
# Pharmaceuticals, Personal Care Products, and Endocrine Active Chemical Monitoring in Lakes and Rivers: 2013

Contaminants that were detected in a 2008 sampling of select Minnesota lakes are compared to a follow-up 2013 study of the same locations with an expanded list of pharmaceuticals and other chemicals that behave like hormones.



#### **Authors**

Mark Ferrey

### Contributors/acknowledgements

This report contains the results of a study that characterizes the presence of unregulated contaminants in Minnesota's lakes and rivers. The study was made possible through funding by the Minnesota Clean Water Fund.

The Minnesota Pollution Control Agency (MPCA) thanks the following for assistance and advice in designing and carrying out this study: Harold Wiegner for invaluable help in collecting samples; Kirsten Anderson and Richard Grace of AXYS Analytical Services for their expert help in developing the list of analytes for this study and logistics to make it a success.

The MPCA is reducing printing and mailing costs by using the Internet to distribute reports and information to wider audience. Visit our website for more information.

MPCA reports are printed on 100% post-consumer recycled content paper manufactured without chlorine or chlorine derivatives.



# **Minnesota Pollution Control Agency**

520 Lafayette Road North | Saint Paul, MN 55155-4194 | <u>www.pca.state.mn.us</u> | 651-296-6300 Toll free 800-657-3864 | TTY 651-282-5332

This report is available in alternative formats upon request, and online at www.pca.state.mn.us.

Document number: tdr-g1-18

# **Contents**

| Summary                                                                               | 1  |
|---------------------------------------------------------------------------------------|----|
| Introduction                                                                          |    |
| Sampling locations and procedures                                                     | 1  |
| Results and discussion                                                                | 2  |
| Lakes                                                                                 | 2  |
| Streams.                                                                              | 2  |
| Comparisons with previous studies.                                                    | 2  |
| References                                                                            | 5  |
| Appendix A: Lake and wastewater treatment plant descriptions and location information | 23 |
| Appendix B: Sample collection                                                         | 18 |
| Appendix C: Laboratory analytical methods and quality assurance                       | 27 |
| Appendix D: Analytical                                                                | 30 |

# **Glossary of terms**

 $\begin{array}{ll} mg/L & milligrams \ per \ liter, \ or \ parts \ per \ million \ (ppm) \\ \mu g/L & micrograms \ per \ liter, \ or \ parts \ per \ billion \ (ppb) \\ ng/L & nanograms \ per \ liter, \ or \ parts \ per \ trillion \ (ppt) \end{array}$ 

EAC Endocrine active chemical

PPCPs Pharmaceuticals and personal care products

WWTP Wastewater treatment plant

# **Summary**

Surface water from 11 lakes and 4 streams was analyzed for pharmaceuticals, personal care products (PPCPs), and other micropollutants. The stream samples were taken from above and below wastewater treatment plant effluent outfall locations. Several pharmaceuticals were frequently detected, including the anti-diabetic medicine metformin, numerous antibiotics, antidepressants, blood pressure medications, illicit drugs, lipid regulators, and the x-ray contrasting pharmaceutical iopamidol. Many of the chemicals that were detected, such as bisphenol A (BPA), are either known or suspected endocrine active chemicals (EACs). The results of this study, while largely consistent with a 2008 study of these same locations, expand our understanding of the varieties of contaminants present in our aquatic environments.

## Introduction

Concern over the presence of PPCPs and EACs is reflected in the numerous studies of these chemicals in the aquatic environment. While initial sampling efforts in Minnesota have focused primarily on locations where there was an obvious source of these contaminants, such as wastewater treatment plants (1, 2), more recent studies by the Minnesota Pollution Control Agency (MPCA) have expanded this inquiry to include a large number of randomly selected lakes (3) and rivers (4) many of which have no direct sources of these contaminants. These studies show that pharmaceuticals and other micropollutants are more ubiquitous in surface water than was previously suspected.

In 2008, the MPCA, the U.S. Geological Survey, and St. Cloud State University sampled water from selected lakes representing various trophic levels and land use settings. That study revealed that lakes contained many of the same pharmaceutical contaminants found downstream of wastewater treatment plants (WWTPs), including lakes without lakeshore development. Fish exhibited the effects of endocrine disruption in all of the lakes (5).

In 2013, these same 11 lakes were sampled again, in addition to water upstream and downstream of four of the WWTPs that were part of the 2009 WWTP study (6). Some of the contaminants discovered in lake water in 2008 were again detected at similar concentrations in 2013, and several pharmaceuticals that were not analyzed in 2008 were detected in 2013.

# Sampling locations and procedures

Locations that were included in this study are shown in Figure 1. The lake locations are described in greater detail in the 2008 report to the Minnesota Legislature (7) and in Appendix A. Three of these lakes reflect urban, sewered residential land use (Owasso, Budd, Cedar); four have unsewered residential development (Sullivan, White Sand, Red Sand, and Kabetogama); and four are in areas with very limited (Shingobee and Stewart) or no lakeshore development (Elk and Northern Light).

Surface water upstream and downstream of the outfall of four WWTPs (Hinckley, Marshall, Sauk Center, and the Twin Cities Metro Plant) was sampled. These locations were included in the 2009 study of 25 WWTPs (6) and details on these sampling locations can be found in <u>Appendix A.</u>

Surface water was collected for analysis once from each location during the summer of 2013. Grab samples of water were collected by immersing sample bottles approximately six inches beneath the surface. Powder-free nitrile gloves were worn while sampling and handling sample bottles. Sample bottles were rinsed three times with the surface water prior to filling completely with sample.

After filling, bottles were put in coolers and chilled on ice. Samples were shipped overnight to AXYS Analytical Services in Vancouver, British Columbia, with a maximum holding time of seven days, and analyzed for the chemicals listed in Table 1. A detailed description of sampling procedures is included in <a href="Appendix B">Appendix B</a>. The analytical methods and quality assurance detail is included in <a href="Appendix C">Appendix C</a>.

## **Results and discussion**

#### Lakes

Figure 2 shows the frequency at which contaminants were detected in lakes in 2013. A total of 27 pharmaceuticals, disinfectants, or other contaminants were found. As in other studies, DEET was the most frequently detected chemical, appearing in 91% of the water samples at a maximum concentration of 103 parts per trillion (ppt) (Table 2). Cotinine (a metabolite of nicotine) and iopamidol (an x-ray contrasting agent) were both detected in 73% of the lakes at maximum concentrations of 42 and 510 ppt, respectively. Bisphenol A and metformin were both found at 36% of the locations at maximum concentrations of 36 ppt and 18 ppt, respectively, with the steroidal hormone androstenedione detected in 27% of the lakes up to 5 ppt. Several other pharmaceuticals were detected less frequently, including the disinfectants triclosan and triclocarban as well as the antibiotics erythromycin, ciprofloxacin, sulfachloropyridazine, and carbadox.

#### **Streams**

A total of 56 PPCPs and other chemicals were detected in water samples collected downstream of the four WWTPs included in this study. Sixteen of these chemicals were found in every surface water sample that was collected downstream of the facilities (<u>Figure 3</u>), including antidepressants, antibiotics, and several pharmaceuticals used to treat hypertension. In upstream water, 33 were detected (<u>Figure 4</u>), with metformin, BPA, and cotinine found at all four upstream locations.

Six chemicals out of the total number of 56 chemicals detected - BPA, carbadox, virginiamycin, DEET, methylprednisolone, and triclosan – were detected more frequently in upstream water than downstream water. Eight chemicals – BPA (at 237 ppt), carbadox (at 3 ppt), fluoxetine (at 12 ppt), sulfamethazine (at 31 ppt), virginiamycin (at 68 ppt), methylprednisolone (at 6 ppt), moxifloxacin (at 16 ppt), and triclosan (at 10 ppt) – were present at higher concentrations at upstream locations than at downstream locations from at least one WWTP location (Table 3).

Complete analytical results are found in Appendix D.

## **Comparisons with previous studies**

The 11 lakes in this study were initially sampled in 2008 (5); Tables 4 through 14 show data for these lakes from 2008 and 2013. Expanded laboratory methods made it possible to look for a greater number of analytes in 2013 than in 2008, particularly for pharmaceuticals, though there were some chemicals analyzed in 2008 that were not in 2013.

In 2008, DEET was detected in every lake, up to a concentration of 579 ppt, whereas in 2013 it was detected in 10 of the 11 lakes and at a maximum concentration of 103 ppt. Caffeine and BPA were also found in these lakes in both 2013 and 2008.

Figure 5 compares the results of this study with the 2008 study and the 2012 National Lake Assessment (NLA) study of 50 randomly selected Minnesota lakes (3). Together, these studies show that DEET, BPA, androstenedione, amitriptyline, and caffeine are consistently the most frequently detected in lake water. The greater number of detections for estrone and androstenedione in 2008 is likely due to the lower analytical detection limits for steroidal hormones for that particular study.

More chemicals were detected in lakes in the 2012 NLA study than in 2013. This is probably due to the greater number of lakes included in the 2012 study and thus the greater chance of detecting a particular analyte. However, cocaine, carbadox, and amitriptyline, which were detected in roughly a third of the lakes in 2012, were not detected as frequently in 2013.

The results from 2013 demonstrate again that even remote lakes in Minnesota contain a surprising variety of pharmaceuticals that is similar to the profile of chemicals in lakes with shoreline residential development. Elk Lake, in Itasca State Park, contained DEET, cotinine, metformin, colchicine, and BPA. Northern Light Lake, north of Grand Marais and just outside the Boundary Waters Canoe Area Wilderness (BWCAW), contained DEET, BPA, diltiazem, the antibiotics ciprofloxacin, erythromycin, trimethoprim, and clinafloxacin. Results from the 2008 study, the 2012 NLA study, and a 2009 study of four remote lakes in Itasca State Park and Voyaguer's National Park consistently indicate that relatively isolated lakes often contain contaminants common to those waters more influenced by human activity.

This is the first study in Minnesota that included iopamidol, an x-ray contrasting agent, in the analysis of Minnesota surface water samples. It was detected in 73% of the lakes (Figure 2), both in urban settings as well as in lakes with minimal development. The highest concentration was detected in Lake Kabetogama, near the U.S. - Canada border, at 510 ppt. It was also found in 50% of the samples collected from downstream of WWTPs up to 1,230 ppt and at one upstream location at 356 ppt (Table 3). Diatrizoic acid, another x-ray contrasting agent, was found in one water sample downstream of a WWTP at 91 ppt.

Three of the pharmaceuticals that were detected upstream of WWTPs- the antibiotics virginiamycin, sulfamethazine, and carbadox -are used in raising livestock, possibly indicating upstream agricultural sources of these chemicals.

Pharmaceuticals that were detected in this study were grouped according to their physiologic endpoint (<u>Tables 15</u>, <u>16</u>). The Anatomical Therapeutic Classification (ATC) system, developed by the World Health Organization (8), provides a means for grouping the variety of pharmaceuticals that were found in surface water according to their intended physiological mode of action.

In the lakes, there were 4 anti-infectives (in addition to the veterinary antibiotic carbadox, which does not have an ATC designation). Two drugs that were detected affect the musculo-skeletal system. Three medications affect the nervous system, and 2 affect the cardiovascular system. Two drugs are genitourinary specific drugs, 2 are dermatologicals, and 1 is an antiparasitic. Nine of the 27 chemicals found in the 11 lakes are known or suspected EACs.

For the WWTPs, nine cardiovascular drugs were detected. Ten drugs were found that are systemic antiinfectives, 10 that affect the nervous system, 6 respiratory medications, and 4 that are typically prescribed for sensory organs such as eye medications. Two x-ray contrasting agents, 3 alimentary or metabolic drugs, and one musculoskeletal drug were also found. Several others without ATC designations, including the antibiotic carbadox; amitriptyline, an antidepressant; and the illicit drug methamphetamine as well as the breakdown product of cocaine, benzoylecgonine, were also found.

The presence of these contaminants in lake water is often explained by or correlated with lakeshore development and accompanying septic drain fields, agricultural row cropping, stormwater runoff, or livestock operations. However, it is not clear how these chemicals can be reaching lakes that lack shoreline development or other obvious sources of contamination. The 2012 NLA study of 50 lakes

revealed that roughly a third of them, some without development or public access, contained cocaine, amitriptyline, and carbadox. The atmospheric transport of fine particulate matter, to which drugs or other chemicals can be attached, and its subsequent deposition in surface water, is a possible explanation for the widespread presence of some of these chemicals in lakes. Indeed, the routine detection of cocaine in air samples (9) demonstrates that atmospheric transport is a plausible route for chemicals such as the ones detected in this study to enter surface water.

The effects that these contaminants are having on aquatic ecosystems are not entirely clear, though several studies have demonstrated genetic, cellular, physiological, and population level effects with even very small amounts the chemicals reported in this study. Antidepressants, for example, have a dramatic effect on the reproductive cycles of freshwater mussels (10), can accumulate in fish tissue (11), and cause behavioral changes in fathead minnows (12). Mixtures of pharmaceuticals at concentrations commonly detected in surface water can inhibit cell proliferation (13), and water samples collected from downstream of wastewater treatment plants alter the expression of hundreds of different genes found in fish (14). Commonly used analgesics are known to be acutely toxic in particular bird species (15) and to bivalves (16). Several of these chemicals, such as nonylphenol or triclosan, have hormone-like properties and can exert effect at extremely low concentrations (17). Thus, it is possible that these contaminants are adversely affecting fish and wildlife in ways we are only beginning to understand.

There is little information about human health effects from exposures to the very low concentrations of many of the chemicals reported here. The Minnesota Department of Health (MDH) Drinking Water Contaminants of Emerging Concern (CEC) Program has developed human health-based water guidance values for some of the detected chemicals such as BPA, DEET, sulfamethoxazole, and triclosan <a href="http://www.health.state.mn.us/divs/eh/risk/guidance/gw/table.html">http://www.health.state.mn.us/divs/eh/risk/guidance/gw/table.html</a>). The MDH is also concerned about low levels of exposure to active pharmaceutical ingredients (APIs) due to their very potent actions on very specific biological targets and the lack of testing for all possible effects over a lifetime of exposure to low concentrations. The MDH CEC Program Pharmaceutical Screening Project will provide a method for deriving screening water concentrations based on the lowest therapeutic dose, toxicological information contained on the drug label, and assumptions about drinking water consumption for the most-prescribed APIs in the United States, including many that MPCA is also researching. This will provide human-health risk context for occurrence data and assist in prioritizing research needs. The MDH anticipates releasing the Pharmaceutical Screening Project report by June 2015.

This and previous monitoring studies have shown that some of the chemicals we monitor are found in surface water more frequently than others. This observation can focus the direction of future studies, such as measuring or assessing the impacts of particular contaminants from wastewater sources. Combined with the recent advances in understanding the genetic effects that particular chemicals have on fish and wildlife, this may lead to methods that identify surface water locations of greatest risk and concern, or it might allow a better correlation of effect with the presence of particular contaminants in surface water. Finally, our increased understanding of which chemicals are of most concern may lead to simplified prevention strategies or wastewater treatment options that are most cost-effective in protecting aquatic ecosystems.

# **References**

- 1. Lee K, Schoenfuss HL, Barber LB, Blazer VS, Kiesling RL, Ferrey M. 2010. Endocrine active chemicals and endocrine disruption in Minnesota streams and lakes implications for aquatic resources, 1994-2008. U.S. Geological Survey Scientific Investigations Report 2010–5107, 47 p. with Appendixes.
- 2. Lee KE, Schoenfuss HL, Jahns ND, Brown GK, Barber LB. 2008. Alkylphenols, other endocrine-active chemicals, and fish responses in three streams in Minnesota-Study design and data, February-September 2007. U.S. Geological Survey Data Series 405, 44 p. with Appendixes.
- 3. Ferrey ML. 2012. Pharmaceuticals and Endocrine Active Chemicals in Minnesota Lakes. Minnesota Pollution Control Agency, Document no. tdr-g1-16. 47 p.
- 4. Ferrey M, Streets S, Lueck A. 2013. Pharmaceuticals and Personal Care Products in Minnesota's Rivers and Streams: 2010. Minnesota Pollution Control Agency, Document no. tdr-g1-17, 36 p.
- 5. Writer JH, Barber LB, Brown GK, Taylor HE, Kiesling RL, Ferrey ML, Jahns ND, Bartell SE, Schoenfuss HL. 2010. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes. *Sci Total Environ* 409:100-11.
- 6. Lee KE, Langer SK, Barber LB, Writer JH, Ferrey M, Schoenfuss HL, Gray JL, Revello RC, Martinovic D, Woodruff OP, Keefe SH, Brown GK, Taylor HE, Ferrer I, Thurman EM. 2011. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater effluent, and bottom sediment in Minnesota site description, methods, and data. U.S. Geological Survey Data Series 575, 54 p with Appendixes.
- 7. Ferrey M, Preimesberger A, Schoenfuss HL, Kiesling RL, Barber LB, Writer JH. 2008. Statewide Endocrine Disrupting Compound Monitoring Study, 2007-2008. Minnesota Pollution Control Agency, Document no. tdr-g1-08, 87 p.
- 8. World Health Organization Collaborating Centre for Drug Statistics Methodology 2015. ATC/DDD Index 2015. [cited December 29, 2014] Available from: <a href="http://www.whocc.no/atc\_ddd\_index/">http://www.whocc.no/atc\_ddd\_index/</a>.
- 9. Cecinato A, Balducci C, Nervegna G. 2009. Occurrence of cocaine in the air of the world's cities: An emerging problem? A new tool to investigate the social incidence of drugs? *Sci Total Environ* 407:1683-90.
- 10. Fong PP. 1998. Zebra mussel spawning is induced in low concentrations of putative serotonin reuptake inhibitors. *Biol Bull* 194:143-9.
- 11. Ramirez AJ, Brain RA, Usenko S, Mottaleb MA, O'donnell JG, Stahl LL, Wathen JB, Snyder BD, Pitt JL, Perez-Hurtado P, Dobbins LL, Brooks BW, Chambliss CK. 2009. Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States. *Environ Toxicol Chem* 28:2587-97.
- 12. Painter MM, Buerkley MA, Julius ML, Vajda AM, Norris DO, Barber LB, Furlong ET, Schultz MM, Schoenfuss HL. 2009. Antidepressants at environmentally relevant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas). *Environ Toxic Chem* 28:2677-84.
- 13. Pomati F, Cotsapas CJ, Castiglioni S, Zuccato E, Calamari D. 2007. Gene expression profiles in zebrafish (Danio rerio) liver cells exposed to a mixture of pharmaceuticals at environmentally relevant concentrations. *Chemosphere* 70:65-73.

- 14. Martinović-Weigelt D, Mehinto AC, Ankley GT, Denslow ND, Barber LB, Lee KE, King RJ, Schoenfuss HL, Schroeder AL, Villeneuve DL. 2014. Transcriptomic effects-based monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution. *Environ Sci Technol* 48:2385-94.
- 15. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJ, Arshad M, Mahmood S, Ali A, Khan AA. 2004. Diclofenac residues as the cause of vulture population decline in Pakistan. *Nature* 427:630-3.
- 16. Parolini M, Binelli A. 2012. Sub-lethal effects induced by a mixture of three non-steroidal anti-inflammatory drugs (NSAIDs) on the freshwater bivalve Dreissena polymorpha. *Ecotoxicology* 21:379-92.
- 17. Streets S, Ferrey M, Solem L, Preimesberger A, Hoff P. 2008. Endocrine Disrupting Compounds: A Report to the Minnesota Legislature. Minnesota Pollution Control Agency, Document no. lrp-ei-1syo8.

Table 1. Chemicals analyzed in the 2013 surface water study

| 1,7-Dimethylxanthine                  | Dehydronifedipine                | Ormetoprim                            |
|---------------------------------------|----------------------------------|---------------------------------------|
| 10-hydroxy-amitriptyline              | Demeclocycline                   | Oxacillin                             |
| 17 alpha-Dihydroequilin               | Desmethyldiltiazem               | Oxazepam                              |
| 17 alpha-Estradiol                    | Desogestrel                      | Oxolinic Acid                         |
| 17 alpha-Ethinyl-Estradiol            | Diatrizoic acid                  | Oxycodone                             |
| 17 beta-Estradiol                     | Diazepam                         | Oxytetracycline [OTC]                 |
| 2-Hydroxy-ibuprofen                   | Digoxigenin                      | Paroxetine                            |
| 4-Epianhydrochlortetracycline [EACTC] | Digoxin                          | Penicillin G                          |
| 4-Epianhydrotetracycline [EATC]       | Diltiazem                        | Penicillin V                          |
| 4-Epichlortetracycline [ECTC]         | Diphenhydramine                  | Prednisolone                          |
| 4-Epioxytetracycline [EOTC]           | Doxorubicin                      | Prednisone                            |
| 4-Epitetracycline [ETC]               | Doxycycline                      | Progesterone                          |
| 4-Nonylphenol diethoxylates           | Drospirenone                     | Promethazine                          |
| 4-Nonylphenol monoethoxylates         | Enalapril                        | Propoxyphene                          |
| 4-Nonylphenols                        | Enrofloxacin                     | Propranolol                           |
| Acetaminophen                         | Equilenin                        | Ranitidine                            |
| Albuterol                             | Equilin                          | Rosuvastatin                          |
| Allyl Trenbolone                      | Erythromycin-H2O                 | Roxithromycin                         |
| Alprazolam                            | Estriol                          | Sarafloxacin                          |
| Amitriptyline                         | Estrone                          | Sertraline                            |
| Amlodipine                            | Etoposide                        | Simvastatin                           |
| Amphetamine                           | Flumequine                       | Sulfachloropyridazine                 |
| Amsacrine                             | Fluocinonide                     | Sulfadiazine                          |
| Androstenedione                       | Fluoxetine                       | Sulfadimethoxine                      |
| Androsterone                          | Fluticasone propionate           | Sulfamerazine                         |
| Anhydrochlortetracycline [ACTC]       | Furosemide                       | Sulfamethazine                        |
| Anhydrotetracycline [ATC]             | Gemfibrozil                      | Sulfamethizole                        |
| Atenolol                              | Glipizide                        | Sulfamethoxazole                      |
| Atorvastatin                          | Glyburide                        | Sulfanilamide                         |
| Azathioprine                          | Hydrochlorothiazide              | Sulfathiazole                         |
| Azithromycin                          | Hydrocodone                      | Tamoxifen                             |
| Benzoylecgonine                       | Hydrocortisone                   | Teniposide                            |
| Benztropine                           | Ibuprofen                        | Testosterone                          |
| Betamethasone                         | Iopamidol                        | Tetracycline [TC]                     |
| Bisphenol A                           | Isochlortetracycline [ICTC]      | Theophylline                          |
| Busulfan                              | Lincomycin                       | Thiabendazole                         |
| Caffeine                              | Lomefloxacin                     | Trenbolone                            |
| Carbadox                              | Lomustine                        | Trenbolone acetate                    |
| Carbamazepine                         | Medroxyprogesterone Acetate      | Triamterene                           |
| Carmustine                            | Melphalan                        | Triclocarban                          |
| Cefotaxime                            | Meprobamate                      | Triclosan                             |
| Chloramphenicol                       | Mestranol                        | Trimethoprim                          |
| Chlortetracycline [CTC]               | Metformin                        | Tylosin                               |
| Cimetidine                            | Methylprednisolone               | Valsartan                             |
|                                       | ·                                |                                       |
| · · · · · · · · · · · · · · · · · · · | Methylprednisolone<br>Metoprolol | · · · · · · · · · · · · · · · · · · · |

| Citalopram       | Metronidazole | Verapamil                                     |
|------------------|---------------|-----------------------------------------------|
| Clarithromycin   | Miconazole    | Virginiamycin M1                              |
| Clinafloxacin    | Minocycline   | Warfarin                                      |
| Clonidine        | Moxifloxacin  | Zidovudine                                    |
| Clotrimazole     | Naproxen      | 3,4-methylenedioxy-N-methylamphetamine (MDMA) |
| Cloxacillin      | Norethindrone | Amphetamine                                   |
| Cocaine          | Norfloxacin   | Benzoylecgonine                               |
| Codeine          | Norfluoxetine | Cocaine (MDH)                                 |
| Colchicine       | Norgestimate  | Methamphetamine                               |
| Cotinine         | Norgestrel    | Morphine                                      |
| Cyclophosphamide | Norverapamil  | Pseudoepedrine/Ephedrine                      |
| Daunorubicin     | Octylphenol   |                                               |
| DEET             | Ofloxacin     |                                               |

Table 2. Maximum concentrations and reporting limits of chemicals detected in lakes in 2013

| Chemical              | Maximum concentration (ppt) | Range of reporting limits (ppt) |
|-----------------------|-----------------------------|---------------------------------|
| Amitriptyline         | 0.503                       | 0.301-1.23                      |
| Amphetamine           | 2.91                        | 1.48-1.53                       |
| Androstenedione       | 5                           | 2.00-2.81                       |
| Androsterone          | 128                         | 19.8-107                        |
| Bisphenol A           | 35.8                        | 1.68-2.36                       |
| Caffeine              | 69.7                        | 14.9-16.2                       |
| Carbadox              | 5.45                        | 1.49-29.0                       |
| Ciprofloxacin         | 36.8                        | 16.7-38.7                       |
| Clinafloxacin         | 184                         | 49.3-124                        |
| Colchicine            | 8.52                        | 2.03-6.10                       |
| Cotinine              | 42.1                        | 1.48-1.52                       |
| DEET                  | 103                         | 0.591-0.647                     |
| Diltiazem             | 1.19                        | 0.3-1.70                        |
| Erythromycin-H2O      | 3.33                        | 2.30-3.08                       |
| Estrone               | 24.6                        | 3.96-4.23                       |
| Gemfibrozil           | 2.07                        | 1.49-5.08                       |
| Glyburide             | 2.92                        | 2.11-3.21                       |
| lopamidol             | 510                         | 79.3-257                        |
| Metformin             | 18.0                        | 2.96-13.6                       |
| Naproxen              | 3.85                        | 2.98-14.7                       |
| Norverapamil          | 0.187                       | 1.49-0.186                      |
| Sertraline            | 12.7                        | 0.397-0.453                     |
| Sulfachloropyridazine | 3.83                        | 1.52-5.54                       |
| Thiabendazole         | 12.7                        | 1.49-1.60                       |
| Triclocarban          | 3.28                        | 2.98-3.21                       |
| Trimethoprim          | 3.63                        | 1.49-1.75                       |
| Triclosan             | 5.75                        | 4.89-5.78                       |

Table 3. Maximum concentration and reporting limits for chemicals detected in river surface water in 2013

Maximum concentration(ppt)

| Chemical                    | Upstream | Downstream | Range of reporting limits (ppt) |
|-----------------------------|----------|------------|---------------------------------|
| 10-hydroxy-amitriptyline    | -        | 1.45       | 1.49-1.56                       |
| 4-Nonylphenol diethoxylates |          | 13         | 2.45-14.6                       |
| 4-Nonylphenols              |          | 30.1       | 0.722-4.28                      |
| Albuterol                   | 0.314    | 1.9        | 0.295-0.312                     |
| Alprazolam                  |          | 0.339      | 0.296-0.339                     |
| Amitriptyline               | 0.471    | 0.724      | 0.296-1.39                      |
| Amphetamine                 |          | 1.65       | 1.49-2.42                       |
| Atenolol                    | 1.67     | 26.3       | 0.596-0.651                     |
| Benzoylecgonine             | 0.469    | 4.14       | 0.297-0.469                     |
| Bisphenol A                 | 237      | 6.98       | 1.68-2.36                       |
| Caffeine                    | 37       | 80.1       | 14.8-15.3                       |
| Carbadox                    | 3.23     |            | 1.48-7.53                       |
| Carbamazepine               | 7.62     | 35.7       | 1.49-1.56                       |
| Cimetidine                  |          | 7.1        | 0.596-0.625                     |
| Ciprofloxacin               |          | 22.6       | 10.2-25.6                       |
| Citalopram                  |          | 8.5        | 0.389-0.706                     |
| Clarithromycin              |          | 7.95       | 1.48-1.56                       |
| Cocaine                     | 0.203    | 0.291      | 1.48-1.55                       |
| Codeine                     |          | 4.4        | 0.295-3.12                      |
| Cotinine                    | 5.19     | 8.32       | 1.48-3.03                       |
| DEET                        | 11.2     | 20.3       | 0.591-0.647                     |
| Dehydronifedipine           | 0.72     | 1.08       | 0.597-0.623                     |
| Desmethyldiltiazem          | 0.27     | 3.33       | 1.49-1.56                       |
| Diatrizoic acid             |          | 91.2       | 39.4-41.5                       |
| Diltiazem                   | 2.26     | 19.5       | 0.299-0.991                     |
| Diphenhydramine             |          | 6.61       | 0.593-0.623                     |
| Erythromycin-H2O            | 4.96     | 13.2       | 2.29-2.39                       |
| Fluoxetine                  | 12.1     | 7.73       | 1.48-1.56                       |
| Furosemide                  |          | 67         | 39.4-41.5                       |
| Gemfibrozil                 | 2.33     | 11.1       | 1.49-4.94                       |
| Hydrochlorothiazide         | 2        | 5.4        | 19.8-208                        |
| Hydrocodone                 |          | 5.2        | 1.49-1.56                       |
| Iopamidol                   | 356      | 1230       | 79.3-257                        |
| Meprobamate                 |          | 18.3       | 3.94-10.8                       |
| Metformin                   | 53.9     | 434        | 2.96-13.6                       |
| Methamphetamine             |          | 3          | 0.75                            |
| Methylprednisolone          | 6.06     |            | 4.74-44.3                       |
| Metoprolol                  | 7.79     | 51         | 6.57-9.68                       |

| Moxifloxacin              | 15.5  | 7.63  | 9.50-20.2   |
|---------------------------|-------|-------|-------------|
| Naproxen                  |       | 9.75  | 2.97-9.95   |
| Ofloxacin                 |       | 23.4  | 1.48-3.50   |
| Oxycodone                 |       | 8.8   | 0.596-1.45  |
| Propranolol               |       | 8.6   | 1.97-2.08   |
| Pseudoephedrine/Ephedrine |       | 2.3   | 0.78-0.84   |
| Ranitidine                | 0.744 | 24.2  | 0.596-2.08  |
| Sertraline                | 0.482 | 3.48  | 0.398-4.15  |
| Sulfadimethoxine          | 0.8   | 4.58  | 0.299-2.10  |
| Sulfamethazine            | 30.9  | 25.6  | 1.02-5.81   |
| Sulfamethoxazole          | 52.8  | 186   | 0.597-0.623 |
| Theophylline              |       | 94.6  | 59.3-199    |
| Thiabendazole             |       | 1.81  | 1.48-1.56   |
| Triamterene               | 3.19  | 18.1  | 0.312-0.364 |
| Triclosan                 | 9.53  |       | 4.31-5.02   |
| Trimethoprim              | 9.37  | 38.1  | 1.49-1.56   |
| Tylosin                   |       | 8.1   | 5.91-6.23   |
| Valsartan                 | 4.44  | 13.2  | 3.94-4.15   |
| Venlafaxine               | 5.95  | 50.4  | 1.19-1.25   |
| Verapamil                 |       | 0.521 | 0.148-0.156 |
| Virginiamycin M1          | 67.6  | 34    | 13.3-21.0   |

#### For tables 4 through 14:

All concentrations are in parts per trillion (ppt)

na: not analyzednd: not detected

qa: laboratory quality control issues prevented quantification

nm: not measured

<: not detected above the stated reporting limit B: contaminant also detected in laboratory blank

Table 4. Cedar Lake

| Chemical                         | 2008 | 2013 |
|----------------------------------|------|------|
| 17-β-estradiol                   | 0.38 | <4.2 |
| 2,6-di-tert-butyl-4-methylphenol | 65   | na   |
| 5-methyl-1H-benzotriazole        | 38   | na   |
| Androstenedione                  | nd   | 3.9  |
| Benzoquinone                     | 142  | na   |
| BPA                              | <10  | 6.4  |
| Caffeine                         | 87   | 69.7 |
| Cholesterol                      | 7842 | na   |
| Coprostanol                      | 28   | na   |
| Cotinine                         | na   | 42.1 |

| Estrone         qa         24.6           lopamidol         na         212           Methylphenol         19.9         na           Norverapamil         na         0.19           Thiabendazole         na         12.7           Table 5. Budd Lake |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methylphenol19.9naNorverapamilna0.19Thiabendazolena12.7Table 5. Budd Lake                                                                                                                                                                             |
| Norverapamil na 0.19 Thiabendazole na 12.7 <b>Table 5. Budd Lake</b>                                                                                                                                                                                  |
| Thiabendazole na 12.7  Table 5. Budd Lake                                                                                                                                                                                                             |
| Table 5. Budd Lake                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                       |
| Chemical         2008         2013                                                                                                                                                                                                                    |
| 17-β-estradiol 0.04 <4                                                                                                                                                                                                                                |
| 2,6-di-tert-butyl-4-methylphenol 68.7 na                                                                                                                                                                                                              |
| 2,6-di-tert-butylphenol 180 na                                                                                                                                                                                                                        |
| 5-methyl-1H-benzotriazole 13.6 na                                                                                                                                                                                                                     |
| Androstenedione na 5                                                                                                                                                                                                                                  |
| BPA 37.9 <2.0                                                                                                                                                                                                                                         |
| Caffeine 17.7 <16                                                                                                                                                                                                                                     |
| Cholesterol 2536 na                                                                                                                                                                                                                                   |
| Coprostanol 39.1 na                                                                                                                                                                                                                                   |
| Cotinine na 12.8                                                                                                                                                                                                                                      |
| DEET 25.3 18.3                                                                                                                                                                                                                                        |
| Gemfibrozil na 2.1                                                                                                                                                                                                                                    |
| Nonylphenol monoethoxylate 59.1 <2.8                                                                                                                                                                                                                  |
| Octylphenol diethoxylate 25.8 na                                                                                                                                                                                                                      |
| Triclocarban na 3.3                                                                                                                                                                                                                                   |
| Table 6. Lake Owasso                                                                                                                                                                                                                                  |
| Chemical         2008         2013                                                                                                                                                                                                                    |
| 17-β-estradiol 0.1 <4.2                                                                                                                                                                                                                               |
| 2,6-di-tert-butyl-4-methylphenol 65.5 na                                                                                                                                                                                                              |
| 4-methylphenol 28.6 na                                                                                                                                                                                                                                |
| Androstenedione qa 2.6                                                                                                                                                                                                                                |
| Androsterone nd 128                                                                                                                                                                                                                                   |
| BPA 25.6 3.6                                                                                                                                                                                                                                          |
| Caffeine 129.4 16.5                                                                                                                                                                                                                                   |
| Cholesterol 8982 na                                                                                                                                                                                                                                   |
| Coprostanol nd na                                                                                                                                                                                                                                     |
| Cotinine na 15.6                                                                                                                                                                                                                                      |
| DEET 90 52                                                                                                                                                                                                                                            |
| lopamidol na 273                                                                                                                                                                                                                                      |
| Mestranol 0.17 <50.4                                                                                                                                                                                                                                  |

Table 7. White Sand Lake

| Chemical                         | 2008     | 2013      |
|----------------------------------|----------|-----------|
| 17-β-estradiol                   | 0.12     | <4.0      |
| 2,6-di-tert-butyl-4-methylphenol | 15.5     | na        |
| Amitriptyline                    | na       | 0.49      |
| Androstenedione                  | 1        | <2.3      |
| Benzoquinone                     | 87.8     | na        |
| Cholesterol                      | 7520     | na        |
| Coprostanol                      | 552.5    | na        |
| Cotinine                         | na       | 6.9       |
| DEET                             | 33.4     | 69.3      |
| Equilin                          | 0.16     | <9.0      |
| Estrone                          | 0.64     | <4.0      |
| Iopamidol                        | na       | 140       |
| Metformin                        | na       | 4.1       |
| Methylphenol                     | 23       | na        |
| Naproxen                         | na       | 3.9       |
| Testosterone                     | 0.23     | <2.6      |
| Table 8. Red Sand Lake           |          |           |
| Chemical                         | 2008     | 2013      |
| 17-β-estradiol                   | 0.03     | <3.96     |
| 2,6-di-tert-butyl-4-methylphenol | 17       | na        |
| Amitriptyline                    | na       | 0.5       |
| Androstenedione                  | 0.22     | <2.25     |
| Benzoquinone                     | 38       | na        |
| BPA                              | <10.0    | <2.0      |
| Carbadox                         | na       | 5.5       |
| Cholesterol                      | 5688     | na        |
| Coprostanol                      | 200      | na        |
| Cotinine                         | na       | 3.6       |
| DEET                             | 11.5     | 37.1      |
| Diphenhydramine                  | 14       | <2.0      |
| Estrone                          | 0.63     | <3.96     |
| Iopamidol                        | na       | 339       |
| Metformin                        |          |           |
|                                  | na       | 8.4       |
| Methylphenol                     | na<br>15 | 8.4<br>na |

Table 9. Sullivan Lake

| Chemical                         | 2008  | 2013  |
|----------------------------------|-------|-------|
| 17-β-estradiol                   | 0.08  | <4.2  |
| Androstenedione                  | 0.72  | <2.1  |
| Benzoquinone                     | 82.6  | na    |
| Cholesterol                      | 7133  | na    |
| Coprostanol                      | 50.3  | na    |
| Cotinine                         | na    | 6.1   |
| DEET                             | 30.5  | 16.5  |
| Estrone                          | 0.7   | <4.2  |
| Gyburide                         | na    | 2.9   |
| Iopamidol                        | na    | 238   |
| Methylphenol                     | 19.5  | na    |
| Table 10. Elk Lake               |       |       |
| Chemical                         | 2008  | 2013  |
| 17-β-estradiol                   | 0.41  | <4.0  |
| 2,6-di-tert-butyl-4-methylphenol | 18.4  | na    |
| Androstenedione                  | 0.81  | <2.1  |
| Benzoquinone                     | 76.5  | na    |
| ВРА                              | <10.0 | 28.6  |
| Caffeine                         | 10.7  | <14.9 |
| Cholesterol                      | 8279  | na    |
| Colchicine                       | na    | 8.5   |
| Coprostanol                      | 51    | na    |
| Cotinine                         | na    | 2.1   |
| DEET                             | 217.8 | 16.6  |
| Estrone                          | 1.1   | <4.2  |
| Metformin                        | na    | 3     |
| Methylphenol                     | 14.4  | na    |
| Table 11. Stewart Lake           |       |       |
| Chemical                         | 2008  | 2013  |
| Androstenedione                  | 0.33  | <2.81 |
| ВРА                              | 20    | <2    |
| Caffeine                         | 13.8  | <15.2 |
| Cholesterol                      | 1364  | na    |
| Clinafloxacin                    | na    | 66.6  |
| Coprostanol                      | 162   | na    |
| Cotinine                         | na    | 1.83  |
| DEET                             | 51.2  | 33.2  |
| Estrone                          | 1.45  | <3.96 |

| Iopamidol                  | na    | 302   |
|----------------------------|-------|-------|
| Methylphenol               | 16.9  | na    |
| Octylphenol                | 10.2  | na    |
| Sertraline                 | na    | 12.7  |
| Sulfachloropyridazine      | na    | 3.83  |
| Trimethoprim               | na    | 3.63  |
| Table 12. Shingobee        |       |       |
| Chemical                   | 2008  | 2013  |
| Amphetamine                | na    | 2.91  |
| Androstenedione            | 0.54  | <2    |
| BPA                        | 19.9  | B2.96 |
| Caffeine                   | 12.8  | <15   |
| Cholesterol                | 1370  | na    |
| Coprostanol                | 418.5 | na    |
| DEET                       | 579.4 | 10.6  |
| Diphenhydramine            | 35.7  | <0.6  |
| Estrone                    | 1.08  | <4    |
| lopamidol                  | na    | 118   |
| Metformin                  | na    | 18    |
| Methylphenol               | 13.8  | na    |
| Nonylphenol                | 110.8 | B1.57 |
| Nonylphenol monoethoxylate | 86.3  | na    |
| Nonylphenol diethoxylate   | 170.5 | <2.67 |
| Nonylphenol triethoxylate  | 123   | na    |
| Octylphenol                | 10.2  | <0.55 |
| Octylphenol diethoxylate   | 33.7  | na    |
| Octylphenol triethoxylate  | 13.8  | na    |
| Table 13. Lake Kabetogama  |       |       |
| Chemical                   | 2008  | 2013  |
| Androstenedione            | 0.5   | <2.57 |
| Cholesterol                | 1976  | na    |
| Coprostanol                | 25.3  | na    |
| DEET                       | 17.6  | B 5.3 |
| Estrone                    | 0.02  | <4.15 |
| Iopamidol                  | na    | 510   |
| Methylphenol               | 18.6  | na    |
| Sertraline                 | na    | 12.7  |

**Table 14. Northern Light Lake** 

| Chemical                         | 2008  | 2013  |
|----------------------------------|-------|-------|
| 17-β-estradiol                   | 0.45  | <4.09 |
| 2,6-di-tert-butyl-4-methylphenol | 12    | na    |
| ВРА                              | 12.4  | 35.8  |
| Caffeine                         | 19.3  | <16   |
| Cholesterol                      | 931   | na    |
| Ciprofloxacin                    | na    | 36.8  |
| Clinafloxacin                    | na    | 184   |
| Coprostanol                      | 14.8  | na    |
| DEET                             | 50.7  | 13.8  |
| Diltiazem                        | na    | 1.19  |
| Erythromycin-H2O                 | na    | 3.33  |
| Methylphenol                     | 41.4  | na    |
| Nonylphenol                      | 213.8 | B2.7  |
| Nonylphenol monoethoxylate       | 106   | <2.63 |
| Nonylphenol diethoxylate         | 65.8  | <3.45 |
| Octylphenol diethoxylate         | 42.7  | na    |
| Trimethoprim                     | na    | 2.87  |

Table 15. Lake contaminants sorted by Anatomical Therapeutic Classification

| Pharmaceutical detected | ATC designation | ATC category description (abbreviated)    |
|-------------------------|-----------------|-------------------------------------------|
| Metformin               | A10BA02         | Alimentary Tract and Metabolism           |
| Diltiazem               | C08DB01         | Cardiovascular System                     |
| Gemfibrozil             | C10AB04         | Cardiovascular System                     |
| Thiabendazole           | D01AC06         | Dermatologicals                           |
| Erythromycin-H2O        | D10AF02         | Dermatologicals                           |
| Naproxen                | G02CC02         | Genito Urinary System and Sex<br>Hormones |
| Estrone                 | G03CA07         | Genito Urinary System and Sex<br>Hormones |
| Sulfachloropyridazine   | J01E            | Antiinfectives for Systemic Use           |
| Trimethoprim            | J01EA01         | Antiinfectives for Systemic Use           |
| Erythromycin-H2O        | J01FA01         | Antiinfectives for Systemic Use           |
| Ciprofloxacin           | J01MA02         | Antiinfectives for Systemic Use           |
| Naproxen                | M01AE02         | Musculo-Skeletal System                   |
| Naproxen                | M02AA12         | Musculo-Skeletal System                   |
| Colchicine              | M04AC01         | Musculo-Skeletal System                   |
| Amitriptyline           | N06AA09         | Tricyclic Antidepressant                  |
| Sertraline              | N06AB06         | Nervous System                            |
| Caffeine                | N06BC01         | Nervous System                            |
| Glyburide               | No Data         |                                           |

| Norverapamil     | No Data |                                   |
|------------------|---------|-----------------------------------|
| Cotinine         | No Data |                                   |
| Thiabendazole    | P02CA02 | Antiparasitic Products            |
| Erythromycin-H2O | S01AA17 | Sensory Organs, Ophthalmologicals |
| Clinafloxacin    | S01AE   | Sensory Organs, Ophthalmologicals |
|                  |         | Various, Contrast Media, X-Ray    |
| Iopamidol        | V08AB04 | Contrast Media                    |

Table 16. Contaminants detected in proximity of wastewater treatment plants sorted by Anatomical Therapeutic Classification

| Pharmaceutical detected | ATC designation | Category description            |
|-------------------------|-----------------|---------------------------------|
| Cimetidine              | A02BA01         | Alimentary Tract and Metabolism |
| Ranitidine              | A02BA02         | Alimentary Tract and Metabolism |
| Metformin               | A10BA02         | Alimentary Tract and Metabolism |
| Furosemide              | C03CA01         | Cardiovascular System           |
| Triamterene             | C03DB02         | Cardiovascular System           |
| Propranolol             | C07AA05         | Cardiovascular System           |
| Metoprolol              | C07AB02         | Cardiovascular System           |
| Atenolol                | C07AB03         | Cardiovascular System           |
| Verapamil               | C08DA01         | Cardiovascular System           |
| Diltiazem               | C08DB01         | Cardiovascular System           |
| Valsartan               | C09CA03         | Cardiovascular System           |
| Gemfibrozil             | C10AB04         | Cardiovascular System           |
| Thiabendazole           | D01AC06         | Dermatologicals                 |
| Virginiamycin M1        | D06AX10         | Dermatologicals                 |
| Methylprednisolone      | D07AA01         | Dermatologicals                 |
| Erythromycin-H2O        | D10AF02         | Dermatologicals                 |
|                         |                 | Genito Urinary System And Sex   |
| Naproxen                | G02CC02         | Hormones                        |
| Trimethoprim            | J01EA01         | Antiinfectives for Systemic Use |
| Tylosin                 | J01EA01         | Antiinfectives for Systemic Use |
| Sulfamethazine          | J01EB03         | Antiinfectives for Systemic Use |
| Sulfamethoxazole        | J01EC01         | Antiinfectives for Systemic Use |
| Sulfadimethoxine        | J01ED01         | Antiinfectives for Systemic Use |
| Erythromycin-H2O        | J01FA01         | Antiinfectives for Systemic Use |
| Clarithromycin          | J01FA09         | Antiinfectives for Systemic Use |
| Ofloxacin               | J01MA01         | Antiinfectives for Systemic Use |
| Moxifloxacin            | J01MA14         | Antiinfectives for Systemic Use |
| Amphetamine             | J05AF01         | Antiinfectives for Systemic Use |
| Naproxen                | M01AE02         | Musculo-Skeletal System         |
| Cocaine                 | N01BC01         | Nervous System                  |
| Oxycodone               | N02AA05         | Nervous System                  |
| Carbamazepine           | N03AF01         | Nervous System                  |

| Alprazolam                | N05BA12 | Nervous System                                   |
|---------------------------|---------|--------------------------------------------------|
| Meprobamate               | N05BC01 | Nervous System                                   |
| Fluoxetine                | N06AB03 | Nervous System                                   |
| Citalopram                | N06AB04 | Nervous System                                   |
| Sertraline                | N06AB06 | Nervous System                                   |
| Venlafaxine               | N06AX16 | Nervous System                                   |
| Caffeine                  | N06BC01 | Nervous System                                   |
| Thiabendazole             | P02CA02 | Antiparasitic Products                           |
| Cocaine                   | R02AD03 | Respiratory System                               |
| Albuterol                 | R03AC02 | Respiratory System                               |
| Theophylline              | R03DA04 | Respiratory System                               |
| Hydrocodone               | R05DA03 | Respiratory System                               |
| Codeine                   | R05DA04 | Respiratory System                               |
| Diphenhydramine           | R06AA02 | Respiratory System                               |
| Ofloxacin                 | S01AE01 | Sensory Organs, Ophthalmologicals                |
| Cocaine                   | S01HA01 | Sensory Organs, Ophthalmologicals                |
| Ofloxacin                 | S02AA16 | Sensory Organs, Otologicals                      |
| Cocaine                   | S02DA02 | Sensory Organs, Otologicals                      |
| Ciprofloxacin             | S03AA07 | Sensory Organs, Ophthalmological And Otological  |
| Diatrizoic acid           | V08AA01 | Various, Contrast Media, X-Ray<br>Contrast Media |
| lopamidol                 | V08AB04 | Various, Contrast Media, X-Ray<br>Contrast Media |
| Pseudoephedrine/Ephedrine | No Data |                                                  |
| Dehydronifedipine         | No Data |                                                  |
| Amitriptyline             | No Data |                                                  |
| Hydrochlorothiazide       | No Data |                                                  |
| Desmethyldiltiazem        | No Data |                                                  |
|                           |         |                                                  |

Figure 1. Sampling locations




Figure 2. Frequency of contaminant detection in lakes in 2013

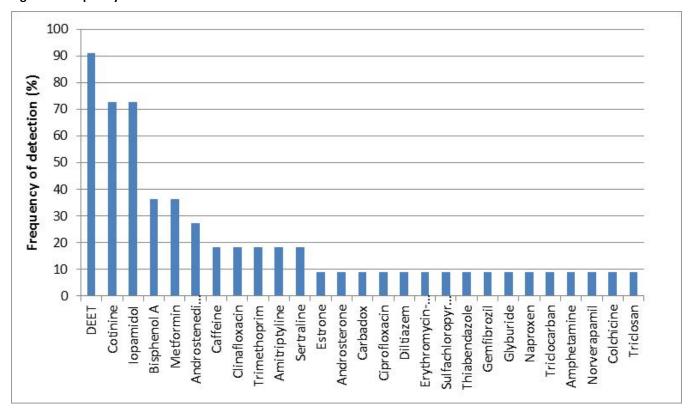



Figure 3. Fraction of locations downstream of wastewater treatment plants where chemicals were detected in 2013

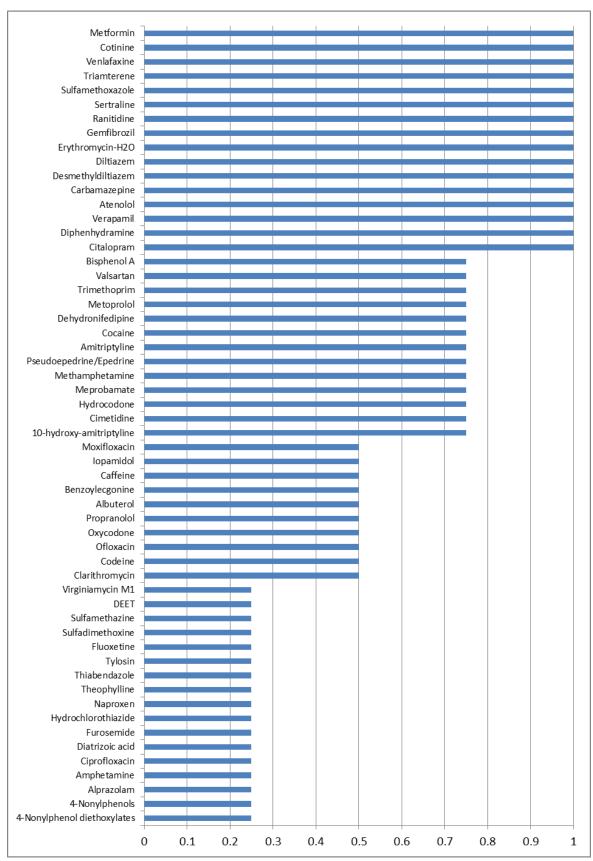
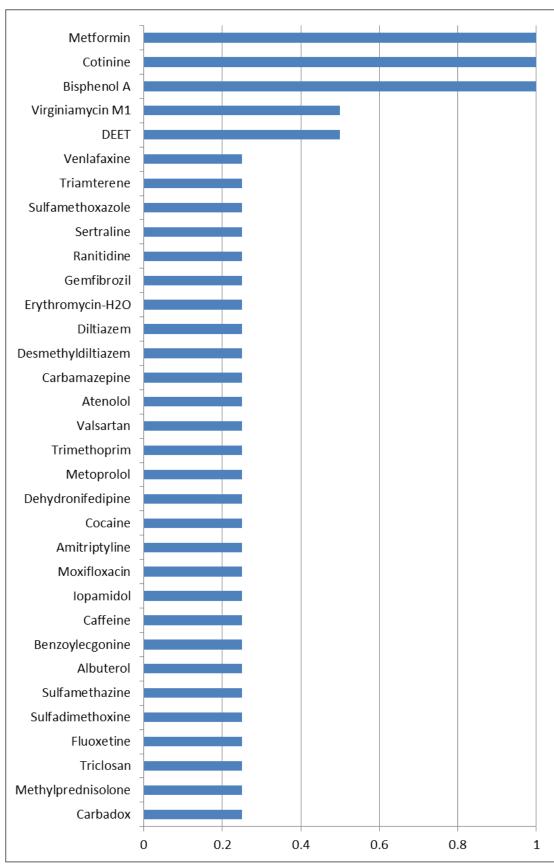
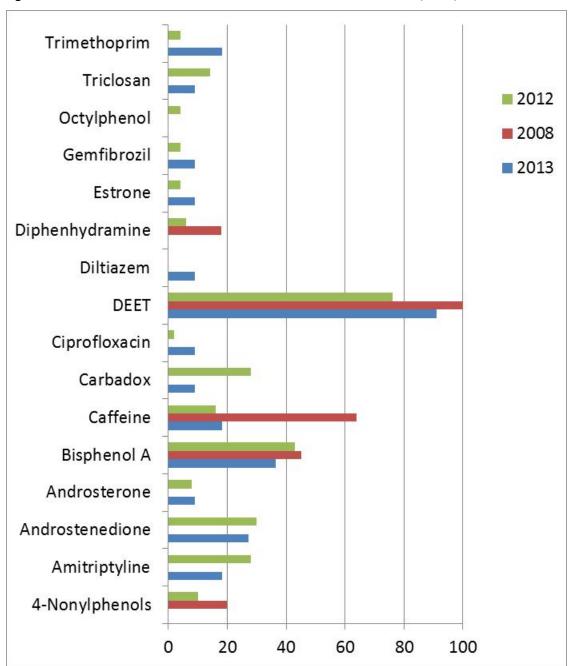





Figure 4. Fraction of locations upstream of wastewater treatment plants where chemicals were detected in 2013







Appendix A

Lake and wastewater treatment plant descriptions and location information

Lakes

|                |            |           |               |              | Littoral area<br>MDNR 15 feet | Lake<br>surface |          |
|----------------|------------|-----------|---------------|--------------|-------------------------------|-----------------|----------|
|                |            | MPCA/MDNR |               |              | standard                      | area            | Percent  |
| Lake name      | County     | site ID   | Trophic state | Lake type    | (acres)                       | (acres)         | littoral |
|                |            |           |               | Urban,       |                               |                 |          |
| Budd           | Martin     | 46-0030   | Eutrophic     | sewered      | 168.56                        | 218.38          | 77.19%   |
|                |            |           |               | Urban,       |                               |                 |          |
| Cedar          | Hennepin   | 27-0039   | Eutrophic     | sewered      | 60.06                         | 163.79          | 36.67%   |
| Elk            | Clearwater | 15-0010   | Mesotrophic   | Reference    | 77.74                         | 305.36          | 25.46%   |
| Kabetogama     | St. Louis  | 69-0845   | Oligotrophic  | Septic input | 7168.96                       | 24032.72        | 29.83%   |
| Northern Light | Cook       | 16-0089   | Oligotrophic  | Reference    | 433.00                        | 453.32          | 95.52%   |
|                |            |           |               | Urban,       |                               |                 |          |
| Owasso         | Ramsey     | 62-0056   | Eutrophic     | sewered      | 284.18                        | 374.96          | 75.79%   |
| Red Sand       | Crow Wing  | 18-0386   | Mesotrophic   | Septic input | 502.00                        | 502.00          | 100.00%  |
| Shingobee      | Hubbard    | 29-0043   | Oligotrophic  | Septic input | 43.00                         | 171.93          | 25.01%   |
| Stewart        | Crow Wing  | 38-0744   | Oligotrophic  | Septic input | 237.11                        | 237.72          | 99.74%   |
| Sullivan       | Wright     | 86-0119   | Mesotrophic   | Septic input | 39.43                         | 70.58           | 55.87%   |
| White Sand     | Crow Wing  | 18-0379   | Mesotrophic   | Septic input | 282.54                        | 413.22          | 68.38%   |

| Percentage of land cover types within 1 km of lake shore Mean depth High-intensity Low-intensity |        |            |       |        | Low-intensity | Deciduous |
|--------------------------------------------------------------------------------------------------|--------|------------|-------|--------|---------------|-----------|
| Lake name                                                                                        | (feet) | Open water | Marsh | urban  | urban         | forest    |
| Budd                                                                                             | 11.1   | 7.82%      | 0.52% | 22.85% | 21.98%        | 3.63%     |
| Cedar                                                                                            | 19.62  | 7.38%      | 0.04% | 44.34% | 42.73%        | 2.67%     |
| Elk                                                                                              | 34.25  | 2.34%      | 2.12% | 0.00%  | 0.00%         | 84.51%    |
| Kabetogama                                                                                       | 24.75  | 1.99%      | 2.45% | 0.00%  | 0.00%         | 66.85%    |
| Northern Light                                                                                   | n/a    | 0.21%      | 0.63% | 0.00%  | 0.00%         | 87.66%    |
| Owasso                                                                                           | 10.9   | 4.02%      | 0.54% | 2.23%  | 90.88%        | 1.14%     |
| Red Sand                                                                                         | n/a    | 18.28%     | 7.89% | 0.00%  | 0.00%         | 31.99%    |
| Shingobee                                                                                        | n/a    | 0.37%      | 0.24% | 0.00%  | 0.00%         | 92.84%    |
| Stewart                                                                                          | 6.42   | 0.17%      | 0.00% | 0.00%  | 0.00%         | 97.26%    |
| Sullivan                                                                                         | 14.94  | 0.04%      | 0.64% | 0.00%  | 0.00%         | 0.11%     |
| White Sand                                                                                       | 9.91   | 13.84%     | 4.49% | 4.48%  | 1.68%         | 20.23%    |

#### Percentage of land cover types within 1 km of lake shoreline

| Lake name      | Conifer forest | Mixed forest | Shrubland | Grassland | Cropland | Barren |
|----------------|----------------|--------------|-----------|-----------|----------|--------|
| Budd           | 0.00%          | 0.00%        | 0.00%     | 2.28%     | 40.93%   | 0.00%  |
| Cedar          | 1.38%          | 0.00%        | 0.22%     | 0.58%     | 0.66%    | 0.00%  |
| Elk            | 10.21%         | 0.00%        | 0.83%     | 0.00%     | 0.00%    | 0.00%  |
| Kabetogama     | 18.37%         | 0.00%        | 7.46%     | 1.20%     | 0.08%    | 1.60%  |
| Northern Light | 8.21%          | 0.18%        | 2.79%     | 0.33%     | 0.00%    | 0.00%  |
| Owasso         | 0.15%          | 0.00%        | 0.29%     | 0.47%     | 0.28%    | 0.00%  |
| Red Sand       | 24.44%         | 0.00%        | 2.52%     | 11.80%    | 3.09%    | 0.00%  |
| Shingobee      | 1.87%          | 0.00%        | 0.30%     | 1.53%     | 2.86%    | 0.00%  |
| Stewart        | 0.70%          | 0.00%        | 1.86%     | 0.00%     | 0.00%    | 0.00%  |
| Sullivan       | 0.11%          | 0.00%        | 1.13%     | 2.10%     | 95.87%   | 0.00%  |
| White Sand     | 43.32%         | 0.00%        | 1.03%     | 7.28%     | 3.66%    | 0.00%  |

## Wastewater treatment plants

|                       | Sauk Centre WWTP Sauk Centre, MN                                          | Marshall WWTP<br>Marshall, MN                                                                   | Metro Plant (WWTP)<br>St. Paul, MN                               | Hinckley WWTP<br>Hinckley, MN       |
|-----------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------|
| Design flow (Mgal/d)  | 0.88                                                                      | 4.5                                                                                             | 251                                                              | 0.5                                 |
| Design flow (cms)     | 0.0385                                                                    | 0.1971                                                                                          | 10.99                                                            | 0.0219                              |
| Туре                  | Continuous                                                                | Continuous                                                                                      | Continuous                                                       | Continuous                          |
| Treatment process     | Activated sludge,<br>contact stabilization,<br>conventional,<br>step feed | Trickling filter, Activated sludge, contact stabilization, conventional, step feed, sand filter | Activated sludge, contact stabilization, conventional, step feed | Activated sludge, extended aeration |
| No. trickling filters | 0                                                                         | 2                                                                                               | 0                                                                | 0                                   |
| disinfection          | Chl/DEChl                                                                 | UV                                                                                              | Chl/DEChl                                                        | UV                                  |
| Population served     | 4111                                                                      | 13000                                                                                           | 1,800,000                                                        | 1438                                |
| Percent domestic      | 100                                                                       | 40                                                                                              | na                                                               | 100                                 |
| Percent industrial    | 0                                                                         | 60                                                                                              | na                                                               | 0                                   |

# **Sampling locations**

#### Lakes

| Lake           | Lat           | Long          |
|----------------|---------------|---------------|
| Budd           | 43°38'20.97"N | 94°28'1.57"W  |
| Cedar          | 44°57'44.41"N | 93°19'16.39"W |
| Elk            | 47°11'28.04"N | 95°13'7.61"W  |
| Kabetogama     | 48°28'59.42"N | 93° 1'35.33"W |
| Northern Light | 47°54'19.67"N | 90°14'21.86"W |
| Owasso         | 45° 1'37.33"N | 93° 7'58.43"W |
| Red Sand       | 46°22'40.08"N | 94°17'15.08"W |
| Shingobee      | 47° 0'5.92"N  | 94°41'26.38"W |
| Stewart        | 47°11'16.48"N | 91°45'16.03"W |
| Sullivan       | 45°13'19.13"N | 93°56'30.47"W |
| White Sand     | 46°21'3.33"N  | 94°17'18.17"W |

## Wastewater treatment plants

Samples were collected upstream and downstream of the WWTP outfalls.

| WWTP                   | Lat           | Long          |
|------------------------|---------------|---------------|
| Sauk Centre upstream   | 45°43'8.18"N  | 94°56'23.93"W |
| Sauk Centre downstream | 45°42'51.04"N | 94°56'17.75"W |
| Marshall upstream      | 44°28'45.50"N | 95°46'33.79"W |
| Marshall downstream    | 44°29'12.10"N | 95°45'57.47"W |
| Metro Plant upstream   | 44°55'11.04"N | 93° 3'4.46"W  |
| Metro Plant downstream | 44°54'5.90"N  | 93° 2'17.60"W |
| Hinckley upstream      | 46° 1'6.86"N  | 92°54'33.46"W |
| Hinckley downstream    | 46° 0'48.40"N | 92°53'23.57"W |

## **Appendix B**

#### Sample collection

Samples were collected in one liter amber glass or high-density polyethylene (HDPE) bottles, depending on the specific analysis for which the sample was intended. All sample bottles were provided by AXYS Analytical Services in Sidney, British Columbia, Canada. Field staff did not apply fragrances, insect repellant (DEET), or sunscreen prior to sampling and wore disposable powder-free, nitrile gloves while sampling. Sample bottles were transported to the site in re-sealable plastic bags and coolers.

For lakes, mid-lake grab samples were collected from the bow of the watercraft, holding the collection bottle at arm's length ahead of the boat which was maneuvered slowly in an upwind direction in an effort to prevent any possible airborne or waterborne contamination from either the watercraft or the field staff. Sample bottles were removed from the re-sealable plastic bags and uncapped for sample collection only with gloved hands and only when these sampling conditions were achieved. Samples were not collected during rainfall.

For wastewater treatment plants, grab samples were collected from locations upstream and downstream of the effluent outfall. Except for the Twin Cities Metro WWTP, samples were collected midstream, reached by wading into the stream flow, and from an area of the stream judged to be the highest flow. For samples collected from the Mississippi River above and below the Twin Cities Metro WWTP, the sampling procedure was the same as for lakes. For the other three WWTP locations (Sauk, Marshall, and Hinckley), samples were collected at arm's length from upstream relative to the field staff. Sample bottles were removed from the plastic re-sealable bags and uncapped for sample collection only with gloved hands and only when these sampling conditions were achieved. Samples were not collected during rainfall. Sample collection was not flow-weighted.

For all sample collection events, sample bottles were rinsed with the surface water three times by filling and emptying the bottle completely. Bottles were immersed below the surface so as not to allow exposed skin above the gloved hand to come into contact with the surface water. The final sample was collected without headspace in the bottle. Once filled, bottles were re-capped, re-sealed in the plastic bags, and chilled in the accompanying coolers on ice.

Field blanks were collected by transporting duplicate sample bottles to a location where samples were collected. Field blank water, also supplied by the laboratory in identical glass or HDPE bottles, was transported to the site. Field blank water bottles were transported in identical re-sealable plastic bags and in coolers to replicate the procedure used for actual samples. Using gloved hands and facing upwind, the field blank water was poured from the lab-supplied bottles into empty sample bottles without rinsing. The field blank samples were then re-capped, re-sealed in plastic bags, and treated identically to the surface water samples.

After returning from the field, samples were refrigerated at four degrees Celsius. All samples were kept in the original re-sealable plastic bags and were shipped overnight to AXYS Analytical Services for chemical analysis. The maximum holding time for samples, from the date of collection to their extraction in the laboratory, was seven days.

## **Appendix C**

#### Laboratory analytical methods

Five separate analyses were performed to target the 125 compounds (see <u>Table 1</u>) analyzed in this study as described below.

#### **PPCPs**

The pharmaceuticals and personal care products (PPCPs) selected for analysis were based on the U.S. Environmental Protection Agency (EPA) Method 1694 with additional compounds incorporated into List 3 and an additional run for List 5 compounds. This expanded EPA 1694 analyte list represents those PPCP compounds identified by the EPA and other AXYS clients (AXYS Analytical Services, Sidney, British Columbia, Canada) as priorities for assessment based on annual consumption, expected toxicity, and persistence. For analysis of List 1, 2, 3, and 5 compounds (Table C1), a 1.0 L sample was filtered (1.6  $\mu$ m), adjusted to pH 2 by addition of HCl, spiked with a suite of isotopically labeled internal standards and extracted by solid phase extraction using an Oasis HLB cartridge. The extract was analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) operated in the ESI positive mode for List 1, 2, 5 and 6 compounds and analyzed in the ESI negative mode for List 3 compounds. Separate analysis runs and conditions were used for each of the lists of target analytes.

#### **Hormones**

A 1.0 L sample was filtered (1.6  $\mu$ m), adjusted to pH 2 by addition of HCl, spiked with a suite of isotopically labeled internal standards, and extracted by solid phase extraction using an Oasis HLB cartridge. The extract was analyzed by LC/MS/MS operated in the ESI positive mode for the ESI+ hormones and by LC/MS/MS operated in the ESI negative mode for the ESI- hormones (Table C1).

#### **Alkylphenols**

An unfiltered 1.0 L sample was spiked with isotopically labeled internal standards, adjusted to pH 11-12 by the addition of potassium carbonate solution, and acetylated with acetic anhydride. The extract was then acidified to pH 6 with HCl and extracted with hexane. Extracts were cleaned up by silica column chromatography and analyzed by gas chromatography-mass spectrometry (GC/MS) operated in the multiple ion detection mode.

#### **Bisphenol A**

A 0.5 L sample was filtered (1.6  $\mu$ m), adjusted to pH 2 by addition of HCl, and spiked with deuterated bisphenol A internal standard and extracted by solid phase extraction using an Oasis HLB cartridge. The extract was analyzed by LC/MS/MS operated in the ESI negative mode.

#### **Triclosan**

A 0.5 L sample was filtered (1.6  $\mu$ m), adjusted to pH 2 by addition of HCl, spiked with [ $^{13}$ C]-labeled triclosan, and extracted by solid phase extraction using an Oasis HLB cartridge. The extract was analyzed by LC/MS/MS operated in the ESI negative mode.

#### Quality control and assurance

All analytes were quantified either by isotope dilution internal standard quantification or, when an isotopically labeled analog of the analyte was unavailable, by internal standard methods using a related labeled compound. This produces accurate results that are recovery-corrected for losses during the analysis procedure and compensated for LC/MS/MS suppression or enhancement due to sample matrix. For each batch of samples analyzed, a lab blank was included to demonstrate that detected analytes

were not due to lab background or other external contamination. Results for lab blanks were compliant with AXYS's statistically determined blank control limits (mean plus three standard deviations of about 30 blanks) and any detects were used to censor field sample results. Each analysis batch also included a "known" or quality control sample to demonstrate the accuracy of the method for each analyte. Recoveries of all added labeled standards were monitored to ensure that analyses were in control and meeting regular method specifications.

Table C1.

| PPCP List 1       | PPCP List 2                   | PPCP List 5              |  |
|-------------------|-------------------------------|--------------------------|--|
| Acetaminophen     | Anhydrochlortetracycline      | Alprazolam               |  |
| Azithromycin      | Anhydrotetracycline           | Amitriptyline            |  |
| Caffeine          | Chlortetracycline             | Amlodipine               |  |
| Carbadox          | Demeclocycline                | Benzoylecgonine          |  |
| Carbamazepine     | Doxycycline                   | Benztropine              |  |
| Cefotaxime        | 4-Epianhydrochlortetracycline | Betamethasone            |  |
| Ciprofloxacin     | 4-Epianhydrotetracycline      | Cocaine                  |  |
| Clarithromycin    | 4-Epichlortetracycline        | DEET                     |  |
| Clinafloxacin     | 4-Epioxytetracycline          | Desmethyldiltiazem       |  |
| Cloxacillin       | 4-Epitetracycline             | Diazepam                 |  |
| Dehydronifedipine | Isochlortetracycline          | Fluocinonide             |  |
| Diphenhydramine   | Minocycline                   | Fluticasone propionate   |  |
| Diltiazem         | Oxytetracycline               | Hydrocortisone           |  |
| Digoxin           | Tetracycline                  | 10-hydroxy-amitriptyline |  |
| Digoxigenin       |                               | Meprobamate              |  |
| Enrofloxacin      | PPCP List 3                   | Methylprednisolone       |  |
| Erythromycin-H2O  | Bisphenol A                   | Metoprolol               |  |
| Flumequine        | Furosemide                    | Norfluoxetine            |  |
| Fluoxetine        | Gemfibrozil                   | Norverapamil             |  |
| Lincomycin        | Glipizide                     | Paroxetine               |  |
| Lomefloxacin      | Glyburide                     | Prednisolone             |  |
| Miconazole        | Hydrochlorothiazide           | Prednisone               |  |
| Norfloxacin       | 2-Hydroxy-ibuprofen           | Promethazine             |  |
| Norgestimate      | Ibuprofen                     | Propoxyphene             |  |
| Ofloxacin         | Naproxen                      | Propranolol              |  |
| Ormetoprim        | Triclocarban                  | Sertraline               |  |
| Oxacillin         | Triclosan                     | Simvastatin              |  |

| (PPCP List 1, cont.)  | (PPCP List 3, cont.)       | (PPCP List 5, cont.)          |  |
|-----------------------|----------------------------|-------------------------------|--|
| Oxolinic Acid         | Warfarin                   | Theophylline                  |  |
| Penicillin G          |                            | Trenbolone                    |  |
| Penicillin V          | Hormones ESI +             | Trenbolone acetate            |  |
| Roxithromycin         | Allyl Trenbolone           | Valsartan                     |  |
| Sarafloxacin          | Androstenedione            | Verapamil                     |  |
| Sulfachloropyridazine | Androsterone               |                               |  |
| Sulfadiazine          | Desogestrel                | Alkylphenols                  |  |
| Sulfadimethoxine      | Estriol                    | 4-Nonylphenol monoethoxylates |  |
| Sulfamerazine         | Mestranol                  | 4-Nonylphenol diethoxylates   |  |
| Sulfamethazine        | Norethindrone              | 4-Nonylphenols                |  |
| Sulfamethizole        | Norgestrel                 | Octylphenol                   |  |
| Sulfamethoxazole      | Progesterone               |                               |  |
| Sulfanilamide         | Testosterone               | Bisphenol A                   |  |
| Sulfathiazole         |                            |                               |  |
| Thiabendazole         | Hormones ESI-              | Triclosan                     |  |
| Trimethoprim          | 17 alpha-Dihydroequilin    |                               |  |
| Tylosin               | Equilenin                  |                               |  |
| Virginiamycin         | Equilin                    |                               |  |
| 1,7-Dimethylxanthine  | 17 beta-Estradiol          |                               |  |
|                       | 17 alpha-Estradiol         |                               |  |
|                       | Estrone                    |                               |  |
|                       | 17 alpha-Ethinyl-Estradiol |                               |  |

# **Appendix D**

# **Analytical**

## Data flags and definitions

| Flag | Definition                                                                                                                          |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| В    | Analyte found in the sample and the associated laboratory blank                                                                     |  |  |  |
| U    | Analyte not detected at reporting limit (RL)                                                                                        |  |  |  |
| K    | Peak detected but did not meet quantification criteria, the result reported represents the estimated maximum possible concentration |  |  |  |
| N    | Authentic recovery is not within the method/contract control limits                                                                 |  |  |  |
| TIC  | Compound identity and concentration are estimated                                                                                   |  |  |  |
| V    | Surrogate recovery is not within method/contract control limits                                                                     |  |  |  |
| Н    | Analyte concentration is estimated                                                                                                  |  |  |  |
| NQ   | Data is not quantifiable                                                                                                            |  |  |  |
| T    | The result was recalculated against alternate labeled compound(s) or internal standard                                              |  |  |  |
| MAX  | Analyte concentration is an estimated maximum value                                                                                 |  |  |  |
| D    | Dilution data                                                                                                                       |  |  |  |

All data are reported in ng/L, or parts per trillion

# Alkylphenols

| Location            | 4-Nonylphenols | 4-Nonylphenol<br>monoethoxylates        | 4-Nonylphenol diethoxylates             | Octylphenol |
|---------------------|----------------|-----------------------------------------|-----------------------------------------|-------------|
| Lake                | , дене         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , , , , , , , , , , , , , , , , , , , , | 2007-1-100  |
| Budd Lake           | В 7.06         | U 2.84                                  | U 2.89                                  | U 0.905     |
| Cedar Lake          | B 5.29         | U 3.26                                  | U 4.04                                  | U 0.815     |
| Elk Lake            | U 1.99         | U 2.16                                  | U 1.86                                  | U 0.976     |
| Lake Kabetogama     | B 19.9         | U 1.95                                  | U 2.79                                  | U 0.98      |
| Lake Owasso         | B 5.56         | U 2.95                                  | U 4.44                                  | U 0.738     |
| Northern Light Lake | B 2.7          | U 2.63                                  | U 3.45                                  | U 1.01      |
| Red Sand Lake       | B 1.45         | U 1.42                                  | U 2.73                                  | U 0.534     |
| Shingobee Lake      | B 1.57         | U 3.69                                  | U 2.67                                  | U 0.556     |
| Stewart Lake        | B 5.65         | U 2.81                                  | U 2.31                                  | U 0.805     |
| Sullivan Lake       | B 3.28         | U 2.68                                  | U 2.89                                  | U 1.01      |
| White Sand Lake     | B 1.71         | U 1.26                                  | U 2.2                                   | U 0.652     |
|                     |                |                                         |                                         |             |
| WWTP                |                |                                         |                                         |             |
| Hinckley-down       | B 14.7         | U 4.63                                  | U 4.03                                  | U 1.22      |
| Hinckley-up         | B 7.42         | U 9.91                                  | U 14.6                                  | U 1.68      |
| Marshall-down       | B 29.1         | U 2.97                                  | 13                                      | U 0.97      |
| Marshall-up         | B 20.1         | U 5.29                                  | U 7.25                                  | U 0.88      |
| Metro Plant-down    | 30.1           | U 3.99                                  | 7.01                                    | U 1.01      |
| Metro Plant-up      | B 6.03         | U 3.17                                  | U 2.45                                  | U 0.763     |
| Sauk-down           | B 8.29         | U 7.41                                  | U 9.92                                  | U 1.2       |
| Sauk-up             | B 5.13         | U 8.25                                  | U 11.5                                  | U 1.69      |
|                     |                |                                         |                                         |             |
| Field Blank 1       | B 8.66         | U 2.79                                  | U 2.53                                  | U 0.654     |
| Field Blank 2       | B 24.1         | U 2.86                                  | U 2.85                                  | U 1.13      |

# Bisphenol A

| Location            | Bisphenol A |
|---------------------|-------------|
| Lake                |             |
| Budd Lake           | U 2.02      |
| Cedar Lake          | 6.4         |
| Elk Lake            | 28.6        |
| Lake Kabetogama     | U 2.03      |
| Lake Owasso         | 3.6         |
| Northern Light Lake | 35.8        |
| Red Sand Lake       | U 2.07      |
| Shingobee Lake      | В 2.96      |
| Stewart Lake        | U 2         |
| Sullivan Lake       | U 1.98      |
| White Sand Lake     | U 2.07      |
|                     |             |
| WWTP                |             |
| Hinckley-down       | 5.5         |
| Hinckley-up         | 3.29        |
| Marshall-down       | 6.98        |
| Marshall-up         | 4.1         |
| Metro Plant-down    | B 3.81      |
| Metro Plant-up      | 237         |
| Sauk-down           | 5.23        |
| Sauk-up             | 3.47        |
|                     |             |
| Field Blank 1       | B 2.99      |
| Field Blank 2       | U 2.36      |

## Triclosan

| Location            | Triclosan |
|---------------------|-----------|
| Lake                |           |
| Budd Lake           | U 4.91    |
| Cedar Lake          | U 4.89    |
| Elk Lake            | U 5.78    |
| Lake Kabetogama     | U 5.31    |
| Lake Owasso         | U 5.03    |
| Northern Light Lake | U 5.01    |
| Red Sand Lake       | 5.75      |
| Shingobee Lake      | U 5.13    |
| Stewart Lake        | U 5.03    |
| Sullivan Lake       | U 4.97    |
| White Sand Lake     | U 4.99    |
|                     |           |
| WWTP                |           |
| Hinckley-down       | U 4.31    |
| Hinckley-up         | 9.35      |
| Marshall-down       | U 4.99    |
| Marshall-up         | U 4.91    |
| Metro Plant-down    | U 5.02    |
| Metro Plant-up      | U 4.82    |
| Sauk-down           | U 4.76    |
| Sauk-up             | U 4.27    |
|                     |           |
| Field Blank 1       | U 5.13    |
| Field Blank 2       | U 5       |

# Hormones-negative

| Location            | 17 alpha-<br>Dihydroequilin | Equilenin | Equilin | 17 beta-<br>Estradiol | 17 alpha-<br>Estradiol | Estrone | 17 alpha-<br>Ethinylestradiol |
|---------------------|-----------------------------|-----------|---------|-----------------------|------------------------|---------|-------------------------------|
| Lake                |                             |           |         |                       |                        |         |                               |
| Budd Lake           | U 4.29                      | U 0.858   | U 8.58  | U 4.29                | U 4.29                 | U 4.29  | U 5.36                        |
| Cedar Lake          | U 4.21                      | U 0.841   | U 8.41  | U 4.21                | U 4.21                 | 24.6    | U 5.26                        |
| Elk Lake            | U 5.71                      | U 0.808   | U 8.08  | U 4.04                | U 4.04                 | U 4.04  | U 5.05                        |
| Lake Kabetogama     | U 4.15                      | U 0.869   | U 8.29  | U 4.15                | U 4.15                 | U 4.15  | U 5.18                        |
| Lake Owasso         | U 4.22                      | U 0.844   | U 8.44  | U 4.22                | U 4.22                 | U 4.22  | U 5.27                        |
| Northern Light Lake | U 4.09                      | U 0.817   | U 8.17  | U 4.09                | U 4.09                 | U 4.09  | U 5.11                        |
| Red Sand Lake       | U 3.96                      | U 0.792   | U 7.92  | U 3.96                | U 3.96                 | U 3.96  | U 4.95                        |
| Shingobee Lake      | U 5.88                      | U 1.54    | U 7.98  | U 3.99                | U 3.99                 | U 3.99  | U 4.99                        |
| Stewart Lake        | U 3.96                      | U 0.791   | U 7.91  | U 3.96                | U 3.96                 | U 3.96  | U 4.95                        |
| Sullivan Lake       | U 4.23                      | U 0.845   | U 8.45  | U 4.23                | U 4.23                 | U 4.23  | U 5.28                        |
| White Sand Lake     | U 6.5                       | U 0.803   | U 9.04  | U 4.01                | U 4.01                 | U 4.01  | U 5.02                        |
|                     |                             |           |         |                       |                        |         |                               |
| WWTP                |                             |           |         |                       |                        |         |                               |
| Hinckley-down       | U 4.04                      | U 1.93    | U 8.09  | U 4.04                | U 4.04                 | U 4.04  | U 5.74                        |
| Hinckley-up         | U 4.62                      | U 1.3     | U 8.09  | U 4.05                | U 4.05                 | U 4.05  | U 5.06                        |
| Marshall-down       | U 3.94                      | U 0.788   | U 7.88  | U 3.94                | U 3.94                 | U 3.94  | U 4.93                        |
| Marshall-up         | U 3.87                      | U 0.774   | U 7.74  | U 3.87                | U 3.87                 | U 3.87  | U 4.84                        |
| Metro Plant-down    | U 3.99                      | U 0.798   | U 7.98  | U 3.99                | U 3.99                 | U 3.99  | U 4.98                        |
| Metro Plant-up      | U 3.99                      | U 0.798   | U 7.98  | U 3.99                | U 3.99                 | U 3.99  | U 4.99                        |
| Sauk-down           | U 4.03                      | U 0.805   | U 8.05  | U 4.03                | U 4.03                 | U 4.03  | U 9.13                        |
| Sauk-up             | U 4.08                      | U 0.922   | U 8.15  | U 4.08                | U 4.08                 | U 4.08  | U 5.09                        |
|                     |                             |           |         |                       |                        |         |                               |
| Field Blank 1       | U 4.02                      | U 0.804   | U 8.04  | U 4.02                | U 4.02                 | U 4.02  | U 5.02                        |
| Field Blank 2       | U 4.21                      | U 0.842   | U 8.42  | U 4.21                | U 4.21                 | U 4.21  | U 5.26                        |

# Hormones-positive

| Location               | Allyl<br>Trenbolone | Androstenedione | Androsterone | Desogestrel | Estriol | Mestranol  | Norethindrone | Norgestrel | Progesterone | Testosterone |
|------------------------|---------------------|-----------------|--------------|-------------|---------|------------|---------------|------------|--------------|--------------|
| Lake                   | Trembolone          | Androstenedione | Androsterone | Desogestiei | Little  | Wiestralio | Notetimatone  | Noigestiei | riogesterone | restosterone |
| Budd Lake              | U 1.04              | 5               | U 27.1       | U 208       | U 71    | U 70.8     | U 4.29        | U 4.29     | U 1.22       | U 1.62       |
| Cedar Lake             | U 1.21              | 3.96            | U 40.5       | U 1500      | U 105   | K 226      | U 4.21        | U 4.67     | U 1.66       | U 1.8        |
| Elk Lake               | U 0.96              | U 2.06          | U 56.6       | U 303       | U 167   | K B 208    | U 4.83        | U 4.04     | U 0.808      | U 1.83       |
| Lake Kabetogama        | U 1.36              | U 2.57          | U 20.7       | U 648       | U 16.6  | U 69.4     | U 4.63        | U 4.15     | U 0.829      | U 3.28       |
| Lake Owasso            | U 1.5               | 2.62            | 128          | U 600       | U 106   | U 50.4     | U 4.22        | U 4.22     | U 0.844      | U 2.43       |
| Northern Light<br>Lake | U 1.42              | U 2.22          | U 107        | U 306       | U 251   | K B 269    | U 4.09        | U 4.43     | U 0.817      | U 2.46       |
| Red Sand Lake          | U 1.2               | U 2.25          | U 19.8       | U 297       | U 31.7  | K B 389    | U 5.64        | U 6.03     | U 0.838      | U 4.24       |
| Shingobee Lake         | U 0.798             | U 2             | U 40.5       | U 332       | U 139   | K B 106    | U 3.99        | U 3.99     | U 0.798      | U 1.6        |
| Stewart Lake           | U 1.39              | U 2.81          | U 68.7       | U 297       | U 325   | K B 220    | U 4.24        | U 6.59     | U 0.791      | U 3.08       |
| Sullivan Lake          | U 1.06              | U 2.11          | U 30.5       | TIC 402     | U 64.6  | U 34       | U 4.23        | U 4.27     | U 0.845      | U 1.23       |
| White Sand Lake        | U 0.803             | U 2.28          | U 20.1       | U 301       | U 32.1  | K B 191    | U 5.02        | U 4.62     | U 1.07       | U 2.59       |
|                        |                     |                 |              |             |         |            |               |            |              |              |
| WWTP                   |                     |                 |              |             |         |            |               |            |              |              |
| Hinckley-down          | U 0.929             | U 2.02          | U 91         | U 448       | U 236   | K B 214    | U 4.24        | U 4.04     | U 0.809      | U 2.09       |
| Hinckley-up            | U 0.891             | U 2.02          | U 40.5       | U 422       | U 305   | K B 219    | U 5           | U 4.05     | U 0.809      | U 0.809      |
| Marshall-down          | U 0.808             | U 1.97          | U 82.8       | U 324       | U 172   | K B 129    | U 3.94        | U 3.94     | U 1.22       | U 2.03       |
| Marshall-up            | U 0.979             | U 1.94          | U 108        | U 498       | U 31    | K B 114    | U 3.87        | U 4.43     | U 0.965      | U 2.23       |
| Metro Plant-<br>down   | U 1.91              | U 2.39          | U 72.6       | U 299       | U 370   | K B 294    | U 3.99        | U 4.78     | U 0.798      | U 1.88       |
| Metro Plant-up         | U 1.19              | U 2.71          | U 68.2       | U 299       | U 308   | K B 83.6   | U 4.35        | U 5.1      | U 0.798      | U 2.51       |
| Sauk-down              | U 1.17              | U 2.01          | U 143        | U 319       | U 240   | K B 282    | U 4.48        | U 4.03     | U 0.805      | U 1.87       |
| Sauk-up                | U 0.991             | U 2.04          | U 72.1       | U 334       | U 310   | K B 299    | U 4.41        | U 4.08     | U 0.815      | U 1.52       |
|                        |                     |                 |              |             |         |            |               |            |              |              |
| Field Blank 1          | U 0.985             | U 2.01          | U 60.1       | U 301       | U 32.2  | K B 88.4   | U 4.02        | U 4.02     | U 0.804      | U 0.804      |
| Field Blank 2          | U 0.842             | U 2.1           | U 31.2       | U 316       | U 33.7  | K B 49.3   | U 4.21        | U 4.21     | U 0.842      | U 0.869      |

# Illicit drugs

| Location            | 3,4-methylenedioxy-N-<br>methylamphetamine<br>(MDMA) | Amphetamine | Benzoylecgonine | Cocaine | Methamphetamine | Morphine | Pseudo<br>ephedrine/Ephedrine |
|---------------------|------------------------------------------------------|-------------|-----------------|---------|-----------------|----------|-------------------------------|
| Lake                |                                                      |             |                 |         |                 |          |                               |
| Budd Lake           | U 0.39                                               | U 1.10      | U 0.50          | U 0.47  | U 0.75          | U 9.10   | U 0.67                        |
| Cedar Lake          | U 0.41                                               | U 1.8       | U 0.50          | U 0.47  | U 0.75          | U 9.8    | U 0.69                        |
| Elk Lake            | U 0.43                                               | U 1.6       | U 0.50          | U 0.47  | U 0.75          | U 9.6    | U 0.71                        |
| Lake Kabetogama     | U 0.46                                               | U 1.3       | U 0.50          | U 0.47  | U 0.75          | U 9.3    | U 0.74                        |
| Northern Light Lake | U 0.44                                               | U 1.5       | U 0.50          | U 0.47  | U 0.75          | U 9.5    | U 0.72                        |
| Lake Owasso         | U 0.42                                               | U 1.7       | U 0.50          | U 0.47  | U 0.75          | U 9.7    | U 0.70                        |
| Red Sand Lake       | U 0.48                                               | U 1.1       | U 0.50          | U 0.47  | U 0.75          | U 9.1    | U 0.76                        |
| Shingobee Lake      | U 0.47                                               | U 1.2       | U 0.50          | U 0.47  | U 0.75          | U 9.2    | U 0.75                        |
| Stewart Lake        | U 0.45                                               | U 1.4       | U 0.50          | U 0.47  | U 0.75          | U 9.4    | U 0.73                        |
| Sullivan Lake       | U 0.40                                               | U 1.9       | U 0.50          | U 0.47  | U 0.75          | U 9.9    | U 0.68                        |
| White Sand Lake     | U 0.49                                               | U 1.0       | U 0.50          | U 0.47  | U 0.75          | U 9.0    | U 0.77                        |
|                     |                                                      |             |                 |         |                 |          |                               |
| WWTP                |                                                      |             |                 |         |                 |          |                               |
| Hinckley-down       | U 0.51                                               | U 1.2       | U 0.50          | U 0.47  | U 0.75          | U 9.2    | U 0.79                        |
| Hinckley-up         | U 0.50                                               | U 1.1       | U 0.50          | U 0.47  | U 0.75          | U 9.1    | U 0.78                        |
| Marshall-down       | U 0.55                                               | U 1.6       | U 0.50          | U 0.47  | 3               | U 9.6    | 2.3                           |
| Marshall-up         | U 0.54                                               | U 1.5       | U 0.50          | U 0.47  | U 0.75          | U 9.5    | U 0.82                        |
| Metro -down         | U 0.57                                               | U 1.8       | 2               | U 0.47  | 2               | U 9.8    | 1.5                           |
| Metro-up            | U 0.56                                               | U 1.7       | U 0.50          | U 0.47  | U 0.75          | U 9.7    | U 0.84                        |
| Sauk-down           | U 0.53                                               | U 1.4       | U 0.50          | U 0.47  | 0.75            | U 9.4    | 1.1                           |
| Sauk-up             | U 0.52                                               | U 1.3       | U 0.50          | U 0.47  | U 0.75          | U 9.3    | U 0.80                        |
|                     |                                                      |             |                 |         |                 |          |                               |
| Field Blank 1       | U 0.58                                               | U 1.9       | U 0.50          | U 0.47  | U 0.75          | U 9.9    | U 0.86                        |
| Field Blank 2       | U 0.59                                               | U 1.10      | U 0.50          | U 0.47  | U 0.75          | U 9.10   | U 0.87                        |

| Location            | Acetaminophen | Azithromycin | Caffeine | Carbadox | Carbamazepine | Cefotaxime | Ciprofloxacin | Clarithromycin | Clinafloxacin |
|---------------------|---------------|--------------|----------|----------|---------------|------------|---------------|----------------|---------------|
| Lake                |               |              |          |          |               |            |               |                |               |
| Lake Kabetogama     | U 15.1        | U 1.57       | U 15.1   | U 1.51   | U 1.51        | U 55       | U 37.9        | U 1.51         | U 52.3        |
| Budd Lake           | U 16.2        | U 2.12       | U 16.2   | U 23.8   | U 1.62        | U 21.6     | U 31.7        | U 1.62         | U 124         |
| Sullivan Lake       | U 16          | U 1.92       | U 16     | U 13.3   | U 1.6         | U 21.3     | U 33.2        | U 1.6          | U 49.3        |
| Cedar Lake          | U 15.3        | U 2.72       | 69.7     | U 26.2   | U 1.53        | U 20.4     | U 23.4        | U 1.53         | U 78.9        |
| Lake Owasso         | U 15.2        | U 2.76       | 16.5     | U 29     | U 1.52        | U 20.3     | U 35.7        | U 1.52         | U 93.2        |
| White Sand Lake     | U 15          | U 1.5        | U 15     | U 1.5    | U 1.5         | U 11.5     | U 29.9        | U 1.5          | U 51.3        |
| Red Sand Lake       | U 15.2        | U 1.52       | U 15.2   | 5.45     | U 1.52        | U 21.1     | U 38.7        | U 1.52         | U 67          |
| Elk Lake            | U 14.9        | U 1.49       | U 14.9   | U 1.49   | U 1.49        | U 31.4     | U 29.6        | U 1.49         | U 60          |
| Shingobee Lake      | U 15          | U 1.5        | U 15     | U 1.5    | U 1.5         | U 24.4     | U 20          | U 1.5          | U 52          |
| Stewart Lake        | U 15.2        | U 1.64       | U 15.2   | U 6.39   | U 1.52        | U 22.5     | U 16.7        | U 1.52         | 66.6          |
| Northern Light Lake | U 16          | U 1.68       | U 16     | U 1.6    | U 1.6         | U 34.1     | 36.8          | U 1.6          | 184           |
|                     |               |              |          |          |               |            |               |                |               |
| WWTP                |               |              |          |          |               |            |               |                |               |
| Hinckley-up         | U 14.9        | U 1.49       | U 14.9   | U 1.49   | U 1.49        | U 13.7     | U 25.6        | U 1.49         | U 39.9        |
| Sauk-up             | U 14.9        | U 1.49       | U 15.3   | U 1.49   | U 1.49        | U 11       | U 24.2        | U 1.49         | U 47          |
| Hinckley-down       | U 14.9        | U 1.49       | U 14.9   | U 1.49   | 11.1          | U 17.2     | U 23.7        | U 1.49         | U 94.4        |
| Sauk-down           | U 14.8        | U 1.48       | U 14.8   | U 1.48   | 6.17          | U 9.79     | U 10.2        | U 1.48         | U 45.4        |
| Marshall-up         | U 15.6        | U 1.56       | 37       | U 1.56   | U 1.56        | U 8.89     | U 16.7        | U T 1.56       | U 49.4        |
| Marshall-down       | U 15.5        | U 1.55       | 80.1     | U 1.55   | 35.7          | U 17.5     | U 15.4        | 7.95           | U 47.1        |
| Metro Plant-up      | U 14.8        | U 1.48       | U 14.8   | 3.23     | 7.62          | U 19.1     | U 24.4        | U 1.48         | U 34.8        |
| Metro Plant-down    | U 14.9        | U 1.85       | 17       | U 7.53   | 28.9          | U 22.7     | 22.6          | 1.81           | U 39.8        |
|                     |               |              |          |          |               |            |               |                |               |
| Field Blank 1       | U 14.9        | U 1.49       | U 14.9   | U 1.49   | U 1.49        | U 7.47     | U 5.95        | U 1.49         | U 5.95        |
| Field Blank 2       | U 16.2        | U 5.4        | U 54     | U 1.62   | U 1.62        | U 6.48     | U 6.48        | U 1.62         | U 6.48        |

| Location            | Cloxacillin | Dehydronifedipine | Diphenhydramine | Diltiazem | Digoxin | Digoxigenin | Enrofloxacin | Erythromycin-<br>H2O | Flumequine |
|---------------------|-------------|-------------------|-----------------|-----------|---------|-------------|--------------|----------------------|------------|
| Lake                |             |                   |                 |           |         |             |              |                      |            |
| Lake Kabetogama     | U H 10.1    | U 0.79            | U 0.606         | U 0.44    | U 6.06  | U 88.3      | U 3.03       | U 3.03               | U 3.06     |
| Budd Lake           | U H 16.7    | U 0.647           | U 0.647         | U 1.01    | U 6.47  | U 175       | U 6.72       | U 2.48               | U 5.38     |
| Sullivan Lake       | U H 16      | U 2.49            | U 0.64          | U 1.28    | U 6.4   | U 490       | U 6.39       | U 2.45               | U 7.21     |
| Cedar Lake          | U H 13.6    | U 0.612           | U 0.612         | U 2.22    | U 6.12  | U 376       | U 3.06       | B 3.08               | U 7.87     |
| Lake Owasso         | U H 17.2    | U 0.609           | U 0.609         | U 1.56    | U 6.09  | U 564       | U 4.5        | B 2.75               | U 14.3     |
| White Sand Lake     | U H 3       | U 0.601           | U 2             | U 0.3     | U 6.01  | U 226       | U 3          | U 2.3                | U 1.58     |
| Red Sand Lake       | U H 3.04    | U 0.609           | U 2.03          | U 0.304   | U 6.09  | U 209       | U 3.12       | U 2.33               | U 1.82     |
| Elk Lake            | U H 9.93    | U 0.596           | U 0.596         | U 0.298   | U 5.96  | U 166       | U 3.51       | U 2.28               | U 1.49     |
| Shingobee Lake      | U H 10      | U 0.601           | U 0.601         | U 0.348   | U 6.01  | U 120       | U 3.1        | U 2.3                | U 1.5      |
| Stewart Lake        | U H 3.05    | U 1.13            | U 0.609         | U 1.7     | U 6.09  | U 59.9      | U 3.05       | U 3.05               | U 2.81     |
| Northern Light Lake | U H 3.21    | U 1.54            | U 0.642         | 1.19      | U 6.42  | U 109       | U 3.21       | 3.33                 | U 2.35     |
|                     |             |                   |                 |           |         |             |              |                      |            |
| WWTP                |             |                   |                 |           |         |             |              |                      |            |
| Hinckley-up         | U H 29.9    | U 0.597           | U 0.597         | U 0.299   | U 5.97  | U 146       | U 2.99       | U 2.29               | U 1.49     |
| Sauk-up             | U H 29.9    | U 0.598           | U 0.598         | U 0.299   | U 5.98  | U 156       | U 2.99       | U 2.29               | U 1.49     |
| Hinckley-down       | U H 29.7    | 0.684             | 2.76            | 1.68      | U 5.95  | U 244       | U 2.97       | 4.03                 | U 1.49     |
| Sauk-down           | U H 29.6    | U 0.591           | 1.52            | 1.1       | U 5.91  | U 120       | U 2.96       | 2.3                  | U 1.48     |
| Marshall-up         | U H 31.1    | U 0.623           | U 0.623         | U 0.311   | U 6.23  | U 170       | U 3.11       | U 2.39               | U 2.26     |
| Marshall-down       | U H 31      | 0.807             | 6.61            | 6.31      | U 6.2   | U 314       | U 3.1        | 13.2                 | U 1.55     |
| Metro Plant-up      | U H 2.98    | 0.715             | U 0.593         | 2.26      | U 5.93  | U 108       | U 2.96       | 4.96                 | U 5.14     |
| Metro Plant-down    | U H 2.98    | 1.08              | 1.47            | 19.5      | U 5.97  | U 82.7      | U 2.98       | 10.7                 | U 3.44     |
|                     |             |                   |                 |           |         |             |              |                      |            |
| Field Blank 1       | U H 2.97    | U 0.595           | U 0.595         | U 0.991   | U 5.95  | U 5.95      | U 2.97       | 3.21                 | U 1.58     |
| Field Blank 2       | U H 32.4    | U 0.648           | U 0.648         | U 0.324   | U 21.6  | U 6.48      | U 3.24       | U 5.4                | U 1.62     |

| Location            | Fluoxetine | Lincomycin | Lomefloxacin | Miconazole | Norfloxacin | Norgestimate | Ofloxacin | Ormetoprim | Oxacillin | Oxolinic<br>Acid |
|---------------------|------------|------------|--------------|------------|-------------|--------------|-----------|------------|-----------|------------------|
| Lake                |            | , ,        |              |            |             | <b>Q</b>     |           |            |           |                  |
| Lake Kabetogama     | U 1.51     | U 3.03     | U 5.5        | U 1.51     | U 72.4      | U 7.91       | U 3.65    | U 0.606    | U H 3.03  | U 0.932          |
| Budd Lake           | U 1.62     | U 3.24     | U 11.7       | U 2.29     | U 111       | U 364        | U 2.7     | U 0.647    | U H 8.78  | U 5.07           |
| Sullivan Lake       | U 1.6      | U 3.2      | U 15.2       | U 2.18     | U 99        | U 37         | U 5.03    | U 0.64     | H 7.65    | U 8.31           |
| Cedar Lake          | U 1.53     | U 3.06     | U 9.83       | U 2.95     | U 109       | U 33.5       | U 5.31    | U 0.612    | U H 6.41  | U 3.05           |
| Lake Owasso         | U 1.52     | U 3.05     | U 8.52       | U 3.03     | U 170       | U 38.3       | U 4.61    | U 0.609    | U H 8.48  | U 6.85           |
| White Sand Lake     | U 1.5      | U 3        | U 14.7       | U 1.5      | U 47.9      | U 5.99       | U 3.59    | U 0.601    | U H 3     | U 2.42           |
| Red Sand Lake       | U 1.52     | U 3.04     | U 9.7        | U 1.52     | U 73.4      | U 7.06       | U 4.14    | U 0.609    | U H 3.04  | U 2.38           |
| Elk Lake            | U 4.96     | U 2.98     | U 11.3       | U 1.49     | U 40        | U 3.52       | U 4.66    | U 0.596    | U H 2.98  | U 2.35           |
| Shingobee Lake      | U 5.01     | U 3.01     | U 8.55       | U 1.5      | U 28.9      | U 3.27       | U 3.53    | U 0.601    | U H 3.01  | U 0.601          |
| Stewart Lake        | U 1.52     | U 3.05     | U 3.05       | U 1.52     | U 45.5      | U 3.05       | U 1.94    | U 0.609    | U H 3.28  | U 4.74           |
| Northern Light Lake | U 1.6      | U 3.21     | U 5.22       | U 1.6      | U 158       | U 3.21       | U 1.96    | U 0.642    | U H 3.21  | U 3.79           |
|                     |            |            |              |            |             |              |           |            |           |                  |
| WWTP                |            |            |              |            |             |              |           |            |           |                  |
| Hinckley-up         | U 1.49     | U 2.99     | U 6.26       | U 1.49     | U 32        | U 4.2        | U 1.49    | U 0.597    | U H 2.99  | U 2.01           |
| Sauk-up             | 12.1       | U 2.99     | U 4.69       | U 1.49     | U 79.7      | U 4.17       | U 1.49    | U 0.598    | U H 2.99  | U 6.76           |
| Hinckley-down       | U 1.49     | U 2.97     | U 13.7       | U 1.49     | U 104       | U 6.78       | U 3.5     | U 0.595    | U H 2.97  | U 0.712          |
| Sauk-down           | 7.73       | U 2.96     | U 7.22       | U 1.48     | U 61.4      | U 4.86       | U 1.48    | U 0.591    | U H 2.96  | U 2.51           |
| Marshall-up         | U 1.56     | U 3.11     | U 3.64       | U 1.56     | U 53.3      | U 3.72       | U 1.56    | U 0.623    | U H 3.11  | U 0.623          |
| Marshall-down       | U 1.55     | U 3.1      | U 7.31       | U 1.55     | U 56.8      | U 4.82       | 23.4      | U 0.62     | U H 3.1   | U 1.18           |
| Metro Plant-up      | U 1.48     | U 2.96     | U 3.6        | U 1.48     | U 49        | U 2.96       | U 1.62    | U 0.593    | U H 3.15  | U 2.11           |
| Metro Plant-down    | U 1.49     | U 2.98     | U 4.29       | U 1.49     | U 74.1      | U 2.98       | 6.48      | U 0.597    | U H 2.98  | U 1.42           |
|                     |            |            |              |            |             |              |           |            |           |                  |
| Field Blank 1       | U 1.49     | U 2.97     | U 2.97       | U 1.49     | U 14.9      | U 2.97       | U 1.49    | U 0.595    | U H 2.97  | U 0.595          |
| Field Blank 2       | U 1.62     | U 3.24     | B 6.66       | U 1.62     | U 16.2      | U 3.24       | U 1.62    | U 0.648    | U H 162   | U 0.648          |

| Location               | Penicillin G | Penicillin V | Roxithromycin | Sarafloxacin | Sulfachloropyridazine | Sulfadiazine | Sulfadimethoxine | Sulfamerazine | Sulfamethazine |
|------------------------|--------------|--------------|---------------|--------------|-----------------------|--------------|------------------|---------------|----------------|
| Lake                   |              |              |               |              |                       |              |                  |               |                |
| Lake                   |              |              |               |              |                       |              |                  |               |                |
| Kabetogama             | U H 3.03     | U 4.37       | U 0.303       | U 15.1       | U 1.51                | U 1.51       | U 1.09           | U 2.67        | U 4.44         |
| Budd Lake              | U H 7.87     | U 12.4       | U 0.324       | U 16.2       | U 5.16                | U 1.62       | U 2.51           | U 0.837       | U 4.88         |
| Sullivan Lake          | U H 6.44     | U 10.7       | U 0.32        | U 16         | U 1.6                 | U 1.6        | U 1.04           | U 2.02        | U 4.12         |
| Cedar Lake             | U H 4.08     | U 14.6       | U 0.306       | U 15.3       | U 1.53                | U 1.53       | U 1.57           | U 1.21        | U 4.35         |
| Lake Owasso            | U H 5.14     | U 11.9       | U 0.305       | U 15.2       | U 6                   | U 1.52       | U 14.6           | U 2.36        | U 0.609        |
| White Sand Lake        | U H 3        | U 3          | U 0.3         | U 15         | U 1.5                 | U 1.5        | U 0.3            | U 0.601       | U 2.31         |
| Red Sand Lake          | U H 3.04     | U 3.04       | U 0.304       | U 16         | U 1.52                | U 1.52       | U 0.519          | U 1.08        | U 2.74         |
| Elk Lake               | U H 2.98     | U 2.98       | U 0.298       | U 14.9       | U 3.28                | U 1.49       | U 1.32           | U 1           | U 1.99         |
| Shingobee Lake         | U H 3.01     | U 3.01       | U 0.301       | U 15         | U 2.66                | U 1.5        | U 0.301          | U 0.779       | U 0.76         |
| Stewart Lake           | U H 3.05     | U 3.27       | U 0.333       | U 15.2       | 3.83                  | U 1.52       | U 1.2            | U 1.03        | U 4.11         |
| Northern Light<br>Lake | U H 3.21     | U 5.79       | U 0.443       | U 16         | U 5.54                | U 1.6        | U 2.28           | U 1.98        | U 3.07         |
|                        |              |              |               |              |                       |              |                  |               |                |
| WWTP                   |              |              |               |              |                       |              |                  |               |                |
| Hinckley-up            | U H 29.9     | U 2.99       | U 0.299       | U 14.9       | U 1.49                | U 1.49       | U 0.365          | U 0.629       | U 1.02         |
| Sauk-up                | U H 29.9     | U 2.99       | U 0.299       | U 14.9       | U 1.49                | U 1.49       | U 0.299          | U 0.598       | U 1.55         |
| Hinckley-down          | U H 29.7     | U 2.97       | U 0.297       | U 14.9       | U 1.49                | U 1.49       | U 0.699          | U 0.734       | U 1.47         |
| Sauk-down              | U H 29.6     | U 2.96       | U 0.296       | U 14.8       | U 1.48                | U 1.48       | U 0.484          | U 0.679       | U 2.17         |
| Marshall-up            | U H 31.1     | U 3.11       | U T 0.311     | U 15.6       | NQ                    | NQ           | NQ               | NQ            | U H 5.81       |
| Marshall-down          | U H 31       | U 3.1        | U 0.31        | U 15.5       | U 1.55                | U 1.55       | 4.58             | U 0.928       | U 0.62         |
| Metro Plant-up         | U H 2.96     | U 4.34       | U 0.323       | U 14.8       | U 1.48                | U 1.48       | 0.804            | U 0.593       | 30.9           |
| Metro Plant-<br>down   | U H 2.98     | U 2.98       | U 0.33        | U 14.9       | U 1.49                | U 1.49       | U 2.1            | U 0.67        | 25.6           |
| Field Blank 1          | U H 2.97     | U 2.97       | U 0.297       | U 14.9       | U 1.49                | U 1.49       | U 0.297          | U 0.595       | U 0.595        |
| Field Blank 2          | U H 32.4     | U 3.24       | U 1.08        | U 16.2       | U 1.62                | U 1.62       | U 0.324          | U 0.648       | U 0.648        |

|                  |                |                  |               |               |               |              |          | Virginiamycin | 1,7-             |
|------------------|----------------|------------------|---------------|---------------|---------------|--------------|----------|---------------|------------------|
| Location         | Sulfamethizole | Sulfamethoxazole | Sulfanilamide | Sulfathiazole | Thiabendazole | Trimethoprim | Tylosin  | M1            | Dimethylxanthine |
| Lake             |                |                  |               |               |               |              |          |               |                  |
| Lake Kabetogama  | U 3.04         | U 1.77           | U 50.5        | U 1.51        | U 1.51        | U 3.59       | U 6.06   | U 8.09        | U 60.6           |
| Budd Lake        | U 1.38         | U 1.49           | U 16.2        | U 2.29        | U 1.62        | U 2.93       | U 6.47   | U 39          | U 64.7           |
| Sullivan Lake    | U 2.07         | U 0.64           | U 16          | U 2.19        | U 1.6         | U 9.75       | U 6.4    | U 35.2        | U 64             |
| Cedar Lake       | U 2.68         | U 0.612          | U 15.3        | U 1.53        | 12.7          | U 9.07       | U 6.12   | U 38.7        | U 61.2           |
| Lake Owasso      | U 3.61         | U 0.609          | U 15.2        | U 2.15        | U 1.52        | U 5.92       | U 6.09   | U 44.8        | U 60.9           |
| White Sand Lake  | U 1.15         | U 1.15           | NQ            | U 1.5         | U 1.5         | U 1.5        | U 6.01   | U 3           | U 60.1           |
| Red Sand Lake    | U 1.09         | U 2.42           | NQ            | U 1.52        | U 1.52        | U 1.52       | U 6.09   | U 15.6        | U 60.9           |
| Elk Lake         | U 0.596        | U 0.769          | U 93.1        | U 1.49        | U 1.49        | U 1.49       | U 5.96   | U 9.93        | U 59.6           |
| Shingobee Lake   | U 0.601        | U 0.601          | U 83.9        | U 1.5         | U 1.5         | U 1.5        | U 6.01   | U 14.3        | U 60.1           |
| Stewart Lake     | U 1.99         | U 0.609          | U 15.2        | U 1.58        | U 1.52        | 3.63         | U 6.09   | U 14.5        | U 60.9           |
| Northern Light   |                |                  |               |               |               |              |          |               |                  |
| Lake             | U 2.99         | U 0.642          | U 16          | U 1.76        | U 1.6         | 2.87         | U 6.42   | U 15.3        | U 64.2           |
|                  |                |                  |               |               |               |              |          |               |                  |
| WWTP             |                |                  |               |               |               |              |          |               |                  |
| Hinckley-up      | U 1.96         | U 0.597          | U 78.5        | U 1.49        | U 1.49        | U 1.49       | U 5.97   | 27.3          | U 199            |
| Sauk-up          | U 0.812        | U 0.598          | U 80.5        | U 1.49        | U 1.49        | U 1.49       | U 5.98   | U 15          | U 199            |
| Hinckley-down    | U 1.07         | 14.6             | U 67.5        | U 1.49        | U 1.49        | 4.68         | U 5.95   | U 19          | U 198            |
| Sauk-down        | U 2.64         | 12.3             | U 60.2        | U 1.48        | U 1.48        | 3.84         | U 5.91   | U 13.3        | U 197            |
| Marshall-up      | NQ             | U H 0.623        | NQ            | NQ            | U 1.56        | U 1.56       | U T 6.23 | U 14.5        | U 208            |
| Marshall-down    | U 0.709        | 72.7             | U 119         | U 1.55        | U 1.55        | U 1.55       | 8.1      | U 21          | U 207            |
| Metro Plant-up   | U 1.58         | 52.8             | U 14.8        | U 1.48        | U 1.48        | 9.37         | U 5.93   | 67.6          | U 59.3           |
| Metro Plant-down | U 1.8          | 186              | U 14.9        | U 1.49        | 1.81          | 38.1         | U 5.97   | 34            | U 59.7           |
|                  |                |                  |               |               |               |              |          |               |                  |
| Field Blank 1    | 1.05           | U 0.595          | U 14.9        | U 1.49        | U 1.49        | U 1.49       | U 5.95   | U 2.97        | U 59.5           |
| Field Blank 2    | U 0.648        | U 0.648          | U 16.2        | U 1.62        | U 1.62        | U 1.62       | U 6.48   | U 3.24        | U 64.8           |

| Location            | Anhydrochlortetracycline [ACTC] | Anhydrotetracycline<br>[ATC] | Chlortetracycline [CTC] | Demeclocycline | Doxycycline |
|---------------------|---------------------------------|------------------------------|-------------------------|----------------|-------------|
| Lake                |                                 |                              |                         |                |             |
| Lake Kabetogama     | U 50.5                          | U 50.5                       | U 10.6                  | U 15.2         | U 7.61      |
| Budd Lake           | U 16.2                          | U 16.2                       | U 6.47                  | U 16.2         | U 6.47      |
| Sullivan Lake       | U 16                            | U 16                         | U 10.1                  | U 16           | U 6.4       |
| Cedar Lake          | U 15.3                          | U 15.3                       | U 6.56                  | U 15.3         | U 6.12      |
| Lake Owasso         | U 15.2                          | U 15.2                       | U 6.09                  | U 15.2         | U 6.09      |
| Stewart Lake        | B 26.1                          | U 53.2                       | U 53.6                  | U 24.5         | U 22.9      |
| Northern Light Lake | U 28.3                          | U 58.4                       | U 59.1                  | U 28.4         | U 24.9      |
| White Sand Lake     | U 17.6                          | U 19                         | U 25.2                  | U 23.5         | U 7.62      |
| Red Sand Lake       | U 22.6                          | U 19.9                       | U 25.3                  | U 25.1         | U 7.84      |
| Elk Lake            | U 14.9                          | U 18                         | U 28.8                  | U 14.9         | U 6.58      |
| Shingobee Lake      | U 15                            | U 15                         | U 25.7                  | U 15           | U 6.15      |
|                     |                                 |                              |                         |                |             |
| WWTP                |                                 |                              |                         |                |             |
| Hinckley-up         | U 14.9                          | U 14.9                       | U 19.9                  | U 21.2         | U 6.69      |
| Sauk-up             | U 17.1                          | U 14.9                       | U 19.9                  | U 14.9         | U 6.67      |
| Hinckley-down       | U 17.7                          | U 14.9                       | U 19.8                  | U 16.7         | U 6.98      |
| Sauk-down           | U 17.1                          | U 14.8                       | U 19.7                  | U 18.3         | U 6.18      |
| Marshall-up         | U 130                           | U 19.1                       | U 10.9                  | U 15.6         | U 6.66      |
| Marshall-down       | U 129                           | U 17.2                       | U 12.4                  | U 15.9         | U 6.2       |
| Metro Plant Up      | B 18.5                          | U 55.2                       | U 52.5                  | U 19.7         | U 22.6      |
| Metro Plant Down    | B 17.8                          | U 64.3                       | U 52.6                  | U 14.9         | U 23        |
|                     |                                 |                              |                         |                |             |
| Field Blank 1       | B 17.1                          | B 51.2                       | U 50.5                  | U 14.9         | U 21.8      |
| Field Blank 2       | U 16.5                          | U 54                         | U 6.48                  | U 16.2         | U 21.6      |

| Location            | 4-Epianhydrochlortetracycline<br>[EACTC] | 4-Epianhydrotetracycline<br>[EATC] | 4-Epichlortetracycline<br>[ECTC] | 4-Epioxytetracycline<br>[EOTC] | 4-Epitetracycline<br>[ETC] |
|---------------------|------------------------------------------|------------------------------------|----------------------------------|--------------------------------|----------------------------|
| Lake                |                                          |                                    |                                  |                                |                            |
| Lake Kabetogama     | U 202                                    | U 50.5                             | U 22.6                           | U 11                           | U 8.33                     |
| Budd Lake           | U 64.7                                   | U 16.2                             | U 12.5                           | U 6.47                         | U 6.54                     |
| Sullivan Lake       | U 64                                     | U 16                               | U 20.7                           | U 6.4                          | U 6.4                      |
| Cedar Lake          | U 61.2                                   | U 15.3                             | U 14.1                           | U 6.12                         | U 6.12                     |
| Lake Owasso         | U 60.9                                   | U 15.2                             | U 13.2                           | U 6.09                         | U 6.09                     |
| Stewart Lake        | В 71.5                                   | U 18.4                             | U 23                             | U 14.6                         | U 9.31                     |
| Northern Light Lake | B 84.9                                   | U 27.6                             | U 40.1                           | U 27.4                         | U 12.4                     |
| White Sand Lake     | U 60.1                                   | U 23.4                             | U 25.1                           | U 21.9                         | U 10.6                     |
| Red Sand Lake       | U 60.9                                   | U 25                               | U 24.6                           | U 29.3                         | U 11.5                     |
| Elk Lake            | U 59.6                                   | U 14.9                             | U 24.2                           | U 9.61                         | U 6.43                     |
| Shingobee Lake      | U 60.1                                   | U 15                               | U 15                             | U 6.4                          | U 6.01                     |
|                     |                                          |                                    |                                  |                                |                            |
| WWTP                |                                          |                                    |                                  |                                |                            |
| Hinckley-up         | U 59.7                                   | U 14.9                             | U 21.4                           | U 14.1                         | U 10.6                     |
| Sauk-up             | U 59.8                                   | U 16.5                             | U 20.7                           | U 10.7                         | U 13.3                     |
| Hinckley-down       | U 59.5                                   | U 18.5                             | U 19.6                           | U 16.4                         | U 10.9                     |
| Sauk-down           | U 59.1                                   | U 19.2                             | U 14.8                           | U 13                           | U 13.8                     |
| Marshall-up         | U 62.3                                   | U 19.9                             | U 17.8                           | U 8.81                         | U 8.65                     |
| Marshall-down       | U 62                                     | U 16                               | U 21.2                           | U 16.3                         | U 7.32                     |
| Metro Plant Up      | В 69.6                                   | U 31                               | U 25                             | U 22.3                         | U 6.65                     |
| Metro Plant Down    | U 59.7                                   | U 63.6                             | U 23.6                           | U 14.7                         | U 8.3                      |
|                     |                                          |                                    |                                  |                                |                            |
| Field Blank 1       | U 59.5                                   | U 14.9                             | U 14.9                           | U 5.95                         | U 5.95                     |
| Field Blank 2       | U 64.8                                   | U 16.2                             | U 54                             | U 6.48                         | U 21.6                     |

| Location            | Isochlortetracycline [ICTC] | Minocycline | Oxytetracycline [OTC] | Tetracycline [TC] |
|---------------------|-----------------------------|-------------|-----------------------|-------------------|
| Lake                |                             |             |                       |                   |
| Lake Kabetogama     | U 10.8                      | U 60.6      | U 7.25                | U 7.32            |
| Budd Lake           | U 6.47                      | U 64.7      | U 6.47                | U 6.47            |
| Sullivan Lake       | U 7.43                      | U 64        | U 6.4                 | U 6.4             |
| Cedar Lake          | U 6.12                      | U 61.2      | U 6.12                | U 6.12            |
| Lake Owasso         | U 7.5                       | U 60.9      | U 6.09                | U 6.09            |
| Stewart Lake        | U 8.17                      | U 77        | U 50.8                | U 50.8            |
| Northern Light Lake | U 13                        | U 102       | U 53.5                | U 53.5            |
| White Sand Lake     | U 7.32                      | U 60.1      | U 20                  | U 21.8            |
| Red Sand Lake       | U 8.41                      | U 60.9      | U 24.3                | U 22.5            |
| Elk Lake            | U 10.4                      | U 59.6      | U 19.9                | U 20              |
| Shingobee Lake      | U 6.13                      | U 60.1      | U 20                  | U 20              |
|                     |                             |             |                       |                   |
| WWTP                |                             |             |                       |                   |
| Hinckley-up         | U 5.97                      | U 64.9      | U 9.67                | U 9.17            |
| Sauk-up             | U 6.7                       | U 73.3      | U 7.78                | U 11.2            |
| Hinckley-down       | U 6.34                      | U 70.1      | U 11                  | U 9.39            |
| Sauk-down           | U 5.91                      | U 63.8      | U 9.05                | U 11.5            |
| Marshall-up         | U 6.23                      | U 78.7      | U 7.81                | U 8.26            |
| Marshall-down       | U 6.2                       | U 62        | U 11.8                | U 7.34            |
| Metro Plant Up      | U 13.1                      | U 106       | U 49.4                | U 49.4            |
| Metro Plant Down    | U 10.7                      | U 105       | U 49.7                | U 49.7            |
|                     |                             |             |                       |                   |
| Field Blank 1       | U 5.95                      | U 59.5      | U 49.6                | U 49.6            |
| Field Blank 2       | U 6.48                      | U 64.8      | U 21.6                | U 6.48            |

| Location            | Bisphenol A | Furosemide | Gemfibrozil   | Glipizide | Glyburide | Hydrochlorothiazide   |
|---------------------|-------------|------------|---------------|-----------|-----------|-----------------------|
| Lake                | Displicitor | rarosemiae | GCIIIIDI OZII | Gilpiziae | Glyburiac | Tryarocinor otinaziae |
| Lake Kabetogama     | U 505       | U 40.4     | U 5.05        | U 6.06    | U 3.03    | U 20.2                |
| Budd Lake           | U 540       | U 71       | 2.07          | U 6.47    | U 2.24    | U 21.6                |
| Cedar Lake          | U 510       | U 40.8     | U 1.53        | U 6.12    | U 2.12    | U 20.4                |
| Elk Lake            | U 496       | U 39.7     | U 1.49        | U 5.96    | U 2.98    | U 19.9                |
| Lake Owasso         | U 508       | U 40.6     | U 1.52        | U 6.09    | U 2.11    | U 20.3                |
| Northern Light Lake | U 535       | U 42.8     | U 5.35        | U 6.42    | U 3.21    | U 21.4                |
| Red Sand Lake       | U 507       | U 40.6     | U 1.52        | U 6.09    | U 3.04    | U 20.3                |
| Shingobee Lake      | U 501       | U 40.1     | U 1.5         | U 6.01    | U 3.01    | U 20                  |
| Stewart Lake        | U 508       | U 40.6     | U 5.08        | U 6.09    | U 3.05    | U 20.3                |
| Sullivan Lake       | U 534       | U 42.7     | U 1.6         | U 6.4     | 2.92      | U 21.3                |
| White Sand Lake     | U 504       | U 40.3     | U 1.51        | U 6.05    | U 3.03    | U 20.2                |
|                     |             |            |               |           |           |                       |
| WWTP                |             |            |               |           |           |                       |
| Hinckley-up         | U 498       | U 39.8     | 2.33          | U 5.97    | U 2.99    | U 199                 |
| Hinckley-down       | U 496       | U 39.7     | 2.3           | U 5.95    | U 2.97    | U 198                 |
| Marshall-down       | U 517       | U 41.4     | 5.73          | U 6.2     | U 3.1     | U 207                 |
| Marshall-up         | U 519       | U 41.5     | U 1.56        | U 6.23    | U 3.11    | U 208                 |
| Metro Plant Down    | U 497       | 67         | 11.1          | U 5.97    | U 2.98    | 25.4                  |
| Metro Plant Up      | U 494       | U 39.5     | U 4.94        | U 5.93    | U 2.96    | U 19.8                |
| Sauk-down           | U 493       | U 39.4     | 1.49          | U 5.91    | U 2.96    | U 197                 |
| Sauk-up             | U 498       | U 39.8     | U 1.49        | U 5.98    | U 2.99    | U 199                 |
|                     |             |            |               |           |           |                       |
| Field Blank 1       | U 496       | U 39.7     | U 4.96        | U 5.95    | U 2.97    | U 19.8                |
| Field Blank 2       | U 540       | U 43.2     | U 1.62        | U 6.48    | U 3.24    | U 13                  |

| Location            | 2-Hydroxy-ibuprofen | Ibuprofen | Naproxen | Triclocarban | Triclosan | Warfarin |
|---------------------|---------------------|-----------|----------|--------------|-----------|----------|
| Lake                |                     |           |          |              |           |          |
| Lake Kabetogama     | U 97.4              | U 15.1    | U 14.7   | U 3.03       | U 60.6    | U 1.51   |
| Budd Lake           | U 86.3              | U 16.2    | U 10.8   | 3.28         | U 64.7    | U 1.62   |
| Cedar Lake          | U 81.6              | U 15.3    | U 10.2   | U 3.06       | U 61.2    | U 1.53   |
| Elk Lake            | U 79.4              | U 14.9    | U 2.98   | U 2.98       | U 59.6    | U 1.49   |
| Lake Owasso         | U 81.3              | U 15.2    | U 10.2   | U 3.05       | U 60.9    | U 1.52   |
| Northern Light Lake | U 85.6              | U 16      | U 10.7   | U 3.21       | U 64.2    | U 1.6    |
| Red Sand Lake       | U 81.1              | U 15.2    | U 3.04   | U 3.04       | U 60.9    | U 1.52   |
| Shingobee Lake      | U 80.1              | U 15      | U 3.01   | U 3.01       | U 60.1    | U 1.5    |
| Stewart Lake        | U 81.2              | U 15.2    | U 10.2   | U 3.05       | U 60.9    | U 1.52   |
| Sullivan Lake       | U 85.4              | U 16      | U 10.7   | U 3.2        | U 64      | U 1.6    |
| White Sand Lake     | U 80.7              | U 15.1    | 3.85     | U 3.03       | U 60.5    | U 1.51   |
|                     |                     |           |          |              |           |          |
| WWTP                |                     |           |          |              |           |          |
| Hinckley-up         | U 79.7              | U 14.9    | U 2.99   | U 9.96       | U 59.7    | U 1.49   |
| Hinckley-down       | U 79.3              | U 14.9    | U 2.97   | U 9.92       | U 59.5    | U 1.49   |
| Marshall-down       | U 82.7              | U 15.5    | 9.75     | U 3.1        | U 62      | U 1.55   |
| Marshall-up         | U 83                | U 15.6    | U 3.11   | U 3.11       | U 62.3    | U 1.56   |
| Metro Plant Down    | U 79.6              | U 14.9    | U 9.95   | U 2.98       | U 59.7    | U 1.49   |
| Metro Plant Up      | U 79                | U 14.8    | U 9.88   | U 2.96       | U 59.3    | U 1.48   |
| Sauk-down           | U 78.8              | U 14.8    | U 2.96   | U 9.85       | U 59.1    | U 1.48   |
| Sauk-up             | U 79.7              | U 17.2    | U 2.99   | U 9.96       | U 59.8    | U 1.49   |
|                     |                     |           |          |              |           |          |
| Field Blank 1       | U 79.3              | U 16.1    | U 9.91   | U 2.97       | U 59.5    | U 1.49   |
| Field Blank 2       | U 86.4              | U 16.2    | U 10.8   | U 3.24       | U 64.8    | U 1.62   |

| Location            | Albuterol | Amphetamine | Atenolol  | Atorvastatin  | Cimetidine  | Clonidine | Codeine |
|---------------------|-----------|-------------|-----------|---------------|-------------|-----------|---------|
| Lake                | Albuteror | Amphetamine | Atelioloi | Atorvastatiii | Cilietidile | Cioniunie | Codeme  |
| Budd Lake           | U 0.857   | K B 2.61    | U 1.88    | U 1.57        | U 0.629     | U 1.57    | U 3.15  |
| Cedar Lake          | U 0.322   | K B 5.2     | U 1.14    | U 1.76        | U 0.622     | U 2.49    | U 4.63  |
| Elk Lake            | В 0.399   | U 1.5       | U 0.6     | U 1.62        | U 0.648     | U 1.62    | U 3.24  |
| Lake Kabetogama     | U 0.303   | U 1.52      | U 0.606   | U 1.52        | U 0.606     | U 1.52    | U 3.03  |
| Lake Owasso         | U 0.302   | K B 6.37    | U 1.08    | U 1.51        | U 0.604     | U 1.66    | U 8.6   |
| Northern Light Lake | U 0.296   | U 1.48      | U 0.592   | U 1.48        | U 0.592     | U 1.48    | U 2.96  |
| Red Sand Lake       | U 0.296   | U 1.48      | U 0.731   | U 1.48        | U 0.592     | U 1.48    | U 2.96  |
| Shingobee Lake      | B 0.484   | 2.91        | U 0.607   | U 1.52        | U 0.607     | U 1.52    | U 3.04  |
| Stewart Lake        | U 0.305   | U 1.53      | U 0.61    | U 1.53        | U 0.61      | U 1.53    | U 3.05  |
| Sullivan Lake       | U 0.3     | K B 7.27    | U 1.31    | U 1.5         | U 0.6       | U 1.5     | U 6.32  |
| White Sand Lake     | U 0.299   | U 1.5       | U 0.655   | U 1.5         | U 0.598     | U 1.5     | U 2.99  |
|                     |           |             |           |               |             |           |         |
| WWTP                |           |             |           |               |             |           |         |
| Marshall-up         | U 0.312   | U 1.96      | U 0.651   | U 1.56        | U 0.625     | U 1.56    | U 3.12  |
| Hinckley-down       | U 0.295   | U 1.48      | 4.18      | U 1.48        | 0.737       | U 1.48    | U 2.95  |
| Hinckley-up         | U 0.298   | U 1.49      | U 0.596   | U 1.49        | U 0.596     | U 1.49    | U 2.98  |
| Marshall-down       | 0.573     | U 2.42      | 26.3      | U 1.5         | 7.1         | U 1.5     | 3.15    |
| Metro Plant Down    | 1.9       | U 1.49      | 8.99      | U 1.49        | U 0.597     | U 1.49    | 4.4     |
| Metro Plant Up      | 0.314     | U 1.51      | 1.67      | U 1.51        | U 0.605     | U 1.51    | U 3.02  |
| Sauk-down           | U 0.301   | 1.65        | 1.4       | U 1.51        | 0.662       | U 1.51    | U 3.01  |
| Sauk-up             | U 0.299   | U 1.5       | U 0.599   | U 1.5         | U 0.599     | U 1.5     | U 2.99  |
|                     |           |             |           |               |             |           |         |
| Field Blank 1       | U 0.299   | U 1.5       | U 0.598   | U 1.5         | U 0.598     | U 1.5     | U 2.99  |
| Field Blank 2       | U 0.318   | U 1.59      | U 0.636   | U 1.59        | U 0.636     | U 1.59    | U 3.18  |

| Location            | Cotinine | Enalapril | Hydrocodone | Metformin | Oxycodone | Ranitidine | Triamterene |
|---------------------|----------|-----------|-------------|-----------|-----------|------------|-------------|
| Lake                |          |           |             |           |           |            |             |
| Budd Lake           | 12.8     | U 0.349   | U 1.57      | U 12.4    | U 3.32    | U 1.22     | U 1.15      |
| Cedar Lake          | 42.1     | U 0.558   | U 1.56      | U 6.27    | U 5.18    | U 0.843    | U 1.19      |
| Elk Lake            | 2.13     | U 0.343   | U 1.62      | 3.01      | U 1.71    | U 0.648    | B 0.454     |
| Lake Kabetogama     | U 1.52   | U 0.303   | U 1.52      | U 3.03    | U 0.606   | U 0.606    | U 0.303     |
| Lake Owasso         | 15.6     | U 0.302   | U 1.51      | U 6.35    | U 4.51    | U 0.701    | U 0.877     |
| Northern Light Lake | U 1.48   | U 0.296   | U 1.48      | U 2.96    | U 1.17    | U 0.592    | U 0.296     |
| Red Sand Lake       | 3.61     | U 0.298   | U 1.48      | 8.41      | U 0.592   | U 0.592    | U 0.306     |
| Shingobee Lake      | U 1.52   | U 0.317   | U 1.52      | 18        | U 1.32    | U 0.607    | U 0.304     |
| Stewart Lake        | 1.83     | U 0.305   | U 1.53      | U 3.05    | U 0.656   | U 0.61     | U 0.305     |
| Sullivan Lake       | 6.06     | U 0.594   | U 1.5       | U 10      | U 1.13    | U 0.826    | U 1.05      |
| White Sand Lake     | 6.87     | U 0.299   | U 1.5       | 4.06      | U 0.598   | U 0.598    | U 0.335     |
|                     |          |           |             |           |           |            |             |
| WWTP                |          |           |             |           |           |            |             |
| Marshall-up         | 5.19     | U 0.312   | U 1.56      | 31.8      | U 0.848   | U 2.08     | U 0.312     |
| Hinckley-down       | 3.91     | U 0.295   | 2.96        | 52.4      | 2.75      | 2.04       | 9.86        |
| Hinckley-up         | 1.74     | U 0.298   | U 1.49      | 4.02      | U 0.596   | U 0.596    | U 0.362     |
| Marshall-down       | 8.32     | U 0.301   | 1.94        | 434       | U 1.45    | 21.2       | 10.9        |
| Metro Plant Down    | 5.74     | U 0.298   | 5.2         | 188       | 8.8       | 24.2       | 18.1        |
| Metro Plant Up      | 4.09     | U 0.302   | U 1.51      | 53.9      | U 0.915   | 0.744      | 3.19        |
| Sauk-down           | 3.6      | U 0.301   | U 1.51      | 83.3      | U 0.602   | 2.73       | 1.83        |
| Sauk-up             | 3.18     | U 0.299   | U 1.5       | 5.32      | U 0.599   | U 0.599    | U 0.364     |
|                     |          |           |             |           |           |            |             |
| Field Blank 1       | U 1.5    | U 0.299   | U 1.5       | U 2.99    | U 0.598   | U 0.598    | U 0.299     |
| Field Blank 2       | U 1.59   | U 0.318   | U 1.59      | U 3.18    | U 0.636   | U 0.636    | U 0.318     |

| Location            | Alprazolam | Amitriptyline | Amlodipine | Benzoylecgonine | Benztropine | Betamethasone | Cocaine |
|---------------------|------------|---------------|------------|-----------------|-------------|---------------|---------|
| Lake                |            |               |            |                 |             |               |         |
| Budd Lake           | U 0.324    | U 1.15        | U 1.62     | U 0.618         | U 0.755     | U 7.21        | U 0.225 |
| Cedar Lake          | U 0.306    | U 1.23        | U 1.53     | U 0.852         | U 0.714     | U 3.28        | U 0.27  |
| Elk Lake            | U 0.298    | U 0.365       | U 1.49     | U 0.298         | U 0.695     | U 1.49        | U 0.149 |
| Lake Kabetogama     | U 0.303    | U 0.318       | U 1.51     | U 0.434         | U 0.707     | U 21.3        | U 0.157 |
| Lake Owasso         | U 0.305    | U 1.11        | U 1.52     | U 0.746         | U 0.711     | U 20          | U 0.423 |
| Northern Light Lake | U 0.321    | U 0.554       | U 1.6      | U 0.321         | U 0.749     | U 5.35        | U 0.16  |
| Red Sand Lake       | U 0.304    | 0.503         | U 1.52     | U 0.403         | U 0.71      | U 5.07        | U 0.152 |
| Shingobee Lake      | U 0.301    | U 0.301       | U 1.5      | U 0.301         | U 0.701     | U 1.5         | U 0.15  |
| Stewart Lake        | U 0.305    | U 0.458       | U 1.52     | U 0.342         | U 0.711     | U 12          | U 0.152 |
| Sullivan Lake       | U 0.32     | U 0.666       | U 1.6      | U 0.864         | U 0.747     | U 10.2        | U 0.362 |
| White Sand Lake     | U 0.3      | 0.493         | U 1.5      | U 0.333         | U 0.701     | U 5           | U 0.15  |
|                     |            |               |            |                 |             |               |         |
| WWTP                |            |               |            |                 |             |               |         |
| Hinckley-up         | U 0.299    | 0.471         | U 1.49     | U 0.299         | U 0.697     | U 2.32        | U 0.149 |
| Hinckley-down       | U 0.297    | 0.724         | U 1.49     | U 0.297         | U 0.694     | U 4.96        | 0.172   |
| Marshall-down       | U 0.31     | 0.454         | U 1.55     | 0.43            | U 0.724     | U 1.55        | 0.291   |
| Marshall-up         | U 0.311    | U 0.311       | U 1.56     | U 0.311         | U 0.727     | U 1.56        | 0.203   |
| Metro Plant Down    | 0.339      | U 1.39        | U 1.49     | 4.14            | U 0.696     | U 4.97        | 0.173   |
| Metro Plant Up      | U 0.296    | U 0.296       | U 1.48     | 0.469           | U 0.691     | U 4.94        | U 0.148 |
| Sauk-down           | U 0.296    | 0.664         | U 1.48     | U 0.296         | U 0.69      | U 4.93        | U 0.148 |
| Sauk-up             | U 0.299    | U 0.44        | U 1.49     | U 0.348         | U 0.697     | U 4.98        | U 0.155 |
|                     |            |               |            |                 |             |               |         |
| Field Blank 1       | U 0.297    | U 0.562       | U 1.49     | U 0.297         | U 0.694     | U 4.96        | U 0.149 |
| Field Blank 2       | U 0.324    | U 0.324       | U 1.62     | U 0.324         | U 0.756     | U 1.62        | U 0.162 |

| Location            | DEET   | Desmethyldiltiazem    | Diazepam | Fluocinonide        | Fluticasone propionate | Hydrocortisone      | 10-hydroxy-amitriptyline |
|---------------------|--------|-----------------------|----------|---------------------|------------------------|---------------------|--------------------------|
| Lake                | 522.   | 2 come in yruniu azem | Diazopam | . i u d d i i d d i | propionate             | in y an oddinisonic | 20 Hydroxy dimeripty     |
| Budd Lake           | 18.3   | U 0.162               | U 0.515  | U 6.47              | U 3.46                 | U 99                | U 0.18                   |
| Cedar Lake          | 103    | U 0.153               | U 0.929  | U 6.87              | U 3.66                 | U 84.5              | U 0.264                  |
| Elk Lake            | 16.6   | U 0.149               | U 0.298  | U 8.18              | U 1.99                 | U 59.6              | U 0.149                  |
| Lake Kabetogama     | B 5.29 | U 0.151               | U 0.303  | U 6.06              | U 2.02                 | U 60.6              | U 0.151                  |
| Lake Owasso         | 52     | U 0.152               | U 0.465  | U 6.3               | U 3.34                 | U 99.7              | U 0.167                  |
| Northern Light Lake | 13.8   | U 0.163               | U 0.333  | U 11.7              | U 2.45                 | U 77.3              | U 0.16                   |
| Red Sand Lake       | 37.1   | U 0.152               | U 0.304  | U 7.08              | U 2.84                 | U 60.9              | U 0.152                  |
| Shingobee Lake      | 10.6   | U 0.15                | U 0.301  | U 6.38              | U 2                    | U 60.1              | U 0.15                   |
| Stewart Lake        | 33.2   | U 0.152               | U 0.305  | U 6.09              | U 2.03                 | U 60.9              | U 0.152                  |
| Sullivan Lake       | 16.5   | U 0.16                | U 0.398  | U 7.46              | U 2.47                 | U 81                | U 0.235                  |
| White Sand Lake     | 69.3   | U 0.15                | U 0.3    | U 6.08              | U 2.33                 | U 60.1              | U 0.15                   |
|                     |        |                       |          |                     |                        |                     |                          |
| WWTP                |        |                       |          |                     |                        |                     |                          |
| Hinckley-up         | B 16   | U 0.149               | U 0.342  | U 6.45              | U 1.99                 | U 66.2              | U 0.149                  |
| Hinckley-down       | B 18.1 | 0.362                 | U 0.297  | U 5.95              | U 1.98                 | U 97.5              | U 0.149                  |
| Marshall-down       | 20.3   | 1.27                  | U 0.31   | U 8.05              | U 2.67                 | U 93.8              | 1.45                     |
| Marshall-up         | 7.17   | U 0.156               | U 0.311  | U 8.83              | U 2.47                 | U 102               | U 0.156                  |
| Metro Plant Down    | B 9.55 | 3.33                  | U 0.332  | U 6.25              | U 2                    | U 69.7              | 0.681                    |
| Metro Plant Up      | 11.2   | 0.273                 | U 0.296  | U 7.6               | U 2.21                 | U 85.5              | U 0.148                  |
| Sauk-down           | B 20.3 | 0.378                 | U 0.296  | U 5.91              | U 1.97                 | U 115               | 0.157                    |
| Sauk-up             | B 26.4 | U 0.149               | U 0.299  | U 6.44              | U 1.99                 | U 111               | U 0.149                  |
|                     |        |                       |          |                     |                        |                     |                          |
| Field Blank 1       | B 8.48 | U 0.149               | U 0.297  | U 5.95              | U 1.98                 | U 59.5              | U 0.149                  |
| Field Blank 2       | 0.951  | U 0.168               | U 0.324  | U 6.48              | U 2.16                 | U 216               | U 0.162                  |

| Location            | Meprobamate | Methylprednisolone | Metoprolol | Norfluoxetine | Norverapamil | Paroxetine | Prednisolone |
|---------------------|-------------|--------------------|------------|---------------|--------------|------------|--------------|
| Lake                |             |                    |            |               |              |            |              |
| Budd Lake           | U 4.49      | U 30.2             | U 16.8     | U 1.62        | U 0.172      | U 4.32     | U 6.47       |
| Cedar Lake          | U 4.22      | U 22.1             | U 19.6     | U 1.53        | 0.187        | U 4.08     | U 6.12       |
| Elk Lake            | U 3.97      | U 6.32             | U 5.32     | U 1.49        | U 0.149      | U 3.97     | U 25.2       |
| Lake Kabetogama     | U 4.04      | U 10               | U 6.4      | U 1.51        | U 0.151      | U 4.04     | U 25.9       |
| Lake Owasso         | U 4.06      | U 17               | U 27.3     | U 1.52        | U 0.152      | U 4.06     | U 6.09       |
| Northern Light Lake | U 4.28      | U 14.6             | U 6.88     | U 1.6         | U 0.16       | U 4.28     | U 45.1       |
| Red Sand Lake       | U 4.06      | U 4.06             | U 11.2     | U 1.52        | U 0.152      | U 4.06     | U 6.09       |
| Shingobee Lake      | U 4.01      | U 8.26             | U 5.46     | U 1.5         | U 0.15       | U 4.01     | U 22.5       |
| Stewart Lake        | U 4.06      | U 9.24             | U 7.23     | U 1.52        | U 0.152      | U 4.06     | U 30.9       |
| Sullivan Lake       | U 4.41      | U 31.2             | U 19.4     | U 1.6         | U 0.186      | U 4.27     | U 6.4        |
| White Sand Lake     | U 4         | U 4                | U 8.28     | U 1.5         | U 0.15       | U 4        | U 6.01       |
|                     |             |                    |            |               |              |            |              |
| WWTP                |             |                    |            |               |              |            |              |
| Hinckley-up         | U 5.18      | U 7.92             | U 9.68     | U 1.49        | U 0.149      | U 3.98     | U 36.8       |
| Hinckley-down       | 14.9        | U 26.9             | 16.4       | U 1.49        | U 0.153      | U 3.97     | U 21.5       |
| Marshall-down       | 9.27        | U 4.74             | 34.5       | U 1.55        | U 0.155      | U 4.14     | U 42.1       |
| Marshall-up         | U 4.15      | 6.06               | U 6.57     | U 1.56        | U 0.156      | U 4.15     | U 21.5       |
| Metro Plant Down    | 18.3        | U 18.7             | 51         | U 1.49        | U 0.149      | U 3.98     | U 22.2       |
| Metro Plant Up      | U 10.8      | U 7.48             | 7.79       | U 1.48        | U 0.148      | U 3.95     | U 18.2       |
| Sauk-down           | U 3.94      | U 11.6             | U 7.33     | U 1.48        | U 0.148      | U 3.94     | U 18.2       |
| Sauk-up             | U 3.98      | U 44.3             | U 9.02     | U 1.49        | U 0.149      | U 3.98     | U 47.6       |
|                     |             |                    |            |               |              |            |              |
| Field Blank 1       | U 3.97      | U 3.97             | U 1.49     | U 1.49        | U 0.149      | U 3.97     | U 5.95       |
| Field Blank 2       | U 4.32      | U 4.32             | U 1.62     | U 1.62        | U 0.162      | U 4.32     | U 6.72       |

| Location            | Prednisone | Promethazine | Propoxyphene | Propranolol | Sertraline | Simvastatin |
|---------------------|------------|--------------|--------------|-------------|------------|-------------|
| Lake                |            |              |              |             |            |             |
| Budd Lake           | U 166      | U 0.432      | U 0.324      | U 2.16      | U 0.432    | U 21.6      |
| Cedar Lake          | U 153      | U 0.408      | U 0.306      | U 2.04      | U 0.408    | U 20.4      |
| Elk Lake            | U 53       | U 0.397      | U 0.298      | U 1.99      | U 0.397    | U 19.9      |
| Lake Kabetogama     | U 57.7     | U 0.415      | U 0.303      | U 2.02      | 12.7       | U 20.2      |
| Lake Owasso         | U 125      | U 0.503      | U 0.305      | U 2.03      | U 0.443    | U 20.3      |
| Northern Light Lake | U 97.4     | U 0.428      | U 0.321      | U 2.14      | U 0.428    | U 21.4      |
| Red Sand Lake       | U 167      | U 0.406      | U 0.304      | U 2.03      | U 0.406    | U 20.3      |
| Shingobee Lake      | U 51.5     | U 0.401      | U 0.301      | U 2         | U 0.401    | U 20        |
| Stewart Lake        | U 81.1     | U 0.406      | U 0.305      | U 2.03      | 12.7       | U 20.3      |
| Sullivan Lake       | U 148      | U 0.427      | U 0.32       | U 2.13      | U 0.453    | U 21.3      |
| White Sand Lake     | U 63.7     | U 0.4        | U 0.3        | U 2         | U 0.4      | U 20        |
|                     |            |              |              |             |            |             |
| WWTP                |            |              |              |             |            |             |
| Hinckley-up         | U 93.2     | U 0.398      | U 0.299      | U 1.99      | 0.482      | U 19.9      |
| Hinckley-down       | U 49.6     | U 0.397      | U 0.297      | 2.12        | 0.853      | U 19.8      |
| Marshall-down       | U 78.9     | U 0.414      | U 0.31       | U 2.07      | 0.659      | U 20.7      |
| Marshall-up         | U 69.6     | U 0.415      | U 0.311      | U 2.08      | U 0.415    | U 20.8      |
| Metro Plant Down    | U 113      | U 0.398      | U 0.298      | 8.6         | 3.48       | U 19.9      |
| Metro Plant Up      | U 91.2     | U 0.395      | U 0.296      | U 1.98      | U 0.395    | U 19.8      |
| Sauk-down           | U 52.9     | U 0.394      | U 0.296      | U 1.97      | 0.409      | U 19.7      |
| Sauk-up             | U 129      | U 0.398      | U 0.299      | U 1.99      | U 0.398    | U 19.9      |
|                     |            |              |              |             |            |             |
| Field Blank 1       | U 19.8     | U 0.397      | U 0.297      | U 1.98      | U 0.397    | U 19.8      |
| Field Blank 2       | U 21.6     | U 1.7        | U 0.324      | U 2.16      | 0.811      | U 21.6      |

| Location            | Theophylline | Trenbolone | Trenbolone acetate | Valsartan | Verapamil |
|---------------------|--------------|------------|--------------------|-----------|-----------|
| Lake                |              |            |                    |           |           |
| Budd Lake           | U 123        | U 11.4     | U 1.04             | U 4.32    | U 0.196   |
| Cedar Lake          | U 119        | U 7.86     | U 1.51             | U 4.35    | U 0.164   |
| Elk Lake            | U 59.6       | U 3.97     | U 0.418            | U 3.97    | U 0.149   |
| Lake Kabetogama     | U 60.6       | U 4.04     | U 0.337            | U 4.04    | U 0.151   |
| Lake Owasso         | U 101        | U 6.12     | U 0.928            | U 4.06    | U 0.31    |
| Northern Light Lake | U 64.2       | U 4.28     | U 0.741            | U 4.28    | U 0.16    |
| Red Sand Lake       | U 101        | U 5.59     | U 0.375            | U 4.06    | U 0.152   |
| Shingobee Lake      | U 60.1       | U 4.01     | U 0.315            | U 4.01    | U 0.15    |
| Stewart Lake        | U 83.8       | U 4.06     | U 0.44             | U 4.06    | U 0.152   |
| Sullivan Lake       | U 125        | U 5.31     | U 0.695            | U 4.27    | U 0.16    |
| White Sand Lake     | U 85.3       | U 4        | U 0.369            | U 4       | U 0.15    |
|                     |              |            |                    |           |           |
| WWTP                |              |            |                    |           |           |
| Hinckley-up         | U 199        | U 3.98     | U 0.332            | U 3.98    | U 0.149   |
| Hinckley-down       | U 119        | U 4.69     | U 0.297            | 7.6       | 0.521     |
| Marshall-down       | 94.6         | U 4.14     | U 0.541            | 9.66      | 0.166     |
| Marshall-up         | U 79.8       | U 5.37     | U 0.54             | U 4.15    | U 0.156   |
| Metro Plant Down    | U 59.7       | U 3.98     | U 0.442            | 13.2      | 0.155     |
| Metro Plant Up      | U 59.3       | U 3.95     | U 0.423            | 4.44      | U 0.148   |
| Sauk-down           | U 94.4       | U 3.94     | U 0.339            | U 3.94    | 0.35      |
| Sauk-up             | U 133        | U 4.88     | U 0.398            | U 3.98    | U 0.149   |
|                     |              |            |                    |           |           |
| Field Blank 1       | U 59.5       | U 3.97     | U 0.297            | U 3.97    | U 0.149   |
| Field Blank 2       | U 64.8       | U 4.32     | U 0.324            | U 4.32    | U 0.162   |

| Location            | Diatrizoic acid | Iopamidol | Citalopram | Tamoxifen | Cyclophosphamide | Venlafaxine | Amsacrine |
|---------------------|-----------------|-----------|------------|-----------|------------------|-------------|-----------|
| Lake                |                 |           |            |           |                  |             |           |
| Budd Lake           | U 43.2          | U 184     | U 0.861    | U 0.432   | U 1.73           | U 0.432     | U 0.863   |
| Cedar Lake          | U 40.8          | 212       | U 1.52     | U 0.408   | U 1.63           | U 0.408     | U 0.816   |
| Elk Lake            | U 39.7          | U 79.4    | U 1.17     | U 0.397   | U 1.59           | U 1.19      | U 0.794   |
| Lake Kabetogama     | U 40.4          | 510       | U 1.18     | U 4.04    | U 1.61           | U 4.04      | U 0.807   |
| Lake Owasso         | U 40.6          | 273       | U 1.29     | U 0.406   | U 1.63           | U 0.406     | U 0.813   |
| Northern Light Lake | U 42.8          | U D 257   | U 0.426    | U 4.28    | U 1.71           | D 8.35      | U 0.856   |
| Red Sand Lake       | U 40.6          | 339       | U 2.78     | U 0.406   | U 1.62           | U 4.06      | U 0.811   |
| Shingobee Lake      | U 40.1          | 118       | U 0.886    | U 0.401   | U 1.6            | U 1.2       | U 0.801   |
| Stewart Lake        | U 40.6          | 302       | U 0.984    | U 4.06    | U 1.62           | U 1.22      | U 0.812   |
| Sullivan Lake       | U 42.7          | 238       | U 0.999    | U 0.427   | U 1.71           | U 0.427     | U 0.854   |
| White Sand Lake     | U 40            | 140       | U 1.16     | U 0.4     | U 1.6            | U 4         | U 0.801   |
|                     |                 |           |            |           |                  |             |           |
| WWTP                |                 |           |            |           |                  |             |           |
| Hinckley-down       | U 39.7          | U 79.3    | 8.5        | U 0.397   | U 1.59           | 30.5        | U 0.793   |
| Hinckley-up         | U 39.8          | U 79.7    | U 0.389    | U 0.398   | U 1.59           | U 1.19      | U 0.797   |
| Marshall-down       | U 41.4          | 1230      | 7.3        | U 0.414   | U 1.65           | 50.4        | U 0.827   |
| Marshall-up         | U 41.5          | U 83      | U 0.405    | U 0.415   | U 1.66           | U 1.25      | U 0.83    |
| Metro Plant Down    | 91.2            | 522       | 3.87       | U 3.98    | U 1.59           | 45          | U 0.796   |
| Metro Plant Up      | U 39.5          | 356       | U 0.706    | U 3.95    | U 1.58           | 5.95        | U 0.79    |
| Sauk-down           | U 39.4          | U 78.8    | 3.41       | U 0.394   | U 1.58           | 5.9         | U 0.788   |
| Sauk-up             | U 39.8          | U 79.7    | U 0.389    | U 0.398   | U 1.59           | U 1.2       | U 0.797   |
|                     |                 |           |            |           |                  |             |           |
| Field Blank 1       | U 39.7          | U 79.3    | U 0.387    | U 3.97    | U 1.59           | U 1.19      | U 0.793   |
| Field Blank 2       | U 43.2          | U 86.4    | U 0.422    | U 4.32    | U 5.18           | U 4.32      | U 0.864   |

| Location            | Azathioprine | Busulfan | Carmustine | Chloramphenicol | Clotrimazole | Colchicine | Daunorubicin |
|---------------------|--------------|----------|------------|-----------------|--------------|------------|--------------|
| Lake                |              |          |            |                 |              |            |              |
| Budd Lake           | U 8.63       | U 25.9   | U 86.3     | U 941           | U 2.16       | U 2.16     | U 17.3       |
| Cedar Lake          | U 8.16       | U 24.5   | U 81.6     | U 890           | U 2.04       | U 2.04     | U 16.3       |
| Elk Lake            | U 7.94       | U 23.8   | U 79.4     | U 866           | U 1.99       | 8.52       | U 15.9       |
| Lake Kabetogama     | U 8.07       | U 24.2   | U 80.7     | U 880           | U 2.02       | U 6.1      | U 16.1       |
| Lake Owasso         | U 8.13       | U 24.4   | U 81.3     | U 886           | U 2.03       | U 3.77     | U 16.3       |
| Northern Light Lake | U 8.56       | U 25.7   | U 85.6     | U 1320          | U 2.14       | U 2.14     | U 17.1       |
| Red Sand Lake       | U 8.11       | U 24.3   | U 81.1     | U 884           | U 2.03       | U 2.03     | U 16.2       |
| Shingobee Lake      | U 8.01       | U 24     | U 80.1     | U 874           | U 2          | U 3.62     | U 16         |
| Stewart Lake        | U 8.12       | U 24.4   | U 81.2     | U 1680          | U 2.03       | U 2.03     | U 16.2       |
| Sullivan Lake       | U 8.54       | U 25.6   | U 85.4     | U 1190          | U 2.13       | U 2.13     | U 17.1       |
| White Sand Lake     | U 8.01       | U 24     | U 80.1     | U 873           | U 2          | U 4.07     | U 16         |
|                     |              |          |            |                 |              |            |              |
| WWTP                |              |          |            |                 |              |            |              |
| Hinckley-down       | U 7.93       | U 23.8   | U 79.3     | U 865           | U 1.98       | U 3.15     | U 15.9       |
| Hinckley-up         | U 7.97       | U 23.9   | U 79.7     | U 868           | U 1.99       | U 1.99     | U 15.9       |
| Marshall-down       | U 8.27       | U 24.8   | U 82.7     | U 901           | U 2.07       | U 2.07     | U 16.5       |
| Marshall-up         | U 8.3        | U 24.9   | U 83       | U 905           | U 2.08       | U 2.08     | U 16.6       |
| Metro Plant Down    | U 7.96       | U 23.9   | U 79.6     | U 867           | U 1.99       | U 3.8      | U 15.9       |
| Metro Plant Up      | U 7.9        | U 23.7   | U 79       | U 1040          | U 1.98       | U 1.98     | U 15.8       |
| Sauk-down           | U 7.88       | U 23.6   | U 78.8     | U 859           | U 1.97       | U 1.97     | U 15.8       |
| Sauk-up             | U 7.97       | U 23.9   | U 79.7     | U 868           | U 1.99       | U 1.99     | U 15.9       |
|                     |              |          |            |                 |              |            |              |
| Field Blank 1       | U 7.93       | U 23.8   | U 79.3     | U 865           | U 1.98       | U 1.98     | U 15.9       |
| Field Blank 2       | U 8.64       | U 25.9   | U 86.4     | U 942           | U 2.16       | U 2.16     | U 17.3       |

| Location            | Doxorubicin | Drospirenone | Etoposide | Lomustine | Medroxyprogesterone Acetate | Metronidazole |
|---------------------|-------------|--------------|-----------|-----------|-----------------------------|---------------|
| Lake                |             |              |           |           |                             |               |
| Budd Lake           | U 25.9      | U 8.63       | U 4.32    | U 51.8    | U 4.32                      | U 4.32        |
| Cedar Lake          | U 24.5      | U 8.16       | U 4.08    | U 49      | U 4.17                      | U 4.82        |
| Elk Lake            | U 23.8      | U 7.94       | U 3.97    | U 47.7    | U 3.97                      | U 11.9        |
| Lake Kabetogama     | U 24.2      | U 8.07       | U 4.04    | U 48.4    | U 4.04                      | U 4.04        |
| Lake Owasso         | U 24.4      | U 8.13       | U 4.06    | U 48.8    | U 4.06                      | U 5           |
| Northern Light Lake | U 25.7      | U 8.56       | U 4.28    | U 51.3    | U 4.28                      | U 4.28        |
| Red Sand Lake       | U 24.3      | U 8.11       | U 4.06    | U 48.7    | U 4.06                      | U 4.06        |
| Shingobee Lake      | U 24        | U 8.01       | U 4.01    | U 48.1    | U 4.01                      | U 12          |
| Stewart Lake        | U 24.4      | U 8.12       | U 4.06    | U 48.7    | U 4.06                      | U 4.06        |
| Sullivan Lake       | U 25.6      | U 8.54       | U 4.27    | U 51.2    | U 4.27                      | U 4.4         |
| White Sand Lake     | U 24        | U 8.01       | U 4       | U 48      | U 4                         | U 4           |
|                     |             |              |           |           |                             |               |
| WWTP                |             |              |           |           |                             |               |
| Hinckley-down       | U 23.8      | U 7.95       | U 3.97    | U 47.6    | U 3.97                      | U 3.97        |
| Hinckley-up         | U 23.9      | U 7.97       | U 3.98    | U 47.8    | U 3.98                      | U 3.98        |
| Marshall-down       | U 24.8      | U 8.27       | U 4.14    | U 49.6    | U 4.14                      | U 4.14        |
| Marshall-up         | U 24.9      | U 8.3        | U 4.15    | U 49.8    | U 4.15                      | U 4.15        |
| Metro Plant Down    | U 23.9      | U 7.96       | U 3.98    | U 47.7    | U 3.98                      | U 3.98        |
| Metro Plant Up      | U 23.7      | U 7.9        | U 3.95    | U 47.4    | U 3.95                      | U 3.95        |
| Sauk-down           | U 23.6      | U 9.7        | U 3.94    | U 47.3    | U 3.94                      | U 3.94        |
| Sauk-up             | U 23.9      | U 7.97       | U 3.98    | U 47.8    | U 3.98                      | U 3.98        |
|                     |             |              |           |           |                             |               |
| Field Blank 1       | U 23.8      | U 7.93       | U 3.97    | U 47.6    | U 3.97                      | U 3.97        |
| Field Blank 2       | U 25.9      | U 8.64       | NQ        | U 51.8    | U 4.32                      | U 8.36        |

| Location            | Moxifloxacin | Norethindrone | Oxazepam | Rosuvastatin | Teniposide | Zidovudine | Melphalan |
|---------------------|--------------|---------------|----------|--------------|------------|------------|-----------|
| Lake                |              |               |          |              |            |            |           |
| Budd Lake           | U 15.1       | U 69.1        | U 17.3   | U 17.3       | U 8.63     | U 51.8     | U 124     |
| Cedar Lake          | U 7.54       | U 65.3        | U 16.3   | U 16.3       | U 8.16     | U 49       | U 217     |
| Elk Lake            | U 17.4       | U 63.5        | U 15.9   | U 15.9       | U 7.94     | U 47.7     | U 127     |
| Lake Kabetogama     | U 13.4       | U 64.6        | U 16.1   | U 16.1       | U 11.1     | U 48.4     | U 258     |
| Lake Owasso         | U 17.9       | U 65          | U 16.3   | U 16.3       | U 8.13     | U 48.8     | U 204     |
| Northern Light Lake | U 9.71       | U 68.4        | U 17.1   | U 17.1       | U 9.6      | U 51.3     | U 132     |
| Red Sand Lake       | U 17         | U 64.9        | U 16.2   | U 16.2       | U 8.11     | U 48.7     | U 64.9    |
| Shingobee Lake      | U 9.53       | U 64.1        | U 16     | U 16         | U 8.01     | U 48.1     | U 152     |
| Stewart Lake        | U 7.67       | U 65          | U 16.2   | U 16.2       | U 8.12     | U 48.7     | U 232     |
| Sullivan Lake       | U 11.2       | U 68.3        | U 17.1   | U 17.1       | U 8.54     | U 51.2     | U 265     |
| White Sand Lake     | U 17.7       | U 64.1        | U 16     | U 16         | U 8.01     | U 48       | U 64.1    |
|                     |              |               |          |              |            |            |           |
| WWTP                |              |               |          |              |            |            |           |
| Hinckley-down       | U 20.2       | U 63.5        | U 15.9   | U 15.9       | U 9.1      | U 47.6     | U 635     |
| Hinckley-up         | 15.5         | U 63.7        | U 15.9   | U 15.9       | U 7.97     | U 47.8     | U 637     |
| Marshall-down       | 6.94         | U 66.2        | U 16.5   | U 16.5       | U 8.27     | U 49.6     | U 662     |
| Marshall-up         | U 11.6       | U 66.4        | U 16.6   | U 16.6       | U 61       | U 49.8     | U 664     |
| Metro Plant Down    | 7.63         | U 63.7        | U 15.9   | U 15.9       | U 7.96     | U 47.7     | U 97.9    |
| Metro Plant Up      | U 14.2       | U 63.2        | U 15.8   | U 15.8       | U 7.9      | U 47.4     | U 274     |
| Sauk-down           | U 9.5        | U 63.1        | U 15.8   | U 15.8       | U 7.88     | U 47.3     | U 631     |
| Sauk-up             | U 20.5       | U 63.7        | U 15.9   | U 15.9       | U 9.65     | U 47.8     | U 637     |
|                     |              |               |          |              |            |            |           |
| Field Blank 1       | U 3.97       | U 63.5        | U 15.9   | U 15.9       | U 7.93     | U 47.6     | U 63.5    |
| Field Blank 2       | U 4.32       | U 207         | U 17.3   | U 17.3       | NQ         | U 51.8     | U 308     |