10 - 1367

Minnesota Safety Belt and Motorcycle Helmet Use: August, 2009

David W. Eby Jonathon M. Vivoda John Cavanagh

LEGISLATIVE REFERENCE LIBRARY STATE OFFICE BUILDING ST. PAUL, MN 55155

September, 2009

TABLE OF CONTENTS

INTRODUCTION	2
METHODS	4
RESULTS	16
DISCUSSION	29
REFERENCES	32
APPENDIX A: PDA DATA COLLECTION DETAILS	34
APPENDIX B: SITE LISTING	40

INTRODUCTION

Minnesota experienced 325 motor vehicle occupant traffic-crash-related deaths in 2008 (Office of Traffic Safety, 2009). Of those killed, nearly one-half were not wearing safety belts. Traffic crashes, and the resulting deaths and injuries, affect not only the families of the victims involved in the crashes but all of society as well. According to the National Highway Traffic Safety Administration (NHTSA, 2006), 85 percent of all medical costs incurred by crash victims fall on society, not the individuals involved. When crash victims are not properly restrained by a safety belt, their medical treatment costs are 50 percent higher than those who were buckled-up (Blincoe et al., 2002).

According to the National Occupant Use Survey (NOPUS) safety belt use in the United States was 83 percent in 2008 (NHTSA, 2009), with state belt use rates ranging from 66.8 percent (MA) to 97.2 percent (MI). The 2008 NOPUS also showed that 16 states and territories had use rates of 90 percent or greater. Currently, 49 states¹ and the District of Columbia have mandatory safety belt laws (Insurance Institute for Highway Safety, IIHS, 2008). Slightly more than one-half of the states have primary enforcement with the remaining having secondary enforcement.

2009 was an historic year for Minnesota's traffic safety community, as a primary enforcement bill was successfully passed and implemented in the state. Effective June 9, 2009, Minnesota's safety belt law was changed to make lack of safety belt use a primary offense, meaning drivers and passengers in all seating positions must be buckled up or in a proper child restraint device, and police officers can stop a motorist for this reason alone. According to the Office of Traffic Safety (2009), a safety belt ticket can cost from \$25 to more than \$100.

Significant increases are often observed when states upgrade their laws from secondary to primary (see e.g., Cosgrove, Preusser, Preusser, & Ulmer, 1998; Eby, Vivoda, & Fordyce, 2002; Houston & Richardson, 2006; Preusser & Preusser, 1997). A recent example of this took place in Kentucky. Kentucky strengthened its belt law to allow for primary enforcement and saw a jump in belt use from 67.2 percent in 2006 to

¹ This excludes New Hampshire where an adult safety belt law does not exist.

Secondary belt use states must rely exclusively on safety belt media and enforcement campaigns to continue to increase belt use. High-visibility police enforcement of the safety belt law is paired with these media messages to get the word out about zero-tolerance enforcement. The most common high-visibility safety belt law enforcement method consists of short-term, intense, highly publicized periods of increased safety belt law enforcement called Selective Traffic Enforcement Programs (sTEPs) (Solomon, Compton, & Preusser, 2004). The most successful sTEP program is the widely publicized Click It or Ticket (CIOT) campaign. In 1993, North Carolina became the first state to use the "Click it or Ticket" slogan. Following the program's success, the slogan was adopted by many other states interested in increasing their belt use rate.

Although the Minnesota CIOT campaign activities took place in May 2009, it is important to continue to track statewide trends in safety belt use. The study reported here is the thirteenth full Minnesota statewide survey of safety belt use conducted since the state redesigned the survey in 2003. This survey wave will be the first to determine the effects of Minnesota's primary belt law on safety belt use in the state. This survey will also provide information to track longitudinal changes in safety belt use in Minnesota by several demographic and vehicle characteristics. In addition, the current survey wave will collect information about how many motorcyclists are wearing helmets on Minnesota roadways allowing us to continue tracking helmet use trends in order to understand the scope of this potential problem in the state.

METHODS

Sample Design

The goal of this sample design was to select observation sites that accurately represent front-outboard vehicle occupants in eligible commercial and noncommercial vehicles (i.e., passenger cars, vans/minivans, sport-utility vehicles, and pickup trucks) in Minnesota, while following federal guidelines for safety belt survey design (NHTSA, 1992, 1998). An ideal sample minimizes total survey error while providing sites that can be surveyed efficiently and economically. To achieve this goal, NHTSA guidelines allow states to omit from their sample space the lowest population counties, provided these counties collectively account for 15 percent or less of the state's total population. Therefore, all 87 Minnesota counties were rank ordered by population (US Census Bureau, 2003) and the low population counties were eliminated from the sample space. This step reduced the sample space to 37 counties.

These 37 counties were then separated into four strata. The strata were constructed by obtaining historical belt use rates and vehicle miles of travel (VMT) for each county. Historical belt use rates were determined by examining results from three previous statewide safety belt surveys conducted in Minnesota. Since no historical data were available for 22 of the counties, belt use rates for these counties were estimated using multiple regression based on educational attainment for the other 15 counties (r² = .35; US Census Bureau, 2003).² This factor has been shown previously to correlate positively with belt use. Hennepin County was chosen as a separate stratum because of its disproportionately high VMT. Three other strata were constructed by rank ordering each county by historical belt use rates and then adjusting the stratum boundaries until the total VMT was roughly equal within each stratum. The stratum boundaries were high belt use, medium belt use, low belt use, and Hennepin County. Hennepin County VMT was slightly lower than the collective VMTs in the other strata (94%). Stratum boundaries for the sample space are shown in Table 1.

To achieve the NHTSA required precision of less than 5 percent relative error,

Educational attainment was defined as the proportion of population in the county over 25 years of age with a bachelor degree.

the minimum number of observation sites for the survey was determined based on within- and between-county variances from previous belt use surveys and on an estimated 50 vehicles per observation period in the current survey. This number was then increased (N = 240) to get an adequate representation of belt use for each day of the week and for all daylight hours.

Because total VMT within each stratum was roughly equal, observation sites were evenly divided among the strata (60 each). In addition, since an estimated 29 percent of all traffic in Minnesota occurs on limited-access roadways (Federal Highway Administration, 2002), each stratum was further divided into two strata, one of which contained 17 limited access sites (exit ramps) to represent the 29% of VMT on limited access roadways and one that contained 43 roadway intersections. Thus, the sample design had a total of 8 strata.

Table 1: Listing	Table 1: Listing of the Counties Within Each Stratum			
Stratum	Counties			
High Belt Use Stratum 1: intersections Stratum 5: exit ramps	Carver, Dakota, Olmsted, Ramsey, Wright			
Hennepin Stratum 2: intersections Stratum 6: exit ramps	Hennepin			
Medium Belt Use Stratum 3: intersections Stratum 7: exit ramps	Beltrami, Blue Earth, Clay, Crow Wing, Freeborn, Goodhue, Kandiyohi, Nicollet, Rice, Scott, Sherburne, St. Louis, Steele, Washington			
Low Belt Use Stratum 4: intersections Stratum 8: exit ramps	Anoka, Becker, Benton, Brown, Carlton, Cass, Chisago, Douglas, Isanti, Itasca, McLeod, Morrison, Mower, Otter Tail, Polk, Stearns, Winona			

Within each intersection stratum, observation sites were randomly assigned to a location using a method that ensured each intersection within a stratum an equal probability of selection. Detailed, equal-scale road maps for each county within the sample space were obtained and a grid pattern was overlaid on the maps. The lines of the grid were separated by 1/4 inch, thus creating grid squares that were about 3/4 of a mile per side. The grid patterns were created by printing a grid design onto transparencies and uniquely identifying each grid square by two numbers, a horizontal (x) coordinate and a vertical (y) coordinate. Additional grid transparencies were printed until enough were available to cover all counties within the stratum. Each transparency was numbered to allow for a simpler grid square numbering scheme.

The 43 local intersection sites were chosen by first randomly selecting a transparency number and then a random x and a random y coordinate within the identified transparency grid sheet. If a single intersection was contained within the square, that intersection was chosen as an observation site. If the square did not fall within the stratum, or there was no intersection within the square, then a new transparency number and x, y coordinate were randomly selected. If more than one intersection was within the grid square, the grid square was subdivided into four equal sections and a random number between 1 and 4 was selected until one of the intersections was chosen. Thus, each intersection within the stratum had an equal probability of selection.

Once a site was chosen, the following procedure was used to determine the particular street and direction of traffic flow that would be observed. For each intersection, all possible combinations of street and traffic flow were determined. From this set of observer locations, one location was randomly selected with a probability equal to 1/number of locations. For example, if the intersection, was a "+" intersection, as shown in Figure 1, there would then be four possible combinations of street and direction of traffic flow to be observed (observers watched traffic only on the side of the street on which they were standing). In Figure 1, observer location number one indicates that the observer would watch southbound traffic and stand next to Main Street. For observer location number two, the observer would watch eastbound traffic and stand next to Second Street, and so on. In this example, a random number between 1 and 4 would be selected to determine the observer location for this specific site. The probability of selecting a given standing location is dependent upon the type of intersection. Four-legged intersections like that shown in Figure 1 have four possible observer locations, while three-legged intersections like "T" and "Y" intersections have only three possible observer locations. The effect of this slight difference in probability accounts for .01 percent or less of the standard error in the belt use estimate.

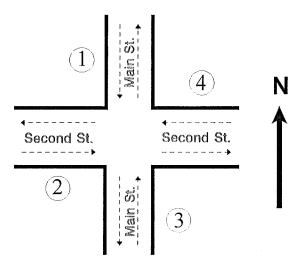


Figure 1. An Example "+" Intersection Showing 4 Possible Observer Locations.

For each primary intersection site, an alternate site was also selected. The alternate sites were chosen within a five square mile area around the grid square containing the original intersection. This was achieved by randomly picking an x, y grid coordinate within an alternate site grid transparency consisting of 7 squares horizontally by 7 squares vertically, centered around the primary site. Coordinates were selected until a grid square containing an intersection was found. The observer location at the alternate intersection was determined in the same way as at the primary site.

The 17 freeway exit ramp sites for the exit ramp strata were also selected using a method that allowed equal probability of selection for each exit ramp within the stratum.³ This was done by enumerating all of the exit ramps within a stratum and randomly selecting, without replacement, 17 numbers between 1 and the number of exit ramps in the stratum. For example, in the low belt use stratum there were a total of 75 exit ramps; therefore a random number between 1 and 75 was generated. This number corresponded to a specific exit ramp within the stratum. To select the next exit ramp, another random number between 1 and 75 was selected with the restriction that no previously selected numbers could be chosen. Once the exit ramps were determined, the observer location for the actual observation was determined by enumerating all possible combinations of direction of traffic flow and sides of the ramp on which to

An exit ramp is defined here as egress from a limited-access freeway, irrespective of the direction of travel. Thus, on a north-south freeway corridor, the north and south bound exit ramps at a particular cross street are considered a single exit ramp location.

stand. As in the determination of the observer locations at the roadway intersections, the possibilities were then randomly sampled with equal probability. The alternate exit ramp sites were selected by taking the first interchange encountered after randomly selecting a direction of travel along the freeway from the primary site. If this alternate site was outside the county or if it was already selected as a primary site, then the other direction of travel along the freeway was used.

After all sites and standing locations were randomly selected, all intersection and exit ramp sites were visited by a researcher prior to the beginning of data collection to determine their usability. If an intersection site had no traffic control device on the selected direction of travel, but had traffic control on the intersecting street, the researcher randomly picked a new standing location using a coin flip. If an exit ramp site had no traffic control on the selected direction of travel, the researcher randomly picked a travel direction and lane that had such a device.

The day of week and time of day for site observations were quasi-randomly assigned to sites in such a way that all days of the week and all daylight hours (7:00 am - 6:00 pm) had essentially equal probability of selection. The sites were observed using a clustering procedure. That is, sites that were located spatially adjacent to each other were considered to be a cluster. Within each cluster, a shortest route between all of the sites was decided (essentially a loop) and each site was numbered. An observer watched traffic at all sites in the cluster during a single day. The day in which the cluster was to be observed was randomly determined. After taking into consideration the time required to finish all sites before dark, a random starting time for the day was selected. In addition, a random number between one and the number of sites in the cluster was selected. This number determined the site within the cluster where the first observation would take place. The observer then visited sites following a clockwise or counter-clockwise loop. The direction of the loop was determined by the project manager prior to sending the observers into the field. Because of various scheduling limitations (e.g., observer availability, number of hours worked per week) certain days and/or times were selected that could not be observed. When this occurred, a new day and/or time was randomly selected until a usable one was found. The important issue about the randomization is that the day and time assignments for observations at the sites were not correlated with belt use at a site. This quasi-random method is random with respect to this issue.

The observation interval was a constant duration (50 minutes) for each site. However, since all vehicles passing an observer could not be surveyed, a vehicle count of all eligible vehicles (i.e., passenger cars, vans/minivans, sport-utility vehicles, and pickup trucks) on the traffic leg under observation was conducted for a set duration (5 minutes) immediately prior to and immediately following the observation period (10 minutes total). These counts were used to estimate the number of possible observations so that sites could be weighted by traffic volume.

Data Collection

Data collection for the survey involved direct observation of shoulder belt use, estimated age, and sex. Trained field staff observed shoulder belt use of drivers and front-right passengers traveling in passenger cars, sport-utility vehicles, vans/minivans, and pickup trucks during daylight hours July 31 - August 17, 2009. Observations of safety belt use, sex, age, vehicle type, and vehicle purpose (commercial or noncommercial) were conducted when a vehicle came to a stop at a traffic light or a stop sign. Vehicles were included without regard to the state in which the vehicle was registered.

Data Collection Forms

Data were collected using personal digital assistants (PDAs). For a more detailed description of the PDA data collection process, see Appendix A. To begin, an electronic form was developed for data collection containing: a site description section and a safety belt observation section. For each site surveyed, separate electronic copies of the form were created in advance. The site description form section allowed observers to provide descriptive information including the site location, site type (freeway exit ramp or intersection), site choice (primary or alternate), observer number, date, day of week, time of day, weather, and a count of eligible vehicles traveling on the proper traffic leg. A place on the form was also furnished for observers to electronically sketch the intersection and to identify observation location. Finally, a comments section was available to identify landmarks that might be helpful in characterizing the site (e.g.,

school, shopping mall) and to discuss problems or issues relevant to the site or study.

The safety belt observation section of the form was used to record safety belt use or motorcycle helmet use, passenger information, and vehicle information. For each vehicle surveyed, shoulder belt use or helmet use, sex, and estimated age of the driver and the front-outboard passenger (or motorcycle passenger) were recorded along with vehicle type. Children riding in child restraint devices (CRDs) were recorded but not included in any part of the analysis. Occupants observed with their shoulder belt worn under the arm or behind the back were noted but considered belted in the analysis. The observer also recorded whether the vehicle was commercial or noncommercial. A commercial vehicle is defined as a vehicle that is used for business purposes and may or may not contain company logos. This classification includes vehicles marked with commercial lettering or logos, or vehicles with ladders or other tools on them.

Procedures at Each Site

All sites in the sample were visited by one observer for a period of one hour. Upon arriving at a site, the observer determined whether observations were possible at the site. If observations were not possible (e.g., due to construction), the observer proceeded to the alternate site. Otherwise, the observer completed the site description form and then moved to their observation position near the traffic control device. Observers were instructed to observe only vehicles in the lane immediately adjacent to the curb, regardless of the number of lanes present.

At each site, observers conducted a 5-minute count of all eligible vehicles in the designated traffic leg before beginning safety belt observations. Observations began immediately after completion of the count and continued for 50 minutes. During the observation period, observers recorded data for as many eligible vehicles as they could observe. If traffic flow was heavy, observers were instructed to record data for the first eligible vehicle they saw, and then look up and record data for the next eligible vehicle they saw, continuing this process for the remainder of the observation period. At the end of the observation period, a second 5-minute vehicle count was conducted.

Observer Training

Prior to data collection, members of the Minnesota Department of Public Safety, Office of Traffic Safety staff were trained on field data collection procedures. The training of OTS staff included both classroom review of data collection procedures and practice field observations. Field observers were then hired and trained by OTS staff on the proper procedures for data collection. Each observer received a training manual containing detailed information on field procedures for observations, data collection forms, and administrative policies and procedures. A site schedule identifying the location, date, time, and traffic leg to be observed for each site was included in the manual (see Appendix B for a listing of the sites). During data collection, observers were spot checked in the field by a field supervisor to ensure adherence to study protocols.

Descriptive Statistics

Table 2 shows descriptive statistics for the survey. As shown in this table, the observations were fairly well distributed over day of week. Observations were also well distributed by time of day except for the earliest and latest time periods. Note that an observation session was included in the time slot that represented the majority of the observation period. If the observation period was evenly distributed between two time slots, then it was included in the later time slot. This table also shows that the majority of sites observed were the primary sites and that observations were mostly conducted during sunny or cloudy conditions. A small number of observations were conducted during rain, and none during snow.

Table 2. Descriptive Statistics for the 240 Observation Sites							
Day of W	Veek	Observation Period		Site Choice		Weather	
Monday	11.3%	7-9 a.m.	9.6%	Primary	97.1%	Sunny	74.5%
Tuesday	19.3%	9-11 a.m.	23.0%	Alternate	2.9%	Cloudy	19.7%
Wednesday	11.3%	11-1 p.m.	24.7%			Rain	5.8%
Thursday	13.0%	1-3 p.m.	20.5%			Snow	0.0%
Friday	18.8%	3-5 p.m.	17.6%				
Saturday	12.1%	5-7 p.m.	4.6%				
Sunday	14.2%						
TOTALS	100.0%		100.0%		100.0%		100.0%

Data Processing and Estimation Procedures

The safety belt data were entered into PDAs directly, so no additional data entry was required. For each site, computer analysis programs determined the number of observed vehicles, belted and unbelted drivers, belted and unbelted passengers, and use and nonuse of motorcycle helmets for drivers and passengers. Separate counts were made for each independent variable in the survey (i.e., site type, time of day, day of week, weather, sex, age, seating position, and vehicle type). This information was combined with the site information to create a file used for generating study results.

As mentioned earlier, our goal in this safety belt survey was to estimate belt use for the state of Minnesota based on VMT. As also discussed, not all eligible vehicles passing the observer could be included in the survey. To correct for this limitation, the vehicle count information was used to weight the observed traffic volumes so that an estimate of traffic volume at the site could be derived.

This weighting was done by first adding each of the two 5-minute counts and then multiplying this number by five so that it would represent a 50-minute duration. The resulting number was the estimated number of vehicles passing through the site if all eligible vehicles had been included in the survey during the observation period at that site. The estimated count for each site is divided by the actual number of vehicles observed there to obtain a volume weighting factor for that site. These weights are then applied to the number of actual vehicles of each type observed at each site to yield the weighted N for the total number of drivers and passengers, and total number of belted drivers and passengers for each vehicle type. All analyses reported are based upon the weighted values.

Estimation of Safety Belt Use Rates

The overall safety belt use rate for Minnesota was calculated utilizing the following procedure. The safety belt use rate for each stratum was calculated using the following formula:

$$R_s = \sum \frac{est_i}{obs_i} belted_i / \sum \frac{est_i}{obs_i} occs_i$$

Where R_s is the use rate for a stratum, i is a site in the stratum, est_i is the estimated number of possible observations had every eligible vehicle been recorded (based on the vehicle counts), obs_i is the actual number of people observed, $belted_i$ is the number of people observed using a safety belt, and $occs_i$ is the number of occupants.

Because the number of intersections among the first four strata and the number of exit ramps among the last four strata differed, the probability of an intersection or exit ramp being randomly selected differed between strata. Therefore, we painstakingly counted all intersections in the first four strata and all exit ramps in the last four strata and used these counts to weight use rates when combining them. The first four strata (intersections) were combined using the following formula:

$$R_{i} = \frac{\frac{4N_{1}}{N_{all}}R_{1} + \frac{4N_{2}}{N_{all}}R_{2} + \frac{4N_{3}}{N_{all}}R_{3} + \frac{4N_{4}}{N_{all}}R_{4}}{\frac{4N_{1}}{N_{all}} + \frac{4N_{2}}{N_{all}} + \frac{4N_{3}}{N_{all}} + \frac{4N_{4}}{N_{all}}}$$

$$R_{i} = \frac{N_{1}R_{1} + N_{2}R_{2} + N_{3}R_{3} + N_{4}R_{4}}{N_{1} + N_{2} + N_{3} + N_{4}}$$

where R_i is the combined use rate for the first four strata (intersections), N_1 is the total number of intersections in stratum 1 and so on, and N_{all} is the total number of intersections among all four strata. The use rate for the exit ramp strata (strata 5-8) was calculated using the following formula:

$$R_{e} = \frac{\frac{4 N_{5}}{N_{all}} R_{5} + \frac{4 N_{6}}{N_{all}} R_{6} + \frac{4 N_{7}}{N_{all}} R_{7} + \frac{4 N_{8}}{N_{all}} R_{8}}{\frac{4 N_{5}}{N_{all}} + \frac{4 N_{6}}{N_{all}} + \frac{4 N_{7}}{N_{all}} + \frac{4 N_{8}}{N_{all}}}$$

$$R_{e} = \frac{N_{5}R_{5} + N_{6}R_{6} + N_{7}R_{7} + N_{8}R_{8}}{N_{5} + N_{6} + N_{7} + N_{8}}$$

where R_e is the combined use rate for strata 5-8 (exit ramps), N_5 is the total number of exit ramps in stratum 5 and so on, and N_{all} is the total number of exit ramps among all four strata.

Because only statewide VMT for limited access roadways was available and because only 29 percent of Minnesota travel is on limited access roadways, the

statewide safety belt rate was determined weighting R_e and R_i by their VMT using the following equation:

$$R_{MN} = \frac{VMT_{i}R_{i} + VMT_{e}R_{e}}{VMT_{i} + VMT_{c}}$$

Estimation of Variance

The variances for the belt use estimates for each strata were calculated using an equation derived from Cochran's (1977) equation 11.30 from section 11.8:

$$\operatorname{var}_{(r)} \approx \frac{n}{n-1} \sum_{i} \left(\frac{g_{i}}{\sum g_{k}} \right)^{2} (r_{i} - r)^{2} + \frac{n}{N} \sum_{i} \left(\frac{g_{i}}{\sum g_{k}} \right)^{2} \frac{g_{i}^{2}}{g_{i}}$$

where $var(r_i)$ equals the variance within a stratum, n is the number of observed intersections, g_i is the weighted number of vehicle occupants at intersection I, g_k is the total weighted number of occupants at all sites within the stratum, r_i is the weighted belt use rate at intersection I, r is the stratum belt use rate, N is the total number of intersections within a stratum, and $s_i = r_i(1-r_i)$. In the actual calculation of the stratum variances, the second term of this equation was negligible and was dropped in the variance calculations as is common practice.

Again because the number of intersections and exit ramps differed among the strata, when the variances were combined, they were weighted by the number of intersection/exit ramps within each strata. The variances for the first four (intersection) strata were combined using the following formula:

$$\operatorname{var}(Ri) = \left(\frac{N_1}{N_{all}}\right)^2 \operatorname{var}(R_1) + \left(\frac{N_2}{N_{all}}\right)^2 \operatorname{var}(R_2) + \left(\frac{N_3}{N_{all}}\right)^2 \operatorname{var}(R_3) + \left(\frac{N_4}{N_{all}}\right)^2 \operatorname{var}(R_4)$$

The variance for the exit ramp strata were combined using the following formula:

$$\operatorname{var}(\operatorname{Re}) = \left(\frac{N_5}{N_{all}}\right)^2 \operatorname{var}(R_5) + \left(\frac{N_6}{N_{all}}\right)^2 \operatorname{var}(R_6) + \left(\frac{N_7}{N_{all}}\right)^2 \operatorname{var}(R_7) + \left(\frac{N_8}{N_{all}}\right)^2 \operatorname{var}(R_8)$$

The overall variance was determined by weighting the intersection and exit ramp variances relative to the statewide VMT for these types of roadways using the following equation:

$$var(R) = \frac{\left(VMT_i\right)^2 var(R_i) + \left(VMT_e\right)^2 var(R_e)}{\left(VMT_i + VMT_e\right)^2}$$

The 95 percent confidence band was calculated using the formula:

95%ConfidenceBand =
$$R \pm 1.96\sqrt{\text{var}(R)}$$

Finally, the relative error or precision of the estimate was computed using the formula:

$$Re lative Error = \frac{SE}{R}$$

where SE is the standard error. The federal guidelines (NHTSA, 1992, 1998) stipulate that the relative error of the belt use estimate must be under 5 percent.

RESULTS

This survey reports statewide safety belt use for four vehicle types combined (passenger cars, vans/minivans, sport-utility vehicles, and pickup trucks) and use rates for occupants in each vehicle type separately. In addition, motorcycle helmet use data are reported on motorcycle riders. Following NHTSA (1998) guidelines, the survey included commercial vehicles. Thus, all rates shown in this report include occupants from both commercial and noncommercial vehicles.

Overall Safety Belt Use

Table 3 shows that the estimated safety belt use rate in Minnesota for all front-outboard occupants traveling in passenger cars, sport-utility vehicles, vans/minivans, and pickup trucks in the front-outboard positions in Minnesota during August 2009 was 90.2 ± 1.1 percent. The "±" value following the use rate indicates a 95 percent confidence interval around the percentage. The relative error for the statewide safety belt use rate of 0.6 percent was well below the 5 percent maximum level required by NHTSA.

Table 3: Safety Belt Use Rates and Unweighted Ns as a function of Stratum, Roadway Type, and Overall Statewide Safety Belt Use			
	Percent Use	Unweighted N	
Stratum 1 (High, Intersections)	90.4	1,016	
Stratum 2 (Hennepin, Intersections)	92.5	2,691	
Stratum 3 (Medium, Intersections)	89.9	1,459	
Stratum 4 (Low, Intersections)	88.8	1,603	
Stratum 5 (High, Exit Ramps)	91.9	645	
Stratum 6 (Hennepin, Exit Ramps)	93.1	1,653	
Stratum 7 (Medium, Exit Ramps)	87.4	1,720	
Stratum 8 (Low, Exit Ramps)	91.6	737	
Minnesota, Intersections	89.7	6,769	
Minnesota, Exit Ramps	91.4	4,755	
STATE OF MINNESOTA	90.2 ± 1.1%	11,524	

Safety Belt Use by Subcategory

Vehicle Type and Stratum. Estimated belt use rates and unweighted numbers of occupants by stratum and vehicle type are shown in Tables 4a through 4d. Within each vehicle type we find little systematic differences in safety belt use by stratum. However, comparing across vehicle types and strata, we find that safety belt use is lower for pickup truck occupants in nearly all cases. Thus, enforcement and public information and education (PI&E) programs should continue to target pickup truck occupants.

Table 4a. Percent Shoulder Belt Use by Stratum (Passenger Cars)			
	Percent Use	Unweighted N	
Stratum 1	88.9	497	
Stratum 2	93.0	1,456	
Stratum 3	91.5	751	
Stratum 4	88.9	656	
Stratum 5	92.0	362	
Stratum 6	94.0	893	
Stratum 7	90.0	790	
Stratum 8	91.0	355	
STATE OF MINNESOTA	90.7 ± 1.4%	5,760	

Table 4b. Percent Shoulder Belt Use by Stratum (Sport-Utility Vehicles)			
	Percent Use	Unweighted N	
Stratum 1	90.2	174	
Stratum 2	93.4	592	
Stratum 3	92.0	211	
Stratum 4	89.4	286	
Stratum 5	93.0	137	
Stratum 6	95.5	375	
Stratum 7	89.4	346	
Stratum 8	91.5	143	
STATE OF MINNESOTA	91.3 ± 1.9 %	2,264	

Table 4c. Percent Shoulder Belt Use by Stratum (Vans/Minivans)				
	Percent Use	Unweighted N		
Stratum 1	98.0	117		
Stratum 2	94.5	321		
Stratum 3	95.6	150		
Stratum 4	94.6	200		
Stratum 5	96.9	82		
Stratum 6	93.6	200		
Stratum 7	89.9	232		
Stratum 8	97.9	118		
STATE OF MINNESOTA	95.2 ± 1.7%	1,420		

Table 4d. Percent Shoulder Belt Use by Stratum (Pickup Trucks)			
	Percent Use	Unweighted N	
Stratum 1	89.7	228	
Stratum 2	86.8	322	
Stratum 3	81.1	347	
Stratum 4	85.2	461	
Stratum 5	81.3	64	
Stratum 6	83.9	185	
Stratum 7	78.6	352	
Stratum 8	86.8	121	
STATE OF MINNESOTA	83.9 ± 2.1%	2,080	

Site Type. Estimated safety belt use by type of site, vehicle type, and all vehicles combined is shown in Table 5. Little difference was found by site type.

Time of Day. Estimated safety belt use by time of day, vehicle type, and all vehicles combined is shown in Table 5. Note that these data were collected only during daylight hours. Little systematic difference in belt use was found in the middle of the day, with lower use during the morning and evening rush hours (especially for pickup truck drivers).

Day of Week. Estimated safety belt use by day of week, vehicle type, and all vehicles combined is shown in Table 5. Note that the survey was conducted over a 2-week period. Belt use clearly varied from day to day, few systematic differences were evident.

Weather. Estimated belt use by prevailing weather conditions, vehicle type, and all vehicles combined is shown in Table 5. Very few sites were conducted during rainy weather conditions, yet these sites showed extremely low use of safety belts. Whether people use belts less often in the rain or belt-use observations are simply less accurate in the rain is an important research question. There was little systematic difference in belt use whether it was sunny or cloudy during data collection; a common finding in safety belt research.

Sex. Estimated safety belt use by occupant sex, type of vehicle, and all vehicles combined is shown in Table 5. Estimated safety belt use is higher for females than for males for all vehicle types combined and for each separate vehicle type. The difference in belt use between men and women was greatest for occupants of pickup trucks.

Age. Estimated safety belt use by age, vehicle type, and all vehicle types combined is shown in Table 5. As there were very few 0-10-year olds observed in the current study, the estimated safety belt use rate for this age group is not meaningful. Excluding this group, we found that belt use was high for the 11-15-year olds. Belt use rates for the 16-29-year old age group were consistently the lowest, with similar rates for each of the older age groups. This pattern shows that new drivers and young drivers (16-29 years of age) should continue to be a focus of safety belt use messages and programs.

Seating Position. Estimated safety belt use by position in vehicle, vehicle type, and all vehicles combined is shown in Table 5. This table shows that there was little systematic difference in belt use by seating position.

Age and Sex. Table 6 shows estimated safety belt use rates and unweighted numbers (N) of occupants for all vehicle types combined by age and sex. The belt use rates for the two youngest age groups should be interpreted with caution, and will be excluded from the following discussion, because the unweighted number of occupants is quite low. Belt use for females in all age groups was higher than for males. However, the absolute difference in belt use rates between sexes varied slightly depending upon the age group. The most interesting finding from the present survey was that there was only a 2.4 percentage point difference between males and females in the 16-29-year old age group. This difference was 10.7 percentage points in 2008 (Eby, Vivoda, & Cavanagh, 2008); 13

percentage points in 2007 (Eby, Vivoda, & Cavanagh, 2007) and 16 percentage points in 2006 (Eby, Vivoda, & Cavanagh, 2006). This dramatic narrowing of the difference in belt use among young men and women shows that the primary belt use law in Minnesota had its intended effect.

Table 5. Percent Shoulder Belt Use and										
	Unweighted N by Vehicle Type and Subgroup									
	All Vel	All Vehicles Car		SU	SUV Vai		Van/Minivan		Truck	
	Percent Use	N	Percent Use	N	Percent Use	N	Percent Use	N	Percent Use	N
<u>Overall</u>	90.2	11,524	90.7	5,760	91,3	2,264	95.2	1,420	83.9	2,080
Site Type Intersection Exit Ramp	89.7 91.4	6,769 4,755		3,360 2,400		1,263 1,001	95.4 94.8		84.3 82.9	1,358
Time of Day 7 - 9 a.m. 9 - 11 a.m. 11 - 1 p.m. 1 - 3 p.m. 3 - 5 p.m. 5 - 7 p.m.	63.7 88.9 91.3 91.3 90.4 85.9		89.4 91.8 92.1 91.1	1,220	91.2 94.8 91.6	300 513 511 544 348 48	95.8 94.6 91.2 96.0 96.4 86.2	304 336	56.0 83.8 87.1 84.7 84.6 76.1	508 496 518
Day of Week Monday Tuesday Wednesday Thursday Friday Saturday Sunday	90.2 90.5 88.3 91.1 87.0 89.1 90.8	1,299 2,111 1,078 1,699 3,103 1,599 635	95.3 91.1 89.6 91.4 86.3 89.6	598 1,082 434 876	81.7 93.5 91.8 95.3 76.1 93.9 95.4	268 399 204 351 618 317 107	95.4 95.9 96.9 96.0 89.5 85.8 93.1	159 244 138 184	82.3 86.4	274 386 302 288 466
Weather Sunny Cloudy Rainy	91.0 89.0 63.7	7,902 3,001 621	91.7 89.5 64.3	4,046 1,414 300	92.2 90.0 67.1	1,590 560 114	95.2 93.6 60.2	961 380 79	84.8 82.9 59.4	
Sex Male Female	88.9 92.0	6,680 4,818		3,106 2,639	90.9 91.9		94.1 96.0	716 702	83.1 88.5	1,722 351
Age 0 - 10 11 - 15 16 - 29 30 - 64 65 - Up	94.6 96.2 88.5 90.7 90.3	68 133 3,107 7,201 997		29 33 2,063 3,025 601	96.9 94.9 89.1 92.4 90.5	13 52 490 1,563 142	98.9 100.0 93.1 96.3 88.2	12 37 186 1,057 125	82.0 86.5 81.5 84.5 79.5	1,556
Position Driver Passenger	90.3 89.5	9,542 1,982	91.1 89.3	4,847 913	91.5 90.6	1,868 396	95.2 94.9	1,139 281	83.8 85.0	

Table	Table 6. Percent Shoulder Belt Use and Unweighted N by Age and Sex (All Vehicle Types Combined)					
Age Male Female						
Group	Percent Use	Unweighted N	Percent Use	Unweighted N		
0 - 10	96.6	45	92.1	23		
11 - 15	94.0	70	99.0	62		
16 - 29	87.4	1,706	89.8	1,398		
30 - 64	89.3	4,306	92.9	2,885		
65 - up	90.1	547	92.2	444		

Safety Belt Use Trends

The current survey marks the thirteenth full statewide survey that has utilized the survey designed approved by NHTSA in 2003. In addition to the full surveys, the authors have also conducted several mini-surveys that yielded overall statewide belt use estimates only. This section examines trends in Minnesota belt use since August 2003.

Statewide Belt Use: Figure 2 shows the estimated overall statewide safety belt use rate for Minnesota from August, 2003 to the present survey conducted in August, 2009. As can be seen in this figure, safety belt use has steadily increased over the past several years. There was a large increase in belt use for the present survey that can be attributed to the new primary enforcement law.

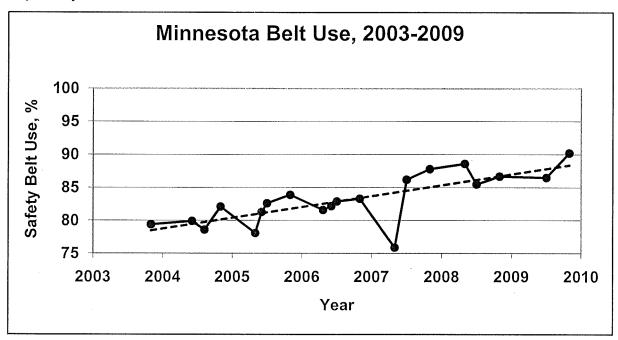


Figure 2: Minnesota safety belt use from 2003 to 2009 and best fitting trend line.

Site Type: Figure 3 shows the estimated statewide safety belt use rates by site type for Minnesota since 2003. Only data from full surveys have been included in this graph, because the mini-surveys have too few observations to make solid estimates of belt use by this variable. As can be seen in this figure, safety belt use at exit ramps has been consistently higher than use at intersections, until the present survey.

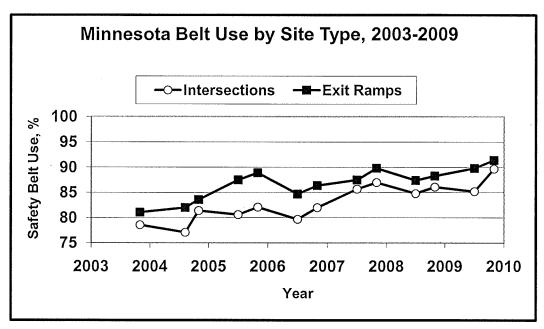


Figure 3: Minnesota safety belt by type of site, 2003-2009.

Sex: Figure 4 shows the estimated statewide safety belt use rate by sex for Minnesota since 2003. As can be seen in this figure, safety belt use for females has been consistently higher than use for males, a common finding in the occupant protection device use literature. Statewide belt use for women in Minnesota has changed little since late 2007, but belt use for men showed a dramatic increase in use in the present study. This increase shows that the primary enforcement law had a greater effect on men in Minnesota.

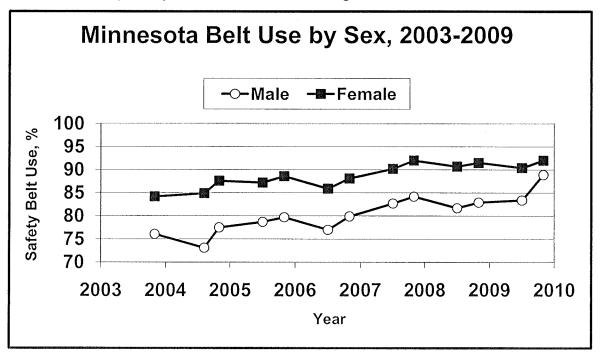


Figure 4: Minnesota safety belt by sex, 2003-2009.

Age: Figure 5 shows the estimated statewide safety belt use rate by age for Minnesota since 2003. As can be seen in this figure, safety belt use for the 16-29-year olds is consistently the lowest of any age group. Interestingly, the current survey showed that belt use increased greatly for those aged 16-to-64 in Minnesota, while there was little difference in use for those aged 65 and above. Again, this result shows the positive effect of Minnesota's primary belt use law. Belt use for the two youngest age groups has been excluded from this graph, due to the low number of vehicle occupants in these age groups.

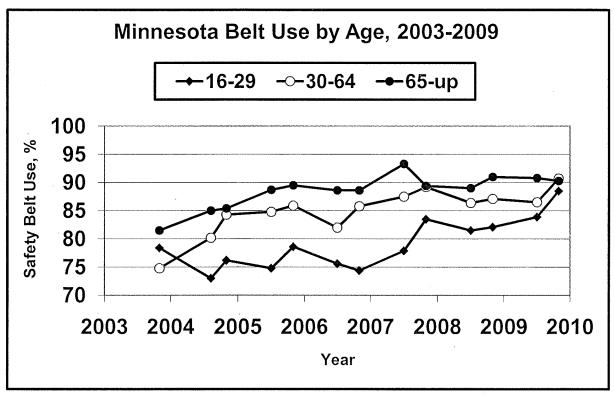


Figure 5: Minnesota safety belt by age, 2003-2009.

Seating Position: Figure 6 shows the estimated statewide safety belt use rate by seating position for Minnesota since 2003. There is little difference by seating position observed.

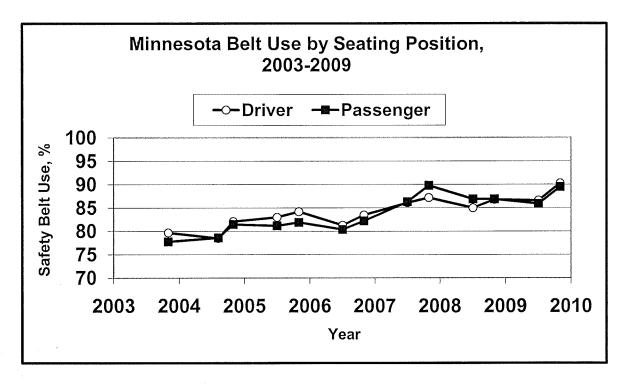


Figure 6: Minnesota safety belt use by Seating Position, 2003-2009.

Vehicle Type: Figure 7 shows the estimated statewide safety belt use rate by type of vehicle for Minnesota since 2003. As can be seen in this figure, belt use for cars, SUVs, and van/minivans were roughly the same during each survey wave. Safety belt use in pickup trucks, however, has been consistently lower than for other vehicle types. Of all vehicle types, belt use for occupants in pickup trucks increased dramatically during 2009, a result that can be attributed to the primary enforcement law.

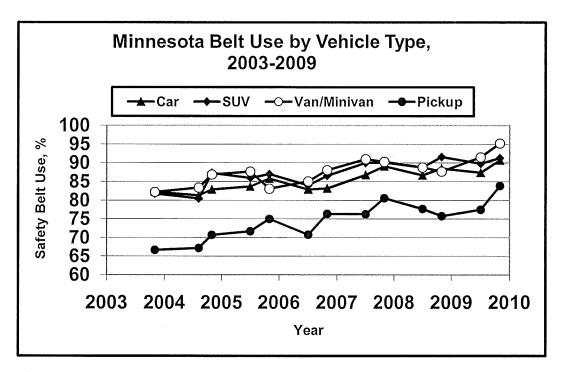


Figure 7: Minnesota safety belt use by vehicle type, 2003-2009.

Motorcycle Helmet Use

The current survey recorded helmet use of motorcycle riders that happen to be observed during the safety belt data collection. Because the safety belt survey design was based on travel patterns of passenger vehicles in Minnesota instead of motorcycle patterns, and the low number of motorcycle riders observed in the survey (105 motorcycle riders observed), no weighting of these data were performed. Instead, we present the unweighted helmet use rates so that a picture of the helmet use patterns in Minnesota can be realized. The results are summarized in Table 7.

Table 7: Motorcycle Helmet Use in Min	nesota by	/
Demographic Variables		
	Percent Use	N
<u>Overall</u>	61.9	105
Time of Day		-
7 - 9 a.m.	40.0	5
9 - 11 a.m.	73.3	15
11 - 1 p.m.	70.0	30
1 - 3 p.m.	46.2	26
3 - 5 p.m.	65.4	
5 - 7 p.m.	66.7	3
Day of Week		
Monday	57.9	19
Tuesday	43.5	23
Wednesday ·	66.7	3
Thursday	53.8	13
Friday	70.4	27
Saturday	76.5	17
Sunday	100.0	3
<u>Weather</u>		
Sunny	51.5	
Cloudy	79.0	
Rainy	100.0	1
Sex		
Male	60.0	
Female	70.0	20
Age*		
0 - 10		0
11 - 15	100.0	2
16 - 29	55.0	
30 - 64	61.8	76
65 - Up	50.0	4
Position		
Driver	59.6	89
Passenger	75.0	16

^{*} There were 3 motorcyclists where age was not identified.

DISCUSSION

This report has three purposes: (1) to present the results of a full statewide survey of safety belt use, conducted in August 2009; (2) to report and interpret safety belt use trends in Minnesota since August 2003; and (3) to report rates of motorcycle helmet use in Minnesota. All data for the study were collected through direct observation.

The statewide safety belt use survey showed that Minnesota has reached a milestone in statewide belt use, with use being more than 90 percent for the first time. This increase in belt use can be directly attributed to the passage and enforcement of Minnesota's primary safety belt law.

Analysis of safety belt use by the various subgroups showed that there are several areas on which Minnesota should continue to focus efforts to increase safety belt use. One of the lowest use group discovered was young people. While this group has historically been found to have lower safety belt use than other groups, it is also the group in which the biggest gains in traffic-crash-related-injury reduction can be found. On a per mile driven basis, young drivers in the US have the highest rate of involvement in fatal crashes of any age group and their fatality rates are nearly four times greater than the comparable rate for drivers age 26 to 65 (Eby, Molnar, & St. Louis, 2008). Teenage drivers have by far the highest fatal crash involvement rate of any age group based on number of licensed drivers. Motor vehicle injury rates also show that teenagers continue to have vastly higher rates than the population in general.

We discovered only slight differences in safety belt use between males and females. This dramatic narrowing of the difference in use between sexes shows that the primary enforcement law has a large effect on men and only a slight effect on women. It will be important to continue to design and implement programs that target young men for increased belt use, as it is likely that over time belt use for this group will begin to drop as there is less coverage of the law in the media.

Occupants of pickup trucks also define a unique population that historically exhibits low safety belt use in Minnesota, and may therefore benefit from specially

designed programs. Research has shown that the main demographic differences between the driver/owners of pickup trucks and passenger cars is that driver/owners of pickup trucks are more likely to be male, have higher household incomes, and lower educational levels (Anderson, Winn, & Agran, 1999). Focus group work by the Center for Applied Research (NHTSA, 2004) with rural pickup truck drivers explored why these occupants wear, or do not wear, safety belts. The following reasons were given for nonuse of safety belts: vehicle size protects them from serious injury; safety belt not needed for short or work trips; fear of being trapped in vehicle after a crash; inconsistency between belt law and motorcycle helmet law; and opposition to government mandate. Reasons given for use were: presence of family or friends; travel on interstate highways, travel during inclement weather; and when not traveling in their pickup truck. This information provides a starting point for the development of programs designed to influence pickup truck occupant safety belt use, as efforts to encourage belt use by occupants of pickup trucks are warranted. The Center for Applied Research (NHTSA, 2004) study also suggests passage of mandatory motorcycle helmet use law might also increase belt use among pickup truck drivers.

Our analyses of helmet use showed that almost 62 percent of motorcyclists were using helmets during the current survey. This is quite a bit higher than the rate of 42 percent observed during the 2008 survey, but very similar to the 2007 rate of 59.7 percent. During the surveys conducted in 2005 and 2006, helmet use rates of 42.7 and 43.5 percent were observed, respectively. As described earlier, this survey was designed to measure safety belt use based upon the travel patterns of passenger vehicles in MN, rather than motorcycle riders. This sample design and the relatively low number of motorcycle riders observed in the current survey make it difficult to draw conclusions about these apparent differences. However, if the observed rate continues to be higher in future years, it likely reflects an increasing trend. It is also possible that the helmet use increase observed in the current survey is related to the upgrade of the safety belt law to primary enforcement. Although MN continues to lack a helmet law, riders may have assumed that the safety belt law also affected motorcyclists' use of helmets. To study this population in more detail, it would be necessary to design and conduct a separate study with a sample design specific to motorcycle travel patterns

The national motorcycle helmet use rate for the US in 2008 was 63 percent (NHTSA, 2008). For states with a mandatory helmet law that covered all riders the rate was 78 percent, with only 50 percent use for states without a universal helmet law (NHTSA, 2008). Minnesota's current use rate of 61.9 percent is similar to the national average, but higher than the use rate for other states that lack a mandatory helmet use law. The best way for MN to increase helmet use of motorcyclists, and keep pace with the current high use of safety belts, would be to implement a law that covers all riders.

REFERENCES

- Anderson, C.L., Winn, D.G., & Agran, P.F. (1999). Differences between pickup truck and automobile driver-owners. *Accident Analysis & Prevention*, **31**, 67-76.
- Blincoe, L., Seay, A., Zaloshnja, E., Miller, T., Romano, E., Lutcher, S., & Spicer, R. (2002). *The Economic Impact of Motor Vehicle Crashes, 2000.* Washington, DC: National Highway Traffic Safety Administration.
- Cochran, W. W. (1977). Sampling Techniques, 3rd ed. New York, NY: Wiley.
- Cosgrove, L., Preusser, D., Preusser, C, & Ulmer, R. (1998). Evaluation of primary safety belt laws in California, Louisiana, and Georgia. *42nd Annual Proceedings:*Association for the Advancement of Automotive Medicine, 261-275.
- Eby, D.W., Molnar, L..J., & St. Louis, R.M. (2008). *M-CASTL 2008 Synthesis Report:* Volume 1, Older Adult Mobility. (Report No. M-CASTL-2008-01). Ann Arbor, MI: Michigan Center for Advancing Safe Transportation throughout the Lifespan.
- Eby, D.W., Vivoda, J.M., & Cavanagh, J. (2006). An Evaluation of the May 2006 Click It or Ticket Safety Belt Mobilization Campaign in Minnesota. St Paul, MN: Minnesota Office of Traffic Safety.
- Eby, D.W., Vivoda, J.M., & Cavanagh, J. (2007). *Minnesota Safety Belt and Motorcycle Helmet use: August 2007*. St Paul, MN: Minnesota Office of Traffic Safety.
- Eby, D.W., Vivoda, J.M., & Cavanagh, J. (2008). *Minnesota Safety Belt and Motorcycle Helmet use: August 2008*. St Paul, MN: Minnesota Office of Traffic Safety.
- Eby, D.W., Vivoda, J.M., & Fordyce, T.A. (2002). The effects of standard enforcement on Michigan safety belt use. *Accident Analysis and Prevention*, **34**, 101-109.
- Federal Highway Administration (2002). *Highway Statistics 2001*. Washington, DC: US Department of Transportation.
- Glassbrenner, D. & Ye, J. (2008). Seat Belt Use in 2007 Use Rates in the States and Territories. Report No. DOT-HS-810-949. Washington, DC: National Highway Traffic Safety Administration.
- Houston, D.J. & Richardson, L.E. (2006). Safety belt use and the switch to primary enforcement, 1991-2003. *American Journal of Public Health*, 96(11), 1949-1954.
- Insurance Institute for Highway Safety (2008). Child Restraint/Belt Use Laws. URL: http://www.iihs.org/laws/restraintoverview.aspx. Accessed September, 2008.

- National Highway Traffic Safety Administration. (1992). Guidelines for State Observational Surveys of Safety Belt and Motorcycle Helmet Use. *Federal Register*, *57*(125), 28899-28904.
- National Highway Traffic Safety Administration (1998). *Uniform Criteria for State Observational Surveys of Seat Belt Use*. (Docket No. NHTSA-98-4280). Washington, DC: US Department of Transportation.
- National Highway Traffic Safety Administration. (2004). Safety belt attitudes among rural pickup truck drivers. *Traffic Safety Facts, Traffic Tech—Technology Transfer Series*. **No. 291**. Washington, DC: U.S. Department of Transportation.
- National Highway Traffic Safety Administration. (2006). 2006 Motor vehicle Occupant Protection: Facts. Report No. DOT HS 810 654. Washington, DC: U.S. Department of Transportation.
- National Highway Traffic Safety Administration. (2008). Motorcycle helmet use in 2008--Overall results. *Traffic Safety Facts: Research Note*. (Report No. DOT-HS-811-044). Washington, DC: US Department of Transportation.
- National Highway Traffic Safety Administration. (2009). Seat belt use in 2008—Use Rates in the States and Territories. Report No. DOT HS 811 106. Washington, DC: U.S. Department of Transportation.
- Office of Traffic Safety (2009). *Minnesota Motor Vehicle Crash Facts*. URL: http://www.dps.state.mn.us/OTS/crashdata/crash_facts.asp. Accessed August 20, 2009.
- Preusser, D.F. & Preusser, C.W. (1997). Evaluation of Louisiana's Safety Belt Law Change to Primary Enforcement. Report No. DOT-HS-808-620. Washington, DC: National Highway Traffic Safety Administration.
- Solomon, M.G., Compton, R.P., & Preusser, D.F. (2004). Taking the *Click It or Ticket* model nationwide. *Journal of Safety Research*, 35, 197-201.
- US Census Bureau. (2003). Census 2000 Gateway. Retrieved June 25, 2003.

APPENDIX A: PDA Data Collection Details

In the current study all data collection was conducted using Personal Digital Assistants (PDAs). The transition from paper to PDA data collection was made primarily to decrease the time necessary to move from the end of the data collection phase of a survey to data analysis. With paper data, there is automatically two to three weeks of additional time built-in while the paper data are being entered into an electronic format. Before making this transition, a pilot study was conducted to compare data collection by PDA to paper. Several key factors were tested during the pilot study including accuracy, volume (speed), ease of use, mechanical issues (i.e. battery life), and environmental issues (i.e. weather, daylight). The pilot study found PDA use to be equal to, or better than paper data collection on every factor tested. Before making the change to PDA data collection, electronic versions of the *Site Description Form* and *Observation Form* were developed (these have since been combined into a single electronic form). The following pages show examples of the electronic form and discuss other factors related to using PDAs for safety belt data collection.

The goal of adapting the existing paper forms to an electronic format was to create electronic forms that were very similar to the paper forms, while taking advantage of the advanced, built-in capabilities of the PDA. As such, the electronic data collection form incorporated a built-in traffic counter and included high resolution color on the screens. The site description form (SDF) portion of the data collection form is divided into five screens. The first screen of the SDF (Figure 2) allows users to type in the site location (street names and standing location). Observers use the PDA stylus to tap on the appropriate choices of site type, site choice, and traffic control. If a mistake is made, the observer can change the data they have input, simply by tapping on the correct choice. All selected choices appear highlighted on the screen.

Figure 2. Site Description Form – Screen 1.

Screens 2 and 3 are shown in Figure 3. As seen in this figure, observers enter their observer number, the weather, day of week, and median information, simply by tapping the appropriate choice on the display list. Screen 3 allows users to sketch in the intersection and show where they are standing, and to record the start time for the site.

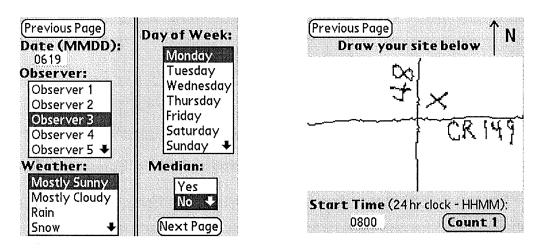


Figure 3. Site Description Form - Screens 2 and 3

In the past, observers had to put away their paper form, get out a mechanical traffic counter, and begin a traffic count after entering the start time. Using a PDA, it is possible to incorporate a traffic counter directly into the site description portion of the data collection form⁴. Figure 4 shows an example of the electronic traffic counter (Screen 4). To count each vehicle that passes, observers tap on the large "+" button. The size of this button allows the observer to tap the screen while keeping their eyes on the roadway. Each tap increases the count that is displayed at the top of the screen. If a mistake is made, the observer can decrease the count by tapping on the small "-" button on the left of the screen.

⁴The PDA traffic counting method was compared with a mechanical counter during the pilot testing and no difference was found between the two methods.

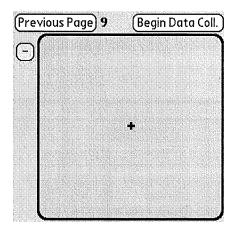


Figure 4. Site Description Form - Screen 4

The last screen of the electronic *Site Description Form*, shown in Figure 5, allows the user to enter the end time of the site observation and interruption (if any). Finally, observers can type in any comments regarding the site or traffic flow that may be important.

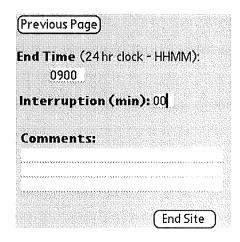


Figure 5. Site Description Form - Screen 5

To allow for easier data entry, the observation portion of the electronic data collection form was divided into three screens, one for vehicle information, one for driver information, and one for front-right passenger information. As shown in Figure 6, each screen is accessible by tapping on the appropriate tab along the top of the screen. The screens have also been designed with different colors, with the vehicle screen yellow, driver screen blue, and passenger screen green. As shown below, the first screen that

appears in the form is the vehicle screen. Each category of data, along with the choices for each category, is displayed on the screen. As in the Site Description Form, users simply tap on the choices that correspond to the motorist that is being observed. These data then appear highlighted on the screen. Since most vehicles are not used for commercial purposes, "Not Commercial" is already highlighted as a default. If the vehicle is commercial, that choice can be selected from the list.

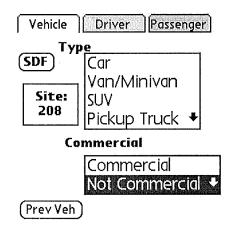


Figure 6. Observation Form - Vehicle Screen

Figure 7 shows the driver and passenger screens. Since most motorists are not actively talking on a cellular phone while driving, and most vehicles do not include a passenger, "No Cell Phone" is already highlighted and the "No Passen." box is already checked as defaults. If the motorist is using a cell phone or if a passenger is present, users select the appropriate choices. Once data are complete for one vehicle, observers tap the "Next Vehicle" button to continue collecting data.

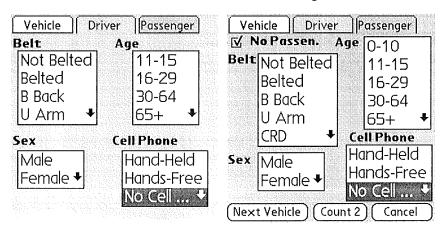


Figure 7. Observation Form - Passenger and Vehicle Screens

Each PDA also had a built-in cellular phone as well as wireless e-mail capability. At regular intervals, observers e-mailed completed data directly from the PDA to the project supervisor. Data collection forms from completed sites were "zipped," using a compression program, and then transmitted directly to a pre-determined e-mail account. The e-mailing of data allowed the field supervisor to immediately check data for errors, and begin to compile a data analysis file as the project progressed.

APPENDIX B: Site Listing

Survey Sites By Number

No.	County	Site Location
001	Dakota	EB 135th St/Co. Rd. 38 & Blaine Ave/County Rout 71/Rich Valley Blvd
002	Olmsted	EB CR 112/County Route 12 & CR 112
003	Carver	EB 150th St/County Route 50 & County Route 41
004	Carver	EB 70th St/County Route 30 & State Route 25/Ash
005	Carver	NB Yancy Ave & State Route 7
006	Carver	SB Little Ave & 102nd St
007 008	Dakota	EB W 136th St & Nicollet Ave
008	Wright	WB CR 123 & County Route 7/CR 106
010	Olmsted Wright	EB CR 120 & County Route 20 EB CR 118/CR18/50th St. & County Route 35/Main St.
*011	Dakota	NB CR 21/Guam Ave & 307th St/CR 90
012	Wright	EB 14th St/CR 112 & State Route 25
013	Dakota	EB 240th St West & Cedar Ave/County Route 23
*014	Dakota	NB Johnny Cake Ridge Rd & Coutny Route 32/Cliff Rd
015	Olmsted	SB County Route 3 & County Route 4
*016	Olmsted	EB CR 137 & CR 136
017	Dakota	EB 80th St & Concord Blvd/County Route 56
018	Dakota	EB 220th St East & Nicolai/County Route 91
019	Dakota	SB Fairgreen Ave & 280th St West/County Route 86
020 021	Wright Olmsted	NB County Route 12 & County Route 37
*022	Dakota	WB County Route 9 & County Route 10 EB Wescott Rd & Lexington Ave
023	Dakota	NB Hogan Ave/County Route 85 & 220th St East
*024	Wright	SB US 12/County Route 16 & Babcock Blvd/County Route 30
025	Wright	EB County Route 38/Harrison St. (Near Oak St/CR 24) & State Route 55/State Route 24
026	Dakota	NB Blaine Ave/CR 79 & 245th St East/County Route 80
*027	Olmsted	SB CR 119 & County Route 9
*028	Dakota	EB County Route 88/290th Street East & Northfield Blvd/County Route 47
*029	Ramsey	NB Hodgson Rd/County Route 49 & Turtle/County Route 3/CR 1
030	Carver	SB Yale Ave/Yancy Ave & County Route 30
031	Olmsted	NB CR 125/Maywood Rd. SW & County Route 25/Salem Rd. SW
032	Olmsted	EB CR 154/85th St. NW & US 52
*033 *034	Wright	SB County Route 12 & State Route 55
*035	Carver Ramsey	WB 62nd St & County Route 33 EB Minnehaha Ave/State Route 5 & White Bear Ave/County Route 65
*036	Olmsted	SB CR 128 & State Route 247/County Route 12
037	Dakota	SB CR 51/County Route 80/Biscayne Ave & 280th St West/County Route 86
*038	Olmsted	NB CR 132/County Route 32 & County Route 9
039	Dakota	SB Inga Ave & State Route 50/240th St East
*040	Dakota	EB County Route 14/Grand Ave. & Concord St/State Route 156
041	Dakota	NB Goodwin Ave & State Route 55
042	Ramsey	NB Rice St & Maryland Ave
043	Dakota	SB Emery Ave & 190th St East/County Route 62
044	Ramsey	NBP I-35 W & Old Hwy 8/Anoka Cutoff (Exit 26)
*045 046	Ramsey	NBD I-35 E & County Route 23 (Exit 112)
*047	Olmsted Dakota	WBP I-90 & County Route 10 (Exit 229) SBD I-35 & County Route 50/County Route 5(Exit 85)
047	Ramsey	WBP State Route 36 & Hamline Ave
*049	Dakota	SBD US-52 & Thompson Ave
*050	Ramsey	SBD I-35 E & St. Clair
* 051	Dakota	WBD I-494 & Robert St (Exit 67)
052	Dakota	NBD I-35 E & State Route 110/Mendota Rd (Exit 101)
*053	Olmsted	EBD I-90 & State Route 42 (Exit 224)
054	Ramsey	SBD I-35 E & Randolph Ave
055	Ramsey	EBD State Route 36 & Lexington Ave/County Route 51
056	Ramsey	EBD US-12/US-52/I-94 & S. Cretin Ave
057	Ramsey	NBP County Route 280 & Energy Park Dr
058 059	Dakota Ramsov	SBD US-52/Lafayette Frwy & Butler Ave
060	Ramsey Ramsey	EBP I-694 & US-61/Maplewood Dr (Exit 48) EBD US-12/US-52/I-94 & Lexington Parkway/County Route 51
061	Hennepin	SB Pineview Ave & 129th Ave
062	Hennepin	WB Olson Memorial Hwy/State Rotue 55 & County Route 102/Douglas Drive

*063	Hennepin	NB Mohawk Dr & Horseshoe Tr
064	Hennepin	SB County Route 60/Mitchell Rd & State Route 5
065	Hennepin	WB Gleason Lake Rd/County Route 15 & Vicksburg Lane
066	Hennepin	NEB State Route 7 & Chanhassen Rd/State Route 101
067	Hennepin	NB Brown Rd/County Route 146 & Watertown Rd
*068	Hennepin	NB Commerce Blvd & West Branch Rd/County Route 151
069	Hennepin	NB Chanhassen Rd/State Route 101 & Minnetonka Blvd/County Route 5
070	Hennepin	SB County Route 44 & Bartlett Blvd/County Route 110
071	Hennepin	SB Tucker Rd & County Route 116/CR 159/Territorial Rd.
*072		
	Hennepin	NEB Old Shakopee Rd/County Route 1 & Penn Ave.
073	Hennepin	NWB County Route 81 & 77th Ave North/County Route 152/Brooklyn Blvd.
*074	Hennepin	NB Belchtold Rd & 109th Ave North/County Route 117
075	Hennepin	NB County Route 34/Normandale Blvd & Old Shakopee Rd/County Route 1
*076	Hennepin	NB Penn Ave/County Route 2 & Olson Memorial Highway/State Route 55
077	Hennepin	WB Elm Creek Rd & Fernbrooke Ave/County Route 121
078	Hennepin	NB Pioneer Tr/County Route 113 & Woodland Tr/County Route 10
079	Hennepin	WB Rockford Rd/County Route 9 & Medicine Lake Dr/Larch Lane
*080	Hennepin	SB Lyndale Ave & West 50th St/County Route 21
081	Hennepin	NB Willow Dr & County Route 24
*082	Hennepin	WB 125th Ave North & Zanzibar Lane
083	Hennepin	SB Lyndale Ave & West 82nd St
084	Hennepin	NB Broadway Ave/CR 103/County Route 130 & 85th Ave North/County Route 109
*085	Hennepin	NB Mendelssohn Ave & 63rd Ave
*086	Hennepin	WB N 121st Ave & Fernbrooke/County Route 121
*087	Hennepin	WB Cedar Lake Rd/County Route 16 & Plymouth Rd/County Route 61
880	Hennepin	EB Nike Rd & Main Street/Country Route 92
089	Hennepin	NWB N Nobel Ave & 109th Ave
*090	Hennepin	SB Mohawk Dr & State Route 55
*091	Hennepin	NB County Route 32 & West 82nd Street
092	Hennepin	WB County Route 109/85th Ave N & Country Route 158/Rice Lake Rd.
093	Hennepin	SB Country Route 101 & County Route 42/Wayzata Blvd.
094	Hennepin	NB University Ave & County Route 23
*095	Hennepin	SB Country Route 116/Fletcher Lane & County Route 30/97th Ave N
096	Hennepin	EB County Route 53/66th St. & State Route 77
097	Hennepin	NB Winnetka Ave/County Route 156 & Medicine Lake Rd
098	Hennepin	SB Goose Lake Rd & Elm Creek Rd
*099	Hennepin	WB Medicine Lake Rd/26th St. & Medicine Lake Blvd
100	Hennepin	NB Budd Ave & Pagenkoph Rd
* 101	Hennepin	EB Duck Lake Tr & Eden Prarie Rd/County Route 4
102	Hennepin	NB Eden Prarie Rd/County Route 4 & Excelsior Blvd/County Route 3
103	Hennepin	SEB County Route 152/Osseo Rd. & N. Penn/44th Ave.
104	Hennepin	SBD State Route 77 & County Route 1/Old Shakopee Rd
* 105	Hennepin	NBD I-35 W & W 82nd St (Exit 8)
106	Hennepin	WBP State Route 62/Crosstown Hwy & Gleason
* 107	Hennepin	SBD I-494 & County Route 10/Bass Lake Rd (Exit 26)
* 108	Hennepin	WBP I-94/US-12/US-52 & S 25th Ave.
* 109	Hennepin	NBP I-35 W & W 35th St/E 35th St
110		WBP I-94/US-52 & County Route 30/Dunkirk Lane (Exit 213)
	Hennepin	
111	Hennepin	SBD I-35 W & W 66th St/E 66th St
112	Hennepin	NBP US-169 & 36th Ave N
*113	Hennepin	EBP I-494 & Townline Rd/US-169
114	Hennepin	N/WBD I-494 & State Route 55/Olson Memorial Hwy
115	Hennepin	WBP State Route 62/Crosstown Hwy & Tracy Ave
116	Hennepin	SBP State Route 100 & Minnetonka Blvd/County Route 5/Vernon
117	Hennepin	SBP State Route 100 & W 50th St/County Route 21/County Route 158
*118		
	Hennepin	EBD State Route 62 & Portland Ave South
119	Hennepin	NBP US-169 & Valley View Rd
120	Hennepin	NBD US-169 & Plymouth Ave/13th Ave N
121	Sherburne	NB County Route 73/127th St./County Route 48 & CR 73/185th Ave.
122	St. Louis	WB State Route 135/County Route 102 & US 53/State Route 169
123	St. Louis	WB CR 791 & County Route 25
124	Rice	SB Culver Ave & 150th Street W/County Route 9
125	Beltrami	SB State Route 72/County Route 36 & County Route 41
* 126	Washington	
127	_	NB Manning & 70th St. S
127	Clay	EB State Route 34 & County Route 25 WR 255th Avo Northwest & County Route 0
140	Kandiyohi	WB 255th Ave Northeast & County Route 9

```
129
                         EB County Route 16/CR 957 & US 53
        St. Louis
 130
        Kandiyohi
                         EB CR 107/240th Ave. & 40th Street NE
        Kandiyohi
                         WB 105 Ave SE & CR 136/165th St SE
 131
                         WB County Route 29/State Route 30 & State Route 22/State Route 30
 132
        Blue Earth
 133
        Freeborn
                         NB US-69 & County Route 46
 134
        Clay
                         EB CR 105 & County Route 13/County Route 73/90th St. N
*135
        St. Louis
                         WB State Route 194/Central Entrance & County Route 90/Arlington
 136
        Steele
                         SB County Route 3 & State Route 30
 137
        Blue Earth
                         WB County Route 13/County Route 38 & US-169
*138
                         SB US 169 & County Route 4
        Sherburne
* 139
        Sherburne
                         EB CR 54/77th St. SE & State Route 25/125th Ave. SE
140
        Freeborn
                         EB CR 115/County Route 23 & County Route 26
* 141
                         WB CR 167 & County Route 39
        Blue Earth
142
                         NWB US 10 & County Route 15
        Sherburne
* 143
        St. Louis
                         EB State Route 194 & US 53
 144
        Freeborn
                         NB County Route 24/County Route 45/Independence Ave & County Route 31/CR
                         116/Main St.
*145
        Goodhue
                         SB County Route 1 & State Route 60
*146
        Freeborn
                         EB County Route 9/CR 78 & US 69
 147
        Blue Earth
                         NB County Route 30/CR 107 & County Route 22/CR 108
                         EB County Route 28/Sax Road & County Route 7
 148
        St. Louis
 149
        Nicollet
                         EB County Route 15/382nd St. & State Route 15
 150
        Blue Earth
                         EB Madison Ave/State Route 22 & State Route 22
* 151
                         SB 7th Ave NE & County Route 8/Mineral Springs Rd.
        Steele
                         EB County Route 25/CR 138 & County Route 20
152
        Blue Earth
*153
        Blue Earth
                         NB County Route 14/CR 173 & State Route 83
154
        St. Louis
                         EB County Route 12/Roberg Rd & Lakewood Rd/CR 692
*155
                         NB County Route 25/CR 144 & State Route 18
        Crow Wing
* 156
                         WB 60th Ave SW & County Route 7/135th St.
        Kandiyohi
* 157
        Scott
                         EB County Route 2/CR 54 & State Route 13/Langford Ave
*158
        Blue Earth
                         SB State Route 60 & US 14/State Route 60
159
        Goodhue
                         SB County Route 4 & County Route 10
160
        Kandiyohi
                         SB CR 127/60th St. NE & County Route 26/60th Ave.
*161
                         EB 90th Ave./County Route 10 & 70th St./County Route 11/State Route 336
        Clay
        Nicollet
                         NB County Route 7/585TH St. & County Route 1/350th St.
 162
 163
        Scott
                         EB CR 64/230th St W & State Route 21/Helena Blvd
 164
        Steele
                         SBD I-35 & County Route 4 (Exit 32)
 165
                         SBP I-35 & US-53/Piedmont Ave
        St. Louis
 166
                         SBP I-35 & County Route 35 (Exit 22)
        Freeborn
 167
        Clay
                         EBP I-94 & County Route 10 (Exit 15)
                         N/WBP I-694 & 10th St/County Route 10 (Exit 57)
        Washington
 168
* 169
                         WBP I-94 & County Route 52 (Exit 2)
        Clay
 170
        Rice
                         SBP I-35 & State Route 60 (Exit 56)
 171
        Steele
                         NBD I-35 & County Route 12 (Exit 48)
* 172
                         EBP US-2/US-71 & US-71
        Beltrami
        Freeborn
                         EBD I-90 & State Route 13 (Exit 154)
173
                         SBD I-35 & State Route 251 (Exit 18)
174
        Freeborn
* 175
                         SBP I-35 & S 27th Ave. W (Exit 254)
        St. Louis
*176
                         SBP I-35 & Central Ave. (Exit 252)
        Washington
        St. Louis
                         N/EBD I-35 & 46th Ave
177
178
        Freeborn
                         NBD I-35 & County Route 46? (Exit 11)
* 179
        Washington
                         NBP US-10/US-61 & 80th St/Grange Blvd
* 180
                         N/EBD I-35 & Skyline Pkwy/Boundary Dr. (Exit 249)
        St. Louis
*181
                         SB CR 264/205th Ave. & County Route 46/183rd St.
        Morrison
182
        Douglas
                         SB County Route 6 & County Route 22
* 183
        McLeod
                         WB County Route 26/100th St. & State Route 15
184
        Morrison
                         SB County Route 37 & County Route 26/Nature Rd.
185
        Polk
                         NB County Route 63 & US-2
*186
                         WB County Route 29/CR 107/76th St. & County Route 1
        Cass
* 187
                         SB Little Toad Lake Rd/County Route 31 & State Route 87
        Becker
188
        Otter Tail
                         EB County Route 10 & US 59
        Otter Tail
                         EB County Route 60/State Route 228 & US 10
 189
 190
        Cass
                         WB County Route 34 & State Route 64
 191
                        EB County Route 22/CR 102 & County Route 13
        Brown
 192
        Morrison
                         SB County Route 6/90th Ave. & County Route 1/State Route 238
                         WB 115th St. & County Route 14/770th Ave.
 193
        Mower
```

194	Stearns	WB CR 146 & State Route 15
195	Cass	EB County Route 43/Twp 4/12th St. & State Route 84/County Route 44
* 196	Polk	NB County Route 54 & County Route 11
197	Polk	EB CR 213 & CR 213/County Route 48
198	Winona	NEB County Route 44/Huff St. & US 14/US 61
* 199	Morrison	EB CR 203/County Route 1 & County Route 2
200	Stearns	SB US 71 & State Route 55
*201	Douglas	EB State Route 27 & State Route 29
*202	Winona	WB County Route 22 extension (unmarked gravel road North of County Route 115) &
		County Route 37
*203	Anoka	SB CR 67 & County Route 22
204	Cass	EB County Route 66/122nd St. & State Route 371
*205	Benton	WB County Route 12/Pine Rd. & State Route 25
206	Becker	SB County Route 49/CR 119 & State Route 87
*207	Polk	NB County Route 65 & US-75
208	Stearns	WB CR 149 & County Route 48
209	Isanti	SB State Route 47 & County Route 8
210	Otter Tail	EB County Route 6 & County Route 59
*211	Stearns	WB Division St/County Route 75 & State Route 15
212	Itasca	EB US 2/4th St. & State Route 38/3rd Ave.
213	McLeod	SB County Route 25/CR 52/5th Ave. S. & US 212
214	Mower	EB County Route 1 & US 218
215	Benton	SB County Route 6 & County Route 4
216	Brown	WB 150th St./CR100 & County Route 2
*217	Anoka	SB County Route 5/CR 56 & Northern Blvd/County Route 5
218	Douglas	NB County Route 40 & County Route 82
219	Douglas	WB County Route 10 & County Route 3
*220	Winona	NEB County Route 7 & US 14/US 61
221	Stearns	SEB County Route 152 & County Route 10
222	Stearns	WB County Route 75 & County Route 2
223	Isanti	NB County Route 7/CR 57 & State Route 95
224	Carlton	SWBP I-35 & State Route 45 (Exit 239)
*225	Anoka	SBP I-35 W & County Route 23/Lake Dr (Exit 36)
226	Stearns	WBD I-94/US-52 & CR 159 (Exit 156)
227	Winona	EBD I-90 & State Route 43 (Exit 249)
228	Stearns	EBP I-94 & State Route 23 (Exit 164)
*229	Anoka	EBP US-10 & State Route 65
*230	Chisago	SBD I-35 & County Route 10 (Exit152)
231	Mower	· · · · · · · · · · · · · · · · · · ·
232		WBP I-90 & State Route 56 (Exit 183)
*233	Stearns	EBP I-94 & County Route 7 (Exit 171)
*234	Winona	WBP I-90 & State Route 76 (Exit 257)
	Otter Tail	W/NBP I-94 & US-59/County Route 52/County Route 88 (Exit 50)
235	Anoka	WBP US-10/State Route 610 & State Route 47
236	Douglas	EBD I-94 & State Route 79 (Exit 82)
237	Stearns	WBP I-94 & County Route 9 (Exit 153)
238	Stearns	WBD I-94 & County Route 11 (Exit 137)
239	Carlton	EBD I-35 & State Route 61 (Exit 245)
*240	Douglas	EBP I-94 & State Route 29 (Exit 103)

^{*} indicates a site used in the mini survey.