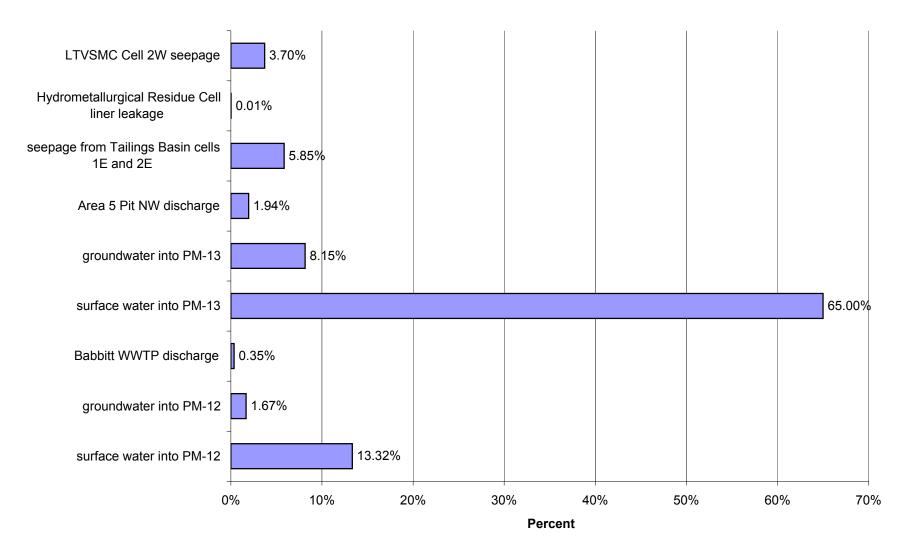

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Arsenic (As)

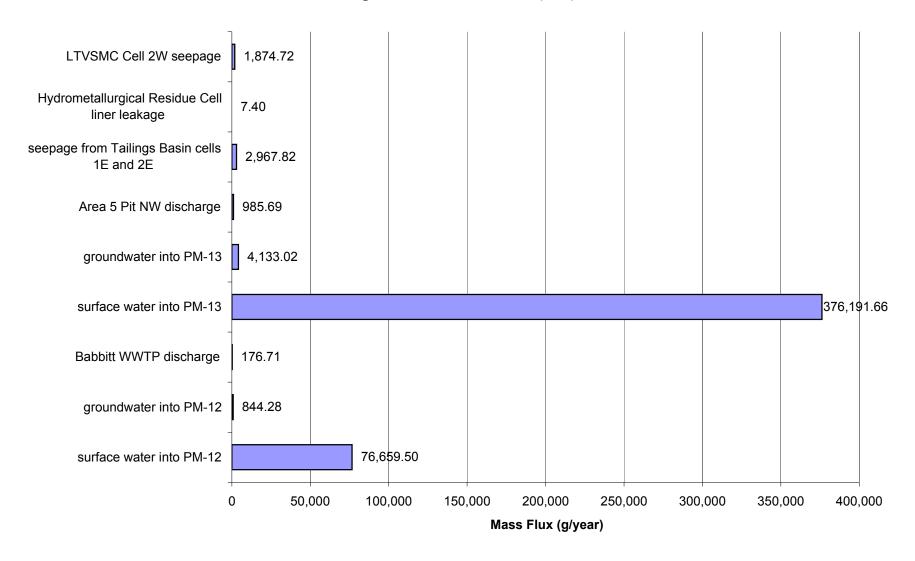

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Arsenic (As)

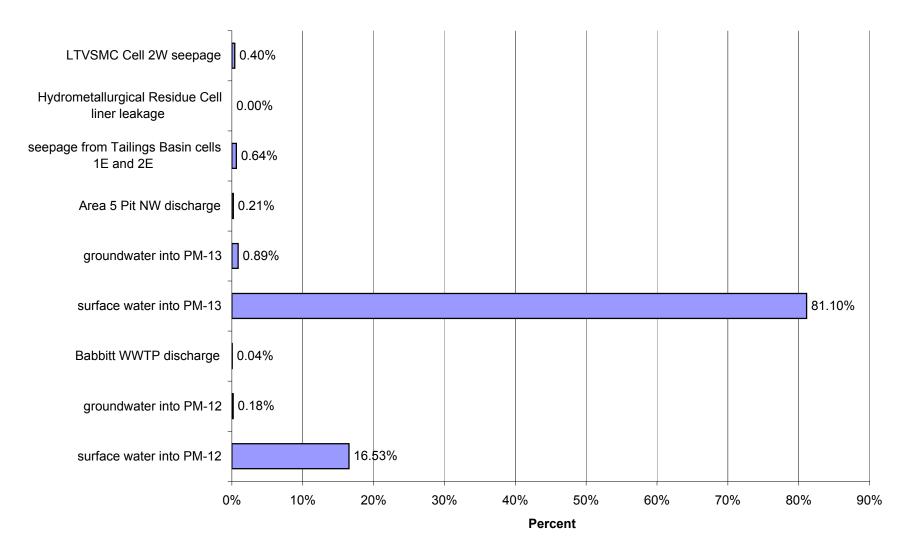

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Arsenic (As)

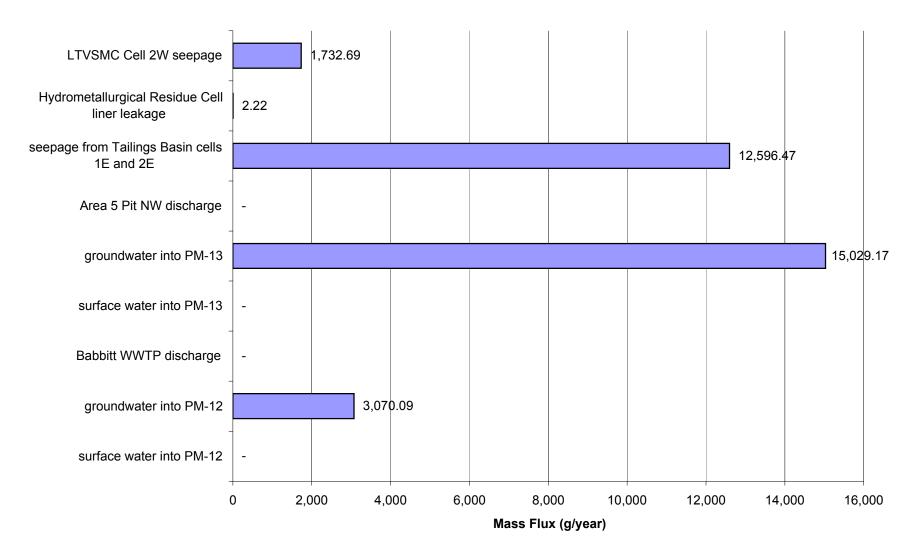

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Arsenic (As)

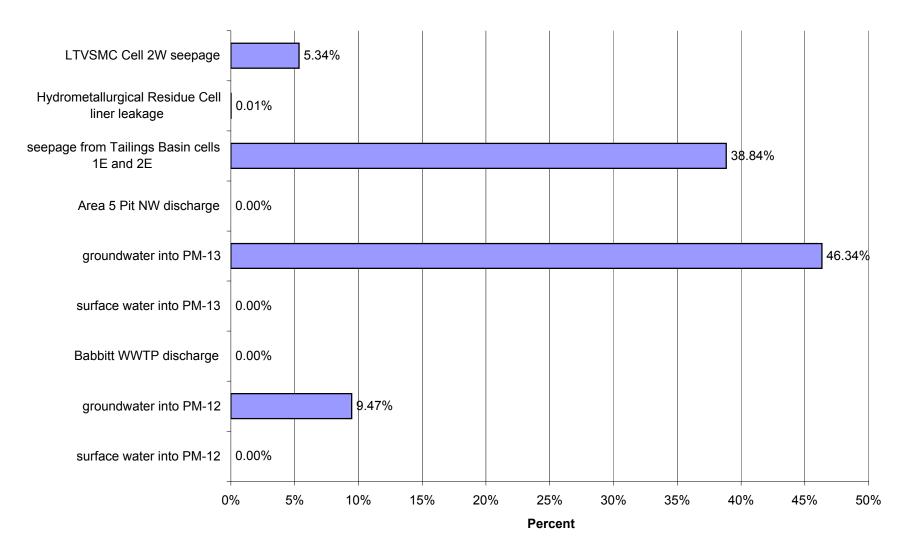

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Cobalt (Co)

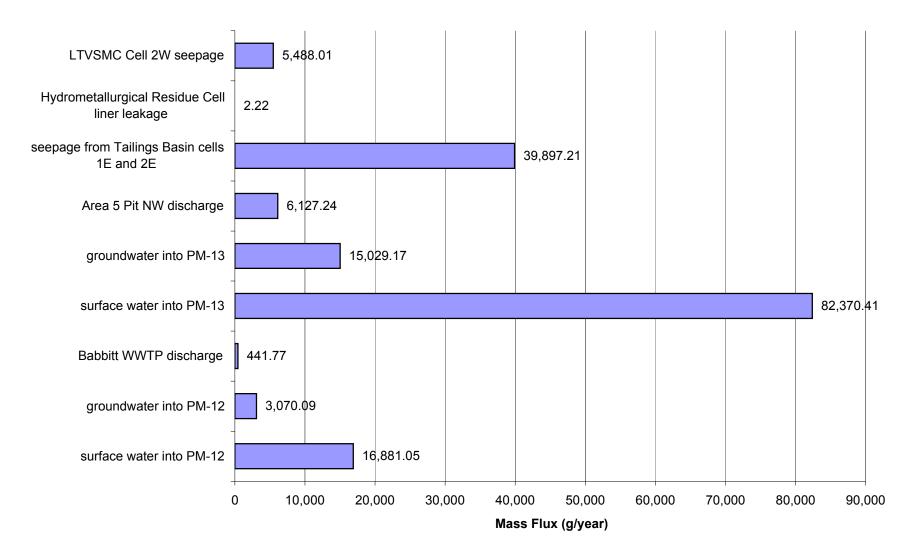

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Cobalt (Co)


Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Cobalt (Co)

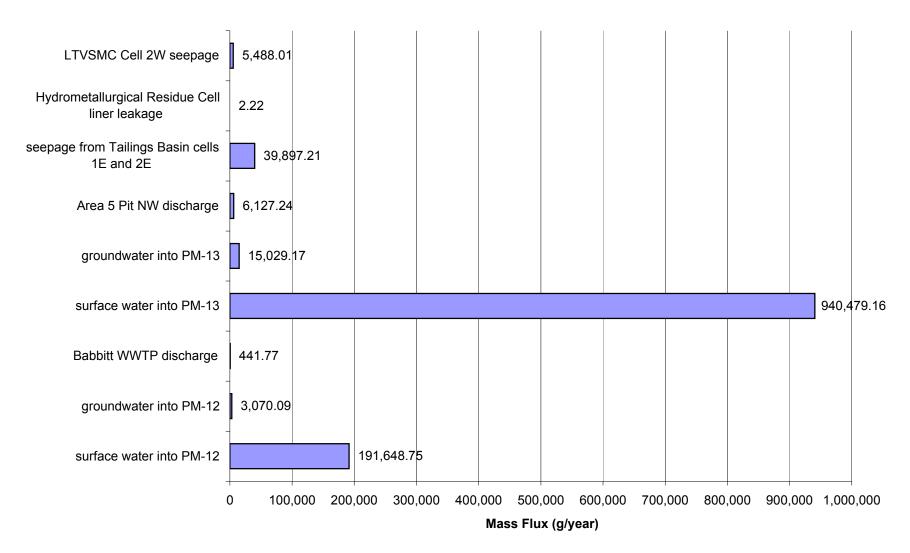

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Cobalt (Co)

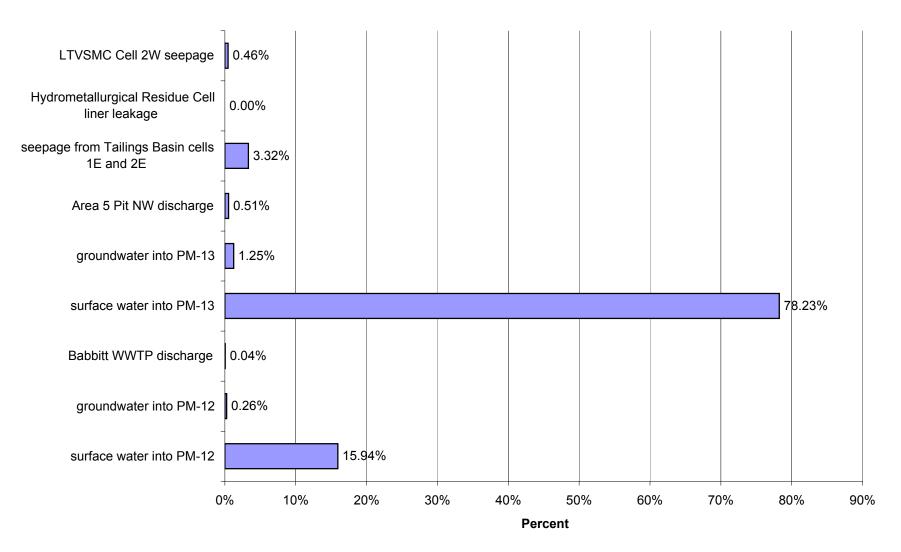

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Cobalt (Co)

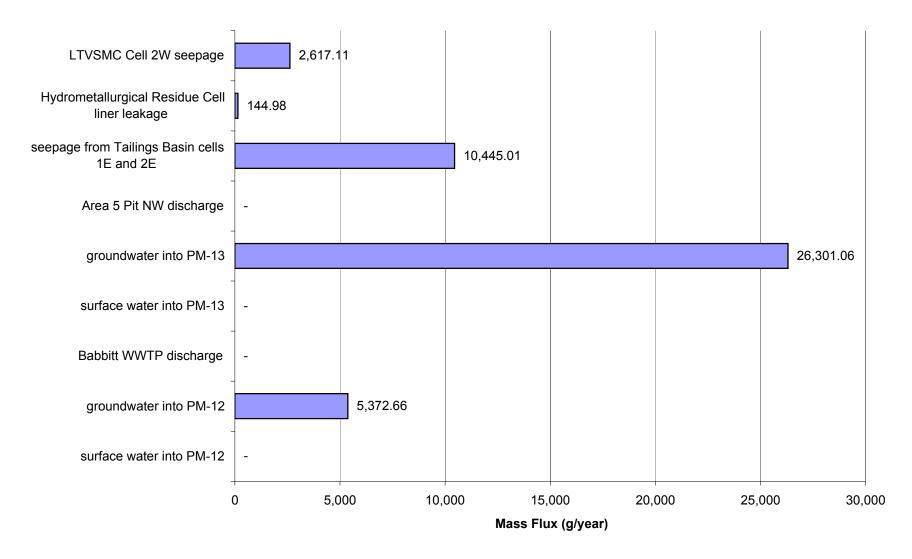

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Cobalt (Co)

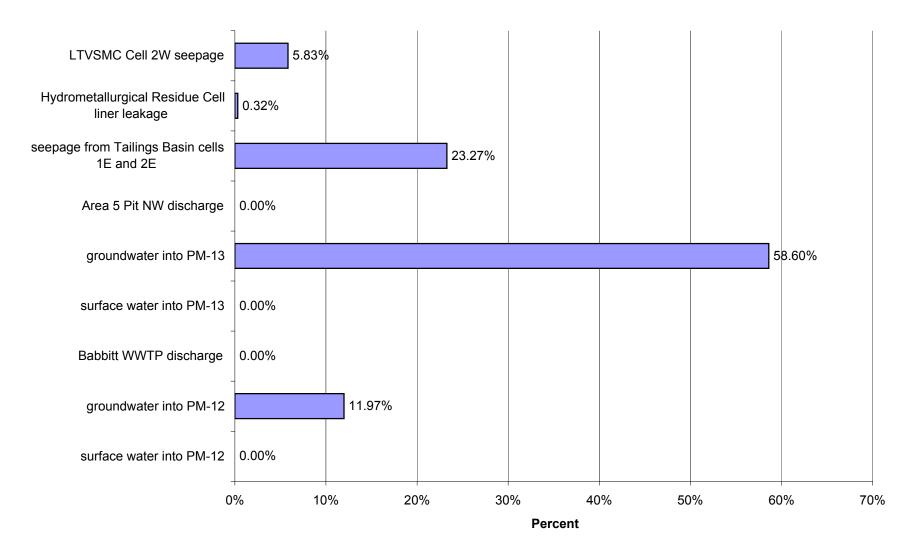

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Copper (Cu)

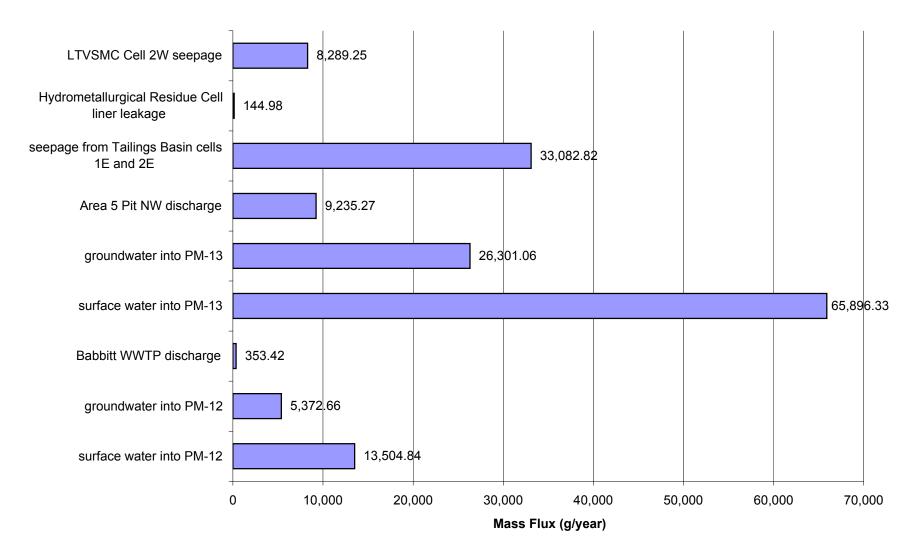
Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Copper (Cu)

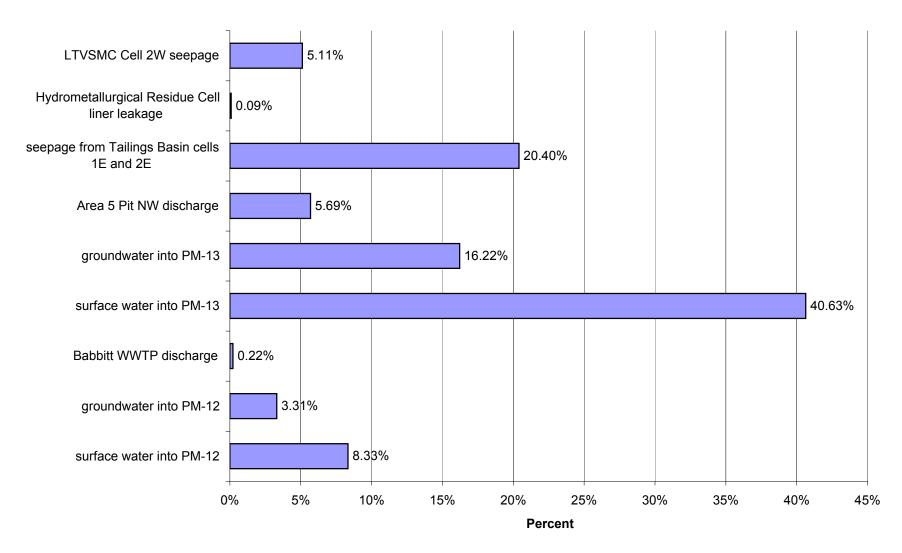

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Copper (Cu)

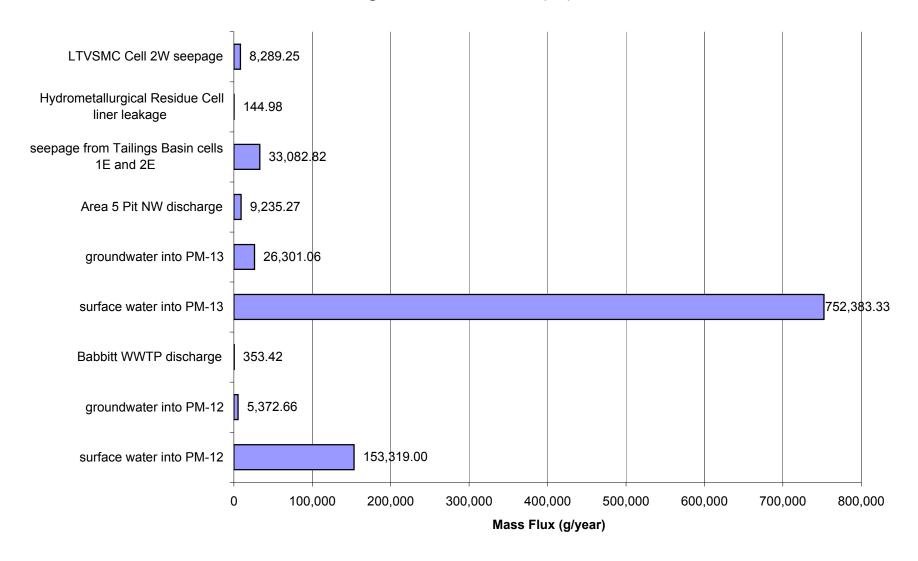

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Copper (Cu)

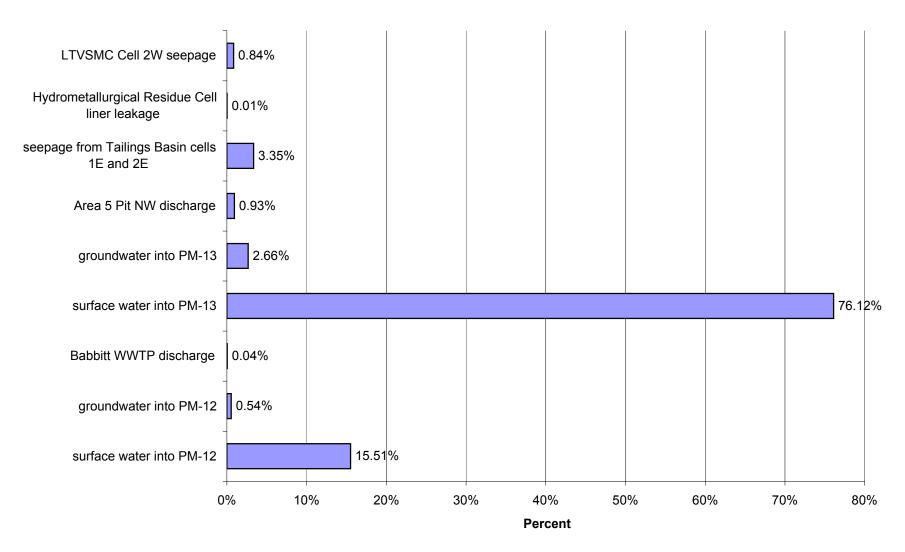

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Copper (Cu)

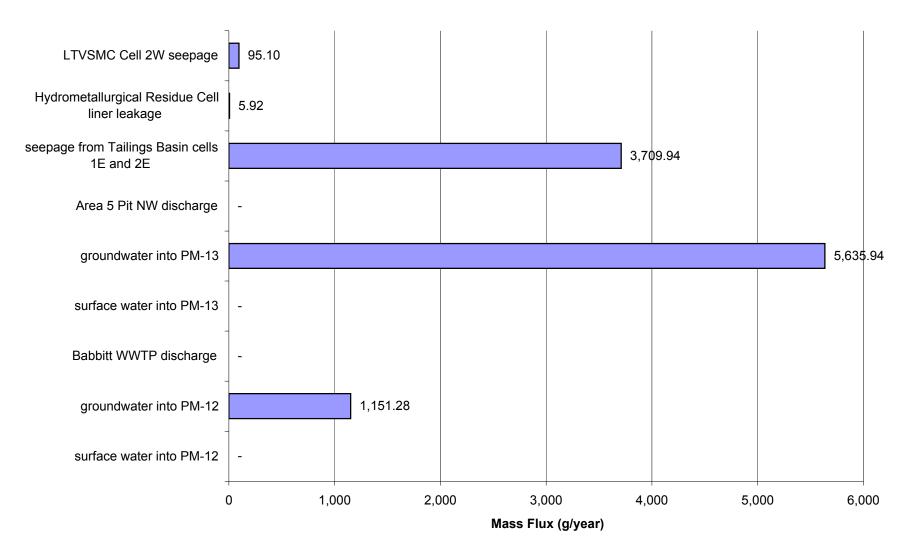

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Copper (Cu)

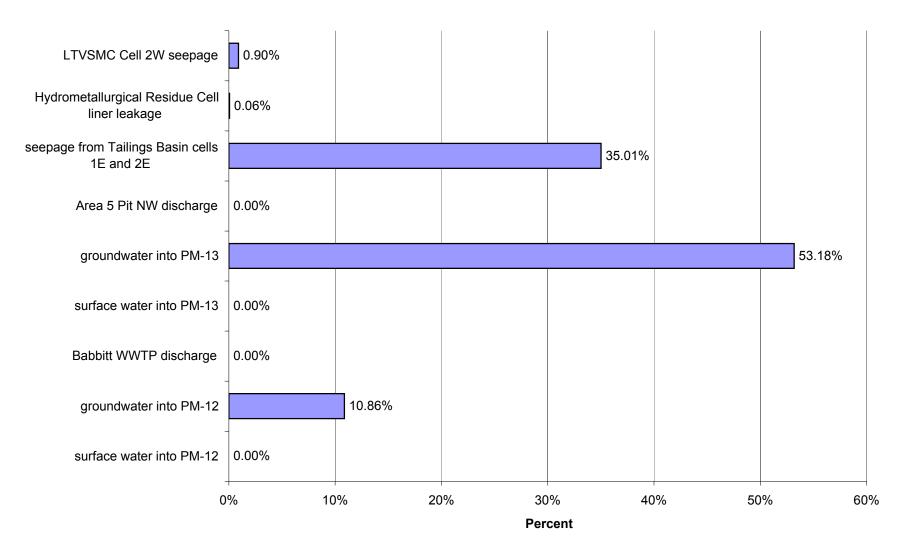

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Nickel (Ni)

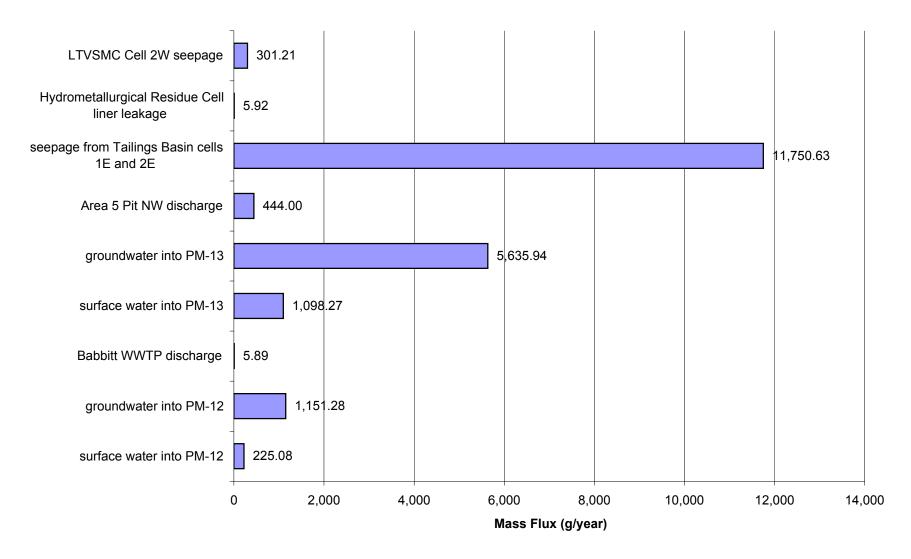

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Nickel (Ni)

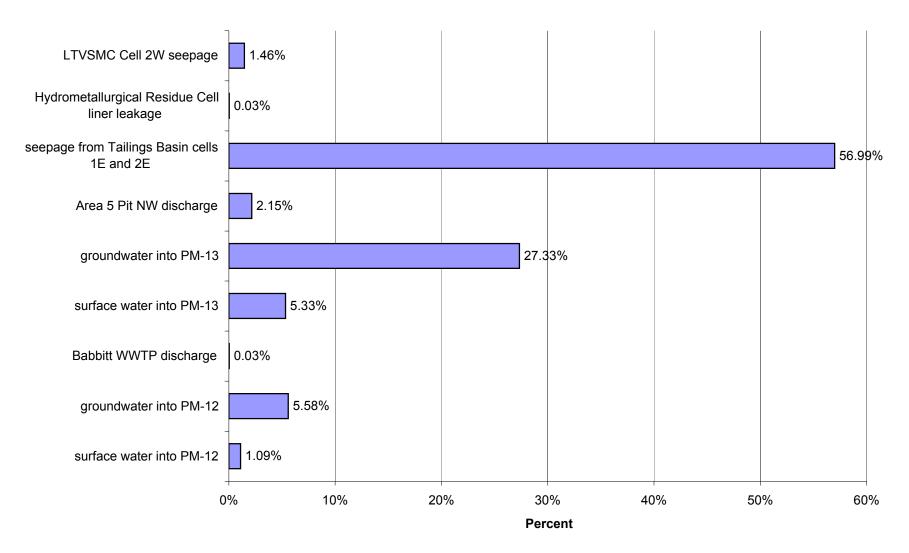

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Nickel (Ni)

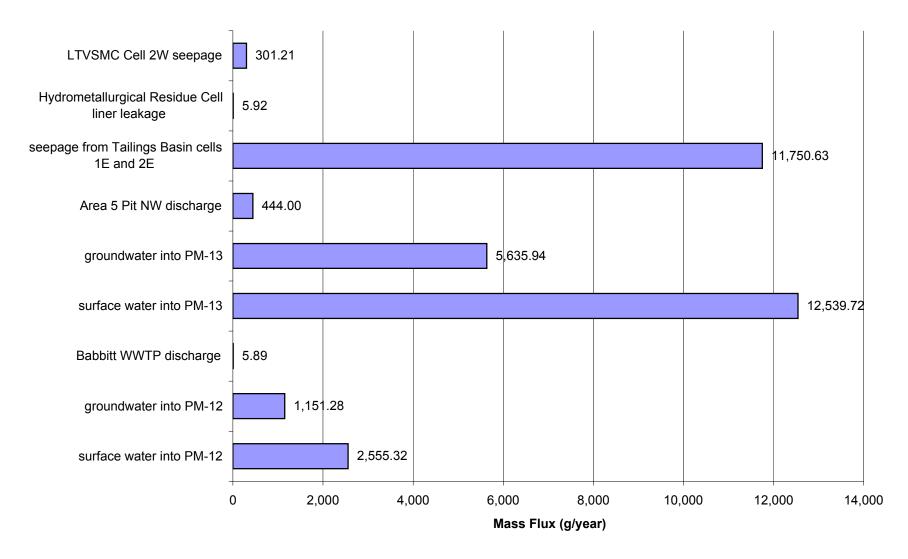

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Nickel (Ni)

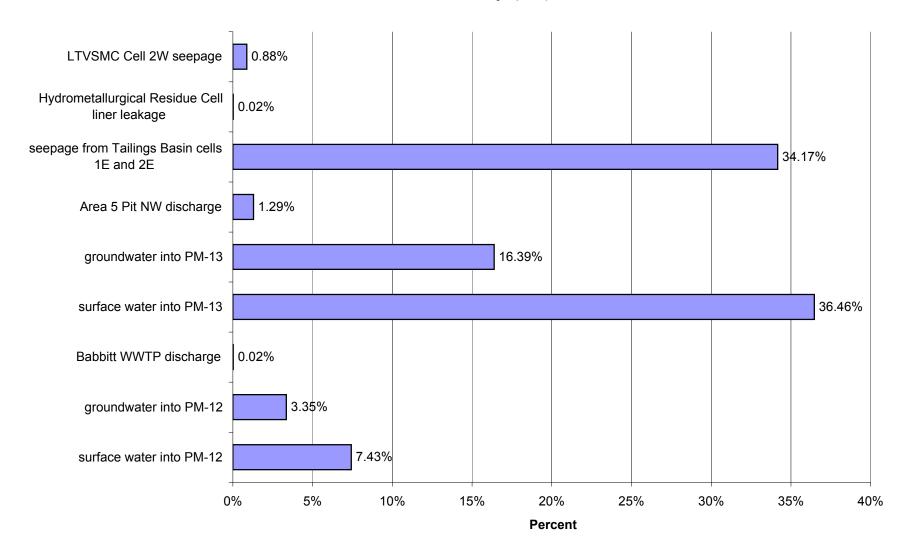

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Nickel (Ni)

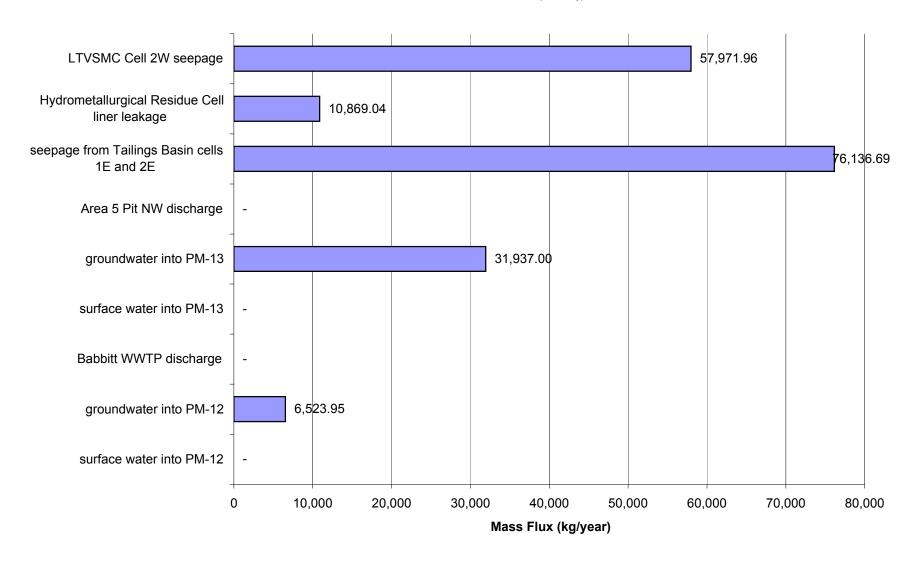

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Nickel (Ni)

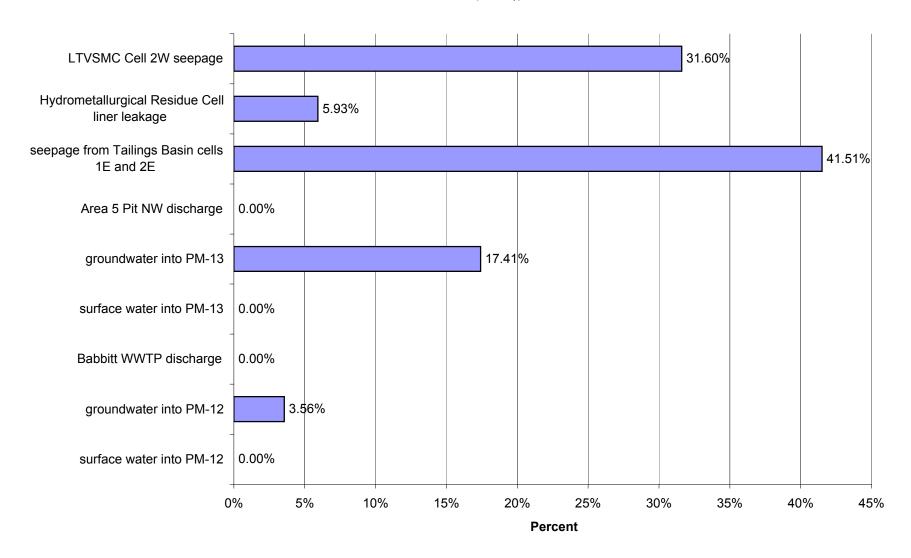

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Antimony (Sb)

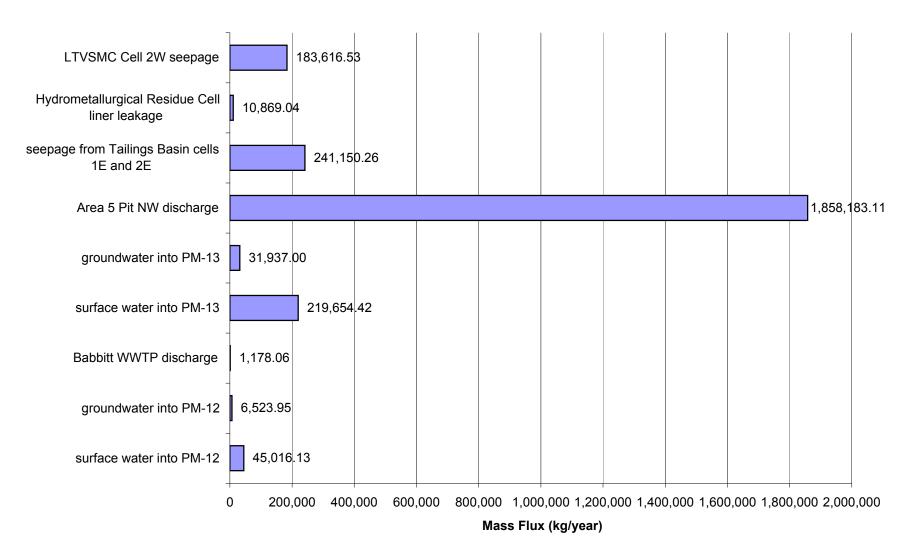

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Antimony (Sb)

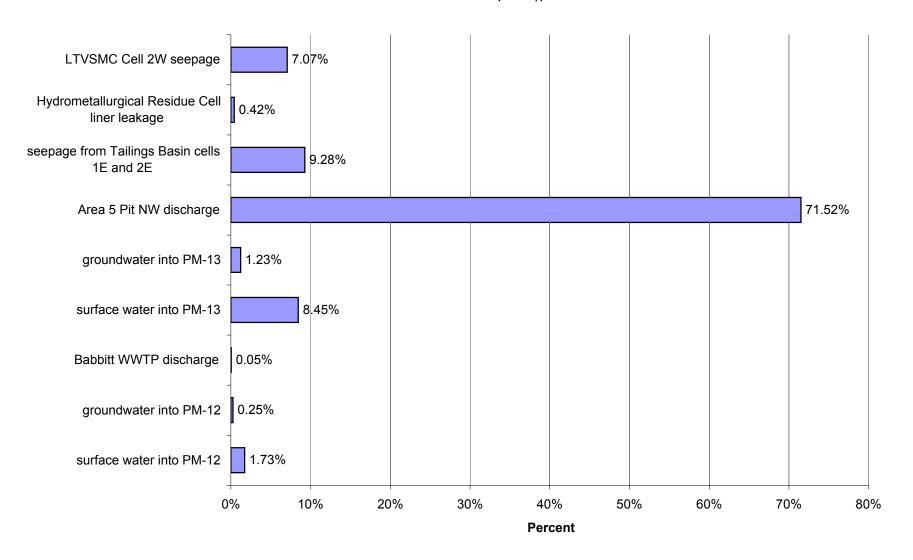

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Antimony (Sb)

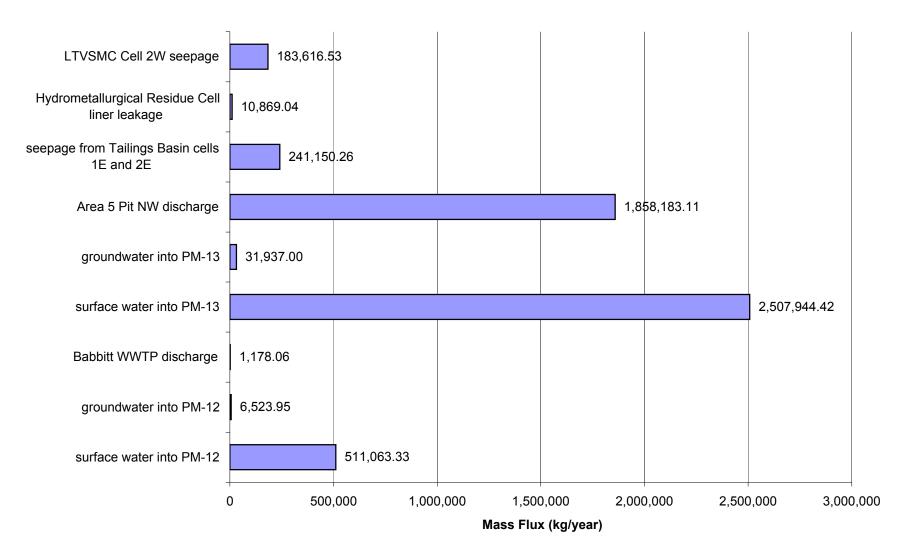

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Antimony (Sb)

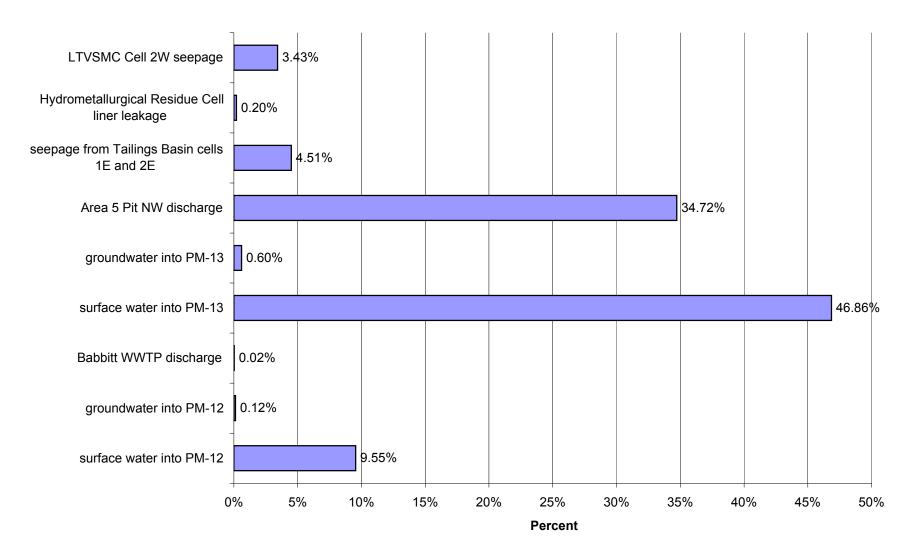

Proposed Action: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Antimony (Sb)


Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Antimony (Sb)


Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Post - Closure for Low Flow for Sulfate (SO₄)

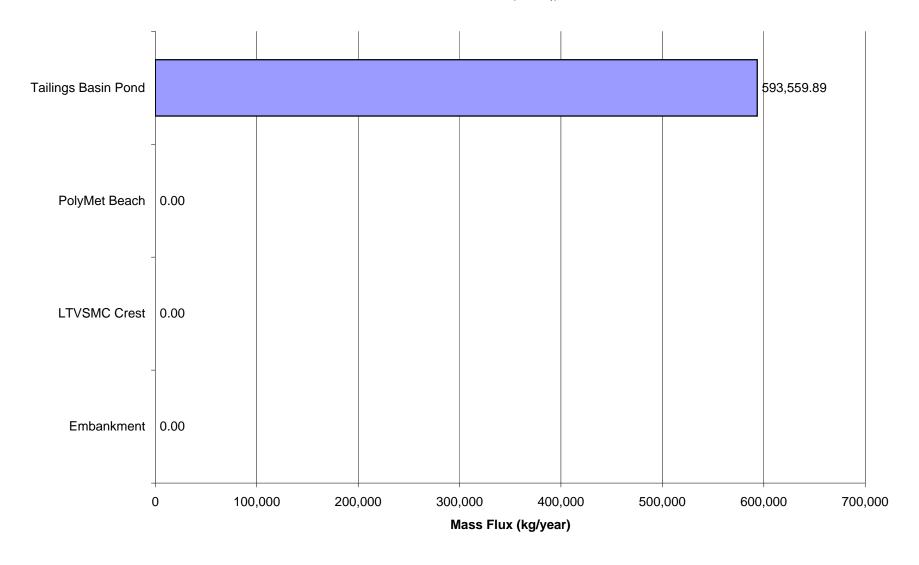

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Sulfate (SO₄)


Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Post - Closure for Average Flow for Sulfate (SO₄)

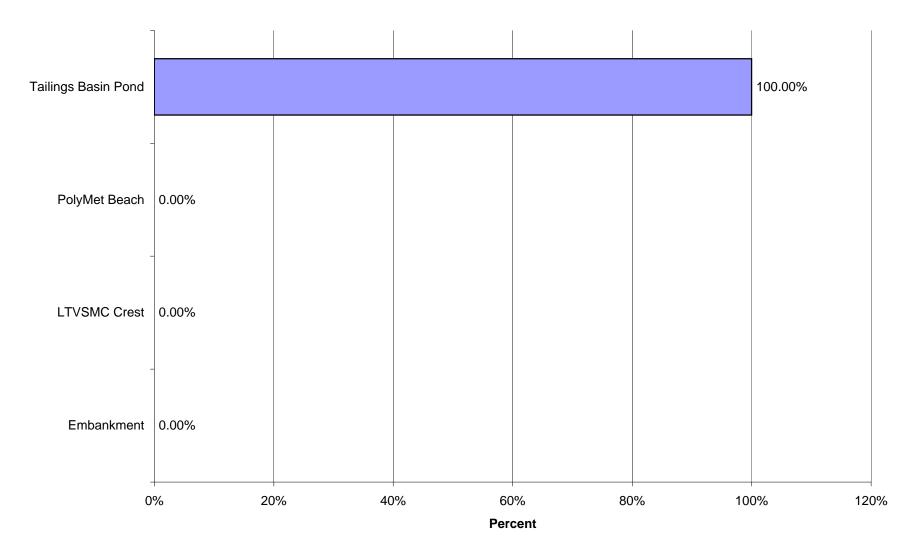

Proposed Action: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Sulfate (SO₄)

Proposed Action: Mass Flux (kg/year) of Impacts at PM-13 in Post - Closure for High Flow for Sulfate (SO₄)

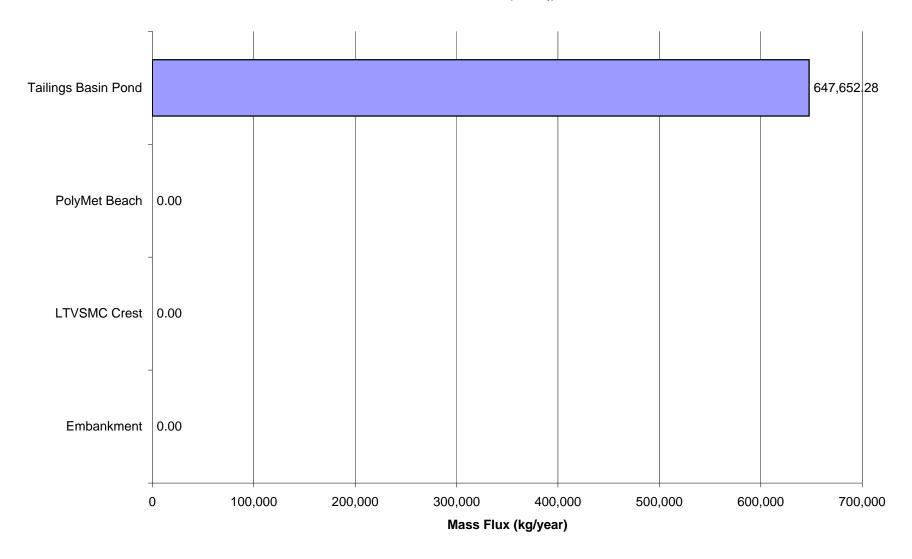
Proposed Action: Percent of Impacts at PM-13 in Post - Closure for High Flow for Sulfate (SO₄)

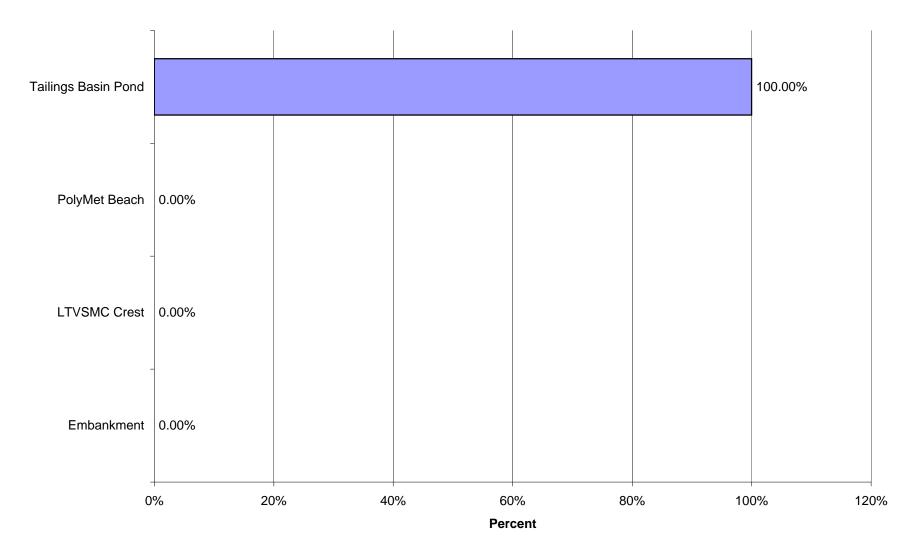


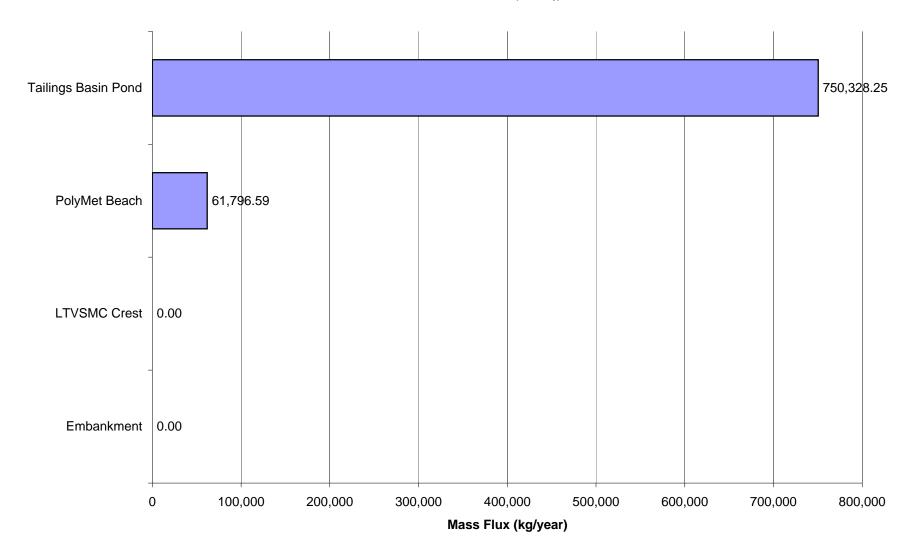
Appendix G.3

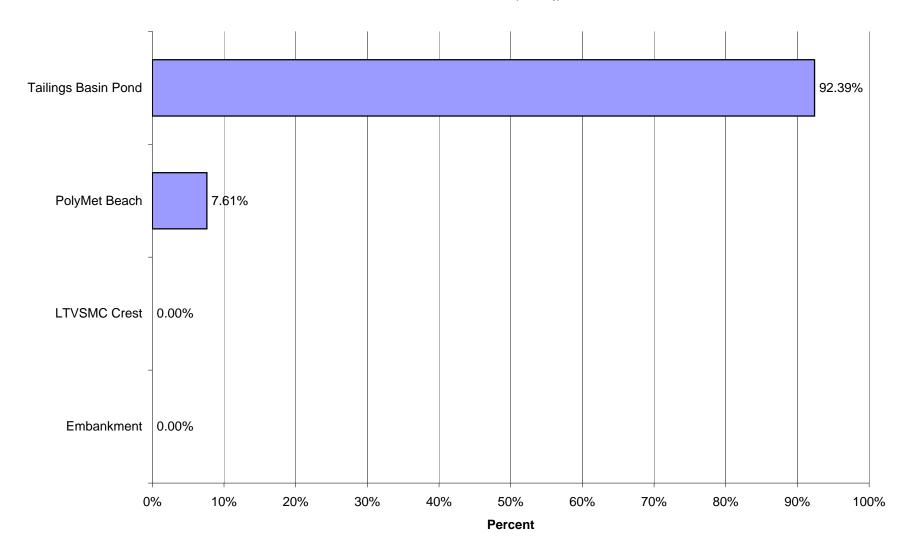

Tailings Basin

Geotechnical Mitigation

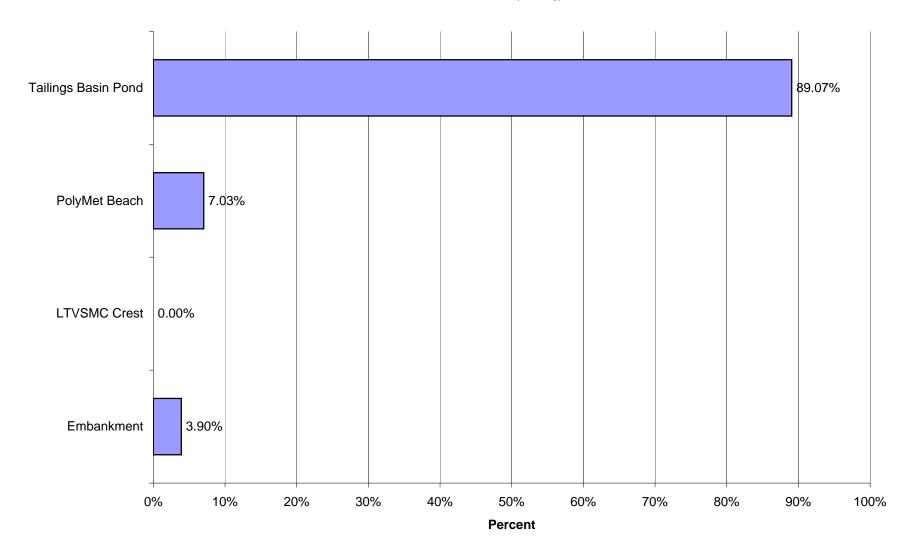

Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Year 1 for Sulfate (SO₄)

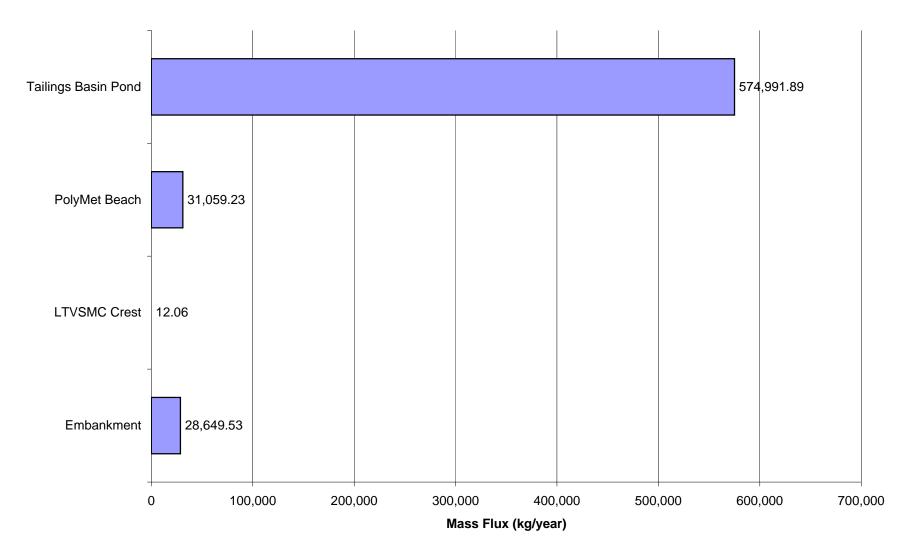

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Sulfate (SO₄)

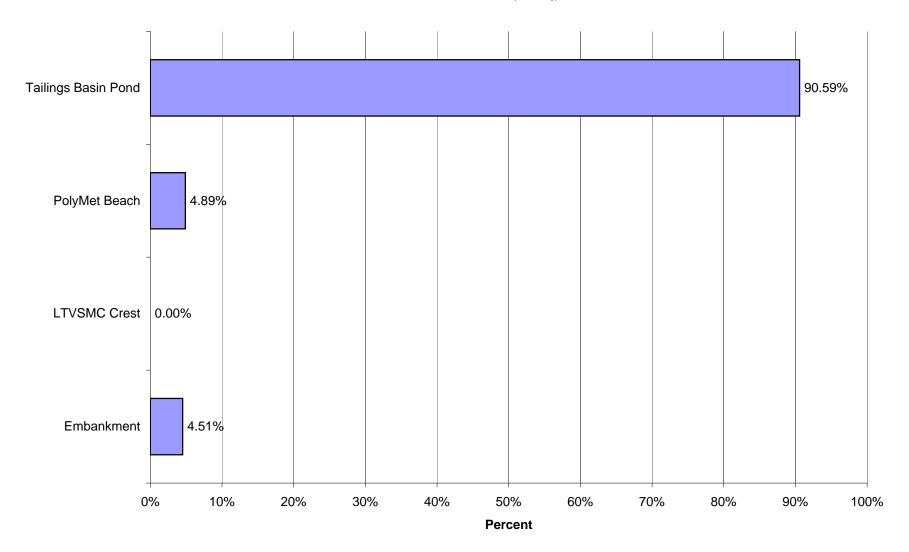

Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Year 5 for Sulfate (SO₄)

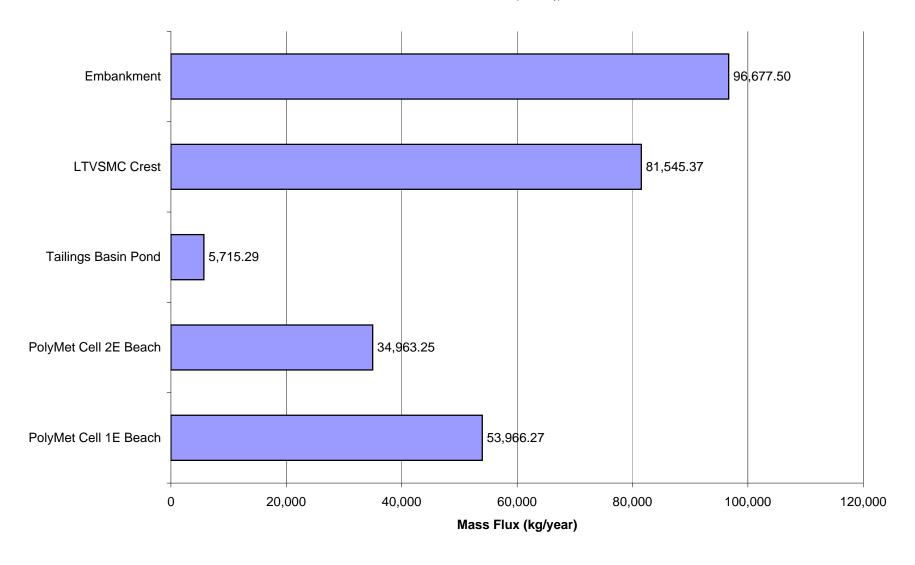

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Sulfate (SO₄)

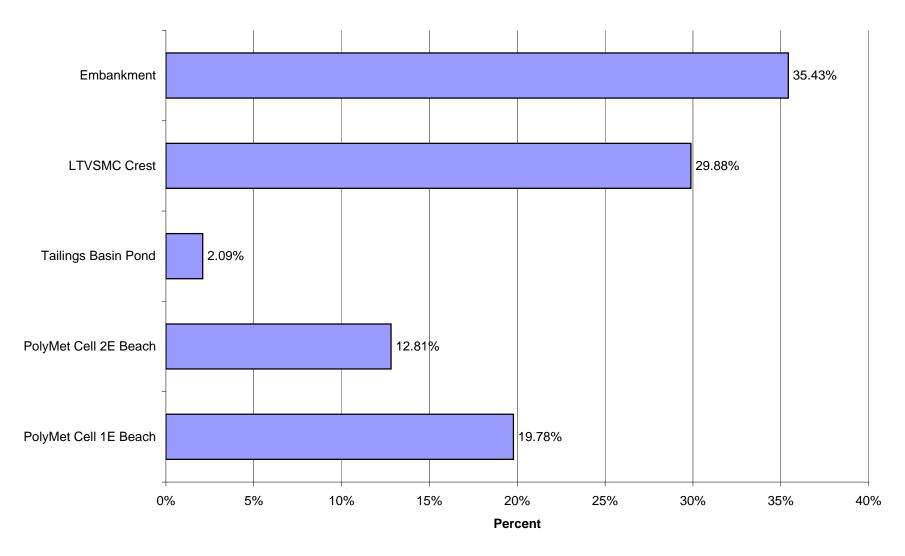

Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Year 10 for Sulfate (SO₄)

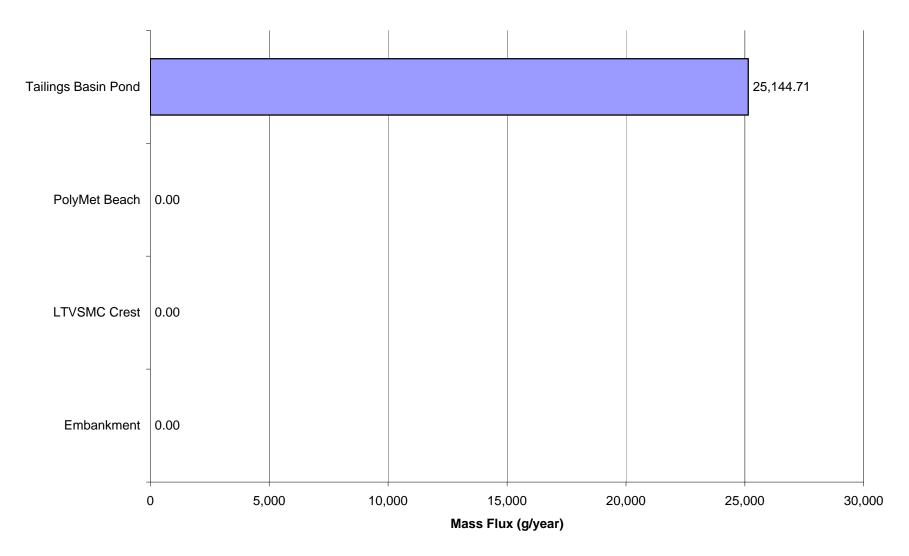

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Sulfate (SO₄)

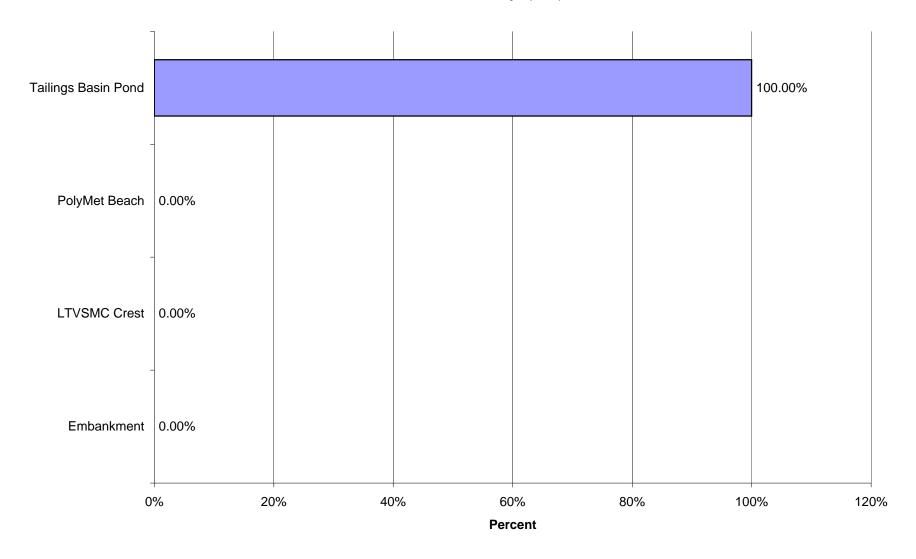

Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Year 15 for Sulfate (SO₄)

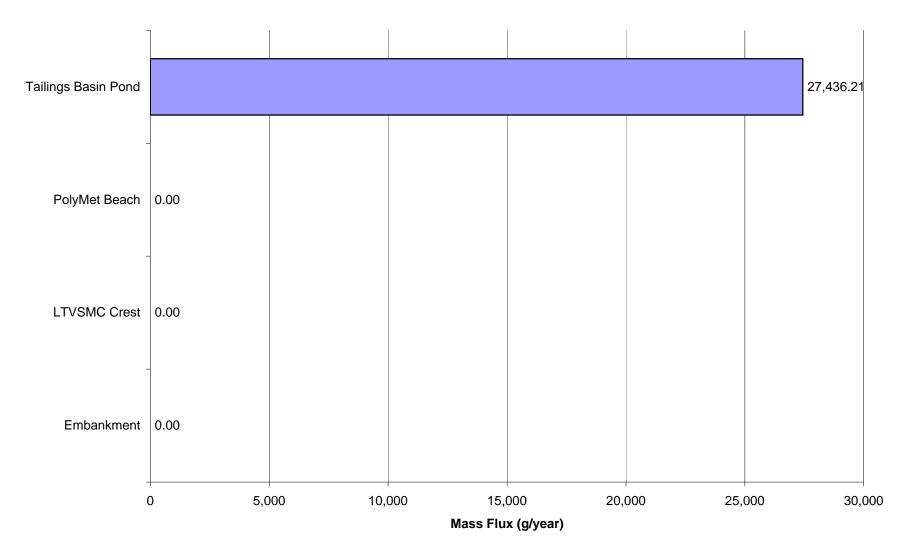

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Sulfate (SO₄)

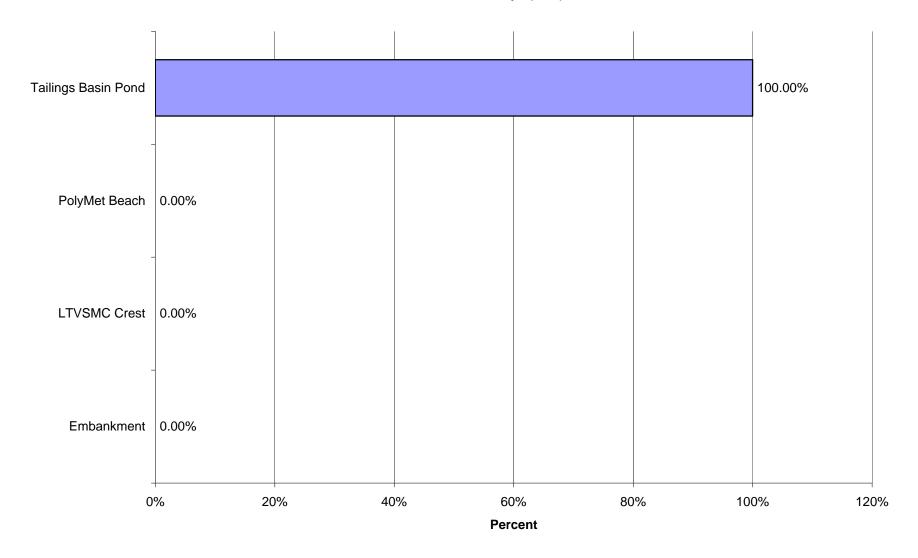

Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Year 20 for Sulfate (SO₄)

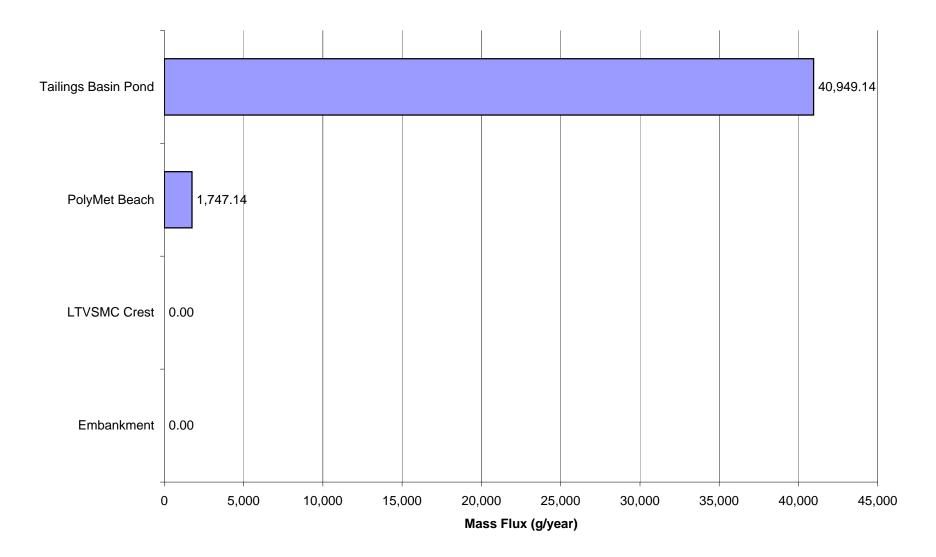

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Sulfate (SO₄)


Geotechnical Mitigation: Mass Flux (kg/year) of Tailings Basin Features in Closure for Sulfate (SO₄)

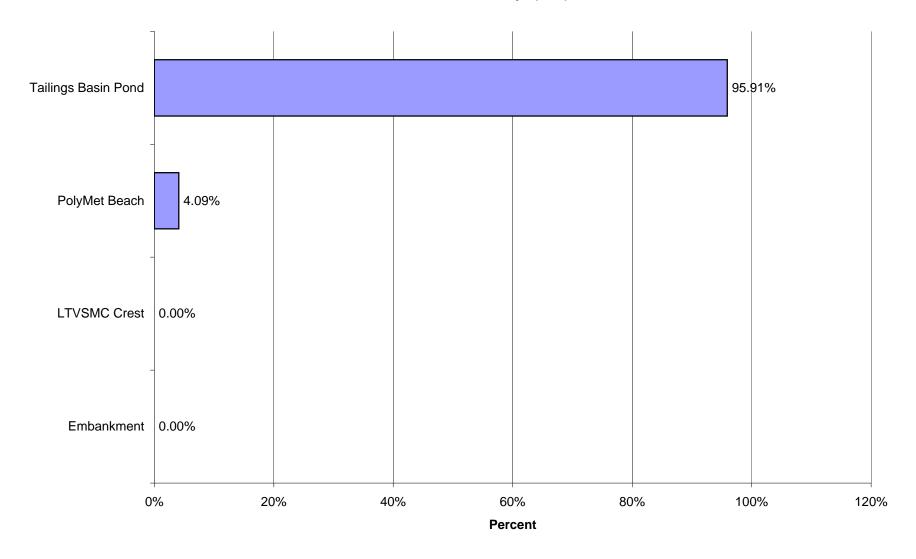

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Closure for Sulfate (SO₄)


Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Antimony (Sb)

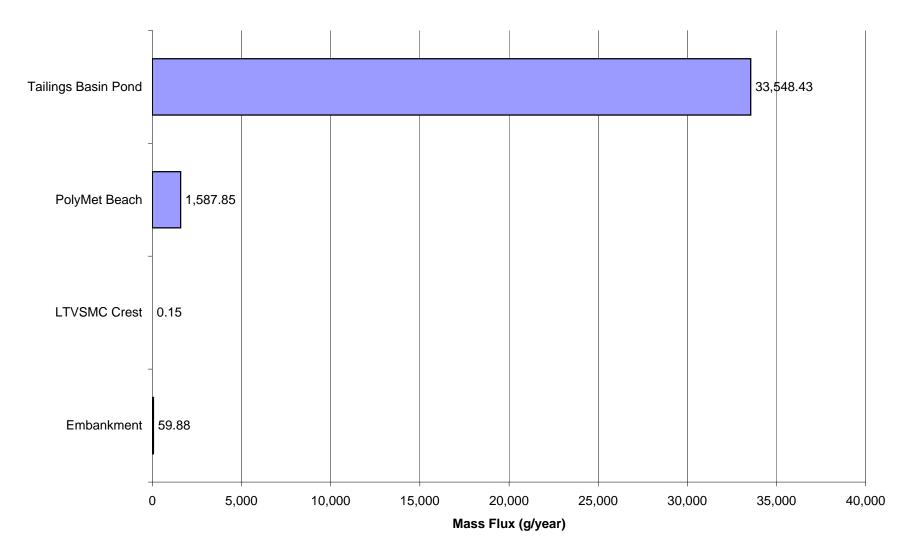

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Antimony (Sb)

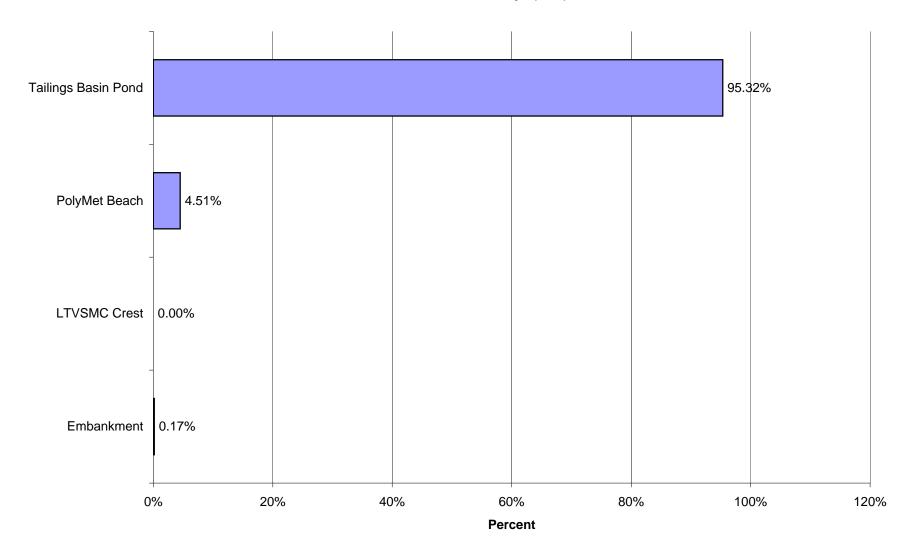


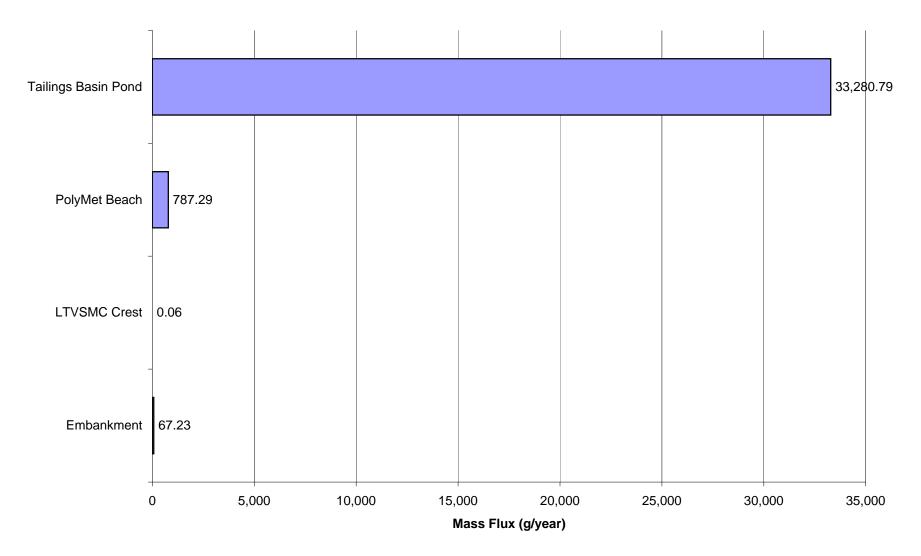
Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Antimony (Sb)

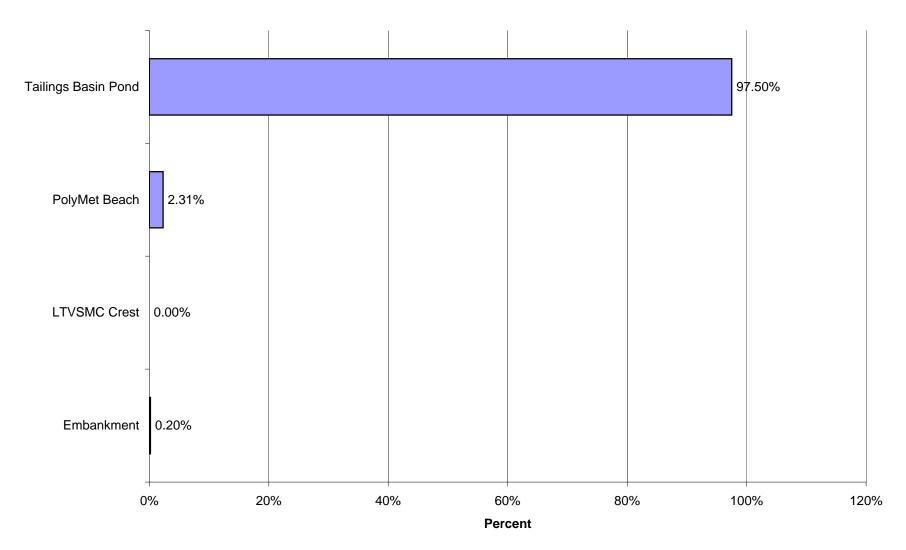


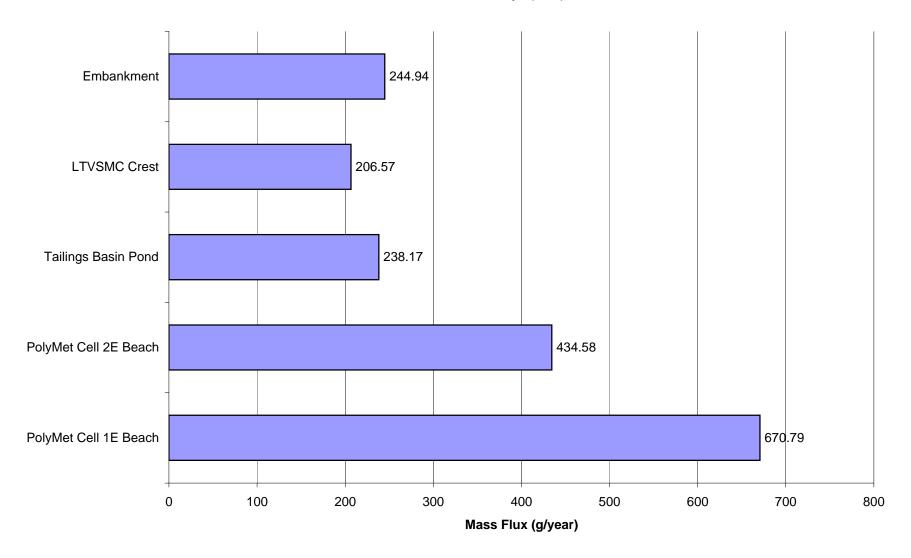
Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Antimony (Sb)

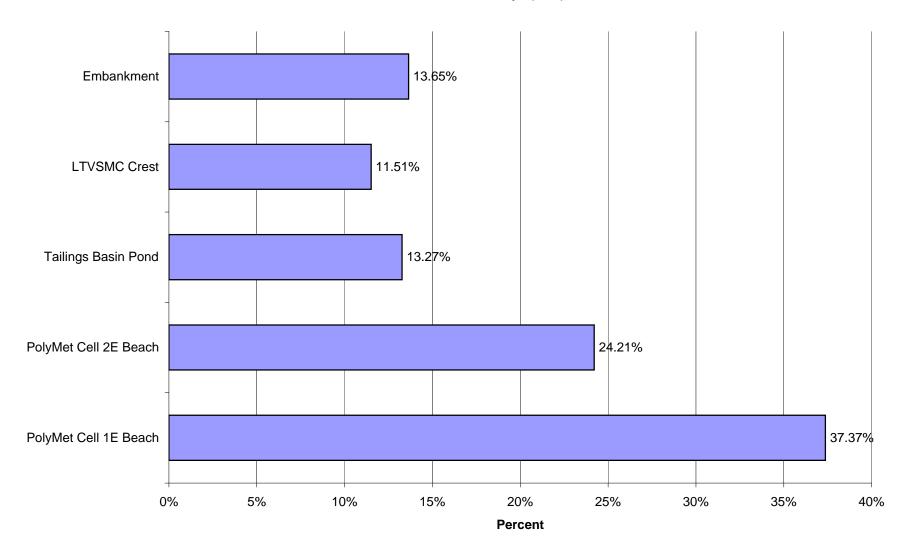


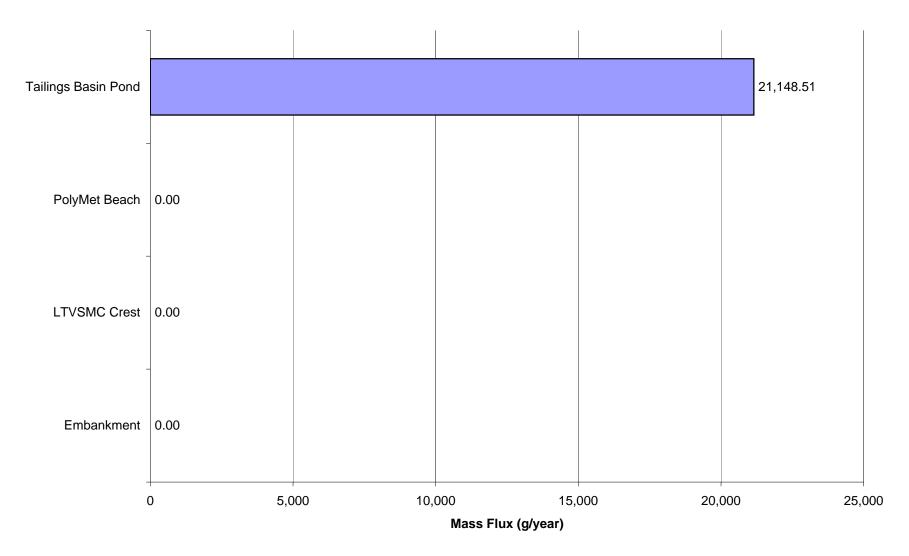

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Antimony (Sb)

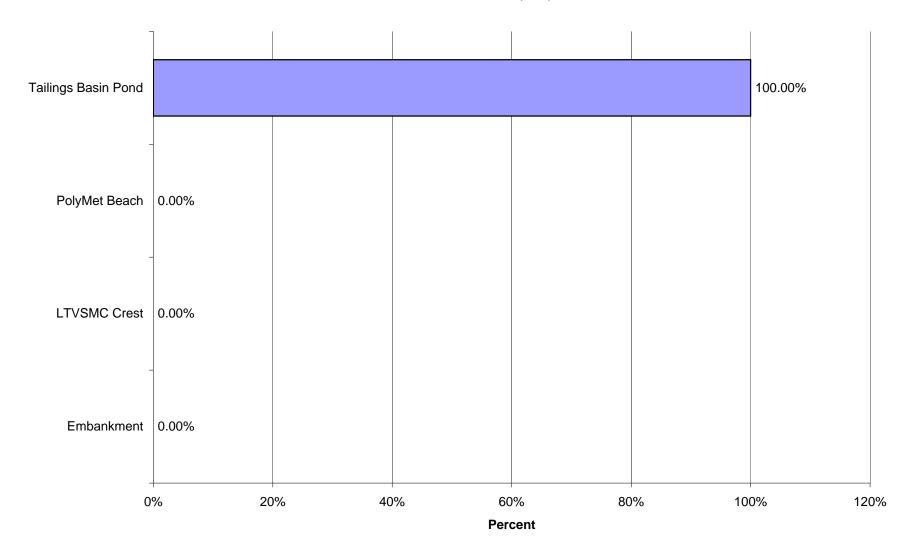

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Antimony (Sb)

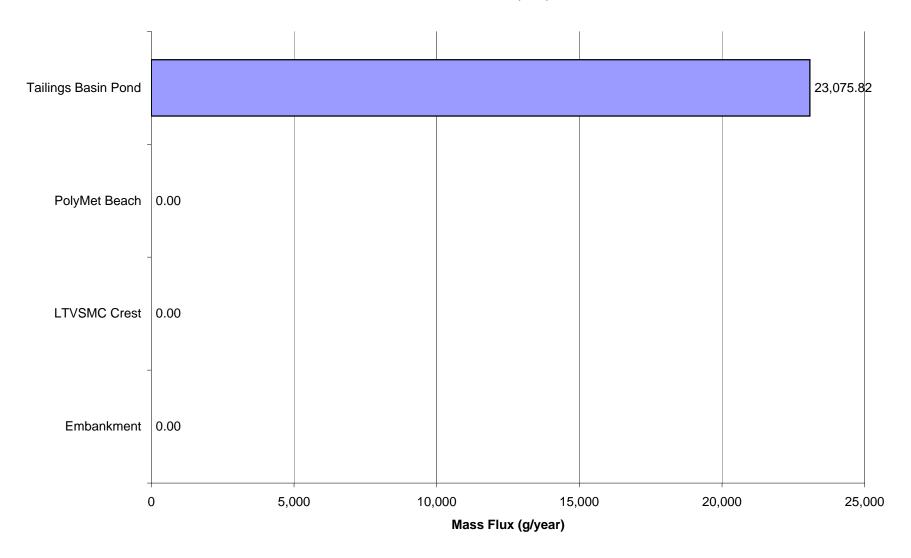

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Antimony (Sb)

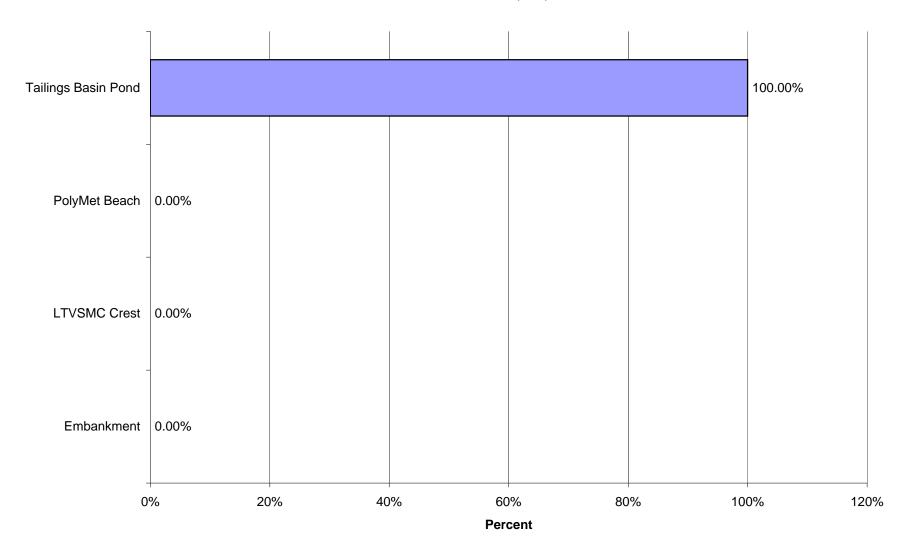

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Antimony (Sb)

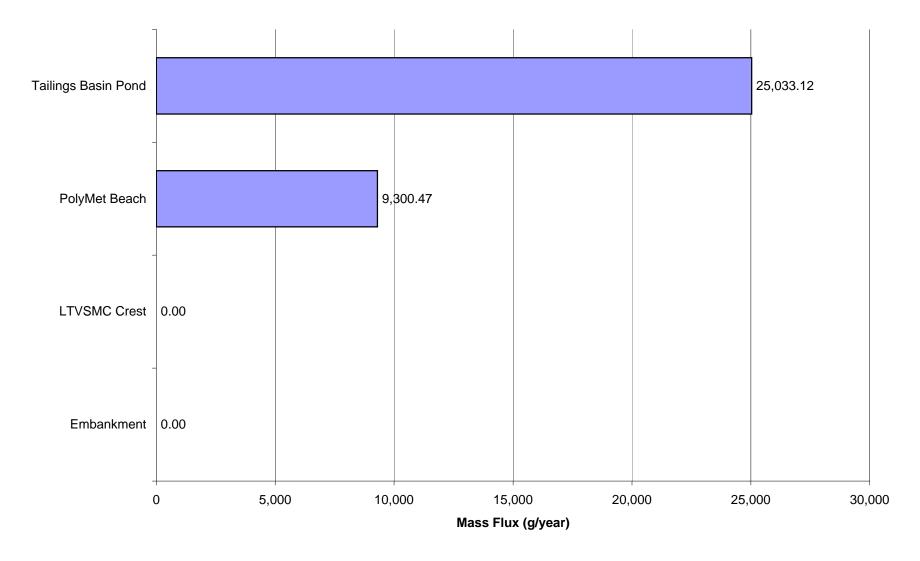

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Antimony (Sb)

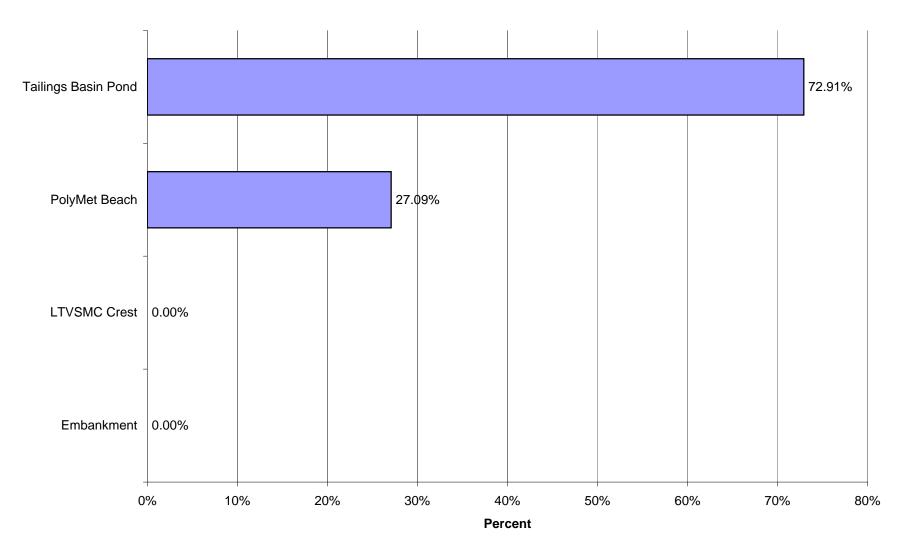

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Closure for Antimony (Sb)

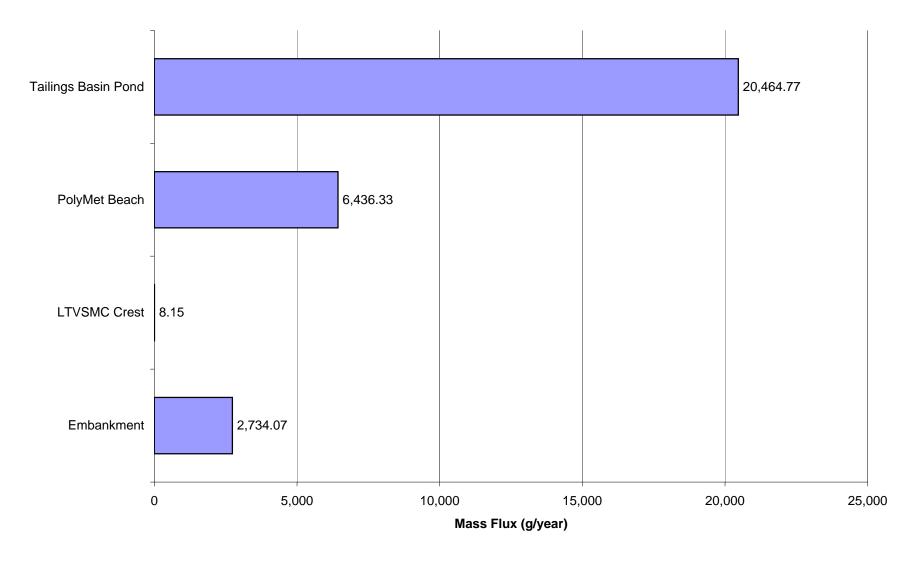

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Closure for Antimony (Sb)

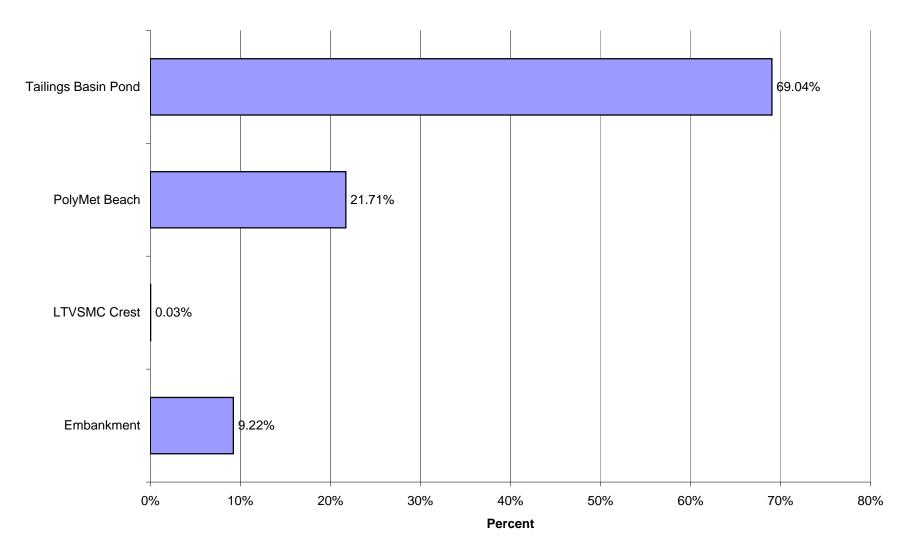

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Arsenic (As)

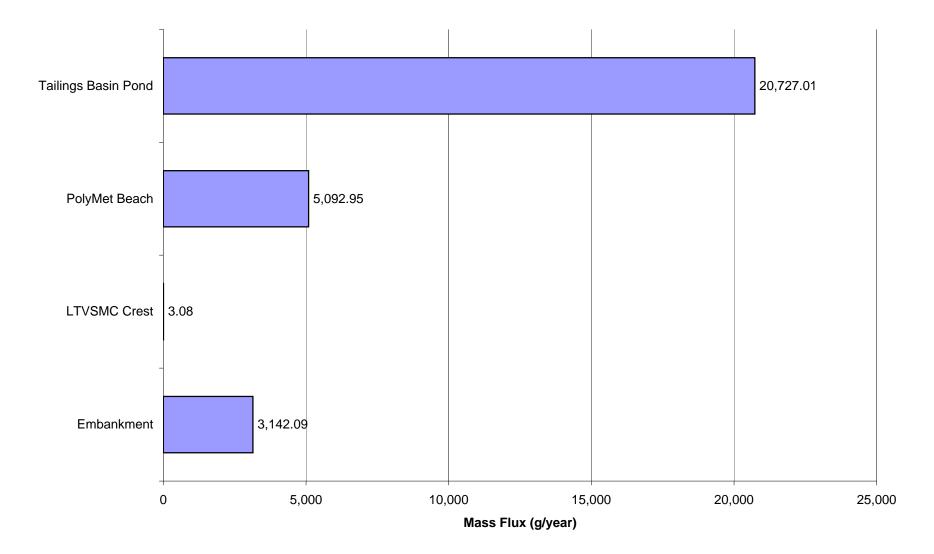

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Arsenic (As)


Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Arsenic (As)

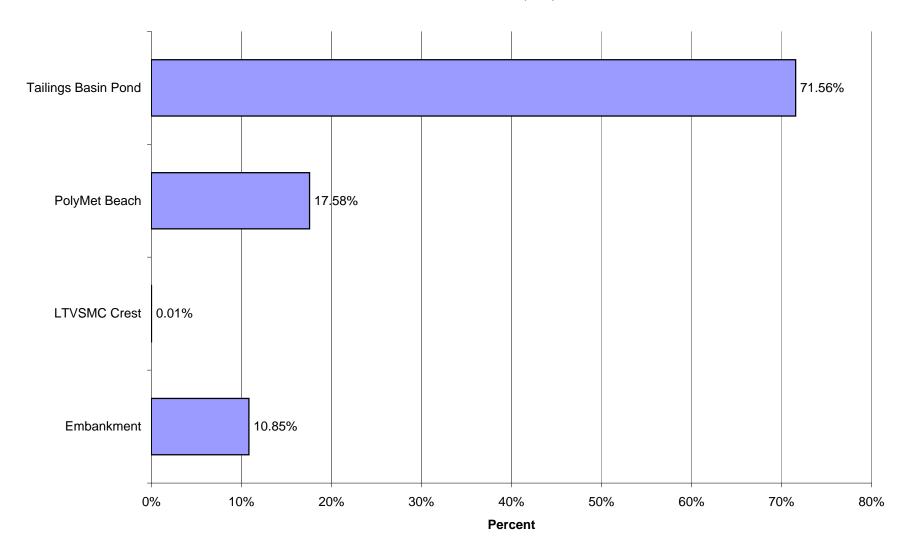

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Arsenic (As)


Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Arsenic (As)

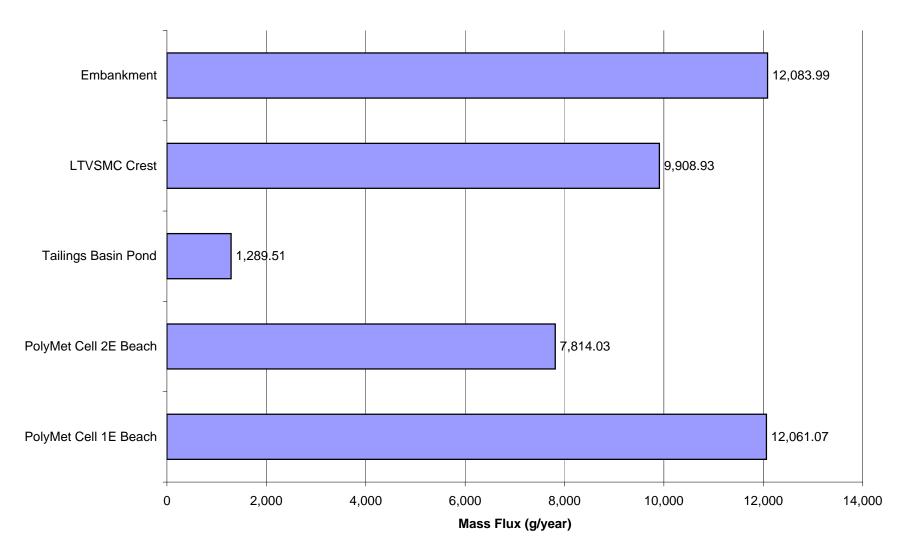

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Arsenic (As)

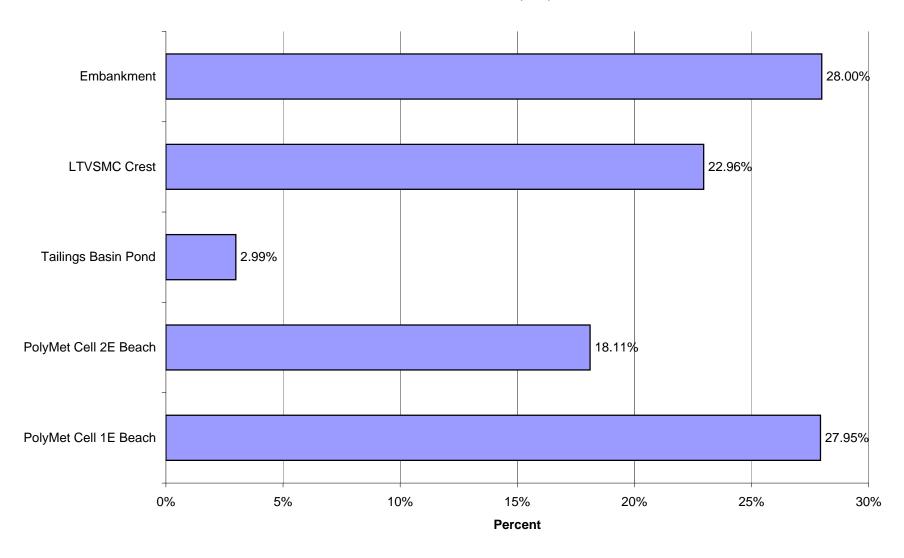


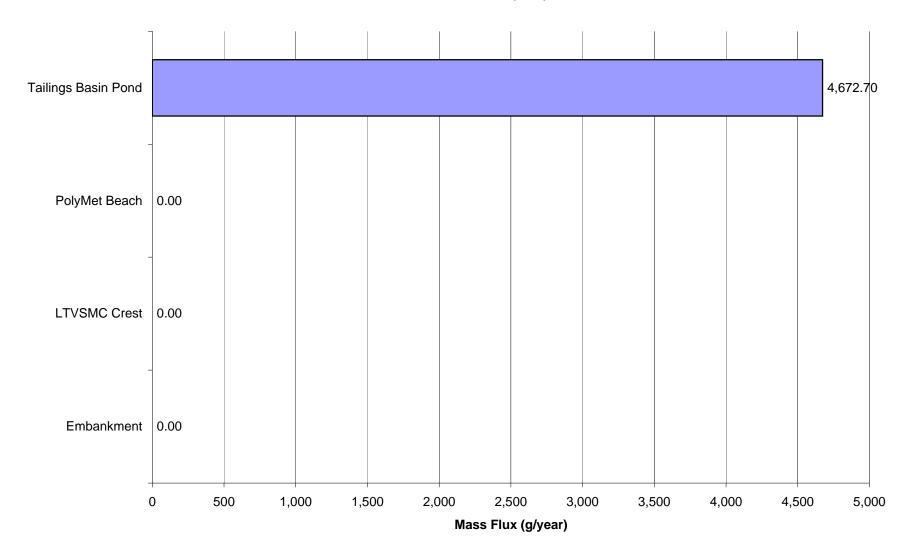
Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Arsenic (As)

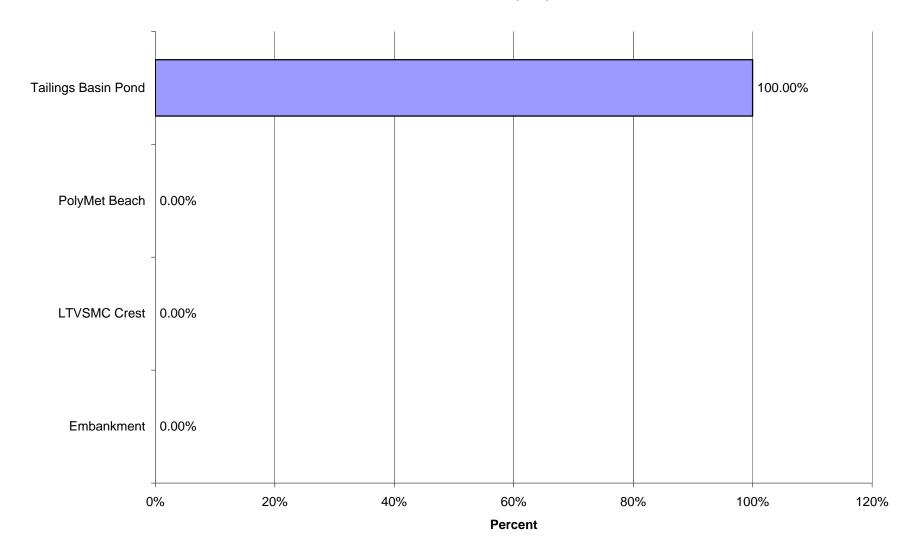


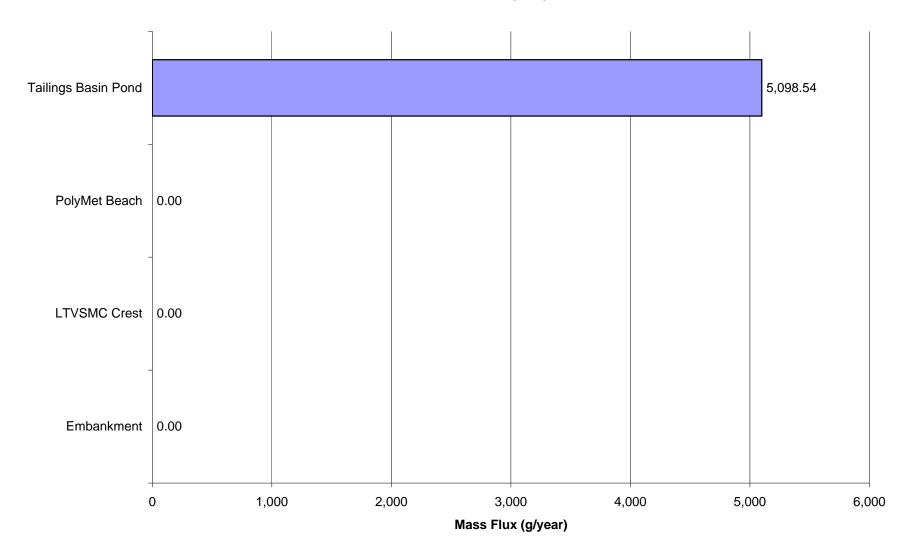
Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Arsenic (As)

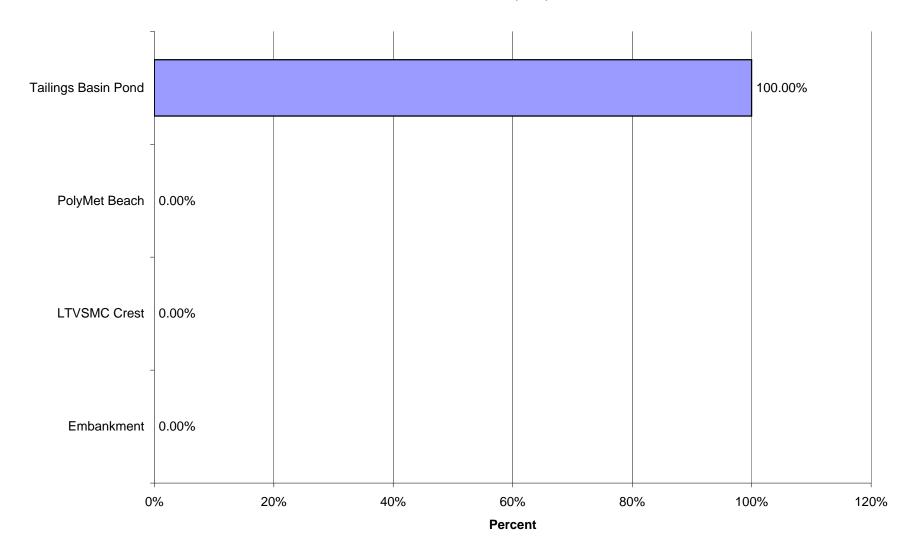



Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Arsenic (As)

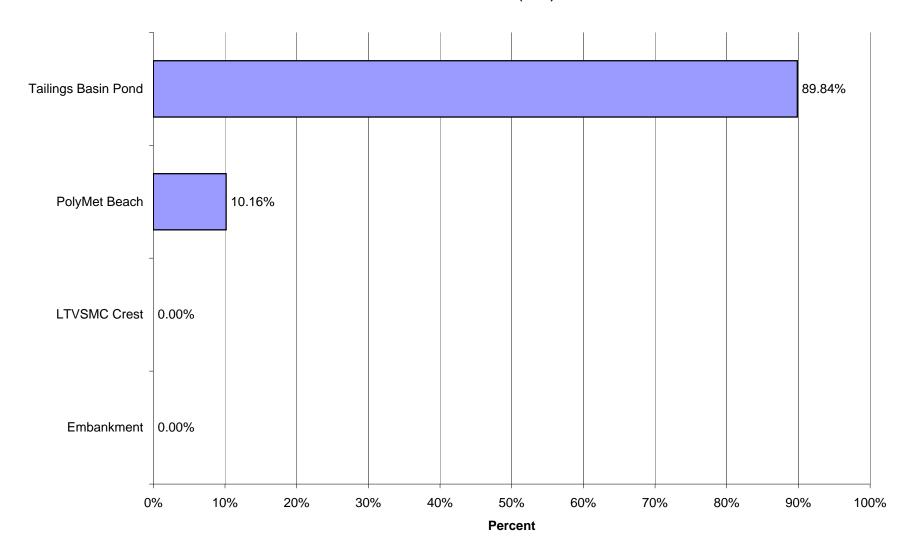

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Closure for Arsenic (As)

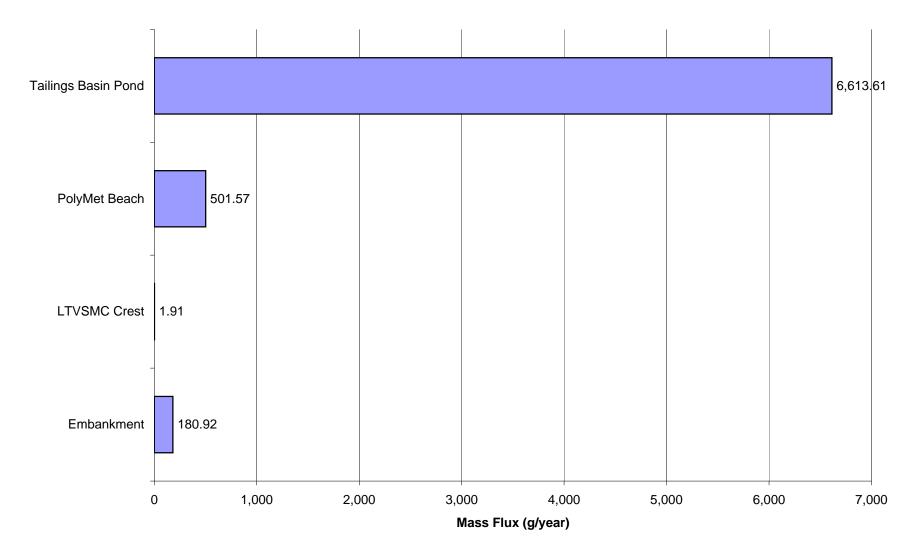

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Closure for Arsenic (As)

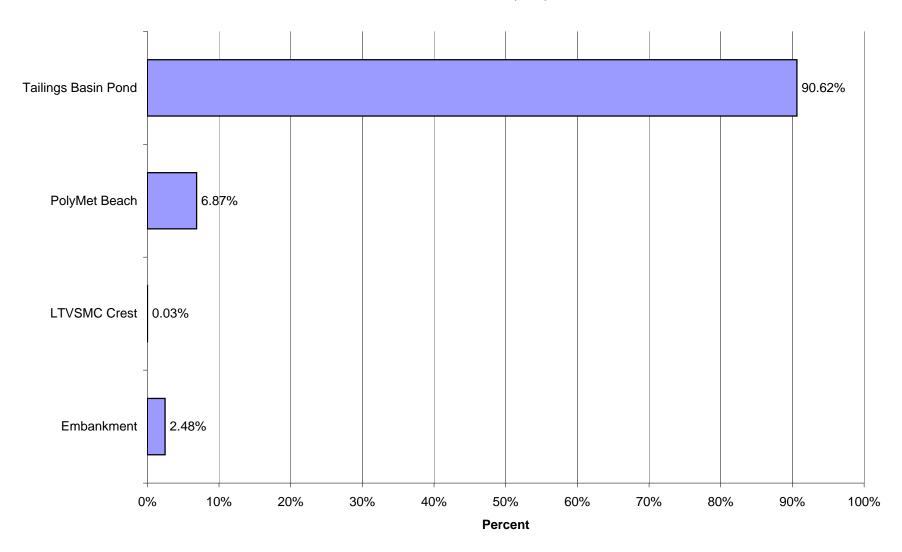

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Cobalt (Co)


Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Cobalt (Co)

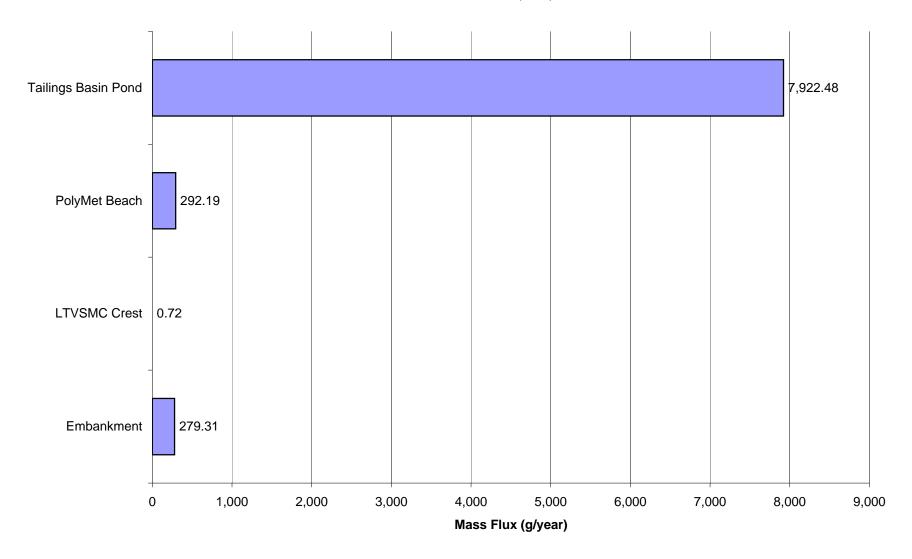
Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Cobalt (Co)

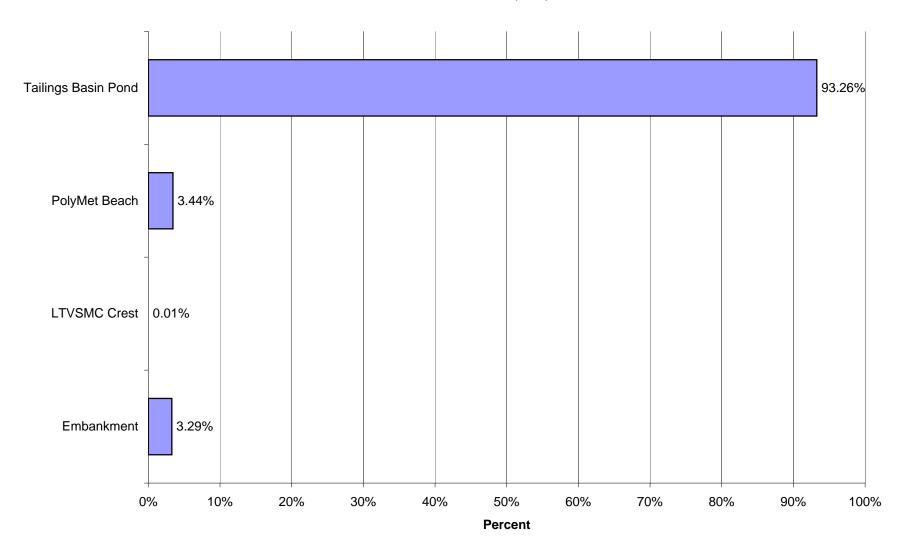



Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Cobalt (Co)

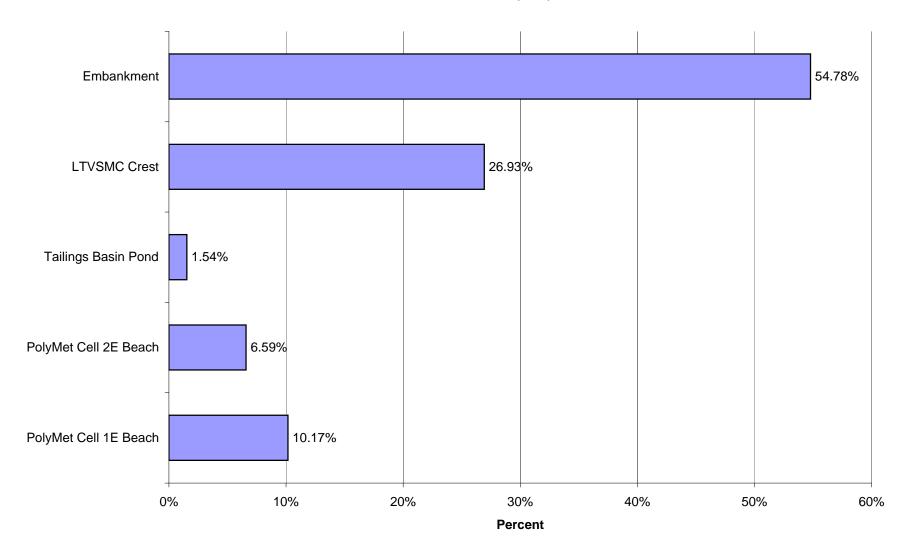


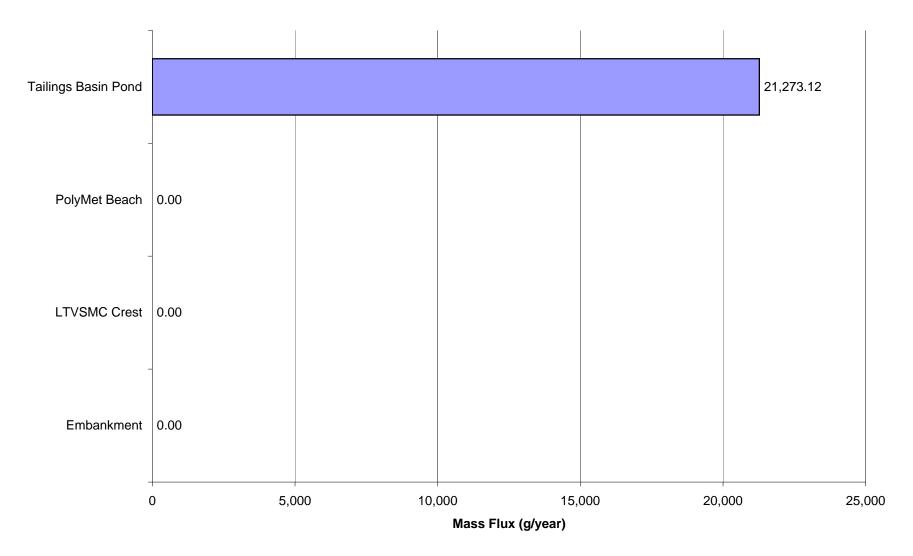
Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Cobalt (Co)

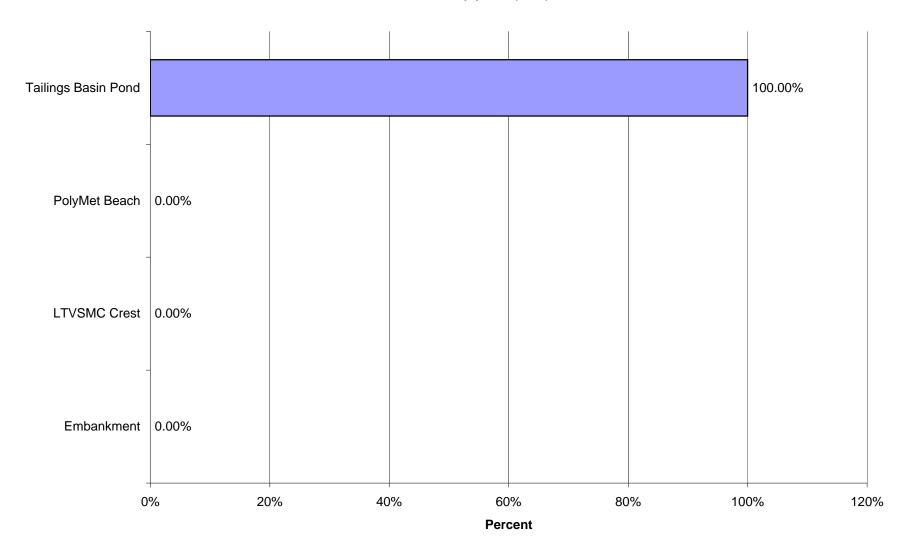


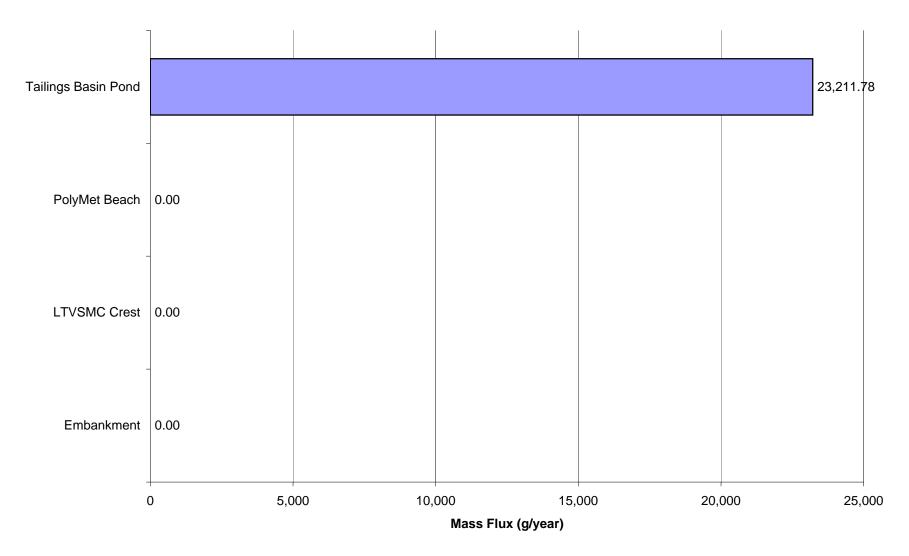

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Cobalt (Co)

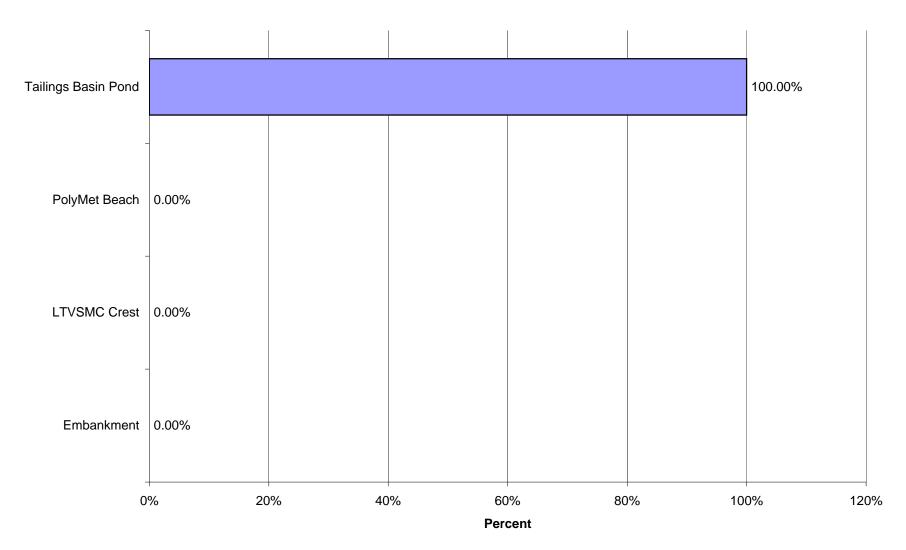

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Cobalt (Co)

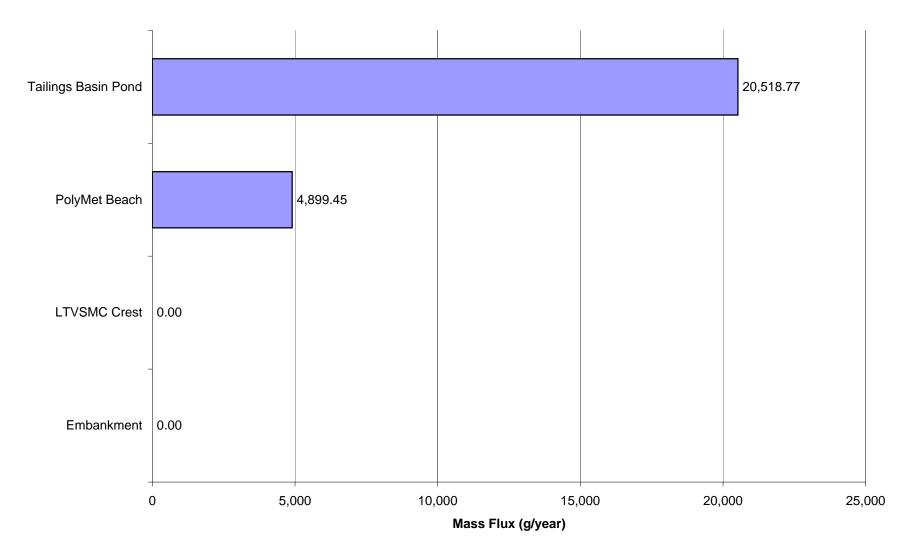

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Cobalt (Co)

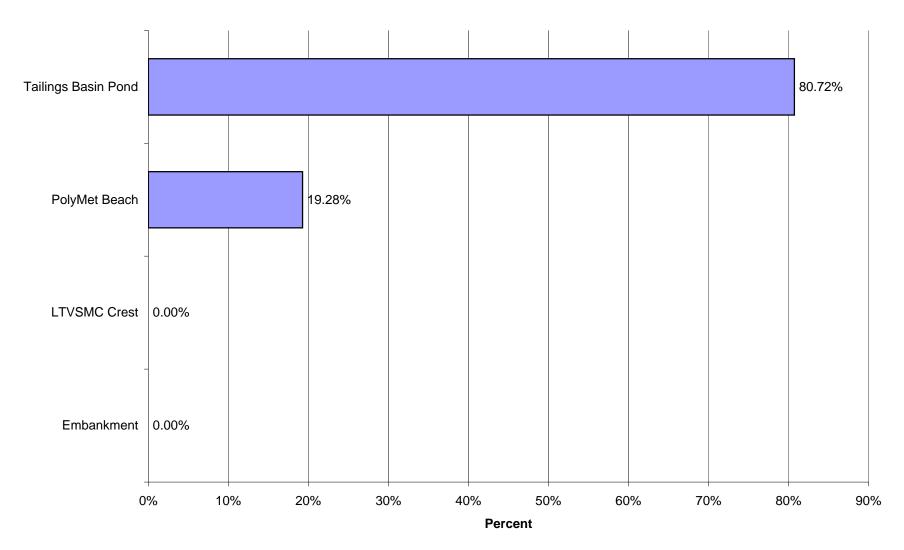

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Closure for Cobalt (Co)

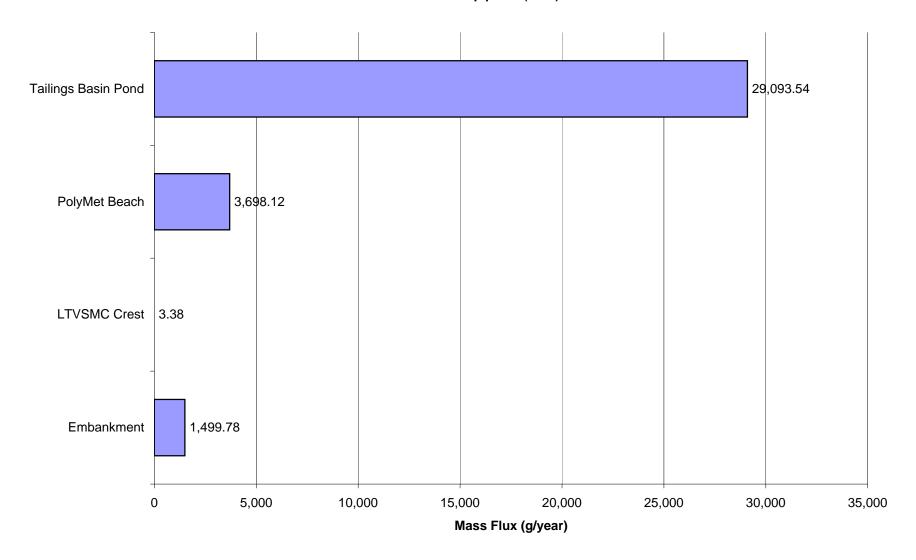

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Closure for Cobalt (Co)

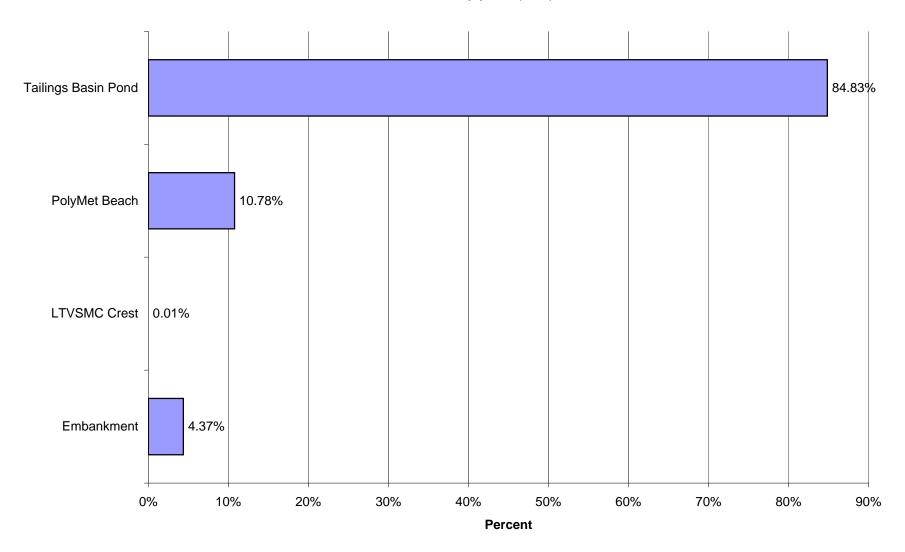

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Copper (Cu)

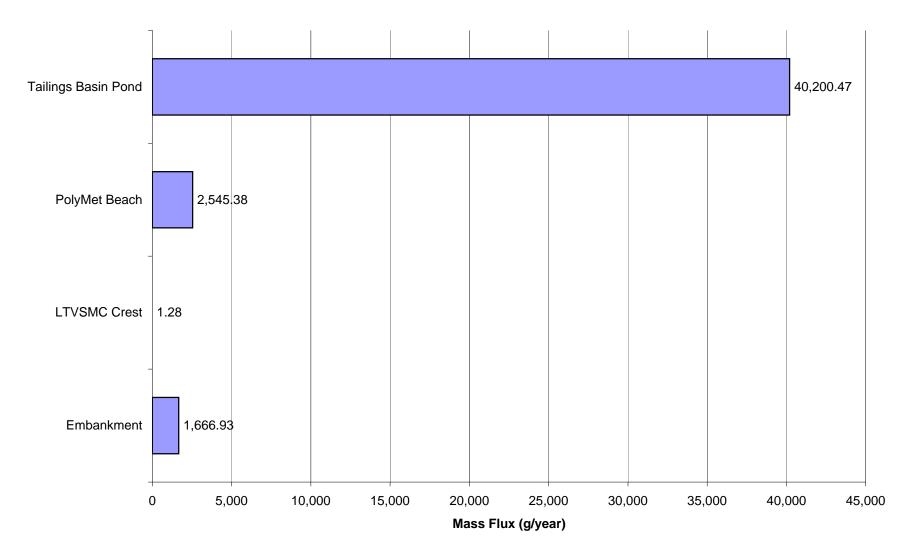

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Copper (Cu)


Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Copper (Cu)

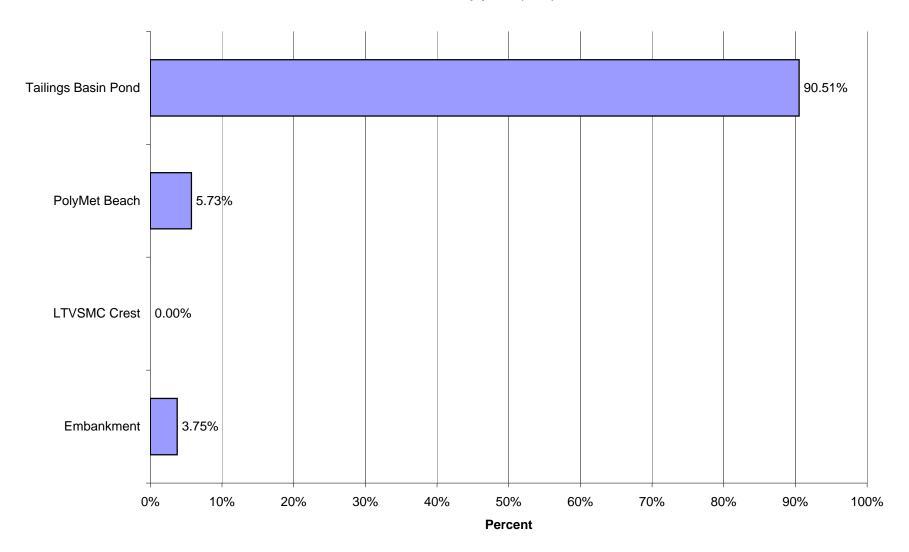

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Copper (Cu)


Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Copper (Cu)

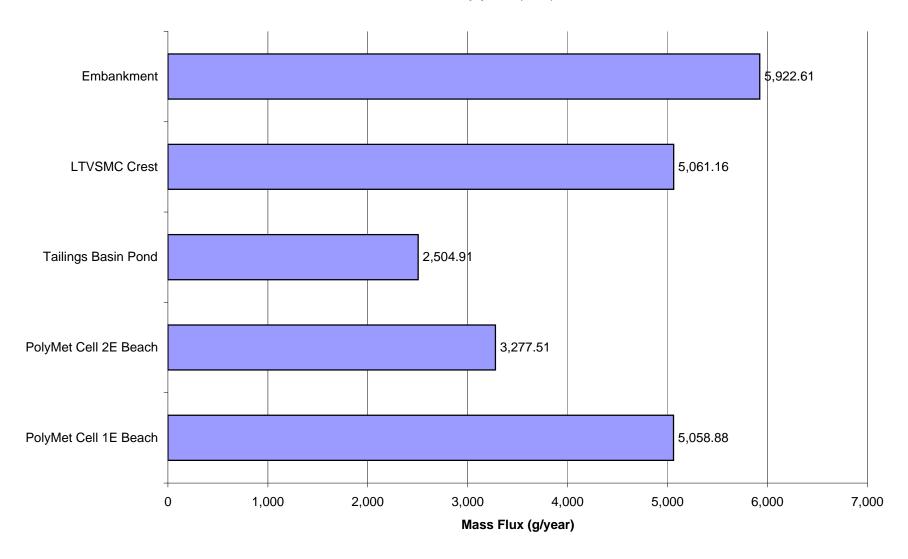

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Copper (Cu)

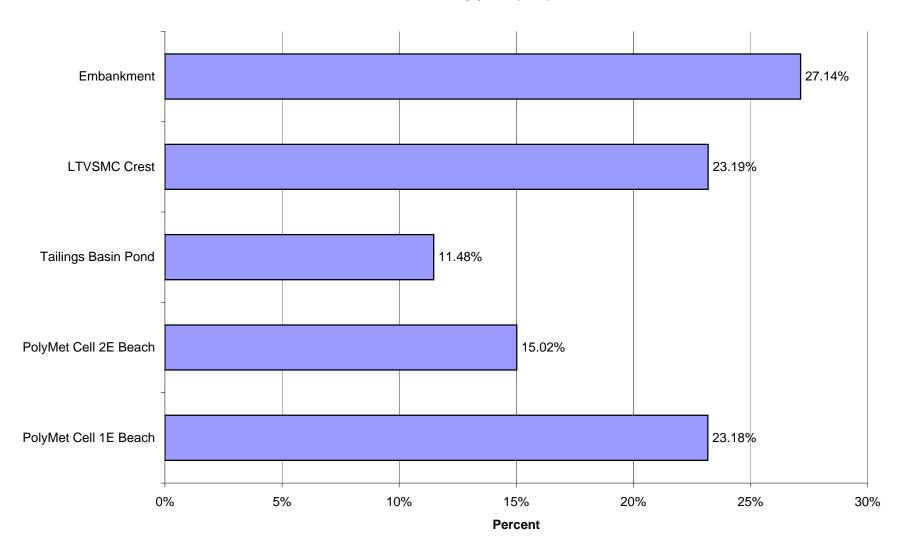


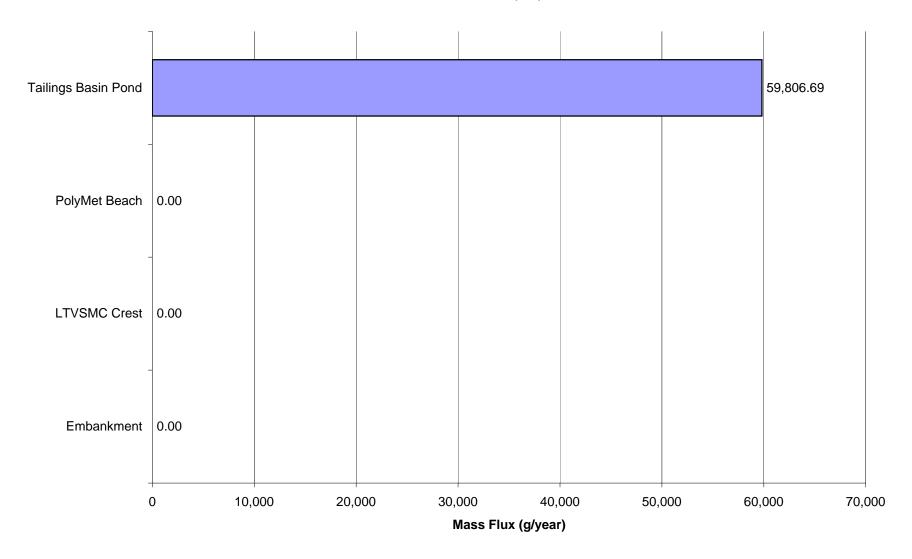
Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Copper (Cu)

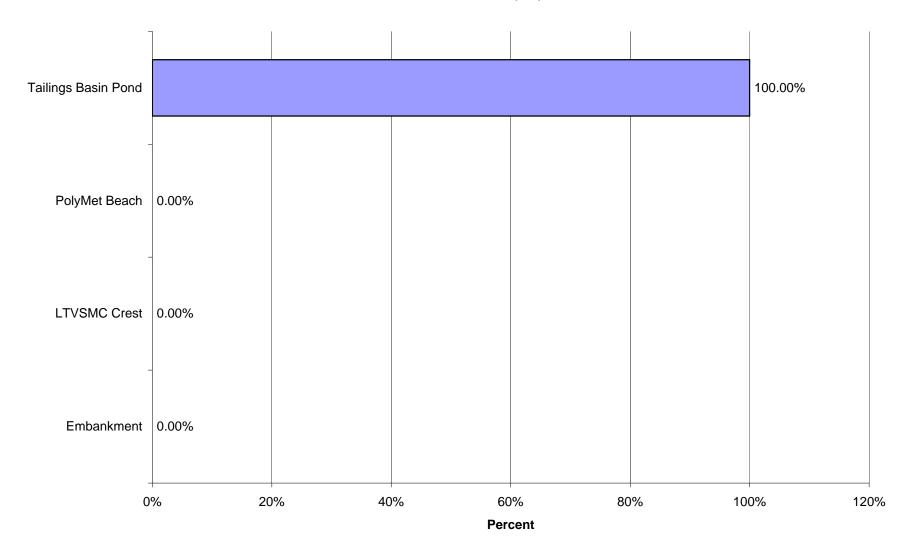


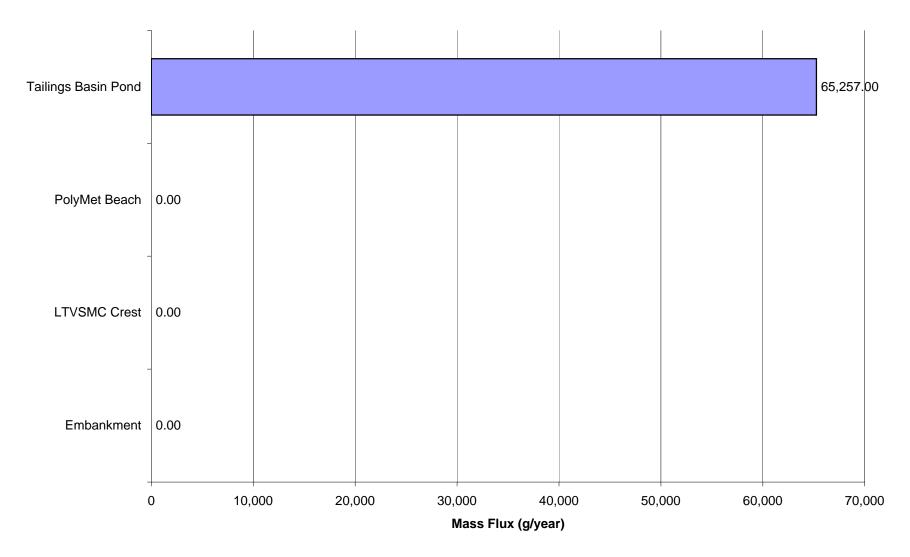
Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Copper (Cu)

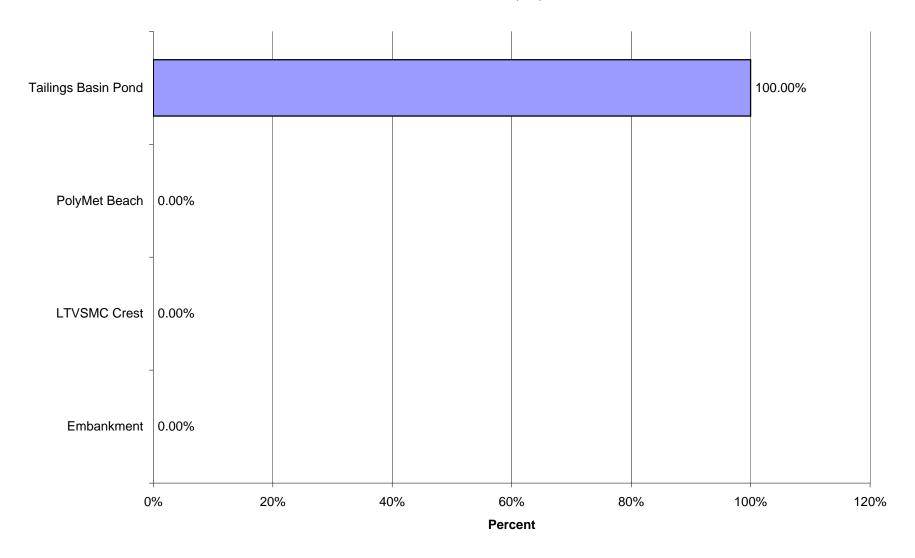


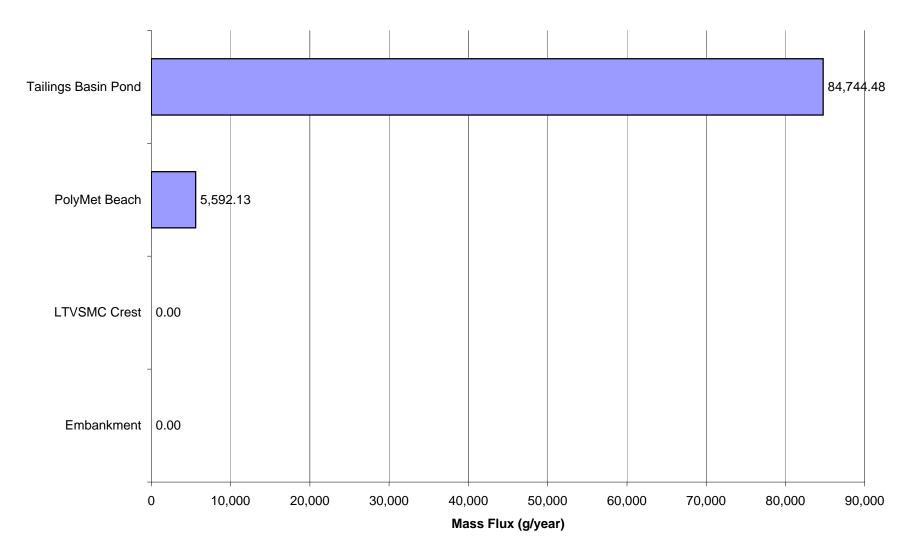

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Copper (Cu)

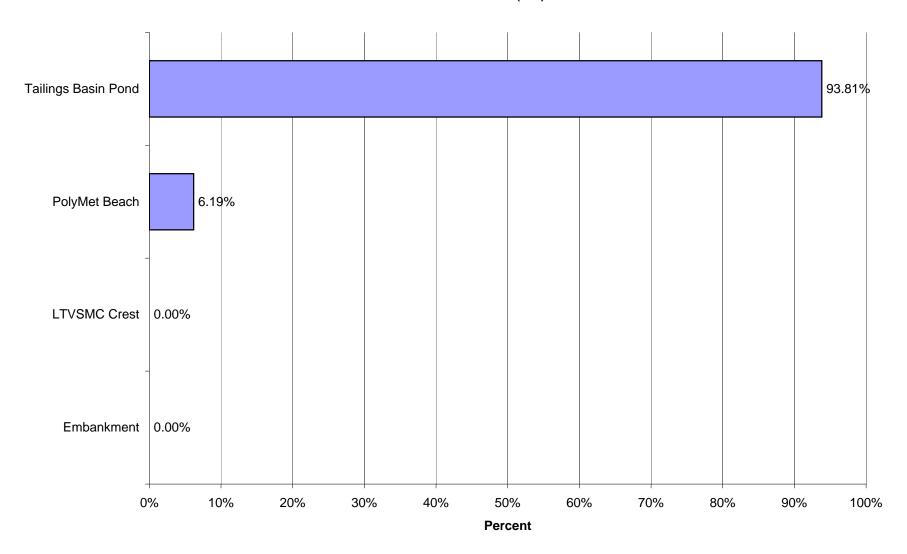

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Closure for Copper (Cu)

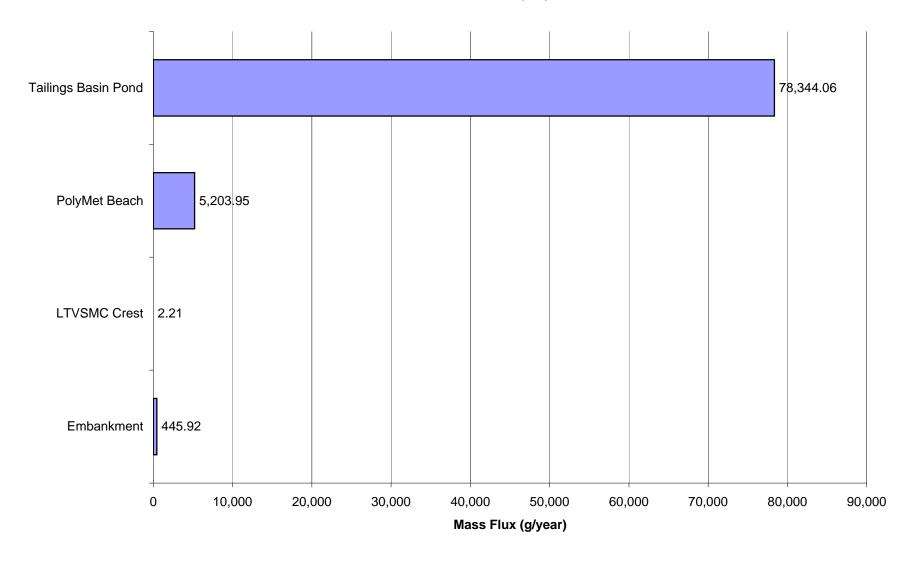

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Closure for Copper (Cu)

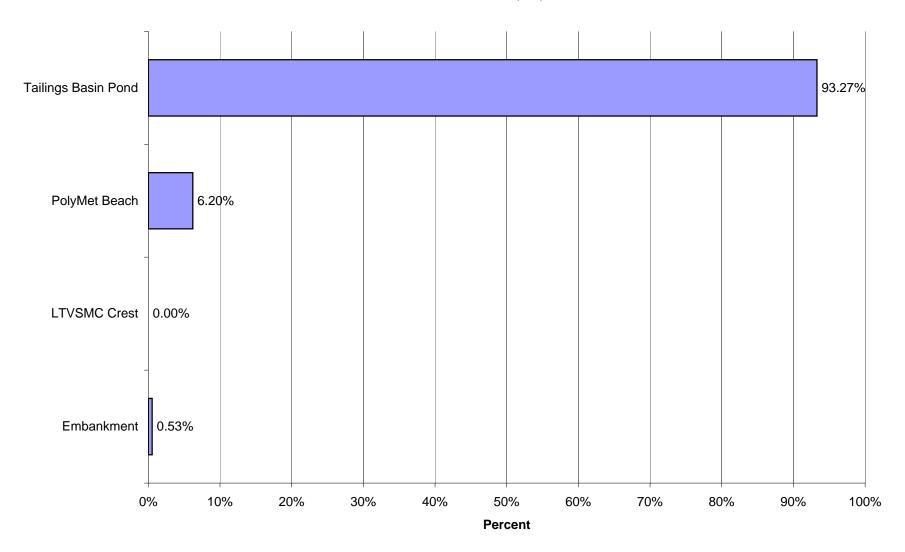

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 1 for Nickel (Ni)

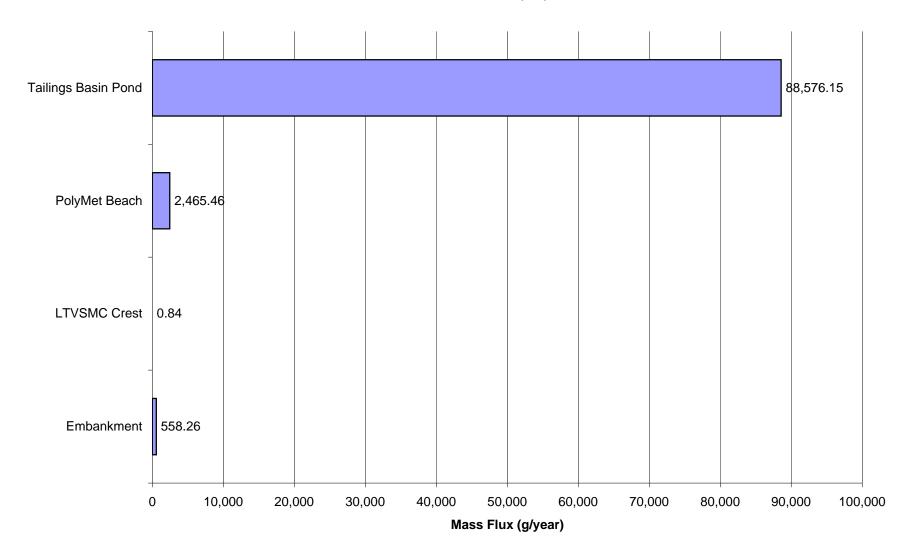

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 1 for Nickel (Ni)

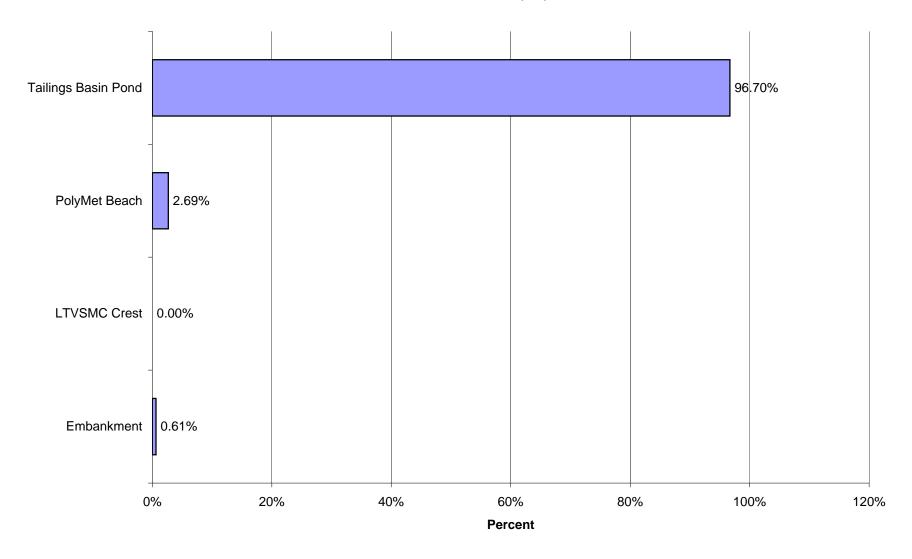

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 5 for Nickel (Ni)

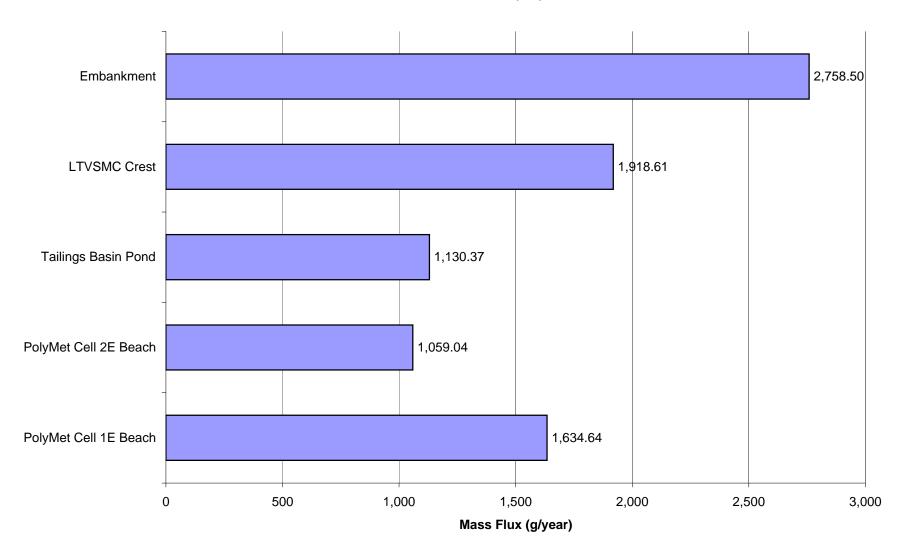

Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 5 for Nickel (Ni)

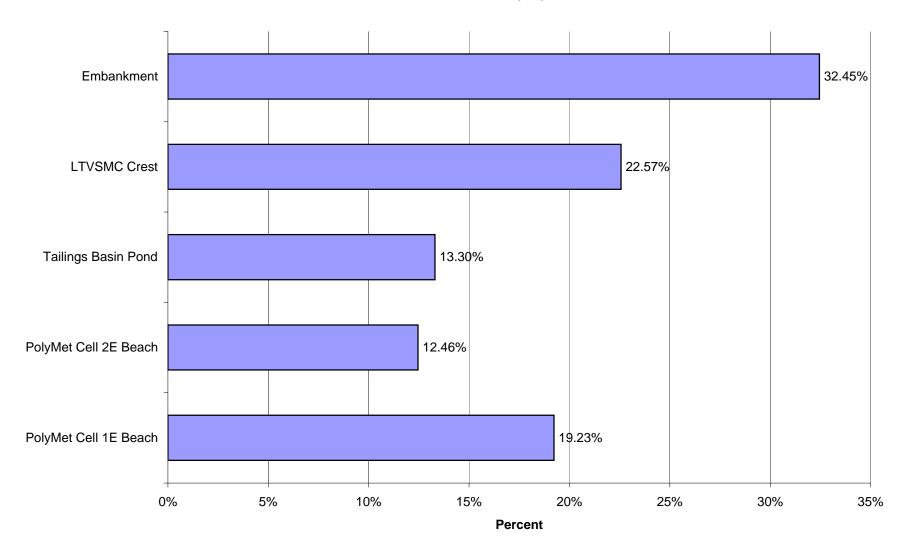

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 10 for Nickel (Ni)


Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 10 for Nickel (Ni)

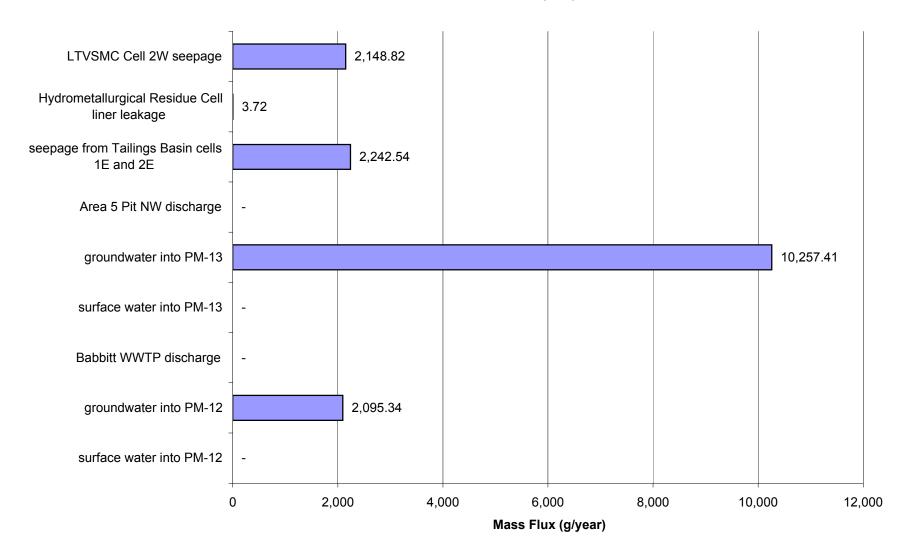

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 15 for Nickel (Ni)


Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 15 for Nickel (Ni)

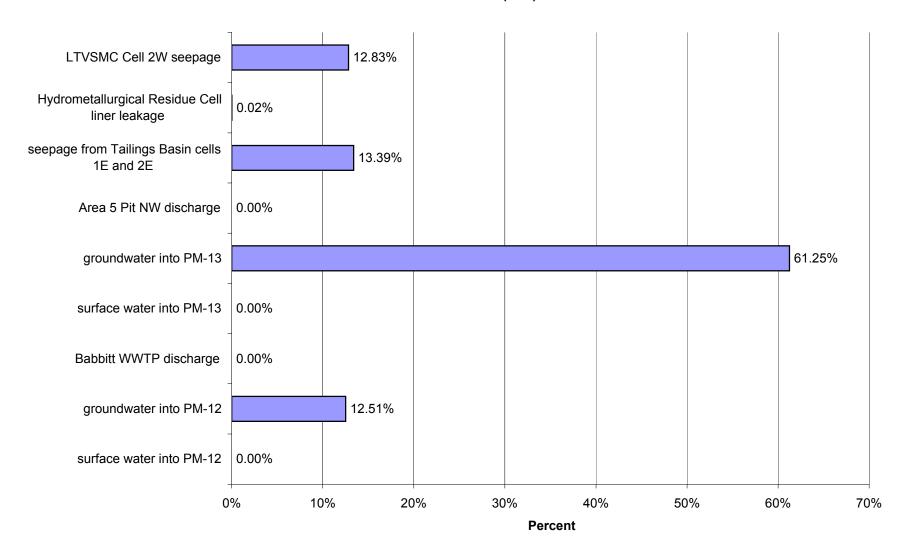

Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Year 20 for Nickel (Ni)


Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Year 20 for Nickel (Ni)

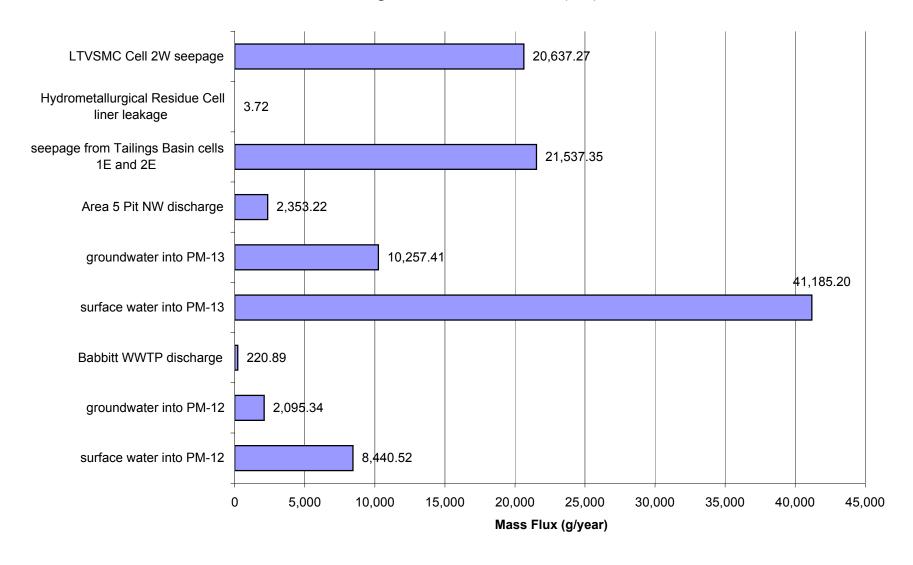
Geotechnical Mitigation: Mass Flux (g/year) of Tailings Basin Features in Closure for Nickel (Ni)

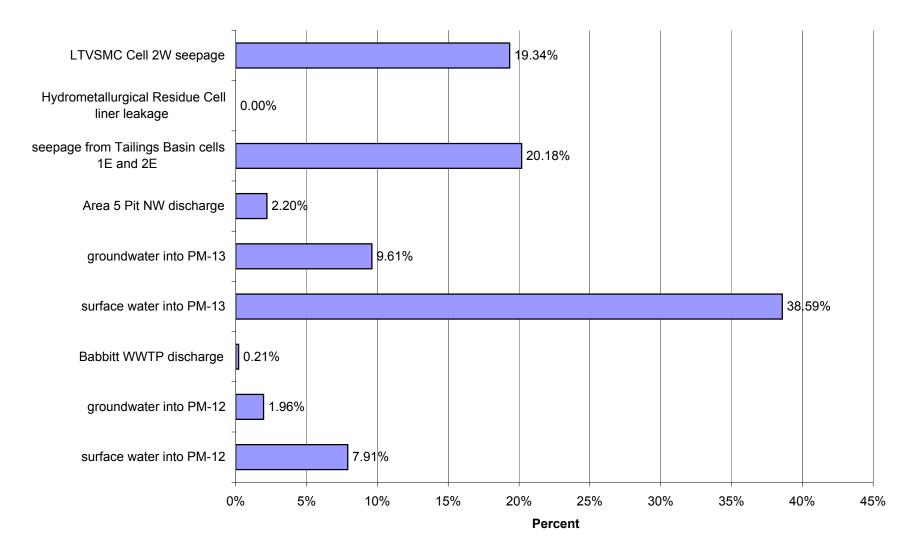


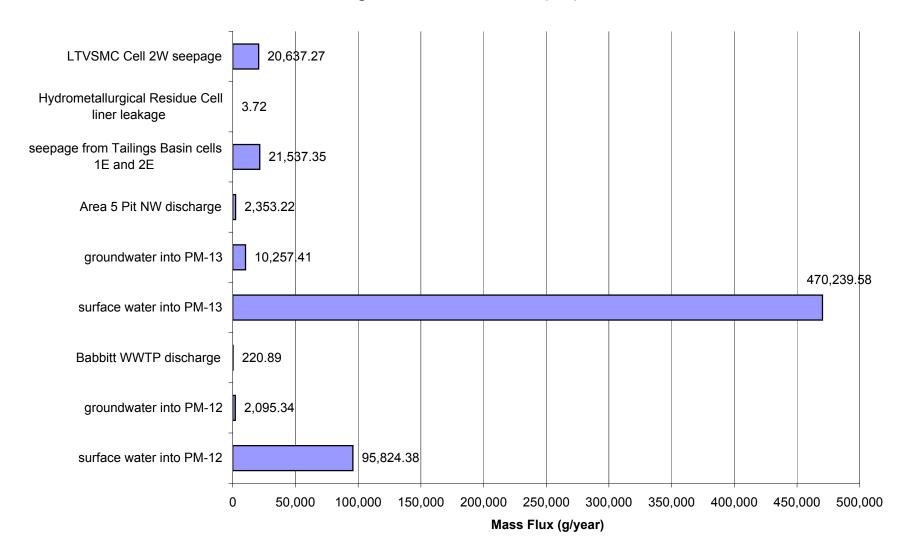
Geotechnical Mitigation: Percent of Tailings Basin Features' Impacts in Closure for Nickel (Ni)

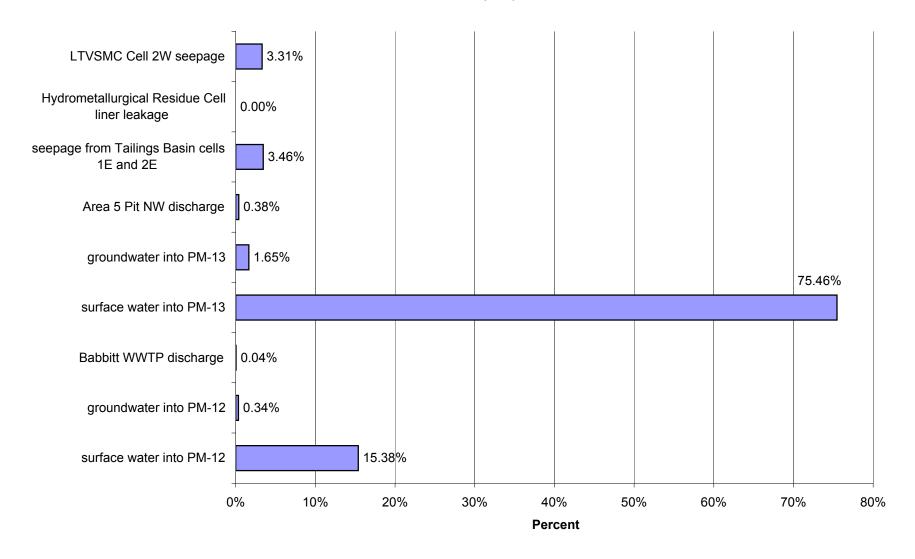


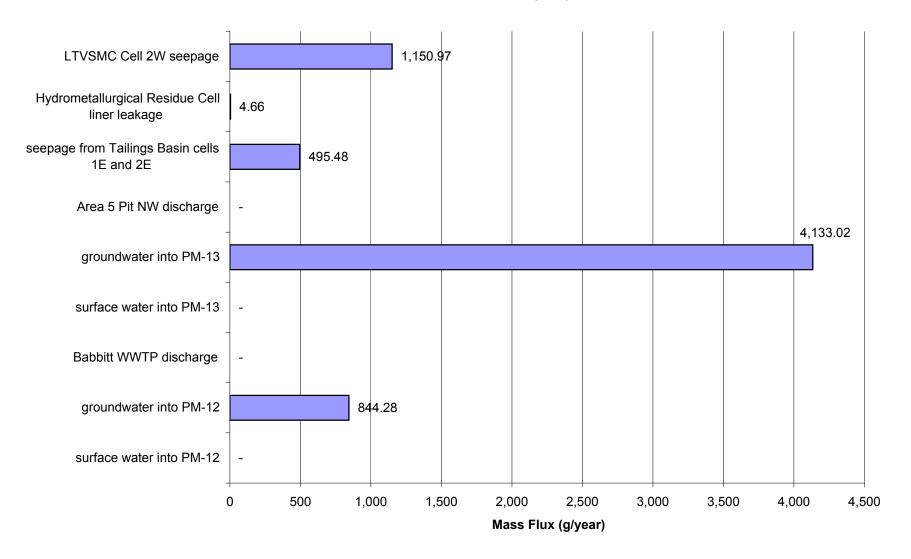
Appendix G.4
Embarass River Watershed
Geotechnical Mitigation

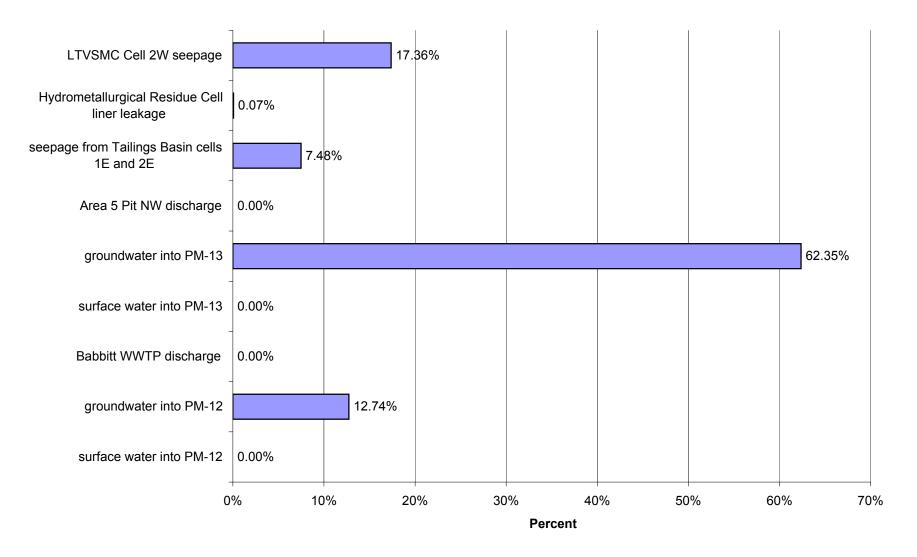

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Arsenic (As)

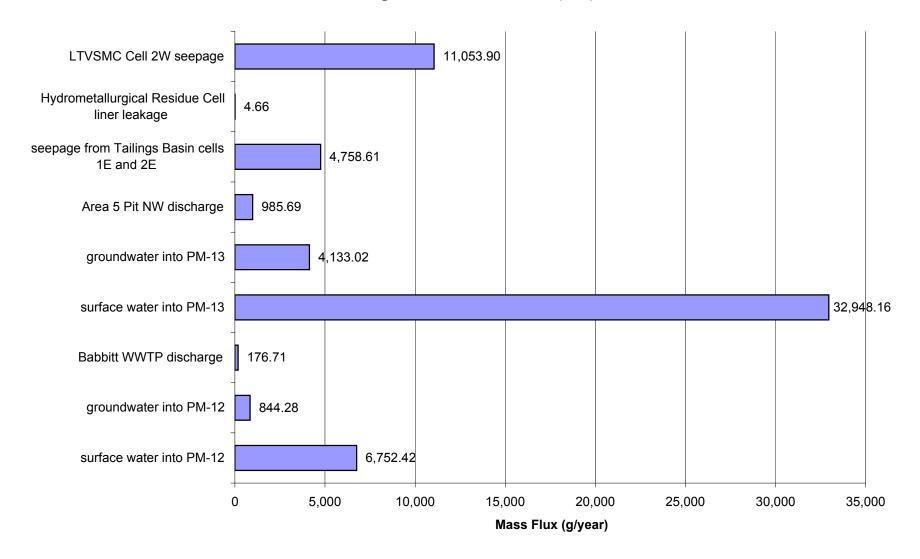

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Arsenic (As)

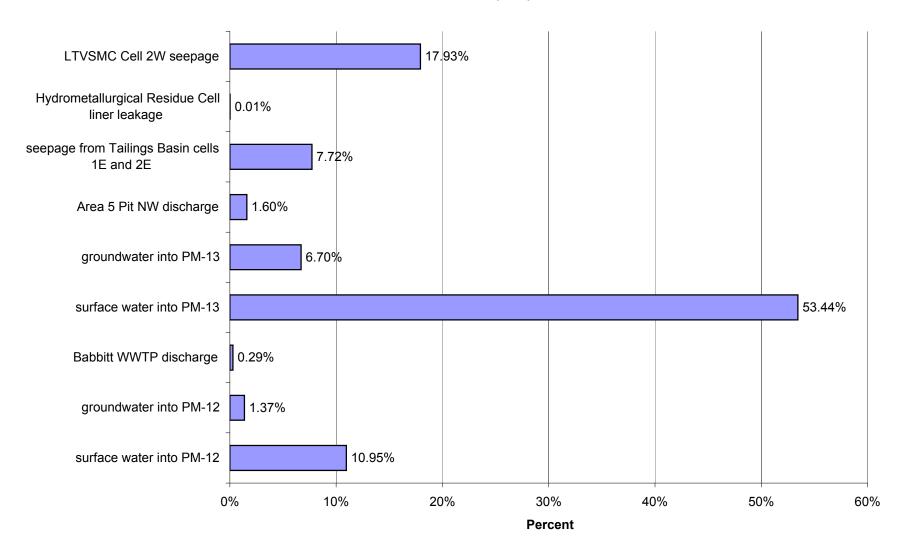

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Arsenic (As)

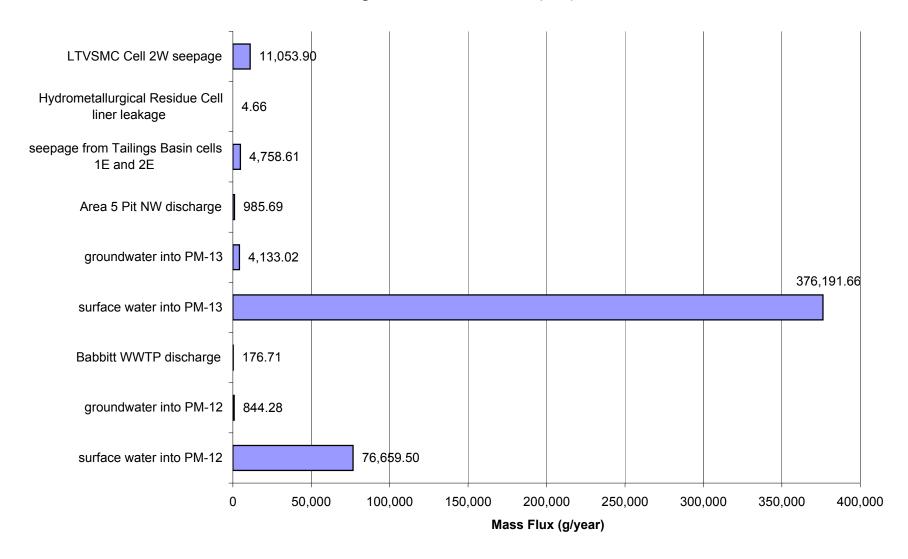

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Arsenic (As)

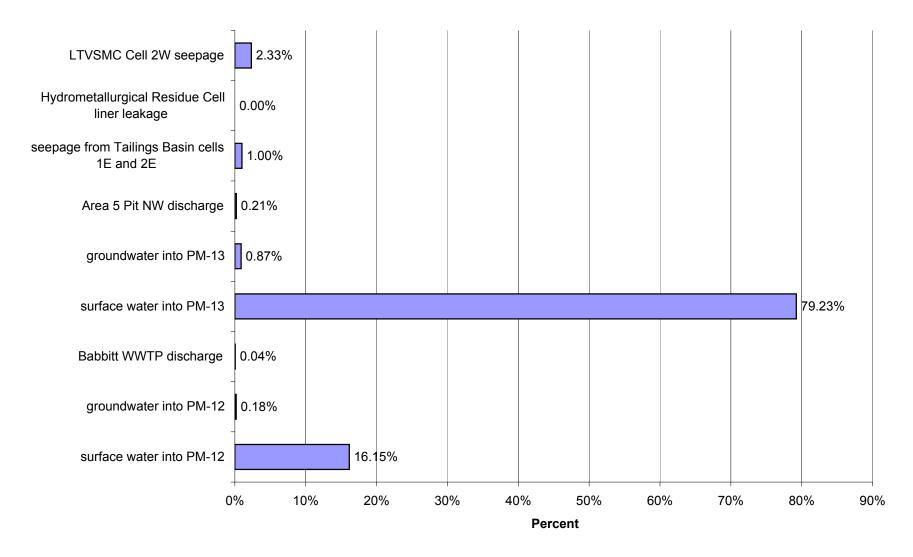

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Arsenic (As)

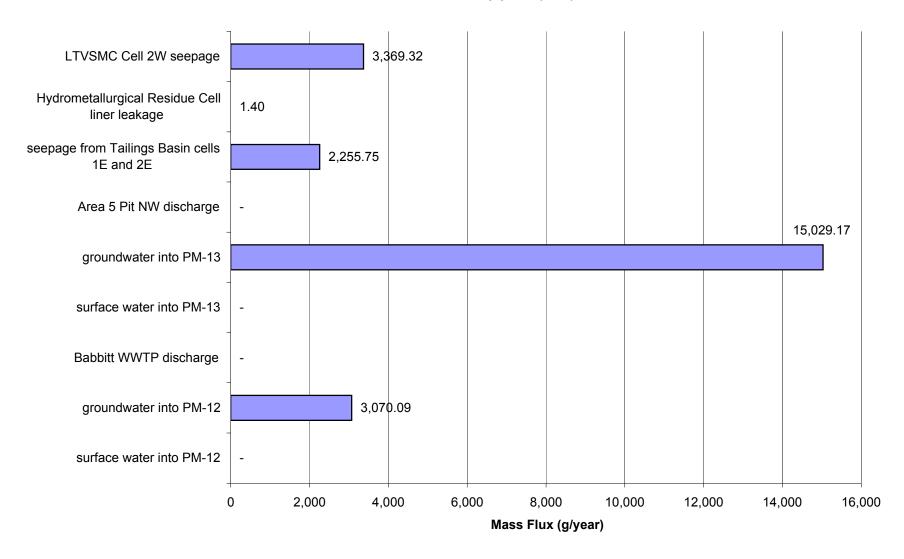

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Arsenic (As)

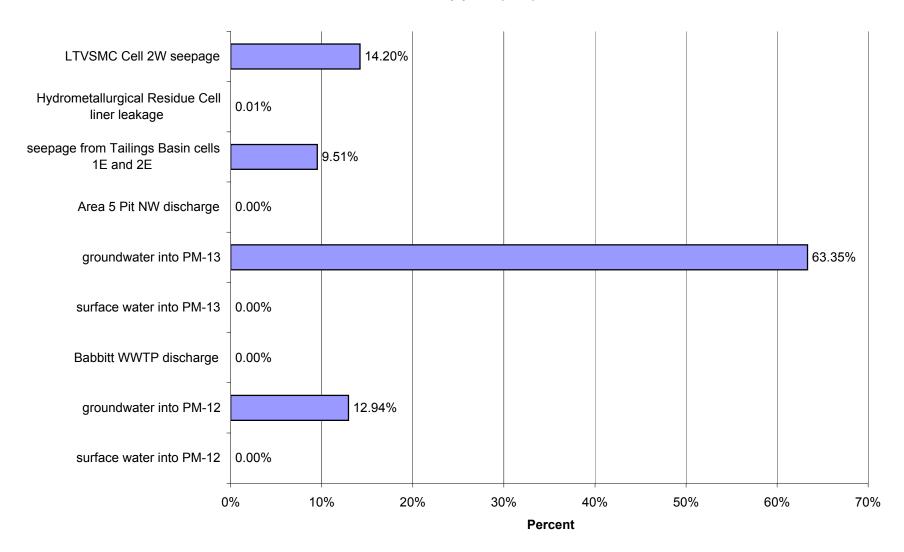

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Cobalt (Co)

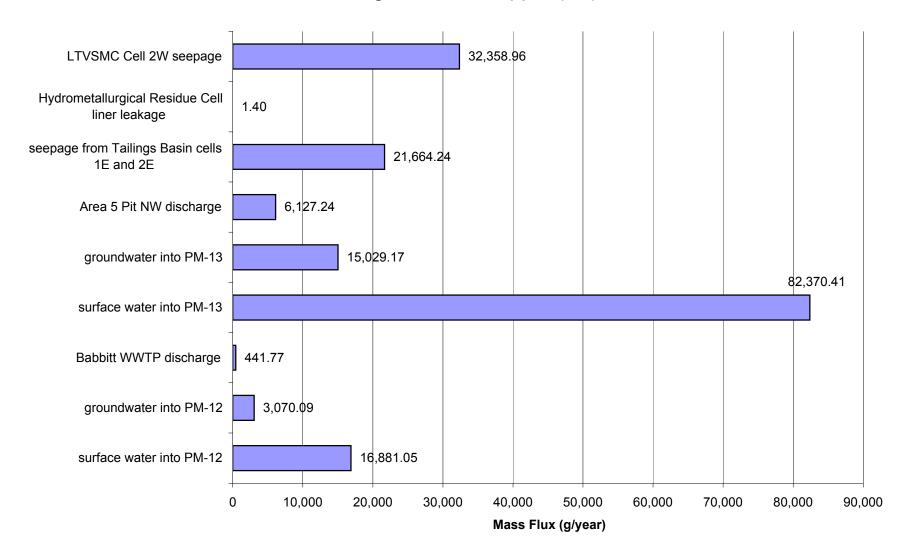

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Cobalt (Co)

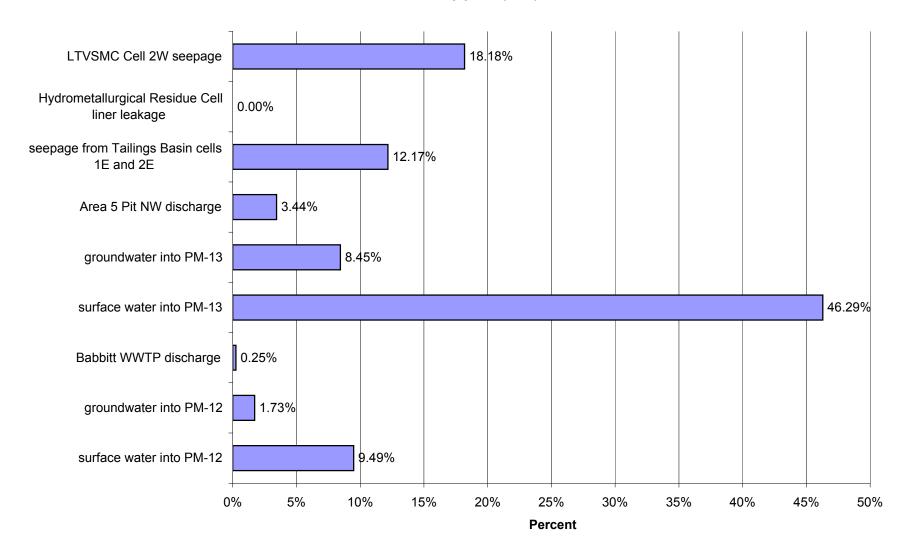

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Cobalt (Co)

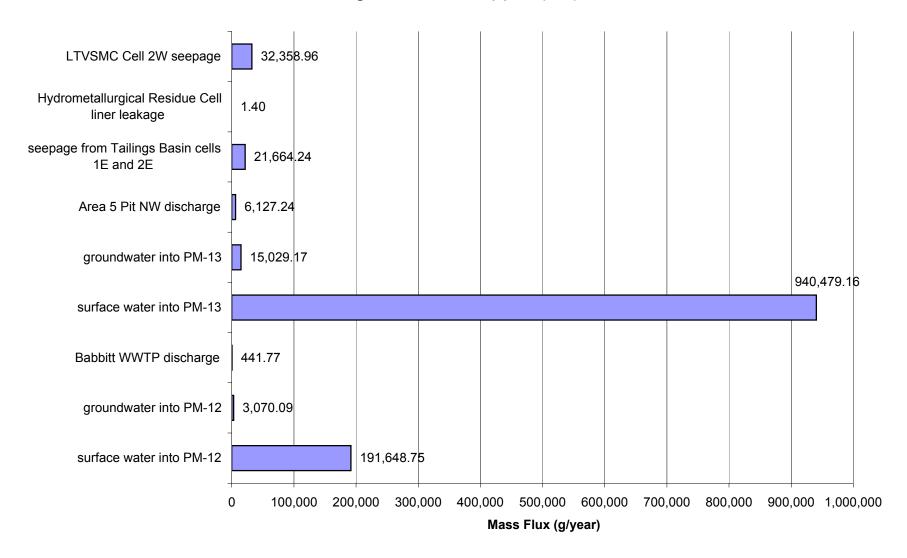

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Cobalt (Co)

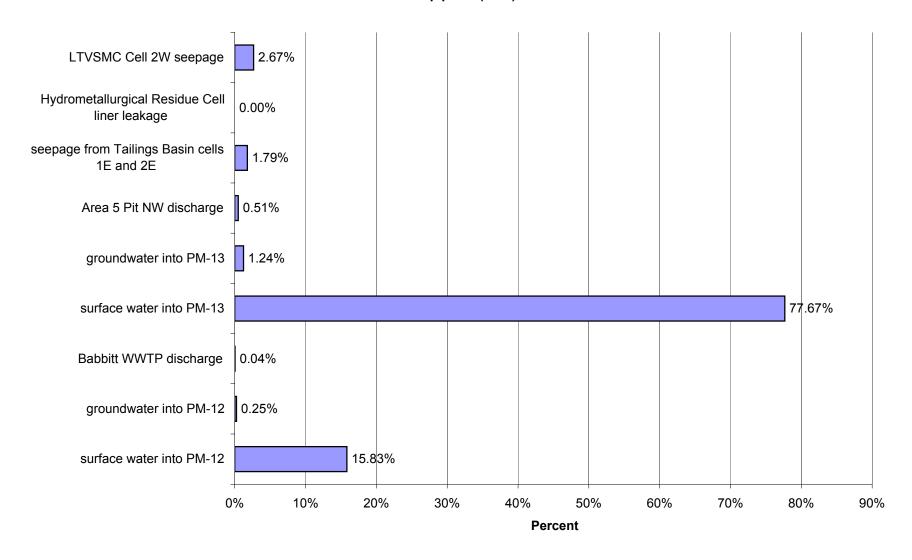

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Cobalt (Co)

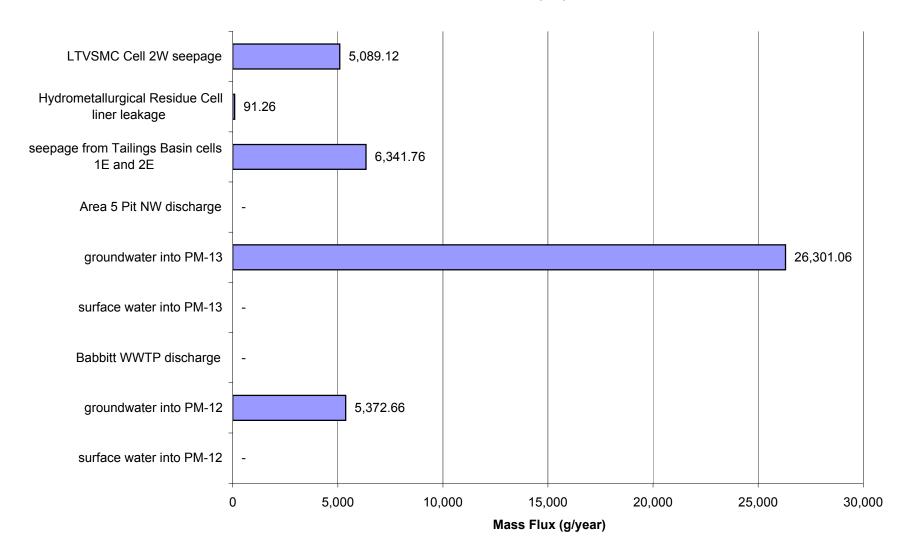

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Cobalt (Co)

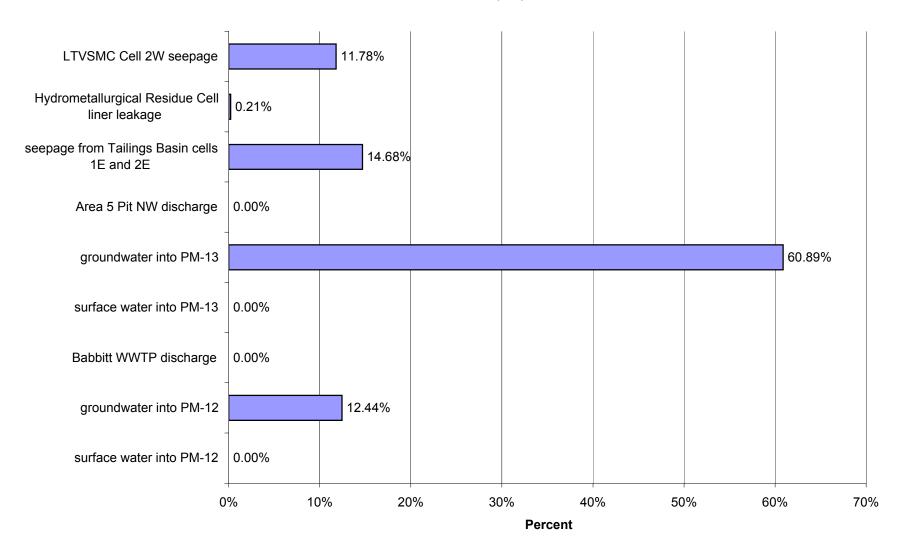

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Copper (Cu)

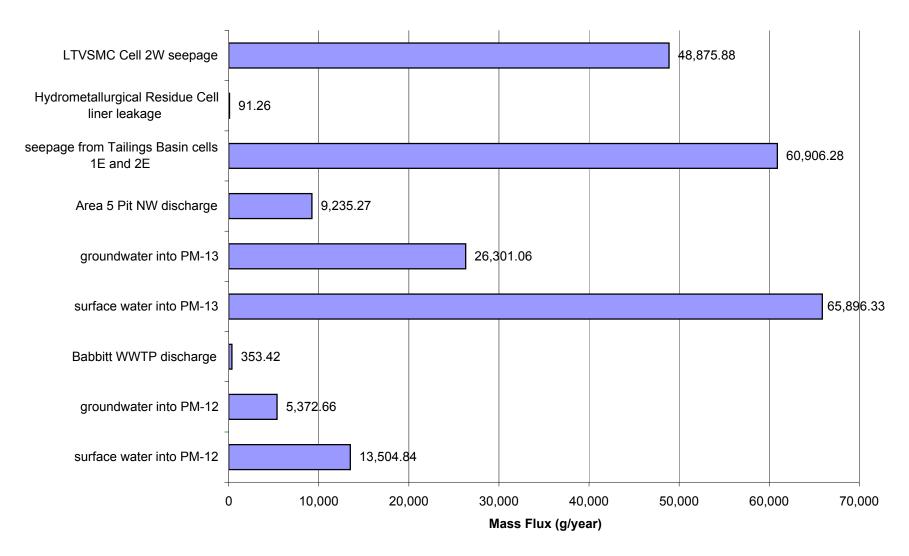

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Copper (Cu)

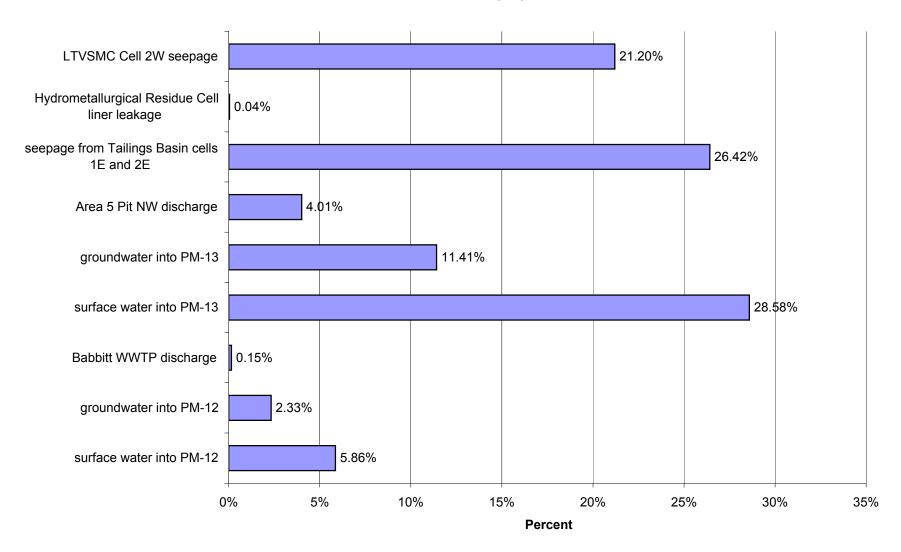

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Copper (Cu)

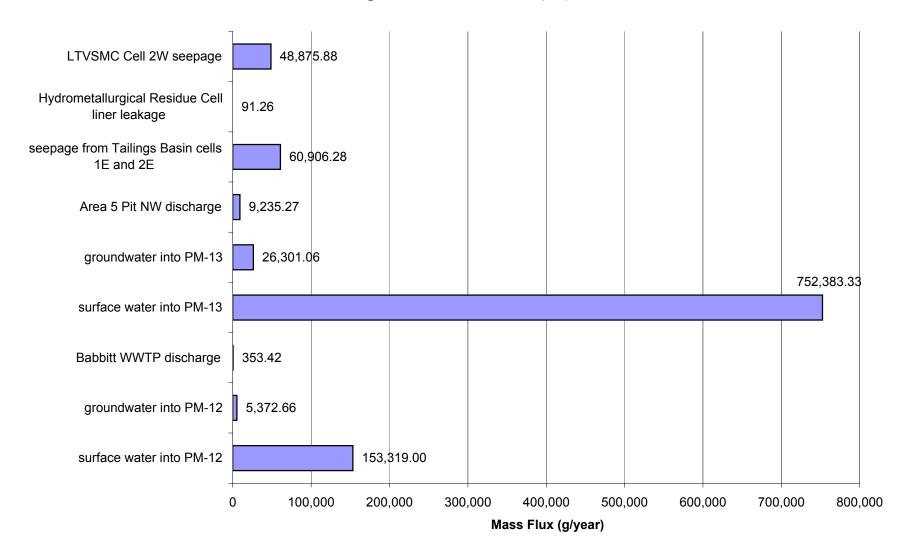

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Copper (Cu)

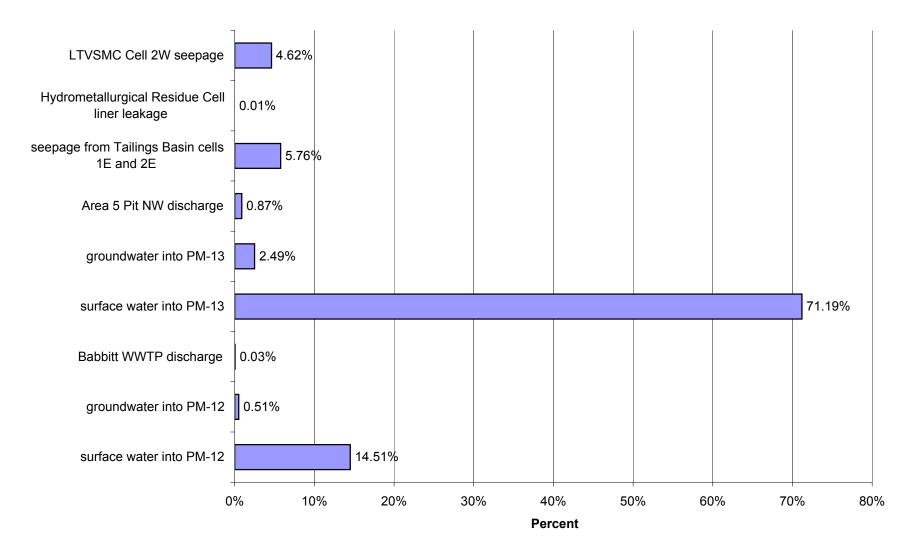

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Copper (Cu)

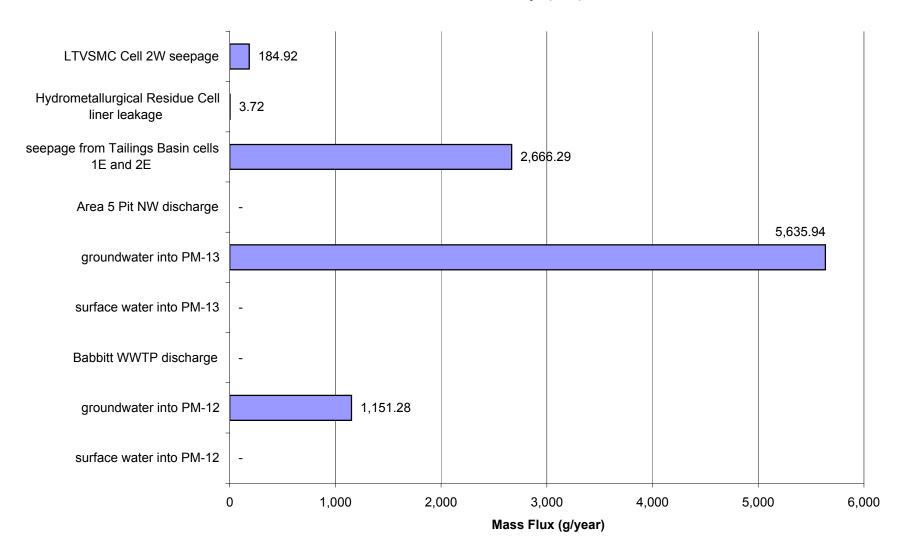

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Copper (Cu)

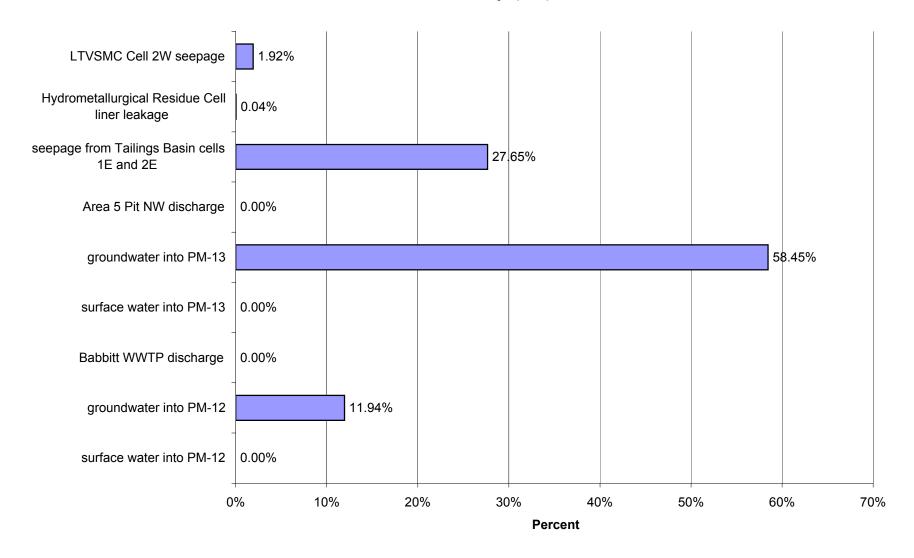

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Nickel (Ni)

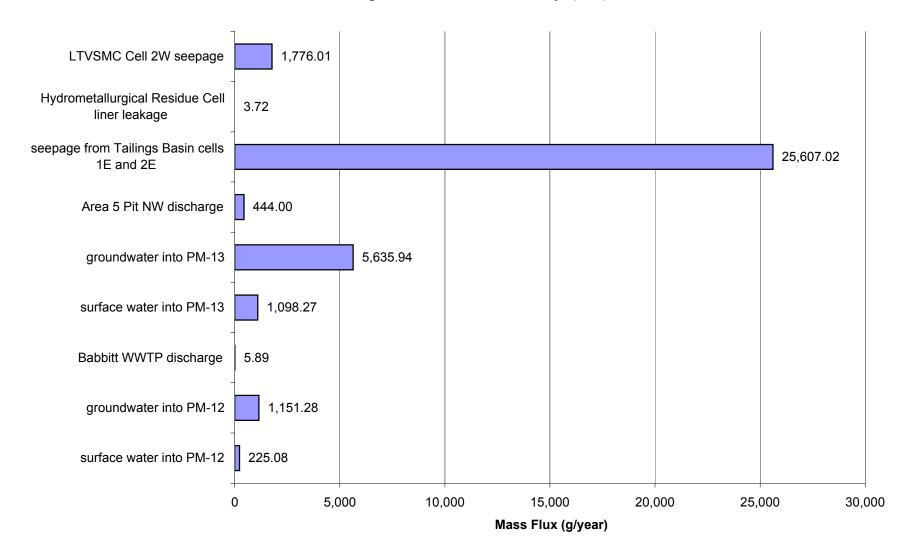

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Nickel (Ni)

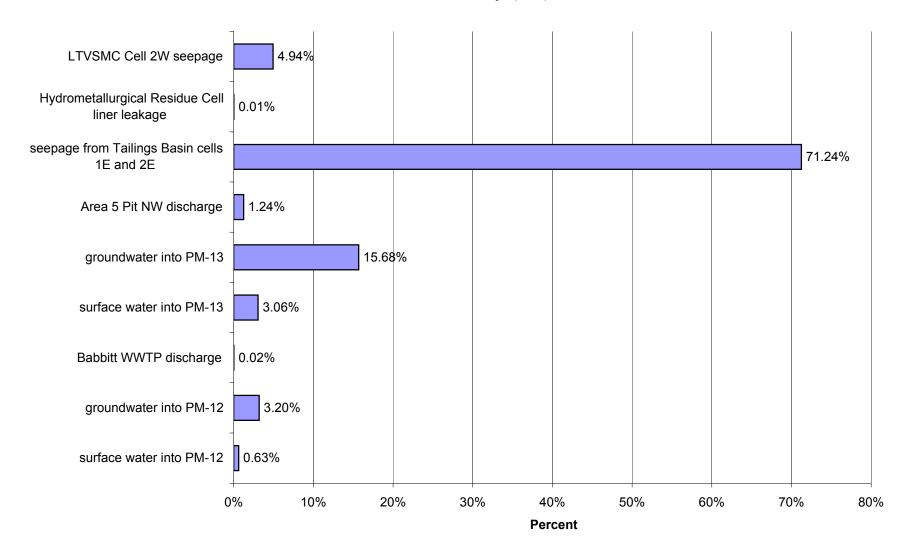

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Nickel (Ni)

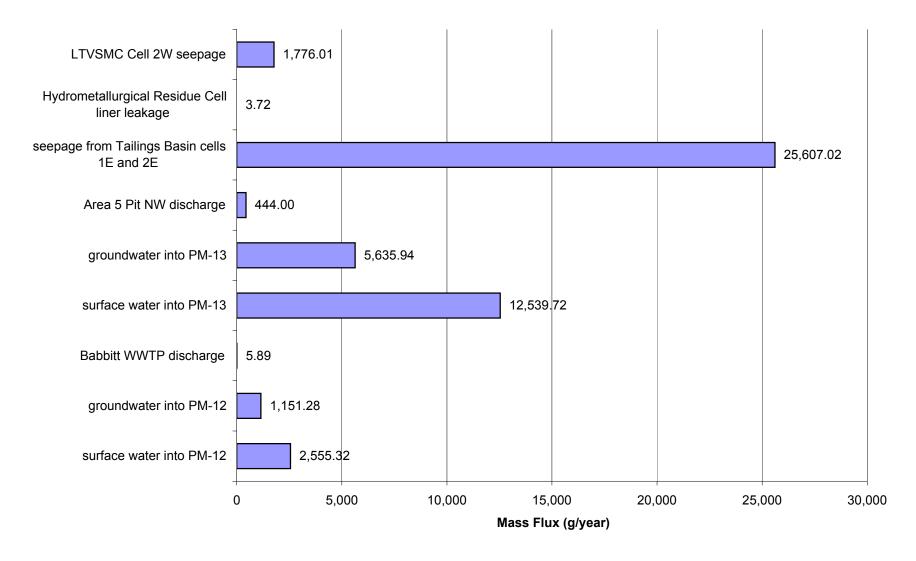

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Nickel (Ni)

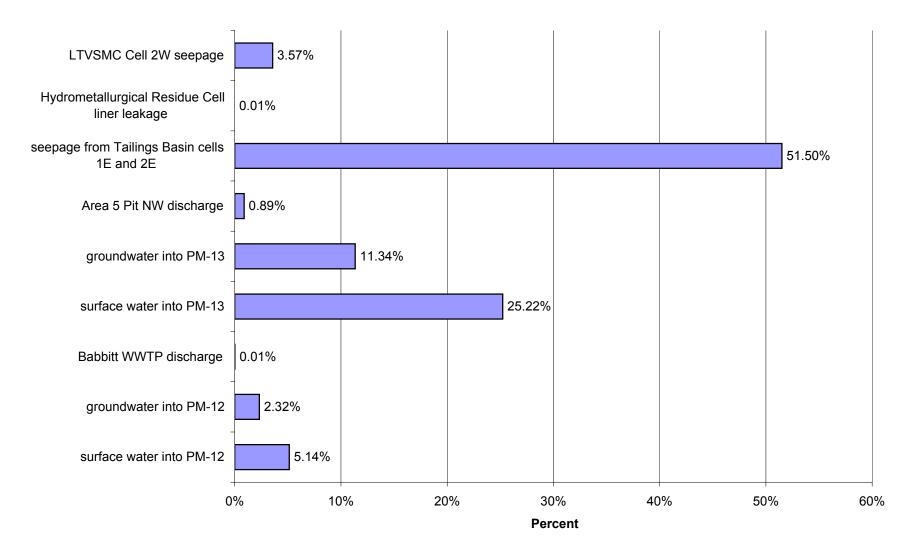

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Nickel (Ni)

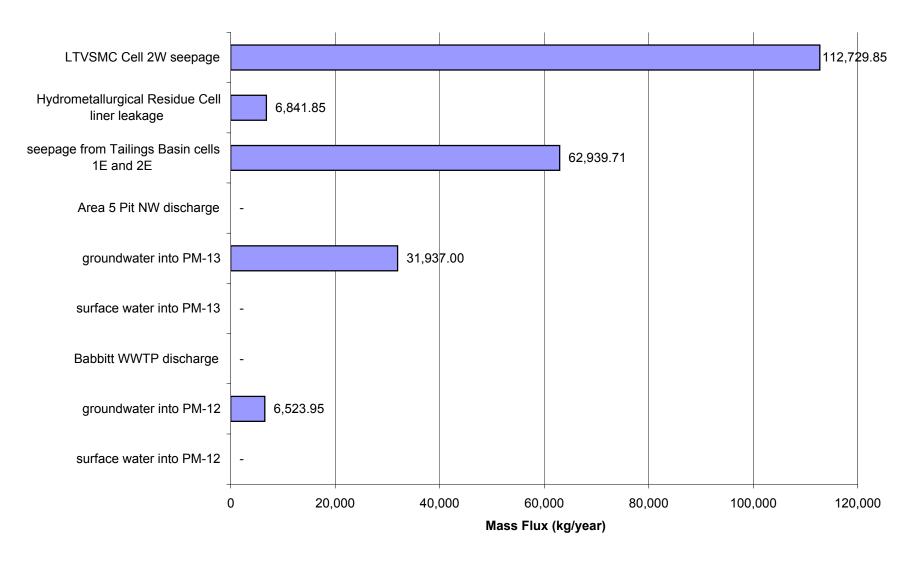

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Nickel (Ni)

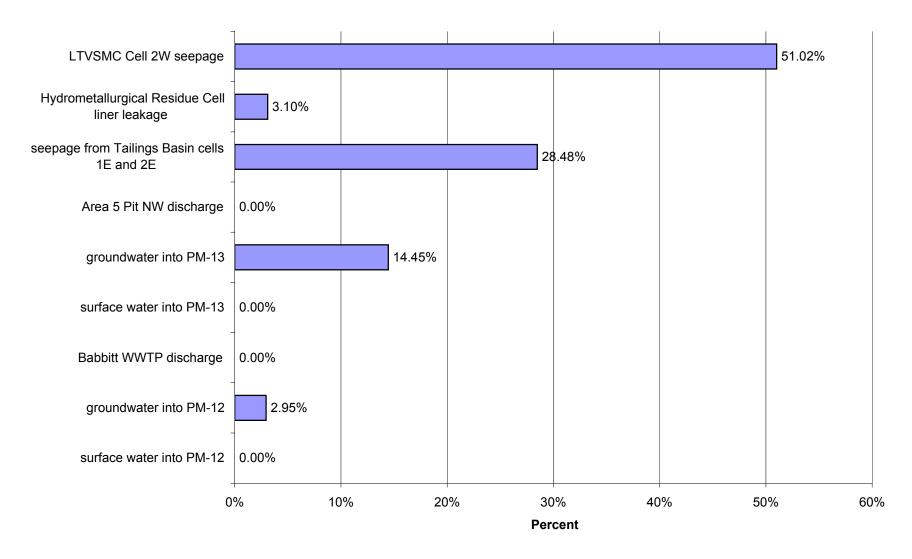

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Low Flow for Antimony (Sb)

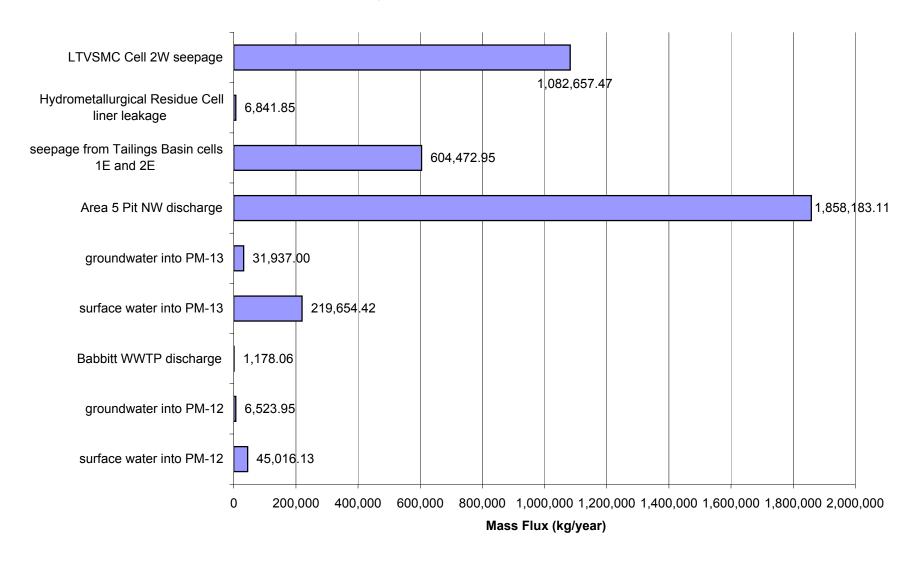

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Antimony (Sb)

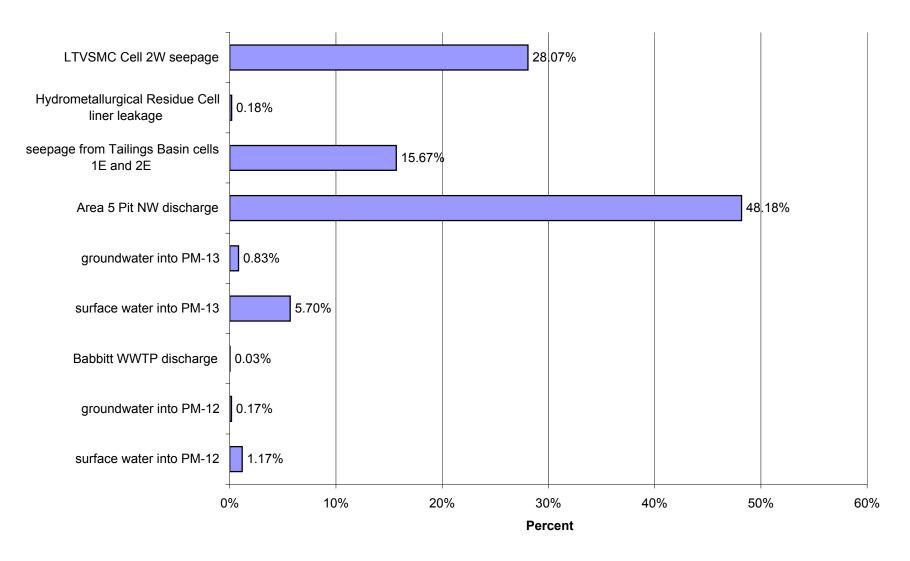

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for Average Flow for Antimony (Sb)

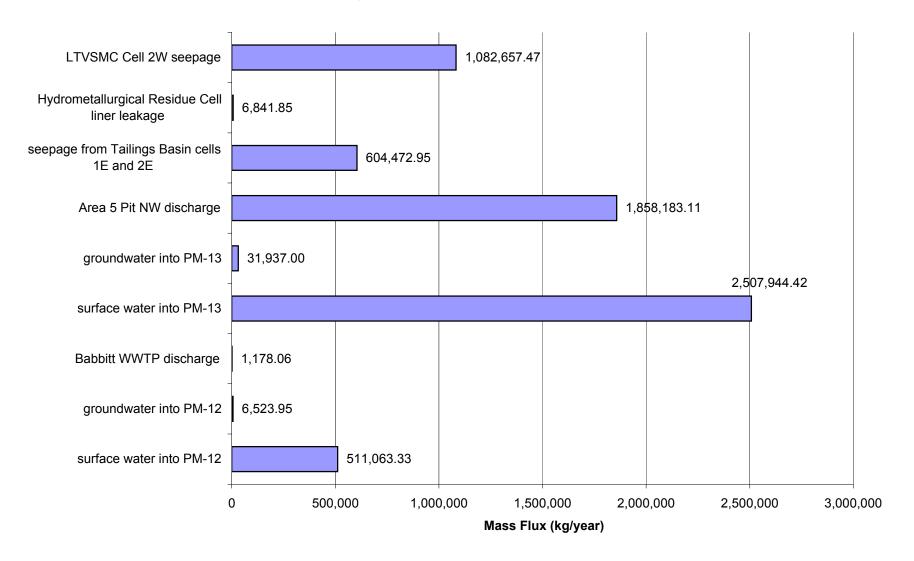

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Antimony (Sb)

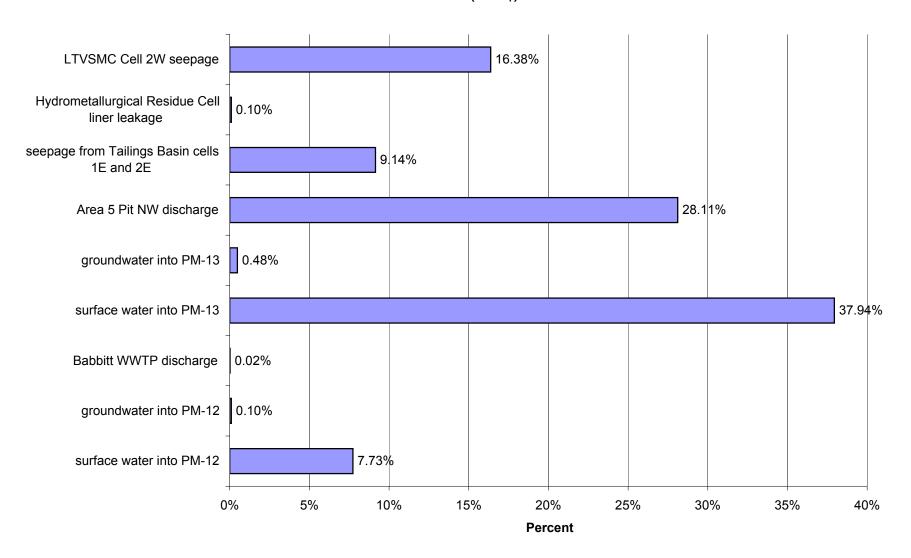

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 1 for High Flow for Antimony (Sb)

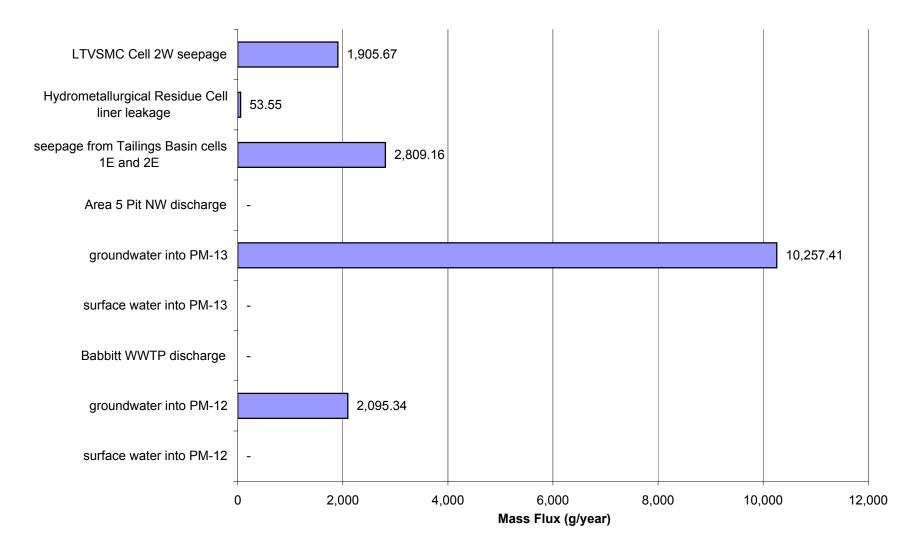

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Antimony (Sb)

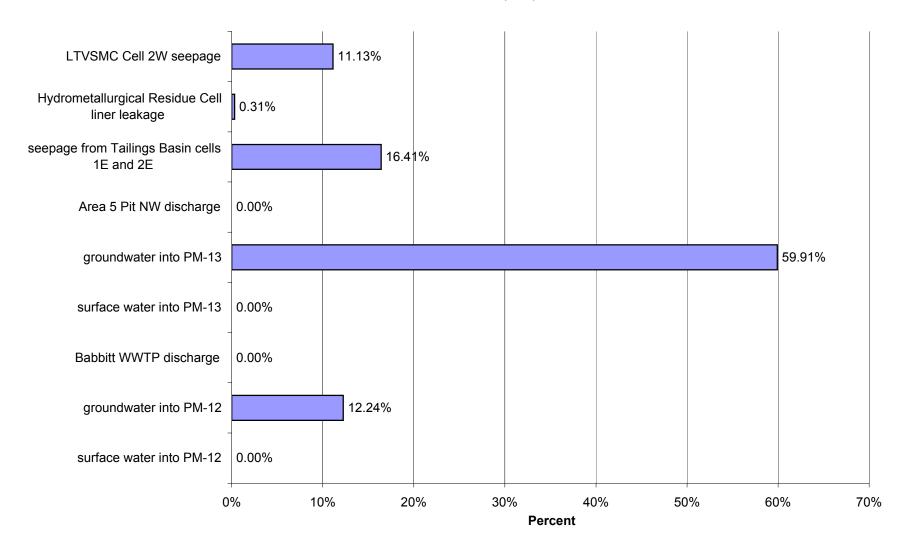

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for Low Flow for Sulfate (SO₄)

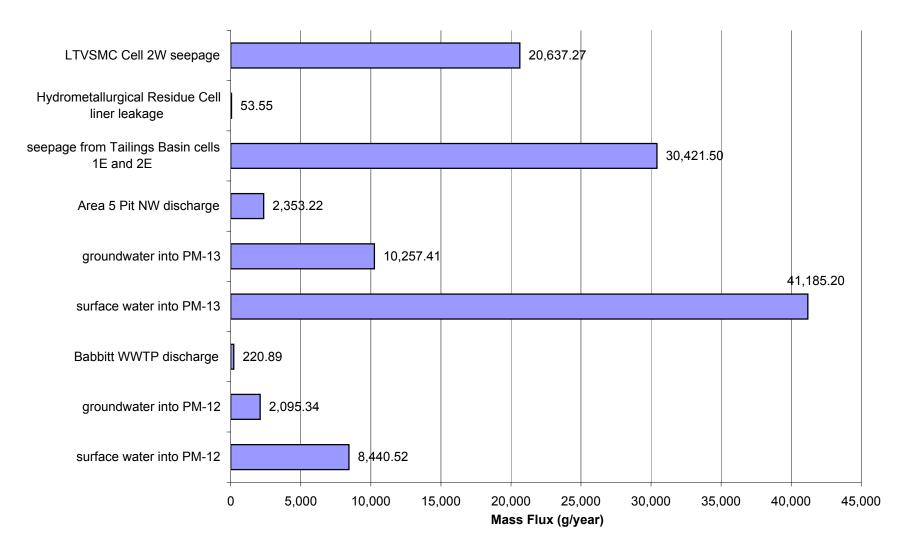

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Low Flow for Sulfate (SO₄)

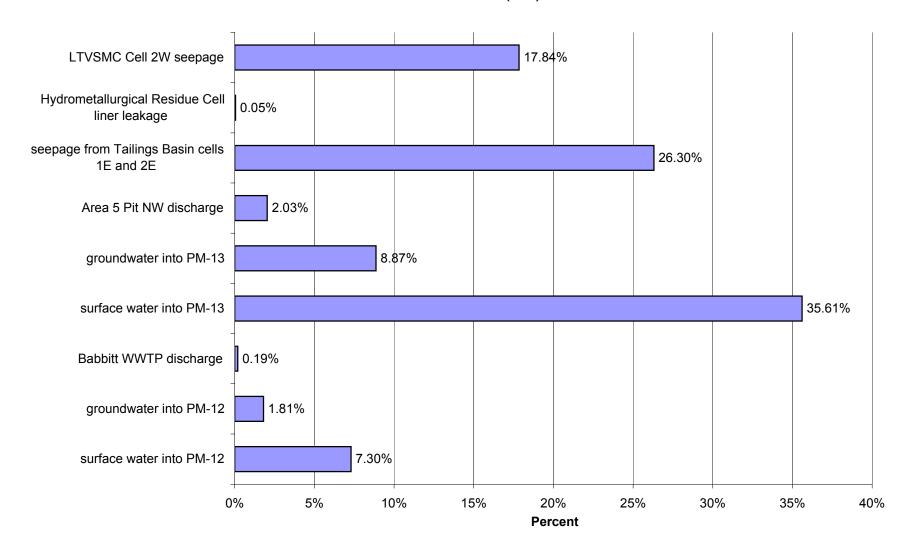

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for Average Flow for Sulfate (SO₄)

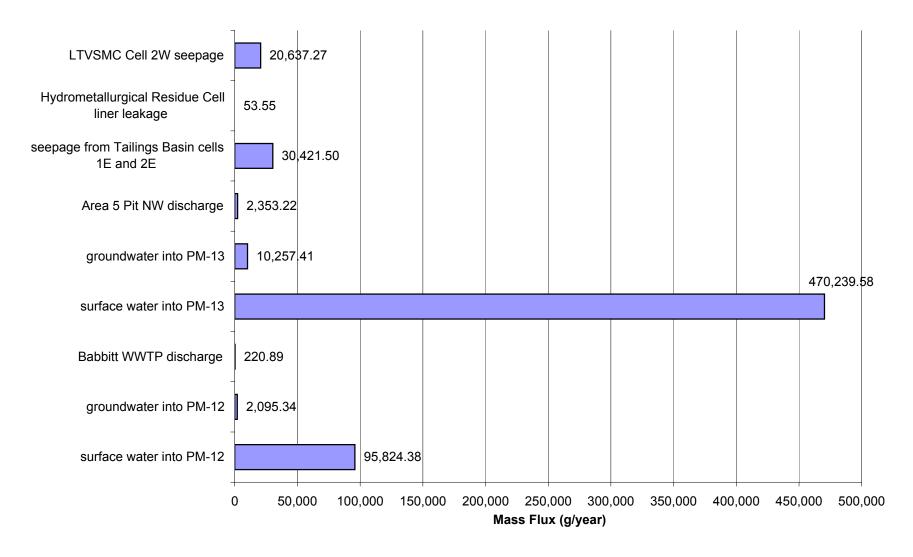

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for Average Flow for Sulfate (SO₄)

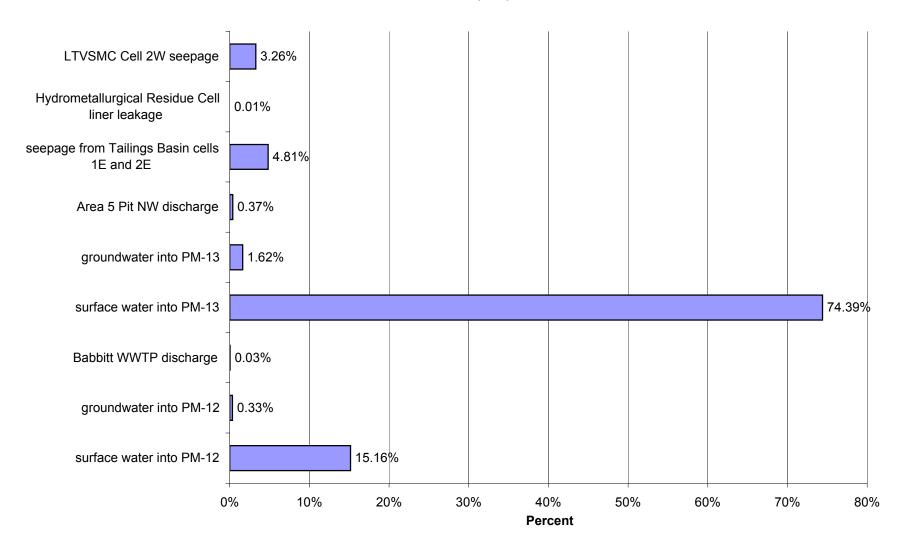

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 1 for High Flow for Sulfate (SO₄)

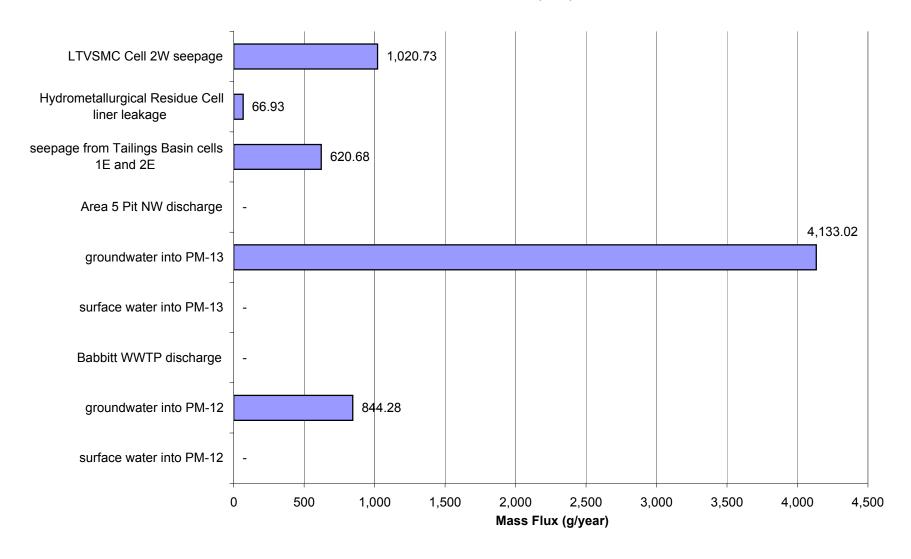

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 1 for High Flow for Sulfate (SO₄)

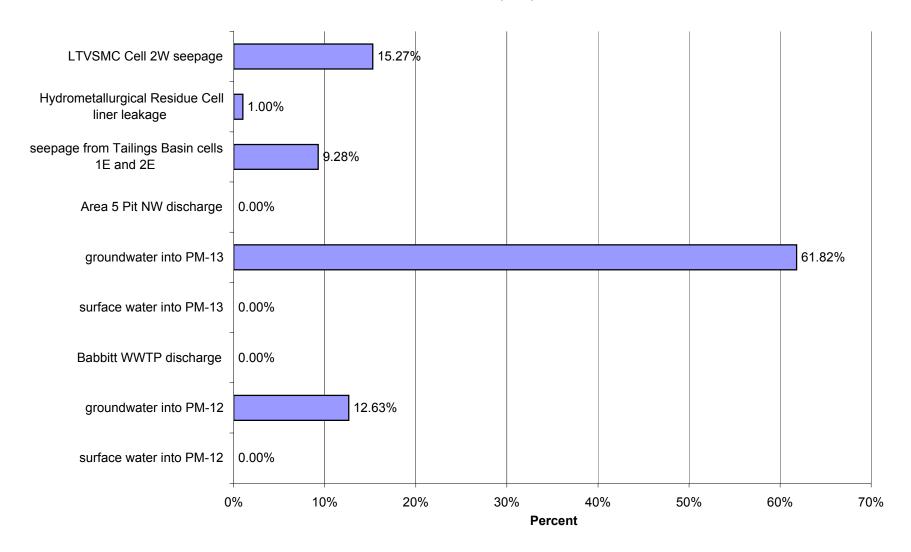

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Arsenic (As)

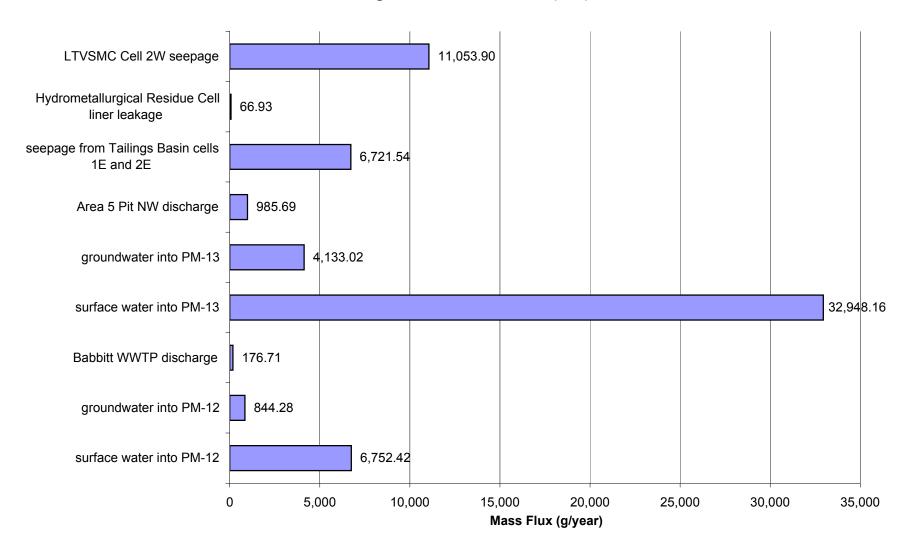

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Low Flow for Arsenic (As)

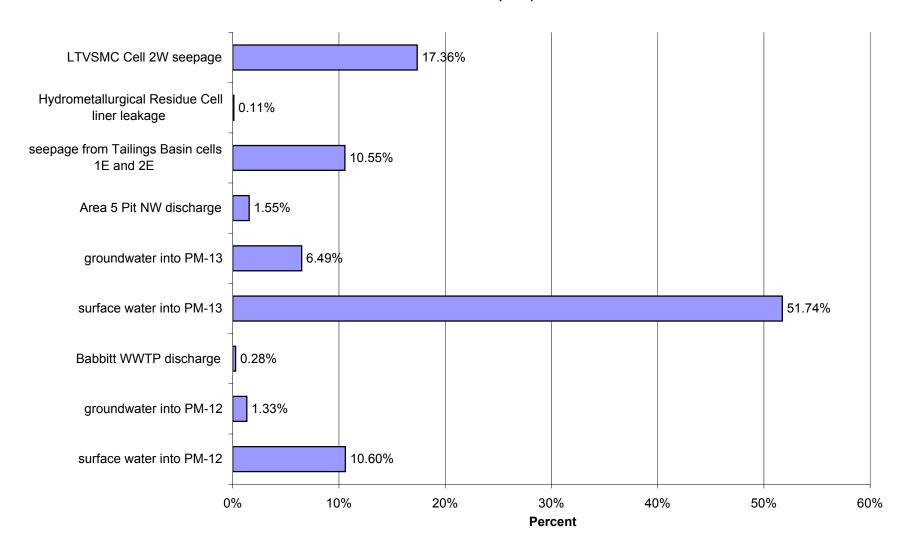

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Arsenic (As)

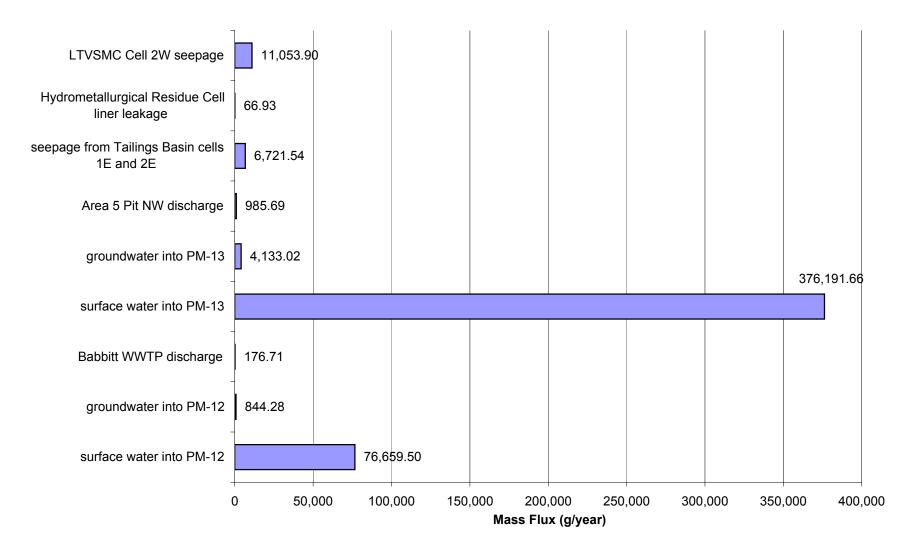

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Arsenic (As)

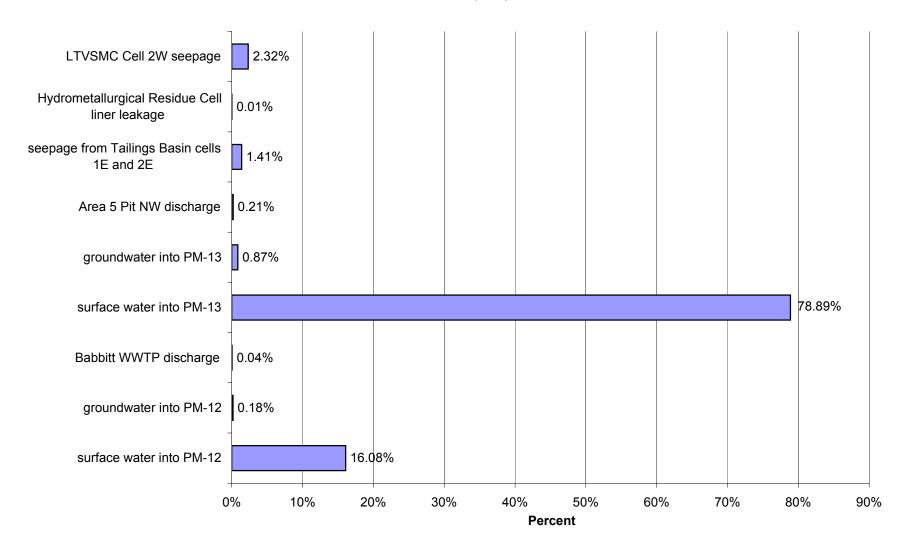

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Arsenic (As)

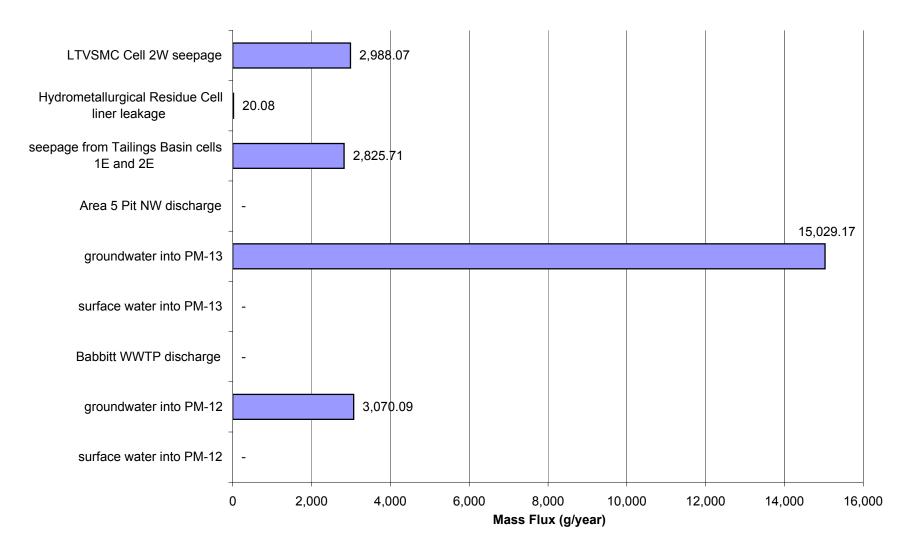

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Arsenic (As)

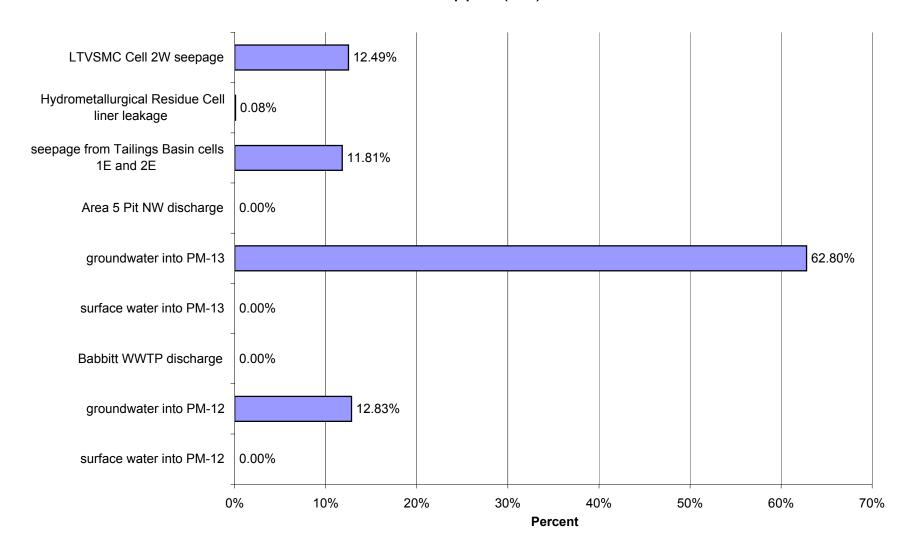

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Cobalt (Co)

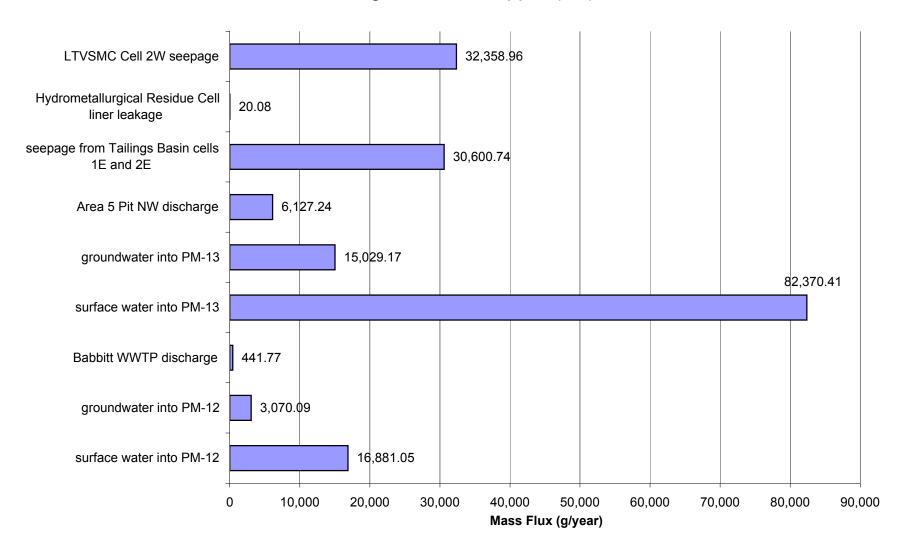

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Low Flow for Cobalt (Co)

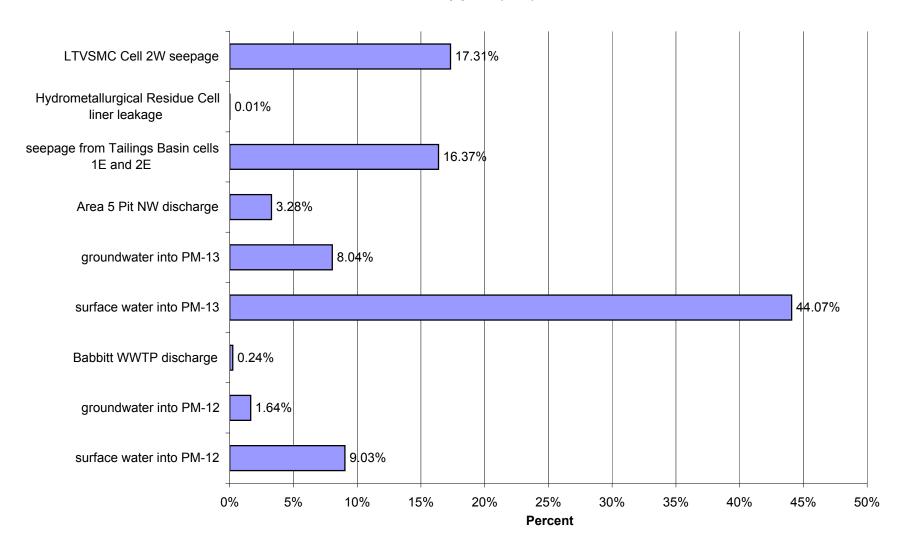

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Cobalt (Co)

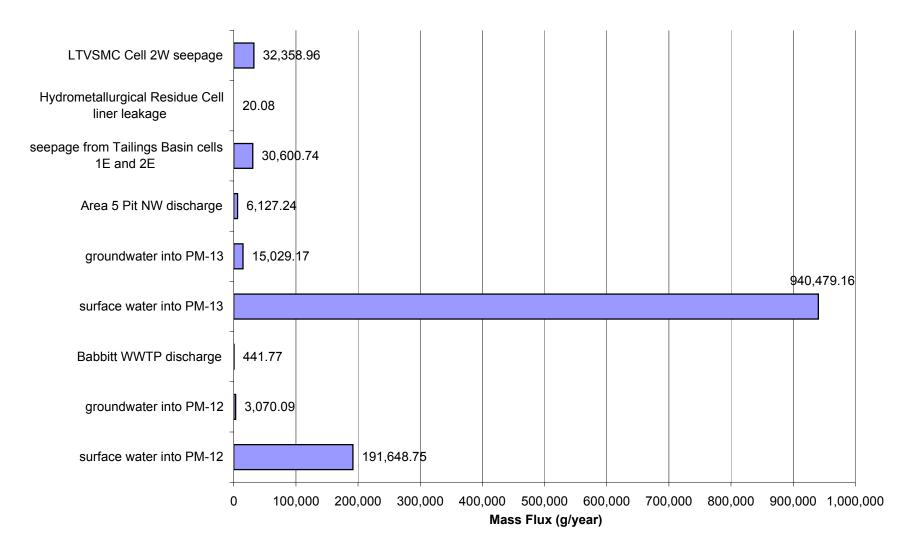

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Cobalt (Co)

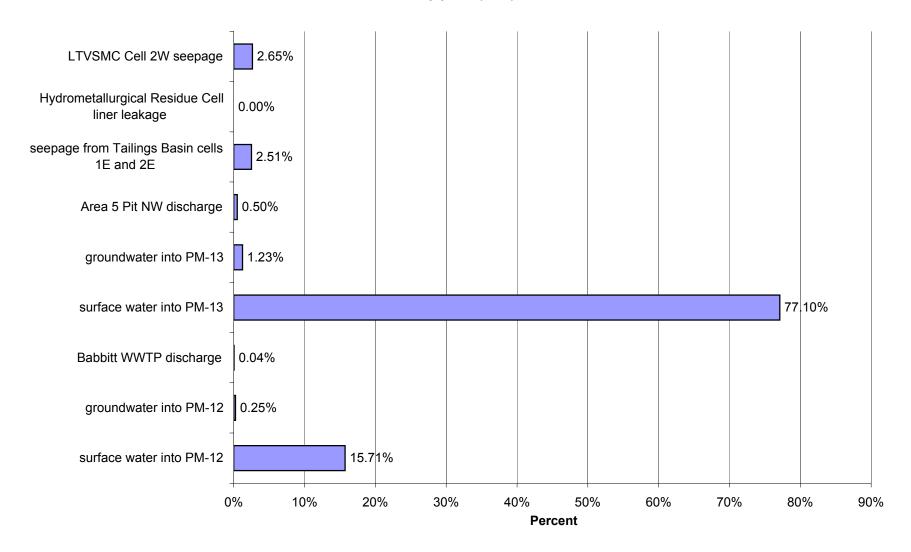

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Cobalt (Co)

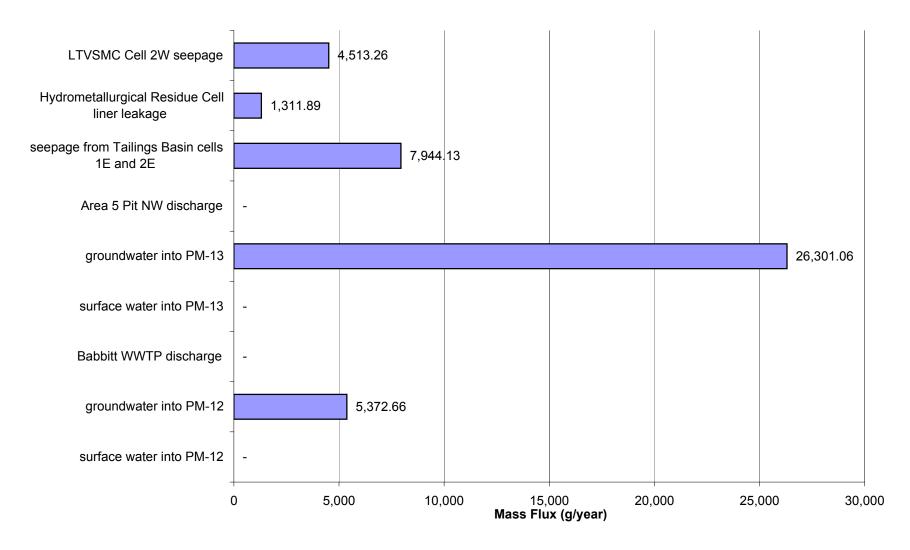

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Cobalt (Co)

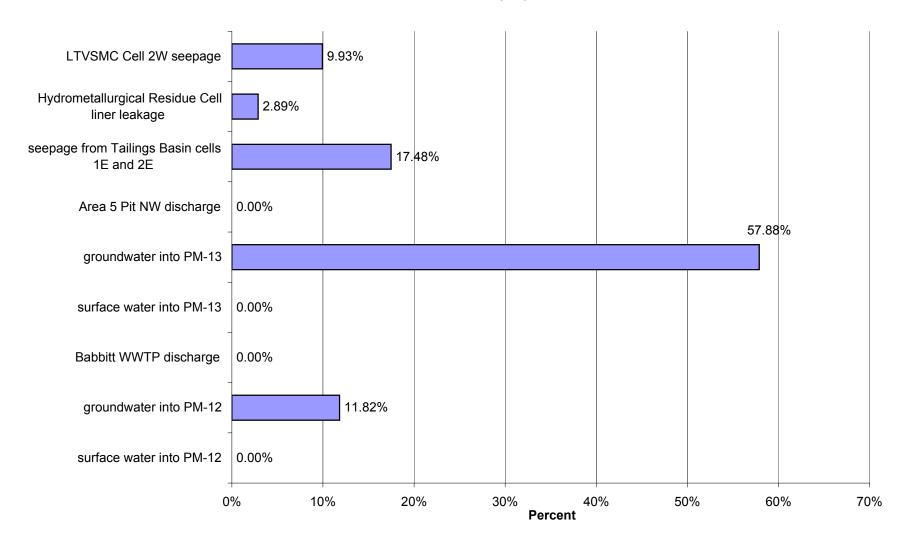

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Copper (Cu)

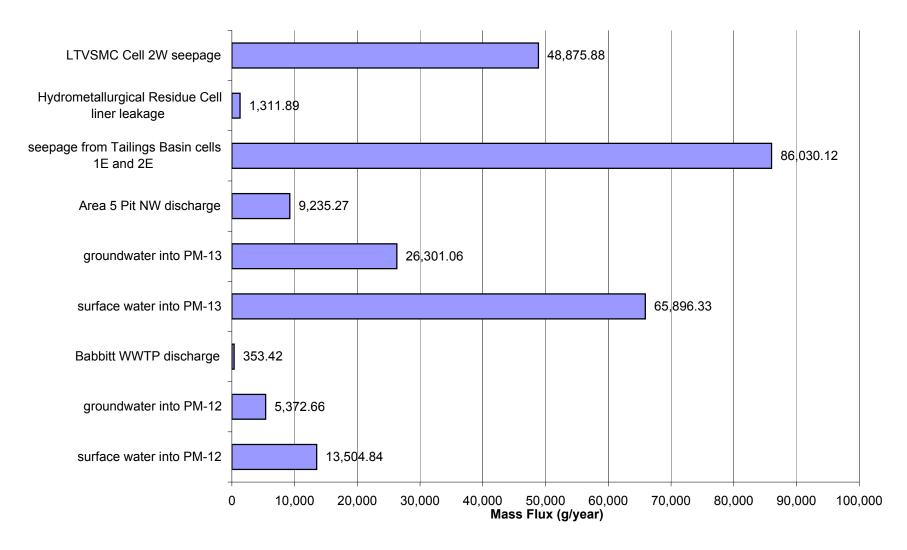

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Low Flow for Copper (Cu)

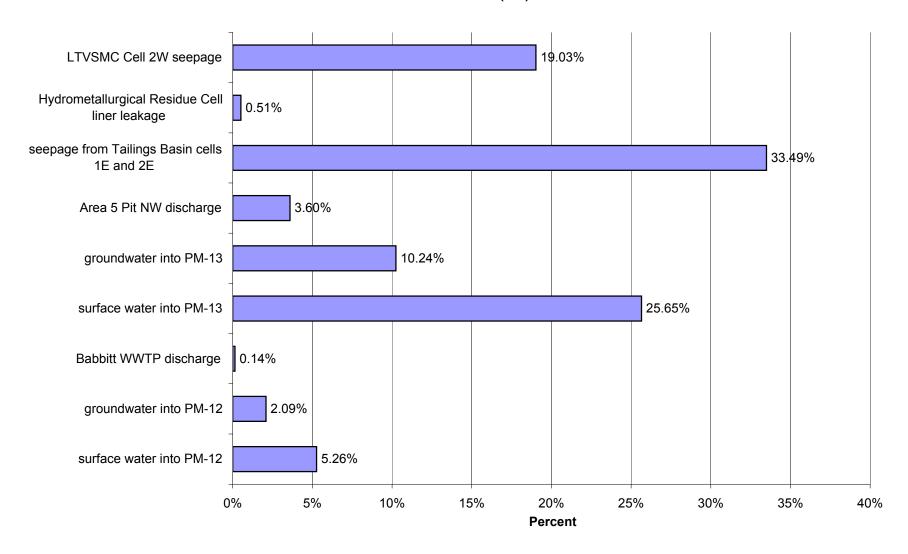

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Copper (Cu)

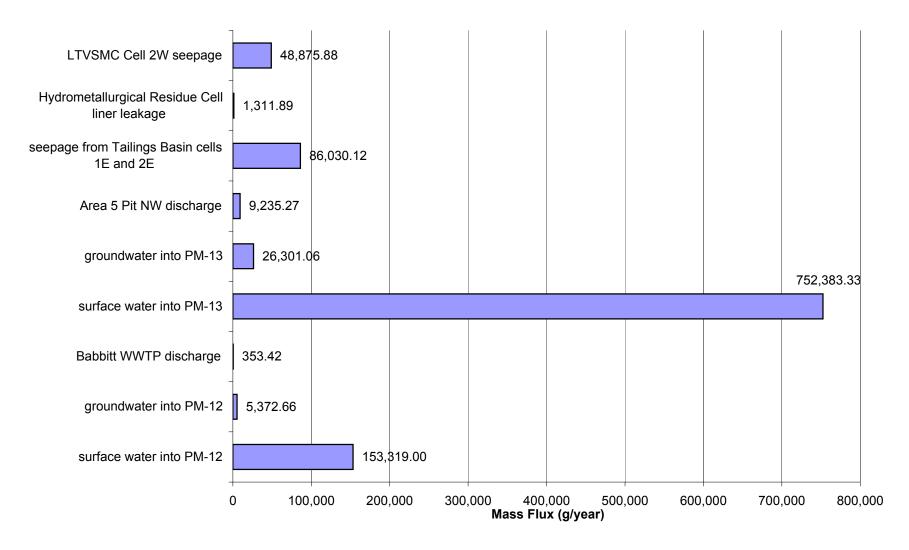

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Copper (Cu)

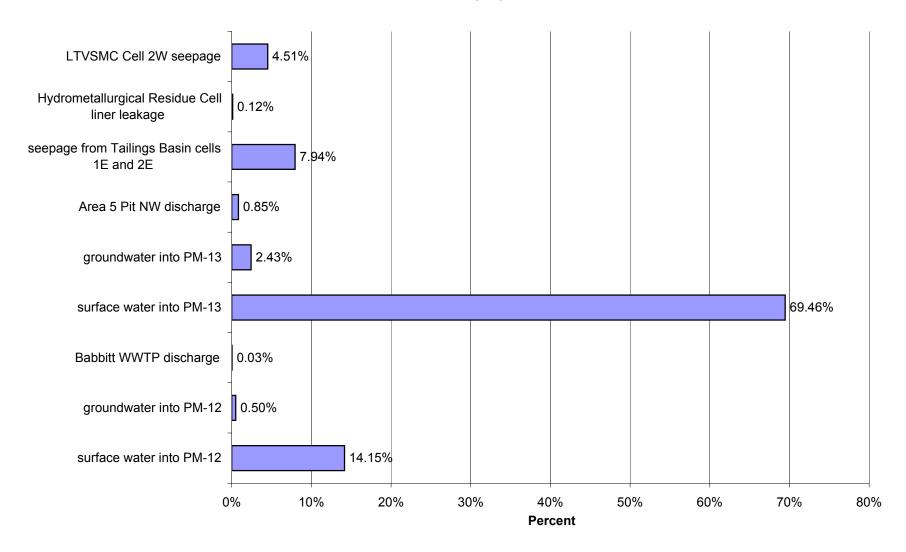

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Copper (Cu)

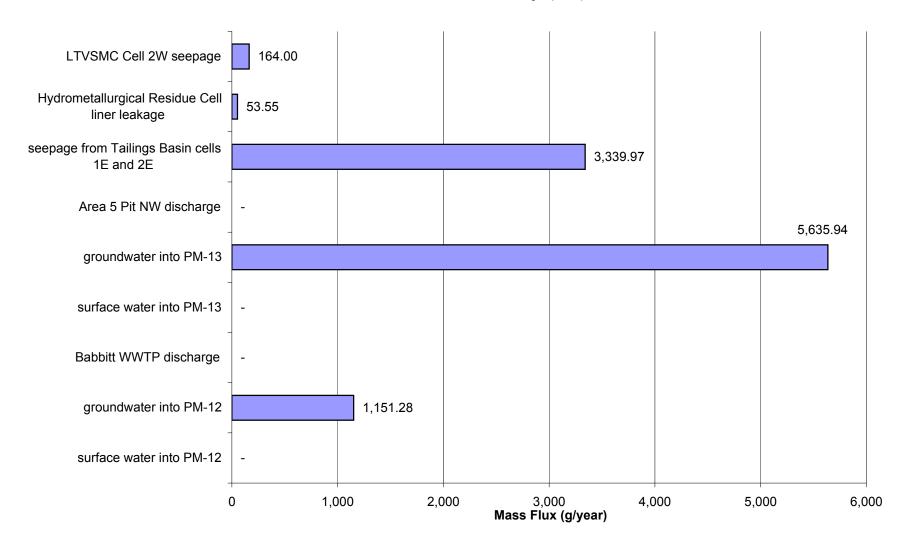

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Copper (Cu)

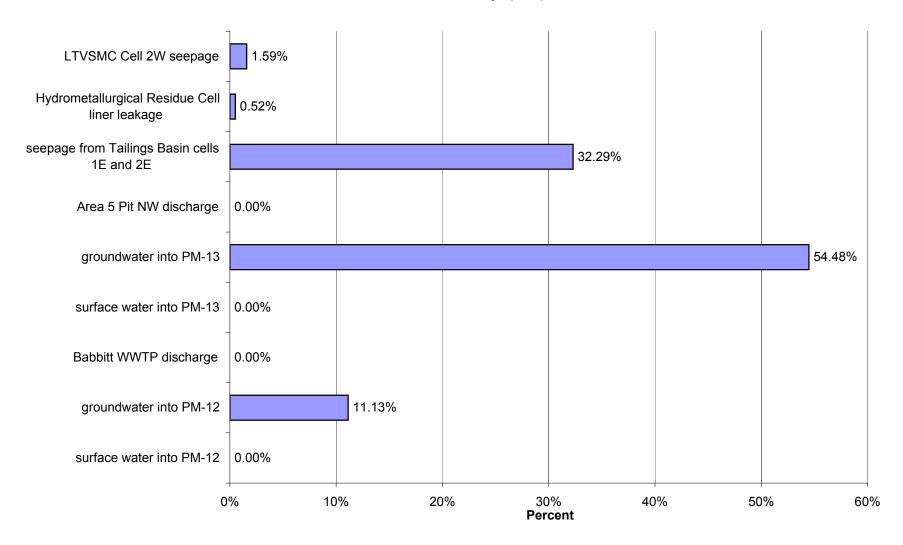

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Nickel (Ni)

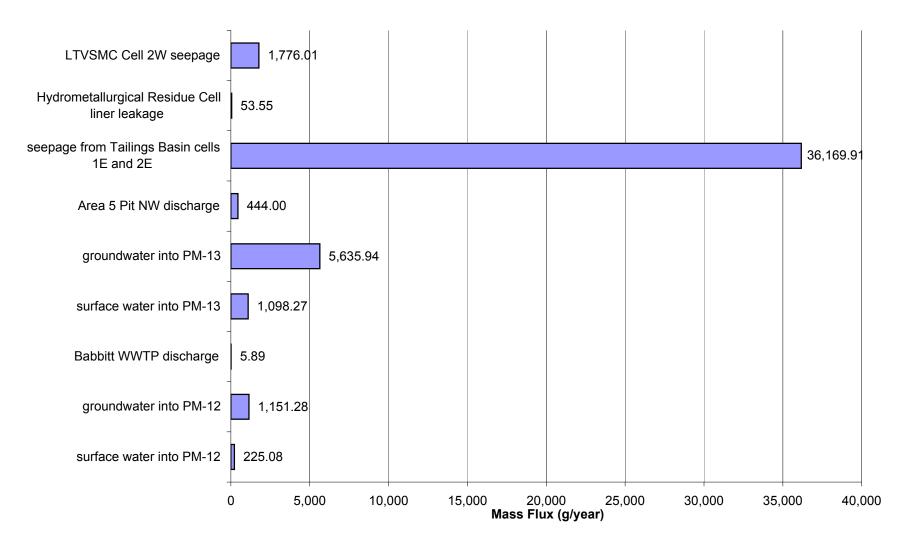

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Low Flow for Nickel (Ni)

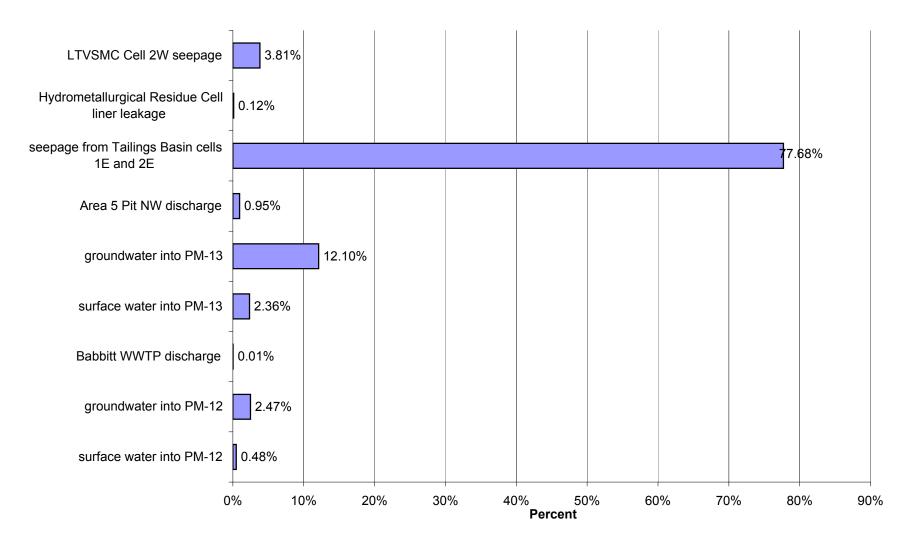

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Nickel (Ni)

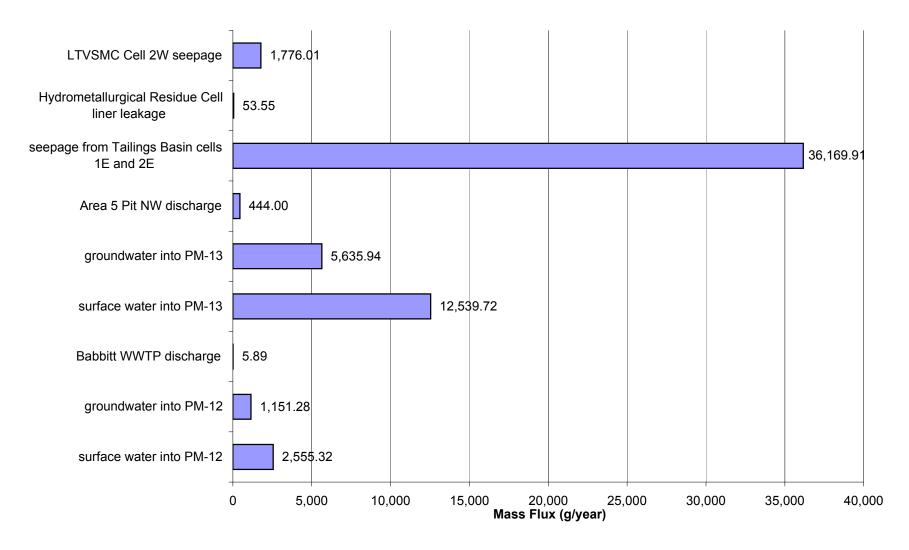

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Nickel (Ni)

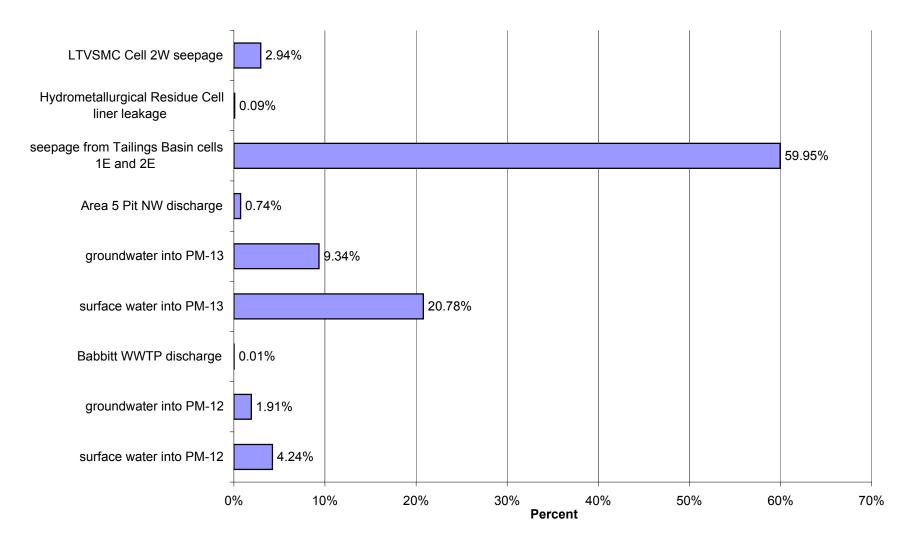

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Nickel (Ni)

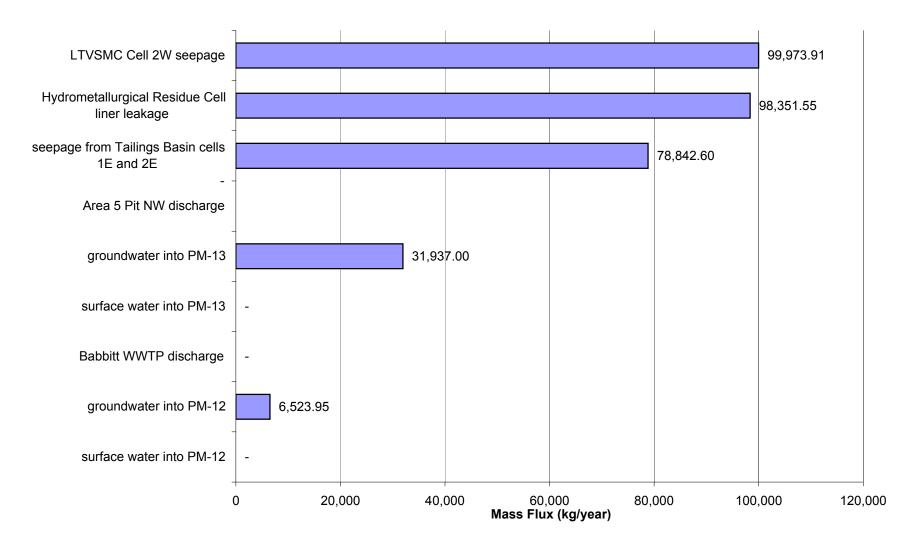

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Nickel (Ni)

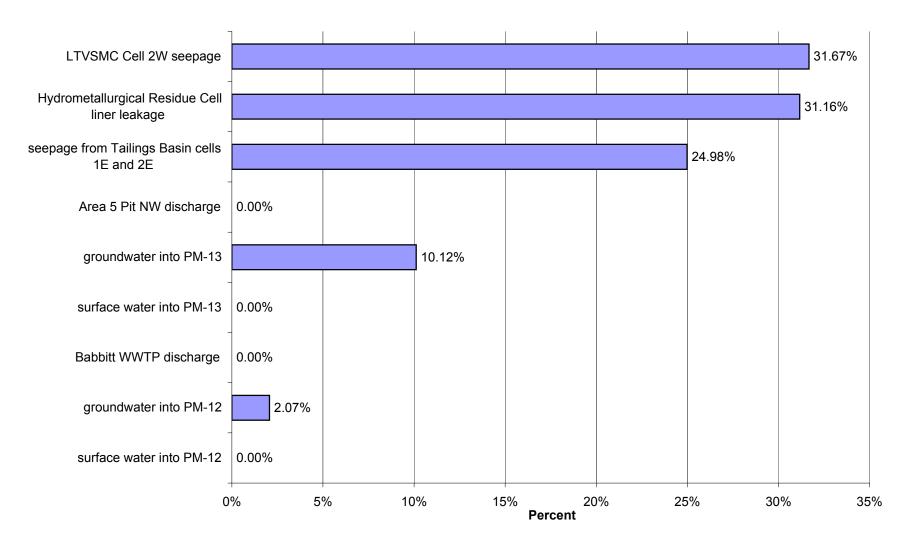

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Low Flow for Antimony (Sb)

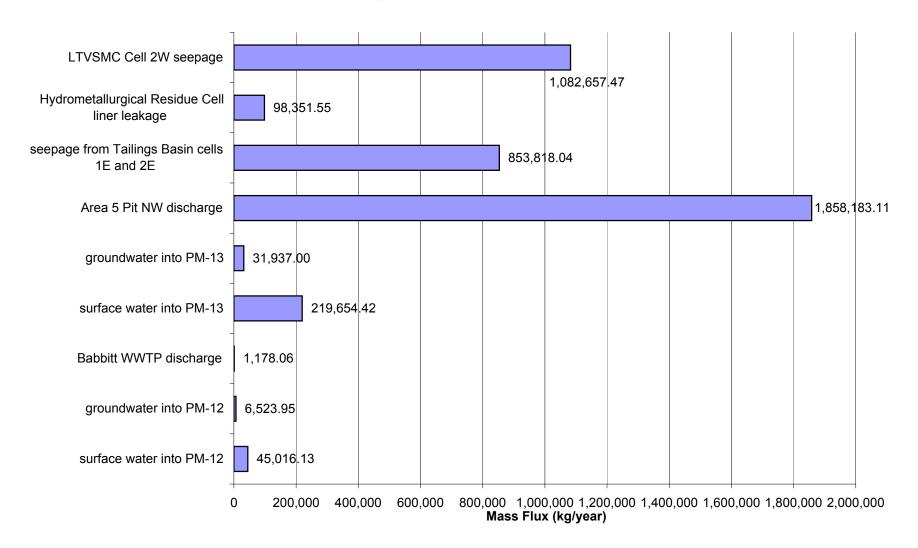

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Low Flow for Antimony (Sb)

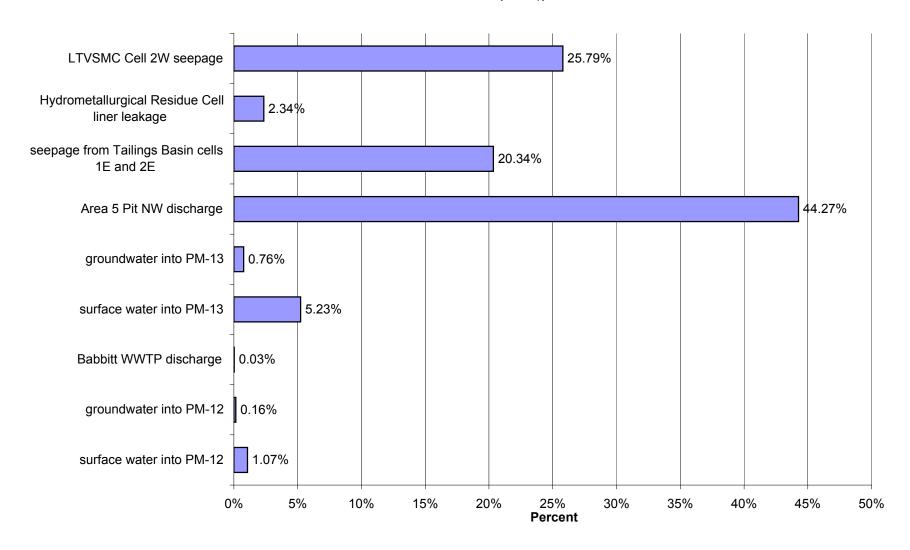

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for Average Flow for Antimony (Sb)

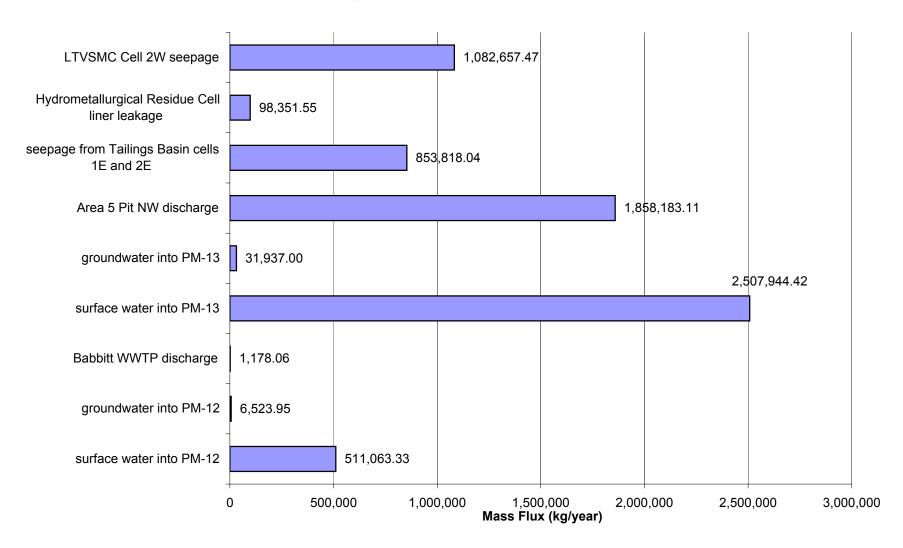

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Antimony (Sb)

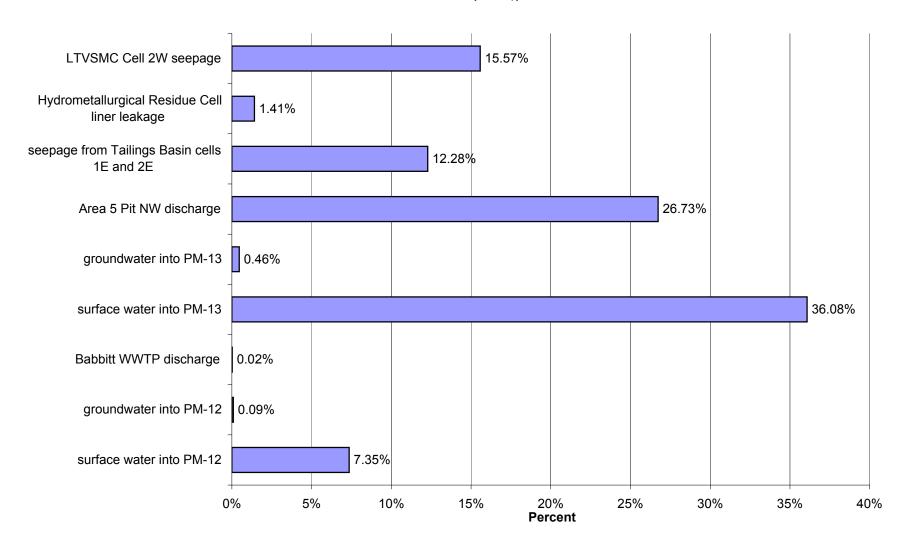

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 5 for High Flow for Antimony (Sb)

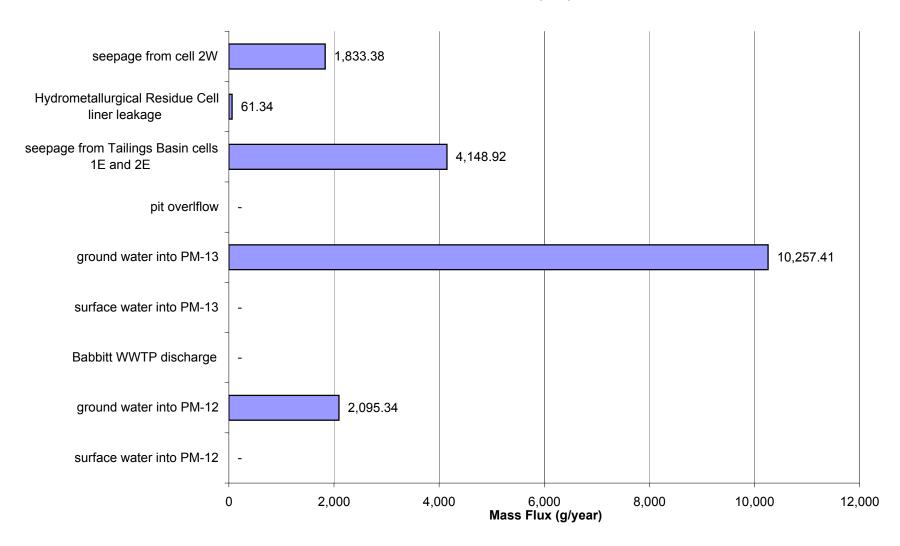

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Antimony (Sb)

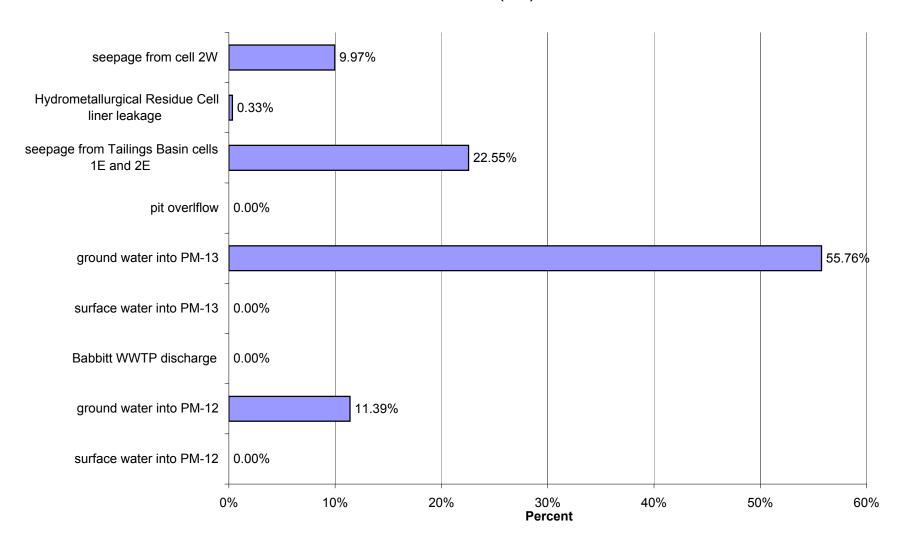

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for Low Flow for Sulfate (SO₄)

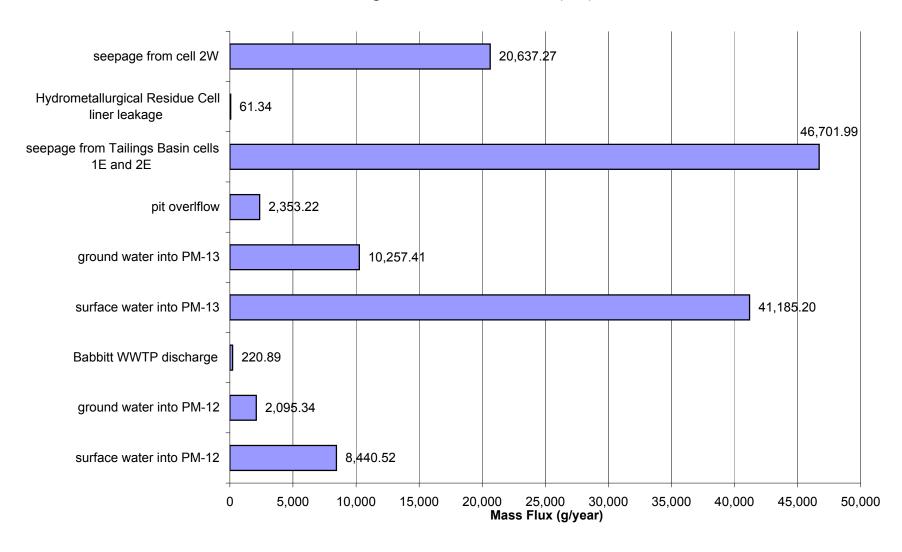

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Low Flow for Sulfate (SO₄)

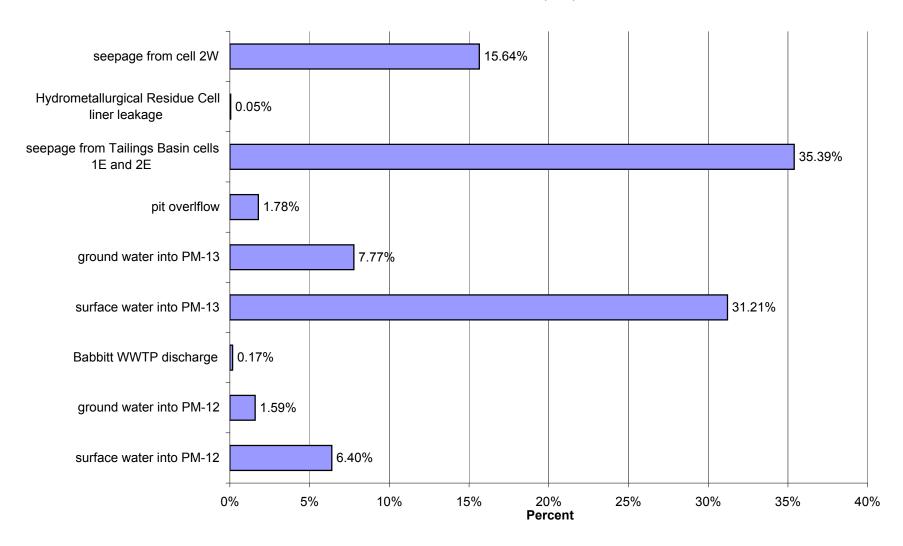

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for Average Flow for Sulfate (SO₄)

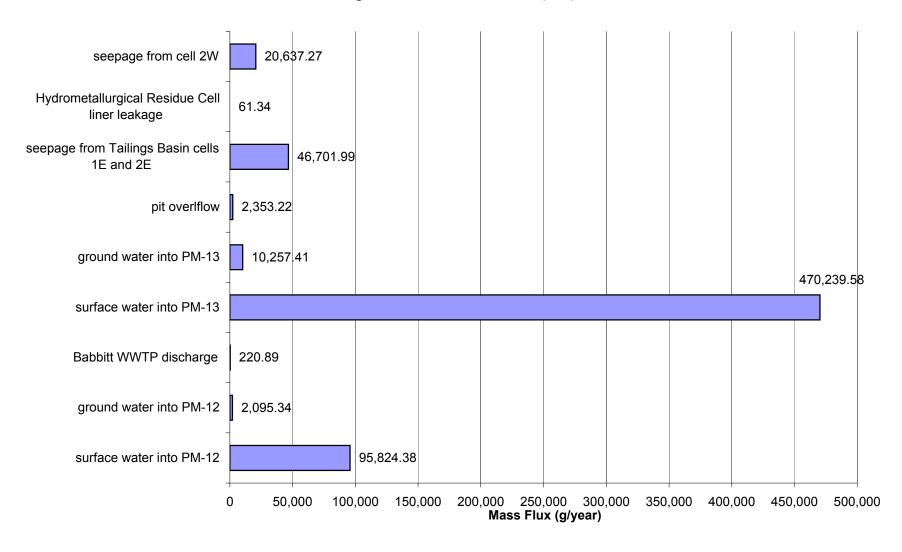

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for Average Flow for Sulfate (SO₄)

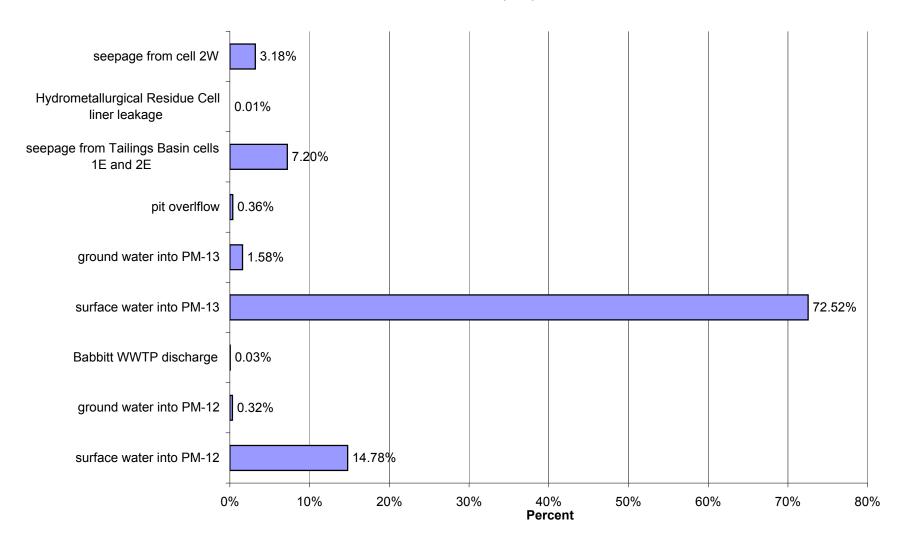

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 5 for High Flow for Sulfate (SO₄)

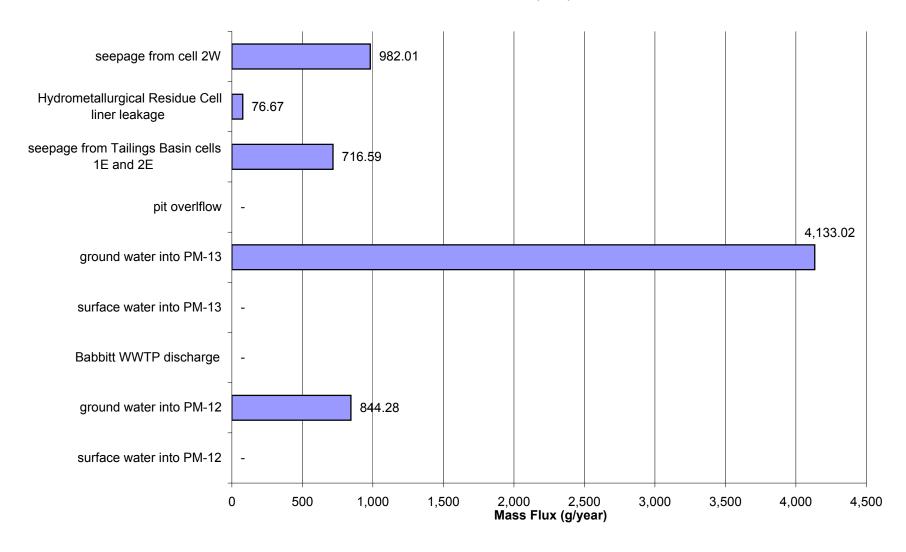

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 5 for High Flow for Sulfate (SO₄)

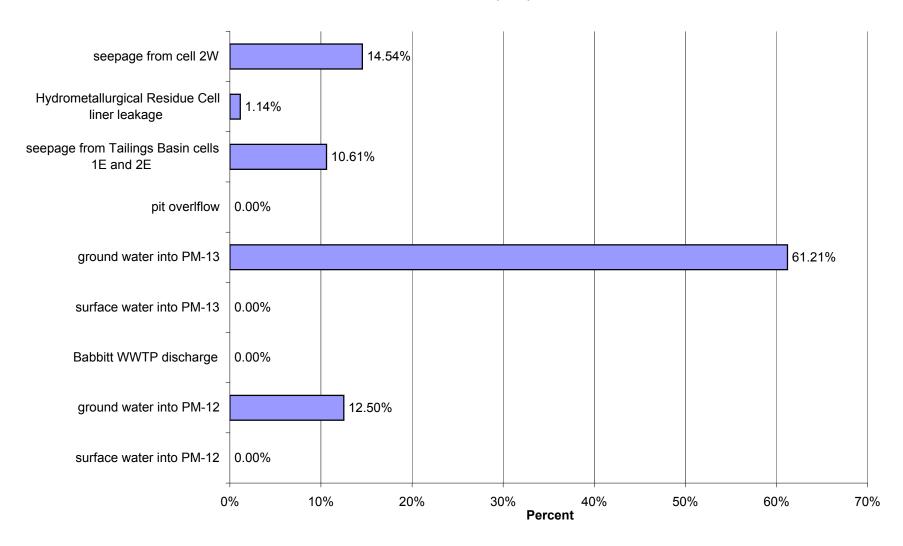

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Low Flow for Arsenic (As)

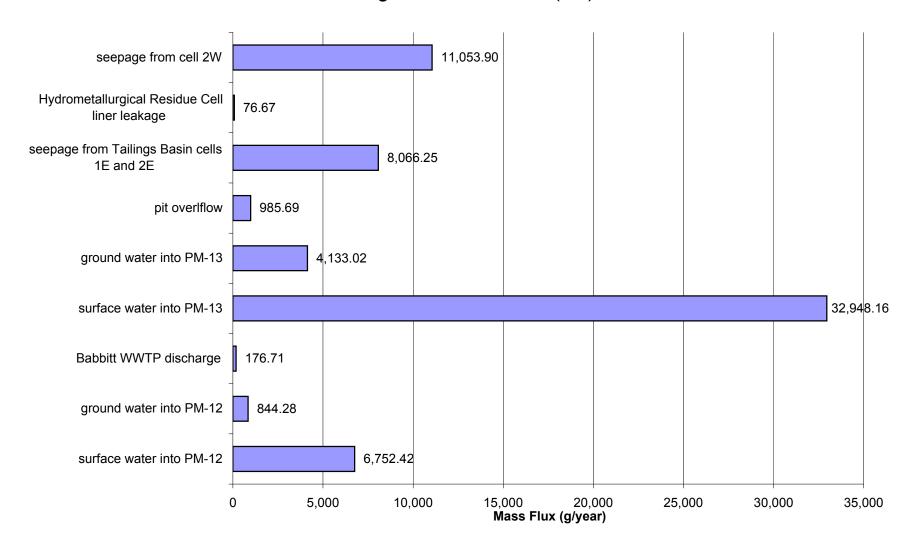

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Arsenic (As)

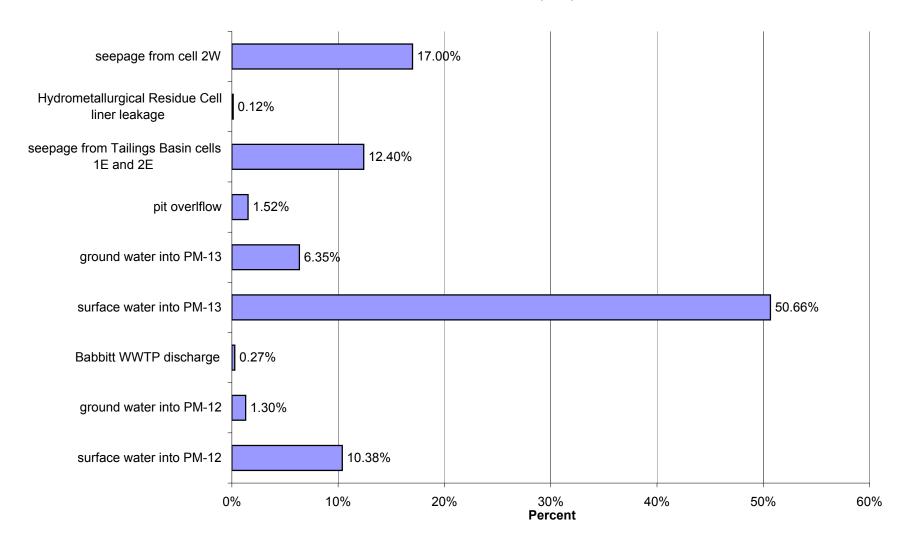

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Average Flow for Arsenic (As)

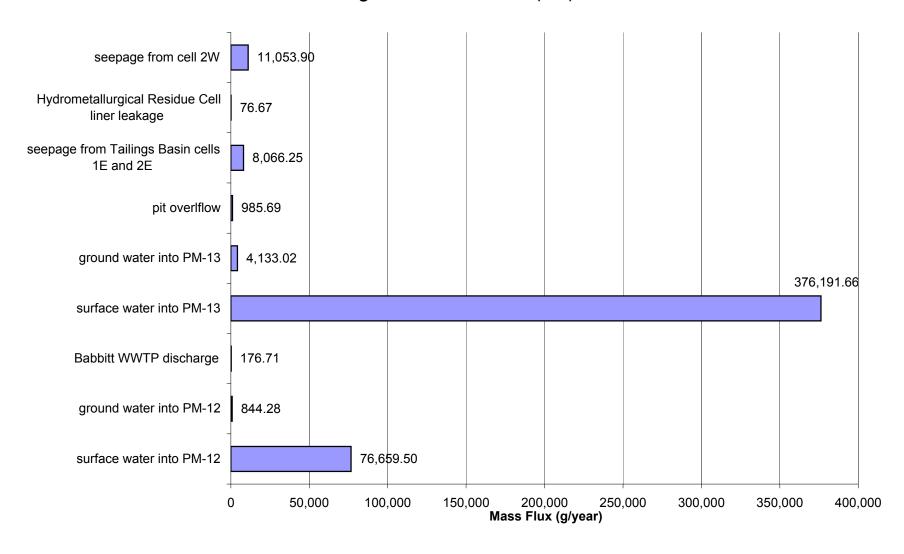

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Average Flow for Arsenic (As)

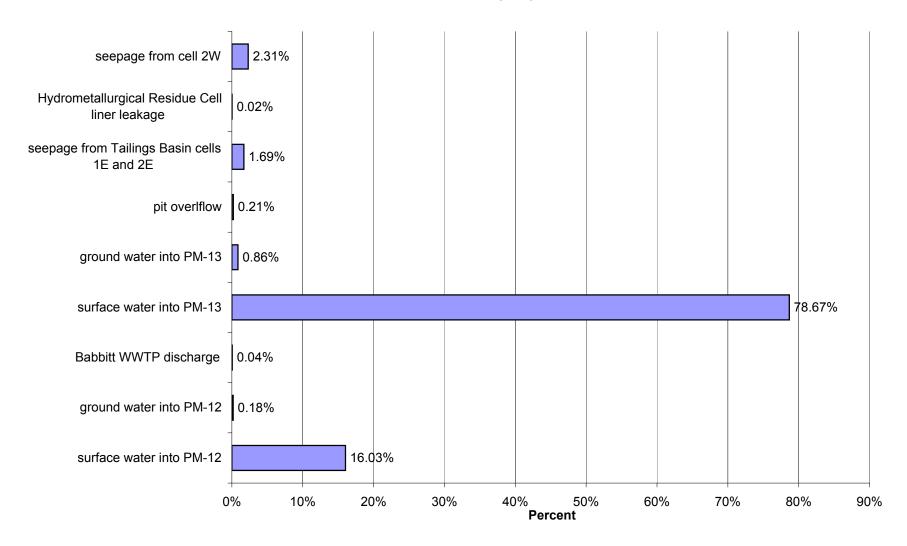

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for High Flow for Arsenic (As)

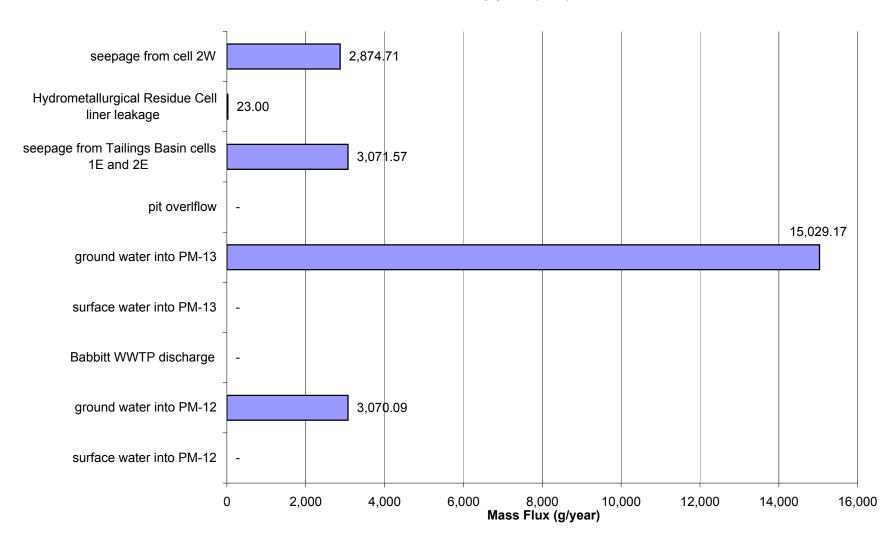

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Arsenic (As)

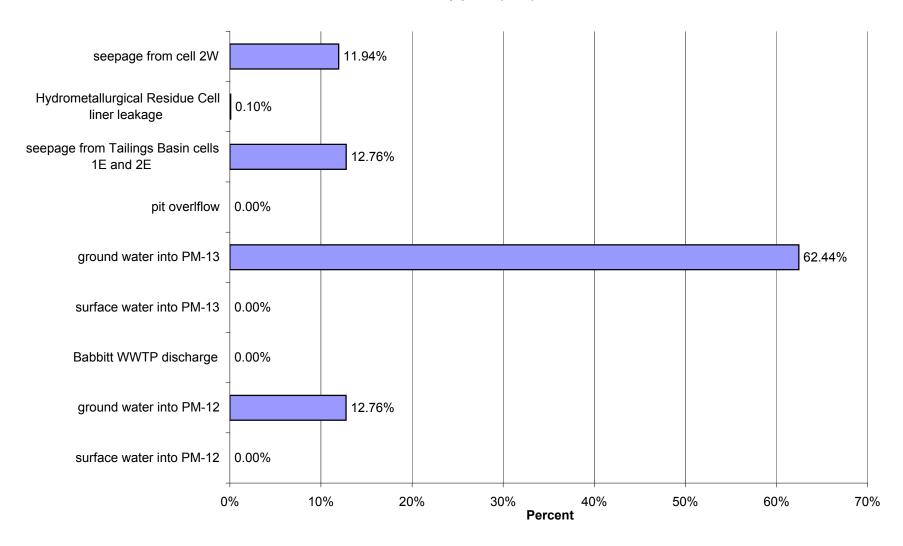

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Low Flow for Cobalt (Co)

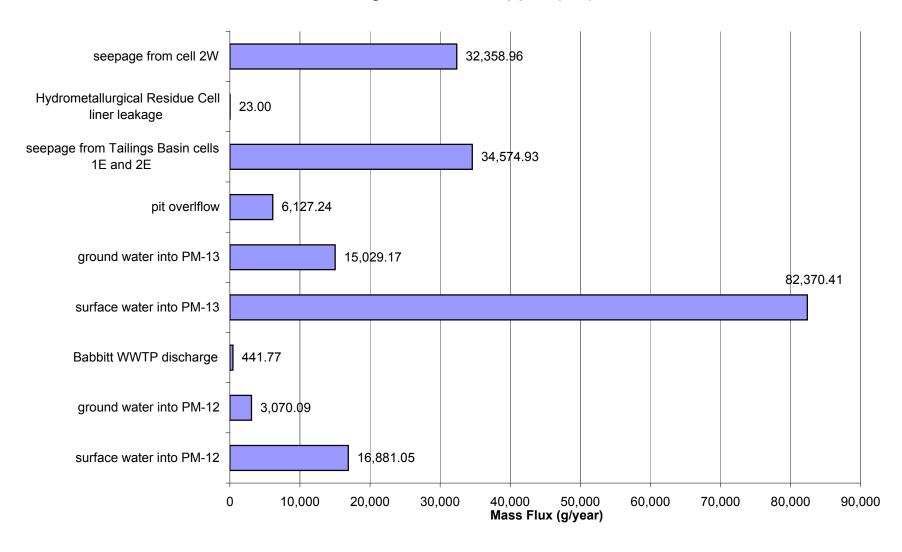

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Cobalt (Co)

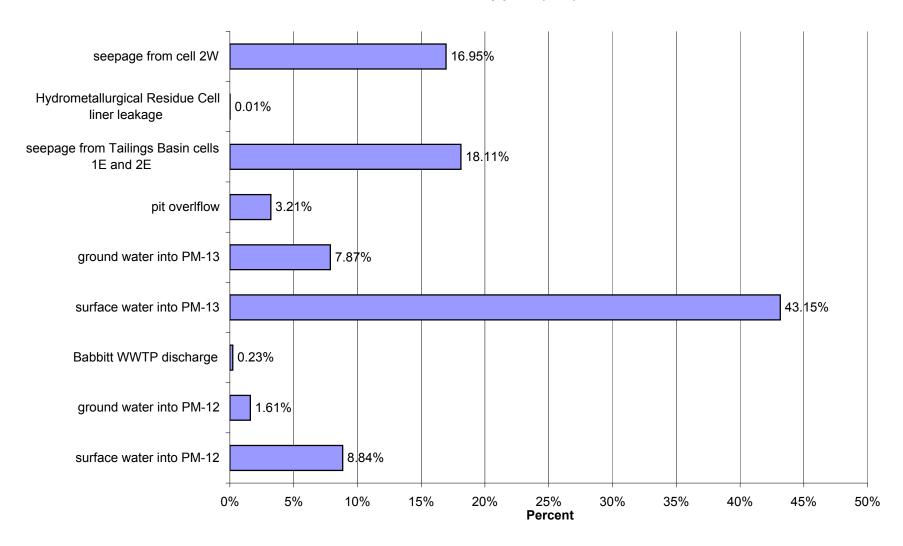

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Average Flow for Cobalt (Co)

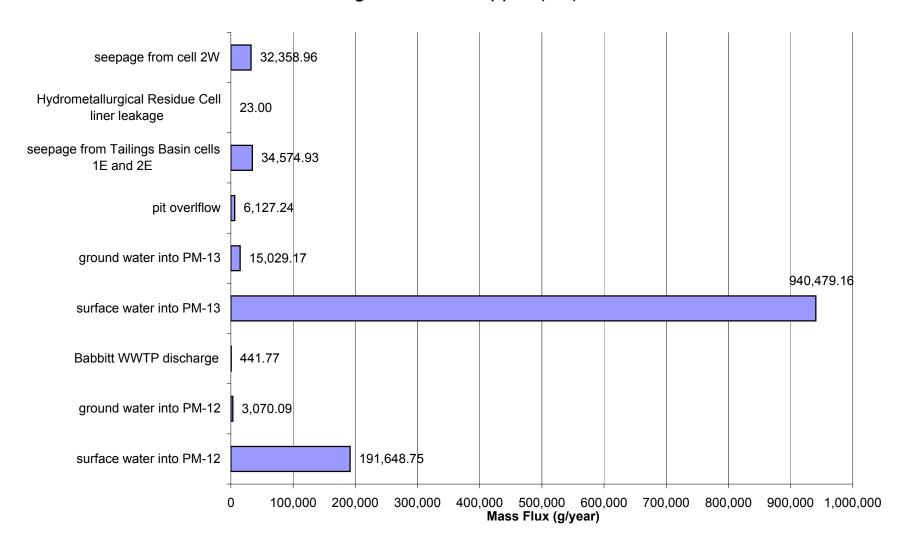

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Average Flow for Cobalt (Co)

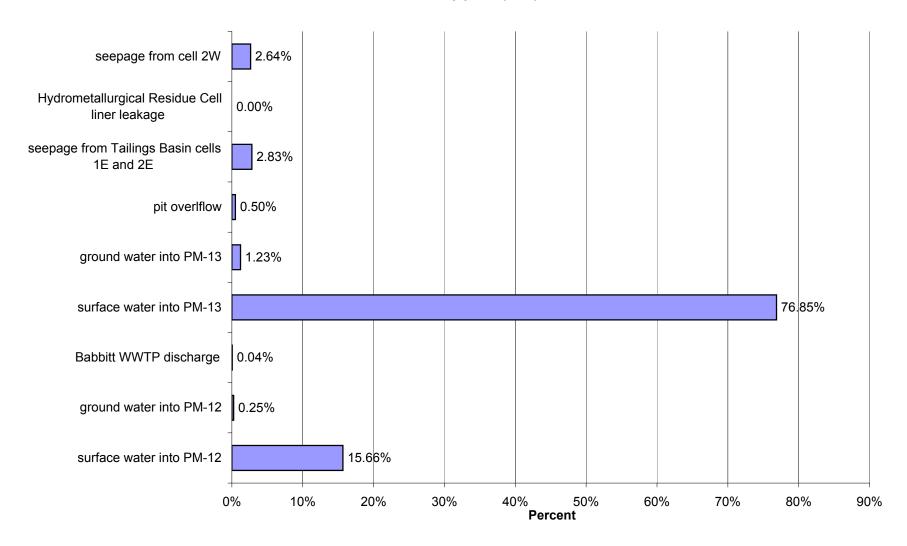

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for High Flow for Cobalt (Co)

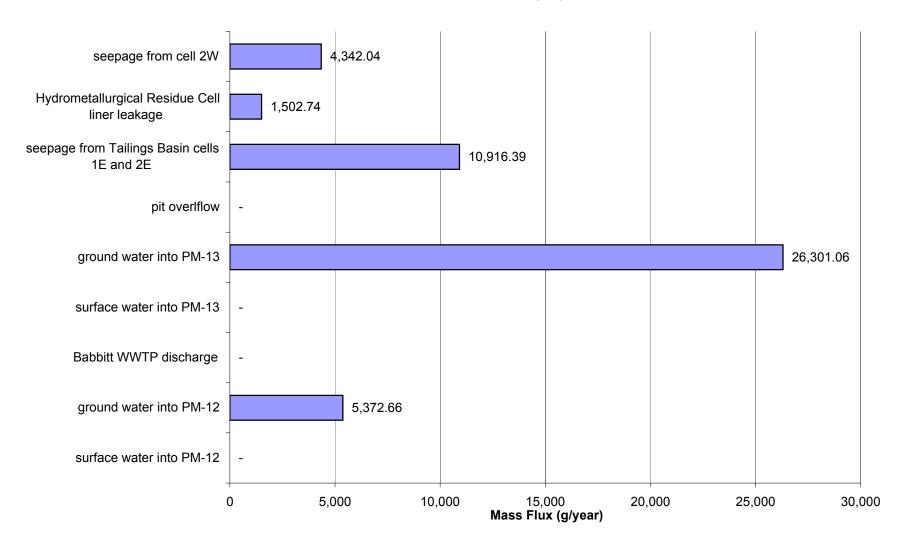

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Cobalt (Co)

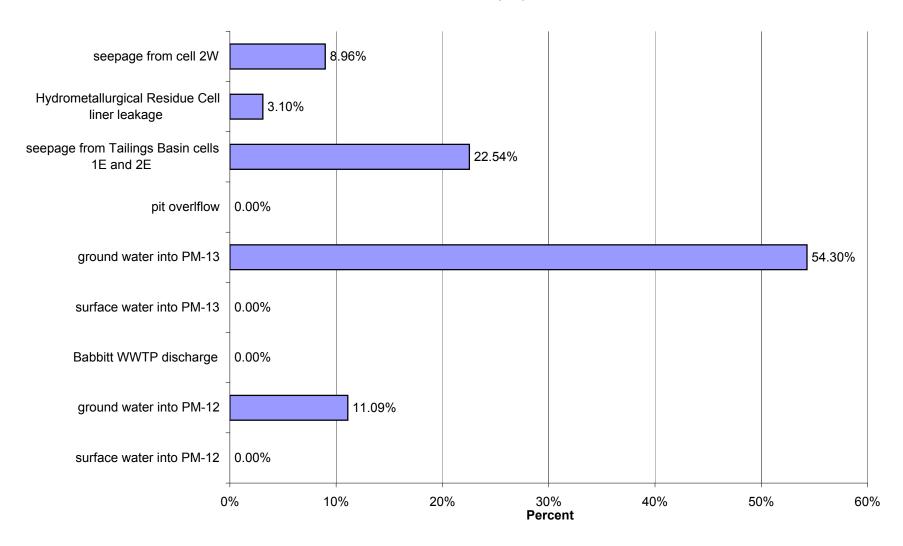

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Low Flow for Copper (Cu)

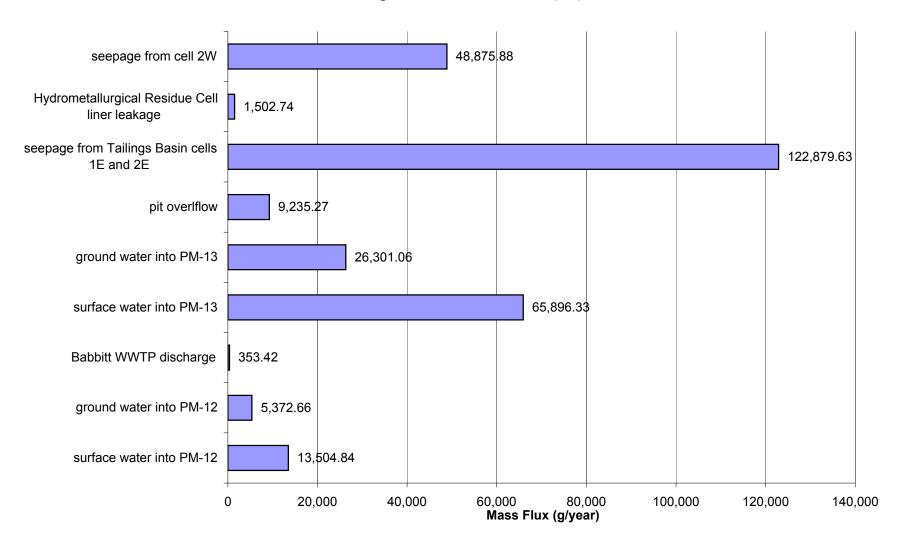

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Copper (Cu)

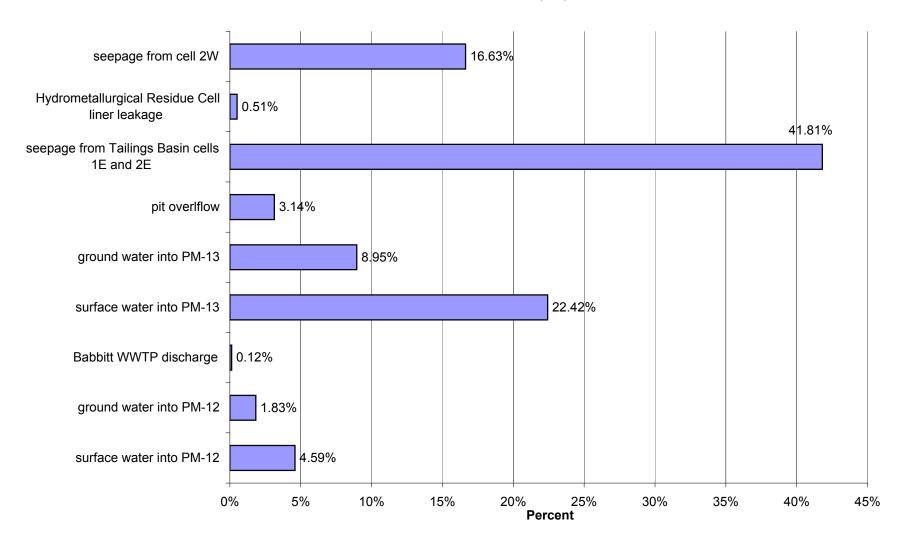

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Average Flow for Copper (Cu)

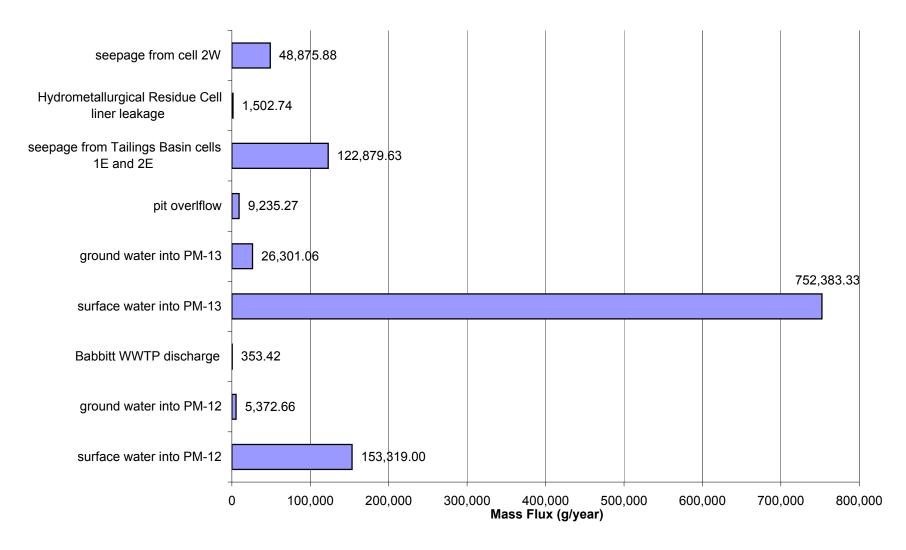

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Average Flow for Copper (Cu)

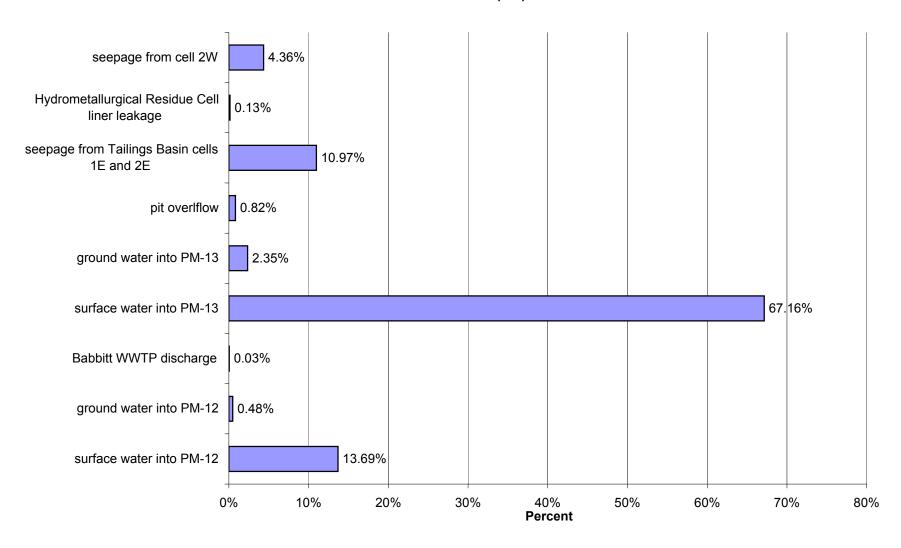

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for High Flow for Copper (Cu)

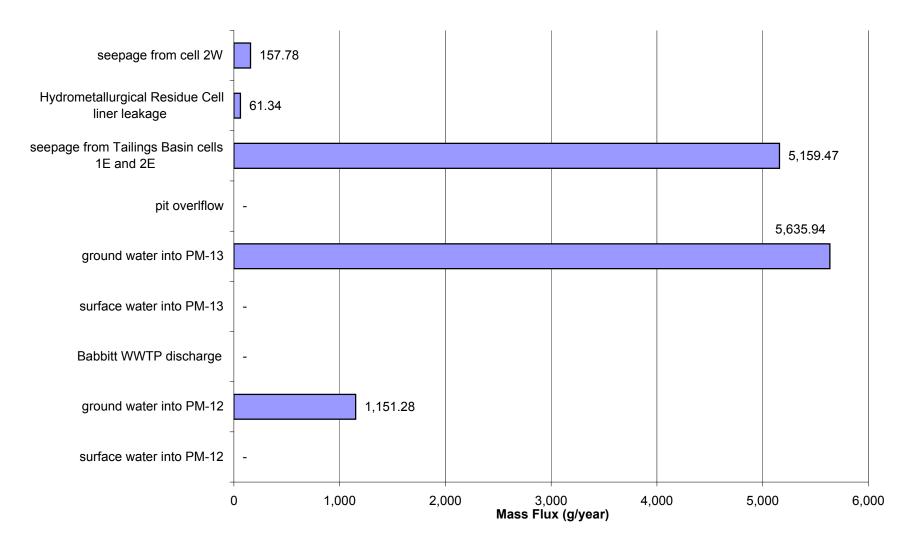

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Copper (Cu)

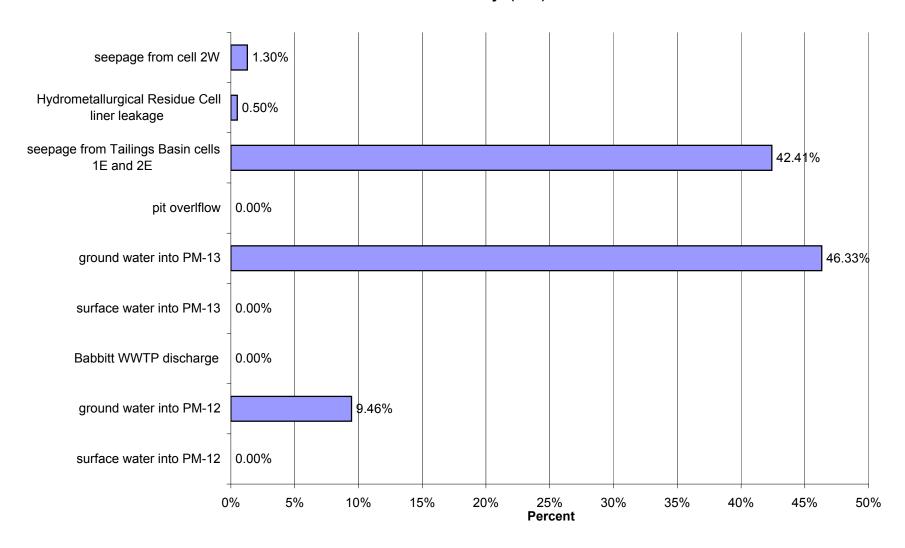

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Low Flow for Nickel (Ni)

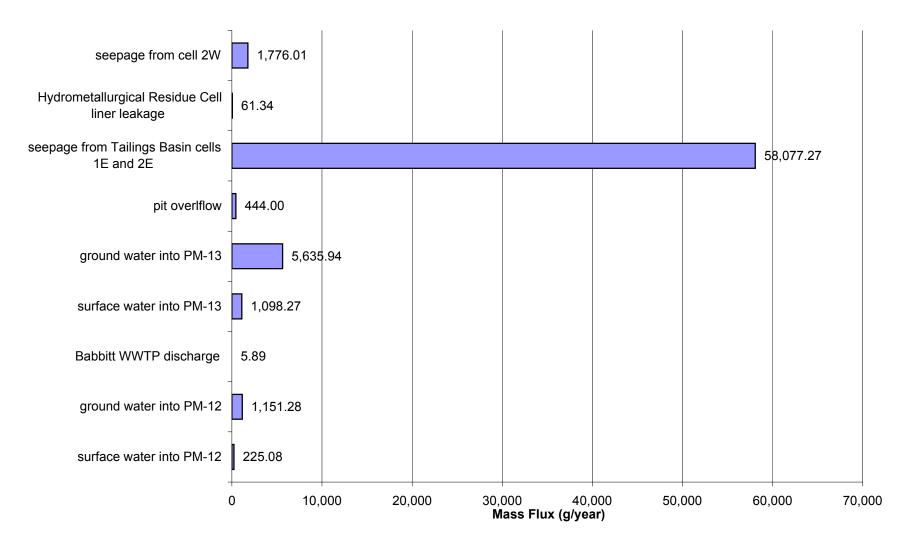

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Nickel (Ni)

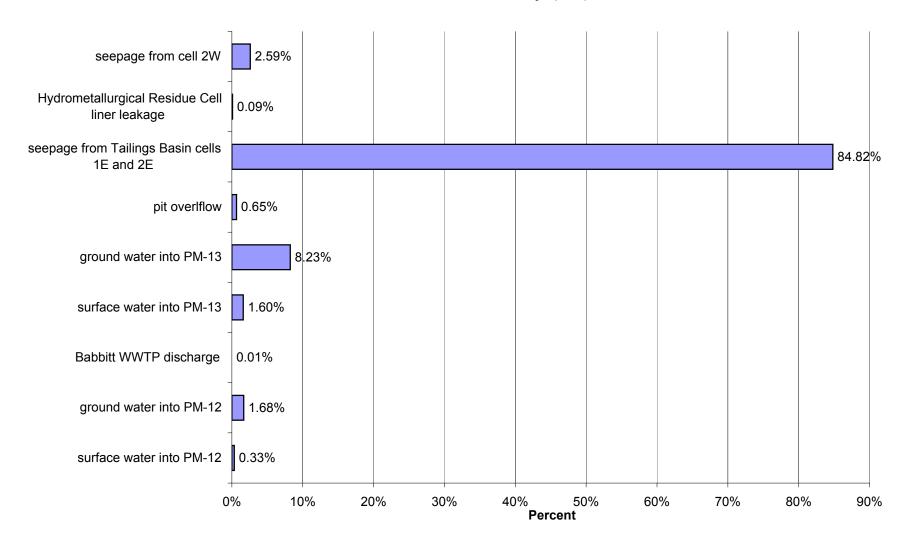

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Average Flow for Nickel (Ni)

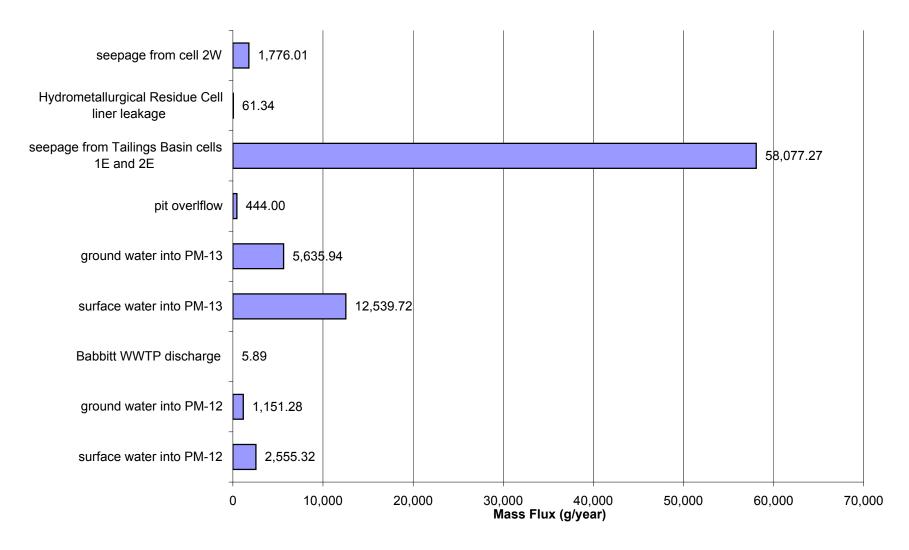

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Average Flow for Nickel (Ni)

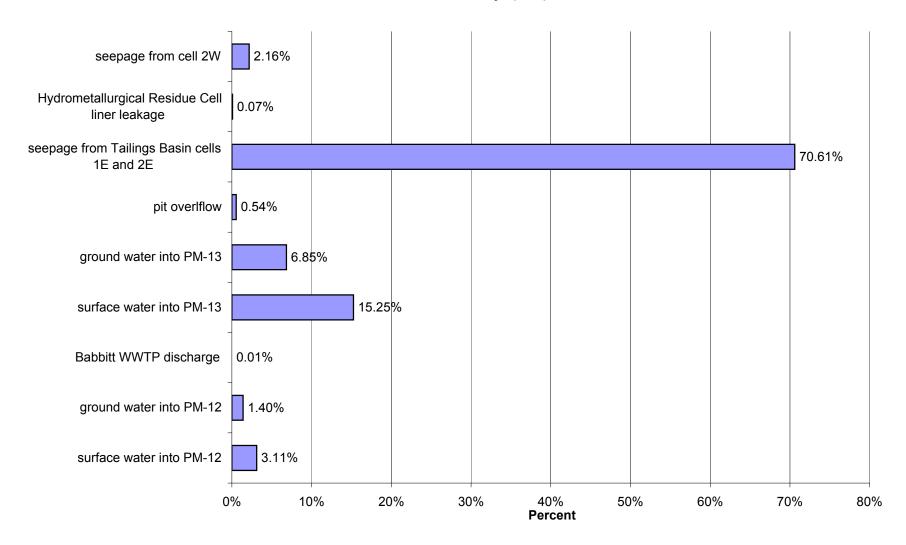

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for High Flow for Nickel (Ni)

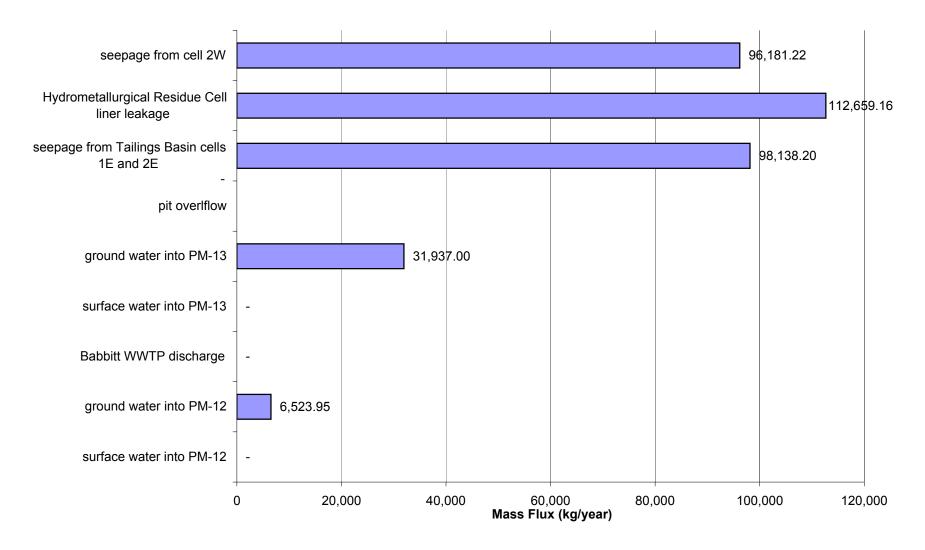

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Nickel (Ni)

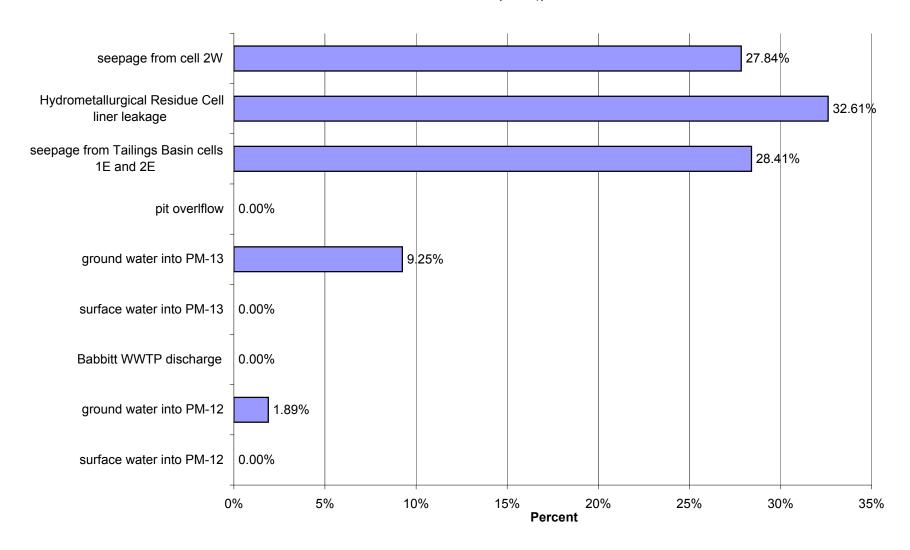

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Low Flow for Antimony (Sb)

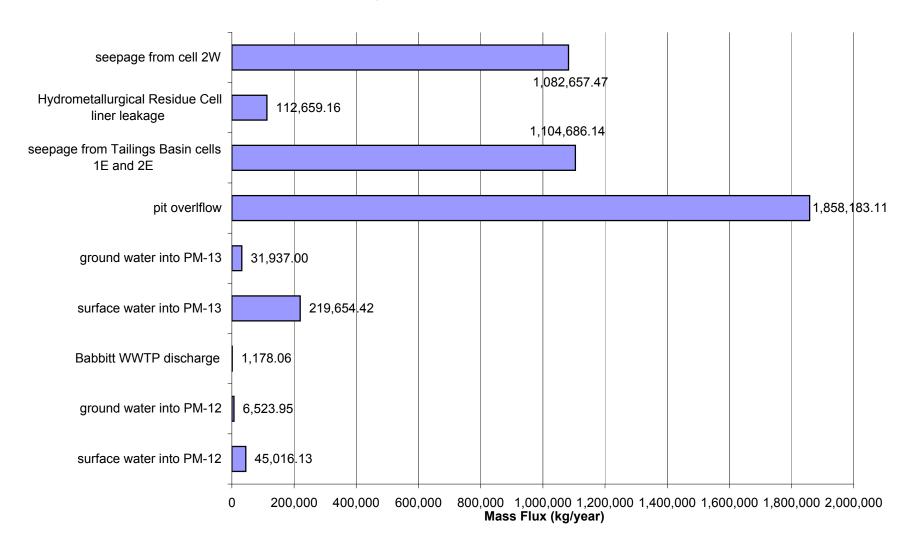

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Antimony (Sb)

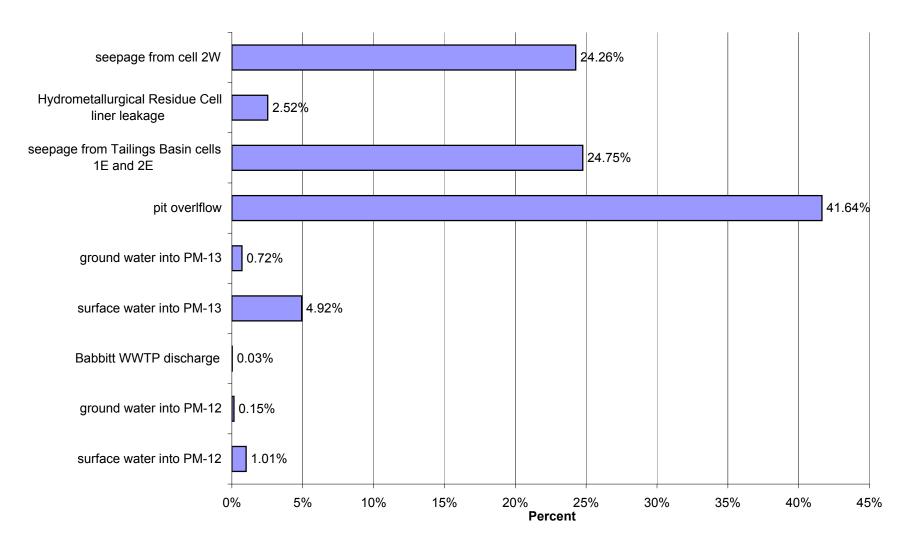

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for Average Flow for Antimony (Sb)

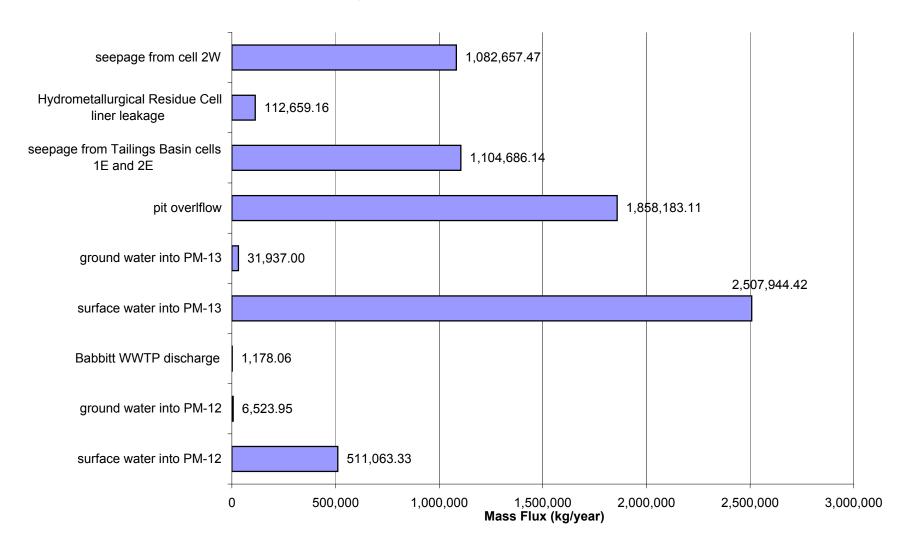

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Average Flow for Antimony (Sb)

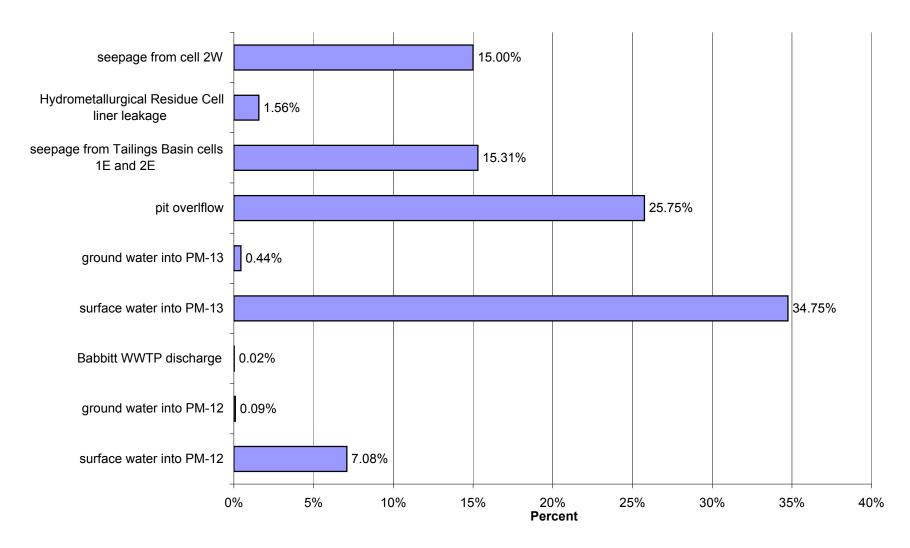

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 10 for High Flow for Antimony (Sb)

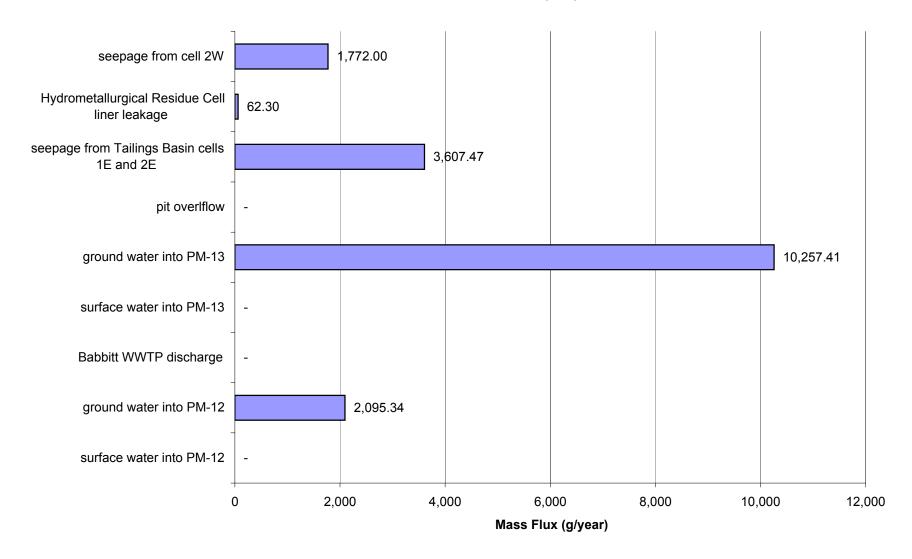

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Antimony (Sb)

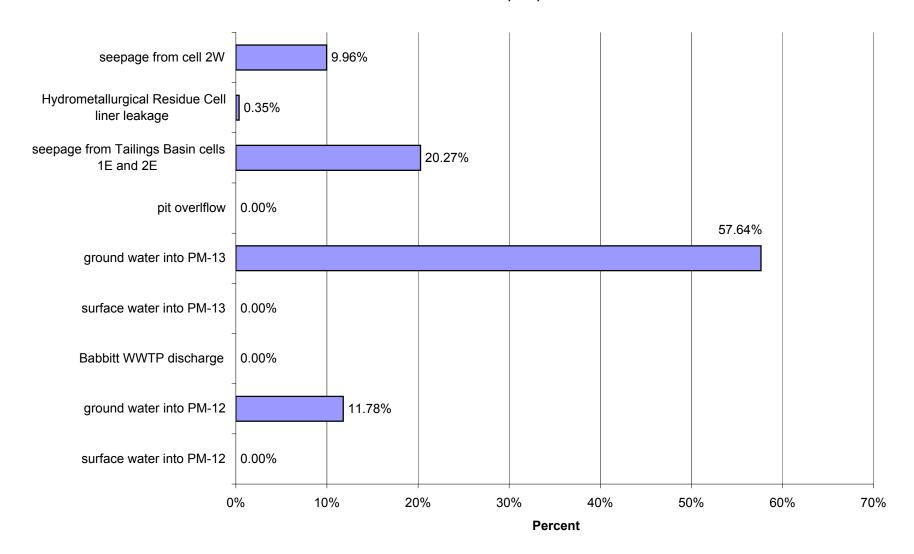

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 10 for Low Flow for Sulfate (SO₄)

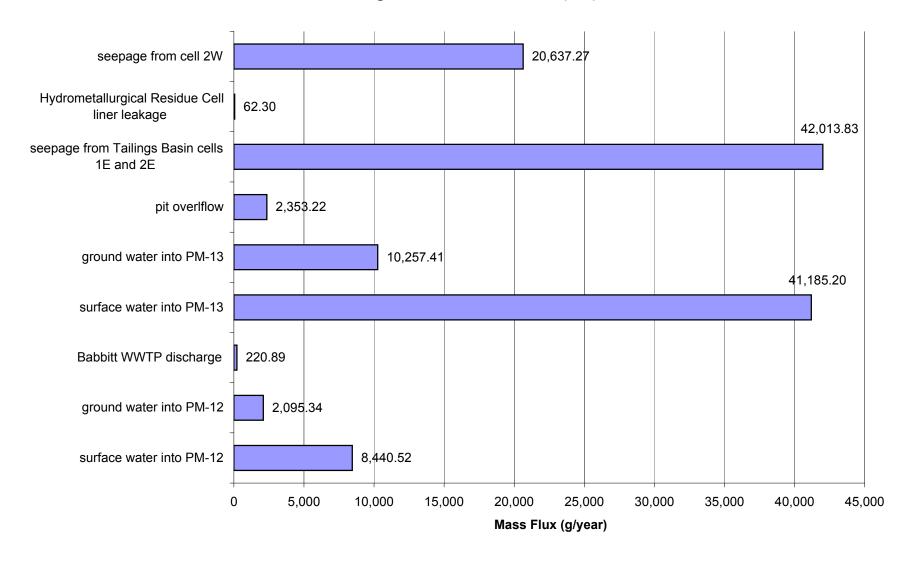

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for Low Flow for Sulfate (SO₄)

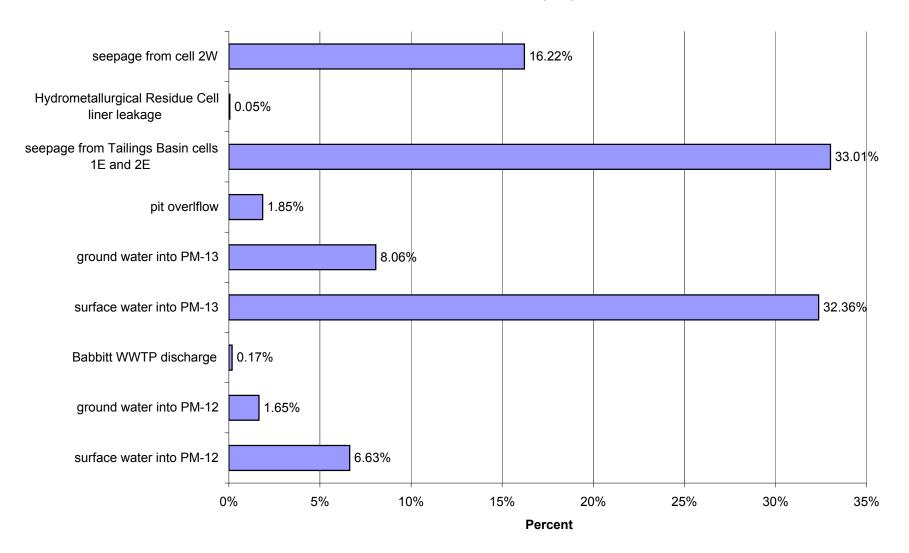

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 10 for Average Flow for Sulfate (SO₄)

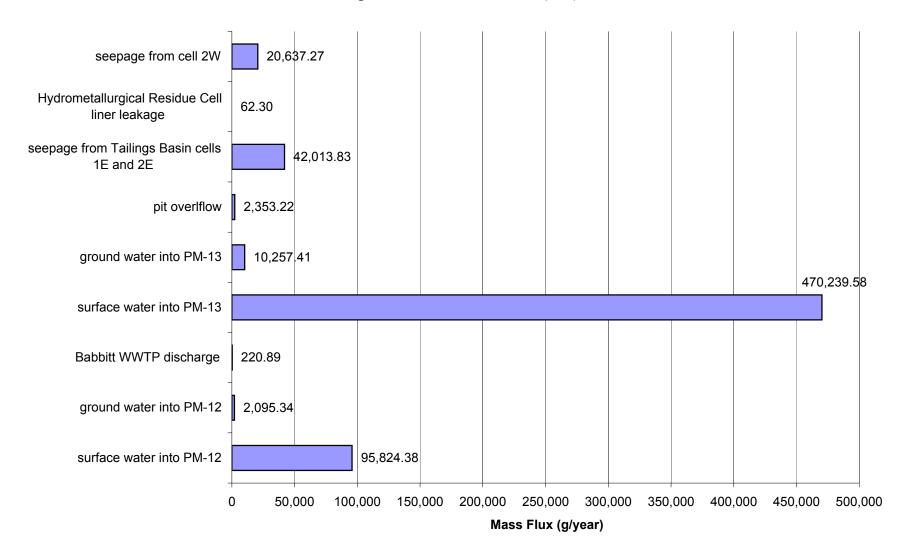

GeotechnicalMitigation: Percent of Impacts at PM-13 in Year 10 for Average Flow for Sulfate (SO₄)

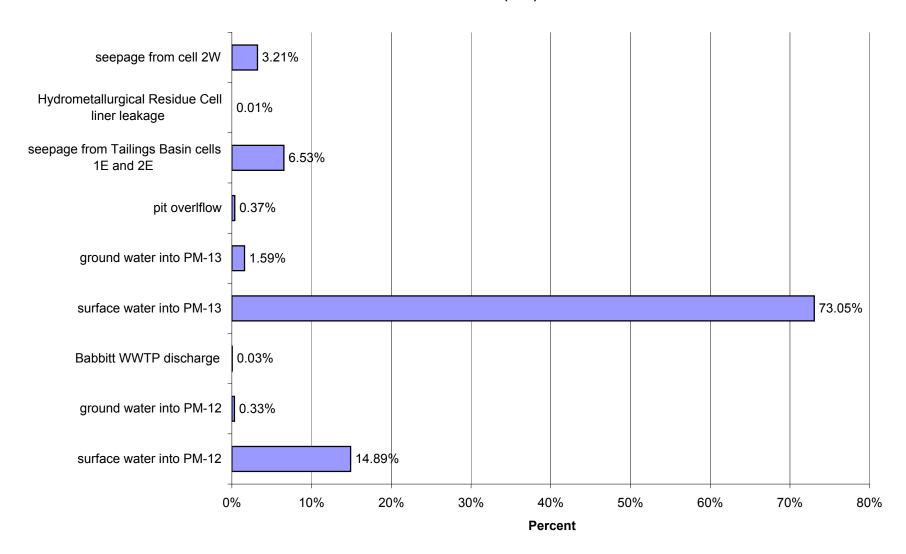

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 10 for High Flow for Sulfate (SO₄)

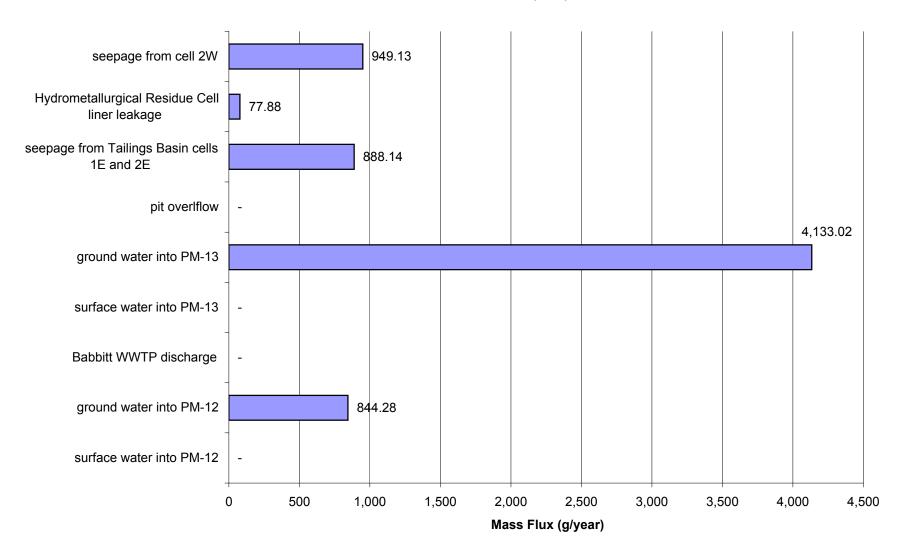

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 10 for High Flow for Sulfate (SO₄)

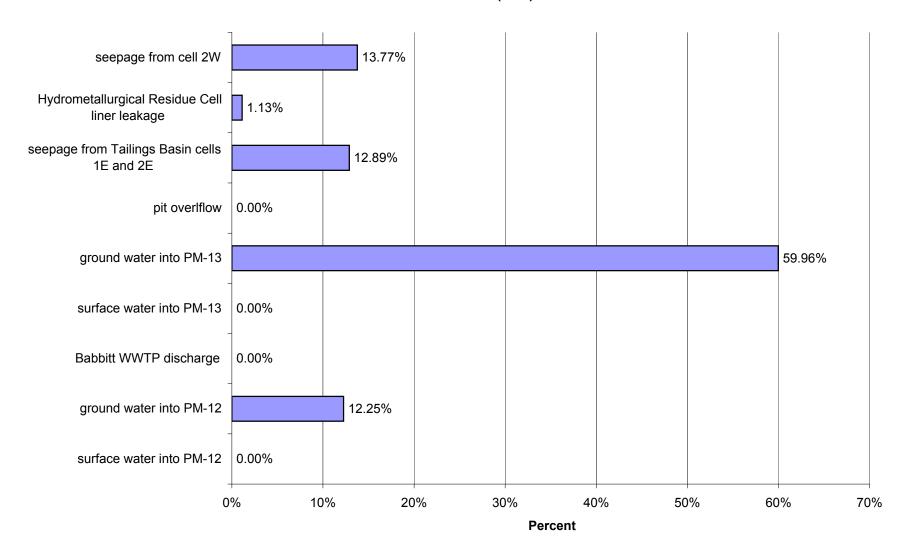

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Arsenic (As)

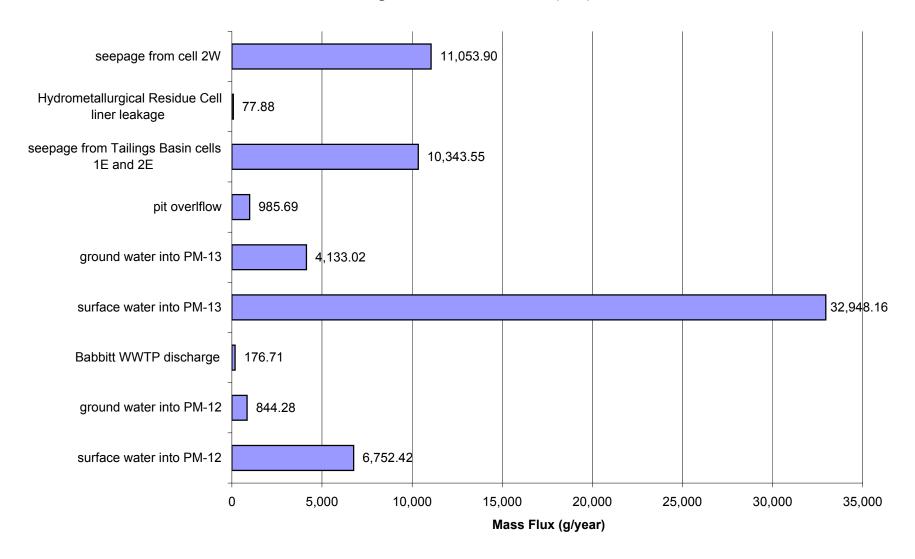

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Arsenic (As)

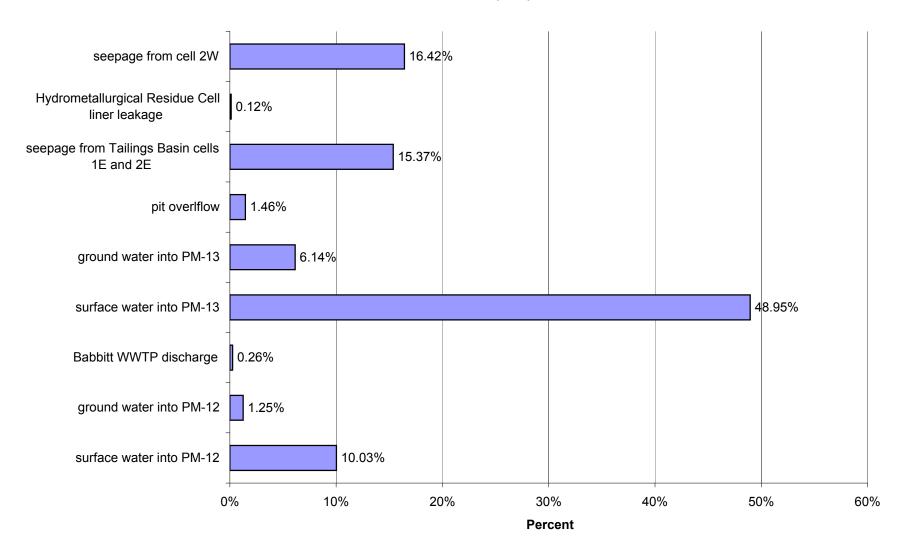

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Arsenic (As)

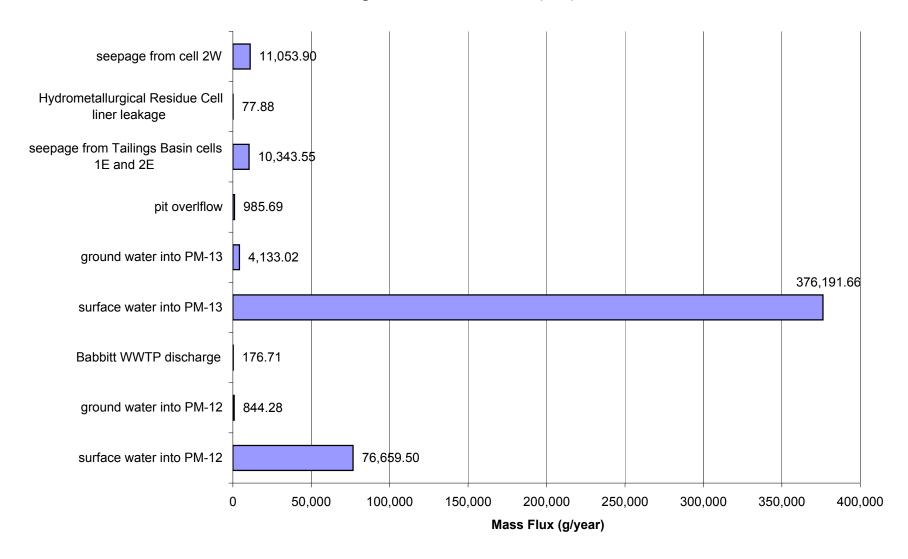

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Arsenic (As)

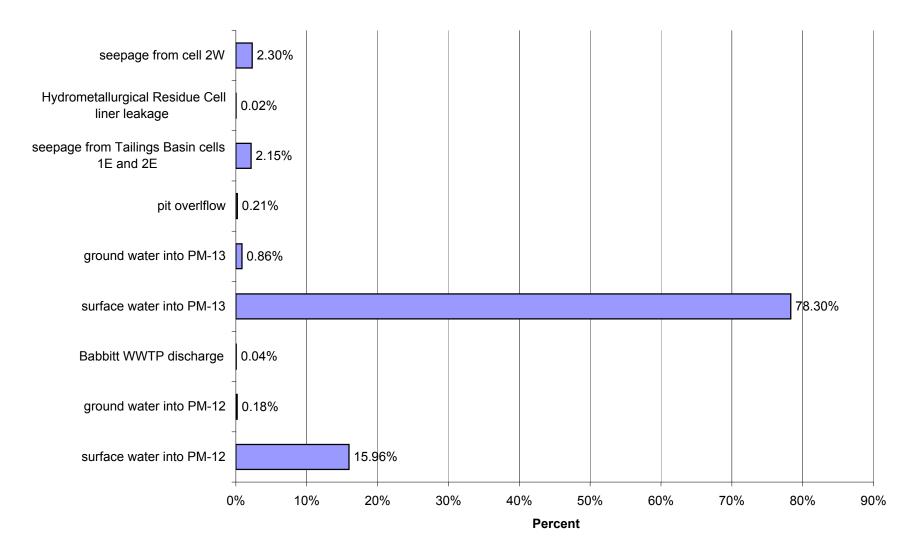

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Arsenic (As)

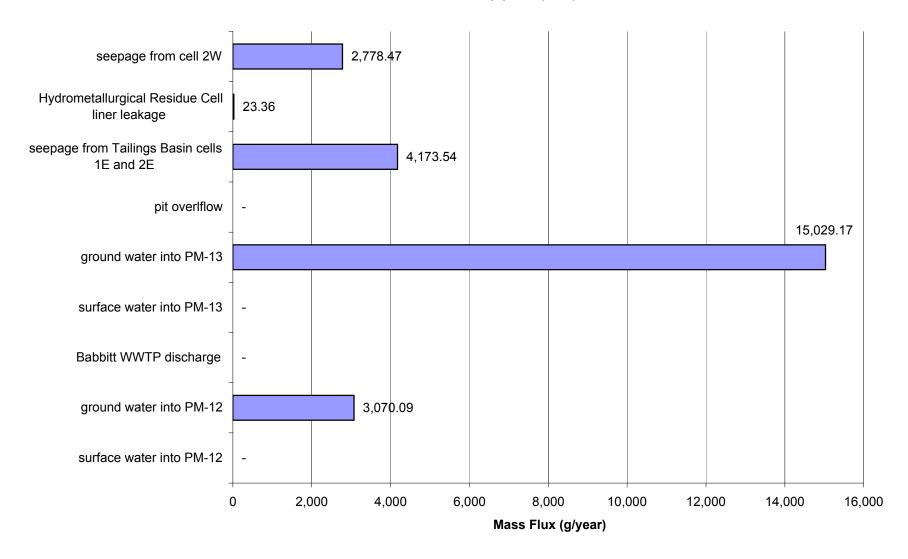

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Arsenic (As)

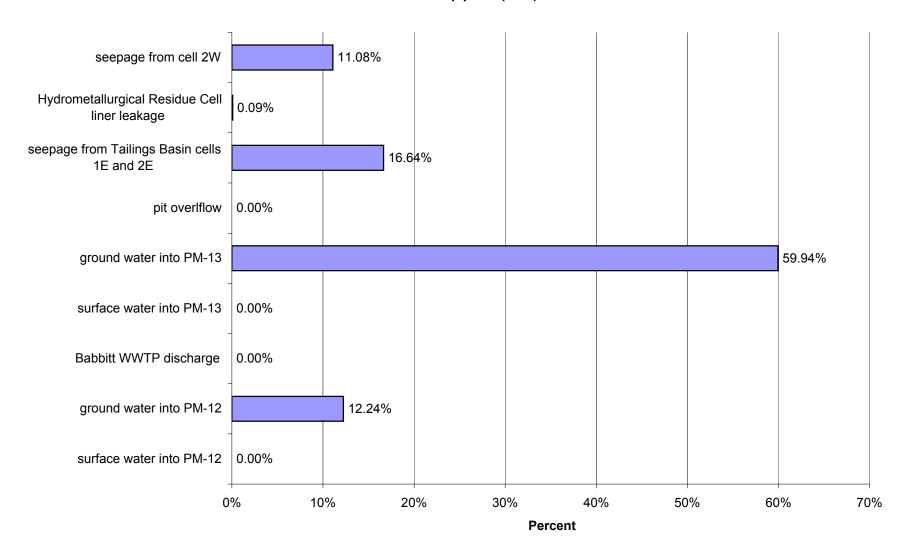

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Cobalt (Co)

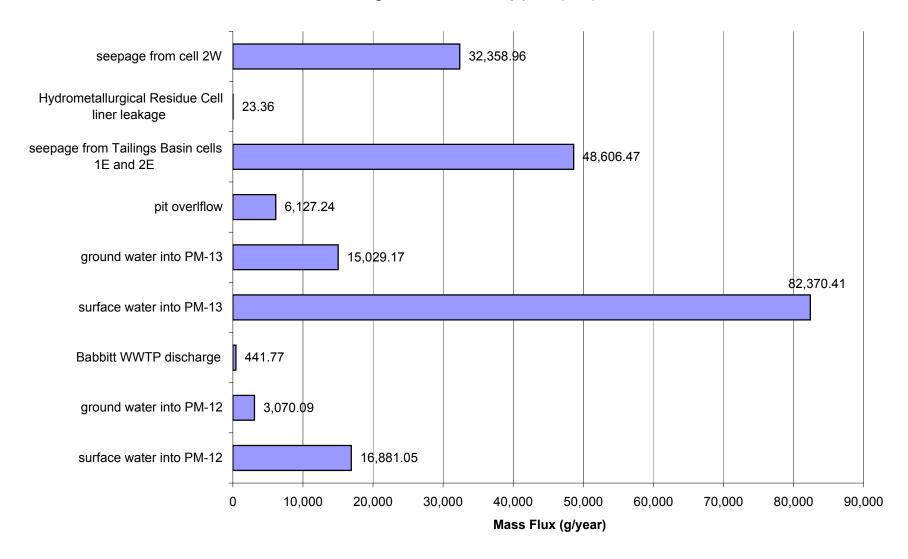

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Cobalt (Co)

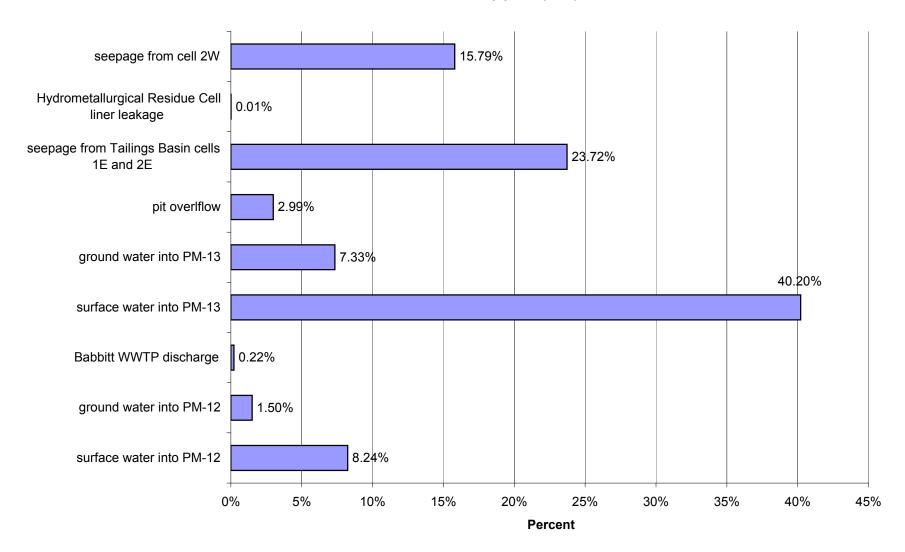

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Cobalt (Co)

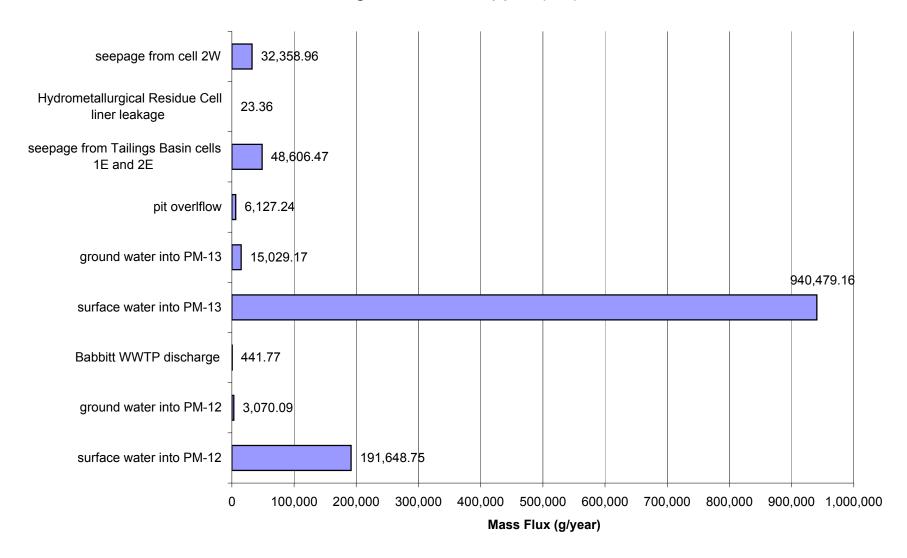

GeotechnicalMitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Cobalt (Co)

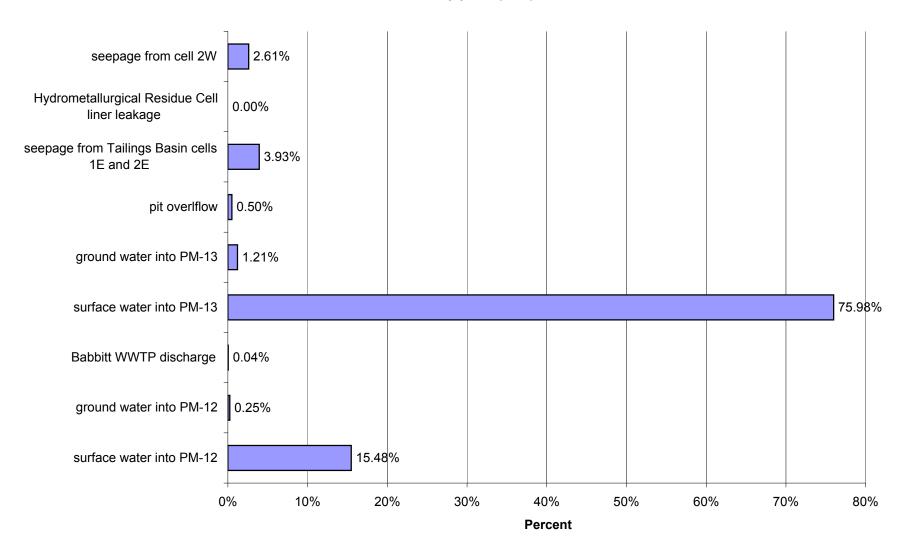

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Cobalt (Co)

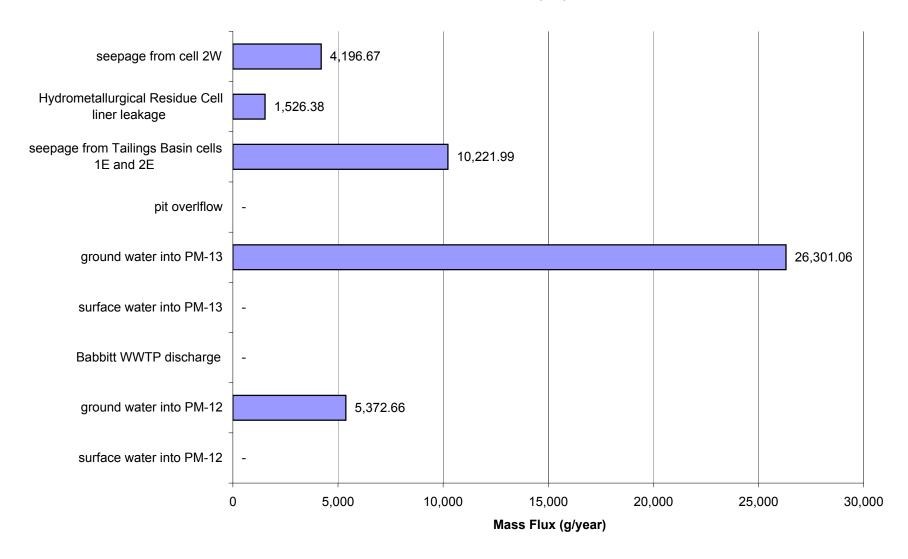

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Cobalt (Co)

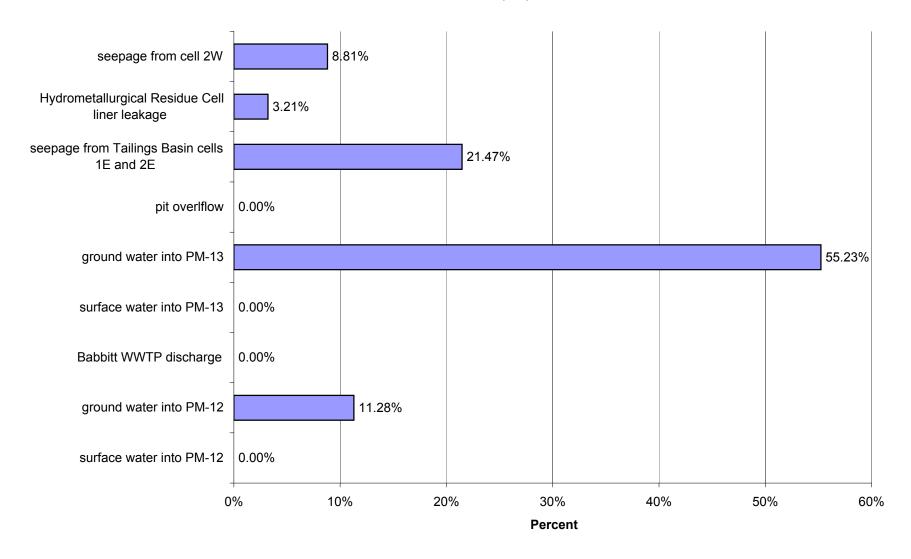

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Copper (Cu)

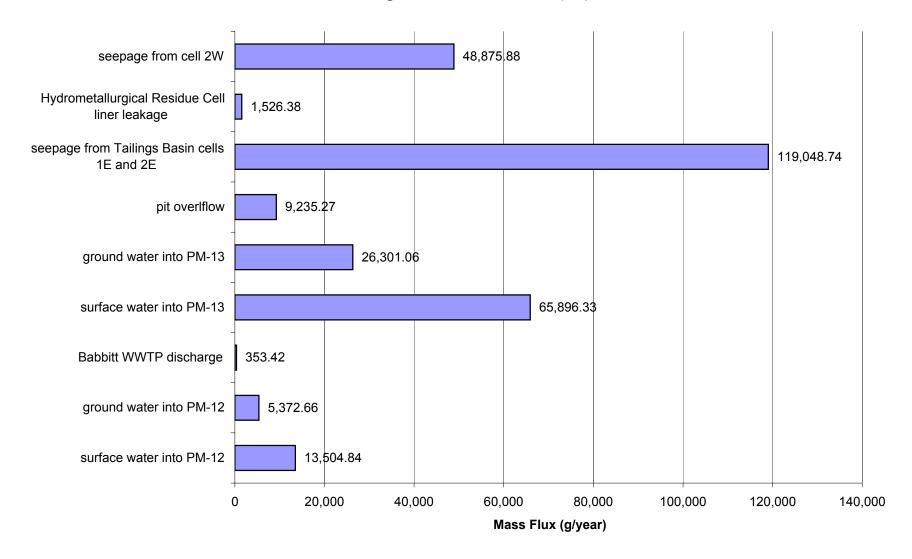

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Copper (Cu)

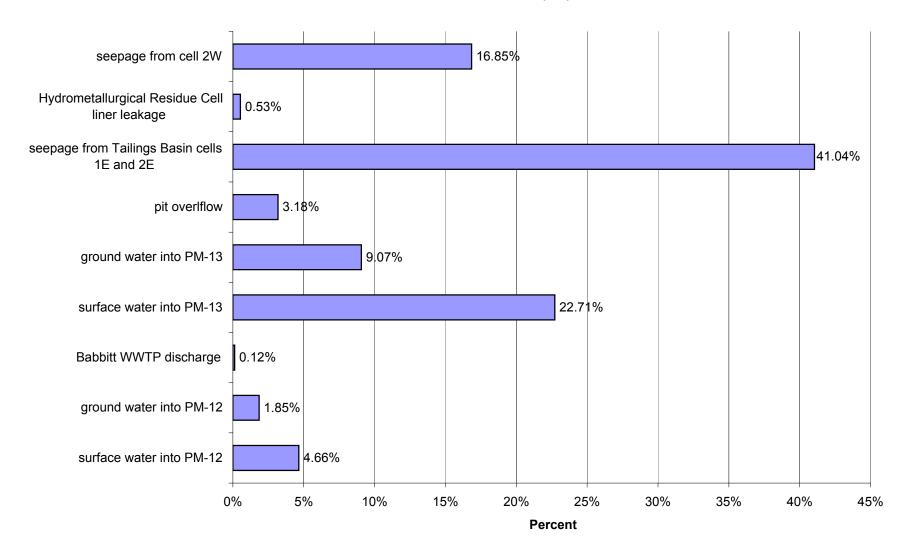

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Copper (Cu)

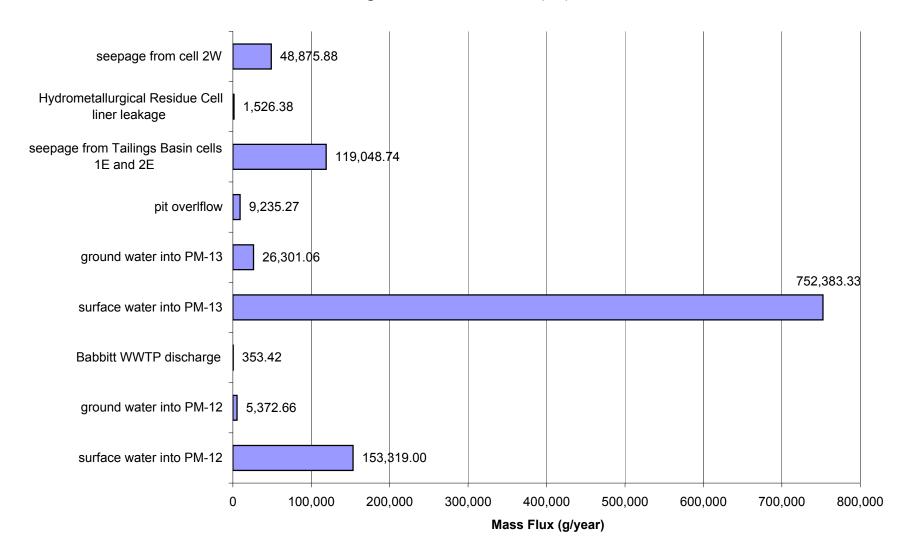

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Copper (Cu)

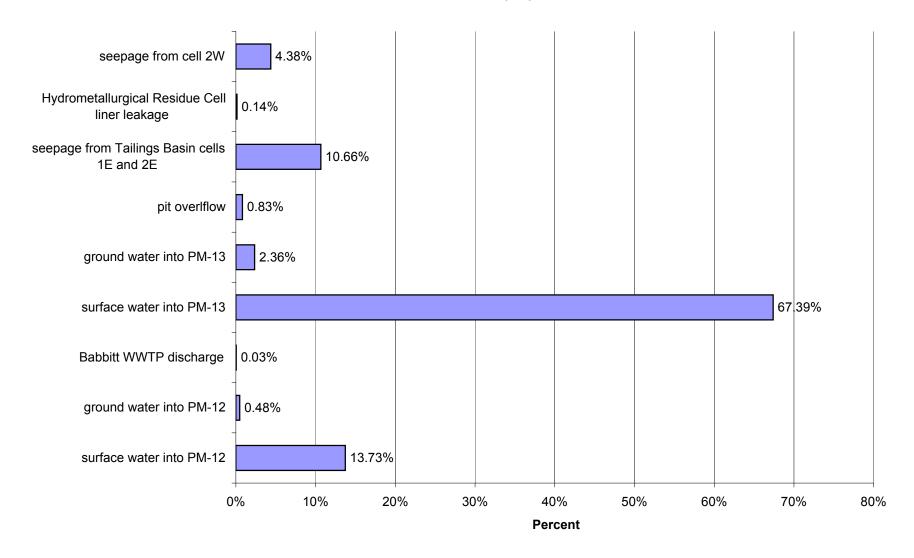

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Copper (Cu)

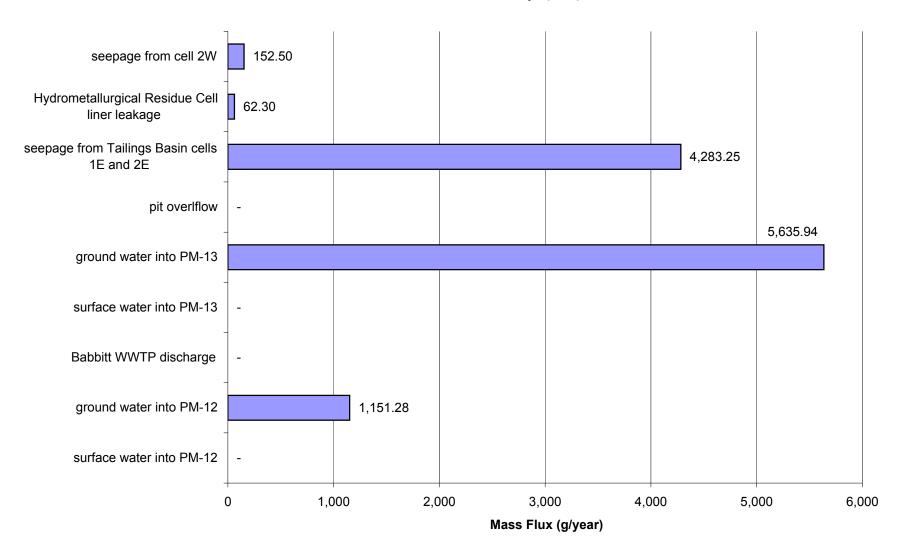

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Copper (Cu)

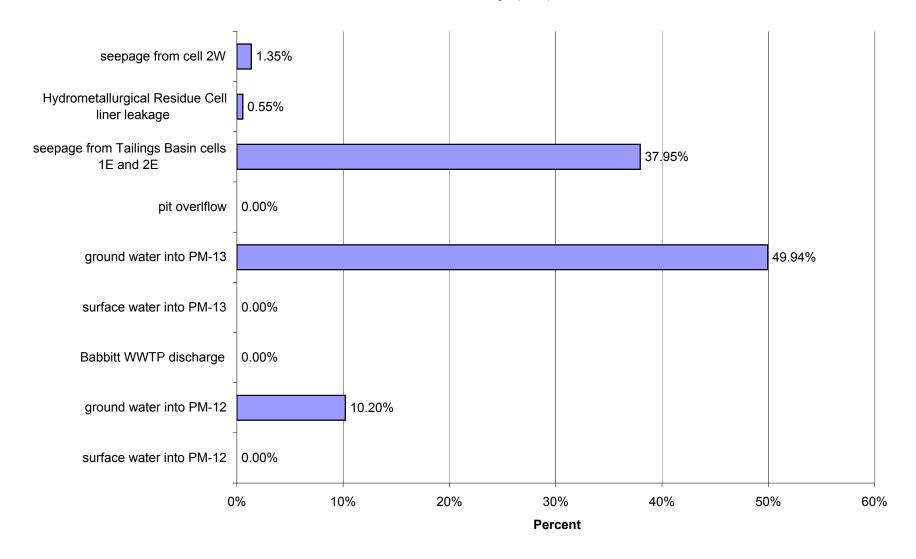

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Nickel (Ni)

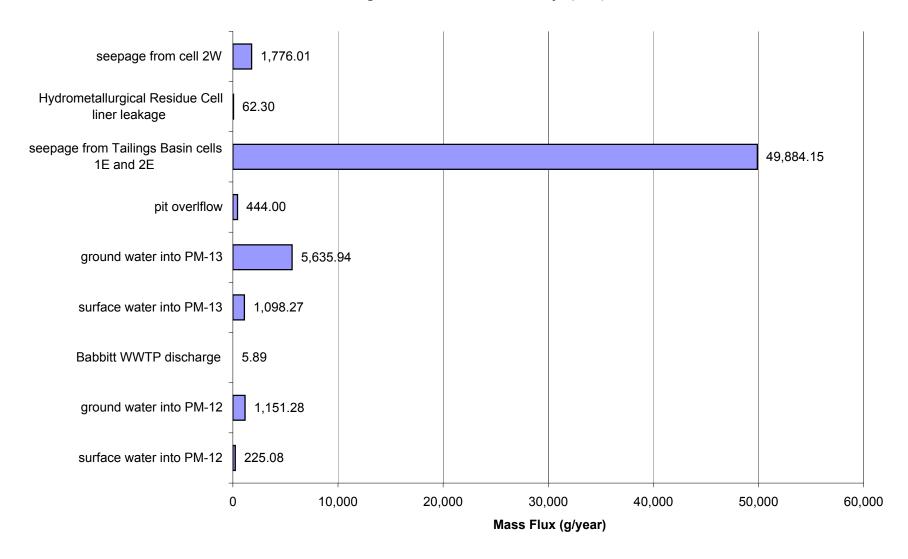

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Nickel (Ni)

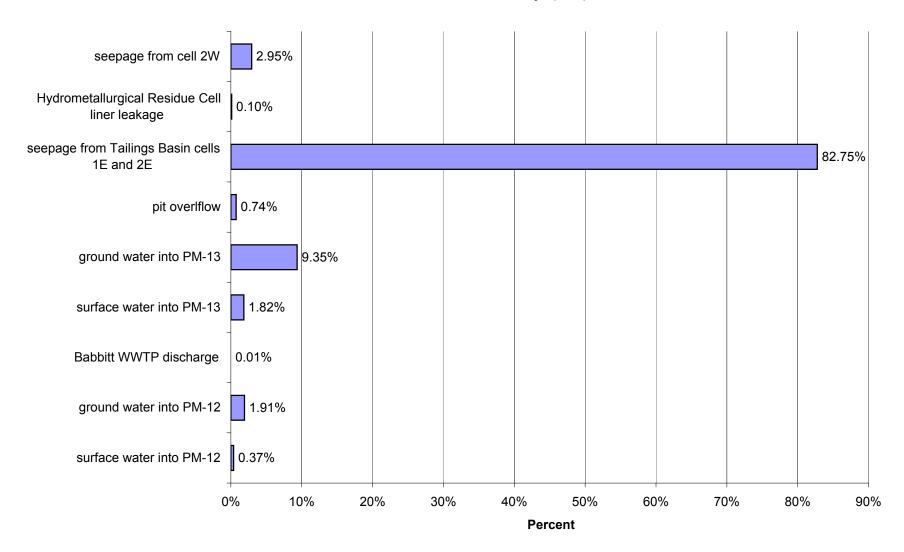

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Nickel (Ni)

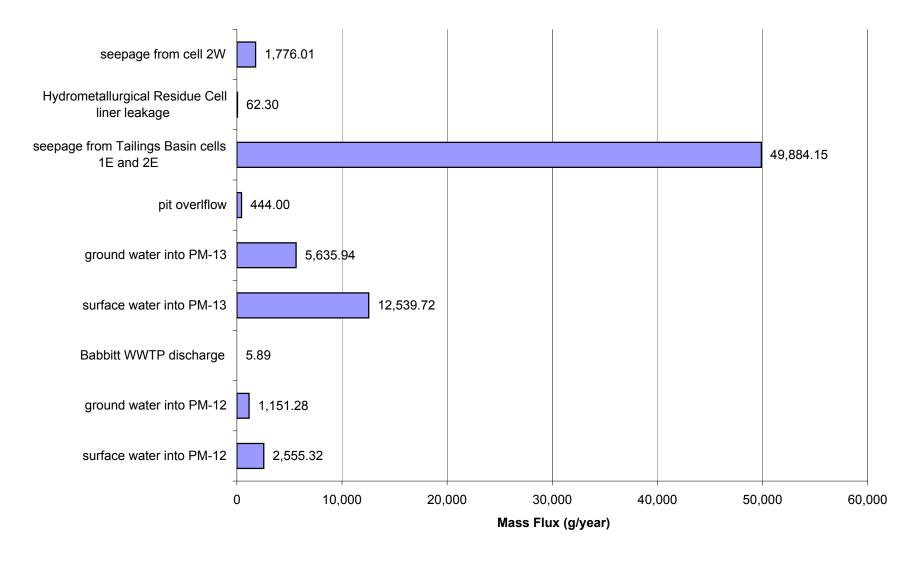

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Nickel (Ni)

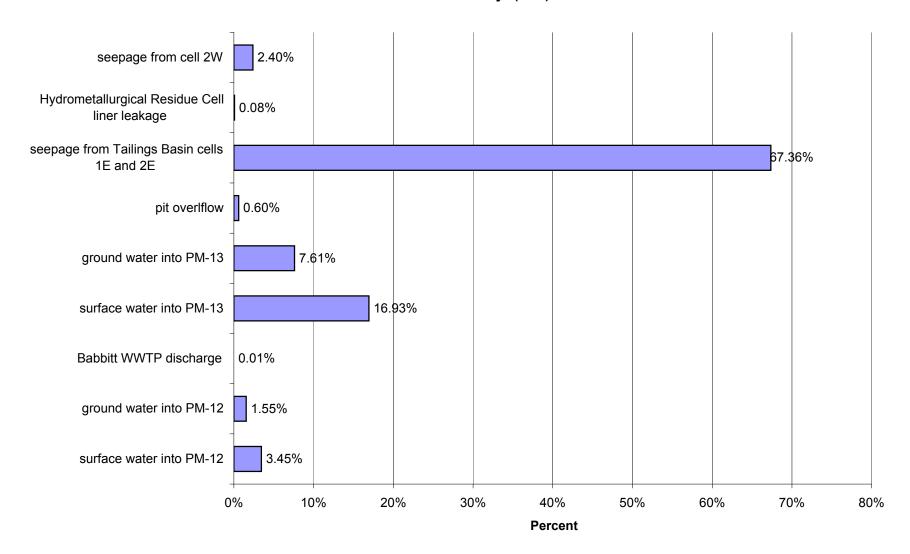

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Nickel (Ni)

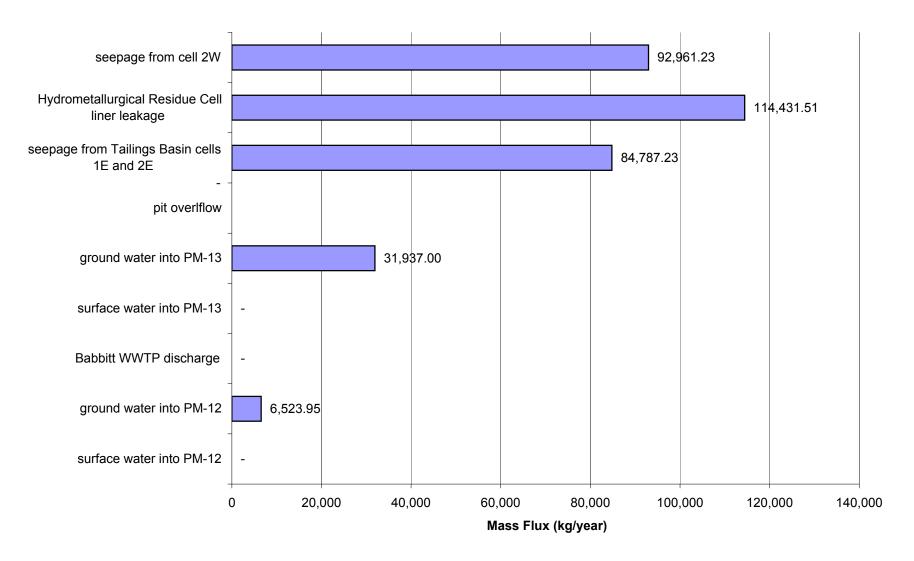

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Nickel (Ni)

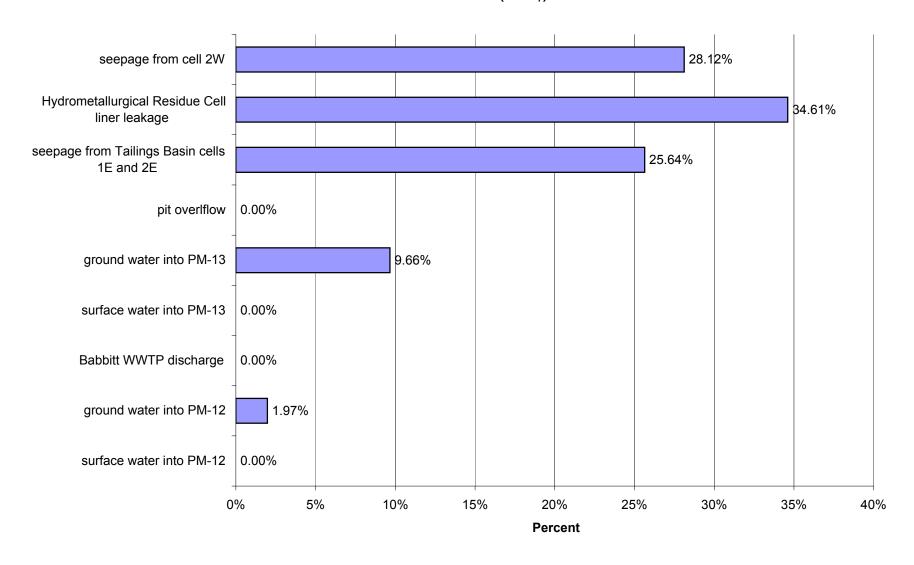

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Low Flow for Antimony (Sb)

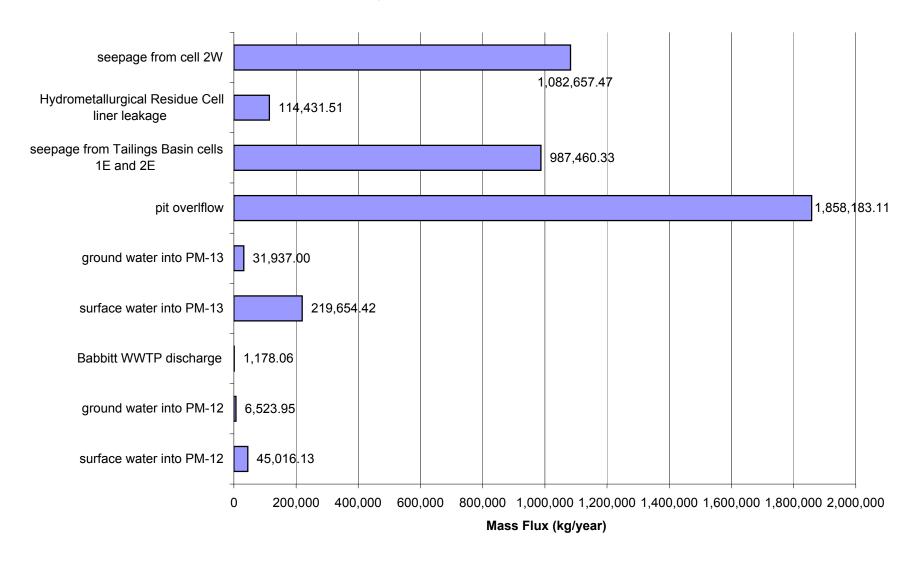

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Antimony (Sb)

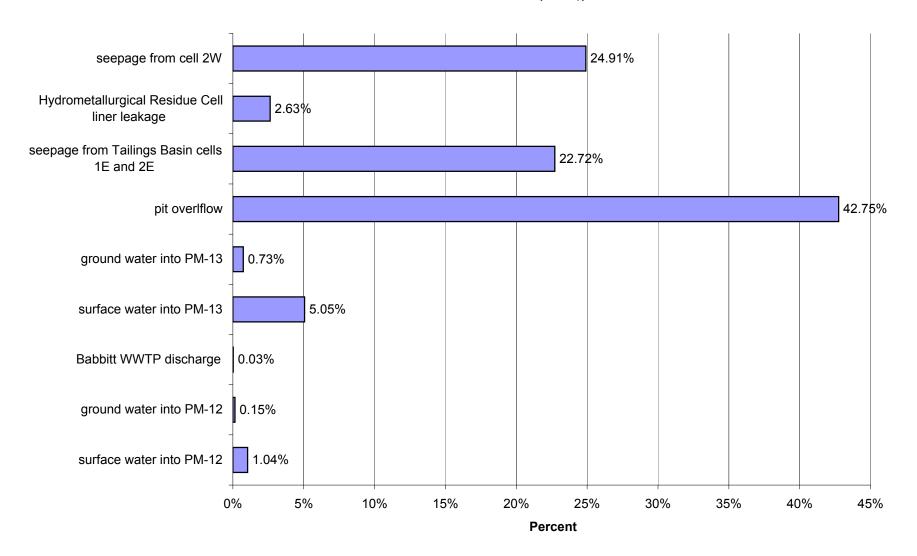

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for Average Flow for Antimony (Sb)

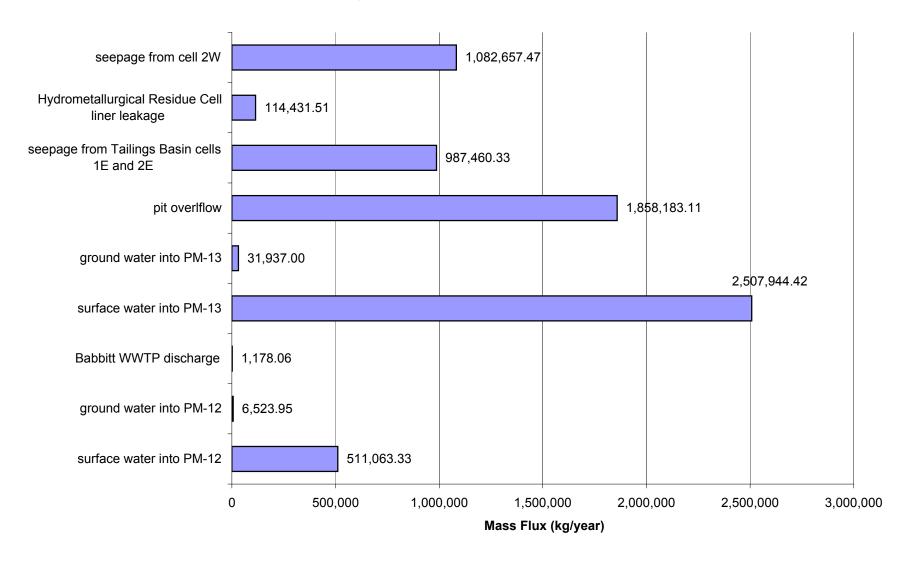

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Antimony (Sb)

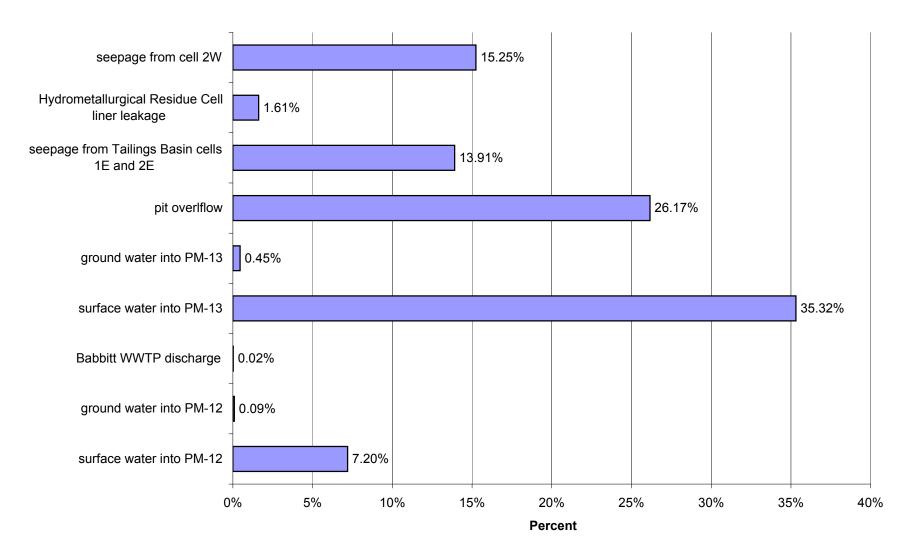

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 15 for High Flow for Antimony (Sb)

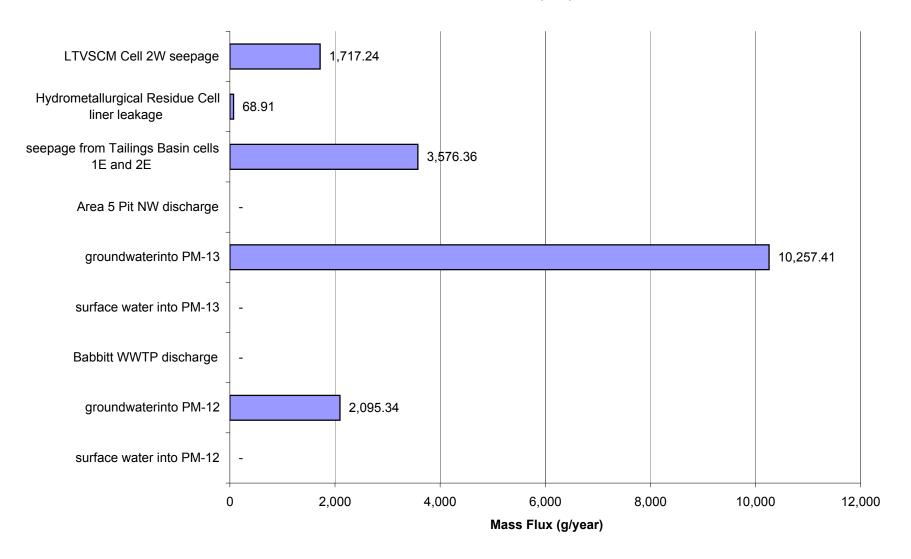

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Antimony (Sb)

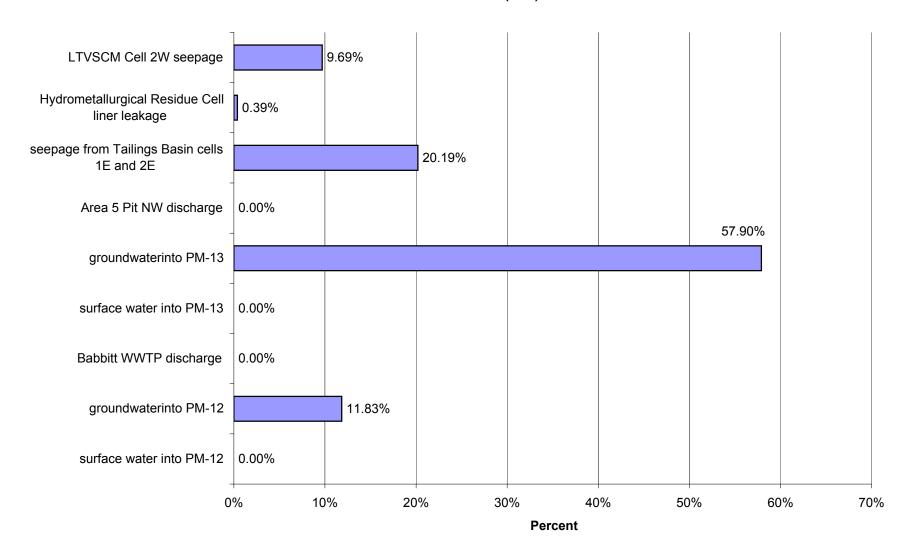

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for Low Flow for Sulfate (SO₄)

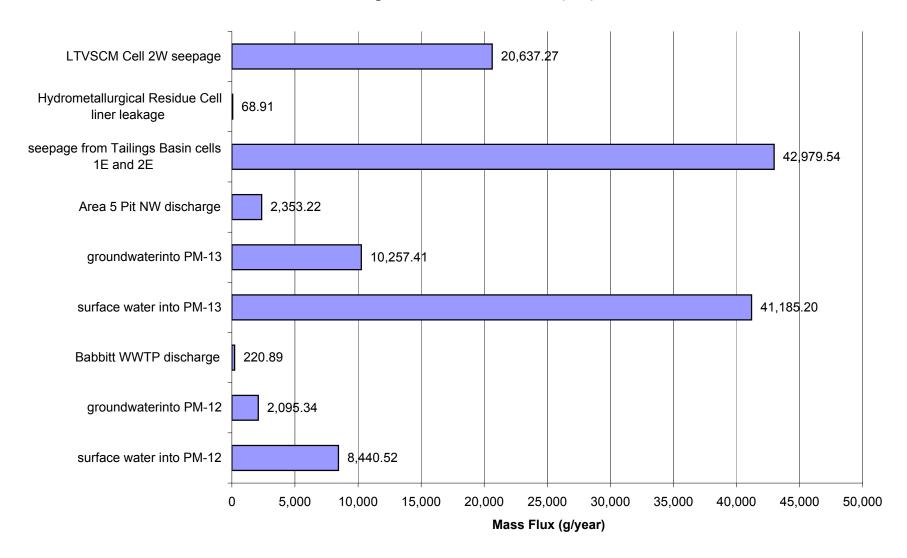

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Low Flow for Sulfate (SO₄)

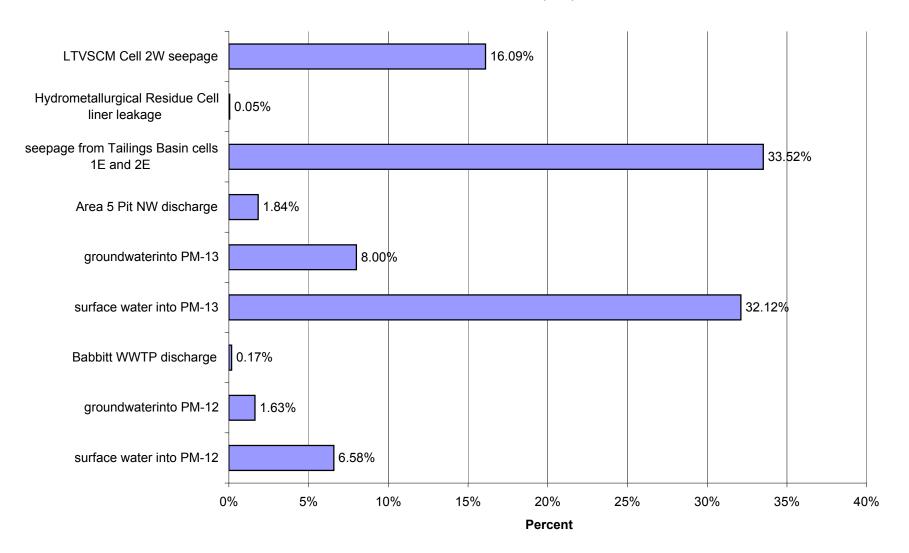

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for Average Flow for Sulfate (SO₄)

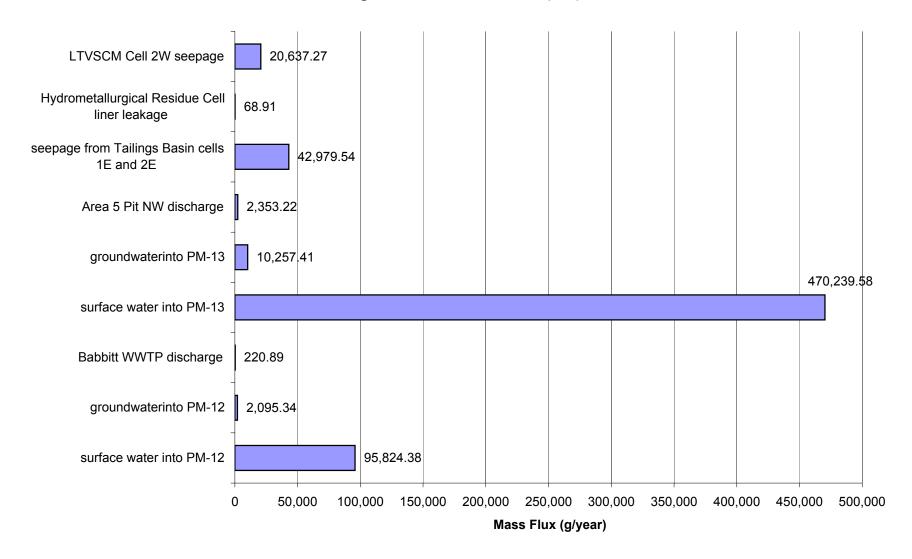

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for Average Flow for Sulfate (SO₄)

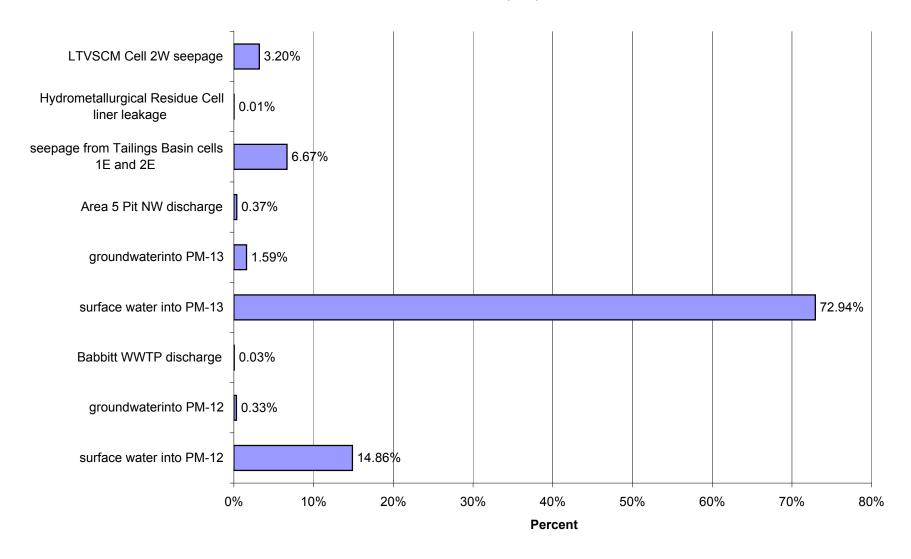

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 15 for High Flow for Sulfate (SO₄)

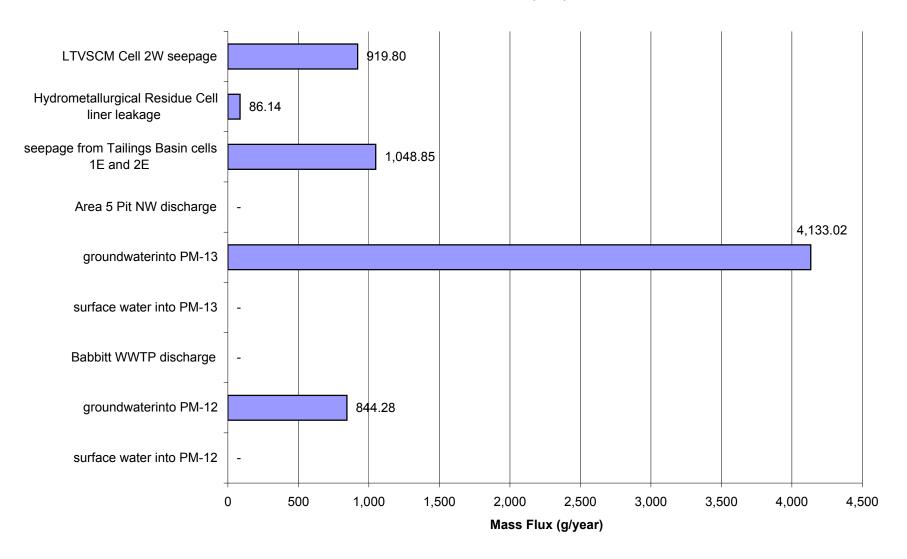

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 15 for High Flow for Sulfate (SO₄)

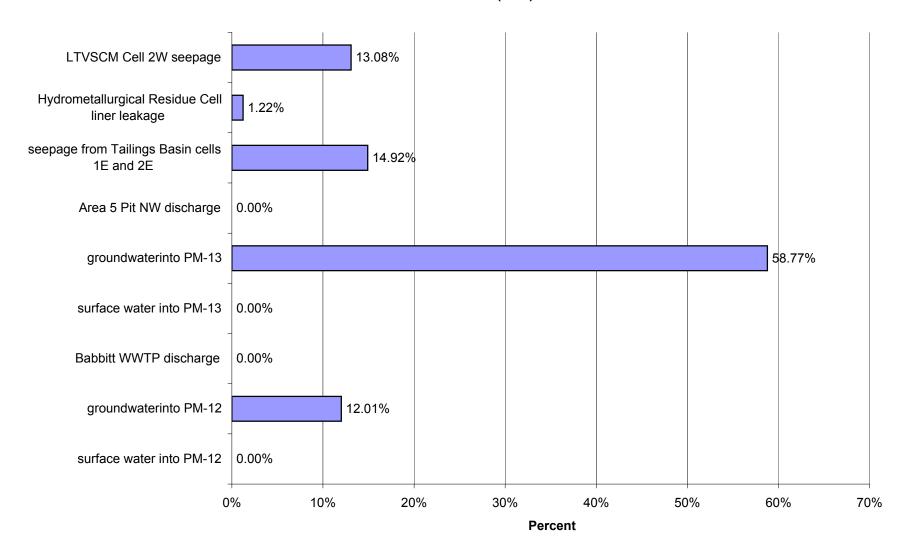

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Arsenic (As)

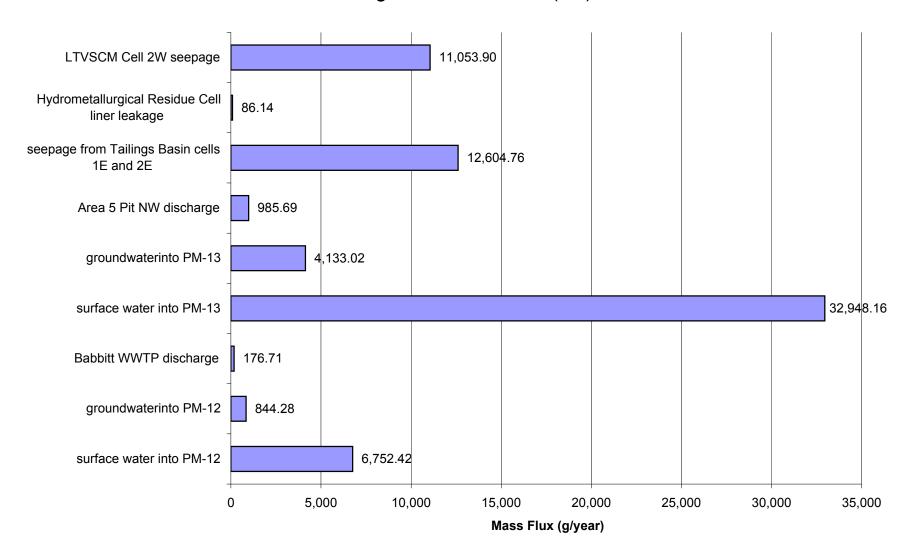

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Low Flow for Arsenic (As)

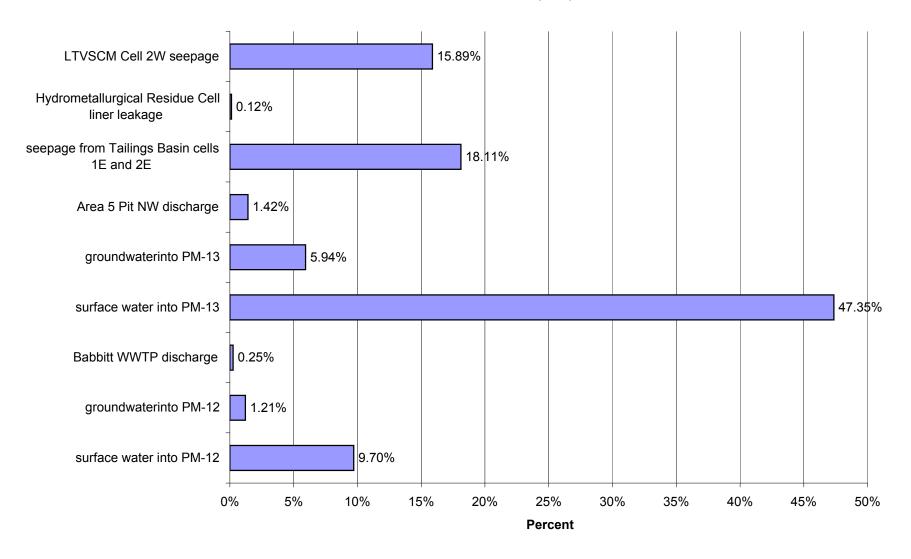

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Arsenic (As)

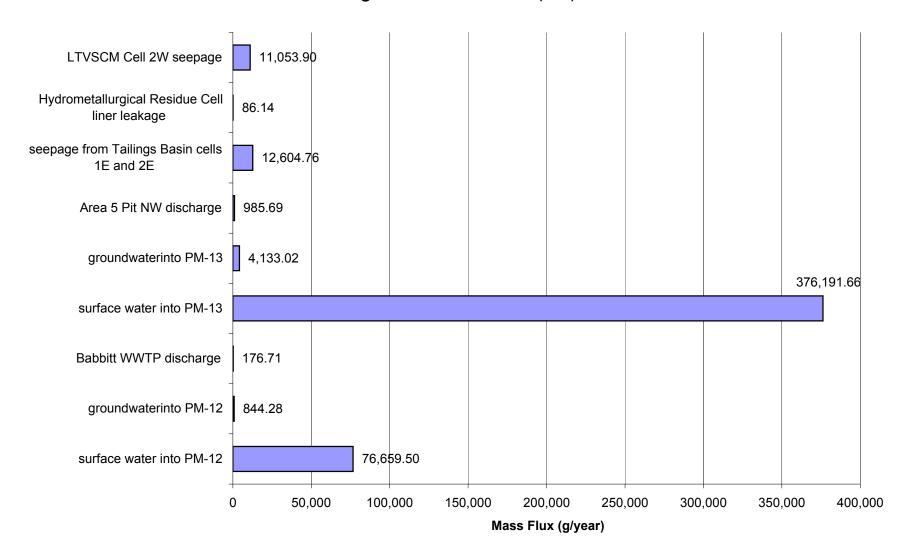

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Arsenic (As)

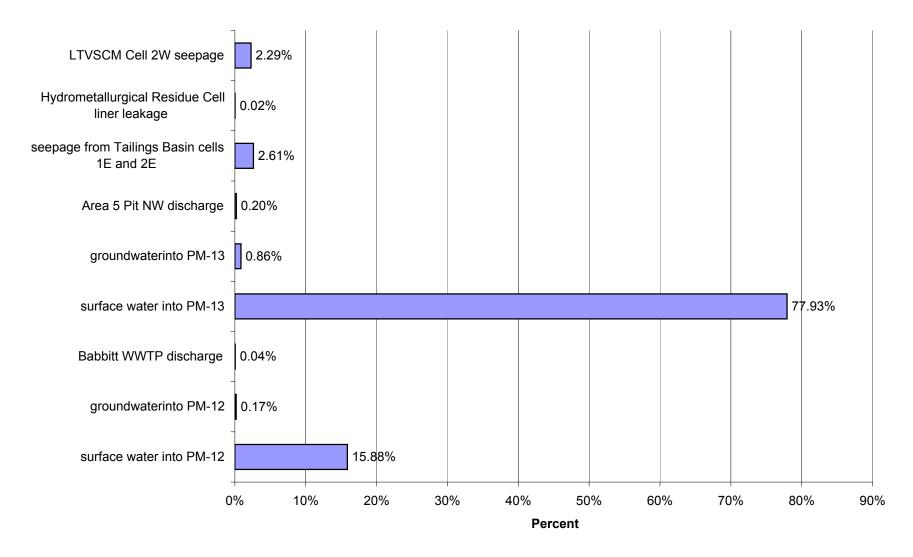

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Arsenic (As)

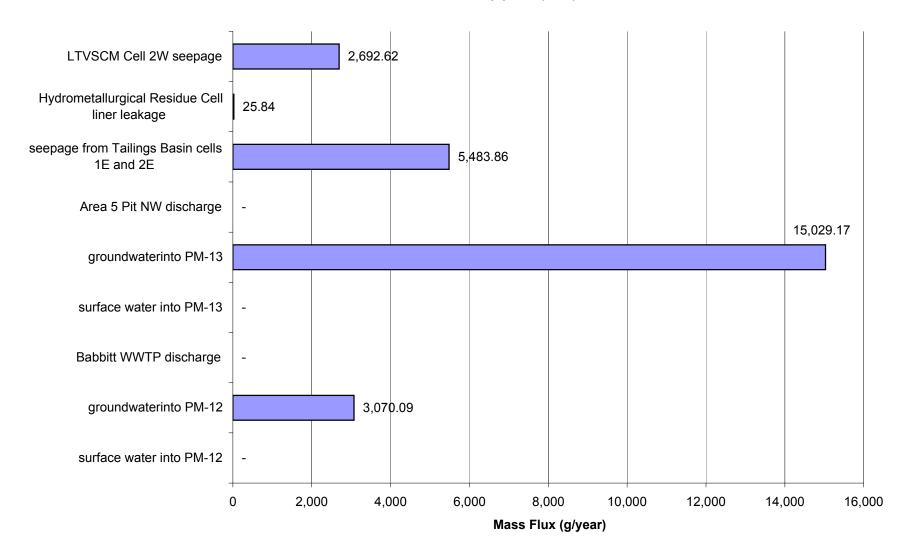

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Arsenic (As)

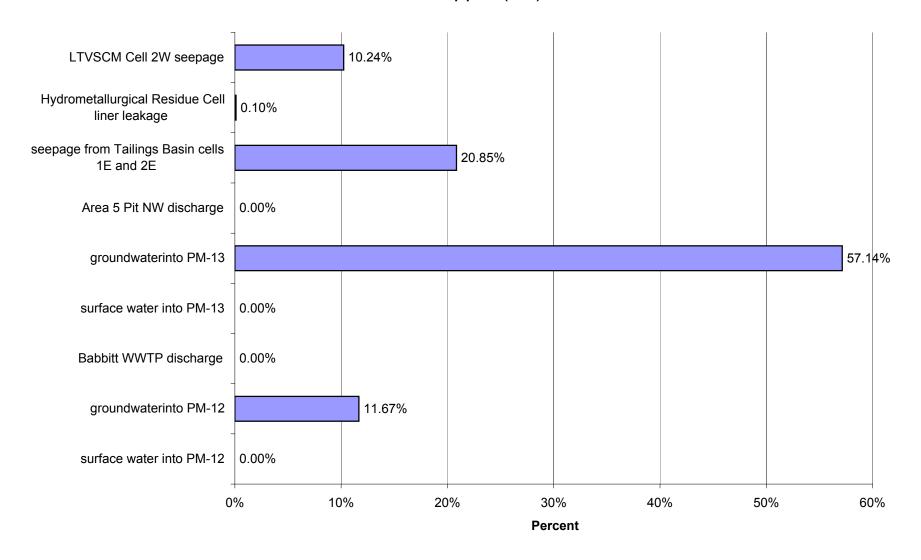

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Cobalt (Co)

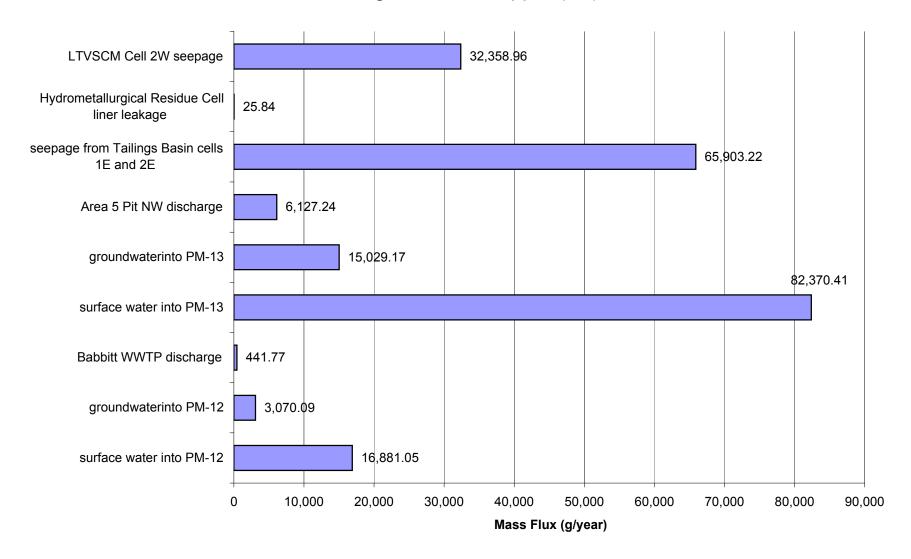

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Low Flow for Cobalt (Co)

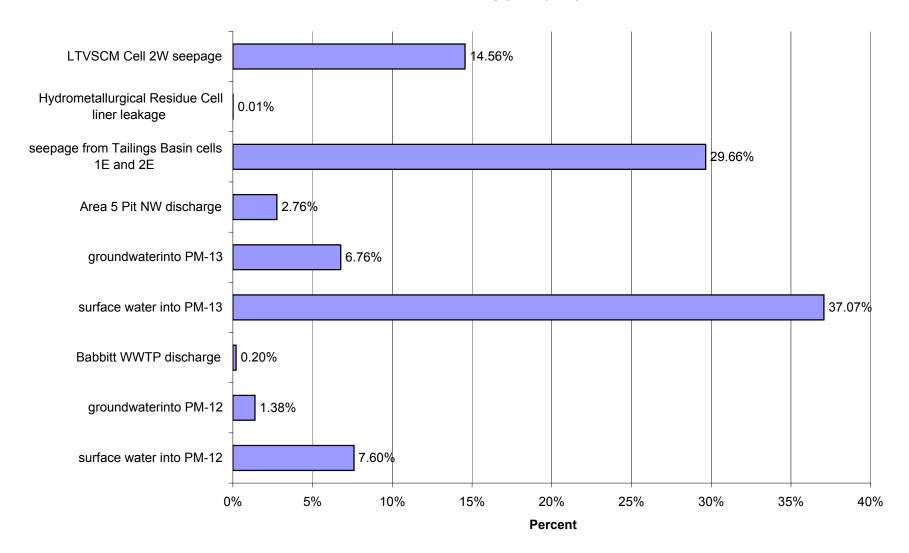

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Cobalt (Co)

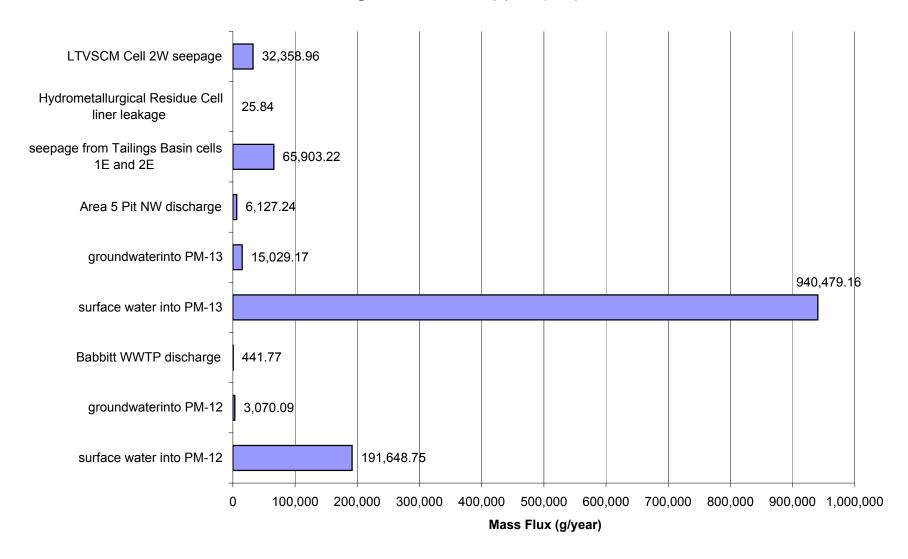

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Cobalt (Co)

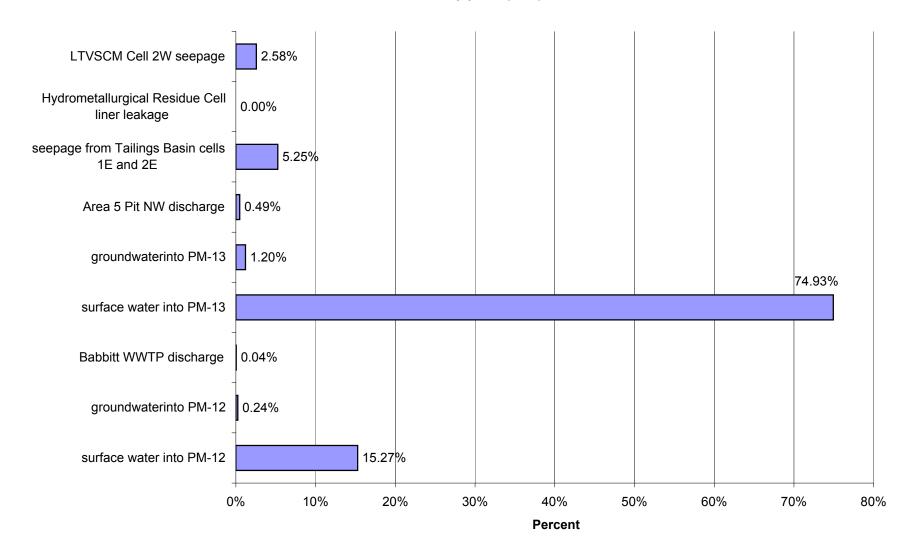

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Cobalt (Co)

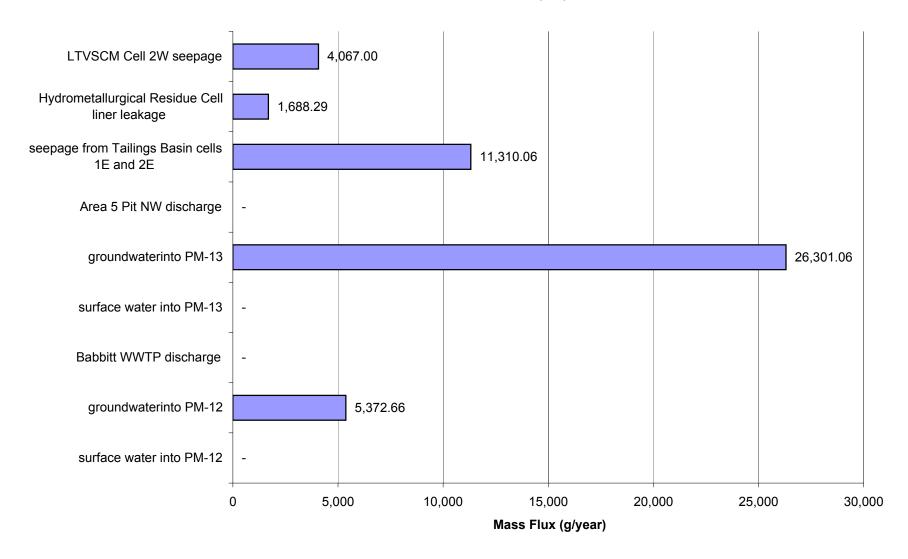

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Cobalt (Co)

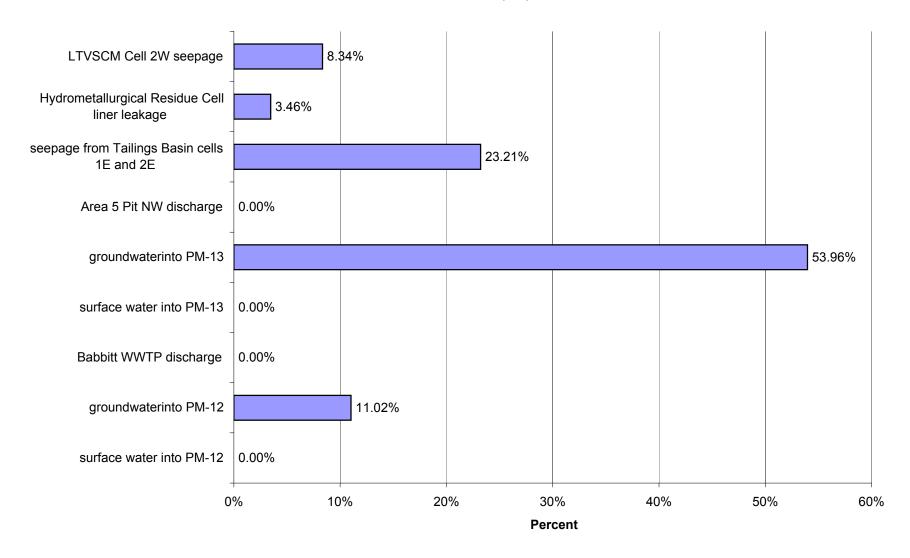

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Copper (Cu)

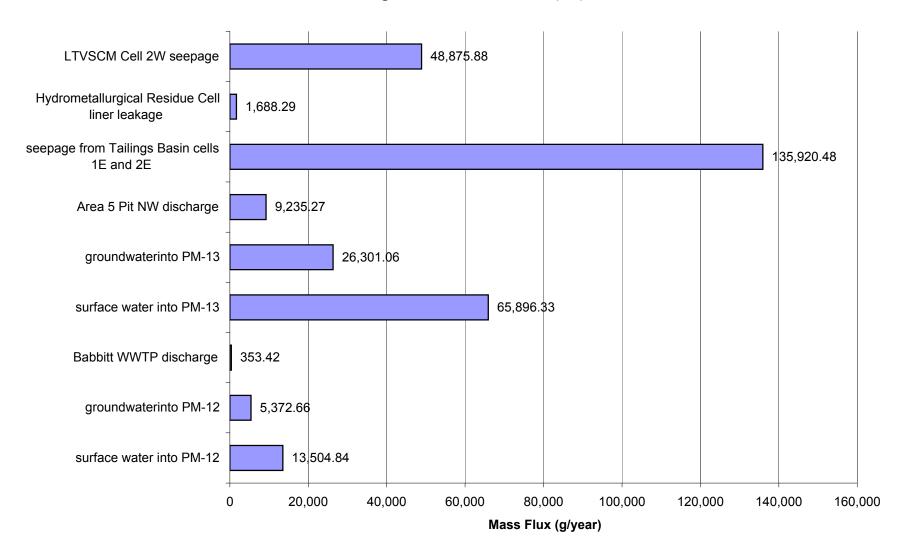

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Low Flow for Copper (Cu)

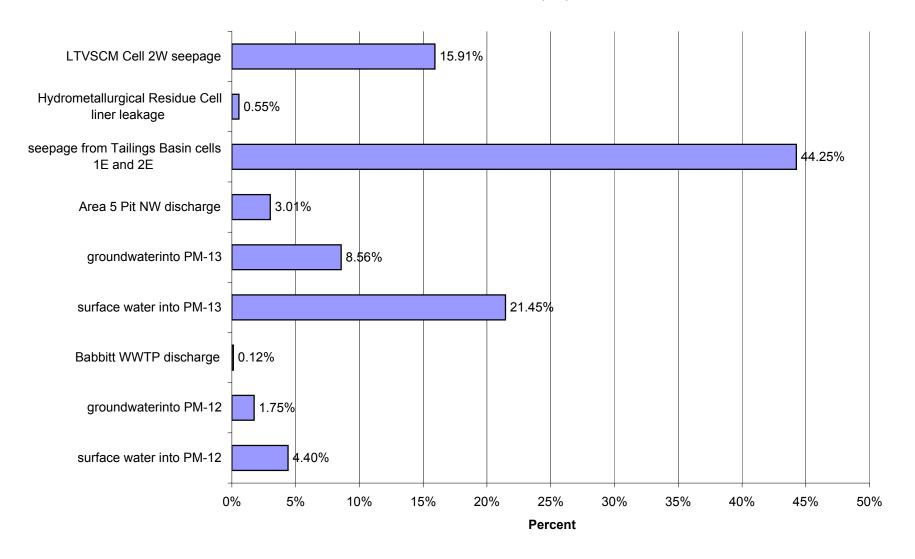

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Copper (Cu)

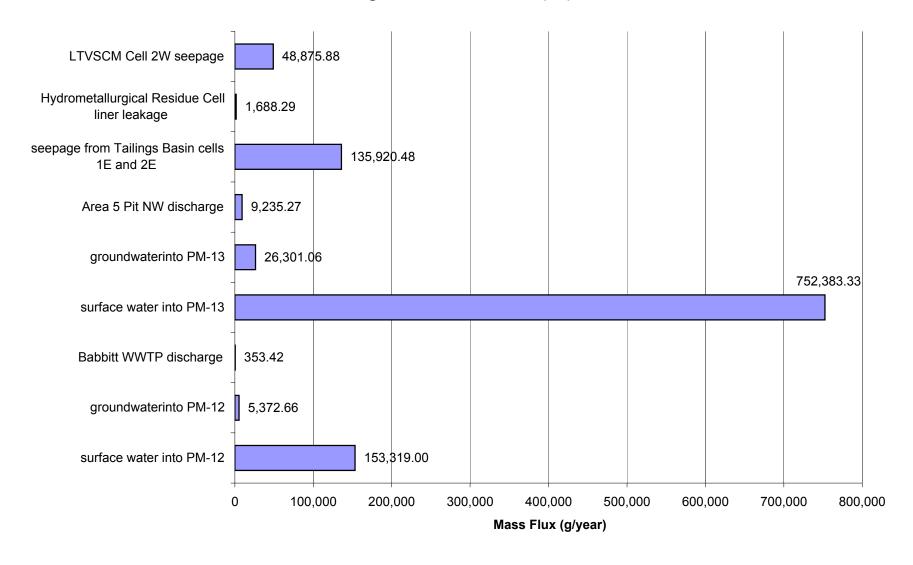

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Copper (Cu)

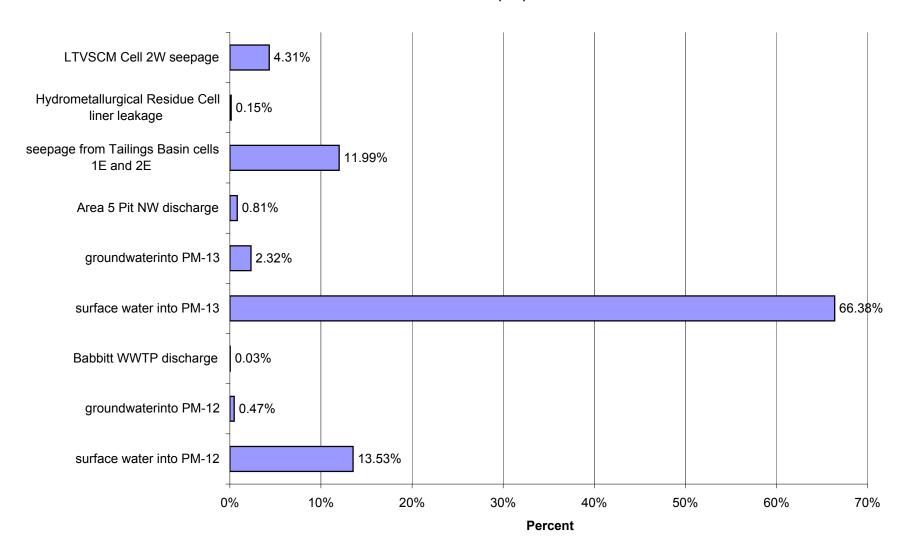

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Copper (Cu)

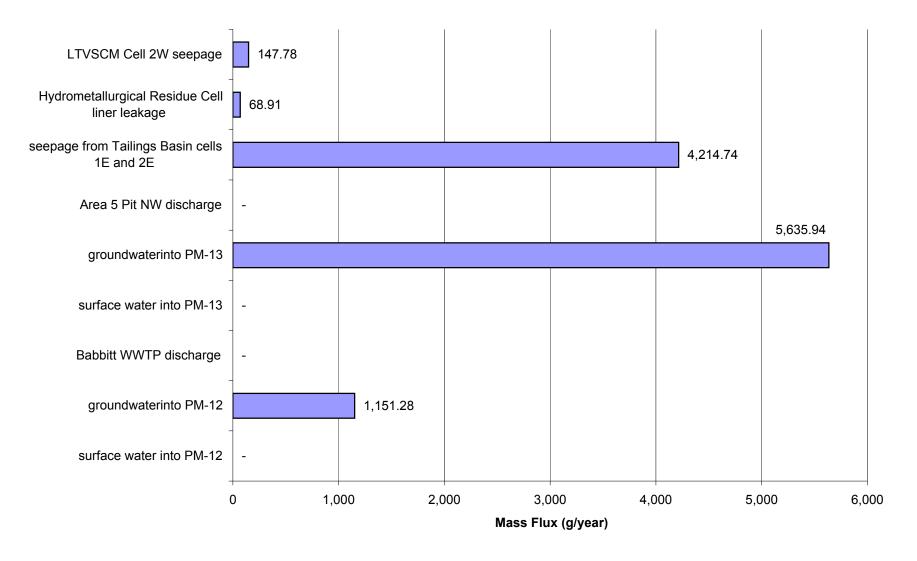

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Copper (Cu)

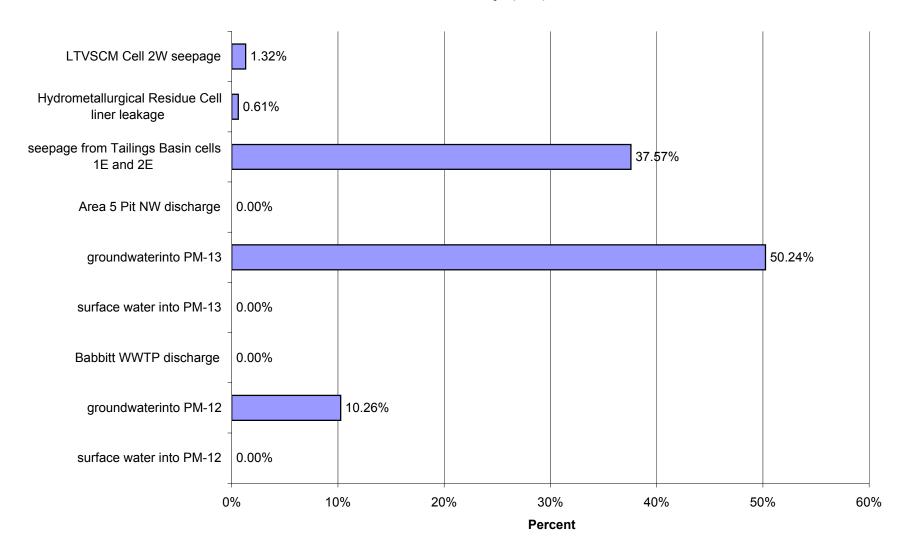

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Nickel (Ni)

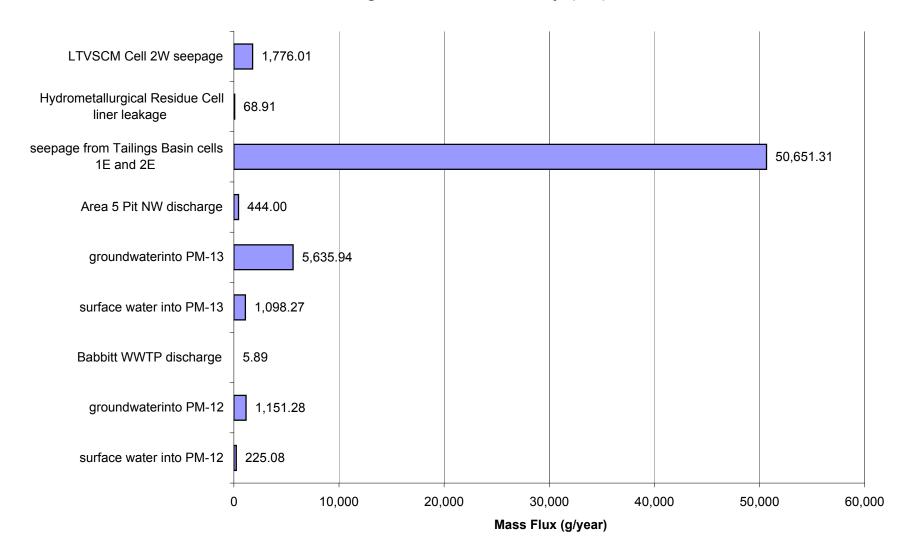

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Low Flow for Nickel (Ni)

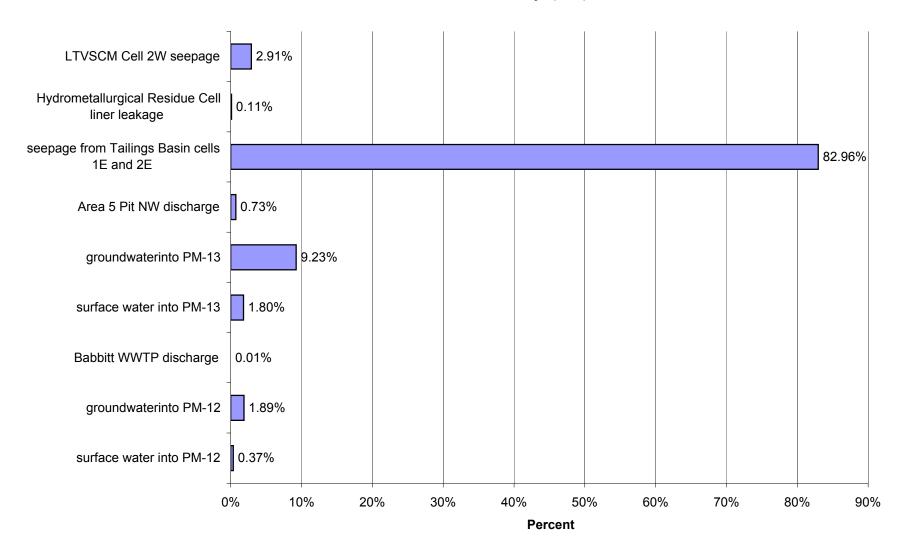

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Nickel (Ni)

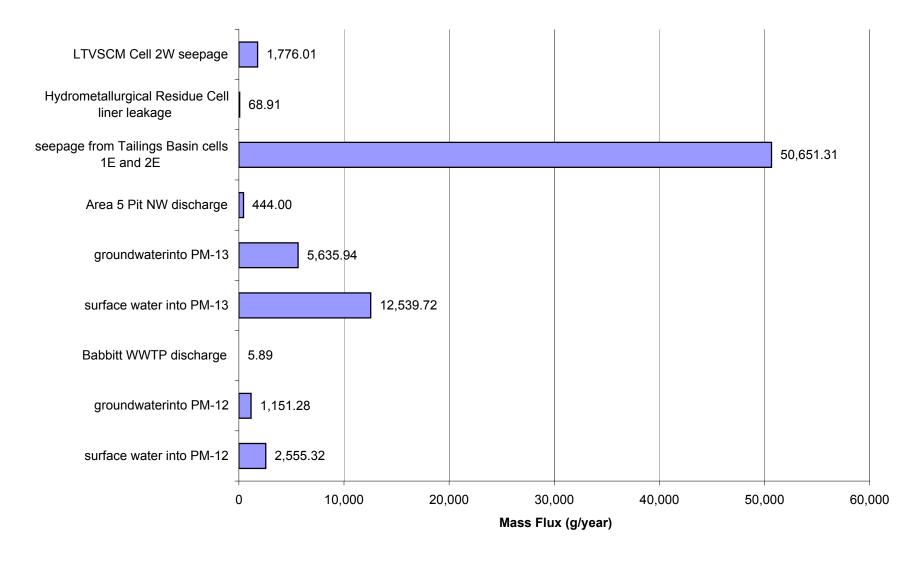

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Nickel (Ni)

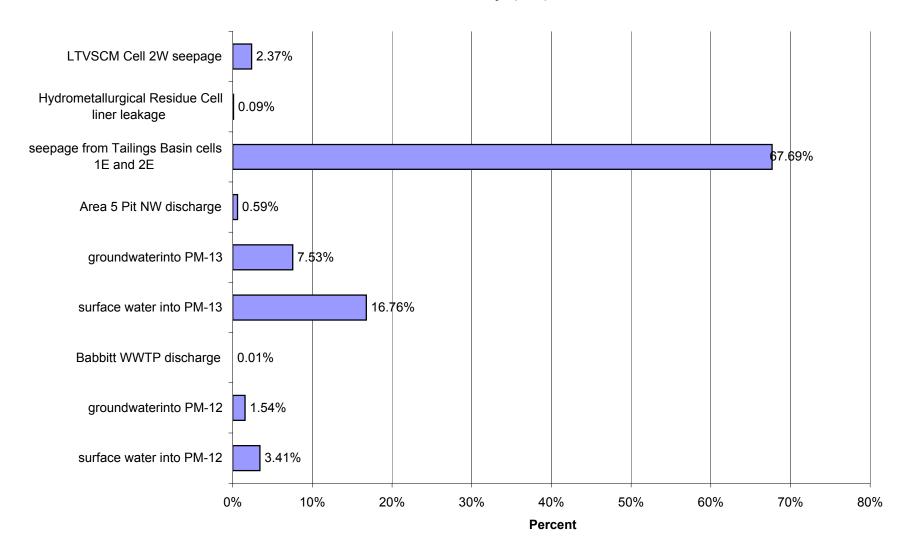

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Nickel (Ni)

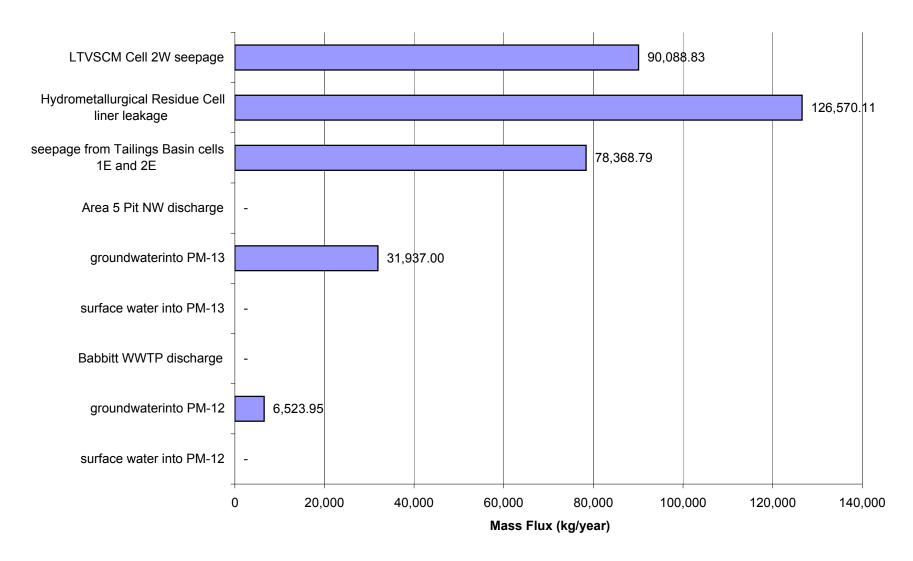

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Nickel (Ni)

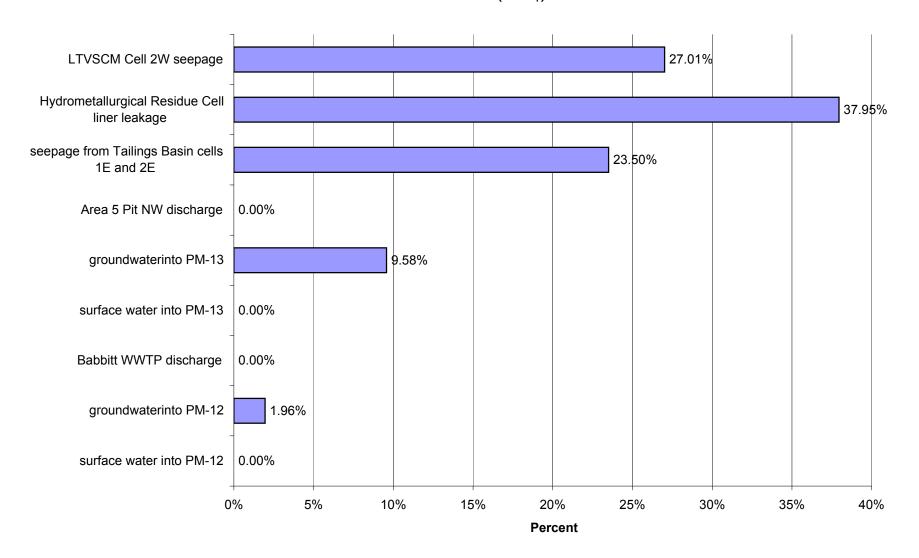

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Low Flow for Antimony (Sb)

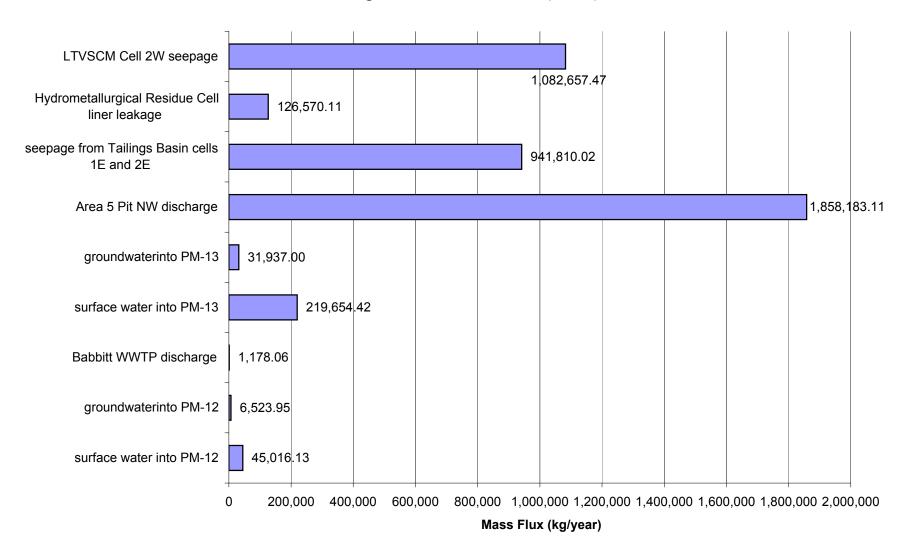

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Low Flow for Antimony (Sb)

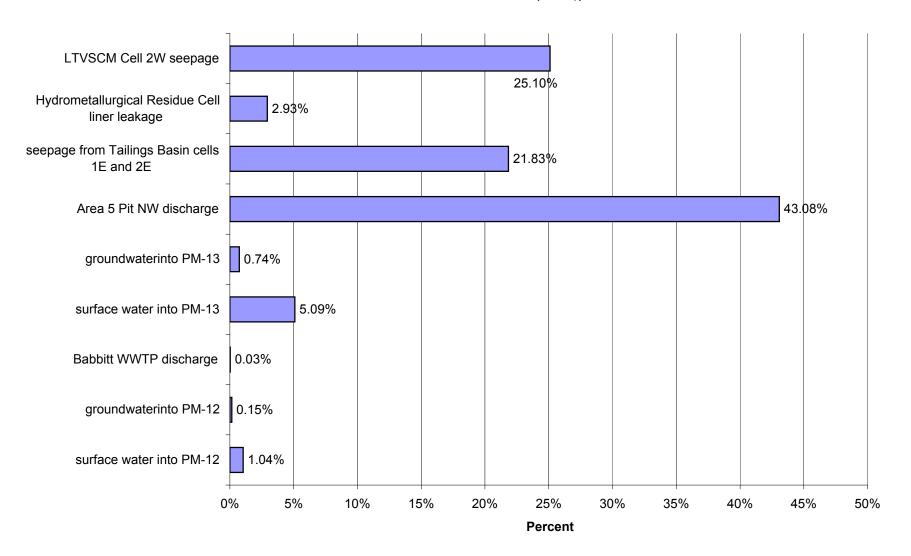

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for Average Flow for Antimony (Sb)

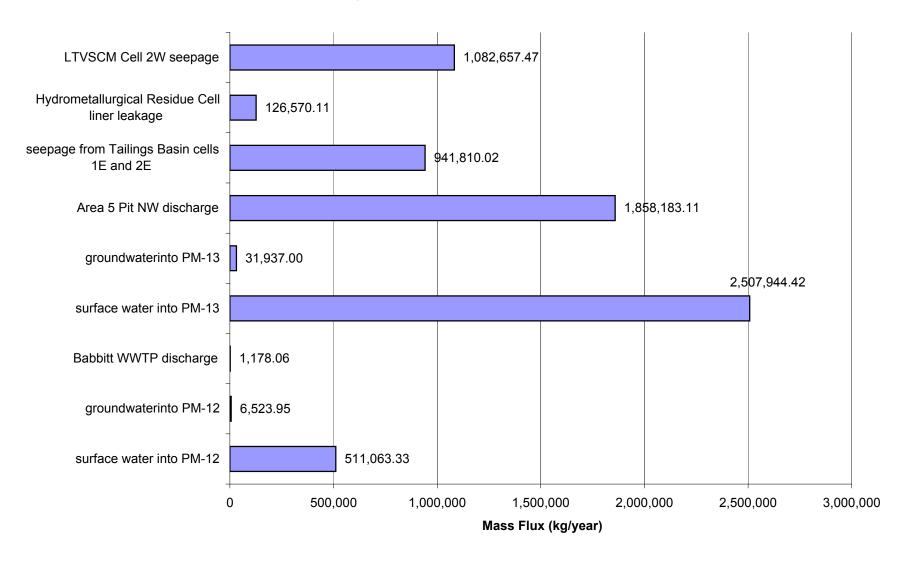

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Antimony (Sb)

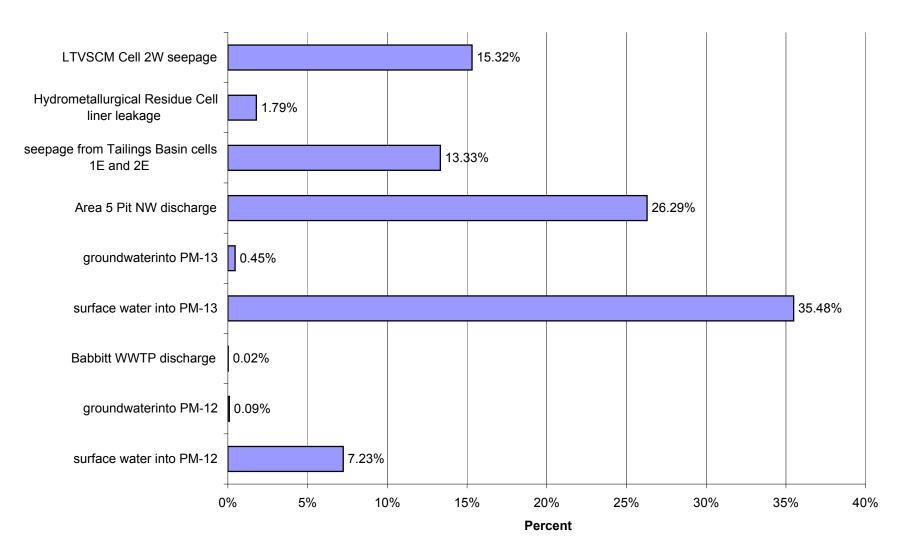

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Year 20 for High Flow for Antimony (Sb)

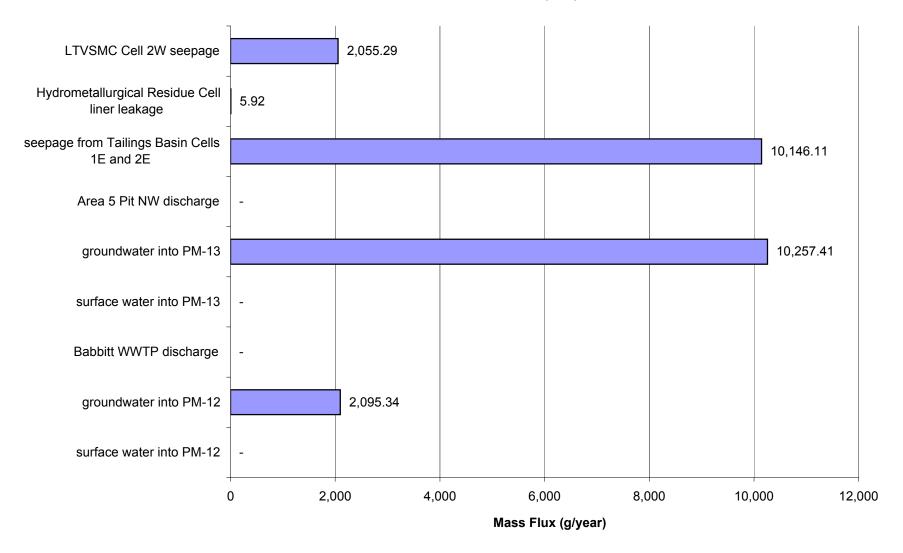

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Antimony (Sb)

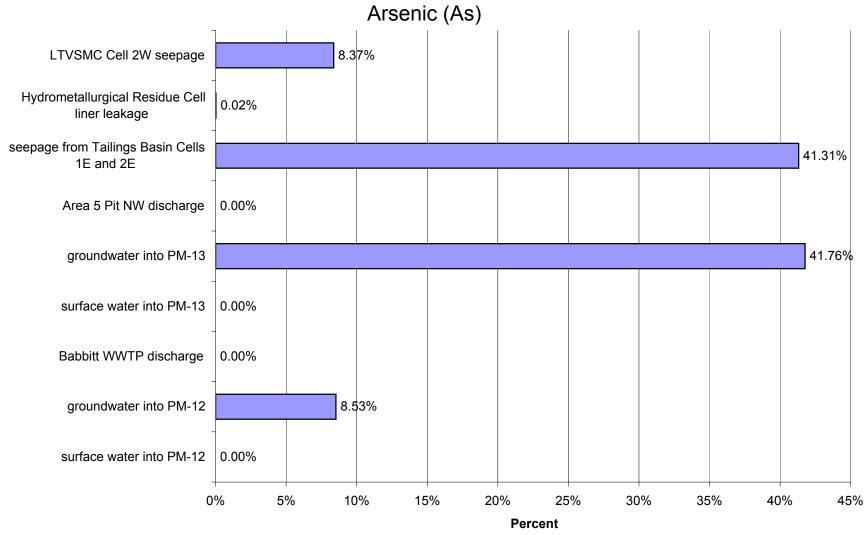

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for Low Flow for Sulfate (SO₄)

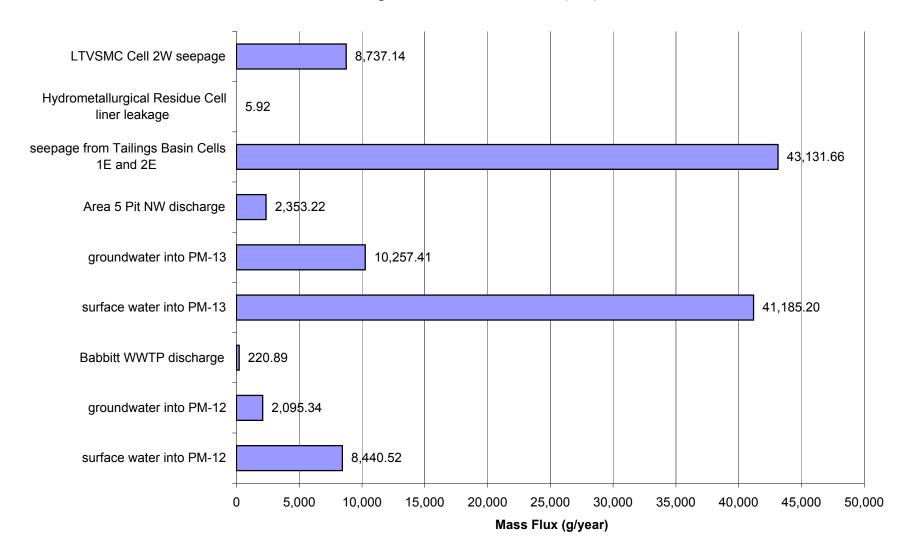

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Low Flow for Sulfate (SO₄)


Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for Average Flow for Sulfate (SO4)

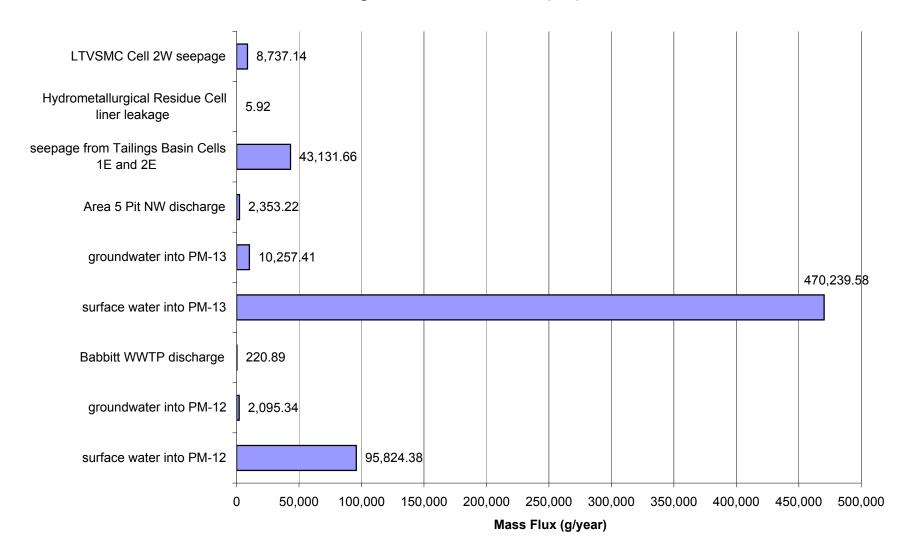

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for Average Flow for Sulfate (SO₄)

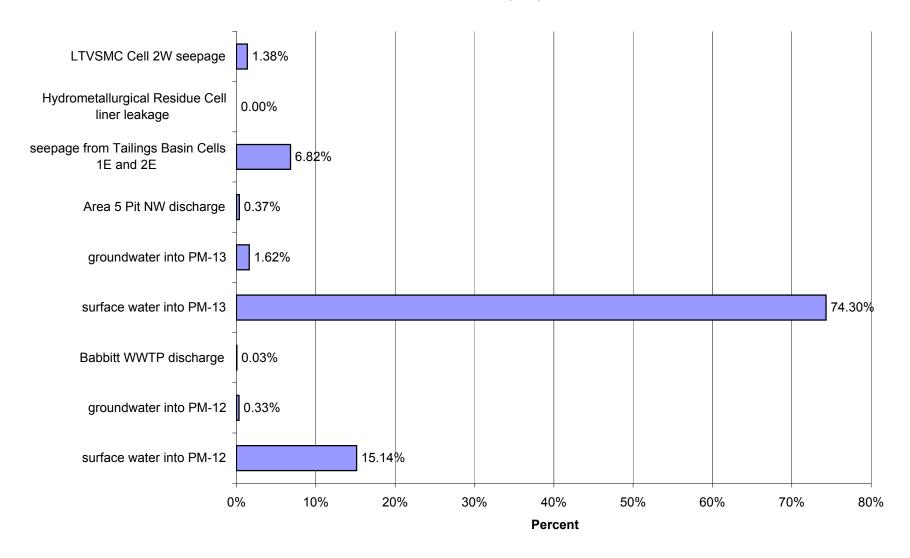

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Year 20 for High Flow for Sulfate (SO₄)

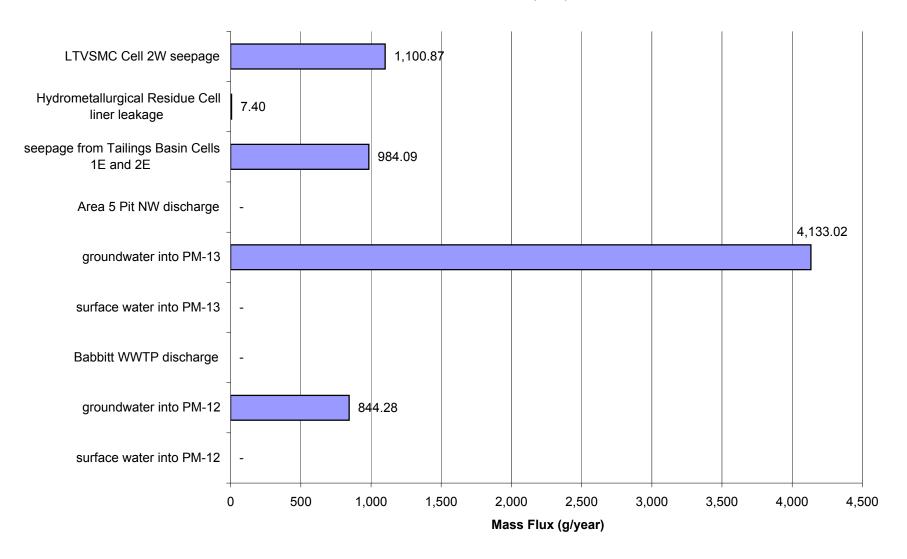

Geotechnical Mitigation: Percent of Impacts at PM-13 in Year 20 for High Flow for Sulfate (SO₄)

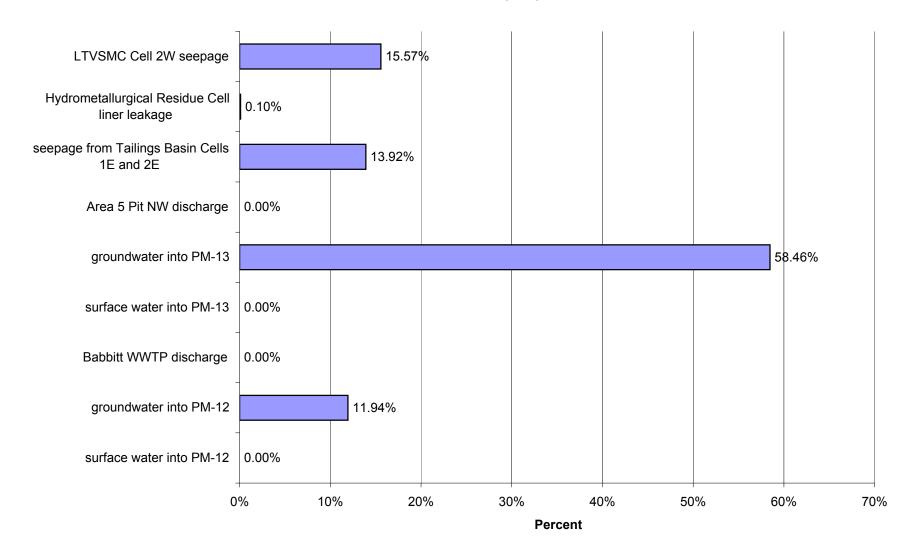

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Arsenic (As)

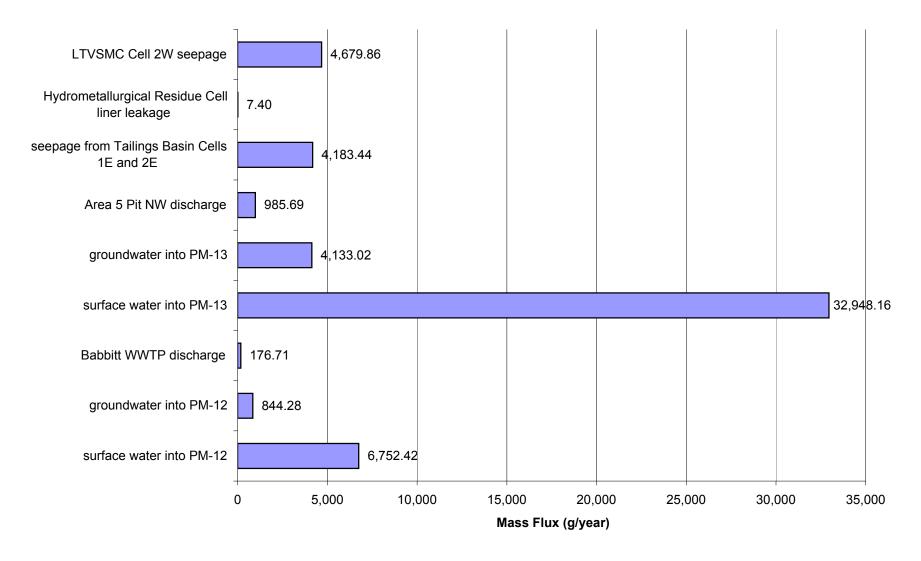
Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for

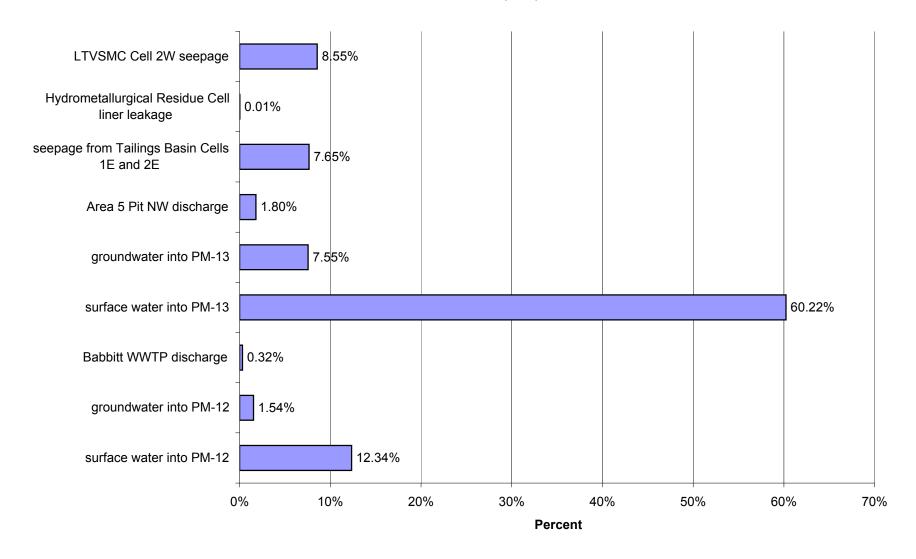

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Arsenic (As)

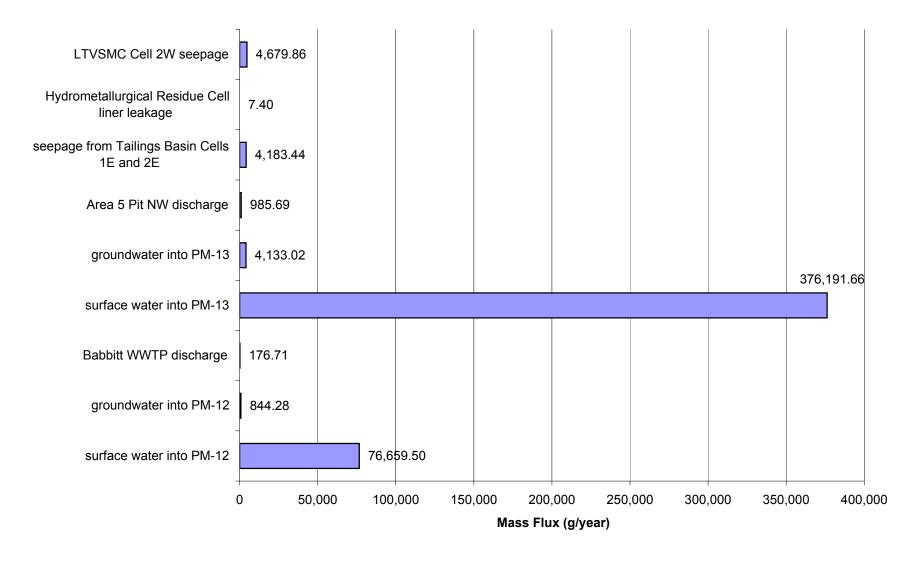

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Arsenic (As)

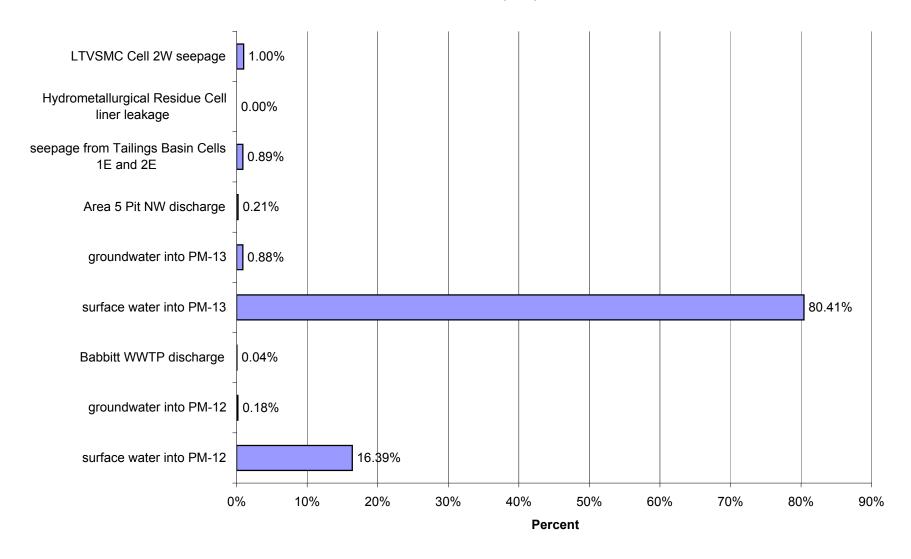

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Arsenic (As)

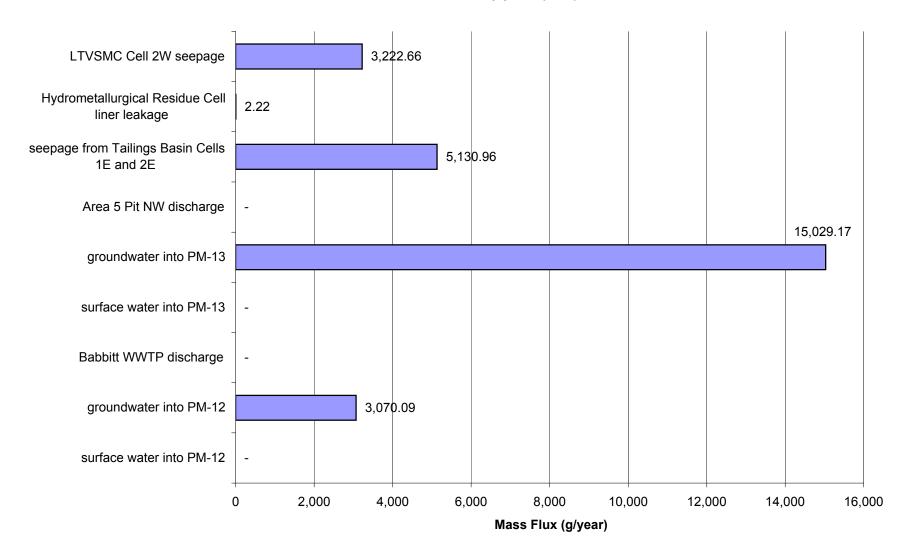

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Arsenic (As)

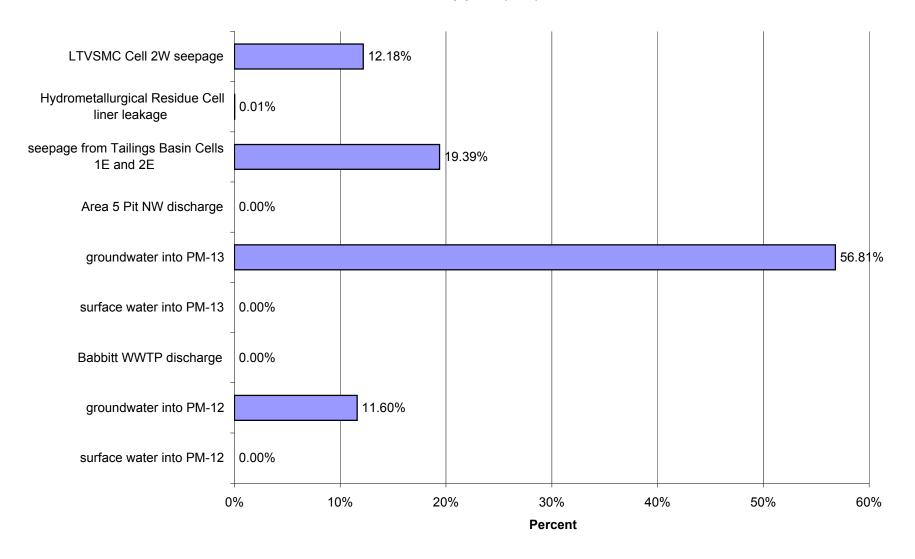

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Cobalt (Co)

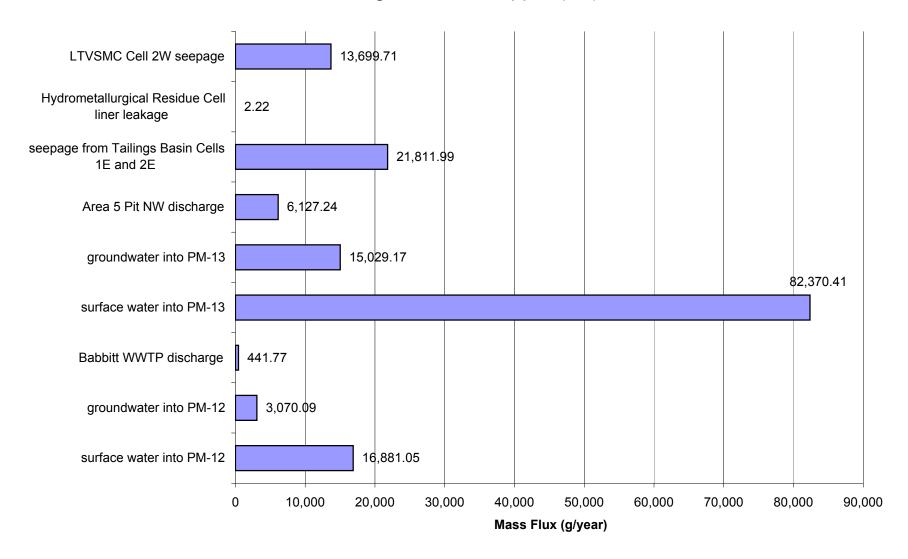

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for Cobalt (Co)

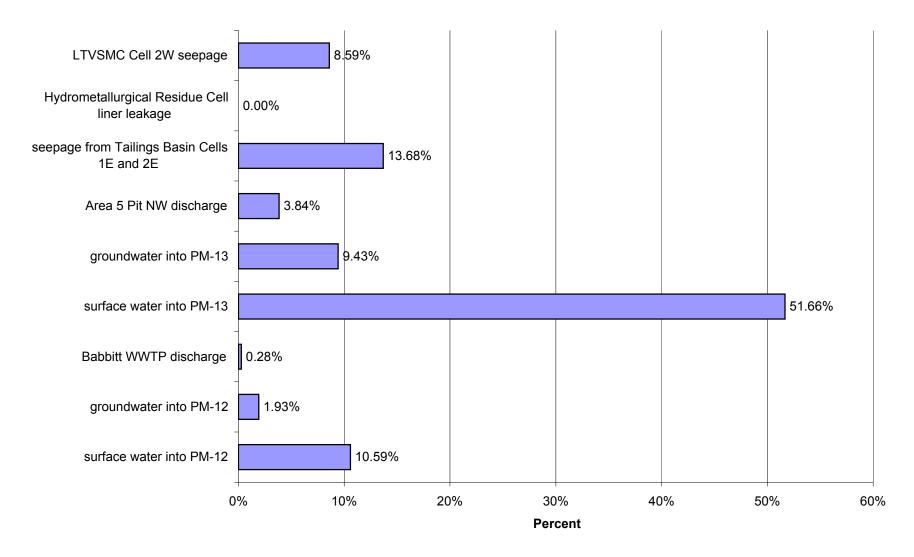

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Cobalt (Co)

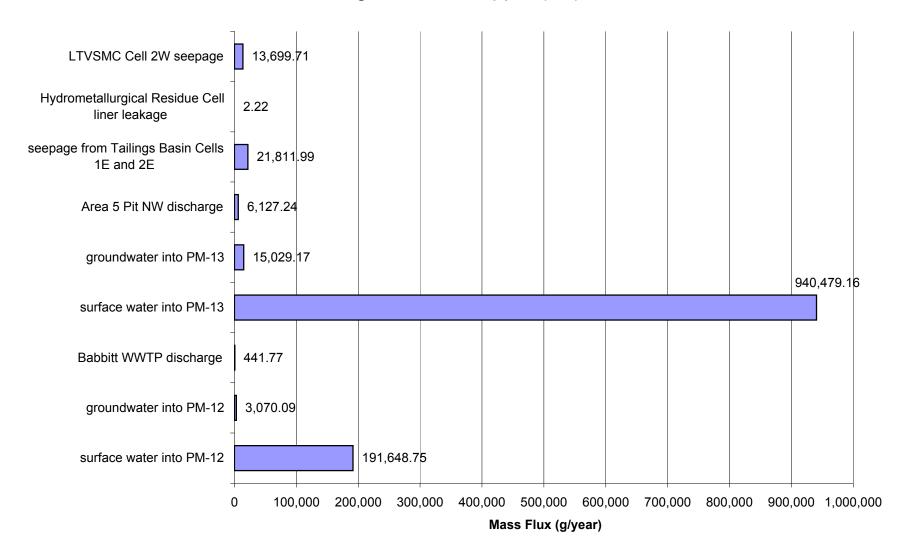

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Cobalt (Co)

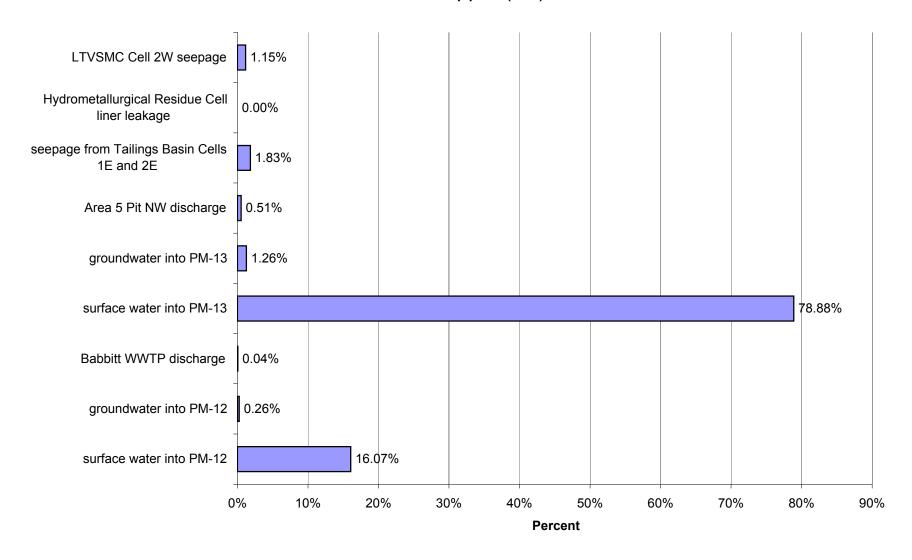

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Cobalt (Co)

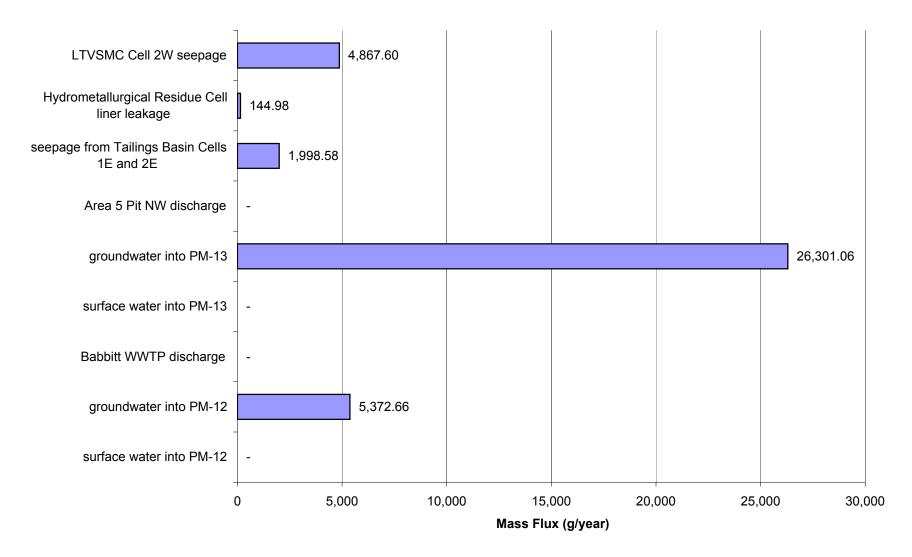

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Cobalt (Co)

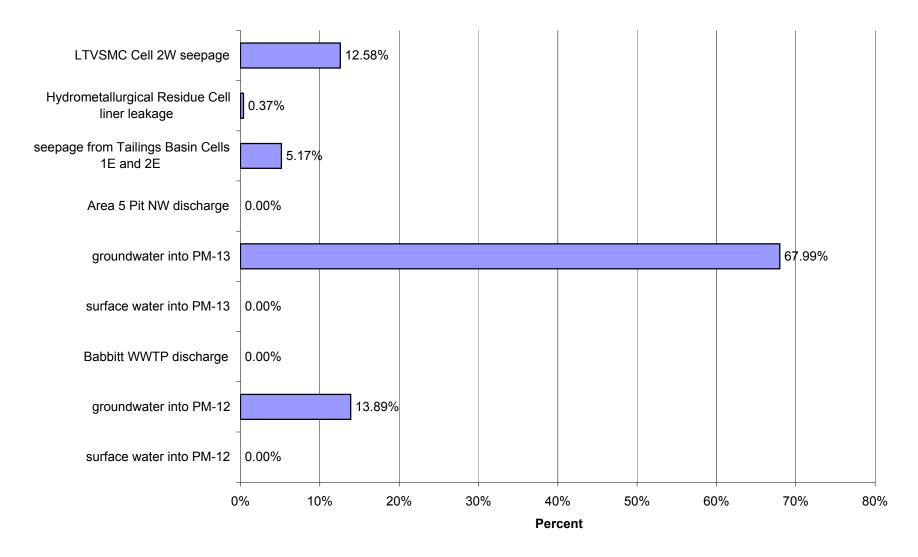

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Copper (Cu)

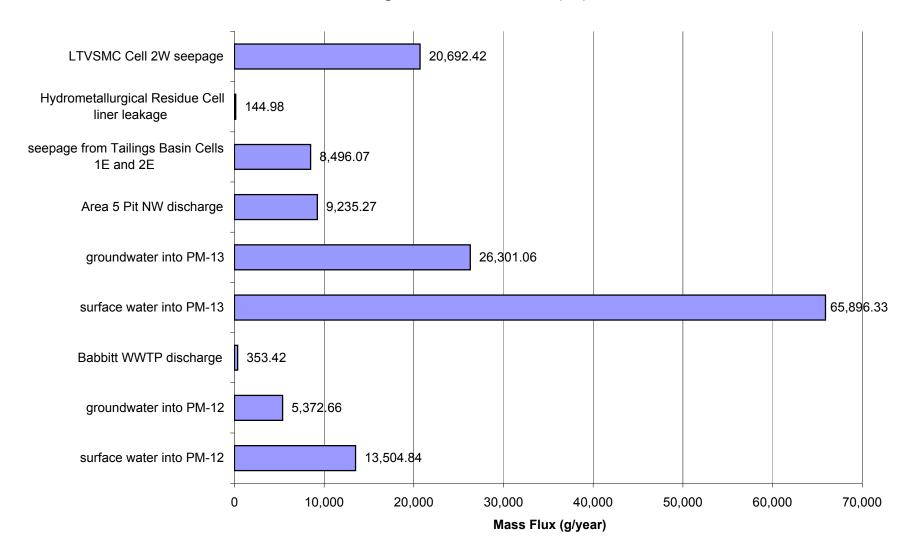

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for Copper (Cu)

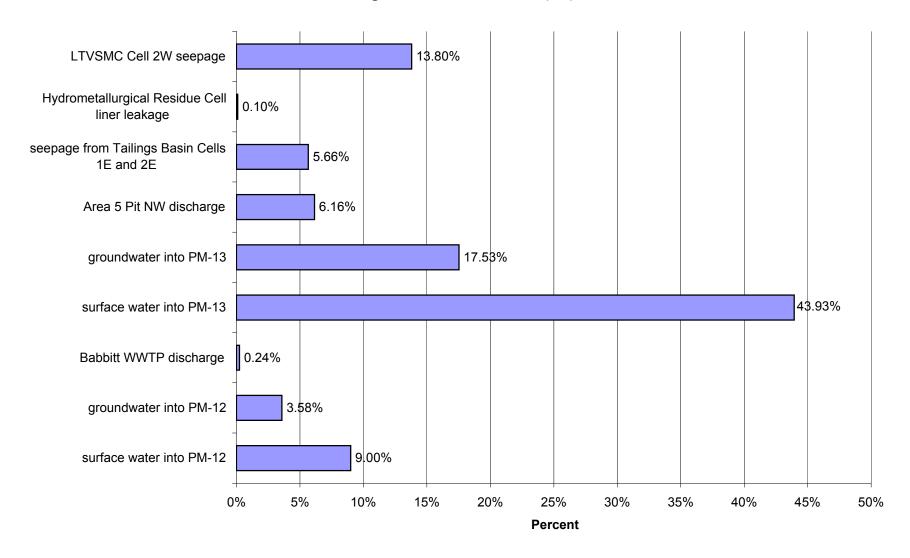

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Copper (Cu)

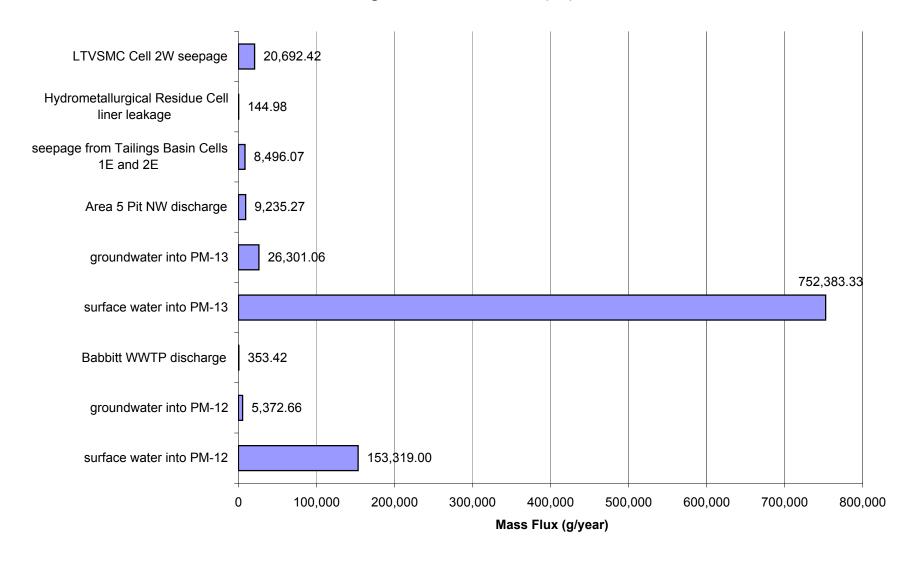

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Copper (Cu)

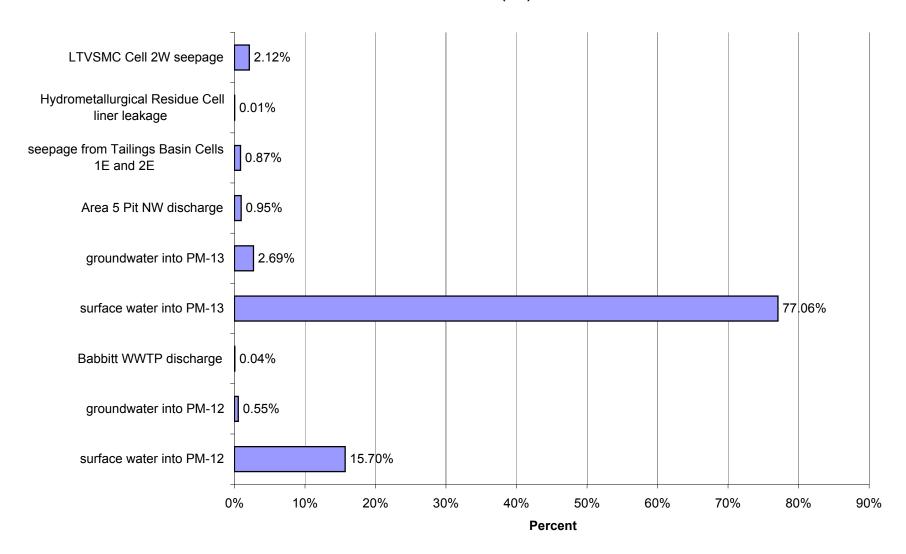

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Copper (Cu)

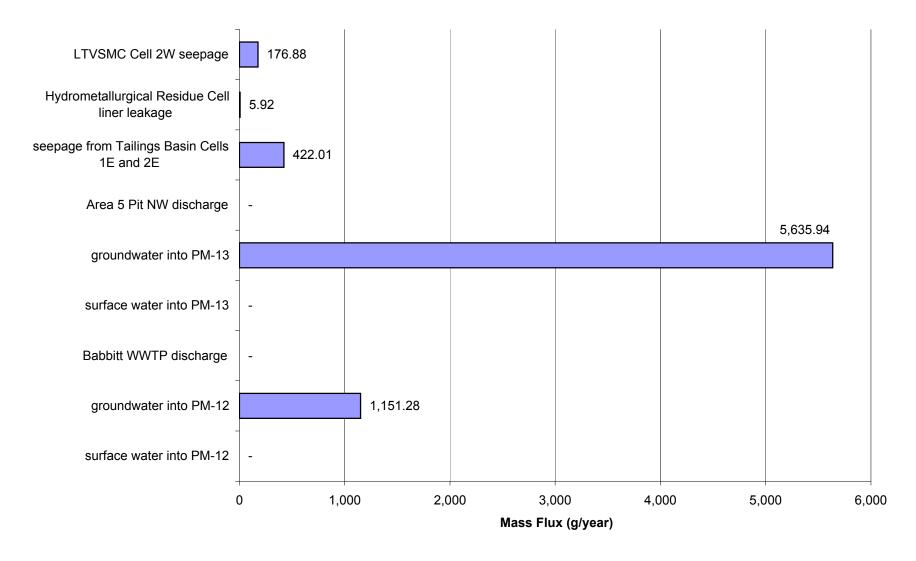

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Copper (Cu)

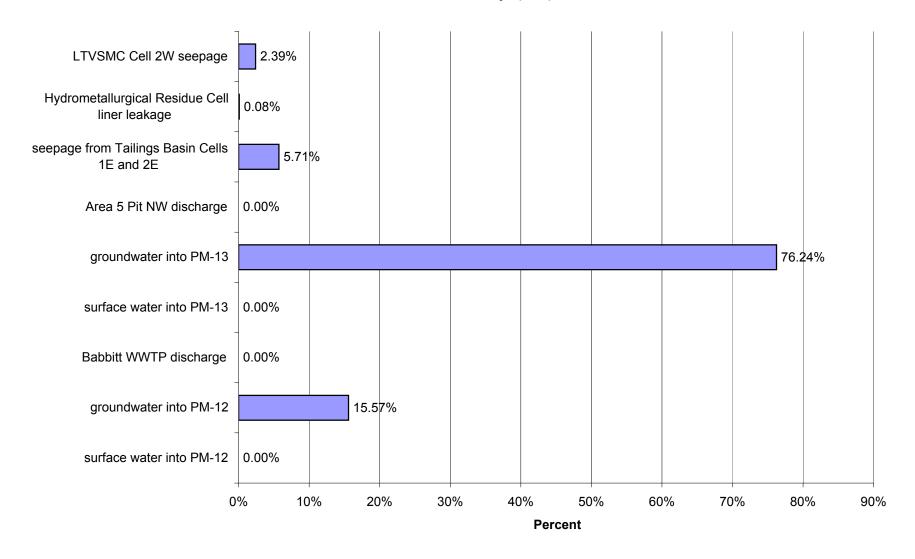

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Nickel (Ni)

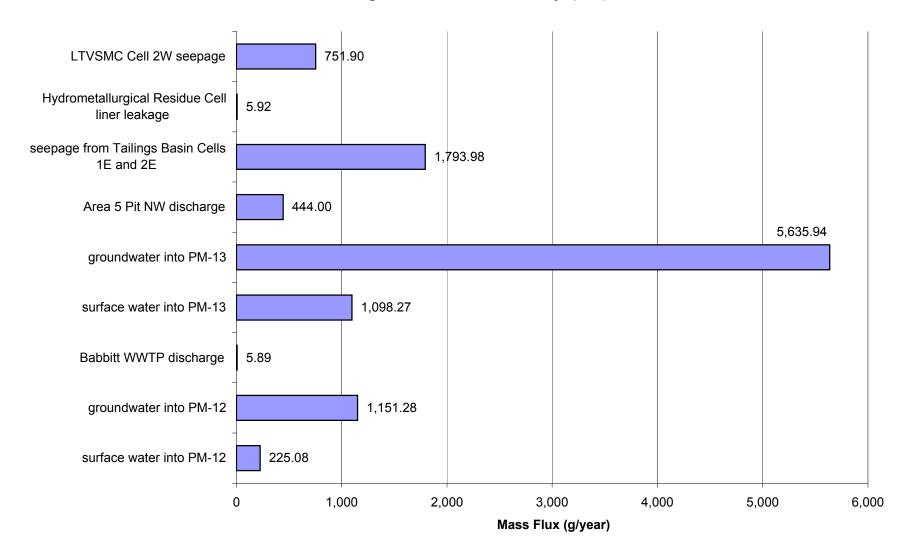

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for Nickel (Ni)

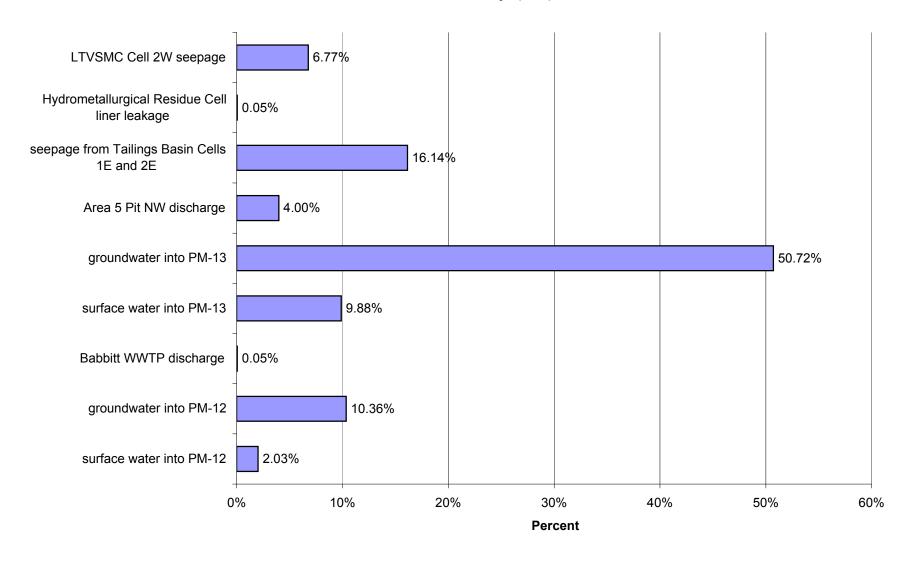

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Nickel (Ni)

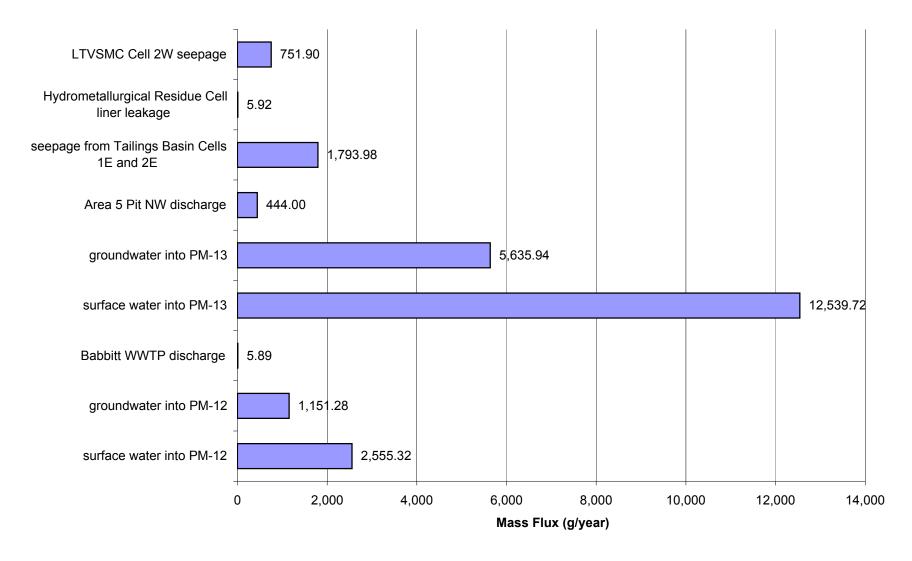

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Nickel (Ni)

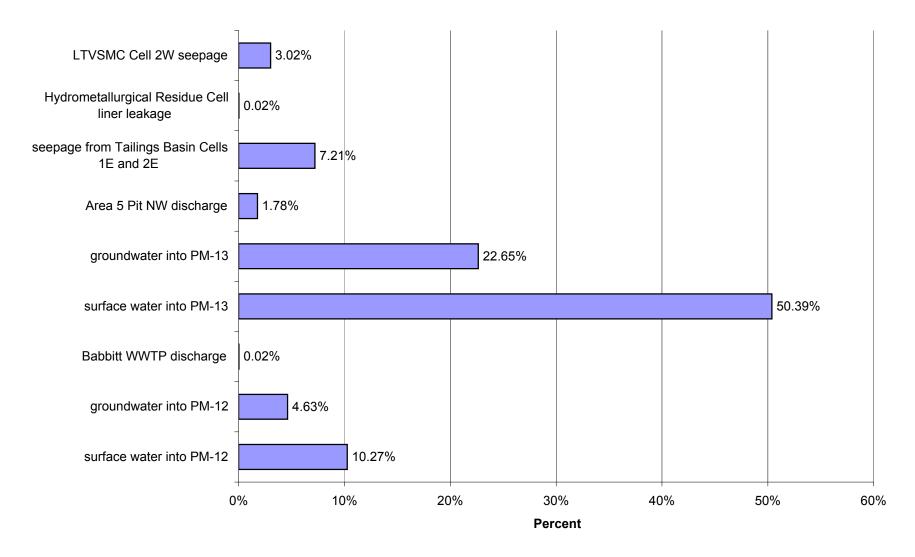

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Nickel (Ni)

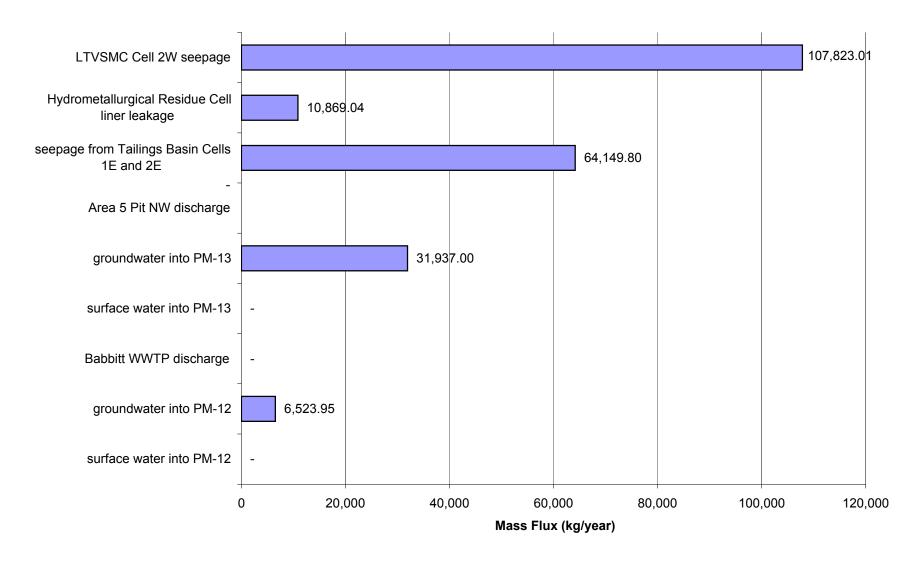

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Nickel (Ni)

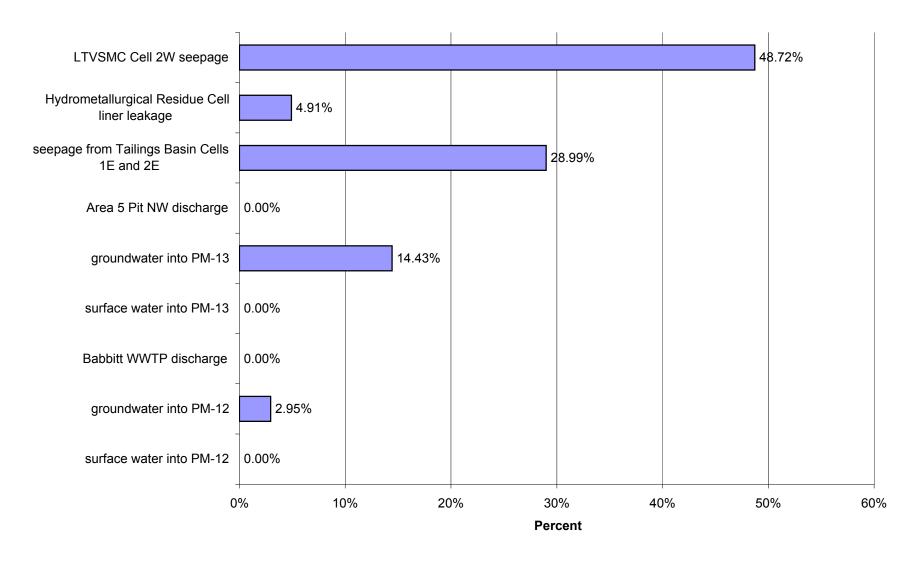

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Low Flow for Antimony (Sb)

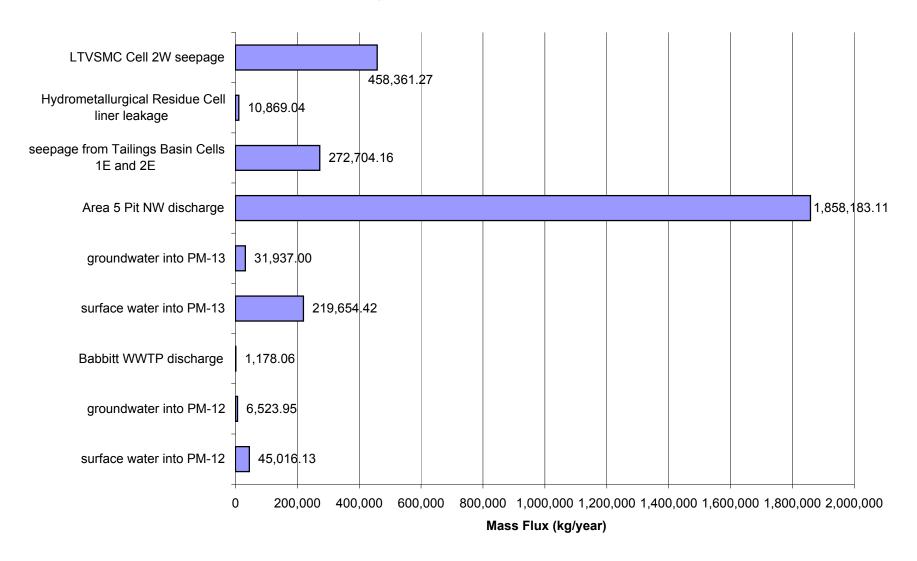

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for Antimony (Sb)

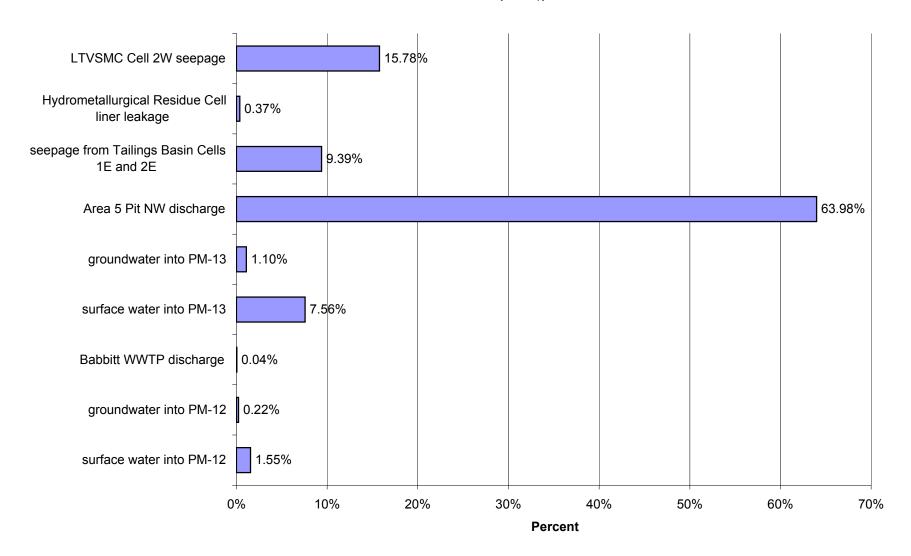

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for Average Flow for Antimony (Sb)

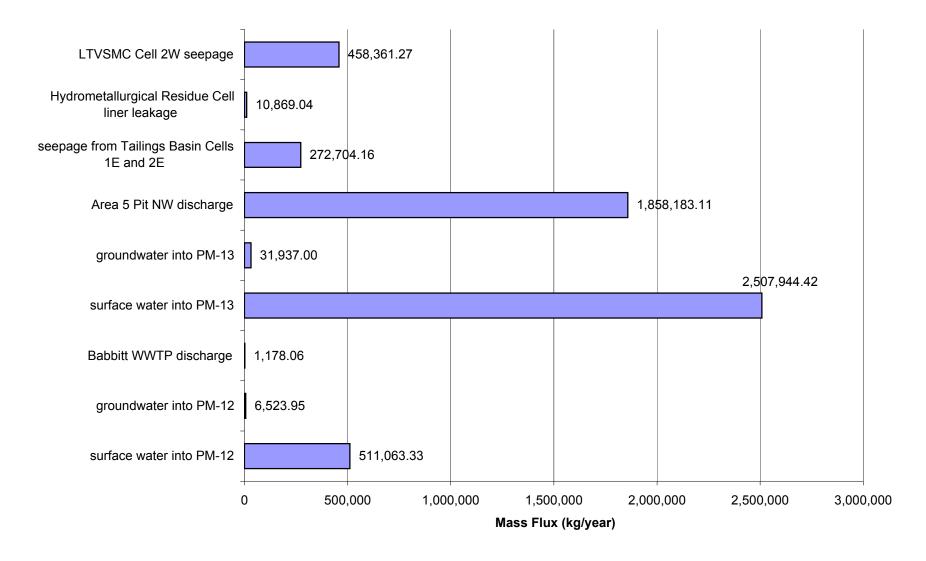

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Antimony (Sb)

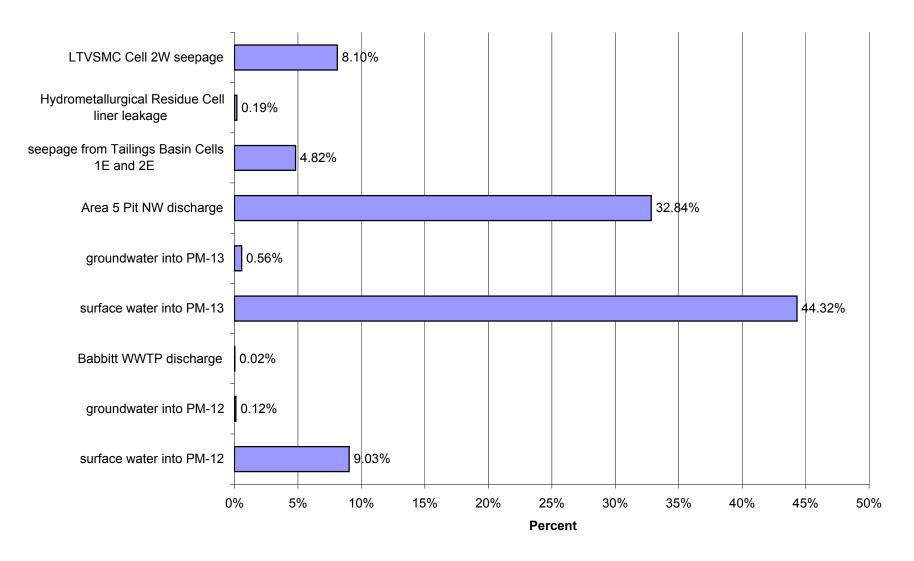

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Closure for High Flow for Antimony (Sb)

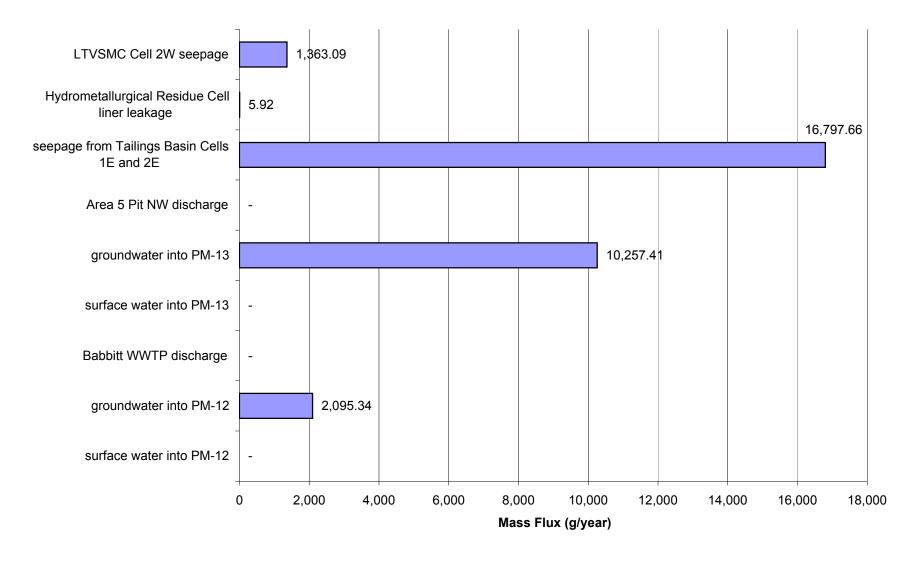

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Antimony (Sb)

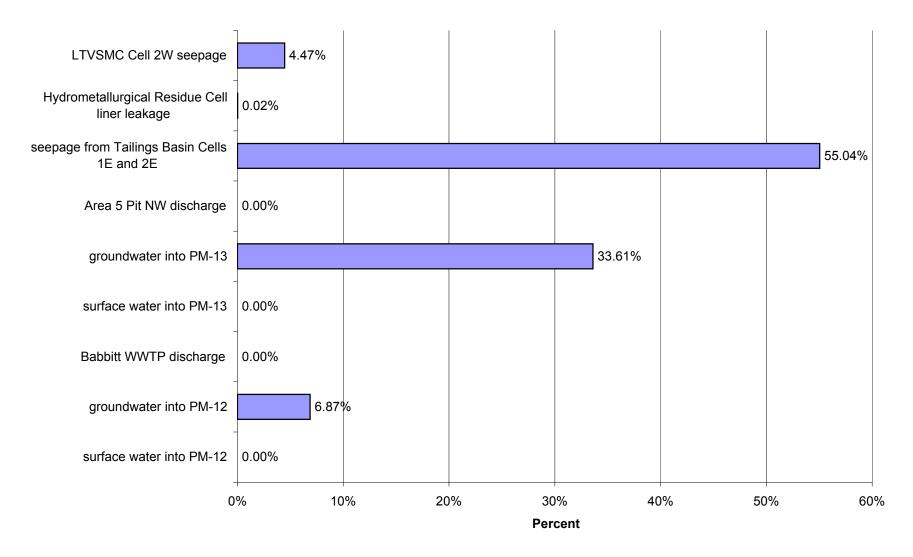

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Closure for Low Flow for Sulfate (SO₄)

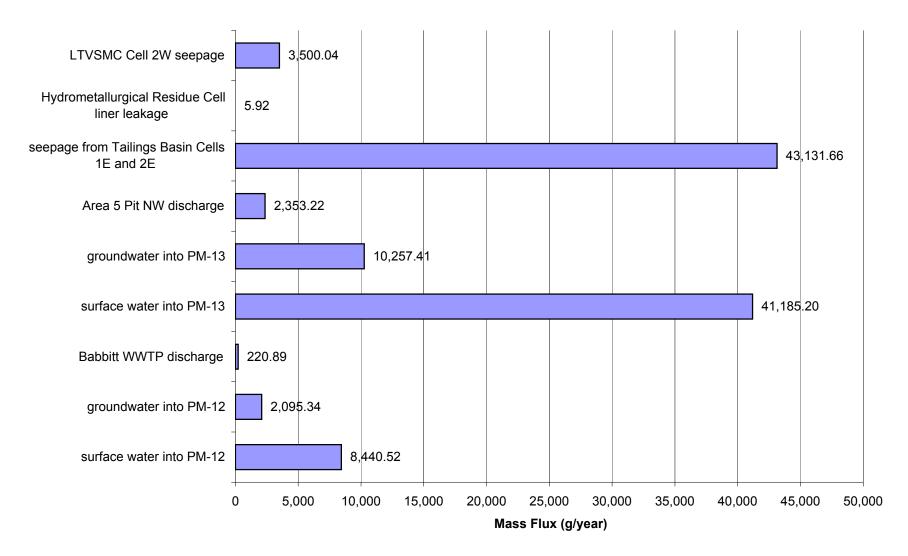

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Low Flow for Sulfate (SO₄)

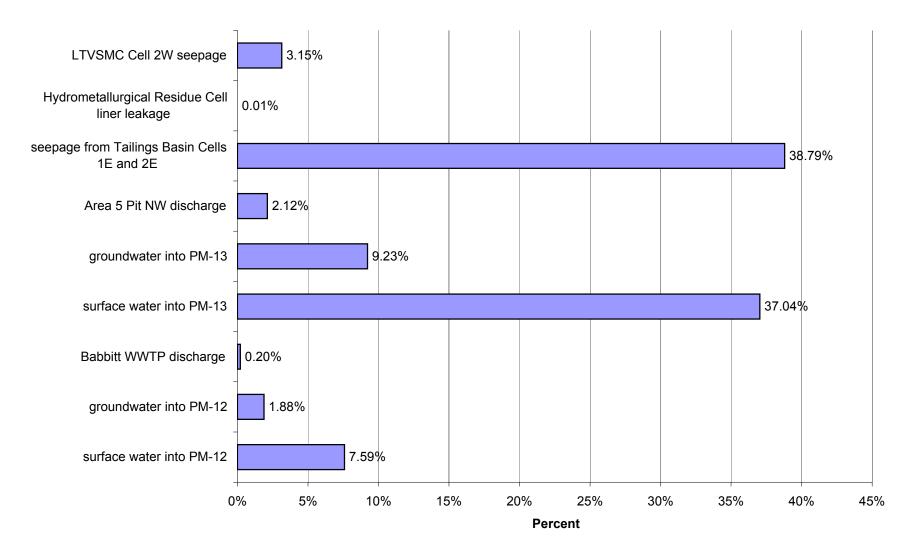

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Closure for Average Flow for Sulfate (SO₄)

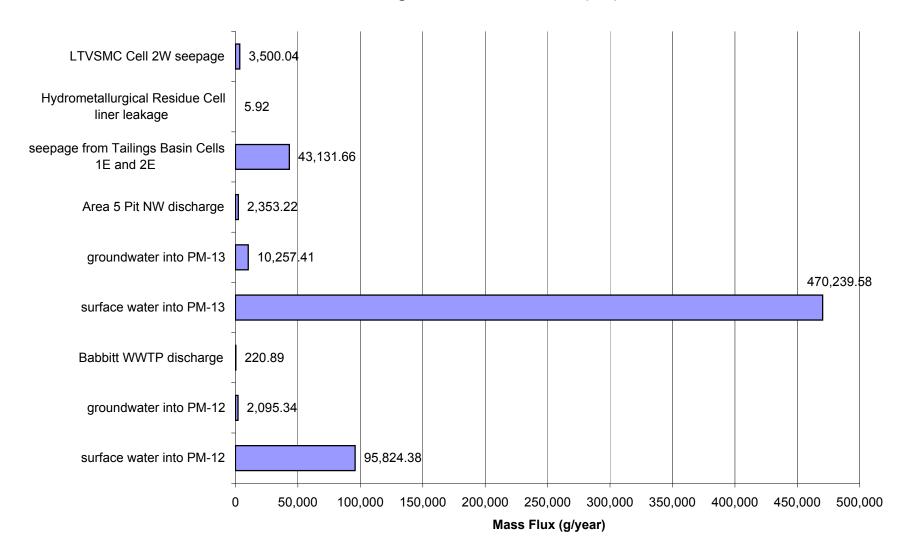

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for Average Flow for Sulfate (SO₄)

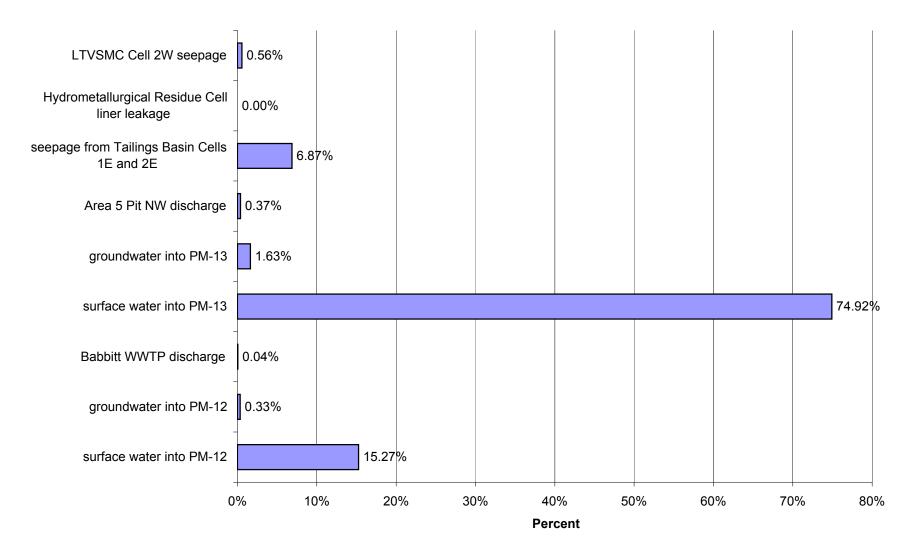

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Closure for High Flow for Sulfate (SO₄)

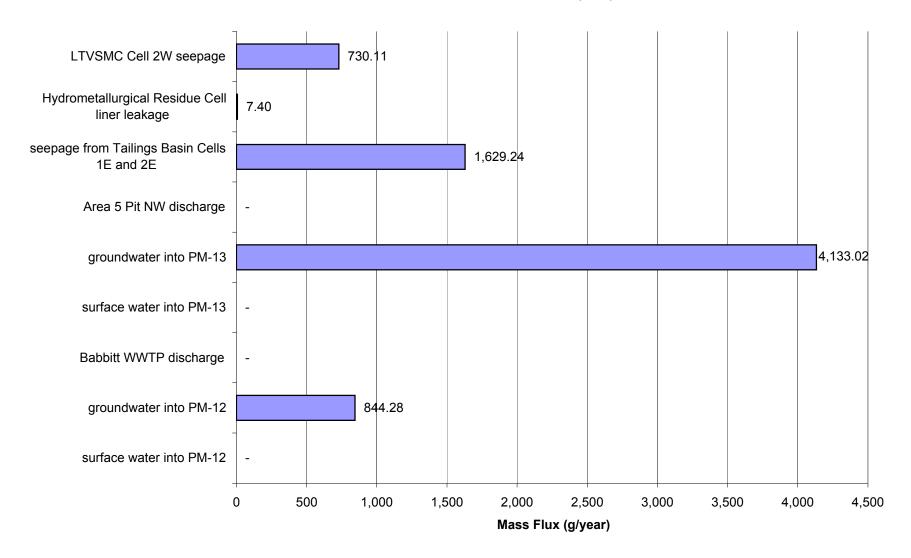

Geotechnical Mitigation: Percent of Impacts at PM-13 in Closure for High Flow for Sulfate (SO₄)

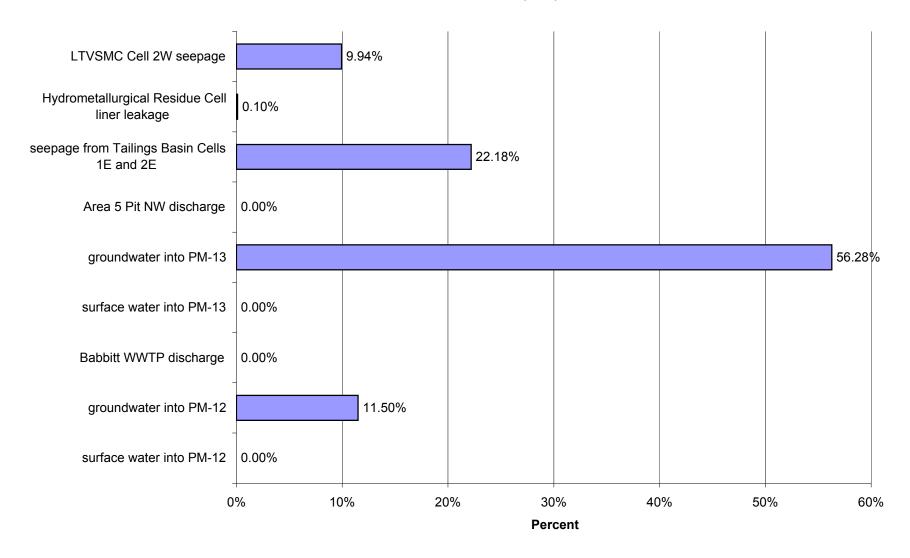

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Arsenic (As)

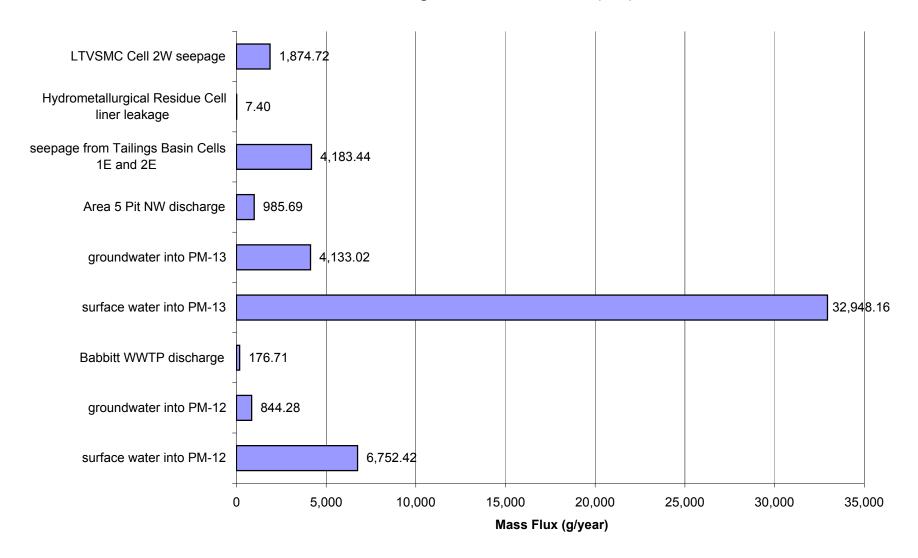

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Arsenic (As)

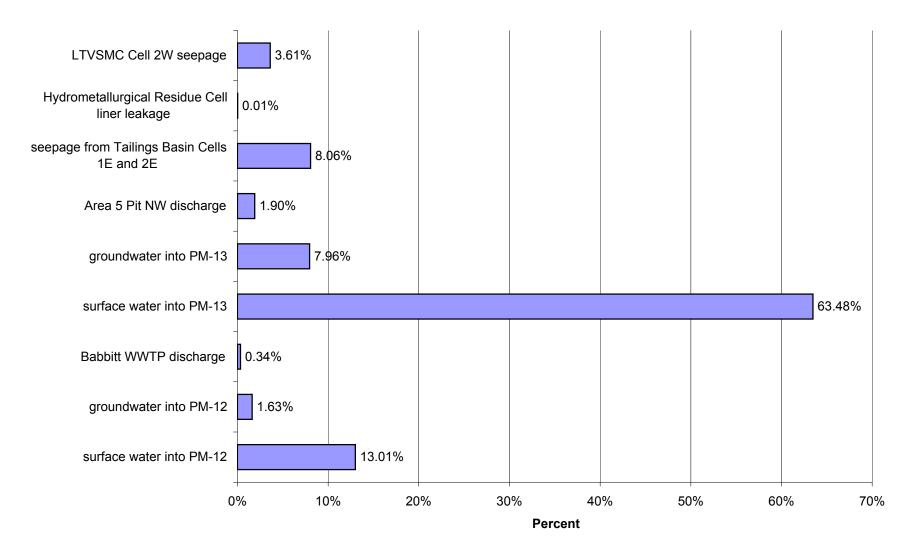

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Arsenic (As)

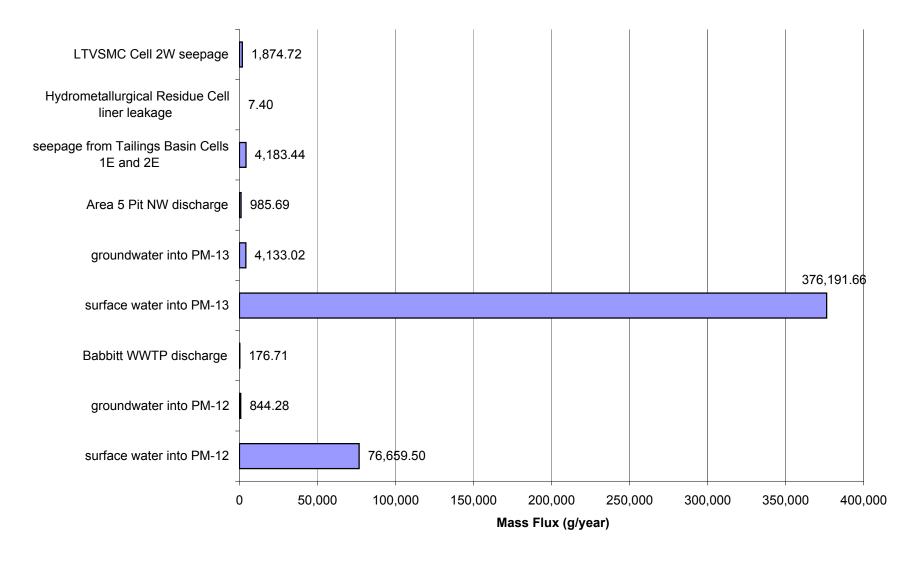

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Arsenic (As)

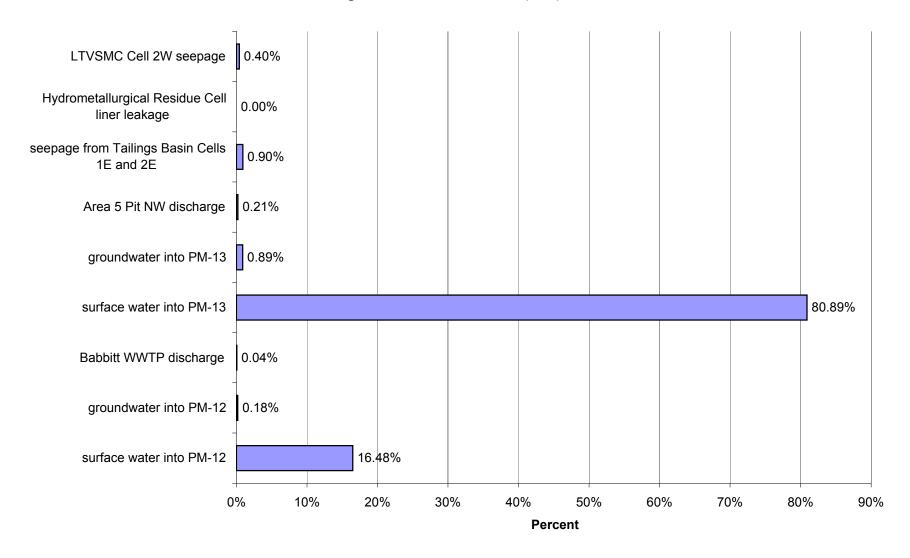

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Arsenic (As)

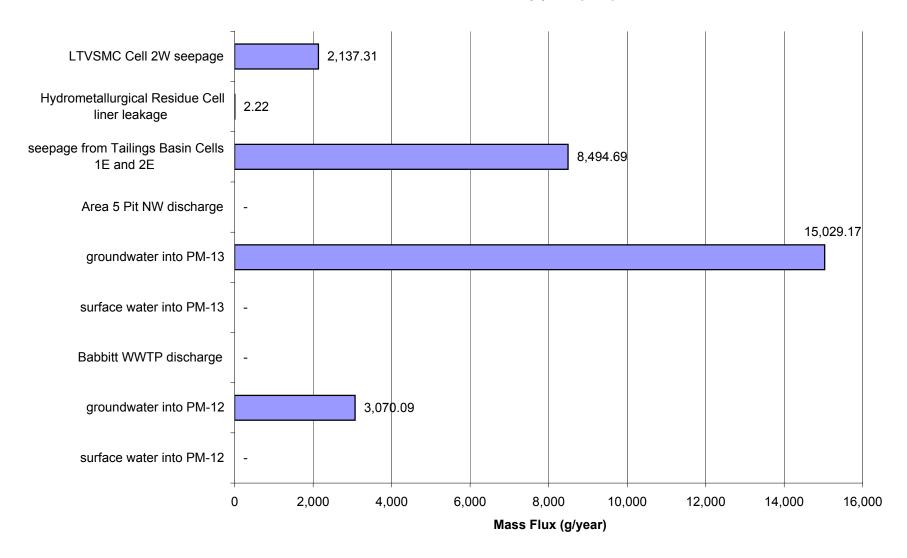

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Arsenic (As)

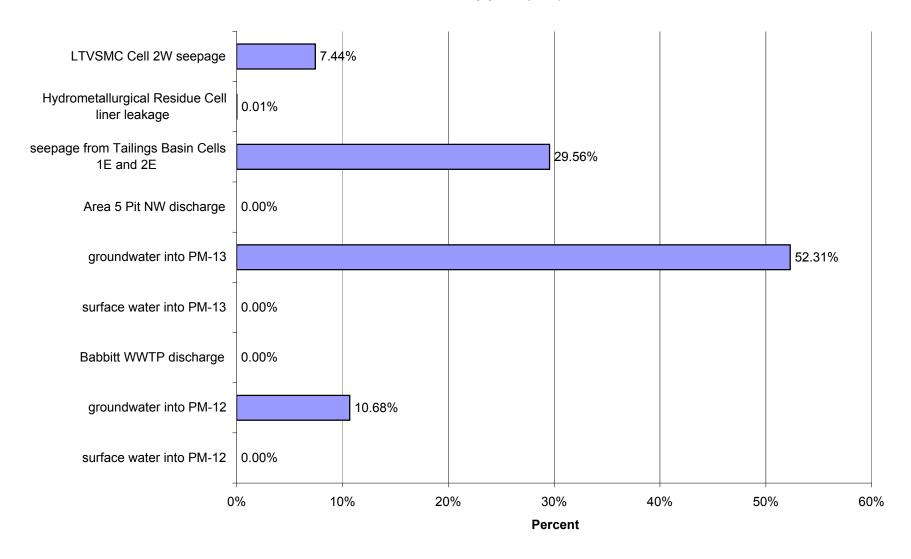

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Cobalt (Co)

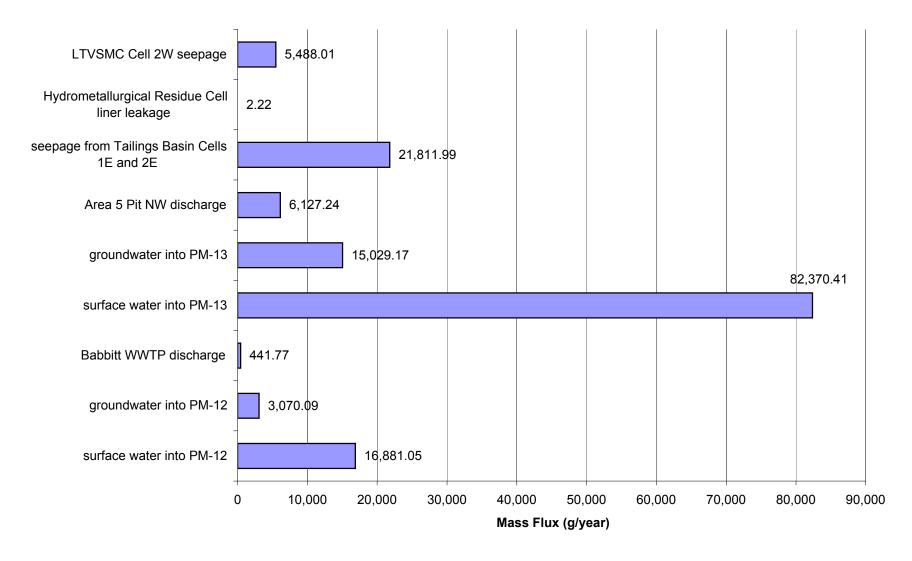

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Cobalt (Co)

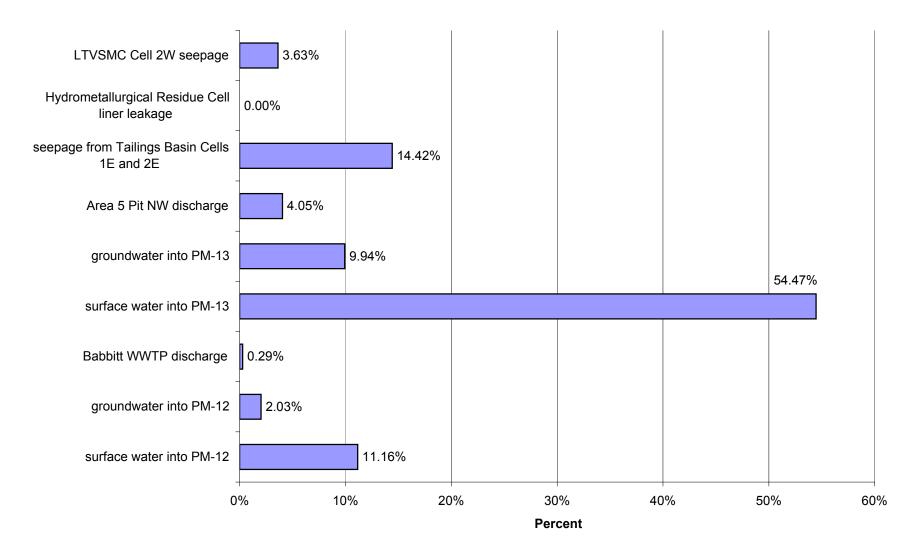

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Cobalt (Co)

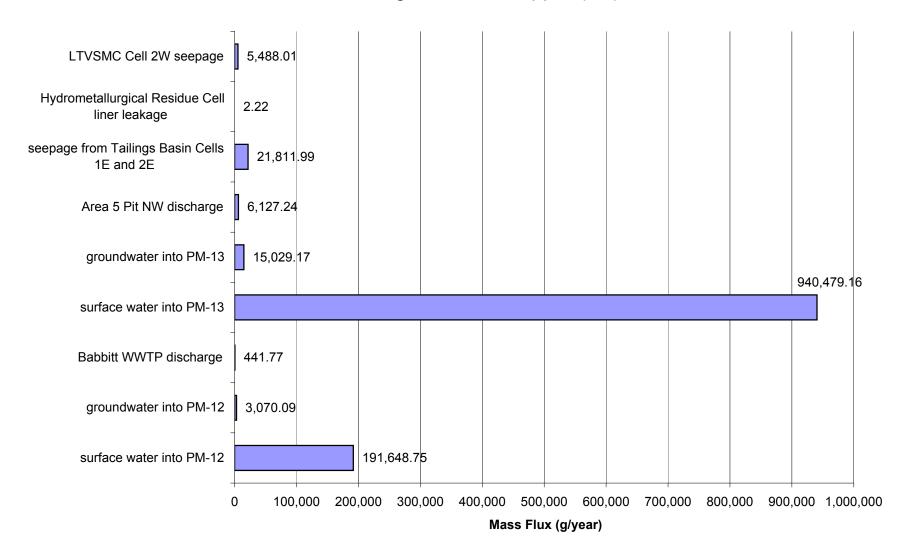

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Cobalt (Co)

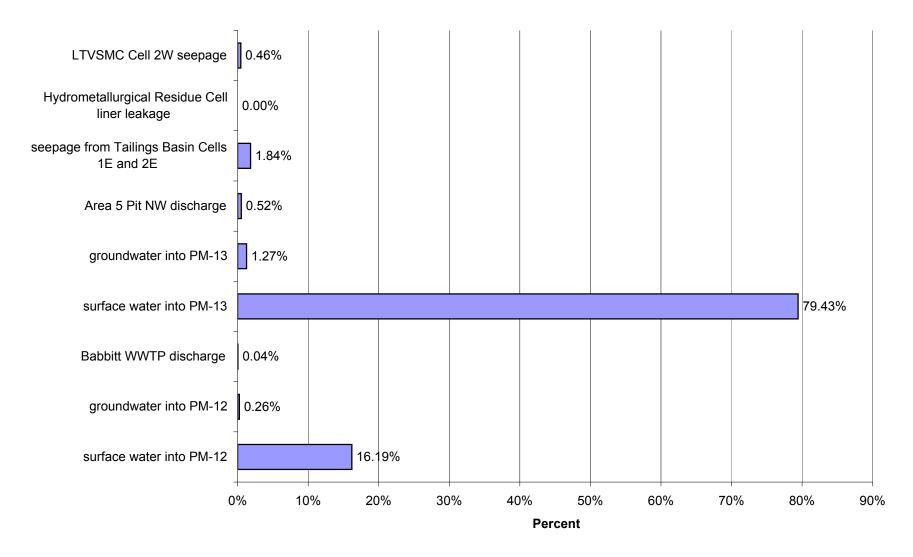

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Cobalt (Co)

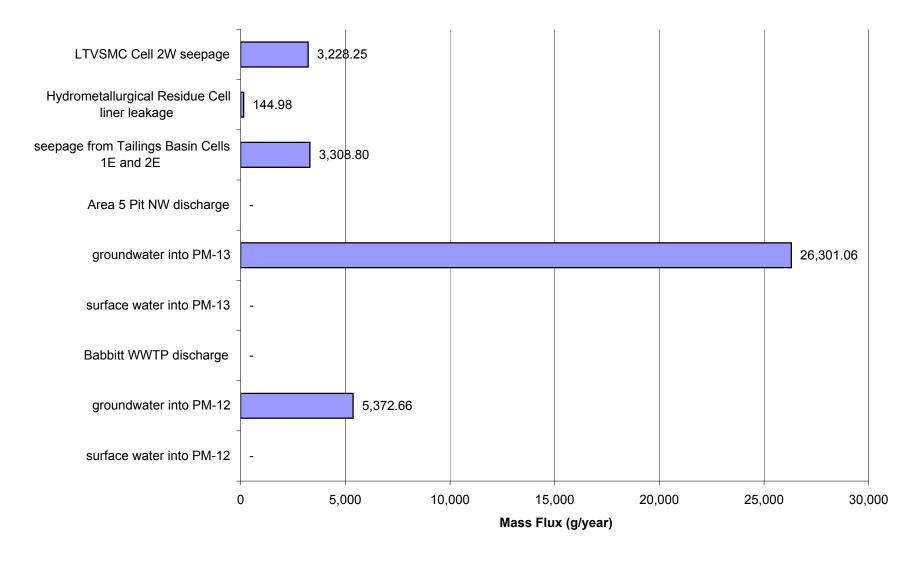

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Cobalt (Co)

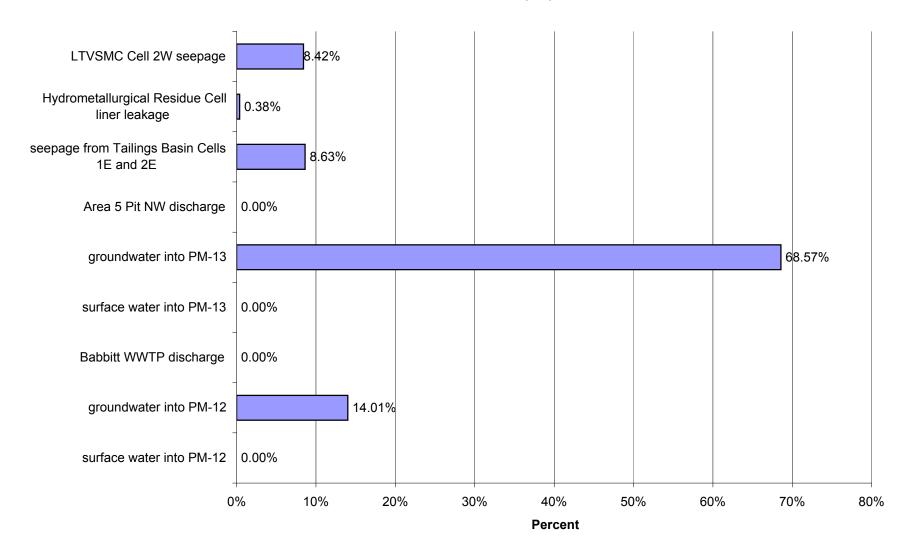

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Copper (Cu)

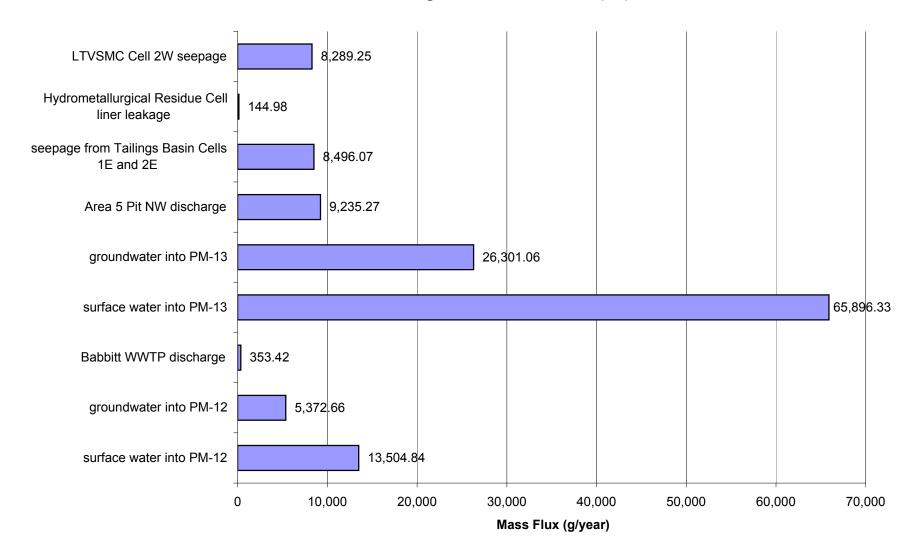

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Copper (Cu)

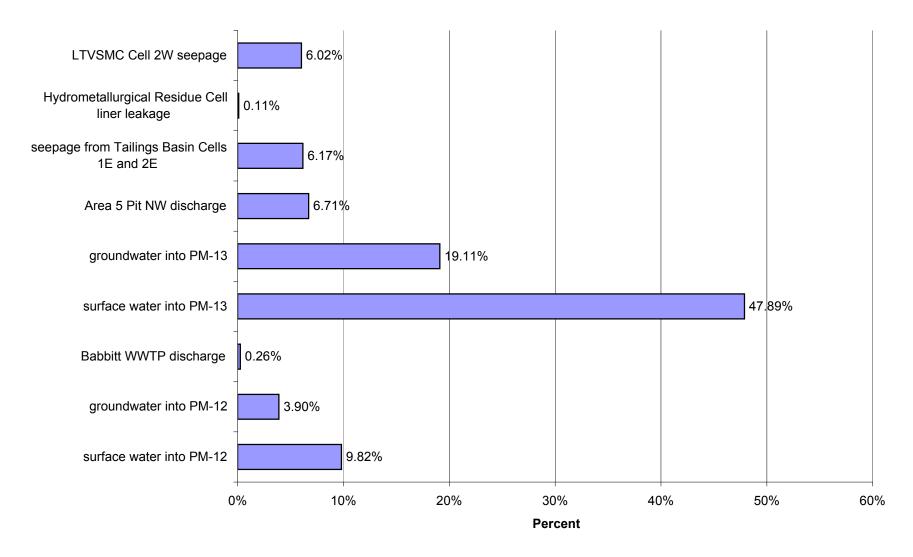

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Copper (Cu)

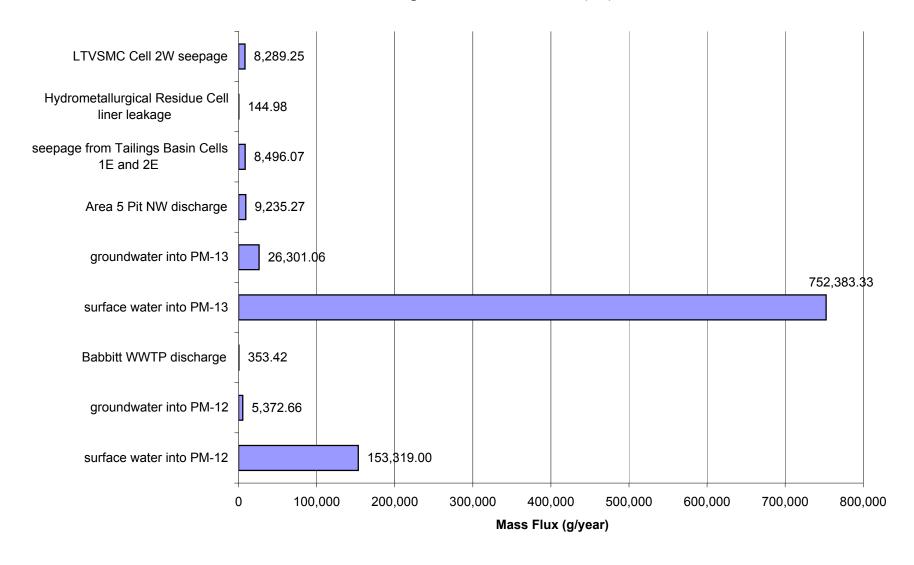

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Copper (Cu)

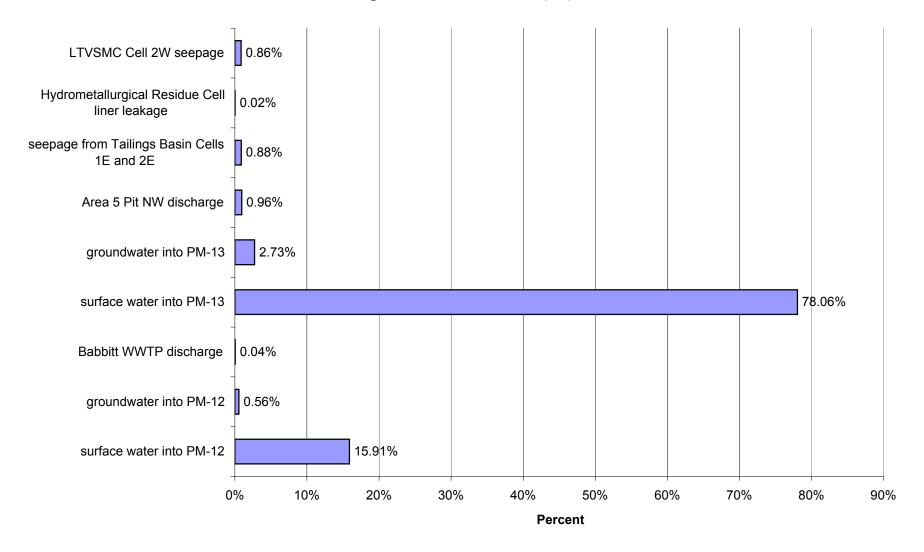

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Copper (Cu)

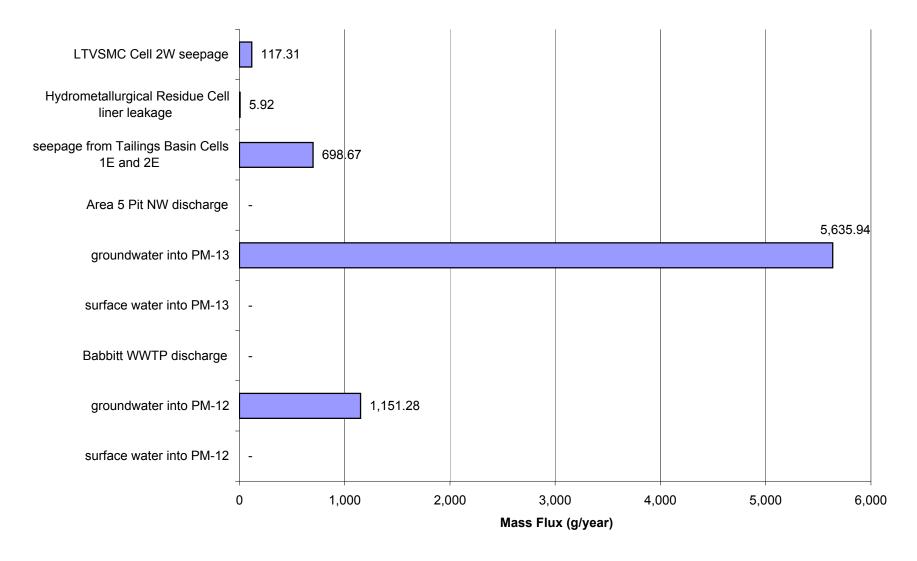

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Copper (Cu)

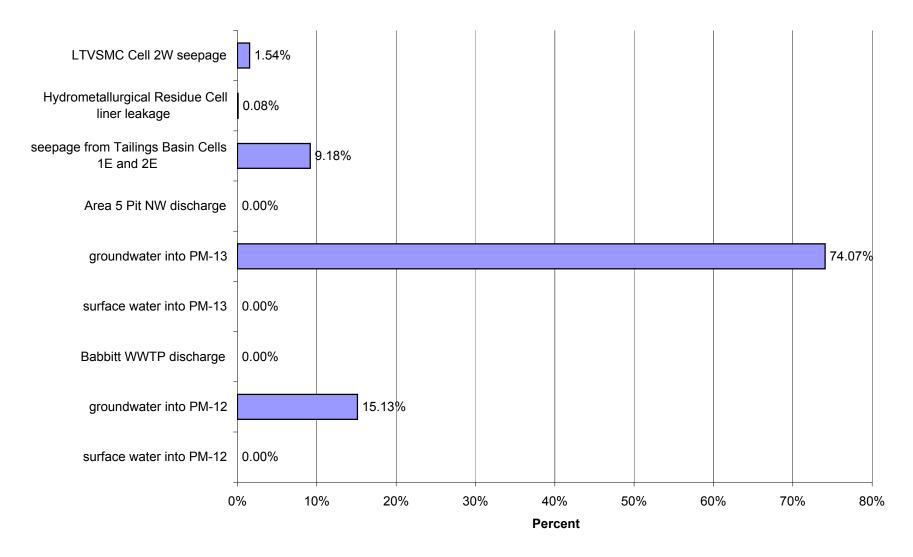

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Nickel (Ni)

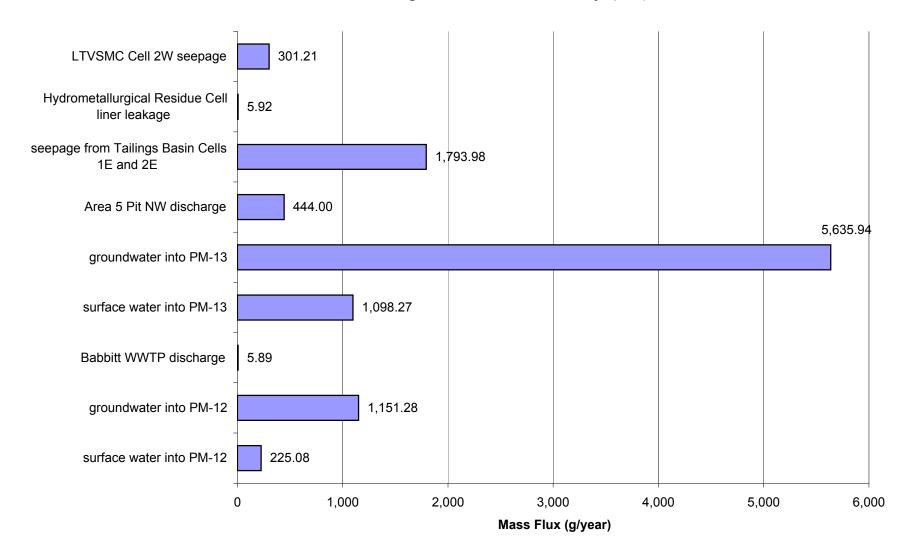

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Nickel (Ni)

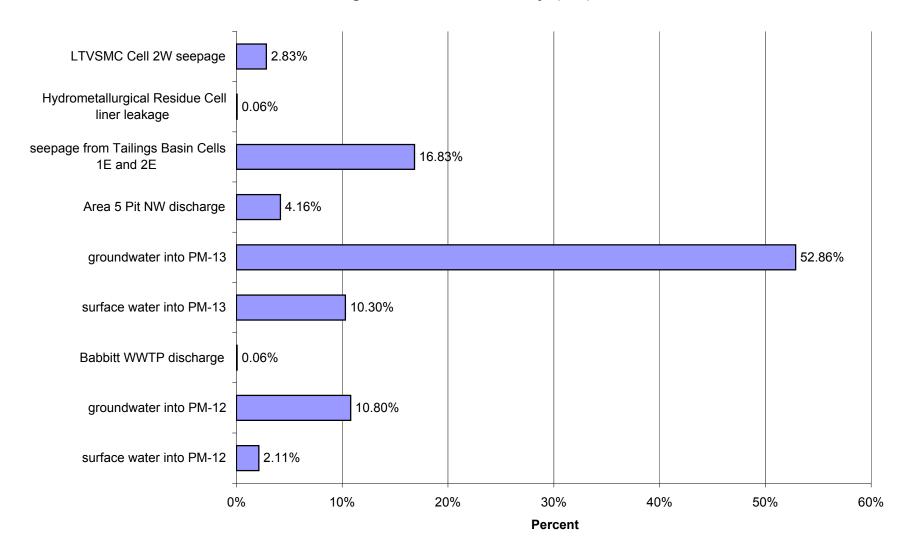

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Nickel (Ni)

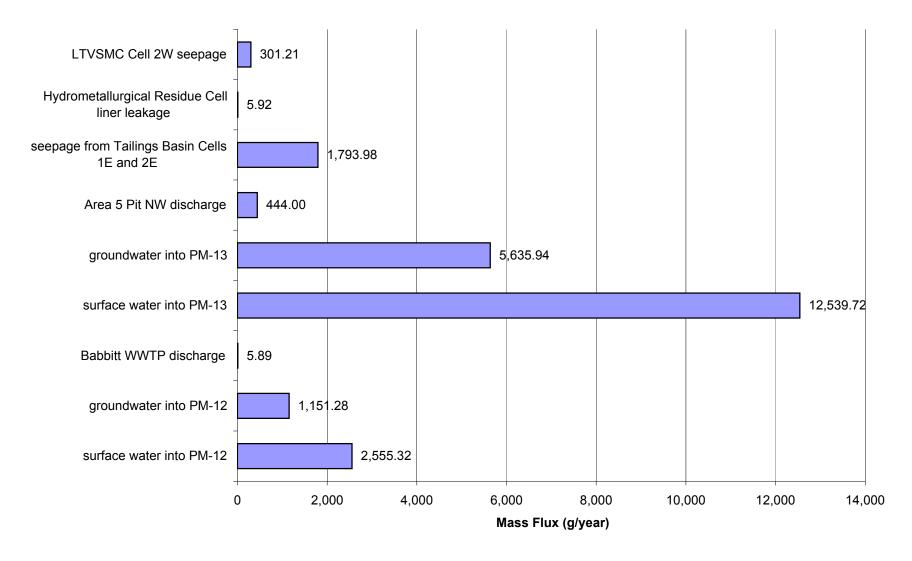

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Nickel (Ni)

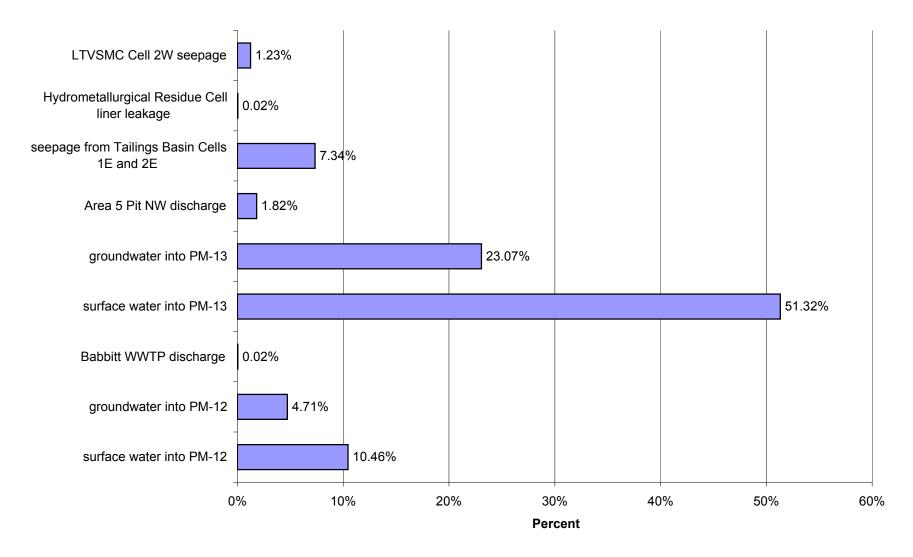

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Nickel (Ni)

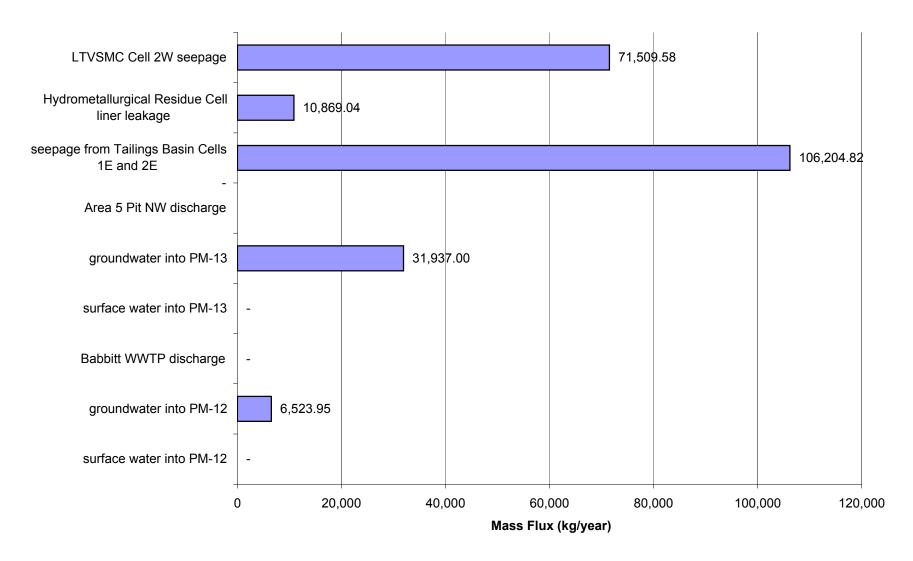

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Nickel (Ni)

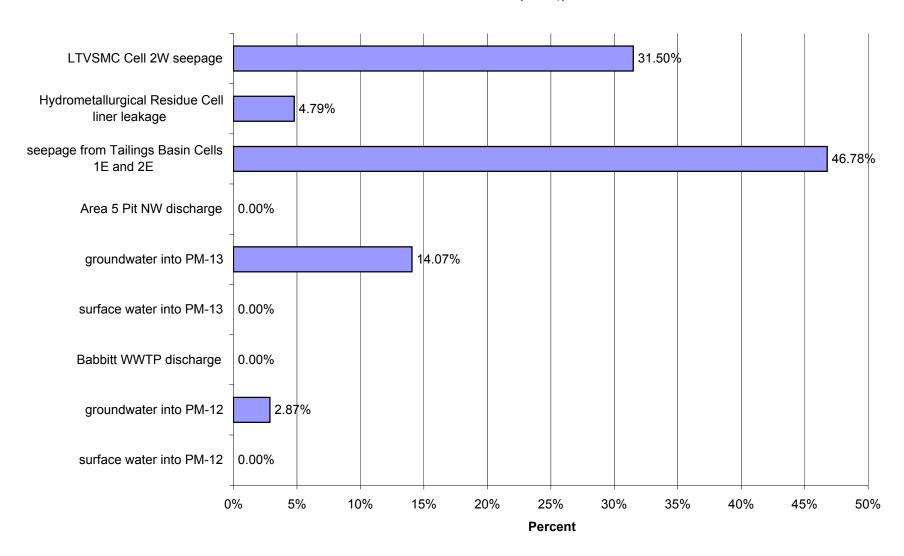

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Low Flow for Antimony (Sb)

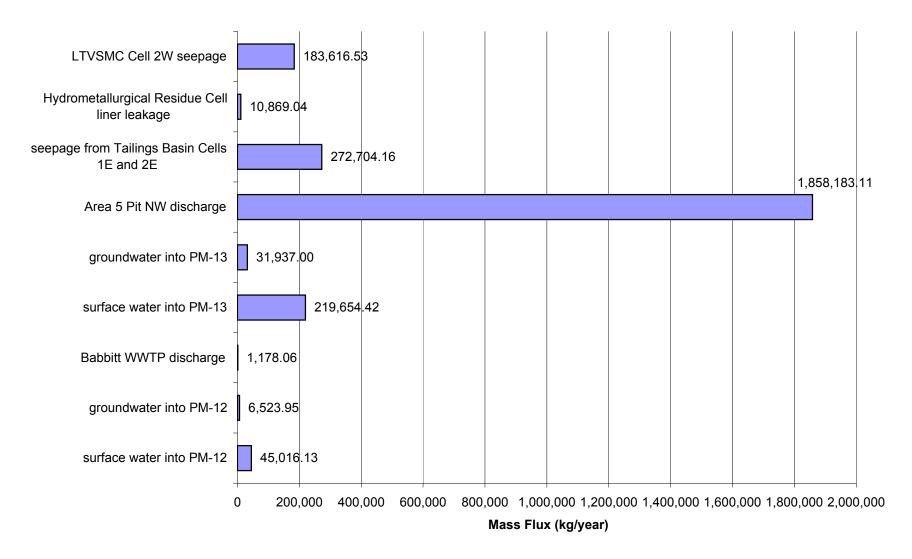

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Antimony (Sb)

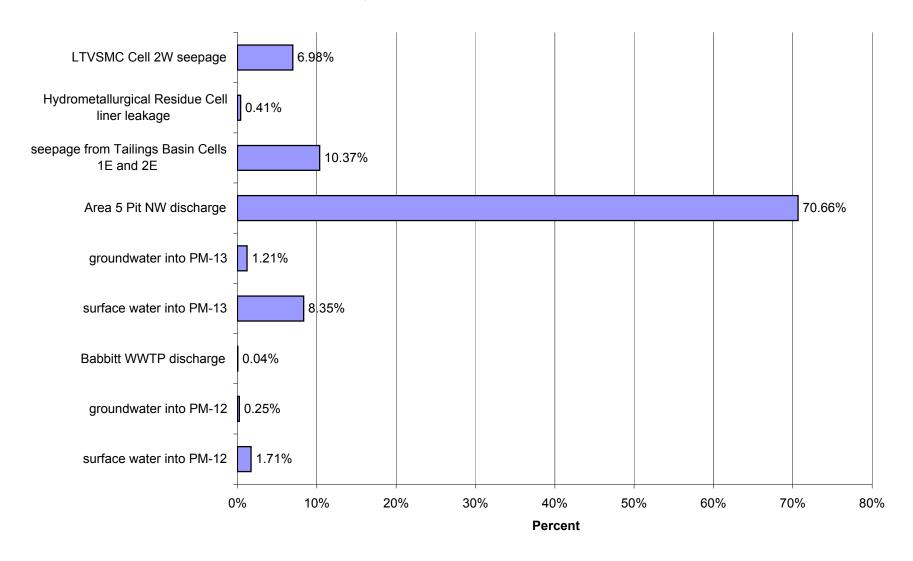

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for Average Flow for Antimony (Sb)

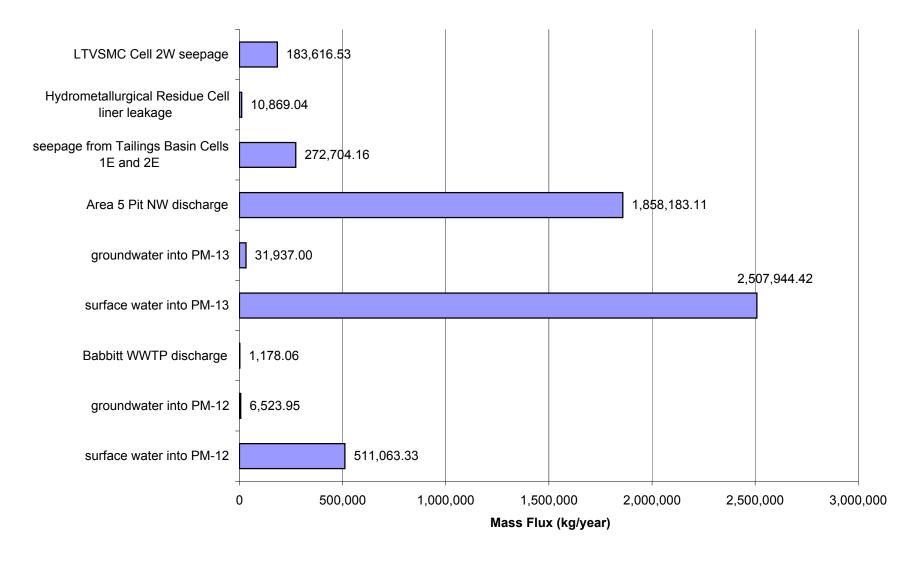

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Antimony (Sb)

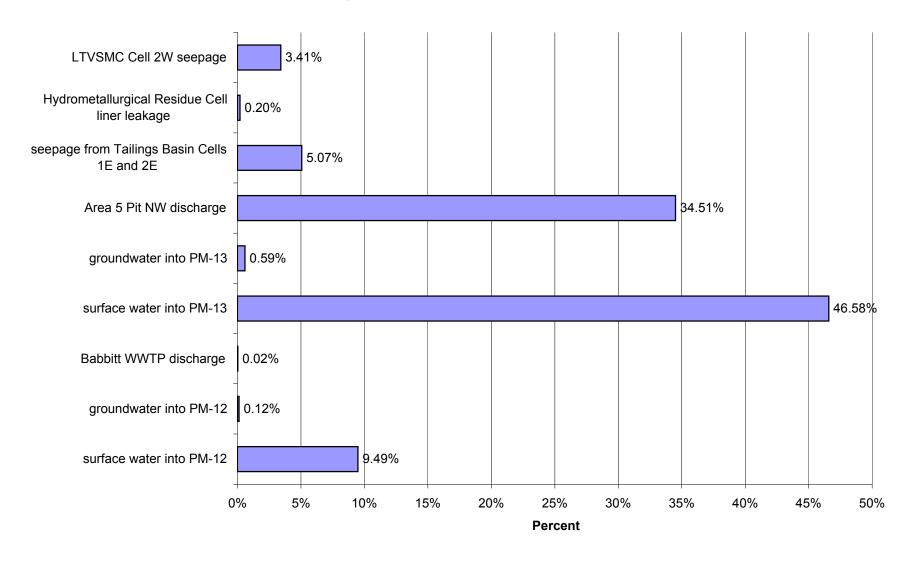

Geotechnical Mitigation: Mass Flux (g/year) of Impacts at PM-13 in Post - Closure for High Flow for Antimony (Sb)


Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Antimony (Sb)


Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Post - Closure for Low Flow for Sulfate (SO₄)


Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Low Flow for Sulfate (SO₄)


Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Post - Closure for Average Flow for Sulfate (SO₄)


Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for Average Flow for Sulfate (SO₄)

Geotechnical Mitigation: Mass Flux (kg/year) of Impacts at PM-13 in Post - Closure for High Flow for Sulfate (SO₄)

Geotechnical Mitigation: Percent of Impacts at PM-13 in Post - Closure for High Flow for Sulfate (SO₄)

Appendix H

SRK Memorandum from Stephen Day to Miguel Wong September 12, 2008

> Updates to Water Quality Predictions In support of Draft 02 - RS74

SRK Consulting (Canada) Inc. Suite 2200 – 1066 West Hastings Street Vancouver, B.C. V6E 3X2 Canada

vancouver@srk.com www.srk.com

Tel: 604.681.4196 Fax: 604.687.5532

Memo

To: Miguel Wong, Barr Engineering **Date:** September 12, 2008

cc: Jim Scott, PolyMetSubject: Updates to Water Quality PredictionsProject #: 1UP005.001

in Support for RS74 (Draft 2)

DRAFT

This memorandum summarizes methods used to produce updated source term water quality estimates for waste rock and lean ore stockpiles, open pits, tailings and hydrometallurgical residues at the NorthMet Project. These estimates are used as inputs to assessment of groundwater and surface water effects downstream of the project facilities and reported in RS74 (Draft 2) prepared by Barr Engineering (Barr).

The original basis for the source term predictions was provided in the Draft 1 versions of RS53/42 (Waste Rock, issued February 2007), RS31 (Pit Water, July 2007), RS46 (Tailings, July 2007) and RS65 (Hydrometallurgical Residues, February 2007). Subsequent to issuance of these draft reports, the agency review team have provided comments and discussion in writing and at several meetings. Partly as a result, a stochastic assessment of the uncertainties in the water chemistry predictions is ongoing. The current source term predictions are being used by Barr as input into a parallel deterministic assessment, and as a result are based on the same methodology as presented in the Draft 1 versions of the reports with revised inputs generated from ongoing laboratory testwork and other information.

The following sections of this memorandum describe any changes in modeling methodology and inputs to the calculations.

1 RS53/42 Waste Rock

1.1 Waste Rock and Lean Ore Stockpiles

The methodology used to predict average annual water chemistry for the waste rock and lean stockpiles is the same as that presented in RS53/42 (Draft 1).

The list of parameters was increased, as follows:

 Antimony – Predictions were not provided in Draft 1 due to quality problems with chemistry data from humidity cells. Predictions have been developed using information from the MDNR reactor experiments.

The methodology used to predict fluoride and vanadium was changed:

• Fluoride – Predictions in Draft 1 were directly scaled from humidity cells; however, calcium fluoride (fluorite) is a probable mineralogical control on fluoride concentrations. The relationship between calcium and fluoride activity for fluorite solubility was used to estimate fluoride from calcium. The resulting fluoride concentrations were well below the water quality

SRK Consulting Page 2 of 8

standard (2 mg/L) and therefore the under-estimation resulting from use of concentrations in an activity relationship was not considered to be significant.

• Vanadium – Similarly, vanadium concentrations were directly scaled from humidity cells in Draft 1. However, vanadium has very low natural solubility due to its association with resistant oxides (e.g. magnetite) rather than sulphides and the postulated ferrous vanadate as a solubility control (Hem 1992). Concentrations have been re-calculated using the scale-up methodology but a concentration cap was applied. The highest observed concentration in PolyMet's testwork was 0.17 mg/L under initially strongly basic leachate from a Duluth Complex sample. This is well above natural background and in the same range as acid thermal waters summarized by Hem (1992).

Dissolution rates for each humidity cell were re-calculated to reflect data available to April 2008 (about 2½ years of data). 95th percentile rates for each rock category used in the calculations are provided in Table 1. Slightly different rates were used for the Proposed Project and Reasonable Alternative 1 (RA1). For the Proposed Project, the waste rock classification criteria used were those shown in Table 6-2 of RS42. In this classification system, both sulfur and copper to sulfur ratios were used to produce Categories 1/2, 3 and 4. For RA1, the classification system was revised to eliminate the use of copper to sulfur ratios resulting in new Categories 1, 2/3 and 4. The sulfur concentration of 0.12% provides the cutoff between Categories 1 and 2/3.

The quantity of rock used in the calculation for the proposed project was unchanged from RS53/42 Draft 01. For RA1, Barr provided resized quantities (email from Christie Kearney, May 22, 2008).

Infiltration inputs were provided for three climatic scenarios (low, average and high) by Barr (email from Miguel Wong, May 20, 2008).

1.2 Overburden Stockpiles

The RS53/42 report did not include predicted chemistry for water originating from the overburden stockpile. An overburden drilling program was completed in January 2008 and samples were tested according to a Sampling and Analysis Plan developed through discussion with MDNR. Field observations and subsequent analysis identified four types of overburden based on physical and chemical characteristics (Table 2):

- Peat Organic soil.
- Unsaturated Mineral Overburden This material was found to contain low concentrations of sulfur and leachates from Meteoric Water Mobility Procedures (MWMPs, NDEP 1996) were non-acidic and showed relatively low leachable metal concentrations.
- Saturated Mineral Overburden A common observation during drilling was that saturated or unoxidized overburden appeared to contain iron sulfide that was not necessarily associated with Duluth Complex rock. Testing of this material confirmed that sulfur concentrations in the fine fraction were elevated compared to its coarse fraction and unsaturated overburden (Table 2). Based on the association with the fine fraction, it was concluded that the iron sulfide was formed by chemical processes occurring in the overburden after glacial deposition. The presence of chemically-reducing conditions was indicated by low oxidation-reduction potential. It is postulated that sulfate reduction is naturally occurring in these materials allowing iron sulfide to precipitate. MWMP leachates from two samples of this material were acidic (pH 3 to 4) and showed elevated concentrations (in or approaching the mg/L range) of cobalt, copper, nickel and zinc. Sulfate concentrations were near 200 mg/L. These results indicated that weathering of this material might cause it to acidify.

SRK Consulting Page 3 of 8

 Overburden Containing Duluth Complex – Some drill hole intersections contained Duluth Complex rock that was visibly mineralized.

Based on these findings, the need to mitigate potential for acid and metal leaching from the saturated mineral overburden was identified. The current plan is to compact the mixed overburden material as it is being placed to limit oxidation and infiltration and also enhance reaction of any acidic leachate with unsaturated materials. Mitigation measures will be designed so that water originating from the overburden stockpile will be non-acidic and mostly be storm water rather than seepage. Barr has calculated the resulting average water chemistry from the mass-weighted average of the median MWMP leachate chemistry for each group in Table 2.

2 RS31 – Pit Water

2.1 Proposed Project

The modeling approach for the Proposed Project was the same as that presented in RS31 Draft 01.

As for waste rock and lean ore, the list of parameters modeled was increased by adding antimony.

The geometry of the pits remained the same as RS31 Draft 01.

The following changes were made to the East Pit water balance as shown in Figure 6-3 of RS31 Draft 01 based on hydrological information provided by Barr Engineering:

- Water is occasionally removed from the East Pit during the flooding phase (year 12 to 20) in order to manage the water level in the pit during flooding. This water is sent to the waste water treatment facility (WWTF) and the tailings impoundment.
- Liner leakage from the Category 3 stockpile no longer reports to the East Pit. Liner leakage from the Category 1/2 and 1 Stockpiles continues to report to the East Pit.

Similarly, the West Pit model has the following changes:

- Tailings pond water is no longer directed to the West Pit after year 20.
- Liner leakage from the Category 3 stockpile no longer reports to the West Pit. Liner leakage from the Category 1/2 and 1 Stockpiles continues to report to the West Pit.

Updated water balance information was provided by Barr (email from Greg Williams, September 8, 2008) for low, average and high climatological conditions. In addition, the current calculations included a revised groundwater inflow model for the West Pit. Inflows are a function of pit water elevation.

Two aspects were changed in the geochemical calculations:

- Dissolution rates applied to the walls were updated using the rates indicated in Table 1 (Proposed Project).
- Groundwater and surface water inflow chemistry were updated using data provided by Barr (email from Miguel Wong May 20, 2008) (Table 3).

2.2 Reasonable Alternative 1

For RA1, the East Pit will be backfilled with oxidized Category 2/3 and 4 waste rock stockpiled during mining of the East Pit. Ongoing waste rock production in these categories from West Pit will also be backfilled to East Pit. Initial assessment of the concept considered the effect of dissolution of acidic weathering products as the rock was backfilled. The inventory of weathering products was

SRK Consulting Page 4 of 8

found to create a very long term source of sulfate and metals in the pore water that would contribute to groundwater moving towards the Partridge River. To address this concern, addition of limestone to the stockpiles during mining has been proposed to prevent the onset of acidic conditions. While this will not eliminate generation of weathering products, the maintenance of non-acidic conditions will cause the rock to oxidize at a slower rate than under acidic conditions. This in turn will reduce the inventory of oxidation products available for dissolution when the rock is inundated in the East Pit. Nonetheless, water chemistry in the backfill will be driven by the dissolution of oxidation products formed under non-acidic conditions. Any water that comes into contact with the backfill is expected to acquire a chemistry that reflects equilibration with the weathering products.

The pollutant load discharging from the East Pit to the West Pit was therefore calculated from the sum of load in water flowing the wetland and load in water that seeps from the backfill. Both sources were assumed to have constant concentrations for the duration of filling the West Pit. The chemistry of water flowing through the wetland was provided by Barr and is the same chemistry used in RS31 (Draft 01). The chemistry of backfill pore water was based on a pH of 8 and was assigned the same chemistry as non-acidic drainage from the Category 1/2 and 3 waste rock in RS53/42 (Table 7-2). The assignment of this pH condition assumes that limestone addition to the stockpiles will ensure to a high degree of certainty that oxidation in the piles does not accelerate and cause rapid build-up of weathering products. In the event that pH depression does occur in the stockpiles prior to re-handling to the East Pit, additional pH modification using lime may be needed during backfilling to raise the pH of the pore water.

The discharge from the East Pit to the West Pit is then used to predict chemistry of water in the West Pit. Water balance information for three climatological scenarios under RA1were provided by Barr (email from Greg Williams, September 8, 2008).

3 RS54/46 – Tailings

3.1 Tailings Oxidation Model

The general methodology used to predict source water quality for the tailings is the same as that presented in RS54/46 (Draft 1). In RS54/46 the predictions were carried forward to provide predictions of chemistry of water captured in the horizontal drains and in groundwater downgradient of the tailings disposal area. In the current modeling, SRK predicted pore water chemistry and provided the results to Barr. Barr then used the pore water chemistry to estimate the chemistry of water in the drains and downgradient of the site.

Eighteen elements were modeled in RS46. The list was updated to include fluoride, chloride, barium, iron, manganese, molybdenum, and tin. Leaching of all these elements is assumed to be driven by sulfide oxidation. As described previously, water chemistry is calculated for sulfate by modeling sulfide oxidation. Leaching of other elements was modeled using the molar ratio element release to sulfate release observed in the kinetic testwork. Molar release ratios were updated based on recent testwork results.

3.2 Process Pond Model

The process pond water balance is the same as that presented in RS54/46 (Draft 01).

The process pond load balance was updated as follows:

• Initial pond chemistry in RS54/46 was assumed to be pure water. This input was replaced with actual monitoring data from the LTV process ponds since operation of the ponds stopped in 2001. The 95th percentile concentration was used as the input for the initial NorthMet Project tailings pond. Where data were not available, Colby Lake water chemistry data were used as the

SRK Consulting Page 5 of 8

next best approximation because this source will be used as make-up water for the pond. Table 4 indicates the concentrations used and the data source.

- Beach runoff loadings were calculated using humidity cell data (Table 5). The calculation methodology was unchanged.
- In RS54/46, the feedback between seepage return and process pond was not incorporated. The portion of loading in the seepage originating as pond water and tailings stream supernatant were calculated from constant concentrations (Tables 7-14 and 7-17 in RS54/46). These constant concentrations were maximum values obtained during preliminary runs of the model. The modeling was improved by iterating between monthly seepage chemistry predictions and average process pond chemistry until median and highest concentrations in the process pond stabilized. This usually occurred after one or two iterations demonstrating that the loading in seepage originating from oxidation of the tailings was more significant than the loading carried by process pond water incorporated in the tailings and feeding seepage.

4 RS33/65 – Hydrometallurgical Residues

The predicted pore water chemistry for the hydrometallurgical residues presented in Table 6-2 RS33/65 was updated to include additional parameters required for modeling in RS74. The methodology used to obtain the values was the same as previously described. The complete list of parameters is shown in Table 6.

5 References

Hem J.D. 1992. Study and interpretation of the chemical characteristics of natural water. US Geological Survey Paper 2254.

Nevada Division of Environmental Protection. 1996. Meteoric Water Mobility Procedure (MWMP) Standardized Column Test Procedure. NDEP publication MWMP.ltr. May 3 1996. 6p

SRK Consulting Page 6 of 8

Table 1. 95th Percentile Dissolution Rates (in mg/kg/week) for Waste Rock and Lean Ore Stockpiles for Proposed Project and RA1

Category	Acidity	Alkalinity	F	CI	SO ₄	Al	Sb	As	Ва	Ве	В	Cd	Cr	Со	Cu	Fe	Pb	Mn	Мо	Ni	Se	Ag	TI	٧	Zn
Proposed F	roject				•																				
2	1.4	3.3	0.025	0.1	1.9	0.063	0.0015	0.0033	0.0056	0.00011	0.0027	0.00002	0.0001	0.000053	0.0009	0.0095	0.000041	0.0012	0.000042	0.00034	0.0001	0.000026	9.9E-06	0.0013	0.0012
3	1.8	3.7	0.024	0.12	9.9	0.036	0.0015	0.0034	0.0085	0.00011	0.0034	0.000064	0.0001	0.017	0.098	0.04	0.000056	0.028	0.000036	0.21	0.00027	0.0001	0.000011	0.00079	0.011
4	1.5	7.2	0.031	0.1	11	0.042	0.0015	0.0024	0.0054	0.000099	0.02	0.000029	0.00012	0.00064	0.001	0.019	0.000044	0.0085	0.000088	0.0077	0.00042	0.000062	0.00001	0.0051	0.0013
4 - Virginia	26	0.17	0.033	0.1	50	0.5	0.0002	0.00054	0.0042	0.00057	0.016	0.0032	0.00012	0.039	0.007	9.7	0.0006	0.088	0.000024	0.48	0.00051	0.000031	0.000012	0.000097	0.51
Ore	2.1	2.8	0.031	0.11	20	0.0081	0.0015	0.00077	0.0063	0.000098	0.011	0.00007	0.000098	0.037	0.059	0.006	0.000054	0.086	0.000029	0.62	0.00023	0.000025	0.000014	0.00011	0.015
RA1																									
2	1.4	6.3	0.025	0.11	1.3	0.063	0.0015	0.00035	0.0056	0.00011	0.0013	0.00002	0.0001	0.000053	0.00088	0.0069	0.000042	0.00081	0.000041	0.00035	0.000098	0.000024	9.9E-06	0.00021	0.0012
3	1.6	6.3	0.025	0.12	5.8	0.037	0.0015	0.009	0.0057	0.00011	0.0038	0.000035	0.0001	0.01	0.068	0.013	0.000036	0.019	0.00018	0.12	0.00012	0.00006	9.6E-06	0.0018	0.0097
4	19	3.3	0.2	0.11	50	0.12	0.0015	0.0042	0.0066	0.00017	0.28	0.00039	0.00011	0.056	0.0075	7.8	0.00016	0.18	0.00013	0.56	0.0007	0.00003	0.000017	0.00044	0.054
4- Virginia	21	3.2	0.033	0.1	42	0.48	0.0002	0.00048	0.0041	0.00055	0.016	0.0031	0.00012	0.027	0.0064	7.7	0.00058	0.068	0.000024	0.34	0.00043	0.000031	0.000011	0.0001	0.49
Ore	2.1	2.8	0.031	0.11	20	0.0081	0.0015	0.00077	0.0063	0.000098	0.011	0.00007	0.000098	0.037	0.059	0.006	0.000054	0.086	0.000029	0.62	0.00023	0.000025	0.000014	0.00011	0.015

SRK Consulting Page 7 of 8

Table 2. Characteristics of Overburden

					S as																							ļ	
Material Type	Stat	Cu	Ni	Total S	Sulfide	рН	F	CI	SO ₄	Al	Sb	As	Ва	Ве	В	Cd	Cr	Co	Cu	Fe	Pb	Mn	Мо	Ni	Se	Ag	TI	v	Zn
Tess Performed		mg/kg	mg/kg	%,S	%,S		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Peat	P5	43	33	0.066	<0.01	6.8	0.083	3.4	27	0.2	<0.00006	0.0017	0.028	<0.0002	0.033	<0.00003	0.0011	0.00081	0.014	0.15	0.00036	0.2	0.0015	0.0074	0.00064	<0.00005	0.000072	0.0021	0.0043
6 Solid Analyses	Median	120	72	0.09	0.04	6.2	0.11	9.7	59	0.81	0.0003	0.003	0.032	<0.0002	0.10	0.000075	0.002	0.0018	0.042	0.45	0.0015	0.3	0.0053	0.014	0.001	<0.00005	0.00009	0.0032	0.0065
2 MWMPs	P95	240	110	0.15	0.25	5.7	0.14	16	90	1.4	0.00066	0.0043	0.035	<0.0002	0.17	0.00018	0.0029	0.0027	0.069	0.74	0.0027	0.39	0.0091	0.021	0.0014	<0.00005	0.00011	0.0042	0.0088
Unsaturated Mineral	P5	27	27	<0.02	<0.01	7.3	0.17	0.86	4.7	0.069	<0.00006	0.0004	0.0032	<0.0002	0.015	<0.00003	<0.0002	0.00051	0.005	0.041	<0.00005	0.046	0.0002	0.0016	<0.0002	<0.00005	<0.00002	0.00042	0.0021
13 Solid Analyses	Median	53	59	0.01	0.01	7.1	0.32	1.9	17	0.091	0.0003	0.0004	0.0051	<0.0002	0.03	0.00005	<0.0002	0.0006	0.0054	0.05	<0.00005	0.051	0.0024	0.0029	<0.0002	<0.00005	<0.00002	0.0006	0.003
4 MWMPs	P95	150	100	0.11	0.01	6.9	0.46	1.9	21	0.3	0.001	0.0029	0.013	<0.0002	0.035	0.00015	0.00097	0.0015	0.007	0.059	<0.00005	0.10	0.013	0.0033	0.00052	<0.00005	0.000025	0.0006	0.0057
Saturated Mineral	P5	32	23	<0.01	0.01	8	0.24	1.3	5.9	0.029	<0.0001	0.0016	0.0071	<0.0002	0.013	<0.00004	<0.0002	0.00011	0.0034	<0.001	<0.00005	0.044	0.00033	0.002	0.00055	<0.00005	<0.00002	<0.0002	<0.0004
19 Solid Analyses	Median	59	63	0.05	0.02	7.4	0.42	2.3	68	0.14	0.0004	0.0027	0.014	<0.0002	0.037	<0.00004	0.0003	0.0013	0.017	0.15	<0.00005	0.12	0.027	0.019	0.0019	<0.00005	<0.00002	0.0014	0.003
6 MWMPs	P95	560	230	0.32	0.11	3.5	1.0	7.6	220	0.61	0.0012	0.0032	0.041	0.0005	0.19	0.0054	0.0012	0.25	0.44	5.4	0.0012	1.2	0.032	2.2	0.0038	0.00096	0.000082	0.0025	0.86
OB with Mineralized Rock	P5	110	59	0.015	0.031	7.1	0.19	3.3	10	0.013	<0.00008	0.00053	0.0037	<0.0002	<0.001	0.000051	<0.0002	0.00016	0.008	<0.009	<0.00005	0.022	0.0054	0.0046	<0.00009	<0.00005	<0.00002	<0.0002	0.0021
3 Solid Analyses	Median	780	370	0.15	0.22	7.1	0.23	3.5	84	0.039	0.00015	0.0008	0.006	<0.0002	<0.001	0.00006	<0.0002	0.0025	0.0082	0.005	<0.00005	0.16	0.019	0.038	0.0009	<0.00005	<0.00002	0.00015	0.0025
2 MWMPs	P95	1100	500	0.45	0.41	7.1	0.28	3.6	160	0.065	0.00038	0.0011	0.0082	<0.0002	<0.001	0.000069	<0.0002	0.0048	0.0083	0.019	<0.00005	0.29	0.032	0.072	0.0019	<0.00005	<0.00002	0.00047	0.003
All	P5	29	24	<0.02	<0.003	7.8	0.11	1.1	2.8	0.019	<0.0001	0.0004	0.0033	<0.0002	<0.001	<0.00004	<0.0002	<0.0001	0.0038	<0.01	<0.00005	0.027	0.00017	0.0012	<0.0002	<0.00005	<0.00002	<0.0002	0.0003
41 Solid Analyses	Median	87	62	0.04	0.01	7.1	0.28	2.5	32	0.11	0.00035	0.0023	0.012	<0.0002	0.028	0.00005	0.00005	0.0013	0.0086	0.065	<0.00005	0.11	0.008	0.013	0.001	<0.00005	<0.00002	0.00065	0.003
14 MWMPs	P95	850	390	0.31	0.17	3.6	0.85	12	200	1.0	0.0011	0.0037	0.039	0.00015	0.2	0.0039	0.0019	0.19	0.28	3.2	0.0019	1.2	0.033	1.3	0.0037	0.00046	0.0001	0.0031	0.53
	Max	1600	520	0.61	0.43	3.4	1.1	17	230	1.5	0.0012	0.0044	0.046	0.0008	0.23	0.0066	0.003	0.31	0.58	7.3	0.0028	1.3	0.034	3.0	0.0038	0.0014	0.00011	0.0043	1.2

Notes:

Solids concentrations are on -200 mesh fraction Solution concentrations are from MWMPs.

Table 3. Groundwater and Surface Water Inflow to Pits

	Acidity	Alkalinity	Hardness	F	CI	SO ₄	Al	Sb	As	Ва	Ве	В	Cd	Cr	Со	Cu	Fe	Pb	Mn	Hg	Мо	Ni	Se	Ag	TI	V	Zn
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Groundwater	7.9	61	66	0.28	6.6	16	0.13	0.0015	0.0022	0.022	0.00015	0.087	0.0001	0.0055	0.0017	0.003	2.8	0.0011	0.12	3.4E-06	0.0084	0.016	0.0019	0.00055	0.000004	0.0043	0.028
Surface Water	4.7	70	110	0.07	8	9	0.07	0.0015	0	0	0	0.045	0	0.0011	0	0.0017	1.6	0.0005	0.15	0.000003	0	0	0	0	0.0004	0.0009	0.016

SRK Consulting Page 8 of 8

Table 4. Initial Process Pond Chemistry

	Alkalinity	CI	F	Hardness	NO ₃ +NO ₂	NH ₃	SO ₄	Al	Sb	As	Ва	Ве	В	Cd	Ca	Cr	Co	Cu	Fe	Pb	Mg	Mn	Мо	Ni	Se	Ag	Na	TI	٧	Zn
	mg/L	mg/L	mg/L	mg/L	mg N/L	mgN/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Source	Pond	Pond	Pond	Pond	Colby	Colby	Pond	Colby	Colby	Pond	Colby	Colby	Colby	Colby	Pond	Colby	Pond	Colby	Pond	Colby	Pond	Colby	Colby	Colby	Colby	Colby	Pond	Colby	Hem	Colby
Concentration	340	26	7.7	350	0.1	0.1	130	0.31	0.003	0.0069	0.053	0.0002	0.14	0.000054	36	0.0035	0.001	0.0048	0.057	0.00049	63	0.28	0.017	0.0028	0.0009	0.001	100	0.001	0.0009	0.0069

Table 5. Dissolution Rates (mg/m² of beach/month) Used to Calculate Tailings Beach Runoff

Туре	Acidity	Alkalinity	F	CI	SO ₄	AI	Sb	As	Ва	Ве	В	Cd	Cr	Co	Cu	Fe	Pb	Mn	Мо	Ni	Se	Ag	TI	V	Zn
Coarse	140	2400	2.8	21	700	7.1	0.029	0.16	0.063	0.011	2.1	0.0022	0.015	0.0079	0.31	1.4	0.0097	0.73	0.049	0.14	0.012	0.0028	0.0011	0.043	0.067
Fine	140	2300	2.8	22	1000	8.0	0.029	0.097	0.087	0.011	2.0	0.0022	0.016	0.014	0.12	2.1	0.0071	0.65	0.045	0.16	0.012	0.0028	0.0011	0.042	0.15

Table 6. Predicted Pore Water Concentrations in Hydrometallurgical Residues

pH Range	Ag	AI	As	В	Ва	Ве	Cd	Со	Cr	Cu	Fe	Mn	Мо	Ni	Pb	Sb	Se	SO ₄	TI	V	Zn
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
6.6 to 8.5	0.0005	0.18	0.004	0.14	0.005	0.002	0.0004	0.005	0.05	0.015	0.4	0.0023	0.14	0.098	0.0005	0.004	0.054	7347	0.0002	0.002	0.01