DATE OF REPORT: , JLY 1, 1993

LCMR Final Status Report - Detailed for Peer Review -Research

Native Grass and Wildflower Seed

Program Manager: Charles G. Dale (612) 296-6123 Minnesota Department of Agriculture Agronomy Services Division

A. Legal Citation M.L. 1991 Chapter 254, Article 1, Section 14, Subdivision 6(e).

Appropriation\$130,000Balance\$4,100

Native grass and wildflower seed. This appropriation is to the Commissioner of Agriculture in cooperation with the Commissioner of Natural Resources to develop the varietal, cultural, and market information necessary to encourage expanded commercial production of Minnesota origin native wildflower and grass seed.

B. <u>Compatible Data</u>: The information collected during the biennium ending June 30, 1993, from projects funded under this section that have common value for natural resource planning and management and for various agricultural production systems will be in a format that can be adapted for use by other public agencies, private organizations, and individuals. The expense of integrating the information into other data management systems will be the responsibility of the agency, organization, or individual receiving the information.

II. <u>Narrative</u>

This program is designed to develop germplasm, cultural, and market information needed to promote an increase in production of native grass and wildflower seed. Current demand for these kinds of seed far exceeds supply in both the quality and the number of species available for public and private use. Technical information on how to produce seed from selected species and market information are needed in order for potential growers to decide whether or not they should invest in the production of these kinds of seed.

- III. Objectives
- A. Development of germplasm and cultural information.
- A. 1. <u>Narrative:</u> Developing methods which can be used to produce seed from native grasses and wildflowers along with methods by which the diversity of individuals in a

naturally occurring population can be maintained are problems to be solved in this part of the project.

The Center for Alternative Plant and Animal Products will review and evaluate new and existing information and methods in order to develop guidelines for growers to produce and maintain diversity in native grass and wildflower seeds. The information resulting from this objective will also be presented at scientific meetings and in professional journal papers.

A. 2. <u>Procedures</u>: Existing information on commercial production of approximately 25 species of native grass and wildflower seed will be reviewed and current practices evaluated under controlled conditions. Native germplasm will be collected and evaluated for several genera. Germplasm diversity of a model grass and model wildflower will be assessed between and within regions of the state and compared to commercially available seed. The results will be summarized in guidelines to commercial producers, addressing production techniques, seed and seedling identification, and maintenance of germplasm diversity. The systems developed in this objective will act as models for future research.

Α.

Α

5.

Α.

3.	Budget: a. Amount Budgeted: b. Balance:	<u>LCMR Funds</u> \$70,000 \$ 0				
4.	Timeline for Products/Tasks:	July91	Jan92	June92	Jan93	June93
	a. Literature review		х	x	x	х
	b. Establish species list	x	x			
	c. Identify production practices	х	x	x		
	d. Characterize populations	х	x	x	x	
	e. Evaluate production practices	x	x	х	x	х
	f. Develop production guidelines					x
	g. Prepare seed identification mater	ials	x	X	x	x
	h. Collect germplasm	x	x	x	x	x

Status: Two graduate students joined the project under the guidance of Drs.

Hanchek and Strefeler. They have made many trips to collect seeds and several visits to producers, and will continue to do so as needed. Seeds of over 28 species and/or varieties from 50 sites have been collected for use in preliminary propagation trials, detailed studies, and genetic research. Each collection is labeled to keep populations distinct. Not all species collected are included in the detailed research. The students have also attended conferences on native plants (one gave a paper at the 1992 North American Prairie Conference) and participated in the development of a growers group. This group formed after discussion between Dr. Hanchek and Jack Johnson of AURI.

Literature Review

The task of reviewing the literature began in August 1991, well ahead of schedule, and has continued throughout the project. Insufficient documentation of production methods exists in the scientific literature, despite many popular press articles, and what does exist is scattered widely throughout journals, conference proceedings, and monographs. In June of 1992, another graduate student, Eleanor Congdon, was engaged as hourly help, primarily for the literature review. Since her background is history, and thus library research, her help has greatly increased our ability to gather information.

The current bibliography has over 1085 entries entered into a commercial bibliographical database called Papyrus 7.0, created by Dave Goldman for Research Software Design of Portland Oregon. Citations include articles, books, conference proceedings, theses, and pamphlets. Each entry lists pertinent information such as year, author, title, publisher, etc. Where applicable, the call numbers assigned by the University of Minnesota Library system are included so that the citation may be reviewed by interested readers.

The bibliography's function is not only to find as many citations as possible concerning native plants and growth practices relating to them, but also to extract that information as needed. One third of the citations have appended abstracts, and 250 have more detailed notecards that give specific information concerning production procedures or requirements for plants native to Minnesota. The basic bibliography, without abstracts or notecards, is listed in **Table 1** in the appendix. The full bibliography will be available through the Center for Alternative Plant and Animal Products, and may be published in a format yet to be determined.

Species List

There are actually several different lists, each based on different criteria. Unfortunately, not many plants can be used to study a genetic problem and a specific production problem and at the same time be the commercially most attractive and environmentally most interesting. For the production portion of the research, the species list has been

developed through input from two sources. In collaboration with the bibliography, a species list was created by indexing Ownbey and Morley's Vascular Plants of Minnesota according to scientific name, but excluding ferns, woody plants, and introduced species, while including information on each plant's status on the State Noxious Weeds List, the State Endangered Plants List, and the State Protected Plants List. This index is **Table 2** in the appendix. In addition, suggestions were solicited from producers by Julia Bohnen. A list of species collected for germination trials is in **Table 3** of the appendix. For the genetic diversity portion of the research, the species that might be useful for highway reclamation are listed in **Table 4** of the appendix. A key to the numbers identifying the location of collection sites for the seed listed in **Table 3** and **Table 4** is listed in **Table 5** of the appendix.

Development of recommended production practices has included both the results of our experimental research and material found during the literature review. Details on specific plants are being collated into a computerized database and can be accessed as a Lotus 123 spreadsheet. As a result, 1303 plants will be listed, for which available information is given on topics such as fruiting structure, time of harvest, seed storage requirements, seed treatments, asexual propagation methods, production treatments for established plants, a plant's preferences for soil, moisture, and light, root structure, and genetic information. All details in the spreadsheet are accompanied by a reference number which refers to the source of the information in the bibliography. A total of 44 columns for different types of information, and for references, have been set up in the spreadsheet. This database also shows that much information is lacking for many of Minnesota's native plants. The spreadsheet will be available to the public through the Center for Alternate Plant and Animal Products, and it may be published through them in a format yet to be determined. For a complete listing of the columns set up in the spreadsheet and a sample output of one of the plants, see **Table 6** in the appendix.

Seed and Seedling Identification

The species currently included in the seed and seedling identification materials are listed in **Table 7** of the appendix. Development of this resource has continued to the end of the grant period. Several sets of slides will be available from the University of Minnesota Extension Service Distribution Center.

Production Practices

To identify successful production practices, site visits were made to several Minnesota producers. Generally it was observed that successful producers are innovative individuals with the ability to apply agricultural and horticultural skills and techniques to the diverse palette of native plants. Some specialization has occurred, with some of the producers focusing on production of grasses, while others may produce only native wildflowers.

Agricultural engineering skills also prove useful as the diverse plant forms and growth habit make seed harvesting and processing a challenge. A detailed survey summarized in February 1992 compiled information about production facilities and products being marketed.

As part of the evaluation process for production standards, growers were consulted. We learned that standard horticultural techniques can be used successfully with the majority of our native plants. Greenhouse trials have been underway since August 1991, and formal trials examining the effects of stratification, scarification, and after-ripening are ongoing. Special emphasis is being placed on *Spartina pectinata, Lilium philadelphicum, and Phlox pilosa* (one grass, one non-grass monocot, and one dicot). The effect of gibberellic acid (GA) in enhancing rate and uniformity of germination has also been examined. We have found that all of these treatments can be effective on native plants, but the application is highly species dependent. Our results, obtained under conditions similar to those of some producers, are very encouraging. A list of the additional species for which germination trials have been conducted is in **Table 8** of the appendix.

The often impervious seed coat of legumes usually needs to be damaged or worn in some way to allow gases and water to enter or to reduce the mechanical pressure on the embryo so that germination can proceed. In trials comparing scarified versus not scarified seed, physical scarification of several leguminous species has resulted in 22 - 83 percent germination. Non-scarified seed had from less than one to 63 percent germination.

For some species, grasses in particular, a period of after-ripening is required. During the after-ripening period, physiological processes occur bringing the seed nearer a state in which it is able to germinate. The length of the after-ripening period varies for different species, but usually involves storage for two months or longer after harvest.

Many of our native species require a cold moist period to promote germination. Several approaches can be used to accomplish chilling treatment. Some producers sow their seed outdoors and allow nature to take its course. Refrigeration can simulate winter under more controlled conditions. Stratification treatments consisted of 4 to 12 weeks on moist blotter paper in petri dishes in the 1992 trials or in moistened germination medium for the 1993 trials. Germination can be adversely affected, however, by too much cold moist stratification as well as too little.

Gibberellic acid may be effective in circumventing other more time-consuming treatments, and can substitute for cold moist stratification in many instances. However, over-exposure to GA can cause plant growth abnormalities such as excessive elongation which could potentially affect the salability of the plant or its establishment upon transplanting. Appropriate GA concentrations and treatment lengths were examined for several species.

For many species, it is unlikely and probably biologically undesirable that 100 percent germination occurs in a very short period of time. Due to variability within a population, seed will germinate over a sometimes much extended time frame. Uniformity of germination is important in plug production from seed. Increased uniformity occurs when more seeds germinate in a shorter time frame. Optimum uniformity can be achieved by applying the appropriate treatment to the seed. However, germination results for two populations of a species may vary depending upon inherent physiological differences and upon environmental conditions prevailing at the site of origin. Results from the germination trials will be available after the data has been analyzed and summarized.

In some instances, seed germination may not be the factor most limiting to native plant production. Many growers commented in the surveys on small quantities of seed produced by different species. Can cultivation improve quantity and quality of seed yield? Is insect predation on seeds a major problem? Can we document and examine seed production? Field plots established at the Minnesota Landscape Arboretum are addressing these questions. Individual plants of *Spartina pectinata, Tradescantia ohiensis, and Petalostemum purpureum* (one grass, one non-grass monocot, and one dicot) are being monitored for seed yield and factors affecting it. At the same time, transplants from the prairie are being monitored similarly while growing in cultivated field conditions near the prairie.

Preliminary data suggest that simple field cultivation can increase seed yield and/or vegetative growth in certain native species. Seed yield in *T. ohiensis* was increased dramatically in cultivation within the first season of transplanting. *S. pectinata* did not flower in either the prairie or the cultivated plot, probably due in part to the unseasonably cool weather during the 1992 growing season. *P. purpureum* flowered in both treatments; however, flowering occurred too late in the cultivated plot for seed to fully develop before the growing season was interrupted by a hard frost. In both the cultivated *P. purpureum* and *S. pectinata*, substantial vegetative growth was realized in the first growing season. This study will, of necessity, continue through the 1993 growing season to allow a second year of data to be collected. The work described here forms Julia Bohnen's master's thesis and will be presented in detail with full analysis and peer review in her thesis manuscript and defense, planned for late fall of 1993.

Characterize Populations

Seeds of the species for genetic diversity research were collected in 1991 and 1992 and germinated in the greenhouse. The goal is to obtain at least 25-30 plants of each of the collected populations. The populations are then characterized in three ways:

1. Seedling tissue and leaf tissue is analyzed using isozyme analysis. The resulting banding patterns show if there are genetic differences within and between populations. Some of the isozymes used were: ACP, ADH, EST, G6PDH, GDH, GOT, IDH, MDH, PRX, PGI, PGD, and PGM. Preliminary results are listed in **Table 9** in the appendix

2. Morphological differences within and between populations grown in the greenhouse were observed. These include number of flowers, number of leaves, height, number of stems (grasses only), and time of flowering. Table 10 of the appendix contains the observations for each species.

3. Morphological differences within and between populations grown in the greenhouse and later transplanted into the field were also observed.

Genetic Diversity Research Grasses

JIASSES

Andropogon gerardii

- 1) Morphological Differences.
 - Several populations were grown in the field in the summer of 1992 and the following characteristics were observed and recorded; plant height, number of stems and number of inflorescences. Within populations, there was variability observed in all characteristics studied. The highest variability was observed in plant height, followed by both the number of stems and inflorescences. Between populations, there was little or no difference in the means observed for both shoot and inflorescence number. It was also noted that the time of anthesis and senescence (stem discoloration) varied within populations.
- 2) Isozyme Analysis.

Preliminary results of starch gel electrophoresis indicate that there is little genetic variation within the populations. Isozyme analysis will be completed this summer.

Schizachyrium scoparium

1) Morphological Differences.

The same characteristics were observed and recorded as in Andropogon gerardii. Within populations, there was variability in all characteristics. Inflorescence number showed the most variability and the least variability was observed for plant height. Between populations, there was variation in mean shoot and inflorescence number and very little variation in mean plant height. There was also variation in time of anthesis.

2) Isozyme Analysis. Starch gel electrophoresis indicates so far that there is little genetic variation within the populations.

<u>Forbs</u>

Monarda fistulosa.

- Morphological Differences
 Despite several germination attempts, plants died in the greenhouse and no field data could be collected. However, this summer several populations will be grown again in the field.
- Isozyme Analysis. Because of difficulties during laboratory procedures, the results are still inconclusive.

Liatris spp.

1) Morphological Differences.

Several populations of *Liatris aspera*, *Liatris ligulistylis*, *Liatris punctata*, and *Liatris pycnostachya* were grown in the field and the following characteristics were observed and recorded; number of leaves, leaf length, leaf width, and dry weight of the aboveground plant parts. There was variation within the populations for all characteristics with the most variability observed for leaf number. Little variation was observed between populations in number of leaves, length, width and dry weight.

Floral traits will be evaluated this summer and fall, the first season of flowering for these seedling populations.

2) Isozyme Analysis.

Isozyme polymorphism's in *Liatris* was observed for the following isozymes: Acid phosphatase (ACP), Alcohol dehydrogenase (ADH), Aspartate aminotransferase (AAT), and Phosphoglucomutase (PGM). This indicates that isozyme diversity exists with populations of *Liatris* and hence, genetic diversity for these enzymes in these populations.

Page 9

1) Morphological Differences.

About 30 individuals from each population will be grown again in two field locations (St. Paul and Morris, MN) for this summer. Additional populations will be grown from seed collected not only in Minnesota, but also from neighboring states. Similar characteristics will be observed and recorded by late September to early October. At the end of the growing season plants will be removed from the field and overall dry weight will be recorded. The St. Paul field will be used to obtain a two-year data (1992 and 1993) while the Morris location will just provide one-year data (1993 only).

2) Isozyme Analysis.

Starch gel electrophoresis will continue throughout this summer. Leaf tissue will be collected from both locations, St. Paul and Morris, for the analysis.

Cultural management practices for maintaining genetic diversity

As soon as all the data from the field observations and the isozyme analysis are completed more detailed recommendations on management of seed production practices will be forthcoming.

General Conclusions for all species in this study

The preliminary results show that genetic diversity is greater within local populations than between populations. This is common in many natural populations of plants and animals. The significance of these results is that seed from fairly large geographical areas (> 200 mile radius) can be intermixed or planted throughout a region without significantly or permanently altering the genetic integrity of natural populations in that region. It may even be possible to plant seeds from the species examined in this study anywhere in the state regardless of its point of origin, without any negative impact on natural populations.

Management of genetic diversity in seeds will best be achieved by collecting seeds from several populations in distinct areas within a given region and using these as the foundation plantings for seed production. This approach will maximize genetic diversity in the source population and reduce genetic drift. Limiting seed collection and distribution to a small geographical area would increase the effects of genetic drift and decrease the genetic diversity in the seed produced. The resultant plantings may then have a negative impact on natural populations in the vicinity. These recommendations are based on a limited amount of genetic information and are only preliminary in nature. Upon completion of this study we will have a good base to make recommendations but more work on the genetics of these and other species are needed to insure that proper methods of collection, production and distribution are used to minimize the impact of future plantings on natural populations.

Finally, we feel it is vital that a practical and objective set of guidelines are developed. These should be sound for the environment and economically feasible for the producers; otherwise any effort in this area will prove futile. The State of Minnesota needs to find ways to promote production of native plants in a commercial setting. The alternative and current practice of collecting seeds from the wild will ultimately result in adverse affects on natural populations and increase their vulnerability to the loss of species in the future.

Kerstin Concibido's master thesis will deal with the population genetics of *Liatris* spp. in Minnesota.

A. 6. <u>Benefits</u>:

a. The information developed by this objective can be used by anyone who is interested in producing Minnesota origin native grass and wildflower seed resulting in a supply which is closer to meeting demand.

b. Existing stands of native grasses and wildflowers will suffer less unregulated seed harvest because supplies will be commercially available.

c. The quality of plantings of native species along roadside and on other public lands will increase significantly if these seeds are more rapidly available.

d. Models developed in this objective will be applicable to other research into native grasses and wildflowers.

B. Assess present supply and demand of native grass and wildflower seed, analyze the scale potential of Minnesota's native origin seed industry and future market demand.

B. I. <u>Narrative</u>: An inventory of present supply and demand of native grass and wildflower seed must be ascertained to encourage appropriate levels of public and private investment. The focus of this objective is to collect and examine primary information and data on the native grass and wildflower seed industry, and make them available for use by the interested public including present and potential producers,

Page 11

consumers, and investors.

Β.

B. 2. <u>Procedures</u>: Producer and consumer surveys will be conducted to: 1) determine the current production and consumption level and geographic distribution of seed source and destination, and 2) identify present and prospective producers and consumers. Market information and data will be collected through telephone and/or in-person interviews and mail responses. A customized database will be developed and maintained to better manage the available industry data. Results of the survey will be entered into the database for processing and analysis.

B .	3.	Budget a. Amount Budgeted:	<u>LCM</u> \$35.0	<u>IR Funds</u>)00				
		b. Balance:	\$	0				
B.	4.	Timeline for Products/Tasks:		July91	Jan92	June92	Jan93	June93
		a. Producer and Consumer Survey		x	х	x	х	
		b. Prepare collected data and establish databas	e	X	x	x	x	
		c. Review and analyze results				x	x	
		d. Final report					х	x

5. <u>Status</u>: Minnesota's native wildflower and grass seed industry is a small but rapidly growing industry. During the past decade, the production and utilization of native seeds have increased at an unprecedented rate. This was largely due to efforts of both the public and private sectors to improve the natural environment and eco-system; to protect the state's soil and water resources through the restoration of native prairies and land reforestation, and to provide natural shelters for wildlife habitat.

In the 1992-1993 crop year, the estimated annual sales of native wildflower and grass seeds in Minnesota approached ten million dollars, according to industry sources. This figure included revenues from sales of seeds, seeded plants, and also service contracts for seeding, planting, land preparations and other related consultation work. The most noticeable development in the native seed industry was the service-related sales or the new value-added component of the native seed business, which many believe will increase more rapidly than previously expected.

Traditionally, state and federal government agencies were predominant buyers and users of native prairie seeds. In recent years, however, an emerging commercial market has drawn more and n non-government users, such as, private companies and ge 1 landscapers

who incorporated native seeds and plants into their various landscaping or land improvement projects. It is expected this consumer segment will be the main driving force for future market development.

However, Minnesota's native seed industry is still undergoing profound changes in its course of growth and development. Currently, most of the growers have small-scale operations and have not yet reached their full production potential. One of the most pressing issues facing the industry is the undefined market and market structure. Furthermore, lack of market information and statistical data on production and consumption, uncertainty about the future's market, and unpredictable market fluctuations have become major restraints and concerns for Minnesota's native seed producers. All these are common obstacles that most new business ventures experience during the early stages of development.

The objective of this market research is to address the supply and demand issues through the examination and assessment of Minnesota's native seed industry and its current and potential markets. Production and consumption information is assembled and analyzed to provide producers, consumers, investors and policy-makers with much needed information for decision-making.

Production and Supply of Native Grass and Wildflower Seed

Minnesota's native grass and wildflower seed production started a decade ago with a new and small market niche that initially drew very little attention for the first few years. At the time, the majority of native seed production and collection went toward building the seed stock and establishing small-scale production plots. To start a native seed business, producers had to first hand-collect "foundation seeds", the initial seed source, from undisturbed natural sites, or purchase such seeds from a supplier. Because of the limited quantities of foundation seeds, producers could only gradually build their seed stock through planting and re-planting. Therefore, it took at least three to five years to establish an adequate production field and harvest a mature crop for commercial sale.

In the mid-1980's, the Conservation Reserve Program (CRP) was implemented by the federal government, creating an enormous market for native or other prairie seeds, as well as bringing unlimited opportunities to an infant industry. Not surprisingly, the minimal available quantities of native seeds failed the overwhelming market demand, which resulted in high prices and a dissatisfied market. The negative effect has lasted until this day, when native seed users still refer to "over-priced and under-supplied" situations even though profound changes have since taken place in the marketplace.

In an effort to assess the current production and supply of native wildflower and grass seeds in Minnesota, the Marketing Division of the Minnesota Deportment of Aga ure (MDA) conducted the "Native Wildflower and Grass d Producer Survey" (Table 11 in the appendix) in the summer of 1992. The survey questionnaire was mailed to all current native seed producers in the state and helped generate production information and statistical data including: 1) current production; 2) production acreage; 3) geographic distribution of production and collection sites; 4) available species; 5) projected production expansion; and 6) major obstacles to industry development (from the producers point of view). The majority of Minnesota's native seed producers participated in the survey, providing a sufficient across-the-board representation of all variables such as production scale, management practice, customer base, production potentials, specialties and expertise. Some non-participants were surveyed via telephone interviews. After compiling and analyzing the survey results, a comprehensive summary of the supply side of the native seed market was completed.

A. Production and Supply

Minnesota's native wildflower and grass seed production is composed of two types: seeds harvested from established production fields, and seeds collected from natural sites and prairies. Currently, over one-half of the commercially available seeds come from cultivated production while the balance is acquired by wild collection. Among producers, 85 percent produce seeds through cultivation but 55 percent of them also collect from natural sites to supplement certain market niches or to provide for foundation seeds. There are fifteen percent of producers who depend solely on wild collection for seed harvests. The combination of cultivated and collected native seeds in the marketplace gives buyers and users an extended range of options regarding quality, quantity, variety, seed mixes and ecotypes.

1. Annual Production and Value

Due to the small size of Minnesota's native seed industry, there has been until now no government agricultural statistical reporting on the annual output quantity or value of the native wildflower and grass seed production. The 1991 Native Wildflower and Grass Seed Producer Survey was the first attempt to gather the primary output data and relevant production statistics. Based on the production estimates obtained through the producer survey and telephone interviews, the commercially produced native seeds totaled 127,000 pounds in 1991, of which, approximately 96 percent were grass seeds and 4 percent were wildflowers. However, as was indicated in the producer responses, it would be extremely difficult to estimate the total value of the native seed production due to the vast range of species produced and the enormous price difference between and among various wildflower and grass seeds. Unlike other field crops such as corn and soybeans, the native seed crop has no "medium" or "average price" that can reflect a realistic value of the aggregate production. Most producers could not provide a complete sales volume and price break-downs for some 300 species produced in Minnesota. Seed prices spread from \$3.00 per pound to well over \$1,000 per pound -- a 3,333 percent difference. For computation purposes, the following table was developed that employed medium prices to provide a hypothetical output value.

Production Output and Value

	Production	Medium Price	Total Value of
	(lb.)	(\$ per lb.)	Production
Grass Seed			
Production			
(96% of Total)	121,920	\$9.70	\$1,182,624
Wildflower Seed			
Production			
(4% of Total)	5,080	\$110.00	\$558,800
Total			
Production	127,000		\$1,741,424

The 1991 Producer Survey shows that 50 percent of the native seed producers had been in production for less than five years; only 11 percent have been in production for more than ten years. Ninetyfour percent of producers grow and sell grass seeds or seedlings, while 82 percent grow and sell wildflower seeds or seedlings. Seventy-nine percent of producers sell pure seeds; seventy-one percent sell seed mixes; and forty-three percent sell seedlings, plants or sod.

2. Acreage in Cultivation and Wild Collection

Minnesota's commercial native seed production takes place in twenty-five counties across the state, with an estimated 2,000-plus acres of production fields and wild collection sites. This figure does not include prairie remnants or roadsides. Cultivated acres account for less than half of the total acreage, but have been increasing due to production expansion and the establishment of new production fields. Many of the wild collection areas are leased prairie lands from farmers or private landowners, or public land permitted for seed collection by Minnesota Departments of Natural Resources and Transportation, or the U.S. Fish and Wildlife Service under the United States Department of Interior. Harvests from such wild prairies will remain as a vital source of production and continue to provide foundation seeds, new gene-pools, and commercial seed crop for sale.

3. Geographic Distribution of Native Seeds Production

Minnesota's current native seed production has a wide array of geographic locations and natural landscapes. To better categorize the production sites, Minnesota counties are grouped into six regions: Northwest -- Region 1, Northeast -- Region 2, West-central -- Region 3, East-central -- Region 4, Southwest -- Region 5, and Southeast -- Region 6. This also helps to define the ecotypes produced and used in a specific geographic region. (Table 12, Figure 1 in the appendix: "Minnesota Native Wildflower and Grass Seed Regions").

In 1991, almost one-third of Minnesota counties hosted one or more native seed production and collection sites, which stretched from the northwest corner of the state down to the south border. The twentyfive producing counties included: Kittson, Marshall, and Polk of Region 1 (Northwest); Itasca, Carlton, and Pine of Region 2 (Northeast); Clay and Stevens of Region 3 (West-central), Sherburne, Ramsey and Sibley of Region 4 (East-central); Lyon, Murray, Cottonwood, Jackson, Watonwan, Martin, and Faribault of Region 5 (South-west), and Freeborn, Waseca, Steele, Dodge, Wabasha, Winona, and Houston of Region 6 (Southeast). The site map indicates that 1991 production was concentrated in the southern part of the state, mainly south of the Twin Cities metro area. (Table 12, Figure 2 in the appendix: "Native Wildflower and Grass Seeds, County Production Sites").

4. Species Information

As mentioned earlier, Minnesota's native seed producers supplied approximately 300 species of wildflower and grass seeds to the market in 1991 (**Table 13** in the appendix: "Native Wildflower/ Grasses By ID Code"). The best selling varieties included the following grasses and wildflowers: Switch Grass (*Panicum virgatum*), Big Bluestem (*Andropogon gerardii*), Indian Grass (*Sorghastrum*) nutans), Side-Oats Grama (Bouteloua curtipendula), Native Tall Grass Prairie Seed, Purple Prairie Clover (Petalostemum purpureum), Maximillian Sunflower (Helianthus maximilliani), Lead Plant (Amorpha canescens), and Yellow Coneflower (Ratibida pinnata). Some of these varieties are produced in large volumes, from hundreds to thousands of pounds, while others, mostly forbs, may only be available by the ounce or even one-half ounce. Every year, new grass and wildflower seeds are added to the species list as producers plant more "experimental" seeds in their production fields in order to explore new market niches and expand the diversity of marketable seeds. Usually, producers first offer a new and unknown species to the market. If successful, in one or two years, this new species will draw attention from buyers and users, and eventually gain market acceptance.

Some of the best selling species are listed below by common name and scientific name with estimated quantities produced (Table 12, Figure 3 in the appendix: "1991 Production: Major Species"):

Species	1991 Production Estimates
<u>Grasses</u>	
Switch Grass (Panicum virgatum)	40,000 lbs.
Big Bluestem (Andropogon gerardii)	15,000 lbs.
Indian Grass (Sorghastrum nutans)	12,000 lbs.
Side-Oats Grama (Bouteloua curtipendula)	9,000 lbs.
Native Tall Grass Prairie Seed	5,000 lbs.
Big Bluestem "Roundtree"	3,000 lbs.
Big Bluestem "Bonilla"	2,500 lbs.
Wildflowers	
Purple Prairie Clover (Petalostemum purpure	eum) 55 lbs.
Maximillian Sunflower (Helianthus maximil	liani) 25 lbs.
Lead Plant (Amorpha canescens)	25 lbs.
Yellow Coneflower (Ratibida pinnata)	20 lbs.

B. Native Wildflower and Grass Seed Producers

1. Producer Information

Thirty-five percent of Minnesota's native seed producers are fulltime growers or collectors of seeds. They contribute over 60 percent of seed sold in the consumer market. Another 55 percent produce on a part-time basis, providing less than 40 percent of the total quantity. The last 10 percent are hobby farm operators, who have yet to reach a salable scale. Their seed production currently serves in-house use: establishing production fields and building seed stock. The producer group primarily consists of individual farmers, with only a few proprietorships, owned businesses, or incorporated enterprises. (**Table 12, Figure 4** in the appendix: "Full-time, Parttime and Hobby Farms: Their Share in Native Seed Production").

2. Size of Operations

"Small-scale production" best describes Minnesota's native seed industry. Most producers operate on less than 30 acres of production land and wild collection fields. Because of timeconsuming labor intensive production methods, small operations, especially at the early stages, prove to be more feasible and manageable. For many producers, small size yields better results in capital investment, controlled production expansion, quality control, and market development. A successful and well-balanced native seed operation involves a full range of activities similar to that of business enterprises: production, pricing, sales, promotion and longrange planning. The small size does not undermine the complexity of the native seed operation, which is considered a very non-typical farm enterprise.

C. Production Cost

Based on information provided by native seed producers, there is no, "average" or "standard" production costs that can accurately reflect the capital and labor inputs different producers invest in their own seed production. As a result, costs vary considerably, depending on many variables, such as: land conditions, species grown, length of production cycle, cultivation methods, grower's experience and expertise, overhead, and intensity of labor involved in production management.

For cultivated production, the cost factors to be considered include land (either purchased or leased), equipment, seeds, labor, fuel and other energy consumption, chemicals, cleaning or processing equipment, or fees paid for such services if there are no in-house facilities. To many producers, especially those who grow wildflowers or have a smaller production acreage, labor input ranks high on the list, especially when hand-weeding, handharvesting, hand-collection, and hand-cleaning is part of the production practice.

According to industry estimates, overall production costs run from \$300 to \$1,000 per acre of crop for grasses and from \$1,000 to \$10,000 per acre of crop for wildflowers. The seed producers who were interviewed all came up with vastly different figures, because each one of them is doing it differently than the others. Consequently, there is no consensus on the cost estimate that this study seeks to establish. To understand the basics of the cost factors, we must first review the production process that incurs various capitals and labor expenses.

1. Production cycle:

Producers begin initial production with a small piece of land and hand-collected foundation seeds. After the initial seeding, the first few years yield no salable crop as all seed harvests are consumed for re-planting and production field expansion. Upon achieving a sufficient size, producers finally have a mature crop to sell. Depending on the geographic location and seed species in production, this may be a 3 to 5 year "lag time" before any capitol or labor investment can be recovered. The "opportunity cost" or potential earning opportunities for this time period if the producer engaged in another occupation has to be incorporated into the cost factor.

2. Labor input:

From planting to harvesting, field work heavily depends on hand labor for many producers, especially those who grow wildflower seeds. Initial planting, weed control, hand harvest of mixed seed varieties that mature at different times of the season, and postharvest seed cleaning all require intensive hand labor. In addition, field preparation and routine management such as spraying and burning also require labor input. For the majority of the producers, field labor or man-hours constitute one of the biggest cost items. In 1991, wages for Minnesota farmers or farm workers averaged \$5.63/hour, according to agricultural statistics reports. However, total labor costs are extremely hard to determine, as each producer devotes various amounts of man-hours in native seed production depending on what they grow and how they grow it. a. Land: Initial land purchase may range from \$500 per acre to \$1,200 per acre, depending on the geographic location such as in the northwest or southwest of Minnesota, and quality of land. To lease or rent land, producers pay an average of \$90 to \$120 per acre per year.

b. Equipment: Producers either purchase new equipment or utilize existing equipment with some modifications to accommodate seed production. For seed cleaning and processing, some special equipment may be required. Cost of maintenance and depreciation should be included.

c. Initial seed source: Some producers purchase rather than collect foundation seeds when establishing production fields. Per acre cost of seeds ranges from \$100 per acre to \$500 or more per acre, depending on the species grown.

d. Chemicals: Fertilizers and herbicides are used in production fields. Cost of chemicals ranges from \$30 to \$60 per acre per year.

e. Energy use: This includes cost of fuels and electricity for operating machinery and equipment for field work such as tilling, harvesting, etc.

f. Overhead: Administrative, marketing, promotion, and miscellaneous operation-related expenditures may vary from producer to producer.

If a production field yields 100 pounds per acre of grass seeds at a selling price of \$9.00 per pound, the grower will receive \$900.00 of sales revenue per acre. Less production expense, the profit margin can be very different for each producer.

D. Native Wildflower and Grass Seed Prices

As a high-valued crop, native wildflower and grass seeds carry an extremely broad price range, a result of many deciding factors for each individual species, such as, cost of production, quantity produced in a particular year, consumer demand, and other unique characteristics of the species. For native grass seeds, which is usually purchased by the pound and sometimes in large volumes, prices vary from \$3 per pound to \$70 per pound. The most popular species sell for \$7.00 to \$10 per pound. Wildflower seeds, on the other hand, are a more valuable commodity and normally sell by the from \$3.50 per ounce (about \$60 per pound), and reach an upper range of \$150 to \$200 or more per ounce. At the higher price scale, seeds may be sold in lesser quantities than ounces.

Prices for the same grass or wildflower seed also vary from producer to producer. For a specific species, the quoted price can be \$20 per pound or \$100 per pound. It is due to the methods of cultivation, economies of scale, and experience or expertise of the producer. As a result, producers often buy seeds from each other in order to "stabilize" a potentially volatile price situation. The "flexibility" of seed price to the producers is not a marketing advantage because consumers find it inconsistent and unpredictable, causing difficulties in making purchasing decisions.

E. Markets

Minnesota's native wildflower and grass seed markets consist of wholesale, retail, government purchase, and out-of-state sales. In 1991, all growers sold seeds or seedlings in the wholesale market or to the government. Eighty-six percent had a retail market, and 71 percent marketed their products to other states including Iowa, North Dakota, South Dakota, Wisconsin, Illinois, and Canada. Over two-thirds of producers re-invested portions of the seed production for in-house use -- i.e., re-planting and field expansion.

In the retail market, on-farm sales and mail order were most popular, with 30 percent and 36 percent of total retail sales respectively. Retail customers are mainly farmers, land-owners, businesses, and homeowners. The wholesale market serves volume users including: private businesses and seed companies, who purchase 81 percent of wholesale seeds; general landscapers, who purchase 13 percent; and retail nursery and garden centers, who purchase 6 percent. Government procurement always involves large quantities and varieties of seed species. Buyers in this group include Minnesota Departments of Transportation and Natural Resources, U.S. Fish and Wildlife of the U.S. Department of Interior, and local government agencies such as counties, cities or townships.

Overall, the retail market share was 27 percent of total sales in 1991, while wholesale had 31 percent, government purchase, 32 percent, and producers' in-house use, 10 percent. In-state sales held a 68 percent market share, and out-of-state sales had 32 percent. (Table 12, Figure 5 in the appendix: "Minnesota's Native Seed Market") and (Table 12, Figure 6 in the appendix: "Native Seed Sales: Minnesota Market & Out-of-State Market").

Only 17 percent of seeds and seedlings were sold beyond a 200-mile radius of the production origin, according to the 1991 Producer Survey. Of the 87 percent of seeds and seedlings that were marketed within a 200-mile radius, 51 percent were sold within a 100-mile radius, and 34 percent were sold within a 50-mile radius.

F. Production Trends and Projections

The annual production and sales of native wildflower and grass seed have been increasing steadily during the past ten years, especially since the late 1980's. Initially, the production expansion stemmed from a new market demand when the Conservation Reserve Program (CRP) was implemented. Since then, there have been many other driving forces that contributed to the development of the native seed industry, including environmental concerns, increased public awareness and consumer acceptance, continued government purchase and utilization, and implementation of various nature conservancy programs. It is also believed that earlier promotional efforts have started to pay off.

Producers reported an average annual increase of at least 20 percent to 30 percent of production and sales in 1990, 1991, and 1992. The fastest growing market segments include the following:

1. Commercial retail and wholesale or non-government purchase:

Although government has been, and still is, one of the biggest buyers, sales to the commercial retail and wholesale market have been going up at a higher rate compared to the annual increase in government purchases. Producers became less dependent on the one major customer than they had been in the previous years. Greater commercial market development is considered the leading factor in the latest production expansion.

2. Increased production and utilization of wildflower seeds:

Native wildflower seeds have always held a very small percentage of native seed production and sales, due to the more complex, difficult cultivation process, and higher prices. However, more consumers choose to buy wildflowers as they become more informed or have seen previous good results of the plantings. Government users also plan to increase wildflower seed purchases in proportion to grass seeds in the future. The last few years have seen an increase in the number of non-Minnesota buyers from the surrounding midwestern states. This user group includes government buyers such as state agencies with large procurement potentials.

Most producers have increased cultivation acreage, seed species, and total production since the 1991 Producer Survey. As more production fields mature and new producers start producing salable seeds, the available native seed supply will generate more markets, uses, and public interests. The projected 20 percent to 30 percent annual increase in native seed production for the next two to three years will provide at least an additional 25,000 to 38,000 pounds of marketable seeds to the consumers, whose number has been rapidly increasing. Better prices, higher quality seeds, seed mixes, seedlings, and more diversified post-sale services will further enhance the marketability and utilization of native wildflowers and grasses. Producers will become more skilled and sophisticated in production and marketing as the consumer market gets more competitive due to increased volumes and number of suppliers. Many producers have already started to diversify their operations by offering more service-related sales such as installation contracts and consultation services. This value-added service sector will contribute an increasingly large share of earnings and profits in the future and help attract more large volume users as well as individual consumers.

The producer group will benefit from the newly founded "Minnesota Native Wildflower and Grass Producers Association" that organizes the cooperative efforts to further develop the industry and provides leadership and a unified voice for Minnesota's native seed growers.

G. Major obstacles to industry development

Many producers reported that they had not been operating at full production potential due to various reasons, i.e., financial, technical or marketing constraints that most of them had encountered at different stages of production. Over 40 percent of producers listed "lack of financial resources" as one of the limiting factors in native seed production. Thirty-three percent considered "inadequate technical assistance or information" as another concerning issue. Seventy-three percent identified "market constraints" as the single biggest obstacle for the industry's future expansion. Twenty percent commented on lack of public and consumer education, and 13 percent expressed dissatisfaction with the current public policies such as state support and initiatives for industry development. (Table 12, Figure 7 in the appendix: "Obstacles to Production Expansion").

3. Out-of-state sales:

1. Financial:

This refers to a lack of financial resources or unavailability for production and operating loans and unwilling lenders. Due to the risks involved in native seed production, a long production cycle, and consequent delayed capital repayment on any borrowed funds, very few public or private lenders or financial institutions are willing to grant loans to native seed producers.

2. Technical:

Producers have had difficulties finding technical resources. There is very little technical information or assistance available to growers regarding methods of cultivation and production management. Upto-date research or technical literature and manuals are also lacking.

3. Market Constraints:

For producers, market constraints include many marketing aspects, ranging from the unavailability of market information and data, undefined consumer needs, uncertainty about the future's market, competition, low profit margins, inconsistency in government purchases and possible over-supply. Producers find it difficult to make market projections and production planning because of these factors. The market unpredictables may be very detrimental to native seed producers who have to bear the production costs for three years or longer before harvesting a mature crop for sale. If the market situation changes during this extended period of time, the producer's final sales and profitability will be affected. It is risky to produce a crop without sufficient market information or short-term and long-term projections. As a result, market fluctuations have already caused large carry-overs for some of the producers. To achieve full production potentials of the native seed industry, the above-mentioned issues need to be addressed.

4. Consumer education:

Lack of consumer education and market promotion is perceived by native seed producers as another barrier to production expansion, as many uninformed consumers are not able to distinguish "native" wildflowers and grasses from "wild" flowers and grasses. Many consumers shy away from native wildflower and grass seeds but opted to buy imported or genetically improved cultivars simply because the latter cost less. Up till now, there how even no organized effort to educate the public and potential users on the advantages of Minnesota origin seeds. The market potential has not been fully explored.

5. State policy incentives:

Last but not least, producers are concerned about state agency purchases, certification standards, current "competition" between seed production and harvest by the various state agencies versus that of the private growers, and the short-term and long-term policy initiatives that may either invigorate or hinder the industry growth.

Despite all the above-mentioned obstacles and concerns, many producers remain optimistic and have committed more land and labor resources to increase their current production capacity. This is due to the fact that the production is market-driven and the market demand for native wildflowers and grass seeds in Minnesota continues to be strong. The following chapter will examine the consumption and utilization of native seeds to provide some useful analyses of current markets and the outlook for the future.

Demand and Utilization of Native Wildflower and Grass Seeds

The commercial utilization of native wildflower and grass seeds in Minnesota was initially explored by a few government and private users in the late 1970's and early 1980's. These early pioneers started planting native seeds in order to preserve and regenerate these diminishing but potentially beneficial native prairie species. During the early years, the scarcely available seed source prevented adequate expansion for commercial use and resulted in high purchase prices. However, the small scale also enabled the producers and users to focus on pilot production and experimentation in order to build experience and expertise in seed cultivation and commercial planting.

Gradually, the commercialization of native prairie seeds started to gain popularity. In the mid-1980's, more consumers, especially farmers enrolled in CRP, became interested in prairie grasses and wildflowers that were of Minnesota origin. As a result, seed purchase and utilization began to increase. This new market development received support from the Minnesota state government. One of the earliest state initiatives was the creation of the "Minnesota Wildflower Task Force" in 1987, whose duties were to help increase the public awareness of the benefits of native prairie flowers and grasses and to promote their uses through educational approaches.

During the late 1980's, market development further accelerated as a result of continued increase in demand and utilization. The number of producers also doubled. Lar lume sales to government agencies remained strong, where and more medium and small-volume users entered the marketplace. Generally, government purchases absorbed the lion's share of the native seed supply, a situation that had created adverse market fluctuations during budget shortfalls which led to drastically reduced seed purchases. The growing number of non-government commercial users, however, could help reduce such impacts by bringing stability and profitability to the native seed market. Since the early 1990's, strong commercial sales have helped to strengthen the market structure and supply-demand mechanisms as commercial users have become more active in seeking seed sources, supplies, or installation contractors. The commercial sector started to play an increasingly significant role in market expansion. In 1992, the volume of sales reached an all-time high.

In order to provide a comprehensive assessment of the current and potential demand for native wildflower and grass seeds, a consumer survey was conducted in 1992 to assemble actual consumption statistics. The survey drew participation from all major native seed users and potential users in Minnesota. Through the cooperation of the Marketing Division and the Agriculture Statistics Service of the Minnesota Department of Agriculture, a survey questionnaire was developed (**Table 14** in the appendix: "Native Wildflower/Grass Seed Consumer Survey") to generate statistical information and data which included the following:

- a. Current market demand and utilization of native seeds;
- b. Geographic areas of seed consumption;
- c. Seed sources;
- d. Consumer information;
- e. Species in demand;
- f. Consumer market trends and projections; and
- g. Limiting factors or obstacles in native seed utilization.

Through extensive research work, the Marketing Division developed a list of current and potential native seed users including wholesale and retail nursery and garden centers, green-house facilities, landscaping firms, construction contractors, and federal, state, and local government agencies. The consumer survey was designed for institutional or volume users, and therefore, did not include individual users such as private landowners, homeowners or farmers. More than six hundred consumer survey questionnaires were mailed to the prospective participants throughout the state. Twenty-eight percent responded to the survey, a considerably higher-than-average percentage rate that indicated an interest and enthusiasm from consumers about the uses of native plant species. Among the survey respondents, 35 percent were identified as current users or potential users, who had either purchased and used native prairie seeds (29 percent) or had made definite plans to do so in the near future (6 percent). The majority of users, 72 percent, reported to have purchased and used native seeds for five years or less; 24 percent had purchased and used native seeds for the past five to ten years, while 7 percent had purchased and used native seeds for more than ten years. In general, native grass seeds had been in use for a longer period of time, were purchased in larger quantities, and had a larger number of users than wildflowers.

A. Current market demand and utilization of native seeds

In Minnesota's native seed market, the overall consumption volume falls into the vicinity of 97,000 pounds annually, of which, approximately 72 percent were grasses and 28 percent were wildflowers. In comparison, Minnesota's native seed production has a 96 percent grasses and 4 percent wildflowers ratio mix, which creates a discrepancy between market supply and demand. The discrepancy has caused confusion and misjudgment in the marketplace as producers and consumers became frustrated due to different expectations. (Table 12, Figure 8 in the appendix: "Native Wildflower & Grass Seeds Production and Utilization Ratio").

The latest report from the native seed producers and consumers revealed that the increase in market supply and demand for wildflowers had exceeded that of grasses, and the trend will continue in the coming years. However, in an attempt to adjust to a more desired ratio mix of wildflowers and grasses as demanded by the market, producers need to take caution when making production expansion plans to avoid unjustified shifts or even over-supply of either wildflowers or grasses.

In addition to the Minnesota market, Minnesota producers also supply approximately 40,640 pounds of seeds to out-of-state buyers, whose numbers have been increasing. The annual carry-over of seed stock is estimated at 20 percent of total production, or 25,400 pounds. The carry-over portion is either sold in the following year or kept for in-house use.

Besides seed sales, other marketable products and services such as seedlings or plants, land preparation, installation and custom planting, post-planting management, and consultation services all play an important role in continued market expansion. These products and services enhance sales activities and add value to a basic product.

In Minnesota, native wildflower and grass seeds are purchased by users for different planting projects which may involve large or small volumes of planting acreage. Seed utilization includes the following five main categories with respective percentage volumes consumed: 1) residential and commercial landscaping -- 47 percent; 2) parks and recreation projects -- 13

percent; 3) roadside and highway construction -- 11 percent; 4) land improvement and set-aside acres -- 10 percent, and 5) seed production and miscellaneous uses such as re-sale -- 19 percent. (Table 12, Figure 9 in the appendix: "Native Seed Utilization").

B. Geographic areas of seed consumption

An estimated two-thirds of native seed users are geographically concentrated in central Minnesota, especially around the seven-county metro area, while the rest spread across southern Minnesota (19 percent) and northwest and northeast Minnesota (15 percent). Many of these users, however, may have more than one planting sites located in other counties or regions, which are not shown on the user distribution map. (Table 12, Figure 10 in the appendix: "Geographic Distribution of Native Wildflower & Grass Users").

C. Seed source

The survey reported that Minnesota consumers prefer to use 100 percent locally grown species. But due to various reasons such as seed availability and prices, seed users may also frequently purchase non-native species from other states. In the marketplace, Minnesota's growers supply over two-thirds of all wildflower seeds purchased, while the rest comes from non-Minnesota sources. However, local growers provide a larger share of grass seeds in the market, ninety percent, compared to ten percent of non-Minnesota grass seeds.

Almost 80 percent of users purchase seeds from sources within a 100-mile radius; among them, half of the users buy seeds within a 50-mile radius. Only two percent go beyond a 200-mile radius for seed purchased.

Among non-Minnesota suppliers, Wisconsin ranks No. 1 on the list, with a 15 percent market share of non-Minnesota seeds, followed by, in descending order, North Dakota, 10 percent; Iowa, 8 percent; Colorado, 8 percent; South Dakota, 5 percent; and Nebraska, 5 percent. Other suppliers also include Idaho, Indiana, Kansas, Michigan, Missouri, New Hampshire, New Jersey, Pennsylvania, and Vermont.

D. User information

Among the user group, two-thirds represented the commercial sector which consists of wholesalers, retailers, service contractors and other business companies; one-third were government agencies including federal, state, and county .(Table 12, Figure 11 in the appendix: "Native Seed Consumers").

As the most important segment of the current native seed market, this consumer group includes a large number of volume users such as general landscapers, nurseries and garden centers, and construction contractors, etc., who serve retail customers and other end-users through direct or service-related sales. They bring the highest sales volumes and have ready access to a growing clientele base. A typical wholesale customer is a business corporation with an interest in native prairie plants who also has the financial ability to pay premium prices for corporate office landscaping through a service contractor.

2. Commercial retail and mail order sector:

Demand for retail sales and mail order has been increasing in the last few years as more homeowners became interested in naturalistic landscaping and started growing wildflowers and native plants in home yards and gardens. This new consumption trend is a result of increased planting of wildflowers and grasses on public land and roadsides and the previous education and promotional efforts by public and private supporters of native prairie plants. Even though retail market and mail order only involve small volume sales, they help achieve the highest product value and profit margin for producers and marketers, and will continue to bring increased market opportunities for the native seed business.

Another popular form of retail is the on-farm sales which serve walkin customers and farmers from neighboring communities. Most producers have on-farm sale outlets, enabling them to reduce overhead costs through direct marketing.

3. Government sector:

Every year, the State of Minnesota purchases large quantities of native wildflower and grass seeds for highway construction projects, state parks and recreation area planting, wildlife habitat improvement, roadside planting, and other conservation management programs, including RIM (Re-invest in Minnesota). As a forefront promoter and user, the state started purchasing and using native seeds more than a decade ago to help improve the native vegetation and diversity of prairie flowers and grasses along highways and on other state lands. Even though the state purchase fluctuates each vear because of budget changes, it has maintained an upward trend sin. In the late 1980's.

Compared to common turf grass and non-native species, native forbs and grasses require less maintenance and chemical use, are highly resistant to drought and better adapted to the soil, water, and natural climate of their particular region of origin. The ecological, economic and aesthetic benefits of native seeds justify the state's efforts and spending that helped bring the visibility and acceptance of Minnesotaorigin prairie species, which in the long run will significantly reduce the state's spending in maintenance of roadside and other public utility projects.

Currently, the state also produces and harvests a portion of native seeds it needs for various planting projects as a solution to budget constraints and inadequate supplies. It is unclear, at this point in time, the long-term effect of government production on commercial native seed industry in Minnesota. This topic requires further study and analysis for an in-depth and accurate assessment.

Approximately 15 percent of Minnesota counties, among a total of eighty-seven, are purchasing native wildflower and grass seeds for county highway construction, parks and other public land plantings. The number will increase in the next few years as more counties have expressed interests in using native species or are making plans to do so but may be delayed due to various reasons such as limited funding and seed source.

The U.S. Fish & Wildlife Service of the U.S. Department of Interior is also a long-time user of native seeds. It produces and purchases native species for land improvement projects such as wildlife management and protection.

4. Out-of-state market

Non-Minnesota buyers consist mainly of government users or installation contractors who bid on public planting projects. Among the neighboring mid-western states, government purchases usually hold a 70 percent or more market share, compared to Minnesota's 32 percent. In recent years, many of the mid-western states have increased government plantings, driving up market demand which led to more out-of-state purchases. Minnesota producers stand to gain from seed sales to these states in the next few years, or until seed production in those states catches up with the demand. Based on the information obtained from the consumer survey, a species list was compiled to include the current and potential native wildflowers and grasses demanded by Minnesota's market. Some of the high-volume and popular species are listed as follows (in descending order):

Grasses

Side-Oats Grama (Bouteloua curtipendula) Indian Grass (Sorghastrum nutans) Big Bluestem (Andropogon gerardii) Little Bluestem (Schizachryum scoparium) Switch Grass (Panicum virgatum) Blue Grama (Bouteloua gracilis) Green Needle Grass (Stipa viridula) Canada Wild Rye (Elymus canadensis) Western Wheat Grass (Agropyron smithii)

Wildflowers

Black-eyed Susan (Rudbeckia hirta) Purple Prairie Clover (Petalostemum purpureum) Purple Coneflower (Echinacea purpurea) Wild Bergamot (Monarda fistulosa) New England Aster (Aster novae-angliae) Dotted Blazing Star (Liatris punctata) Wild Ginger (Asarum canadense) Butterfly Weed (Asclepias tuberosa) Lead Plant (Amorpha canescens) Blue Vervain (Verbena hastata)

Table 15 in the appendix provides a list of the common species currently purchased or requested by consumers in the market. However, it does not include all species in demand as many of the consumer survey respondents were unable to supply a complete species list due to quantity purchased and incomplete labeling information for seed mixes.

F. Packaging and marketing requirements

Consumers purchase native wildflower and grass seeds in different packaging forms and mixes. The survey results reported the following statistics:

Purchasing forms	Wildflowers	Grasses		
Pure Seed by Pounds	23%	33%		

SURVEN 2 C

Page 30

E Species in demand

Pure Seed by Ounces	16%	5%
Seed Mix by Pounds	55%	48%
Seed Mix by Ounces	30%	5%
Seedlings	18%	7%
Plants	9%	8%

Consumers also require specific processing standards for the seeds. The following information show different processing categories and the percentage of consumers requesting them:

Cleaned and Conditioned	47%
Tested	43%
Official Seed Certifying Agency Standards	61%

G. Consumer market projections

The 1992 Consumer Survey showed that the survey group is made up of 82 percent current users and 18 percent potential users. From the consumers' point of view, the utilization volume of native seeds can be much higher if the market supply -- quantity, species, and genotypes-types -- can accommodate consumers needs and expectations. In other words, the market-oriented production and supply will help enhance the commercialization and marketing volume of native seeds. In recent years, consumer demand for native wildflowers has been growing at a higher rate than that of the native grasses. This trend will continue in the coming years as the commercial wholesale and retail market expands. The market projection indicates the rate of growth for native grasses will be unlikely to match that of the 1980's because of the maturing CRP acres. The 1990's consumer market demands the diversity of available seed species, easily accessible seed sources, and more genotypes for various geographic locations and regions.

In regard to government purchases, Minnesota's highway-sides and roadsides occupy approximately 260,000 acres of state land, and this figure triples if counties and townships are included. Each year, the Minnesota Department of Transportation seeds approximately 2,000 acres of land after highway construction, of which, about 500 acres are planted with native seed species. Although a portion of such seeds come from internal production, the commercially produced seeds will continue to be a main source of supply. Another state agency, the Minnesota Department of Natural Resources, also plans to expand the planting and use of native seeds for various resources management projects in the coming years. Government purchase and use will remain strong in the future, even though available budgets may limit the rate of increase.

H. Limiting factors to native seed utilization

The majority of consumer survey respondents provided positive feedback to the increased utilization of native species in the state. However, many of them also expressed concerns and dissatisfaction with the current situation in respect to the financial ability to purchase, seed availability and prices, general information and literature, technical assistance, consumer education, market promotion, and labeling. (Table 12, Figure 12 of the appendix: "Obstacles in Native Seed Utilization").

Twenty-seven percent listed the lack of financial ability to purchase or high seed cost as one of the biggest obstacles facing the consumers. Some of consumers reported that because of the unavailable or limited funds, they had been unable to accomplish the purchase and planting as planned. Twenty-five percent expressed dissatisfaction with the insufficient information and literature on native wildflowers and grasses, as well as the technical references or resources. For the general public or interested consumers, there were no readily available information materials or brochures for reading or learning purposes. Twenty-three percent of respondents identified the inadequate seed supply, limited seed sources and species (such as ecotypes) as another obstacle which prevented consumers from increased seed use. Many consumers are frustrated at finding suppliers and suitable eco-types or species. Fifteen percent also commented on the lack of technical knowledge, skills or available assistance on seeding, planting, management and maintenance of native seeds. There are other prohibiting factors, such as the lack of consumer education and product promotion -- cited by 10 percent of respondents, under-developed markets and lack of consumer interest -- 10 percent, and the time-consuming and difficult process to establish planted fields -- 10 percent.

Conclusion

Minnesota has been a leader in native seed production and utilization in the mid-west region. The past decade witnessed the development of Minnesota's native wildflower and grass seed industry, which has grown from a few hundred pounds annual output to the present production scale of 127,000 pounds. The next few years will bring great challenges as the industry moves toward commercialization where market forces will become increasingly important. Market competition, demand-driven marketing strategies, higher quality requirements, and price competitiveness will affect the production and business decisions for all producers.

However, the market potentials for Minnesota's native seed industry can not be underestimated. Preliminary market research showed that the majority of the general public have very limited information or knowledge about Minnesota's native grasses and wildflowers and their uses or benefits. The 1992 Consumer Survey targeted a selected group of consumers who represented the new market niche, but the scale of the prospective markets exceed the current estimate. Presently, much of the market potentials for native plant species still remain untapped because of the lack of public recognition and awareness. Research findings revealed that a well-informed consumer -- a retailer, wholesaler, or individual -- tends to take a more positive and supportive position in native seed utilization and will most likely become a user. Continued public education and market promotion are essential in reaching a broader spectrum of the general public and potential users.

The commercial market will continue to expand if and when heightened public awareness and interest becomes the driving force in the market development.

There are other challenges facing the Minnesota's native seed industry, such as the competition of imported or non-Minnesota origin wildflowers and grasses, the confusion between "native" and "wild" seed species, and growers' concerns over possible excess-supply. These issues need to be addressed before the market potentials can be fully explored. However, the development of Minnesota's native seed production and utilization holds great promise for a new and viable agricultural industry.

B. 6. Benefits:

1. The market supply and demand will be assessed on state and regional levels providing usable information with which to attract investors and producers to this industry.

2. Estimates of potential market demand will be available for presently unknown areas such as homeowner use of wildflowers in ornamental plantings and farmer use of native grasses for pastures.

C. Development of methods for testing of seed purity and viability and of standards for maintaining the diversity of individuals in a naturally occurring population of native germplasm when raised for seed.

C. 1. <u>Narrative</u>: Laboratory testing methods to determine seed purity and viability are not available for many of the Minnesota native grasses and wildflowers. Seed marketed for use in Minnesota and other states must be labeled indicating the purity and viability. For producers to label their seed truthfully, they need test methods which they can rely on. The other part of this objective provides for the writing of cultural and isolation standards which will insure that the native grass and wildflower germplasm does not change when raised in controlled conditions for seed production.

2. <u>Procedures</u>: a). The state seed laboratory in the Minnesota Department of Agriculture will conduct a literature review and propose testing methods which will provide accurate information for labeling purposes. The methods proposed will be adapted from those presently used on closely related species and those which have similar growth habits. The methods will be submitted to the national Association of Official Seed Analysts for peer review. b). The production of native grass and wildflower seed of Minnesota origin must be done in a way that will maintain the diversity of individuals within a naturally occurring population. The Minnesota Crop Improvement Association will use nationally developed seed production standards for these kinds of seed and adapt them to suit our needs.

3.	<u>Budget</u> : a. Amount Budgeted: b. Balance:	<u>LCMR Funds</u> \$25,000 \$ 4,100				
4.	Timeline for Products/Tasks:	July91	Jan92	July92	Jan93	June93
	a. Literature review	x	x	x	x	
	b. Potential testing methods identifi	ed X	х	X	X	
	c. Testing methods established				X	x
	d. Potential certification standards identified			x	x	
	e. Certification standards established	² d			x	X

C.

C.

C.

C.

5. <u>Status</u>: After reviewing the available literature for information on standardized testing methods for native grass and wildflower seeds, the state seed laboratory chose ten species to perform germination procedures on in this objective. A literature search for information regarding the testing of native grass and wildflower seeds continued for the duration of the project.

The original goal was to test ten species during the two year project period. However, due to the length of time, the number of replicates, the inability to procure sufficient quantities of pure seed, and the different procedures necessary to thoroughly examine each species, it was not possible to test every one. The list of species that were evaluated in this portion of the project are:

Koeleria macrantha Petalostemum Purpureum Liatris pycnostachya Spartina pectinata Verbena stricta Sporobolus heterolepis

Zizia aurea

Due to the constraints listed in the previous paragraph, the following species were not evaluated but testing will continue independent of this project in an effort to work through the germination inhibitors and other problems peculiar to these three species in order to find a uniform testing method:

> Petalostemum candidum Amorpha canescens Aster oolentangiensis

Inconsistent, variable germination response is typical of many native species and the results of this project are no exception. Individual seed lots can vary considerably in their response to identical test parameters. This situation resulted in the retesting of some species. Never the less, some tentative germination testing standards for a number of the species were achieved. In the short term, these methods will be very useful for in-house testing and in the long term, they hopefully can be used by other laboratories as well.

Testing of the species *Spartina pectinata* and *Koeleria macrantha* under various temperatures and treatments began and was completed prior to July, 1992. Those tests involved subjecting the seed of the two species to nine different prechill and wetting agent methods and each combination was tested at five different temperatures (45 tests involving 18,000 seeds). During this same period, another species, *Petalostemum purpureum*, was initially tested under six different methods and five different temperatures. This species has undergone two additional treatments in the July 1, 1992 to January 1, 1993 period. Physical scarification of the seed greatly improved the germination of the *Petalostemum purpureum* seed.

The germination results have been summarized for the testing done on the seven species tested and they are contained in **Table 16** of the appendix. Each species tested will be discussed individually in the following paragraphs:

<u>Koeleria macrantha (cristata)</u> - Prairie June grass. It grew quite satisfactorily under any regime we exposed it to. We chose one temperature and prechill setting that seems to be optimum. In previous years, we have been unable to initiate any growth without a prechill. This seed lot did not require a prechill to achieve nearly optimum germination.

<u>Spartina pectinata</u> - Prairie cord grass. This species usually grows very well with germination percentages in the 80 to 90 percent range. Evidence of heavy damage from an insect was apparent in this lot. It may also have contained fungal pathogens or had immature caryopses. The reasons for poor performance in these trials was not as important as determining a standard testing technique that would give a reliable result no matter what the condition of the lot. Even with the deficiencies noted,

germination was better under some conditions.

<u>Petalostemum purpureum</u> - Purple prairie clover. This species responded dramatically to physical scarification. This is a logical result since hard seed is a characteristic of the *Fabaceae*.

<u>Verbena stricta</u> - Hoary vervain. Getting a germination response from this species is always a problem due to a inherent high level of dormancy. Nothing we subjected the seed to gave really satisfactory results. The longest prechill period yielded the best response. Perhaps a longer period of prechill might prove to be even better. Quick turn around in testing is an advantage for marketing. Long prechills significantly lengthen the time needed for testing and would delay the marketing.

<u>Liatris pycnostachya</u> - Tall blazing star. Many samples of this species have had damage to the radical end of the seed resulting in abnormal root development. Overzealous harvesting and cleaning may be the cause. Few problems were noted in this lot of seed and it performed much as expected. Trials without gibberellic acid treatment yielded a poorer response than is usually observed.

<u>Sporobolus heterolepis</u> - Prairie dropseed. Initial testing yielded unusable results because the seed lot involved had poor seed quality. Another sample was obtained from a different lot and another series of the same tests were run. Good results were achieved from testing the second lot.

<u>Zizia aurea</u> - Golden alexander. Lower than hoped for germination responses were encountered.

Due to a high degree of innate variability within a species caused by a host of genetic and environmentally induced factors, achieving identical germination responses can be problematic at times. This is why it is necessary to replicate selected optimums many times by as many independent laboratories as possible to insure reproducible results. This is sometimes a difficult task since the cooperation of other laboratories is necessary. Other seed laboratories don't always have the time or the resources to comply with the requests for cooperation. Developing a uniform testing method can sometimes take several years as a result.

The following describes the methodology used in this portion of the project:

1. Every sample was germinated on two standard germination blotting papers and placed in transparent plastic boxes measuring 5.50 X 5.25 inches and 1.0 inch deep. The wetting agents for the blotters were either potassium nitrate (KNO₃), gibberellic acid, or de-ionized water. The blotters were soaked in the wetting agent and excess water was drained off prior to planting according to the Association of Official Seed Anz' = 3 (AOSA) Rules for Testing Seeds. One hundred seeds we blaced on each

blotter and there were four replicates for each variable tested. The results for each variable tested were derived from averaging the results from the four replicates in each test.

· *·

2. The plastic boxes containing the seeds were placed in various germinators set at the prescribed static or alternating temperatures listed in the charts in **Table 16** of the appendix. Each germination chamber was equipped with lights and set to a cycle of 16 hours of light and 8 hours of dark every day. The lighted period coincided with maximum temperature. Temperatures were maintained to within +/-2° Celsius.

3. Seed to be prechilled is placed on blotter paper media in plastic boxes in the same manner as all other replicates and the boxes are placed in a chamber that maintains a constant temperature of 5° Celsius for the prescribed time period.

4. The 24 hour freeze was accomplished by placing the seeds on a moistened substrate (blotter paper media) and put into a freezer. After the 24 hour freeze, the boxes containing the seeds were put into the appropriate germinators.

5. Seed subjected to the hot water treatment was placed in beakers and boiling water was poured over them until they were completely covered. The seed was soaked in this water for 30 minutes, placed on the germination media (blotter paper), and then placed in their appropriate germinators.

6. Scarification was accomplished by placing each one hundred seed replicate to be abraded between stationary and hand held blocks of wood wrapped in sandpaper. Special care was taken to prevent damaging or destroying the seeds by applying too much pressure to the blocks. Periodic examination of the testae under magnification was done to insure that the seeds were being properly scratched.

7. The clipping of the distal end of *Verbena* seeds was done with a surgical scalpel. Care was taken to avoid damaging the cotyledons because abnormalities would then be difficult to spot in the seedlings. Nicking the testa of *Zizia* was done in much the same manner, except that the precise location of the cut on the seed was not a consideration.

8. Acid scarification was accomplished by just covering the tops of seeds placed inside specimen vials with a 1% concentration of hydrochloric acid for a period of one hour. The seed was then rinsed with water and placed on the germination media.

This portion of the project has produced the following proposed test specifications for the seven species on which work was completed:

<u>Koeleria macrantha (cristata)</u> Temperature: 15-25° Celsius, 5 day prechill. Potassium nitrate (KNO₃) treatment.

<u>Spartina pectinata</u> Temperature: 10-30° Celsius, no prechill. Water treatment.

Petalostemum purpureum Temperature: 15-25° Celsius. Scarify physically. Potassium nitrate (KNO₃) treatment.

<u>Verbena stricta</u>

Temperature: 10-30° Celsius, 28 day prechill. Gibberellic Acid treatment.

Liatris pycnostachya Temperature: 20-30° Celsius, 5 day prechill. Gibberellic Acid treatment.

<u>Sporobolus heterolepis</u> Temperature: 20-30° Celsius, 14 day prechill. Water treatment.

<u>Zizia aurea</u> Temperature: 10-30° Celsius.

Mechanical scarification or a double 5 day prechill with a 7 day warm interval. Water treatment.

Efforts will continue after the end of this project on the seven species involved and others as time permits to cooperate with the Association of Official Seed Analysts for referee testing of the methods. The methods, once approved by the AOSA, will be available to all seed laboratories for testing to determine the viability of native grass and wildflower seeds.

Work has started on writing certification type standards for the production of native grass and wildflower seeds. Due to the recent illness of one of the project cooperators, Dr. Harley Otto, this part of this objective will not be completed until August 1. Preliminary indications are that many of the species involved are too diverse genetically to fit the commonly accepted definition of a variety. The seed certification program is based upon certifying varietal purity. As a result, a different approach may be used called "source identified" to formulate production standards that will maintain the population diversity desired. This same approach was devised and is

currently being used for native production tree seed in Minnesota.

- C. 6. <u>Benefits</u>: a). The establishment of seed testing methods for purity and viability will focus industry competition on seed quality through truthful labeling. Consumers will benefit from being able to rely on truthful labeling when choosing seed that will meet their needs. b). The certification of seed produced from commercial native grass and wildflower plantings will provide a means of verifying origin and that the natural diversity of the germplasm is maintained.
- IV. <u>Evaluation</u>: During the FY 92-93 biennium, the program can be evaluated based upon whether or not the product timelines are met. Meeting the timelines will indicate that the individual tasks proposed in this report have been completed. At the end of the biennium, the final report will provide the information needed to encourage an increase in native grass and wildflower seed production. The ability of the information provided in the final report to meet this need can be evaluated at that time.

In the longer term, a significant increase in quality and amount of native grass and wildflower seed can be used as an indicator of the success of the program.

V. <u>Context:</u>

A. Little if any work is being done to generate the technical information needed for new growers to produce native grass and wildflower seed in Minnesota. This is not a typical agricultural, vegetable, or flower seed crop which means the normal research and promotion interests are not involved. Most of the native grass and wildflower seed production now taking place is not in Minnesota and Minnesota native germplasm is not being utilized.

B. The work proposed in this program is aimed at providing the information necessary for this segment of the seed industry to attract new investment.

C. The work that has been done to develop the information needed by this segment of the seed industry has been done on too few species and in most cases it has not been done in Minnesota and on Minnesota native germplasm. Individuals and businesses motivated by profit only have sought those species which are easy to raise and which could be sold in many states. Unfortunately many of these species are not even native to Minnesota or North America. There have been no past proposals to the LCMR addressing this need and there are not presently any plans for future ones.

D. Not applicable.

E. Biennial Budget System Program Title and Budget: Not Applicable.

VI Qualificatic

Page 40

1. <u>Program Manager:</u> Charles G. Dale, Supervisor Seed and Noxious Weed Section Agronomy Services Division Minnesota Department of Agriculture

B.S., Agronomy and Soil Science, University of Minnesota, 1971

Mr. Dale has supervised the seed regulatory program for Minnesota since 1978 and in 1983, he played a lead role in the complete revision of the state seed law. He is the immediate past president of the American Association of Seed Control Officials and currently serves as chairman of the associations Planning and Development Committee. Mr. Dale's primary role will be as program manager and to oversee work conducted under part of Objective C.

2. Major Cooperators:

A. Dr. Anne M. Hanchek Assistant Professor, Department of Horticultural Science Extension Environmental Horticulturist, Minnesota Extension Service University of Minnesota

Ph.D., Horticulture, Michigan State University, 1989

- M.S., Botany/Plant Ecology, University of North Carolina, 1984
- B.A., Biology/Botany, Northern Michigan University, 1980

Dr. Hanchek specializes in environmental horticulture for consumers and in herbaceous plants. Her doctoral research focused on techniques and problems in commercial production of herbaceous perennials. Her master's work assessed the effect of microclimate on distribution of Michigan wildflowers. In Minnesota, she acts as a leader in home horticulture programming for the Extension Service and State Coordinator for the Master Gardener program. Her primary role will be to participate in objective A.

B. Sue Ye

Agricultural Marketing Specialist Marketing Division Minnesota Department of Agriculture

M.S., Agricultural Economics, University of Minnesota, 1987

As a trained agricultural economist, Ms. Ye administers market research programs for the Marketing Division, Department of Agriculture. Her background includes working for the Chinese government and the United Nations with duties ranging from policy ar vonomic analysis to market research for primary agricult commodities. She joined the Department of Agriculture in 1987 and has since conducted various market research projects for Minnesota's agricultural and food products. Ms. Ye is a member of the American Association of Agricultural Economists. Her primary role will be to perform the tasks in Objective B.

C. Dr. Mark Strefeler

t ^{gr}

Assistant Professor, Department of Horticultural Science, University of Minnesota

Ph.D., Pomology (Breeding & Genetics), Cornell University, 1989 M.S., Horticultural Science, North Carolina State University, 1985

Dr. Strefeler has refereed publication and has conducted research in the areas of population and quantitative genetics, molecular biology and genetics using both cultivated plant species and wild germplasm.

Current projects include the genetic characterization of invasion purple loosestrife populations in Minnesota and possible insights on how they may be controlled, the genetics of fuchsia and rose, and the use of molecular markers to study the genetic structure of plant species. Besides research, he has experience in horticulture production and the use of plants in interior and exterior landscaping. Dr. Strefeler's primary role will be to characterize the genetic diversity of wild germplasm and to develop cultural management practices which will maintain this diversity in the foundation seed plantings used to provide commercial wildflower seed in Minnesota. These tasks are in Objectives A and C.

D. Other Contributors

1. Dr. Harley J. Otto Executive Vice President Minnesota Crop Improvement Association

2. Chris Hanson

Administrator Center For Alternative Plant and Animal Products University of Minnesota, St. Paul Campus

3. Peter Buesseler

State Prairie Biologist Scientific and Natural Areas Program

4. Sarlyn Ziegler

Seed Analyst Senior-Purity State Seed Laboratory Page 42

Laboratory Services Division Minnesota Department of Agriculture

- 5. Michael Muggli Supervisor State Seed Laboratory Laboratory Services Division Minnesota Department of Agriculture
- 6. Bonnie Harper-Lore Program Coordinator National Wildflower Research Center -Midwest

VII. <u>Reporting Requirements</u>

Semiannual reports will be submitted not later than January 1, 1992, July 1, 1992, January 1, 1993 and a final status report by June 30, 1993.

July 1, 1993 Final Status Report

DATE OF REPORT. LY 1, 1993

LCMR Final Status Report - Summary Version - Research

Native Grass and Wildflower Seed

Program Manager: Charles G. Dale (612) 296-6123 Minnesota Department of Agriculture Agronomy Services Division

A. Legal Citation M.L. 1991 Chapter 254, Article 1, Section 14, Subdivision 6(e).

Appropriation\$130,000Balance\$4,100

Native grass and wildflower seed. This appropriation is to the Commissioner of Agriculture in cooperation with the Commissioner of Natural Resources to develop the varietal, cultural, and market information necessary to encourage expanded commercial production of Minnesota origin native wildflower and grass seed.

B. <u>Compatible Data</u>: The information collected during the biennium ending June 30, 1993, from projects funded under this section that have common value for natural resource planning and management and for various agricultural production systems will be in a format that can be adapted for use by other public agencies, private organizations, and individuals. The expense of integrating the information into other data management systems will be the responsibility of the agency, organization, or individual receiving the information.

II. <u>Narrative</u>

This program is designed to develop germplasm, cultural, and market information needed to promote an increase in production of native grass and wildflower seed. Current demand for these kinds of seed far exceeds supply in both the quality and the number of species available for public and private use. Technical information on how to produce seed from selected species and market information are needed in order for potential growers to decide whether or not they should invest in the production of these kinds of seed.

- III. <u>Objectives</u>
- A. Development of germplasm and cultural information.

A. I. <u>Narrative:</u> Developing methods which can be used to produce seed from native grasses and wildflowers along with methods by which the diversity of individuals in a naturally occurring population can be maintained are problems to be solved in this part of the project. The Center for Alternative Plant and Animal Products will review and evaluate new and existing information and methods in order to develop guidelines for growers to produce and maintain diversity in native grass and wildflower seeds. The information resulting from this objective will also be presented at scientific meetings and in professional journal papers.

A. 2. <u>Procedures</u>: Existing information on commercial production of approximately 25 species of native grass and wildflower seed will be reviewed and current practices evaluated under controlled conditions. Native germplasm will be collected and evaluated for several genera. Germplasm diversity of a model grass and model wildflower will be assessed between and within regions of the state and compared to commercially available seed. The results will be summarized in guidelines to commercial producers, addressing production techniques, seed and seedling identification, and maintenance of germplasm diversity. The systems developed in this objective will act as models for future research.

Α.

Α

Α.

3.	Budget: a Amount Budgeted:	LCMR \$70.000	Funds				
	b. Balance:	\$	0				
4.	Timeline for Products/Tasks:		July91	Jan92	June92	Jan93	June93
	a. Literature review			Х	х	х	X
	b. Establish species list		x	x			
	c. Identify production practices		x	х	Х		
	d. Characterize populations		x	х	X	х	
	e. Evaluate production practices		x	х	X	x	x
	f. Develop production guidelines						X
	g. Prepare seed identification mate	rials		х	X	х	х
	h. Collect germplasm		х	х	х	x	x

5. <u>Status</u>: Two graduate students joined the project under the guidance of Drs.Hanchek and Strefeler. They have made many trips to collect seeds and visits to producers, and will continue to do so. Seeds of over 28 species and/or varieties from 50 sites have been collected for use in preliminary propagation trials, detailed studies, and genetic research. Each collection is labelled to keep populations distinct. Not all species collected are included in the detailed research. The students have also attended conferences on native plants (one gave a paper at the 1992 North American Prairie Conference) and participated in the development of a growers group. This group formed after discussion between Dr. Hanchek and Jack Johnson of AURI.

Literature Review

The task of reviewing the literature began in August 1991, well ahead of schedule, and has continued throughout the project. Insufficient documentation of production methods exists in the scientific literature, despite many popular press articles, and what does exist is scattered widely throughout journals, conference proceedings, and monographs. In June of 1992, another graduate student, Eleanor Congdon, was engaged as hourly help, primarily for the literature review. Since her background is history, and thus library research, her help has greatly increased our ability to gather information.

The current bibliography has over 1085 entries entered into a commercial bibliographical database called Papyrus 7.0, created by Dave Goldman for Research Software Design of Portland Oregon. Citations include articles, books, conference proceedings, theses, and pamphlets. Each entry lists pertinent information such as year, author, title, publisher, etc. Where applicable, the call numbers assigned by the University of Minnesota Library system are included so that the citation may be reviewed by interested readers.

The bibliography's function is not only to find as many citations as possible concerning native plants and growth practices relating to them, but also to extract that information as needed. One third of the citations have appended abstracts, and 250 have more detailed notecards that give specific information concerning production procedures or requirements for plants native to Minnesota. The full bibliography will be available through the Center for Alternative Plant and Animal Products, and may be published in a format yet to be determined.

Species List

There are actually several different lists, each based on different criteria. Unfortunately, not many plants can be used to study a genetic problem and a specific production problem and at the same time be the commercially most attractive and environmentally most interesting. For the production portion of the research, the species list has been developed through input from two sources. In collaboration with the bibliography, a species list was created by indexing Ownbey and Morley's Vascular Plants of Minnesota according to scientific name, but excluding ferns, woody plants, and introduced species, while including information on each plant's status on the State Noxious Weeds List, the State Endangered Plants List, and the State Protected Plants List. In addition, suggestions were solicited from producers by Julia Bohnen.

Development of recommended production practices has included both the results of our experimental research and material found during the literature review. Details on specific plants are being collated into a computerized database and can be accessed as a Lotus 123 spreadsheet. As a result, 1303 plants will be listed, for which available information is given on topics such as fruiting structure, time of harvest, seed storage requirements, seed treatments, asexual propagation methods, production treatments for established plants, a plant's preferences for soil, moisture, ai ght, root structure, and genetic information. All details in spreadsheet are Page 4

accompanied by a reference number which refers to the source of the information in the bibliography. A total of 44 columns for different types of information, and for references, have been set up in the spreadsheet. This database also shows that much information is lacking for many of Minnesota's native plants. The spreadsheet will be available to the public through the Center for Alternate Plant and Animal Products, and it may be published through them in a format yet to be determined.

Seed and Seedling Identification

Seed and seedling identification guide materials are being prepared. Development of this resource has continued to the end of the grant period. Several sets of slides will be available from the University of Minnesota Extension Service Distribution Center.

Production Practices

To identify successful production practices, site visits were made to several Minnesota producers. Generally it was observed that successful producers are innovative individuals with the ability to apply agricultural and horticultural skills and techniques to the diverse palette of native plants. Some specialization has occurred, with some of the producers focusing on production of grasses, while others may produce only native wildflowers. Agricultural engineering skills also prove useful as the diverse plant forms and growth habit make seed harvesting and processing a challenge. A detailed survey summarized in February 1992 compiled information about production facilities and products being marketed.

As part of the evaluation process for production standards, growers were consulted. We learned that standard horticultural techniques can be used successfully with the majority of our native plants. Greenhouse trials have been underway since August 1991, and formal trials examining the effects of stratification, scarification, and after-ripening are ongoing. Special emphasis is being placed on *Spartina pectinata, Lilium philadelphicum, and Phlox pilosa* (one grass, one non-grass monocot, and one dicot). The effect of gibberellic acid (GA) in enhancing rate and uniformity of germination has also been examined. We have found that all of these treatments can be effective on native plants, but the application is highly species dependent. Our results, obtained under conditions similar to those of some producers, are very encouraging.

The often impervious seed coat of legumes usually needs to be damaged or worn in some way to allow gases and water to enter or to reduce the mechanical pressure on the embryo so that germination can proceed. In trials comparing scarified versus not scarified seed, physical scarification of several leguminous species has resulted in 22 - 83 percent germination. Non-scarified seed had from less than one to 63 percent germination.

For some species, grasses in particular, a period of after-ripening is required. During the afterripening period, physiological processes occur bringing the seed nearer a state in which it is able to germinate the set of the after-ripening period varies for different s, the set of th Page 5

involves storage for two months or longer after harvest.

.

Many of our native species require a cold moist period to promote germination. Several approaches can be used to accomplish chilling treatment. Some producers sow their seed outdoors and allow nature to take its course. Refrigeration can simulate winter under more controlled conditions. Stratification treatments consisted of 4 to 12 weeks on moist blotter paper in petri dishes in the 1992 trials or in moistened germination medium for the 1993 trials. Germination can be adversely affected, however, by too much cold moist stratification as well as too little.

Gibberellic acid may be effective in circumventing other more time-consuming treatments, and can substitute for cold moist stratification in many instances. However, over-exposure to GA can cause plant growth abnormalities such as excessive elongation which could potentially affect the salability of the plant or its establishment upon transplanting. Appropriate GA concentrations and treatment lengths were examined for several species.

For many species, it is unlikely and probably biologically undesirable that 100 percent germination occurs in a very short period of time. Due to variability within a population, seed will germinate over a sometimes much extended time frame. Uniformity of germination is important in plug production from seed. Increased uniformity occurs when more seeds germinate in a shorter time frame. Optimum uniformity can be achieved by applying the appropriate treatment to the seed. However, germination results for two populations of a species may vary depending upon inherent physiological differences and upon environmental conditions prevailing at the site of origin. Results from the germination trials will be available after the data has been analyzed and summarized.

In some instances, seed germination may not be the factor most limiting to native plant production. Many growers commented in the surveys on small quantities of seed produced by different species. Can cultivation improve quantity and quality of seed yield? Is insect predation on seeds a major problem? Can we document and examine seed production? Field plots established at the Minnesota Landscape Arboretum are addressing these questions. Individual plants of *Spartina pectinata, Tradescantia ohiensis, and Petalostemum purpureum* (one grass, one non-grass monocot, and one dicot) are being monitored for seed yield and factors affecting it. At the same time, transplants from the prairie are being monitored similarly while growing in cultivated field conditions near the prairie.

Preliminary data suggest that simple field cultivation can increase seed yield and/or vegetative growth in certain native species. Seed yield in *T. ohiensis* was increased dramatically in cultivation within the first season of transplanting. *S. pectinata* did not flower in either the prairie or the cultivated plot, probably due in part to the unseasonably cool weather during the 1992 growing season. *P. purpureum* flowered in both treatments; however, flowering occurred too late in the cultivated plot for seed to fully develop before the growing season was interrupted by a hard frost. In both the cultivated *P. purpureum* and *S. pectinata*, substantial

vegetative growth was realized in the first growing season. This study will, of necessity, continue through the 1993 growing season to allow a second year of data to be collected. The work described here forms Julia Bohnen's master's thesis and will be presented in detail with full analysis and peer review in her thesis manuscript and defense, planned for late fall of 1993.

Characterize Populations

Seeds of the species for genetic diversity research were collected in 1991 and 1992 and germinated in the greenhouse. The goal is to obtain at least 25-30 plants of each of the collected populations. The populations are then characterized in three ways:

1. Seedling tissue and leaf tissue is analyzed using isozyme analysis. The resulting banding patterns show if there are genetic differences within and between populations. Some of the isozymes used were: ACP, ADH, EST, G6PDH, GDH, GOT, IDH, MDH, PRX, PGI, PGD, and PGM.

2. Morphological differences within and between populations grown in the greenhouse were observed. These include number of flowers, number of leaves, height, number of stems (grasses only), and time of flowering.

3. Morphological differences within and between populations grown in the greenhouse and later transplanted into the field were also observed.

Genetic Diversity Research

Grasses

Andropogon gerardii

1) Morphological Differences.

Several populations were grown in the field in the summer of 1992 and the following characteristics were observed and recorded; plant height, number of stems and number of inflorescences. Within populations, there was variability observed in all characteristics studied. The highest variability was observed in plant height, followed by both the number of stems and inflorescences. Between populations, there was little or no difference in the means observed for both shoot and inflorescence number. It was also noted that the time of anthesis and senescence (stem discoloration) varied within populations.

2) Isozyme Analysis.

Preliminary results of starch gel electrophoresis indicate that there is little genetic variation within the populations. Isozyme analysis will be completed this summer.

Page 7

Schizachyrium scoparium

1) Morphological Differences.

The same characteristics were observed and recorded as in Andropogon gerardii. Within populations, there was variability in all characteristics. Inflorescence number showed the most variability and the least variability was observed for plant height. Between populations, there was variation in mean shoot and inflorescence number and very little variation in mean plant height. There was also variation in time of anthesis.

Isozyme Analysis.
 Starch gel electrophoresis indicates so far that there is little genetic variation within the populations.

Forbs

Monarda fistulosa.

- Morphological Differences
 Despite several germination attempts, plants died in the greenhouse
 and no field data could be collected. However, this summer several
 populations will be grown again in the field.
- 2) Isozyme Analysis. Because of difficulties during laboratory procedures, the results are still inconclusive.

Liatris spp.

1) Morphological Differences.

Several populations of *Liatris aspera*, *Liatris ligulistylis*, *Liatris punctata*, and *Liatris pycnostachya* were grown in the field and the following characteristics were observed and recorded; number of leaves, leaf length, leaf width, and dry weight of the aboveground plant parts. There was variation within the populations for all characteristics with the most variability observed for leaf number. Little variation was observed between populations in number of leaves, length, width and dry weight.

Floral traits will be evaluated this summer and fall, the first season of flowering for these seedling populations.

2) Isozyme Analysis.

Isozyme polymorphisms in *Liatris* was observed for the following isozymes: Acid phosphatase (ACP), Alcohol de `rogenase (ADH),

Aspartate aminotransferase (AAT), and Phosphoglucomutase (PGM). This indicates that isozyme diversity exists with populations of *Liatris* and hence, genetic diversity for these enzymes in these populations.

Continuation of Genetic Diversity Research

1) Morphological Differences.

About 30 individuals from each population will be grown again in two field locations (St. Paul and Morris, MN) for this summer. Additional populations will be grown from seed collected not only in Minnesota, but also from neighboring states. Similar characteristics will be observed and recorded by late September to early October. At the end of the growing season plants will be removed from the field and overall dry weight will be recorded. The St. Paul field will be used to obtain a two-year data (1992 and 1993) while the Morris location will just provide one-year data (1993 only).

2) Isozyme Analysis.

Starch gel electrophoresis will continue through this summer. Leaf tissue will be collected from both locations, St. Paul and Morris, for the analysis.

Cultural management practices for maintaining genetic diversity

As soon as all the data from the field observations and the isozyme analysis are completed more detailed recommendations on management of seed production practices will be forthcoming.

General Conclusions for all species in this study

The preliminary results show that genetic diversity is greater within local populations than between populations. This is common in many natural populations of plants and animals. The significance of these results is that seed from fairly large geographical areas (> 200 mile radius) can be intermixed or planted throughout a region without significantly or permanently altering the genetic integrity of natural populations in that region. It may even be possible to plant seeds from the species examined in this study anywhere in the state regardless of its point of origin, without any negative impact on natural populations.

Management of genetic diversity in seeds will best be achieved by collecting seeds from several populations in distinct areas within a given region and using these as the foundation plantings for seed production. This approach will maximize genetic diversity in the source population and reduce genetic drift. Limiting seed collection and distribution to a small geographical area would increase the effects of genetic drift and decrease the genetic diversity in the seed produced. The resultaneous many then

Β.

Β.

have a negative impact on natural populations in the vicinity.

These recommendations are based on a limited amount of genetic information and are only preliminary in nature. Upon completion of this study we will have a good base to make recommendations but more work on the genetics of these and other species are needed to insure that proper methods of collection, production and distribution are used to minimize the impact of future plantings on natural populations.

Finally, we feel it is vital that a practical and objective set of guidelines are developed. These should be sound for the environment and economically feasible for the producers; otherwise any effort in this area will prove futile. The State of Minnesota needs to find ways to promote production of native plants in a commercial setting. The alternative and current practice of collecting seeds from the wild will ultimately result in adverse affects on natural populations and increase their vulnerability to the loss of species in the future.

Kerstin Concibido's master thesis will deal with the population genetics of *Liatris* spp. in Minnesota.

A. 6. <u>Benefits</u>:

a. The information developed by this objective can be used by anyone who is interested in producing Minnesota origin native grass and wildflower seed resulting in a supply which is closer to meeting demand.

b. Existing stands of native grasses and wildflowers will suffer less unregulated seed harvest because supplies will be commercially available.

c. The quality of plantings of native species along roadside and on other public lands will increase significantly if these seeds are more rapidly available.

d. Models developed in this objective will be applicable to other research into native grasses and wildflowers.

- B. Assess present supply and demand of native grass and wildflower seed, analyze the scale potential of Minnesota's native origin seed industry and future market demand.
- B. I. <u>Narrative</u>: An inventory of present supply and demand of native grass and wildflower seed must be ascertained to encourage appropriate levels of public and private investment. The focus of this objective is to collect and examine primary information and data on the native grass and wildflower seed industry, and make them available for use by the interested public including present and potential producers, consumers, and investors.

2. <u>Procedures</u>: Producer and consumer surveys will be conducted to: 1) determine the current production and consumption level and geographic distribution of seed source and destination, and 2) identify present and prospective producers and consumers. Market information and data will be collected through telephone and/or in-person interviews and mail responses. A customized database will be developed and maintained to better manage the available industry data. Results of the survey will be entered into the database for processing and analysis.

В.	3.	<u>Budget</u> a. Amount Budgeted: b. Balance:	<u>LCMF</u> \$35,00 \$	<u>R Funds</u> 00 0				
B.	4.	Timeline for Products/Tasks:		July91	Jan92	June92	Jan93	June93
		a. Producer and Consumer Survey		x	х	x	x	
		b. Prepare collected data and establish databas	e	x	x	x	X	
		c. Review and analyze results				x	x	
		d. Final report					x	x

5. <u>Status</u>: The native grass and wildflower seed producer and consumer surveys have been completed and the survey data was analyzed and summarized by research staff. A computer database was also set up through the Marketing Division's Agri-Source network to list all native seed producers in Minnesota and relevant production information including location, species, seed production catalogs, etc.

The producer and consumer surveys provided major research findings in regard to Minnesota's current and potential native seed market. Detailed information is outlined in the research report entitled "A Market Assessment of Minnesota's Native Wildflower and Grass Seed Industry". The highlights of the research can be summarized as follows:

Production and Supply

Minnesota's native seed industry has been growing at an annual rate of 20-30% during the last few years and provides approximately \$10 million in sales revenues per year to the state's overall economy. This figure includes sales of seeds, seedlings and plants, and earnings from service contracts for seeding, planting, land preparations and related consultation work. Currently, Minnesota's native wildflower and grass seed production are estimated at 127,000 pounds a year, of which 96% were grass seeds and 4% were wildflower seeds. The production is composed of two types: cultivated production and wild collection. More than one half of the commercially available seeds come from cultivated productions while the rest is made up by wild collection.

About one-third of producers devote full time to native seed production, 55% devote part time, and 10% are hobby farms. The majority of producers have been in native seed production for less than five years and have small size operations involving 30 acres or less of production land.

Commercial production of native seeds takes place in 25 counties across the state, with an estimated 2,000 plus acres of production fields and wild collection sites. Production is concentrated in the southern part of the state.

Over 300 native seed species are currently available in the market. The best selling grass species include (in descending order): Switchgrass (*Panicum virgatum*), Big bluestem (*Andropogon gerardii*), Indiangrass (*Sorghastrum nutans*), Side-oats grama (*Bouteloua curtipendula*). The best selling wildflowers are Purple prairie clover (*Petalostemum purpureum*), Maximillian sunflower (*Helianthus Maximiliani*), Leadplant (*Amorpha canescens*), and Yellow coneflower (*Rudbeckia hirta*).

Production costs are significantly different from producer to producer, ranging from \$300 to \$1,000 per acre for grasses and \$1,000 to \$10,000 per acre for wildflowers. This depends on many variables such as land conditions, species grown, cultivation methods, intensity of labor, as well as the grower's experience and expertise in native seed production.

Minnesota's native seed market consists of wholesale, retail, government purchase, growers' in-house use, and out-of-state sales. Sixty-eight percent of Minnesota-grown native seeds are sold within the state, while 32% are exported to Iowa, North and South Dakota, Wisconsin, Illinois and Canada. In the Minnesota market, wholesale holds a 31% market share, retail - 27%, government purchase - 32%, and growers' in-house use - 10%. Fifty-one percent of seed production is marketed within 100 mile radius of origin, while only 17% of seeds are sold beyond a 200 mile radius.

Native grass and wildflower seeds carry an extremely broad price range because of the various pricing factors for each specific species, such as production cost, quantity produced in a particular year, and consumer demand. The medium price comes to \$10.00 per pound for all grasses and \$110 per pound for all wildflowers. Producers identified some major obstacles to native seed production expansion: lack of financial resources or production loans, unavailable technical assistance, market constraints (such as lack of market information, undefined consumer needs, market fluctuations, and uncertainty about the future's market), consumer education, and state pol nitiatives.

Consumption and Demand

Minnesota currently consumes 97,000 pounds of native wildflower and grass seeds per year, of which 72% are grasses and 28% are wildflowers. In comparison, Minnesota's native seed production has a 96% grasses and 4% wildflowers ratio mix. There is a discrepancy between market supply and demand, which may be the cause of confusion in the marketplace due to different expectations of producers and consumers. Minnesota also supplies approximately 40,640 pounds of native seeds to non-Minnesota buyers each year.

Native seed utilization in Minnesota has five main categories: 1) residential and commercial landscaping - 47%; 2) parks and recreation projects - 13%; 3)roadside and highway construction - 11%; 4) land improvement and set-aside acres - 10%; and 5) seed production and miscellaneous uses such as resale - 19%.

An estimated two-thirds of native seed users are geographically concentrated in central Minnesota, especially around the seven-county metro area. The remainder are located in southern Minnesota (19%), and northern Minnesota (15%).

The survey reported that Minnesota consumers prefer to use 100% locally grown species. But due to various reasons such as seed availability and prices, they may also purchase non-native species from other states. In the marketplace, Minnesota's growers supply over two thirds of all wildflower seeds purchased, while the rest comes from non-Minnesota sources. However, local growers provide a larger share of native grass seeds in the market, 90% compared to 10% of non-Minnesota grass seeds. Almost 80% of users purchase seeds from sources within a 100 mile radius; among them, half of the users buy seeds from within a 50 mile radius. Only 2% go beyond a 200 mile radius to purchase seeds.

Among non-Minnesota suppliers, Wisconsin ranks No. 1 with a 15% market share of non-Minnesota seeds, followed by, in descending order, North Dakota - 10%, Iowa -8%, Colorado - 8%, South Dakota - 5%, and Nebraska - 5%. Other suppliers also include Idaho, Indiana, Kansas, Michigan, Missouri, New Hampshire, New Jersey, Pennsylvania, and Vermont.

Within the user group, two thirds represented the commercial sector that is composed of wholesalers, retailers, service contractors and other business companies; one third were government agencies including federal, state, and county offices.

Traditionally, state and federal government agencies were predominant buyers and users of native prairie seed. However, commercial wholesale has become the most important segment of the native seed market because of the increased commercialization since the late γ 's. The wholesale market includes a large number of vo z users such as

general landscapers, nurseries and garden centers, and construction contractors, etc., who serve retail customers and other end-users through direct or service-related sales. They bring the highest sales volumes and have ready access to a growing clientele base. A typical wholesale customer is a business corporation with an interest in native prairie plants who also has the financial ability to pay premium prices for corporate office landscaping through a service contractor.

Commercial retail and mail order is another rapidly growing sector as more homeowners became interested in naturalistic landscaping and started growing wildflowers and native plants in home yards and gardens. This new consumption trend is a result of increased planting of wildflowers and grasses on public land and roadside and the previous education and promotional efforts by public and private supporters of native prairie plants. Even though retail market and mail order only involve small volume sales, they help achieve the highest product value and profit margin for producers and marketers, and will continue to bring increased market opportunities for native seed business.

Another popular form of retail is the on-farm sales that serve walk-in customers and farmers from neighboring communities. Most producers have on-farm sale outlets, enabling them to reduce overhead costs through direct marketing.

Government purchase ranks No. 3 in market share. Every year, the State of Minnesota purchases large quantities of native wildflower and grass seeds for highway construction projects, state parks and recreation area planting, wildlife habitat improvement, roadside planting, and other conservation management programs, such as RIM (Re-Invest in Minnesota). Even though the state purchases fluctuate each year because of budget changes, it has maintained an upward trend since the late 1980's.

Currently, the state also produces and harvests a portion of the native seeds it needs for various planting projects as a solution to budget constraints and inadequate supplies. It is unclear, at this point of time, what the long-term effect of government production will have on the commercial native seed in Minnesota. This topic requires further study and analysis for an in-depth and accurate assessment.

Approximately 15% of Minnesota counties, among a total of 87, are currently purchasing native wildflower and grass seeds for county highway construction, parks and other public land plantings. The number will increase in the next few years as more counties have expressed interest in using native species or are making plans to do so. But the process may be delayed due to various reasons such as limited funding and seed source.

The U.S. Fish & Wildlife Service of the U.S. Department of the Interior is also a long time user of native seeds. It produces and purchases native species for land

improvement projects for wildlife management and protection.

A species list has been compiled from the survey indicating all native species in demand in the market.

Consumers purchase native wildflower and grass seeds in different packaging forms and mixes. The survey results reported the following statistics:

Wildflowers	Grasses
23%	33%
16%	5%
55%	48%
30%	5%
18%	7%
9%	8%
	Wildflowers 23% 16% 55% 30% 18% 9%

Consumers also require specific processing standards for seeds. The following information shows different processing categories and the percentage of consumers requesting them:

Cleaned and Conditioned	47%
Tested	43%
Official Seed Certifying Agency Standards	61%

From the consumers' point of view, the utilization volume of native seeds can be much higher if the market supply can accommodate consumers' needs and expectations. The commercial market will continue to expand while heightened public awareness of the benefits of native seeds will be the driving force for the market development.

Minnesota roadsides occupy approximately 260,000 acres of state land, and this figure triples if counties and townships are included. Government purchase and use will remain strong in the future, even though available budgets may limit the rate of increase.

One noticeable development in the native seed industry was the service-related sales or the new value-added component of the native seed business. This includes the production of seedlings and plants, seeded sod, service contracts for seeding, planting, land preparations, post-installation management and consultation work. The value methods to determine seed purity and viability are not available for many of the Minnesota native grasses and wildflowers. Seed marketed for use in Minnesota and other states must be labeled indicating the purity and viability. For producers to label their seed truthfully, they need test methods which they can rely on. The other part of this objective provides for the writing of cultural and isolation standards which will

C.

insure that the native grass and wildflower germplasm does not change when raised in controlled conditions for seed production.

B. 6. Benefits:

1. The market supply and demand will be assessed on state and regional levels providing useable information with which to attract investors and producers to this industry.

2. Estimates of potential market demand will be available for presently unknown areas such as homeowner use of wildflowers in ornamental plantings and farmer use of native grasses for pastures.

- C. Development of methods for testing of seed purity and viability and of standards for maintaining the diversity of individuals in a naturally occurring population of native germplasm when raised for seed.
- C. 1. <u>Narrative</u>: Laboratory testing methods to determine seed purity and viability are not available for many of the Minnesota native grasses and wildflowers. Seed marketed for use in Minnesota and other states must be labeled indicating the purity and viability. For producers to label their seed truthfully, they need test methods which they can rely on. The other part of this objective provides for the writing of cultural and isolation standards which will insure that the native grass and wildflower germplasm does not change when raised in controlled conditions for seed production.
- C. 2. <u>Procedures</u>: a). The state seed laboratory in the Minnesota Department of Agriculture will conduct a literature review and propose testing methods which will provide accurate information for labeling purposes. The methods proposed will be adapted from those presently used on closely related species and those which have similar growth habits. The methods will be submitted to the national Association of Official Seed Analysts for peer review. b). The production of native grass and wildflower seed of Minnesota origin must be done in a way that will maintain the diversity of individuals within a naturally occurring population. The Minnesota Crop Improvement Association will use nationally developed seed production standards for these kinds of seed and adapt them to suit our needs.

C .	3.	<u>Budget</u> : a. Amount Budgeted: b. Balance:	LCMR Funds \$25,000 \$ 4,100				
C .	4.	Timeline for Products/Tasks:	July91	Jan92	July92	Jan93	June93
		a. Literature review	х	х	x	x	

b. Potential testing methods identified	х	Х	Х	x	
c. Testing methods established				x	x
d. Potential certification standards identified			x	x	
e. Certification standards established				x	x

5. <u>Status</u>: After reviewing the available literature for information on standardized testing methods for native grass and wildflower seeds, the state seed laboratory chose ten species to perform germination procedures on in this objective. A literature search for information regarding the testing of native grass and wildflower seeds continued for the duration of the project.

The original goal was to test ten species during the two year project period. However, due to the length of time, the number of replicates, the inability to procure sufficient quantities of pure seed, and the different procedures necessary to thoroughly examine each species, it was not possible to test every one. The list of species that were evaluated in this portion of the project are:

Koeleria macrantha Spar Petalostemum Purpureum Verl Liatris pycnostachya Spor Zizia aurea

Spartina pectinata Verbena stricta Sporobolus heterolepis

Due to the constraints listed in the previous paragraph, the following species were not evaluated but testing will continue independent of this project in an effort to work through the germination inhibitors and other problems peculiar to these three species in order to find a uniform testing method:

> Petalostemum candidum Amorpha canescens Aster oolentangiensis

Inconsistent, variable germination response is typical of many native species and the results of this project are no exception. Individual seed lots can vary considerably in their response to identical test parameters. This situation resulted in the retesting of some species. Never the less, some tentative germination testing standards for a number of the species were achieved. In the short term, these methods will be very useful for in-house testing and in the long term, they hopefully can be used by other laboratories as well.

and treatments began and was completed prior to July, 1992. Those tests involved subjecting the seed of the two species to nine different prechill and wetting agent methods and each combination was tested at five different temperatures (45 tests involving 18,000 seeds). During this same period, another species, *Petalostemum purpureum*, was initially tested under six different methods and five different temperatures. This species has undergone two additional treatments in the July 1, 1992 to January 1, 1993 period. Physical scarification of the seed greatly improved the germination of the *Petalostemum purpureum* seed.

The germination results have been summarized for the testing done on the seven species tested. Each species tested will be discussed individually in the following paragraphs:

<u>Koeleria macrantha (cristata)</u> - Prairie June grass. It grew quite satisfactorily under any regime we exposed it to. We chose one temperature and prechill setting that seems to be optimum. In previous years, we have been unable to initiate any growth without a prechill. This seed lot did not require a prechill to achieve nearly optimum germination.

<u>Spartina pectinata</u> - Prairie cord grass. This species usually grows very well with germination percentages in the 80 to 90 percent range. Evidence of heavy damage from an insect was apparent in this lot. It may also have contained fungal pathogens or had immature caryopses. The reasons for poor performance in these trials was not as important as determining a standard testing technique that would give a reliable result no matter what the condition of the lot. Even with the deficiencies noted, germination was better under some conditions.

<u>Petalostemum purpureum</u> - Purple prairie clover. This species responded dramatically to physical scarification. This is a logical result since hard seed is a characteristic of the *Fabaceae*.

<u>Verbena stricta</u> - Hoary vervain. Getting a germination response from this species is always a problem due to an inherent high level of dormancy. Nothing we subjected the seed to gave really satisfactory results. The longest prechill period yielded the best response. Perhaps a longer period of prechill might prove to be even better. Quick turn around in testing is an advantage for marketing. Long prechills significantly lengthen the time needed for testing and would delay the marketing.

<u>Liatris pycnostachya</u> - Tall blazing star. Many samples of this species have had damage to the radical end of the seed resulting in abnormal root development. Overzealous harvesting and cleaning may be the cause. Few problems were noted in this lot of seed and it performed much as expected. Trials without gibberellic acid treatment yielded a poorer response than is usually observed.

<u>Sporobolus heterolepis</u> - Prairie dropseed. Initial testing yielded unusable results because the seed lot involved had poor seed quality. Another sample was obtained from

a different lot and another series of the same tests were run. Good results were achieved from testing the second lot.

<u>Zizia aurea</u> - Golden alexander. Lower than hoped for germination responses were encountered.

Due to a high degree of innate variability within a species caused by a host of genetic and environmentally induced factors, achieving identical germination responses can be problematic at times. This is why it is necessary to replicate selected optimums many times by as many independent laboratories as possible to insure reproducible results. This is sometimes a difficult task since the cooperation of other laboratories is necessary. Other seed laboratories don't always have the time or the resources to comply with the requests for cooperation. Developing a uniform testing method can sometimes take several years as a result.

The following describes the methodology used in this portion of the project:

1. Every sample was germinated on two standard germination blotting papers and placed in transparent plastic boxes measuring 5.50×5.25 inches and 1.0 inch deep. The wetting agents for the blotters were either potassium nitrate (KNO₃), gibberellic acid, or de-ionized water. The blotters were soaked in the wetting agent and excess water was drained off prior to planting according to the Association of Official Seed Analysts (AOSA) Rules for Testing Seeds. One hundred seeds were placed on each blotter and there were four replicates for each variable tested. The results for each variable tested were derived from averaging the results from the four replicates in each test.

2. The plastic boxes containing the seeds were placed in various germinators set at the prescribed static or alternating temperatures. Each germination chamber was equipped with lights and set to a cycle of 16 hours of light and 8 hours of dark every day. The lighted period coincided with maximum temperature. Temperatures were maintained to within $\pm/-2^{\circ}$ Celsius.

3. Seed to be prechilled is placed on blotter paper media in plastic boxes in the same manner as all other replicates and the boxes are placed in a chamber that maintains a constant temperature of 5° Celsius for the prescribed time period.

4. The 24 hour freeze was accomplished by placing the seeds on a moistened substrate (blotter paper media) and put into a freezer. After the 24 hour freeze, the boxes containing the seeds were put into the appropriate germinators.

5. Seed subjected to the hot water treatment was placed in beakers and boiling water was poured over them until they were completely covered. The seed was soaked in this water for 30 minutes, placed on the germination media (blotter paper), and then

Page 19

placed in their appropriate germinators.

6. Scarification was accomplished by placing each one hundred seed replicate to be abraded between stationary and hand held blocks of wood wrapped in sandpaper. Special care was taken to prevent damaging or destroying the seeds by applying too much pressure to the blocks. Periodic examination of the testae under magnification was done to insure that the seeds were being properly scratched.

7. The clipping of the distal end of *Verbena* seeds was done with a surgical scalpel. Care was taken to avoid damaging the cotyledons because abnormalities would then be difficult to spot in the seedlings. Nicking the testa of *Zizia* was done in much the same manner, except that the precise location of the cut on the seed was not a consideration.

8. Acid scarification was accomplished by just covering the tops of seeds placed inside specimen vials with a 1% concentration of hydrochloric acid for a period of one hour. The seed was then rinsed with water and placed on the germination media.

This portion of the project has produced the following proposed test specifications for the seven species on which work was completed:

<u>Koeleria macrantha (cristata)</u> Temperature: 15-25° Celsius, 5 day prechill. Potassium nitrate (KNO₃) treatment.

<u>Spartina pectinata</u> Temperature: 10-30° Celsius, no prechill. Water treatment.

<u>Petalostemum purpureum</u> Temperature: 15-25° Celsius. Scarify physically. Potassium nitrate (KNO₃) treatment.

<u>Verbena stricta</u> Temperature: 10-30° Celsius, 28 day prechill. Gibberellic Acid treatment.

<u>Liatris pycnostachya</u> Temperature: 20-30° Celsius, 5 day prechill. Gibberellic Acid treatment.

Sporobolus heterolepis

Temperature: 20-30° Celsius, 14 day prechill. Water treatment.

Zizia aurea

Temperature: 10-30° Celsius. Mechanical scarification or a double 5 day prechill with a 7 day warm interval. Water treatment.

Efforts will continue after the end of this project on the seven species involved and others as time permits to cooperate with the Association of Official Seed Analysts for referee testing of the methods. The methods, once approved by the AOSA, will be available to all seed laboratories for testing to determine the viability of native grass and wildflower seeds.

Work has started on writing certification type standards for the production of native grass and wildflower seeds. Due to the recent illness of one of the project cooperators, Dr. Harley Otto, this part of this objective will not be completed until August 1. Preliminary indications are that many of the species involved are too diverse genetically to fit the commonly accepted definition of a variety. The seed certification program is based upon certifying varietal purity. As a result, a different approach may be used called "source identified" to formulate production standards that will maintain the population diversity desired. This same approach was devised and is currently being used for native production tree seed in Minnesota.

- C. 6. <u>Benefits:</u> a). The establishment of seed testing methods for purity and viability will focus industry competition on seed quality through truthful labeling. Consumers will benefit from being able to rely on truthful labeling when choosing seed that will meet their needs. b). The certification of seed produced from commercial native grass and wildflower plantings will provide a means of verifying origin and that the natural diversity of the germplasm is maintained.
- IV. Evaluation: During the FY 92-93 biennium, the program can be evaluated based upon whether or not the product timelines are met. Meeting the timelines will indicate that the individual tasks proposed in this report have been completed. At the end of the biennium, the final report will provide the information needed to encourage an increase in native grass and wildflower seed production. The ability of the information provided in the final report to meet this need can be evaluated at that time.

In the longer term, a significant increase in quality and amount of native grass and wildflower seed can be used as an indicator of the success of the program.

V. <u>Context:</u>

A. Little if any work is being done to generate the technical information needed for new growers to produce nation grass and wildflower seed in Minnesota. This is not a ty_{1} - 1 agricultural,

vegetable, or flower seed crop which means the normal research and promotion interests are not involved. Most of the native grass and wildflower seed production now taking place is not in Minnesota and Minnesota native germplasm is not being utilized.

B. The work proposed in this program is aimed at providing the information necessary for this segment of the seed industry to attract new investment.

C. The work that has been done to develop the information needed by this segment of the seed industry has been done on too few species and in most cases it has not been done in Minnesota and on Minnesota native germplasm. Individuals and businesses motivated by profit only have sought those species which are easy to raise and which could be sold in many states. Unfortunately many of these species are not even native to Minnesota or North America. There have been no past proposals to the LCMR addressing this need and there are not presently any plans for future ones.

D. Not applicable.

E. Biennial Budget System Program Title and Budget: Not Applicable.

VI. Qualifications:

e, ,

1. Program Manager:

Charles G. Dale, Supervisor Seed and Noxious Weed Section Agronomy Services Division Minnesota Department of Agriculture

B.S., Agronomy and Soil Science, University of Minnesota, 1971

Mr. Dale has supervised the seed regulatory program for Minnesota since 1978 and in 1983, he played a lead role in the complete revision of the state seed law. He is the immediate past president of the American Association of Seed Control Officials and currently serves as chairman of the associations Planning and Development Committee. Mr. Dale's primary role will be as program manager and to oversee work conducted under part of Objective C.

2. Major Cooperators:

A. Dr. Anne M. Hanchek

Assistant Professor, Department of Horticultural Science Extension Environmental Horticulturist, Minnesota Extension Service University of Minnesota

Ph.D., Horticulture, Michigan State University, 1989 M.S., Botany/Plant Ecology, University of North Carolina, 1984

B.A., Biology/Botany, Northern Michigan University, 1980

Dr. Hanchek specializes in environmental horticulture for consumers and in herbaceous plants. Her doctoral research focused on techniques and problems in commercial production of herbaceous perennials. Her master's work assessed the effect of microclimate on distribution of Michigan wildflowers. In Minnesota, she acts as a leader in home horticulture programming for the Extension Service and State Coordinator for the Master Gardener program. Her primary role will be to participate in objective A.

B. Sue Ye

Agricultural Marketing Specialist Marketing Division Minnesota Department of Agriculture

M.S., Agricultural Economics, University of Minnesota, 1987

As a trained agricultural economist, Ms. Ye administers market research programs for the Marketing Division, Department of Agriculture. Her background includes working for the Chinese government and the United Nations with duties ranging from policy and economic analysis to market research for primary agricultural commodities. She joined the Department of Agriculture in 1987 and has since conducted various market research projects for Minnesota's agricultural and food products. Ms. Ye is a member of the American Association of Agricultural Economists. Her primary role will be to perform the tasks in Objective B.

C. Dr. Mark Strefeler

Assistant Professor, Department of Horticultural Science, University of Minnesota

Ph.D., Pomology (Breeding & Genetics), Cornell University, 1989 M.S., Horticultural Science, North Carolina State University, 1985 Dr. Strefeler has refereed publication and has conducted research in the areas of population and quantitative genetics, molecular biology and genetics using both cultivated plant species and wild germplasm.

Current projects include the genetic characterization of invasion purple loosestrife populations in Minnesota and possible insights on how they may be controlled, the genetics of fuchsia and rose, and the use of molecular markers to study the genetic structure of plant species. Besides research, he has experience in horticulture production and the use of plants in interior and exterior landscaping. Dr. Strefeler's primary role will be to characterize the genetic diversity of wild germplasm and to develop cultural management practices which will maintain this diversity in the foundation seed plantings used to provide commercial wildflower seed in Minnesota. These tasks are in Objectives A and C.

D. Other Contributors

1. Dr. Harley J. Otto Executive Vice President Minnesota Crop Improvement Association

2. Chris Hanson

Administrator Center For Alternative Plant and Animal Products University of Minnesota, St. Paul Campus

3. Peter Buesseler

State Prairie Biologist Scientific and Natural Areas Program

4. Sarlyn Ziegler

Seed Analyst Senior-Purity

State Seed Laboratory Laboratory Services Division Minnesota Department of Agriculture

5. Michael Muggli

Supervisor State Seed Laboratory Laboratory Services Division Minnesota Department of Agriculture

6. Bonnie Harper-Lore

Program Coordinator National Wildflower Research Center -Midwest

VII. <u>Reporting Requirements</u>

.

Semiannual reports will be submitted not later than January 1, 1992, July 1, 1992, January 1, 1993 and a final status report by June 30, 1993.

July 1, 1993 Final Status Report

.

TABLE 1: BIBLI GRAPHY- NATIVE GRASS AND WILDFLOWER RESEARCH PUBLICATIONS

The following is the reference list prepared by Eleanor Congdon as a part of the LCMR project "Native Grass and Wildflower Seed." Also included on the last page is an example of an abstract and a notecard that can be generated from one of the listed references. The references are grouped according to their primary topics.

FLORAS AND GUIDES

Agricultural Research Service. Selected Weeds of the US. Washington D.C.: U. S. D. A., 1970.

Agricultural Research Service. Common Weeds of the US. New York: Dover, 1971.

Bare, Janet. Wildflowers and Weeds of Kansas. Lawrence KS: University of Kansas Press, 1979.

Barkley, T. M. Atlas of the Flora of the Great Plains. Ames: Iowa State University Press, 1977.

Barr, Claude. Jewels of the Plains: Wildflowers of the Great Plains. Minneapolis: University of MN Press, 1983.

Budd, Archibald, Keith Best. <u>Wild Plants of the Canadian Prairies</u>. Publication 983. Canadian Dept. of Agriculture; Ottowa, 1964.

Clements, Edith. Flowers of Prairie and Woodland. New York: E. H. Wilson, 1947.

Coffin, Barbara, L. Pfannmuller. <u>Minnesota Endangered Flora and Fauna</u>. Minneapolis: University of Minnesota, 1988.

Courtney, Zimmerman. Wildflowers and Weeds. New York: Van Nostrand / Reinhold, 1972.

Currah, R., A. Smreciu, M. Van Dyke. <u>Prairie Wildflowers: An Illustrated Manual of Species Suitable</u> for Cultivation and Grassland Restoration. Edmonton: Devonian Botanic Garden, 1983.

Curtis, John. The Vegetation of Wisconsin. Madison: U. Wisconsin Press, 1959.

Deam, Charles. <u>Grasses of Indiana</u>. Indiana Department of Conservation, Division of Forestry. Publication 82: 1-256, 1929.

Dennison, Edgar. Missouri Wildflowers. Jefferson, MO: Missouri Dept. of Conservation, 1978.

Department of the Interior. <u>Endangered_and Threatened Wildlife and Plants of the U.S.</u> Washington DC: U.S.D.I, 1980.

Durgan, Beverly. <u>Identification of the Primary Noxious Weeds of MN</u>. MN Dept. of Agriculture: Agronomy Service Division of Weed Control. Leaflet AG-FO-5620-S, 1991.

Edsall, Marion. <u>Roadside Plants and Flowers: A Traveller's Guide to the Midwest and Great Lakes</u> <u>Area</u>. Madison WI: University of WI Press, 1985.

Emanuel, Joseph. <u>Checklist of Seed Plants, Ferns, and Fern Allies of Winona County, Minnesota</u>. Winona MN: Winona State University, 1977.

Fassett, N. C. <u>A Manual of Aquatic Plants</u>. Madison, WI: University of Wisconsin Press, 1969.

Fassett, Norman. Grasses of Wisconsin. Madison WI: University of Wisconsin Press, 1951.

Forest Service. Range Plant Handbook. Washington D.C.: U.S.D.A., 1937.

Freeman, C., E. Schofield. <u>Roadside Wildflowers of the Southern Great Plains</u>. Lawrence KS: University of Kansas Press, 1991.

Gates, F. C. Wild Flowers in Kansas. Topeka: Kansas State Board of Agriculture, 1934.

Gates, F. C. Grasses in Kansas. Topeka: Kansas State, 1937.

Gates, F. C. Weeds in Kansas. Topeka: KS Board of Agriculture, 1941.

Gleason, H. A., A. Cronquist. <u>Manual of the Vascular Plants of the Northeastern United States and</u> <u>Adjacent Canada</u>. 2nd. NY: D. Van Nostrand Co., 1991.

Gottscho, Samuel. <u>Wildflowers: How to Know and Enjoy Them</u>. New York: Dodd, Meade and Co., 1951.

Gould, F. Common Texas Grasses. Austin: Texas A&M University Press, 1978.

Great Plains Flora Association. Flora of the Great Plains. 2nd. Lawrence, KS: University Press of Kansas, 1986.

Hanson, A. A. <u>Grass Varieties in the US</u>. Agricultural Handbook 170. Washington D.C.: U. S. D. A, 1961.

Hitchcock, A. S. Manual of Grasses of the U.S. NY: Dover, 1935.

Hitchcock, A. S. <u>Manual of Grasses of the United States</u>. Miscellaneous Publication 200. Washington D. C.: U. S. D. A, 1951.

Hitchcock, A. S. <u>Key to Native Perennial Grasses: Midwest Region</u>. Washington DC: Soil Conservation Service, 1968.

Johnson, A. G. <u>Native Plants of the University of Minnesota Landscape Arboretum</u>. Chanhassen MN: University of Minnesota Landscape Arboretum, 1965.

Johnson, James. <u>Plants of the South Dakota Grasslands: A Photographic Study</u>. Brookings SD: South Dakota State University, 1982.

Page 2 Johnson, James, James Nichols. <u>Plants of the South Dakota Grasslands</u>. Bulletin # 566. Brookings: S.D. State University, 1970.

Jones, George. Flora of Illinois. 2nd. Southbend, IN: Univ. of Notre Dame Press, 1950.

Kannowski, Paul. Wildflowers of North Dakota. Grand Forks ND: 1989.

Kirkpatrick, Zoe. Wildflowers of the Western Plains. Austin TX: Univ. of TX Press, 1992.

Kirt, Russel R. <u>Prairie Plants of Northern Illinois: Identification and Ecology</u>. Champagne IL: Stipes Publishing Co., 1989.

Klein, Issabelle. <u>Wildflowers of Ohio and Adjacent States</u>. Cleveland: Cleveland Museum of Natural History, 1970.

Klinas, J. E., J. A. Cunningham. Wildflowers of Eastern North America. New York: Kopf, 1974.

Klinch, Raymond C. South Dakota Weeds. South Dakota Weed Commission, 1967.

Knobel, Edward. <u>Field Guide to Grasses, Sedges, and Rushes of the United States</u>. New York: Dover, 1980.

Kucera, Clair. The Grasses of Missouri. Columbia: University of MO Press, 1961.

Lakela, Olga. A Flora of Northeastern Minnesota. Minneapolis: University of Minnesota Press, 1965.

Lampe, K., M. A. McCann. <u>AMA Handbook of Poisonous and Injurious Plants</u>. Chicago: American Medical Association, 1985.

Leithead, Horace L., Lewis Yarlett, Thomas Shiftlet. <u>100 Native Forage Grasses in 11 Southern States</u>. Agricultural Handbook 389, Soil Conservation Service. Washington D.C.: U. S. D. A, 1971.

Lommasson, Robert. Nebraska Wildflowers. Lincoln NB: University of Nebraska, 1973.

Luer, C. A. <u>The Native Orchids of the United States and Canada</u>. New York: New York Botanical Garden, 1975.

Lund, Harry. Michigan Wildflowers. Traverse City, MI: Village Press, 1988.

MacKenzie, Kathrine. Wild Flowers of the Midwest. Portland OR?: Tundra Books, 1976.

Magrath, L. K. <u>The Native Orchids of the Prairies and Plains Region of North America</u>. Ph.D. at University of Kans⁻ Lawrence, 1973.

Marotta, Juanita. Minnesota Wildflowers of Forest, Field, and Wetland. Minneapolis: 1971.

Martin, A. C., W. D. Barkley. <u>Seed Identification Manual</u>. Berkley, CA: University of California Press, 1961.

McKenney, Margaret. Book of Wildflowers. New York: Van Nostrand, 1942.

Monserud, W., G. B. Ownbey. <u>Common Wildflowers of Minnesota</u>. Minneapolis: University of MN Press, 1971.

Moore, J. W. "Studies of Minnesota Flowering Plants with Notes on Additions to the Flora." <u>Rhodora</u>. 52 (1950): 54-60.

Moore, J. W., R. M. Tryon. <u>A Preliminary Checklist of Flowering Plants, Ferns, and Fern Allies of Minnesota</u>. Minneapolis, MN: Department of Botany, University of Minnesota, 1946.

Moore, John. <u>A Catalogue of the Flora of Cedar Creek Natural History Area, Anoka and Isanti</u> <u>Counties, MN</u>. Bell Museum of Natural History, University of Minnesota, Minneapolis. Occassional Paper #12, 1973.

Moore, John W. <u>A Provisional Checklist of Flowering Plants, Ferns and Fern Allies In County</u>, <u>Minnesota</u>. Univ. of MN Bottany Department, Minneapolis, MN, 1958, 1966, 1968.

Morley, T. Spring Flora of Minnesota. Minneapolis, MN: University of Minnesota Press, 1969.

Moyer, L. R. "The Prairie Flora of Southwestern Minnesota." <u>Proceedings of Minnesota Academy of</u> <u>Science</u>. Science (1910): 68-92.

Moyle, John, Evelyn Moyle. Northern Non-Woody Plants: A Field Guide. Minneapolis: Burgess, 1964.

Moyle, John, Evelyn Moyle. <u>Northland Wild Flowers: A Guide to the Minnesota Region</u>. Minneapolis: University of Minnesota Press, 1977.

N.W.R.C. National Wildflower Research Center's Wildflower Book. Austin TX: Texas Monthly Press, 1989.

N.W.R.C. <u>Bibliography of Non-Woody Native Plants of the Midwest</u>. Channhassen MN. Unpublished, 1991.

N.W.R.C. Investigations into Midwest Native Plants. Austin TX: Texas Monthly Press, 1992.

Owensby, Clenton. Kansas Prairie Wildflowers. Ames Iowa: Iowa State University Press, 1980.

Ownbey, Gerald. <u>Common Wildflowers of Minnesota</u>. Minneapolis: University of Minnesota Press, 1971.

Phillips Petroleum Co. Pasture and Range Plants. Bartletsville, OK: Phillips Petroleum Co., 1963.

Reed, Chester. Wild Flowers East of the Rockies. New York: Doubleday, 1917.

Rickett, H. W. Wildflowers of the U.S. New York: McGraw Hill, 1966-75.

Rickett, H. W. <u>Wild Flowers of the United States: The Central Mountains and Plains</u>. vol. 6. NY: McGraw-Hill (in cooperation with NYBG), 1973.

Robinson, Andrew. Field Identification Cards. Atlanta Department of Agriculture, 1979.

Rosehdahl, Carl, Frederick Butters. <u>A Guide to the Spring Flowers of Minnesota</u>. Minneapolis, MN: University of Minnesota Press, 1931.

Runkel, Sylvan, Alvin Bull. <u>Wildflowers of the Iowa Woodlands</u>. Ames: Iowa State University Press, 1977.

Runkel, Sylvan, Dean Roosa. <u>Wildflowers of the Tall-Grass Prairie</u>. Ames Iowa: Iowa St. Univ. Press, 1989.

Ryberg, Per Axel. Flora of the Prairies and Plains of Central North America. NY: New York Botanical Garden, 1932, reprint 1977.

Salac, S. S., P. N. Jensen, J. A. Dickerson, R. W. Gray Jr. <u>Wildflowers for Nebraska Landscapes</u>. Misc. Publ. #35 Nebraska Experimental Station, 1978.

Small, H. V. <u>Michigan Wildflowers</u>. Revised edition. Cranbrook Institute Science Bulletin No. 42, 1966.

Smith, Helen. Michigan Wildflowers. Bloomfield Michigan: Cranbrook Institute of Sci., 1980.

Smith, J. P. <u>Vascular Plant Families: An Introduction to the Families of Vascular Plants Native to North</u> <u>America</u>. Eureka, CA: Mad River Press, 1977.

Stevens, O. A. Handbook of North Dakota Plants. Fargo, ND: Institute of Regional Studies, 1963.

Stevens, O. A. "Some Plants of Western Minnesota." Prairie Naturalist. 1 (1969): 41-2.

Steyermark, J. Flora of Missouri. Ames: Iowa State University Press, 1963.

Stubbendieck, J., Stephan Hatch, Kathie Hirsch. <u>North American Range Plants</u>. 3rd. Lincoln NB: University of Nebraska Press, 1986.

Swenk, Floyd, Gerould Wilheim. <u>Plants of the Chicago Region</u>. Chicago: Morton Arboretum Press, 1979.

Traeger, Jayne, Sotero Salac, Richard Sutton. "Seed and Seedling Identification of Prairie Forbs." In Eighth North American Prairie Conference. 173. 1984.

Upham, Warren. <u>Catalogue of the Flora of Minnesota</u>. Minneapolis: Johnson, Smith, and Harrison, 1884.

Vallentine, John. <u>Nebraska Range and Pasture Grasses</u>. Ext Circular 67-170, Cooperative Extension Service, University of Nebraska, 1967.

Van Bruggen, T. <u>Wildflowers, Grasses and Other Plants of the Northern Plains and the Black Hills</u>. Interion SD: 1911.

Van Bruggen, T. Vascular Plants of South Dakota. Ames Iowa: Iowa State University Press, 1985.

Vance, F. R., J. R. Jowsey, J. S. McLean. Wildflowers Across the Prairies. Saskatoon: 1977.

Vance, F. R., J. R. Jowsey, J. S. McLean. <u>Wildflowers of the Northern Great Plains</u>. Minneapolis: University of Minnesota Press, 1984.

Van Dyke, M., R. Currah, A. Smreciu. <u>Wildflowers of the Sand Hills</u>. Edmonton: Devonian Botanic Garden, 1985.

Voigt, John W. Prairie Plants of Illinois. Illinois Dept of Conservation, 1989.

Voss, Ed. Michigan Flora. Bloomfield MI: Cranbrook Institute of Science, 1972.

Voss, John, V. Eifert. Illinois Wild Flowers. Springfield: State of Illinois, 1967.

Wasowski, Sally. Native Texas Plants. Austin TX: Texas Monthly Press, 1988.

Wheeler, G. A., G. B. Ownbey. "Annotated List of Minnesota Carices, with Phytogeographical and Ecological Notes." <u>Rhodora</u>. 86 (1984): 151-231.

Wherry, Edgar. <u>A Wild Flower Guide</u>. New York: Doubleday, 1954. Whiting, R. E., P. M. Catling. "Distribution of the Auricled Twayblade Orchid (*Listera auriculata*) in Canada and Description of New Stations in Southern Ontario." <u>Canadian Field-Naturalist</u>. 91 (1977): 403-6.

Wildeman, A. G., T. A. Steeves. "The Morphology and Growth Cycle of Aenemone patens." <u>Canadian</u> Journal of Botany. 60 (1982): 1126-37.

Williams. "Monograph on the Genus Mertensia." <u>Annals of the Missouri Botanical Garden</u>. 24 (1937): 17-159.

Wilson, M. F., P. W. Price. "Resource Limitation of Fruit and Seed Production in some Asclepias Species." <u>Canadian Journal of Botany</u>. 58 (1980): 2229-33.
Wilson, R. <u>Allelopathy as Expressed by Helianthus annus and its Role in Old Field Succession</u>. Ph.D. at Univesity of Oklahoma, Norman, 1968.

Wilson, R. G., M. K. McCarty. "Germination, and Seedling and Rosette Development of Flodman Thistle (Cirsium flodmanii)." Weed Science. 32 (1984): 768-73.

Wood, C. E. "Evidence for the Hybrid Origin of Drosera anglica." Rhodora. 57 (1955): 105-30.

Woodson, R. E. "The North American Species of Asclepias." <u>Annals of the Missouri Botanical Garden</u>. 41 (1954): 1-208.

Wuenscher, M. L. <u>Survival of Little Bluestem and Blazing Star in Phosphorus-Deficient Soils of Beuna</u> <u>Vista Marsh</u>. MS at University of Wisconsin, Madison, 1970.

Wuenscher, M. L., G. C. Gerloff. "Growth of *Liatris aspera* in Phosphorus-Deficient Soils." In <u>Proceedings of the Second Midwest Prairie Conference</u>. Ed. by J. H. Zimmerman, 113-5. Madison: University of Wisconsin Arboretum, 1972.

Wynne, F. E. "Droserain Eastern North America." <u>Bulletin of Torrey Botanical Club</u>. 71 (1944): 166-74.

Yeager, A. F., D. H. Scott. "Studies of Mature Asparagus Plantings with Special Reference to Sex Survival and Rooting Habits." <u>Proceedings American Society of Horticultural Science</u>. 36 (1938): 513-4.

Young, J. A., R. A. Evans. "Arrowleaf, Balsamroot, and Mule's Ear Seed Germination." Journal of Range Management. 32 (1979): 71-74.

Young, S. B. "On the Taxonomy and Distribution of Vaccinium uliginosum." <u>Rhodora</u>. 72 (1970): 439-57.

Zimmerman, Douglas. <u>An Ecological Study of Plant Populations (Compositae) in Prairie</u>. Ph.D. at University of Missouri at Columbia, 1971.

PRAIRIE MANAGEMENT AND GENERAL INFORMATION

Abrams, M. D. "Effects of Burning Regime on Buried Seed Banks and Canopy Coverage in a Kansas Tallgrass Prairie." <u>Southwestern Naturalist</u>. 33 (1988): 65-70.

Ahearn, Sean. "Saving the Prairie." Proceedings of Minnesota Academy of Science. 43 (1988): .

Aikman, J. M. "Burning in the Management of Prairie in Iowa." <u>Proceedings of the Iowa Academy of Science</u>. 62 (1955): 53-62.

Albertson, F. W. "Ecology of Mixed Prairie in West Central Kansas." <u>Ecological Monographs</u>. 7 (1937): 481-547.

Andersen, M. R. <u>Vegetational Change on the Green Prairie in Relation to Soil Characteristics</u>. MS at Univ. of Wisconsin, Madison, 1968.

Anderson, Kling. "Time of Burning as it Affects Soil Moisture on an Ordinary Upland Bluestem Prairie in the Flint Hills." Journal of Range Management. 18 (1965): 163-69.

Anderson, Kling, E. F. Smith, Clenton Owensby. "Burning Bluestem Range." Journal of Range Management. 23 (1970): 81-92.

Anderson, R. C. "Prairie History, Management, and Restoration in Southern Illinois." In <u>Proceedings</u> of the Second Midwest Prairie Conference. Ed. by James Zimmerman, 15-21. Madison, Wisconsin: University of Wisconsin, 1970.

Anderson, R. C., D. E. Adams. "Flowering Patterns and Production on a Central Oklahoma Grassland." In <u>The Prairie Peninsula -- In the "Shadow" of Transeau: Proceedings of the Sixth North American</u> <u>Prairie Conference</u>. Ed. by R. L. Stuckey, K. J. Reese, 232-35. Columbus, OH: College of Biological Sciences: Ohio State University, 1981.

Anderson, W. A. "On Transplanting Prairie Species." <u>Proceedings of the Iowa Academy of Science</u>. 52 (1946): 93-4.

Bard, Lucia. <u>Relations Between Legumes and Other Prairie Species on Some Relic Sites of Wisconsin</u>. MS at University of Wisconsin, Madison, 1957.

Barnes, P. W., L. L. Tieszen, D. J. Ode. "Distribution, Production and Diversity of C3- and C4dominated Communities in Mixed Prairie." <u>Canadian Journal of Botany</u>. 61 (1983): 741-51.

Becker, C. F., R. L. Lang, F. Rauzi. <u>New Methods to Improve Shortgrass Range</u>. Bulletin 353. University of Wyoming Agricultural Experiment Station, 1957.

Becker, D. "Five Years of Annual Burns." In <u>Proceedings of the</u> <u>Eleventh North American Prairie Conference</u>: <u>Prairie Pioneers</u>: <u>Ecology, History, and Culture</u>. Ed. by J. Stubbendieck, T B. Bragg, 163-68. Lincoln, NB: University of Nebraskr 988. Beebe, J. D., G. R. Hoffman. "Effects of Grazing on Vegetation and Soils in Southeastern South Dakota." <u>American Midland Naturalist</u>. 80 (1968): 96-110.

Bement, R. E. "Dynamics of Standing Dead Vegetation on the Short-Grass Plains." In <u>The Grassland</u> <u>Ecosystem: A Preliminary Synthesis</u>. Ed. by R. L. Dix, R. G. Beidleman, 221-4. Fort Collins: Colorado State University, 1969.

Betz, Robert F. "One Decade of Research in Prairie Restoration at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois." In <u>The Prairie: Past Present and Future: Proceedings of the Ninth North American Prairie Conference</u>. Ed. by Gary K. Clambey, Richard Pemble, 179-85. Fargo ND: Tri-College University Center for Environmental Studies, 1986.

Blaisdell, James. <u>Seasonal Development and Yield of Native Plants on the Upper Snake River of Idaho</u>. Ph.D. 1956.

Boener Botanical Gardens Publications. <u>Hints on Establishing a "Prairie"</u>. Milwaukee, WI: Milwaukee County Park Commission, 1969.

Boettcher, Judith, Thomas Bragg. "Tallgrass Prairie Remnants of Eastern Nebraska." In <u>Proceedings</u> of the Eleventh North American Prairie Conference -- Prairie Pioneers: Ecology, History and Culture. Ed. by James Stubbendieck, Thomas Bragg, 1-7. Lincoln, Nebraska: University of Nebraska, 1988.

Borowske, J., M. Heitlinger. "A Survey of Native Prairie on Railroad Rights-of-Way in Minnesota." In <u>Proceedings of the Seventh North American Prairie Conference</u>. Ed. by C. Kucera, 39-44. Springfield, MS: Southwest Missouri State University, 1983.

Box, T. W., G. M. Van Dyne, N. E. West. <u>Syllabus of Range Resources of North America</u>. Colorado State University, 1966.

Bragg, T. "Prairie Transplants: Preserving Biological Diversity." In <u>The Prairie: Roots of Our Culture</u>; <u>Foundation of Our Economy. Proceedings of the Tenth North American Prairie Conference</u>. Ed. by A. Davis, G. Stanford, Art. 09.07. Dallas TX: Native Plant Association of Texas, 1988.

Bragg, Thomas. "Allwine Prairie Reservation: Restablished Bluestem Grassland Research Area." In <u>Proceedings of the Fifth Midwest Prairie Conference</u>. Ed. by David Glenn-Lewin, Roger Landers, 114-8. Ames: University of Iowa Press, 1978.

Bredemeier, L. F. "Measurement of Time and Rate of Growth of Range Plants with Application in Range Management." Journal of Range Management. 11 (1958): 119-22.

Brewer, Richard. "Seasonal Change and Production in a Mesic Prairie in Kalamazoo County, Michigan." <u>Michigan Botanist</u>. 24 (1985): 3-13.

Brown, C. <u>Growth and Energy Relationships on Burned and Unburned Prairie in Southern Wisconsin</u>. MS at University of Wisconsin, Madison, 1967. Brown, H. Ray. "Growth and Seed Yields of Native Prairie Plants in Various Habitats of the Mixed Prairie." <u>Transactions of the Kansas Academy of Science</u>. 48 (1943): 87-99.

Brown, James. <u>Estimating Fuel Weights of Grasses</u>, Forbs, Etc. Washington D.C.: USDA, UNKNOWN YEAR.

Canadian Wheat Board. Prairie Production Symposium. Saskatoon: Canadian Wheat Board, 1980.

Carpenter, J. Richard. "The Grassland Biome." Ecological Monographs. 10 (1984): 617-84.

Cassady, J. T. "Bluestem Range in Piney Woods of Louisiana and East Texas." Journal of Range Management. 4 (1951): 173-77.

Clambey, G., R. Pemble. <u>Nineth North American Prairie Conference</u>. Fargo: North Dakota University Press, 1984.

Collins, S. L. "Interactions of Disturbance in Tallgrass Prairie: A Field Experiment." <u>Ecology</u>. 68 (1987): 1243-50.

Collins, S. L., S. C. Barber. "Effects of Disturbance On Mixed-Grass Prairie." <u>Vegetatio</u>. 64 (1985): 87-94.

Collins, S. L., L. U. Wallace. <u>Fire in North America Tallgrass Prairies</u>. Norman: University of Oklahoma Press, 1990.

Conway, V. M. "The Bogs of Central Minnesota." Ecological Monographs. 19 (1949): 176-206.

Cornelius, D. R. "Revegetation in the Tall Grass Prairie Region." Journal American Society of Agronomy. 36 (1944): 393-400.

Cornelius, D. R. "Establishment of Some True Prairie Species Following Reseeding." <u>Ecology</u>. 27 (1946): 1-12.

Cottam, G., H. C. Wilson. "Community Dynamics on an Artificial Prairie." <u>Ecology</u>. 47 (1966): 88-96.

Cull, Margaret Irene. "Establishing Prairie Vegetation Along Highways in the Peoria Area." In <u>Proceedings of the Fifth Midwest Prairie Conference</u>. Ed. by David Glenn-Lewin, Roger Landers, 172-77. Ames, Iowa: University of Iowa Press, 1978.

Curtis, J. H., H. C. Greene. "The Reestablishment of Prairie in the University of Wisconsin Arboretum." Wildflower (Washington DC). 29 (1953): 77-88.

Dahlman, Roger, Clair Kucera. "Root Productivity and Turnover in Native Prairie." <u>Ecology</u>. 46 (1965): 84-89.

Daubenmire, R. F. "Ecology of Fire in Grasslands." In <u>Advances in Ecological Research 5</u>. Ed. by J. B. Cragg, 209-66. NY: Academic Press, 1968.

Davis, A., G. Stanford. <u>The Prairie: Roots of Our Culture; Foundation of Our Economy. Proceedings</u> of the <u>Tenth North American Prairie Conference</u>. Dallas, TX: Native Plant Association of Texas, 1988.

Dill, T. O., S. S. Waller, K. P. Vogel, R. N. Gates, W. W. Stroup. "Renovation of Seeded Warm-Season Pastures with Atrazine." Journal of Range Management. 39 (1986): 72-75.

Dix, R. L. "Some Slope-Plant Relationships in the Grasslands of the Little Missouri Badlands of North Dakota." Journal of Range Management. 11 (1958): 88-92.

Dix, R. L. "The Effects of Burning on the Mulch Structure and Species Composition of Grasslands in Western North Dakota." <u>Ecology</u>. 41 (1960): 49-56.

Dix, R. L., J. E. Butler. "The Effects of Fire on Dry, Thin-Soiled Prairie in Wisconsin." Journal of Range Management. 7 (1954): 265-69.

Dokken, Dee Ann, Lloyd Hulbert. "Effect of Standing Dead Plants on the Stem Density in Blue-Stem Prairie." In <u>Proceedings of the Fifth Midwest Prairie Conference</u>. Ed. by David Glenn-Lewin, Roger Landers, 78-81. Ames: University of Iowa Press, 1978.

Durward, Allen. The Life of the Prairie and the Plains. New York: McGraw Hill, 1967.

Dziadyk, B., C. Clambey. "Florisitic Composition of Plant Communities in a Western Tallgrass Prairie." In <u>Proceedings of the Seventh North American Prairie Conference</u>. Ed. by C. Kucera, 45-54. Springfield, MS: Southwest Missouri State University, 1983.

Ehrenreich, J. H., J. H. Aikman. "An Ecological Study of the Effect of Certain Management Practices on Native Prairie in Iowa." <u>Ecological Monographs</u>. 33 (1963): 113-30.

Entine, Lynn, Stan Nichols, illustrated by V. Nuzzo. Prairie Primer. Madison: U. Wisconsin, 1976.

Evers, R. A. "Hill Prairies of Illinois." <u>Bulletin of the Illinois Natural History Survey</u>. 26 (1955): 366-466.

Gibson, D. J. "Regeneration and Fluctuation of Tall-Grass Prairie Vegetation in Response to Burning Frequency." <u>Bulletin of Torrey Botanical Club</u>. 115 (1988): 1-12.

Gibson, D. J., Craig Freeman. "Effects of Small Mammal and Invertebrate Herbivory on Plant Species Richness and Abundance in Tallgrass Prairie." <u>Oecologia</u>. 84 (1990): 169-75.

Gillen, R. L., D. Rollins, J. F. Stritzke. "Atrazine, Spring-burning, and Nitrogen for Improvement of Tallgrass Prairie." Journal of Range Management. 40 (1987): 444-47.

Gleason, Henry Allen. "The Vegetational History of the Middle West." <u>Annals of the Association of American Geographers</u>. 12 (1923): 39-85.

Glenn-Lewin, D. C., R. Landers. <u>Proceedings of the Fifth Midwest Prairie Conference</u>. Ames, Iowa: Iowa State University, 1978.

Good, R. E., N. F. Good. "Vegetation of a Minnesota Prairie and a Comparison of Methods." <u>American Midland Naturalist</u>. 85 (1971): 228-31.

Grelen, H. E., E. A. Epps. "Herbage Responses to Fire and Litter Removal in Southern Bluestem Range." Journal of Range Management. 20 (1967): 403-.

Hadley, E. B. "Net Productivity and Burning Response of Native Eastern North Dakota Priairie Communities." <u>American Midland Naturalist</u>. 84 (1970): 121-35.

Harper, Bonnie, Kathy Bolin. "Task Force Recommendations: Wildflower Policy for Minnesota." Wildflower: Journal of the National Wildflower Research Center. 2 (1989): 12-16.

Hart, M., S. S. Waller, S. R. Lowry, R. N. Gates. "Discing and Seeding Effects on Sod Bound Prairie." Journal of Range Management. 38 (1985): 121-25.

Hazell, D. B. "Vegetative Composition, Forage Production, and Plant Vigor as Influenced by Date of Mowing." Journal of Range Management. 18 (1965): 261-4.

Heady, Harold F. "Reseeding, Fertilizing, and Renovating in an Ungrazed Mixed Prairie." Journal of Range Management. 18 (1952): 144-8.

Heerwagen, A. J. <u>A Selected Bibliography of Natural Plant Communities in 11 Midwestern States</u>. Misc. Publ. No. 1205. U. S. Soil Conservation Service, 1971.

Henderson, R. A. <u>The Response of Forb Species to Seasonal Timing of Prescribed Burns in Remnant</u> <u>Wisconsin Prairie</u>. MS at University of Wisconsin, Madison, 1981.

Henderson, R. A. "Ten-Year Response of a Wisconsin Prairie Remnant to Seasonal Timing of Fire." In <u>Proceedings of the Twelfth North American Prairie Conference: Recapturing a Vanishing Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 121-25. Cedar Falls: University of Northern Iowa, 1992.

Herbel, C. H., Kling Anderson. "Response of True Prairie Vegetation on Flint Hills Range to Grazing Treatment." <u>Ecological Monographs</u>. 29 (1959): 171-86.

Hesse, J. F., S. S. Salac. "Progress Report on the Effects of Mowing on Wildflowers." In <u>Proceedings</u> of the Third Midwest Prairie Conference. Ed. by L. C. Hulbert, 7-8. Manhatten, KS: Kansas State University, 1973.

Heston, Katherine. "Seed Bank Examined in Soil of Remnant and Restored Prairies." <u>Restoration and Management Notes</u>. 1 (1978): 19-20.

Hill, G. R., W. J. Platt. "Some Effects of Fire Upon Tall Grass Prairie Plant Community in Northwestern Iowa." In <u>Prairie: A Multiple View (IV Midwest Prairie Conference)</u>. Ed. by Mohan Wali, 103-3. Grand Forks: University of ND Press, 1975.

Hopkins, Harold. "Effects of Mulch on Yield and Cover in Mixed Prairie." Journal of Range Management. 7 (1956): 255-9.

Houston, W. R. "Species Susceptibility to Atrazine Herbicide on Shortgrass Prairie." Journal of Range Management. 30 (1977): 50-52.

Houston, W. R., R. E. Adams. "Interseeding for Range Improvement in the Northern Great Plains." Journal of Range Management. 24 (1971): 457-61.

Hulbert, L. C. "Causes of Fire Effects in Tallgrass Prairie." Ecology. 69 (1988): 46-58.

18

Hulbert, Lloyd. "Controlling Experimental Bluestem Prairie Fires." In <u>Proceedings of the Fifth Midwest</u> <u>Prairie Conference</u>. Ed. by David Glenn-Lewin, Roger Landers, 169-71. Ames: University of Iowa Press, 1978.

Hulbert, Lloyd. "Fire Effects on Tallgrass Prairie." In <u>The Prairie: Past Present and Future:</u> <u>Proceedings of the Ninth North American Prairie Conference</u>. Ed. by Gary K. Clambey, Richard Pemble, 138-42. Fargo ND: Tri-College University Center for Environmental Studies, 1986.

Hulbert, Lloyd. "Fire and Litter Effects in Undisturbed Bluestem Prairie in Kansas." <u>Ecology</u>. 50 (1969): 874-77.

Prie." In <u>The Prairie: Past Present and Future: Proceedings of the Ninth North American Prairie</u> <u>Conference</u>. Ed. by Gary K. Clambey, Richard Pemble, 138-42. Fargo ND: Tri-College University Center for Environmental Studies, 1986.

Hulbert, Lloyd. "Fire and Litter Effects in Undisturbed Bluestem Prairie in Kansas." <u>Ecology</u>. 50 (1969): 874-77.

Hulbert, L. "Management of Konza Prairie to Approximate Pre-White Man Fire Influences." In <u>Proceedings of the Third Midwest Prairie Conference</u>. Ed. by L. C. Hulbert, 14-17. Manhatten, KS: Kansas State University, 1973.

Hulbert, Lloyd. <u>Proceedings of the Third Midwest Prairie Conference</u>. Manhatten, KS: Kansas State University, 1973.

Hulett, G. K., J. H. Brock, J. E. Lester. "Community Structure and Function in a Remnant Kansas Prairie." In <u>Proceedings of the Second Midwest Prairie Conference</u>. Ed. by James Zimmerman, 104-12. Madison, Wisconsin: University of Wisconsin, 1970. Jacobson, R. L., N. J. Albrecht, K. E. Bolin. "Wildflower Routes: Benefits of a Management Program for Minnesota Right-of-way Prairies." In <u>Proceedings of the Twelfth North American Prairie</u> <u>Conference: Recapturing a Vanishing Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 153-58. Cedar Falls: University of Northern Iowa, 1992.

King, Harold. "Cover Restoration in Kansas." <u>Transactions of the Kansas Academy of Science</u>. 52 (1949): 360-2.

Kipple, G. E., J. L. Retzer. "Response of Native Vegetation of the Central Great Plains to Applications of Corral Manure and Commercial Fertilizer." Journal of Range Management. 12 (1959): 239-43.

Kirt, R. R. "Survivorship of Introduced Prairie Plant Species in a Degraded Weedy Meadow Under Plant Removal and Non-plant Removal Conditions." <u>Transactions of the Illinois State Academy of</u> <u>Science</u>. 83 (UNKNOWN YEAR) no. 1-2: 1-9.

Kirt, Russell. <u>Third Northern Illinois Prairie Workshop</u>. Illinois: Fermi National Accelerator Laboratory, 1978.

Knapp, A. K. "Post-burn Differences in Solar Radiation, Leaf Temperature and Water Stress Influencing Production in a Lowland Tallgrass Prairie." <u>American Journal of Botany</u>. 71 (1984): 220-27.

Knapp, A. K., T. R. Seastedt. "Detritus Accumulation Limits Productivity of Tall-grass Prairie." <u>Bioscience</u>. 36 (1986): 662-68.

Koelling, M. R., C. L. Kucera. "Productivity and Turnover Relationships in Native Tallgrass Prairie." Iowa State Journal of Science. 39 (1965): 387-92.

Kucera, Koelling. "The Influence of Fire on Composition of Central Missouri Prairie." <u>American</u> <u>Midland Naturalist</u>. 72 (1964): 142-7.

Kucera, C. L., J. H. Ehrenreich. "Some Effects of Annual Burning on Central Missouri Prairie." <u>Ecology</u>. 43 (1962): 334-6.

Kucera, Clair. "Ecological Effects of Fire." In <u>Proceedings of a Symposium on Prairie and Prairie</u> <u>Restoration (First Midwest Conference)</u>. Ed. by Peter Schramm, 12. Galesburg, IL: Knox College, 1970.

Kucera, Claire. <u>Seventh North American Prairie Conference</u>. Springfield, Miss.: University of Miss., 1983.

Landers, R. Q. "The Use of Prairie Grasses and Forbs in Iowa Roadside and Park Landscapes." In <u>Proceedings of the Second Midwest Prairie Conference</u>. Ed. by James Zimmerman, 180-83. Madison, Wisconsin: University of Wisconsin, 1970.

Landers, R. Q., R. E. Kowalski. "Using Iowa's Prairie Species to Fight Roadside Weeds." <u>Iowa Farm</u> <u>Science</u>. 22 (1968): 13-4.

Liegel, Konrad, Jonathon Lyon. "Prairie Restoration Program at the International Crane Foundation." In <u>The Prairie - Past, Present, and Future: Proceedings of the Ninth North American Prairie</u> <u>Conference</u>. Ed. by G. K. Clambey, R. H. Pemble, 190-94. Fargo, ND: Tri-college University Center for Environmental Studies, 1986.

Malin, James. <u>The Grassland of North America: Prolegomena to Its History</u>. Gloucester: Peter Smith, 1967.

Malone, C. R. "Short-term Effects of Chemical and Mechanical Cover Managment on Decomposition Processes in a Grassland Soil." Journal of Applied Ecology. 7 (1970): 591-601.

Masters, R. A., K. P. Vogel, R. B. Mitchell. "Responses of Central Plains Tallgrass Prairies to Fire, Fertilizer and Atrazine." Journal of Range Management. 45 (1992): 291-95.

Masters, R. A., Kenneth Vogel. "Remnant and Restored Prairie Response to Fire, Fertilization, and Atrazine." In <u>Proceedings of the Eleventh North American Prairie Conference</u>. Ed. by J. Stubbendieck, T. Bragg, 135-38. Lincoln, NB: University of Nebraska, 1988.

McMurphy, W. E., Kling Anderson. "Burning Bluestem Range -- Forage Yields." <u>Transactions of the Kansas Academy of Science</u>. 66 (1963): 49-51.

Moir, W. H., M. J. Trlica. <u>Plant Communities and Vegetation Pattern as Affected by Various Treatments</u> in Shortgrass <u>Prairie of Northeastern Colorado</u>. U.S. IBP Grassland Biome Preprint No. 105, 1974.

Morrison, D. G. "Restoring the Native Midwestern Landscape." <u>Landscape Architecture</u>. 69 (1979): 141-45.

Morton Arboretum. "Prairie in a Post-Prairie Era." Morton Arboretum Quarterly. 3 (1967): ?

Nagel, H. "Effect of Spring Burning Date on Mixed-Prairie Soil Moisture, Productivity and Species Composition." In <u>Proceedings of the Seventh North American Prairie Conference</u>. Ed. by C. Kucera, 259-63. Sprinfield, MS: Southwest Missouri State University, 1983.

Nuzzo, Victoria. "Propagation and Planting of Prairie Forbs and Grasses in Southern Wisconsin." In <u>Proceedings of the Fifth Midwest Prairie Conference</u>. Ed. by David Glenn-Lewin, Roger Landers, 182-9. Ames: University of Iowa Press, 1978.

Old, S. M. "Microclimate, Fire, and Plant Production in an Illinois Prairie." <u>Ecological Monographs</u>. 39 (1969): 355-84.

Owensby, C., A. Kling. "Yield Responses to Time of Burning in Kansas Flint Hills." Journal of Range Management. 20 (1967): 12-16.

Owensby, C., E. Smith. "Burning True Prairie." In <u>Third Midwest Prairie Conference Proceedings</u>. Ed. by Lloyd Hulbert, 1-4. Manhatten, KS: Kansas State University, 1973.

Owensby, Clenton, K. L. Anderson. "Effects of Clipping at Different Dates on Loamy Upland Bluestem Range." Journal of Range Management. 22 (1969): 351-4.

Owensby, Clenton, K. L. Anderson, Robert M. Hyde. "Effect of Clipping and Supplamental Nitrogen and Water on Loamy Upland Bluestem Range." Journal of Range Management. 23 (1970): 341-6.

Pemble, R. H., G. L. van Amburg, Lyle Mattson. "Intraspecific Variation in Flowering Activity Following a Spring Burn on a Northwestern Minnesota Prairie." In <u>The Prairie Peninsula -- In the</u> <u>"Shadow" of Transeau: Proceedings of the Sixth North American Prairie Conference</u>. Ed. by R. L. Stuckey, K. J. Reese, 235-40. Columbus, OH: College of Biological Sciences: Ohio State University, 1981.

Pemble, Richard, Ronald Stuckey, Lynn Edward Elfner. <u>Prairie: A Multiple View. Supplement: Native</u> <u>Grasslands East of the Rocky Mountains in North America: A Preliminary Bibliography</u>. Brookings: N.D. Press, 1975.

Pete, Mary. <u>The Effect of Burning on Microclimate and Production in Wisconsin Tall-Grass Prairie</u>. MS at U. Wsiconsin, Madison, 1971.

Peterson, Gary. "Allelopathic Associations and their Effects on Native Legumes." In <u>The Prairie</u> <u>Peninsula -- In the "Shadow" of Transeau: Proceedings of the Sixth North American Prairie Conference</u>. Ed. by R. L. Stuckey, K. J. Reese, 211-12. Columbus, OH: College of Biological Sciences: Ohio State University, 1981.

Pool, R. J. "A Study of Vegetation of Sandhills of Nebraska." <u>Minnesota Botanical Studies</u>. 4 (1914): 189-321.

Redman, R. E., G. Hulett. "Factors Affecting the Distribution of Certain Species of Compositae on an Eastern North Dakota Prairie." <u>Proceedings of the North Dakota Academy of Science</u>. 18 (1964): 10-21.

Reichman, O. J. <u>Konza Prairie: A Tall Grass Natural History</u>. Lawrence KS: University Press of Kansas, 1988.

Reppert, J. N., R. H. Hughes, D. A. Duncan. <u>Herbage Yield and Its Correlation with Other Plant</u> <u>Measurements</u>. Misc. Publication 940. Washington D.C.; U.S.D.A. pp. 15-21, 1963.

Rice, E. L., R. L. Parenti. "Causes of Decreases in Productivity in Undisturbed Tall-grass Prairie." <u>American Journal of Botany</u>. 65 (1978): 1091-7.

Richards, M. S., R. Q. Landers. "Response of Species in Kalsow Prairie, Iowa, to an April Fire." Proceedings of the Iowa Academy of Science. 80 (1973): 159-60.

Risser, P. G., W. J. Parton. "Ecosystem Analysis of the Tall-grass Prairie: Nitrogen Cycle." <u>Ecology</u>. 63 (1982): 1342-51.

Risser, Paul G. "Competitive Relationships Among Herbaceous Plants and Their Influence on the Ecosystem Function in Grasslands." In <u>The Grassland Ecosystem: A Preliminary Synthesis</u>. Ed. by R. L. Dix, R. G. Beidleman, 153-71. Fort Collins: Colorado State University, 1969.

Risser, Paul G. "Competitive Relationships Among Herbaceous Grassland Plants." <u>Botanical Review</u>. 35 (1969): 251-84.

Robison, Roy, Donald White. <u>Prairie Communities</u>. Minnesota Extension Service, UMN Ag-Fo-3238. Extension Publication #280, 1990.

Robocker, W. C. <u>Certain Factors Affecting Establishment and Survival of Several Native Grassland</u> <u>Species in Wisconsin</u>. Ph.D. at University of Wisconsin, 1951.

Rohn, S. R., T. Bragg. "Effect of Burning on Germination of Tallgrass Prairie Plant Species." In <u>Proceedings of the Eleventh North American Prairie Conference: Prairie Pioneers: Ecology, History,</u> <u>and Culture</u>. Ed. by J. Stubbendieck, T. B. Bragg, 169-71. Lincoln, NB: University of Nebraska, 1988.

Rosburg, T. R., D. C. Glenn-Lewin. "Effects of Fire and Atrazine on Pasture and Remnant Prairie Plant Species in Southern Iowa." In <u>Proceedings of the Twelfth North American Prairie Conference:</u> <u>Recapturing a Vanishing Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 107-12. Cedar Falls: University of Northern Iowa, 1992.

Schramm, Peter. "A Practicle Restoration Method for Tall Grass Prairie." In <u>Proceedings of</u> <u>Symposium on Prairie and Prairie Restoration</u>. Ed. by Peter Schramm, 63-64. Galesberg, IL: Knox College, 1968.

Schramm, Peter. <u>Proceedings of a Symposium on Prairie and Prairie Restoration (First Midwest Symposium)</u>. Galesburg, ILL: Knox College Biological Field Station, 1968.

Schramm, Peter. "The Do's and Dont's of Prairie Restoration." In <u>Proceedings of the Fifth Midwest</u> <u>Prairie Conference</u>. Ed. by David Glenn-Lewin, Roger Landers, 139-50. Ames: University of Iowa Press, 1978.

Schuster, J. L. "Root Development of Native Plants under Three Grazing Intensities." <u>Ecology</u>. 45 (1964): 63-70.

Schwarzmeier, Jerry. "Competitional Aspects of Prairie Restoration in the Early Stages." In <u>Proceedings</u> of the Second Midwest Prairie Conference. Ed. by J. H. Zimmerman, 122-39. Madison: University of Wisconsin Arboretum, 1972.

Schwarzmeier, Jerry. "What are Our Responsibilities in Prairie Restoration?" In <u>Proceedings of the</u> <u>Third Midwest Prairie Conference</u>. Ed. by L. C. Hulbert, 37-40. Manhatten: Kansas State University, 1973. Seastedt, T. R. "Mass Nitrogen and Phosphorous Dynamics in Foliage and Root Detritus of Tallgrass Prairie." <u>Ecology</u>. 69 (1988): 59-65.

Seastedt, T. R., R. A. Ramundo, D. C. Hayes. "Silica, Nitrogen, and Phosphorous Dymanics of Tallgrass Prairie." In <u>Proceedings of the Eleventh North American Prairie Conference: Prairie Pioneers:</u> <u>Ecology, History, and Culture</u>. Ed. by J. Stubbendieck, T. B. Bragg, 205-9. Lincoln, NB: University of Nebraska, 1988.

Shantz, H. L. "The Natural Vegetation of the Great Plains Area." <u>Annals of the Association of American Geographers</u>. 13 (1923): 81-107.

Sheedy, J. <u>Calcium, Magnesium, Phosphorus, and Potassium Budgets of a Tallgrass Prairie</u>. MS at University of Oklahoma, Norman., 1971.

Smeins, F. E., D. E. Olson. "Species Composition and Production of a Native Northwestern Minnesota Tall Grass Prairie." <u>American Midland Naturalist</u>. 84 (1970): 398-410.

Smith, Daryl, Carol Jacobs. <u>Proceedings of the Twelfth North American Prairie Conference:</u> <u>Recapturing a Vanishing Heritage</u>. Cedar Falls: University of Northern Iowa, 1992.

Smith, E. F., C. E. Owensby. "Effects of Fire on True Prairie Grasslands." <u>Proceedings Tall Timbers</u> <u>Fire Ecology Conference</u>. 12 (1973): 9-22.

Sosebee, R. E., C. H. Herbel. "Effects of High Temperature on Emergence and Initial Growth of Range Plants." <u>Agronomy Journal</u>. 61 (1969): 621-4.

Steigman, K. L., L. Ovenden. "Transplanting Tallgrass Prairie with a Sodcutter." In <u>The Prairie: Roots</u> of <u>Our Culture; Foundation of Our Economy. Proceedings of the Tenth North American Prairie</u> <u>Conference</u>. Ed. by A. Davis, G. Stanford, Art. 09.01. Dallas TX: Native Plant Association of Texas, 1988.

Steuter, A. A. "C3/C4 Production Shift on Seasonal Burns - Northern Mixed Prairie." Journal of Range Management. 20 (1987): 27-31.

Stipe, Dan, T. Bragg. "Effect of Eastern Red Cedar on Seedling Establishment of Prairie Plants." In <u>Proceedings of the Eleventh North American Prairie Conference -- Prairie Pioneers: Ecology, History</u> and <u>Culture</u>. Ed. by James Stubbendieck, Thomas Bragg, 101-2. Lincoln, Nebraska: University of Nebraska, 1988.

Stoddart, L., A. Smith, T. Box. Range Management. NY: McGraw Hill, 1975.

Stubbendiek, J., T. Bragg. <u>Proceedings of the Eleventh North American Prairie Conference -- Prairie</u> <u>Pioneers: Ecology, History and Culture</u>. Lincoln: University of Nebraska Press, 1989. Stuckey, R. L., K. J. Reese. <u>The Prairie Peninsula -- in the "Shadow" of Transeau: Proceedings of the</u> <u>Sixth North American Prairie Conference</u>. Columbus, OH: College of Biological Sciences, Ohio State University, 1981.

Svedarsky, W. D., P. E. Buckley. "Some Interactions of Fire, Prairie, and Aspen in Northwest Minnesota." In <u>Prairie: A Multiple View (4th Midwest Prairie Conference)</u>. Ed. by Mohan Wali, 115-21. Grand Forks: The University of North Dakota Press, 1975.

Svedarsky, Wd, P. E. Buckley, T. A. Feiro. "The Effect of 13 Years of Annual Burnings on an Aspen-Prairie Ecotone in Northwestern Minnesota." In <u>The Prairie: Past Present and Future: Proceedings of</u> <u>the Ninth North American Prairie Conference</u>. Ed. by Gary K. Clambey, Richard Pemble, 118-20. Fargo ND: Tri-College University Center for Environmental Studies, 1986.

Tiffany, L. H., J. F. Shearer, G. Khaphus. "Plant Parasitic Fungi of Four Tallgrass Prairies of Northern Iowa: Distribution and Prevalance." Journal of Iowa Academy of Science. 97 (1991): 157-66.

Tomanek, G. W. "Dynamics of Mulch Layer in Grassland Ecosystem." In <u>The Grassland Ecosystem:</u> <u>A Preliminary Synthesis</u>. Ed. by R. L. Dix, R. G. Beidleman, 225-40. Fort Collins: Colorado State University, 1969.

Towne, G., C. Owenbey. "Long-term Effects of Annual Burning at Different Dates in Ungrazed Tallgrass Prairie." Journal of Range Management. 37 (1984): 392-97.

Transeau, E. N. "The Prairie Peninsula." Ecology. 16 (1935): 423-7.

Van Dyne, George. <u>Grazing Responses of Western Range Plants</u>. Montana: Department of Animal and Range Science Montana State University, 1964.

Vogel, R. J. "Effects of Fire on Grasslands." In <u>Fire and Ecosystems</u>. Ed. by T. T. Kozlowski, C. E. Ahlgren, 139-94. NY: Academic Press, 1974.

Wali, Mohan. Prairie A Multiple View: Prairie Conference. Brookings: ND University Press, 1975.

Wallace, Virginia, Stewart Pequignot, William Yoder. "The Role of State Forest Nurseries in Prairie Plant Propagation." In <u>The Prairie: Past, Present, and Future: Proceedings of the Ninth North</u> <u>American Prairie Conference</u>. Ed. by Gary K. Clambey, Richard Pemble, 201-3. Fargo, ND: Tri-College University Center for Environmental Studies, 1986.

Warkins, T. "Introduction of Five Prairie Forb Seedlings into an Established Tallgrass Prairie." In <u>The</u> <u>Prairie: Roots of Our Culture; Foundation of Our Economy. Proceedings of the Tenth North American</u> <u>Prairie Conference</u>. Ed. by A. Davis, G. Stanford, Art. 09.03. Dallas TX: Native Plant Association of Texas, 1988.

Weaver, J. E. North American Prairie. Lincoln, NB: Johnsen Pub. Co., 1954.

Weaver, J. E. "Classification of Root Systems of Forbs of Grasslands and a Consideration of Their Significance." <u>Ecology</u>. 39 (1958): 393-401.

Weaver, J. E., F. W. Albertson. <u>Grasslands of the Great Plains: Their Nature and Uses</u>. Lincoln NB: Johnsen Pub. Co., 1956.

Weaver, J. E., T. J. Fitzpatrick. "The Prairie." Ecological Monographs. 4 (1934): 109-295.

Weaver, J. E., N. W. Rowland. "Effects of Excessive Natural Mulch on Development, Yield, and Structure of Native Grassland." <u>Botanical Gazette</u>. 114 (1952): 1-19.

Weaver, J. E., Ellen Zink. "Length of Life of Roots of Ten Species of Perennial Range and Pasture Plants." Plant Physiology. 21 (1946): 201-17.

Weaver, John. <u>Prairie Plants and Their Environment: a Fifty Year Study</u>. Lincoln: Univ of Nebraska Press, 1968.

Wedin, D. A., D. Tilman. "Nitrogen Cycling, Plant Competition and Stability in a Tallgrass Prairie." In <u>Proceedings of the Twelfth North American Prairie Conference: Recapturing a Vanishing Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 5-8. Cedar Falls: University Northern Iowa, 1992.

White, John, M. H. Madany. "Classification of Prairie Communities in Illinois." In <u>The Prairie</u> <u>Peninsula -- In the "Shadow" of Transeau: Proceedings of the Sixth North American Prairie Conference</u>. Ed. by R. L. Stuckey, K. J. Reese, 169-71. Columbus Ohio: College of Biological Sciences: Ohio State University, 1981.

White, R. S., P. O. Currie. "Prescribed Burning in the Northern Great Plains: Yield and Cover Responses of Three Forage Species in the Mixed Grass Prairie." Journal of Range Management. 36 (1983): 179-83.

Wiedemann, H. "Engineering Seeding Systems for Revegetating Prairie Lands." In <u>The Prairie: Roots</u> of <u>Our Culture; Foundation of Our Economy.</u> Proceedings of the Tenth North American Prairie <u>Conference</u>. Ed. by A. Davis, G. Stanford, Art. 03.04. Dallas TX: Native Plant Association of Texas, 1988.

Woehler, E., Mark Martin. "Establishment of Prairie Grasses and Forbs with the Use of Herbicides." In <u>Proceedings of the Fifth Midwest Prairie Conference</u>. Ed. by David Glenn-Lewin, Roger Landers, 131-8. Ames: University of Iowa Press, 1978.

Zajicek, Jayne M., R. K. Sutton, S. S. Salac. "Direct Seeding of Selected Forbes into an Established Grassland." <u>HortScience</u>. 21 (1986): 90-91.

Zak, John M., Joseph Troll, Seth H. Mosler, Ruth Zak. <u>Massachusetts Roadside Development Research</u> - Final Report. University of Massachusetts, Dept. of Plant and Soil Science, 1977. Zimmerman, James H. <u>Proceedings of the Second Midwest Prairie Conference</u>. Madison WI: University Press, 1972.

GRASSES: INDIVIDUAL SPECIES, RESEARCH

Abdul-Wahab, A. S., E. Rice. "Plant Inhibition by Johnson Grass and its Possible Significance for Old-Field Succession." <u>Torrey Botanical Club Bulletin</u>. 94 (1967): 486-97.

Ahlgern, H., D. Smith, E. Nielsen. "Behavior of Various Selections of Kentucky Bluegrass, *Poa pratensis*, When Grown as Spaced Plants and Massed Seedlings." <u>Agronomy Journal</u>. 37 (1945): 268-81.

Ahring, R. M. <u>Storageability Under Laboratory Conditions of Seed of Blue Grama, Side-oats Grama,</u> and <u>Smooth Bromegrass</u>. Technical Bulletin T-97. Oklahoma State Experimental Station, 1962.

Aikman, J. M., Robert E. McDermott. "Comparison of Dominant Prairie Grasses as Interplanting Groundcovers on Eroded Soil." <u>Proceedings of the Iowa Academy of Science</u>. 63 (1943): 177-220.

Albertson, F. W., D. A. Riegel, G. W. Tomanek. <u>Ecological Studies of Blue Gama Grass (Bouteloua</u> gracilis). Fort Hays Studies. Science Series 5, 1966.

Aldous, A. E., H. L. Shantz. "Effect of Different Clipping Treatments on Yield and Vigor of Prairie Grass Vegetation." Ecology. 11 (1930): 752-9.

Allard, H. A., M. W. Evans. "Growth and Flowering of Some Tame Wild Grasses in Response to Different Photoperiods." Journal of Agricultural Research. 62 (1941): 193-228.

Anderson, Kling, A. E. Aldous. "Improvement of Andropogon scoparius Michx. by Breeding and Selection." Journal American Society of Agronomy. 50 (1938): 862-69.

Anderson, R. C., D. Birkenholz. "Growth and Establishment of Prairie Grasses and Domestic Forage on Strip Mine Soils." In <u>Proceedings of the Seventh North American Prairie Conference</u>. Ed. by C. Kucera, 183-88. Springfield, MS: Southwest Missouri State University, 1983.

Anderson, Roger C., Anthony E. Liberata. "Influence of Supplemental Inorganic Nutrients on Growth, Survivorship, and Mycorrhizal Ecology of *Schizachyrium scoparium* (Poaceae) Grown in Fumigated and Unfumigated Soil." <u>American Journal of Botany</u>. 79 (1992): 406-14.

Archbald, David. <u>The Effect of Native Legumes on the Establishment of Prairie Grasses</u>. Ph.D. at University of Wisconsin, Madison, 1954.

Ares, J., J. S. Singh. <u>A Model of the Root Biomass Dynamics of a Blue Gama (Bouteloua gracilis)</u> <u>Dominated Short-grass Prairie</u>. US IBP Grassland Biome Preprint No. 87. Fort Collins: Colorado State University, 1973. Bahler, C. C., K. P. Vogel, L. E. Moser. "Atrazine Tolerance in Warm-Season Grass Seedlings." Agronomy Journal. 76 (1984): 891-95.

Bailey, L. F. "Some Water Relations of Three Western Grasses: I. Transpiration Ration. II. Drought Resistence. III. Root Development." <u>American Journal of Botany</u>. 27 (1940): 122-35.

Barnard, C. Grasses and Grasslands. London: Macmillan, 1964.

Beetle, A. A. <u>Buffalograss - Native of the Shortgrass Plains</u>. Bulletin 293. University of Wyoming Experiment Station, 1950.

Bement, R. E., D. F. Hervey, A. C. Everson, L. O. Hylton JR. "Use of Asphalt-Emulsion Mulches to Hasten Grass Seedling Establishment." Journal of Range Management. 14 (1961): 102-8.

Benedict, H. M. "Effect of Day Length and Temperature on the Flowering and Growth of Four Species of Grasses." Journal of Agricultural Research. 61 (1940): 661-72.

Benedict, H. M. "The Inhibitory Effect of Dead Roots on the Growth of Brome Grass." <u>Agronomy</u> Journal. 33 (1941): 1108-9.

Bernstein, Leon. Salt Tolerance of Grasses and Forage Legumes. USDA AIB 194, 1958.

Best, K., J. Looman, J. B. Campbell. Prairie Grasses. Canada Department of Agriculture, 1991.

Biswell, H. H., P. C. Lemon. "Effect of Fire Upon Seed Stalk Production of Range Grasses." Journal of Forestry. 41 (1943): 844.

Biswell, H. H., J. E. Weaver. "Effect of Frequent Clipping on the Development of Roots and Tops of Grasses in Prairie Sod." <u>Ecology</u>. 14 (1933): 368-90.

Black, M. "Dormancy Studies in the Seed of Avena fatua. I. The Possible Role of Germination Inhibitors." <u>Canadian Journal of Botany</u>. 37 (1959): 393-402.

Bokhari, U. G., M. I. Dyer. <u>The Effects of Environmental Stress on Growth of Blue Grama (Bouteloua</u> <u>Gracilis) in Environmental Control Growth Chambers</u>. U.S. IBP Grassland Biome Technical Report No. 227. Fort Collins, CO: Colorado State University, 1973.

Bokhari, U. G., J. S. Singh, F. M. Smith. <u>Influence of Temperature Regimes and Water Stress on the</u> <u>Germinability of Three Range Grasses and its Possible Ecological Significance to a Shorthgrass Prairie</u>. U.S. IBP Grassland Biome Preprint, no. 101, 1974.

Booysen, P. de V., N. M. Tainton, J. D. Scott. "Shoot-apex Development in Grassland and its Importance in Grassland Management." <u>Herbarium Abstracts</u>. 33 (1973): 209-13.

Box, T. W. "Influence of Drought and Grazing on Mortality of Five West Texas Grasses." <u>Ecology</u>. 48 (1967): 654-.

Bragg, T., D. M. Sutherland. "Establishing Warm-Season Grasses and Forbs Using Herbicides and Mowing." In <u>Proceedings of the Eleventh North American Prairie Conference -- Prairie Pioneers:</u> <u>Ecology, History and Culture</u>. Ed. by James Stubbendieck, Thomas Bragg, 81-89. Lincoln, Nebraska: University of Nebraska, 1988.

Brandenberg, N. R. <u>Bibliography of Harvesting and Processing Forage Crops, 1949-64</u>. ARS 42-135. U. S. D. A.; Washington D. C, 1968.

Branson, Farrel, A. "Quantitative Effects of Clipping Treatments on Five Range Grasses." Journal of Range Management. 9 (1956): 86-9.

Briske, D. D., J. L. Butler. "Density-dependent Regulation of Population within the Bunchgrass Schizachyrium scoparium: Intraclonal vs. Interclonal Interference." Journal of Ecology. 77 (1989): 963-74.

Broome, S. W., W. W. Woodhouse Jr., E. D. Seneca. "Propagation of Smooth Cordgrass, Spartina alterniflora, from Seed in North Carolina. Seed Viability." <u>Chesapeake Science</u>. 15 (1974) no. 4: 214-1.

Brown, B. V. "The Morphology of the Grass Embryo." Phytomorphology. 10 (1960): 215-23.

Brown, E. M. <u>Seasonal Variation in the Growth and Chemical Composition of Kentucky Bluegrass</u>. Missouri Agricultural Experiment Station Bulletin No. 360, 1943.

Bryan, G. G., W. E. McMurphy. "Competition and Fertilization as Influences on Grass Seedlings." Journal of Range Management. 21 (1968): 98-101.

Burton, G. W. "Factors Influencing Seed Setting in Several Southern Grasses." <u>Agronomy Journal</u>. 35 (1943): 465-74.

Burton, G. W. "A Comparison of First Year's Root Production of Seven Southern Grasses Established from Seed." <u>Agronomy Journal</u>. 35 (1943): 192-6.

Burton, G. W. "Seed Production of Several Southern Grasses as Influenced by Burning and Fertlization." <u>Agronomy Journal</u>. 36 (1944): 523-9.

Bush, B. L., S. S. Waller, B. E. Anderson, L. E. Moser, R. M. Wozniak. "Sod-Seeded Warm Season Grass With and Without Sod Suppression." In <u>Proceedings of the Eleventh North American Prairie</u> <u>Conference -- Prairie Pioneers: Ecology, History and Culture</u>. Ed. by James Stubbendieck, Thomas Bragg, 75-79. Lincoln, Nebraska: University of Nebraska, 1988.

Buzzard, R. G. "The Red-Top Production of Southeastern Illinois." <u>Illinois Academy of Science</u>. 23 (1931): 465-75.

Canfield, R. H. <u>The Effect of Intensity and Frequency of Clipping on Desity and Yield of Black Grama</u> and Tobosa Grass. — hnical Bulletin no. 681. Washington D.C.: U.S.D.A, 1039. Canode, C. L. "Influence of Row Spacing and Nitrogen Fertilization on Grass Seed Production." <u>Agronomy Journal</u>. 60 (1968): 263-7.

Church, G. L. "Cytotaxonomic Studies in the Gramineae: Spartina, Andropogon, and Panicum." <u>American Journal of Botany</u>. 27 (1940): 263-71.

Churchill, B. R. <u>Smooth Bromegrass Seed Production in Michigan</u>. Bulletin no. 192. Michigan Agricultural Experiment Station Circular, 1944.

Cook, C. Wayne. "A Study of the Roots of *Bromus inermis* in Relation to Drought Resistance." <u>Ecology</u>. 24 (1943): 169-82.

Cook, C. Wayne, L. A. Stoddart, Floyd Kinsinger. "Responses of Crested Wheatgrass to Various Clipping Treatments." <u>Ecological Monographs</u>. 28 (1958): 237-72.

Copple, R. F., E. A. Aldous. <u>The Identification of Certain Native and Naturalized Grasses by their</u> <u>Vegetative Characteristics</u>. Technical Bulletin 32, Agricultural Experiment Station, Kansas, 1932.

Cornelius, D. R. "Seed Production of Native Grasses Under Cultivation in Eastern Kansas." <u>Ecological</u> <u>Monographs</u>. 2 (1950): 3-29.

Cornelius, Donald. "The Effect of Source of Little Bluestem Grass Seed on Growth, Adaptation, and Use in Revegetation Seedlings." <u>Agricultural Research</u>. 74 (1947): 133-43.

Coukos, C. J. "Seed Dormancy and Germination in Some Native Grasses." Journal American Society of Agronomy. 36 (1944): 337-45.

Crider, F. J. <u>Root Growth Stoppage Resulting from Defoliation of Grass</u>. Technical Bulletin No. 1102. Washington DC: U.S.D.A, 1955.

Curtis, J. T., M. C. Partch. "Effect of Fire on the Competition Between Bluegrass and Certain Prairie Plants." <u>American Midland Naturalist</u>. 39 (1948): 7-9.

Curtis, John, Max Partch. "Some Factors Affecting Flower Production in Andropogon gerardii." <u>Ecology</u>. 31 (1950): 488-89.

Dalrymple, R. L., D. D. Dwyer. "Root and Shoot Growth of Five Range Grasses." Journal of Range Management. 20 (1967): 141-5.

Dalyrymple, R. L. "Pickup Grass Seed Stripper." Journal of Range Management. 37 (1984): 285-86.

Damstra, L. D., D. L. Schentzel, J. K. Lewis, R. L. Elderkin. "Maturity Studies with Western Wheatgrass." Journal of Range Management. 21 (1968): 235-9.

Daniel, Harley A. "A Study of Certain Factors Which Affect the Calcium, Phosphorus, and Nitrogen Content of Prairie Grees." <u>Proceedings of the Oklahoma Academy of Science</u>. ? (1932): 42-5.

Darrow, R. A. "Effects of Soil Temperature, pH and Nitrogen Nutrition on the Development of *Poa* pratensis." Botanical Gazette. 101 (1939): 109-27.

DeSelm, H. R. <u>Variation in Andropogon gerardi Vitman and A. scoparius Mx in Two Ohio Prairie</u> Areas. Ph.D. at Ohio State University, 1953.

Detling, J. K., M. I. Dyer, D. Winn. "Net Photosynthesis, Root Respiration and Regrowth of *Bouteloua* gracilis Following Simulated Grazing." <u>Oecologia</u>. 41 (1979): 127-34.

Dexter, S. T. "The Response of Quack Grass to Defoliation and Fertilization." <u>Plant Physiology</u>. 11 (1936): 843-51.

Dkhili, Mohsen, B. Anderson. "Salt Effects on Seedling Growth of Switchgrass and Big Bluestem." In <u>Proceedings of the Twelfth North American Prairie Conference: Recapturing a Vanishing Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 13-16. Cedar Falls: University Northern Iowa, 1992.

Dodd, J. D., Harold Hopkins. "Yield and Carbohydrate Content of Blue Grama Grass as Affected by Clipping." <u>Transactions of the Kansas Academy of Science</u>. 61 (1958): 280-7.

Dodd, J. D., G. L. Van Amburg. "Distribution of Cesium-134 in Andropogon scoparius Mickx. Clones in Two Native Habitats." Ecology. 51 (1970): 685-9.

Dwyer, D. D. "Competition Between Forbs and Grasses." Journal of Range Management. 11 (1958): 149-52.

Ehrenreich, J. H. "Effect of Burning on Seedstalk Production of Native Prairie Grasses." <u>Proceedings</u> of the Iowa Academy of Science. 64 (1957): 205-12.

Emal, J. G., E. C. Conrad. "Seed Dormancy and Germination in Indian Grass as Affected by Light, Chilling, and Certain Chemical Treatments." <u>Agronomy Journal</u>. 65 (1973): 383-85.

Evans, Morris. "Relation of Latitude to Certain Phases of the Growth of Timothy." <u>American Journal</u> of Botany. 26 (1938): 212-8.

Fagan, R. E. Influence of Nitrogen on Yield, Carbohydrate Reserve, and Protein Content of Buffalograss (Buchloe dactyloides Nutt.). MS at Texas Tech. University, 1972.

Fischer, George W. "Stem Smuts of *Stipa* and *Oryzopis* in North America." <u>Butler University Botanical</u> <u>Studies</u>. 7 (1945): 25-39.

Fox, R. L., J. E. Weaver, R. C. Lipps. "Influence of Certain Profile Characteristics Upon the Distributions of the Roots of Grasses." <u>Agronomy Journal</u>. 45 (1953): 583-9.

Franks Jr., James W. <u>Comparative Yields of Seven Native Grasses Growing in an Ungrazed Mixed</u> <u>Prairie</u>. MS at Fort Hays, Kansas State College., 1954. Fults, Jess. "Somatic Chromosome Complements in *Bouteloua*." <u>American Journal of Botany</u>. 29 (1942): 45-55.

Geisler, Florence. "A Study of Pollen Grains of Thirty-two Species of Grasses." <u>Butler University</u> <u>Botanical Studies</u>. 7 (1945): 65-73.

Gernert, W. B. "Native Grass Behavior as Affected by Periodic Clipping." <u>Agronomy Journal</u>. 28 (1936): 447-56.

Gillet, J. M., H. A. Senn. "Cytotaxonomy and Infraspecific Variation of Agropyron smithii Rybd." Canadian Journal of Botany. 38 (1960): 747-60.

Gist, G. R., R. M. Smith. "Root Development of Several Common Forage Grasses to a Depth of Eighteen Inches." <u>Agronomy Journal</u>. 40 (1948): 1036-42.

Glendening, George E. "Germination and Emergence of Some Native Grasses in Relation to Litter Covering and Soil Moisture." <u>Agronomy Journal</u>. 34 (1942): 797-804.

Goetz, Harold. "Compositions and Yields of Native Grassland Sites Fertilized at Different Rates of Nitrogen." Journal of Range Management. 22 (1969): 384-90.

Gould, F. Grass Systematics. New York: McGraw Hill, 1968.

Gould, F. W. "Chromosome Counts and Cytotaxonomic Notes of Grasses of the Tribe Andropogoneae." <u>American Journal of Botany</u>. 43 (1956): 395-404.

Gould, F. W. "The Grass Genus Andropogon in the United States." Brittonia. 19 (1967): 70-76.

Green, C. E., H. Goetz. <u>Morphological Variation in Three Ecotypes of Agropyron smithii Rydb. and</u> <u>Bouteloua gracilis(H.B.K.) Lag. Ex. Steud.</u> Bulletin 491. North Dakota Experiment Station, 1973.

Griffith, D. E. "The Collection and Processing of Buffalograss Seed." <u>Soil Conservation</u>. 6 (1940): 186-94.

Hadley, E. B., B. J. Kieckhefer. "Productivity of Two Prairie Grasses in Relation to Fire Frequency." <u>Ecology</u>. 44 (1963): 389-95.

Hall, K. E., J. R. George, R. R. Riedl. "Herbage Dry Matter Yields of Switchgrass, Big Bluestern, and Indiangrass with N Fertilization." <u>Agronomy Journal</u>. 74 (1982): 47-51.

Hamilton, K., K. Buckholtz. "Effects of Rhizomes of Quackgrass (Agropyron repens) and Shading of the Seedling Development of Weedy Species." Ecology. 36 (1955): 304-8.

Hampton, J. G. "The Effect of Row Spacing, Method, and Time of Sowing on Seed Production of Prairie Grass (*Bromus wildenowii* kunth.) cv. Grasslands Matua." <u>Plant Varieties and Seeds</u>. 2 (1989): 171-78.

Hanson, Herbert C. "Characteristics of Stipa comata, Bouteloua gracilis, Bouteloua curtipendula." Ecology. 6 (1955): 269-80.

Harlan, Jack R., W. R. Kneebone. "Effects of Various Methods and Rates of Nitrogen Application on Seed Yield of Switchgrass (*Panicum virgatum* L.)." <u>Agronomy Journal</u>. 45 (1953): 385-6.

Harris, G. A. "Some Competitive Relationships Between Agropyron spicatum and Bromus tectorum." <u>Ecological Monographs</u>. 37 (1967): 89-111.

Harrison, C. M., C. W. Hodgson. "Response of Certain Perennial Grasses to Cutting Treatments." <u>Agronomy Journal</u>. 31 (1939): 418-30.

Heinreichs, D. H., K. W. Clark. "Clipping Frequency and Fertilizer Effects on Productivity and Longevity of Five Grasses." <u>Canadian Journal Plant Sciences</u>. 41 (1961): 97-108.

Helin, J. A. "Fungus flora of *Panicum virgatum* L." <u>Proceedings of the Iowa Academy of Science</u>. 68 (1961): 139-43.

Hereford, L. R. <u>The Effect of Different Intensities and Frequencies of Clipping on Forage Yield of</u> <u>Andropogon scoparius Michx. and Paspalum plicatulum Michx</u>. M.S at A&M College of Texas, 1951.

Hiesey, W. M. "Growth and Development of Species and Hybrids of *Poa* under Controlled Temperature." <u>American Journal of Botany</u>. 40 (1953): 205-1.

Hopkins, Harold. "Variations in the Growth of Side-oats Grama Grass at Hays, Kansas, from Seed Produced in Various Parts of the Great Plains Region." <u>Transactions of the Kansas Academy of Science</u>. 44 (1941): 88-95.

Hopkins, Harould. "Root Development of Grasses on Revegetated Land." Journal of Range Management. 6 (1953): 382-92.

Hsu, F. H., C. J. Nelson, A. G. Matches. "Temperature Effects on Germination of Perennial Warm-Season Forage Grasses." <u>Crop Science</u>. 25 (March-April, 1985): 215-0.

Hubbard, F. T. "Andropogon scoparius in the United States." Rhodora. 19 (1917): 102-3.

Huffman, A. J., P. W. Jacoby Jr. "Effects of Herbicides on Germination and Seedling Development of Three Native Grasses." Journal of Range Management. 37 (1984): 40-43.

Hulbert, Lloyd, J. Wilson. "Fire Interval Effects of Flowering Grasses in Kansas Bluestem Prairie." In <u>Proceedings of the Seventh North American Prairie Conference</u>. Ed. by C. Kucera, 255-57. Sprinfield, MS: Southwest Mi viri State University, 1983.

Hull, A. C. "Competition and Range Requirements of Cheatgrass and Wheat Grass in the Greenhouse." Journal of Range Management. 16 (1963): 199-204.

Jameson, Donald. <u>Plant Extracts Retard Growth of Grass Seedlings</u>. Annual Report. Rocky Mountain Forest Range Experiment Station, 1963.

Jameson, Donald, D. L. Huss. "The Effect of Clipping Leaves and Stems on Number of Tillers, Herbage Weights, Root Weights, and Food Preserves of Little Bluestem." Journal of Range <u>Management</u>. 12 (1959): 122-6.

Johnston, A. "Some Factors Affecting Germination, Emergence, and Early Growth of Three Range Grasses." <u>Canadian Journal Plant Sciences</u>. 41 (1961): 615-22.

Jones, Melvin D., L. C. Newell. <u>Pollination Cycles and Pollen Dispersal in Relation to Grass</u> <u>Improvement</u>. Nebraska Agricultural Experiment Station Research Bulletin, 1946.

Jorgenson, H. E. <u>A Life History Study of Agropyron smithii</u> Rybd. in Central Montana with Related <u>Effects of Selective Herbicide Treatment of Rangeland</u>. Progress Report. Research Project Segment, Proj. No. W-105-R-3, 4, 5; Job No. V-10 (B-10), U.S.D.I., Bureau Land Management, Montana Fish and Game Dept, 1970.

Joy, Charles, Lawrence Helwig, Theodore Reiger, Monte Supola. "A Comparison of Grass Growth on Different Horizons of Three Grassland Soils." Journal of Range Management. 7 (1954): 212-4.

Judd, B. I. "Agropyronsmithii." Ecology. 18 (1937): 547.

Justice, O. L. "Viability and Dormancy of Seeds in *Polygonum amphibium L., P. coccineum Muhl.* and *P. hydropiperoides Michx.*" <u>American Journal of Botany</u>. 31 (1944): 369-77.

Kephart, L. W. Quack Grass. Farmer's Bulletin no. 1307. Washington DC: U.S.D.A., 1931.

Kinsinger, F. E., H. H. Hopkins. "Carbohydrate Content of Underground Parts of Grasses as Affected by Clipping." Journal of Range Management. 14 (1961): 9-12.

Knapp, A. K., F. S. Gilliam. "Response of Andropogon gerardii(Poaceae) to Fire-induced High vs. Low Irradiance Environments in Tallgrass Prairie: Leaf Structure and Photosynthetic Pigments." <u>American</u> Journal of Botany. 72 (1985): 1668-71.

Kneebone, W. R. "Blue Grama Seed Production Studies." Journal of Range Management. 10 (1957): 17-21.

Knievel, D. P., D. A. Schmer. <u>Preliminary Results of Growth Characteristics of Buffalograss, Blue</u> <u>Grama, and Western Wheatgrass, and Methodology for Translocation Studies using 14C as a Tracer</u>. U.S. IBP Grassland Biome Tech. Rep. No. 86. Colorado State University, 1971. Knipe, O. D., C. H. Herbel. "The Effects of Limited Moisture on Germination and Initial Growth of Six Grass Species." Journal of Range Management. 13 (1960): 297-302.

Koelling, M. R., C. L. Kucera. "Dry Matter Losses and Mineral Leaching in Bluestem Standing Crop and Litter." <u>Ecology</u>. 46 (1965): 529-32.

Kucera, Clair, Roger Dahlman. "Root-rhizome Relationships in Fire-treated Stands of Big Bluestem, Andropogon gerardi Vitman." <u>American Midland Naturalist</u>. 80 (1968): 268-71.

Kuenstler, W. F., D. S. Henry, S. A. Sanders. "Using Prairie Grasses for Forage Production on Mine Spoil." In <u>Proceedings of the Seventh North American Prairie Conference</u>. Ed. by C. Kucera, 215-18. Springfield, MS: Southwest Missouri State University, 1983.

Lang'at, R. K. <u>Developmental Morphology of the Shoots of Bouteloua gracilis and Andropogon hallii</u> in Relation to Grazing. M.S. at Colorado State University, 1968.

Langhan, W., W. N. McMilles, L. Walker. "A Comparison of Carotene, Protein, Calcium, and Phosphorus Content of Buffalo Grass and Blue Grama." <u>Agronomy Journal</u>. 35 (1943): 35-42.

Larsen, E. C. "Photoperiodic Responses of Geographical Strains of Andropogon scoparius." <u>Botanical</u> <u>Gazette</u>. 109 (1947): 132-49.

Lauchbaugh, J. L., H. L. Hackerott. "Early-spring Blue Grama Inflorescences from Fall-initiated Spikes." <u>Crop Science</u>. 9 (1969): 631-3.

Lauchbaugh, J. L., C. L. Owenby. "Seeding Rate and First-year Stand Relationships for Six Native Grasses." Journal of Range Management. 23 (1970): 414-7.

Laude, H. M. "The Nature of Summer Dormancy in Perennial Grasses." <u>Botanical Gazette</u>. 114 (1953): 284-92.

Laude, Horton, B. Changule. "Effect of Stage of Seedling Development Upon Heat Tolerance in Bromegrass." Journal of Range Management. 6 (1953): 320-4.

Lavin, Fred. <u>Variations in the Responses of Different Geographic Strains of Blue Grama to</u> <u>Photoperiod.</u> Ph.D. at University of Chicago, 1943 (1953?).

Lawrence, W. E. "Some Ecotypic Relations of *Deschampsia caespitosa*." <u>American Journal of Botany</u>. 32 (1945): 298-314.

Litau, M., S. Wolovitch. "Partial Separation of Roots as a Means of Reducing the Effect of Competition Between Two Grass Species." <u>Annals of Botany</u>. 35 (1971): 1163-78.

Lodge, R. W. "Effects of Burning, Cultivation, and Mowing on the Yield and Consumption of Crested Wheatgrass." Journal of Range Management. 13 (1960): 318-21.

Marshall, D. R., S. K. Jain. "Cohabitation and Relative Abundance of Two Species of Wild Oats." <u>Ecology</u>. 48 (1967): 656-9.

Martin, A. R., R. S. Moomaw, K. P. Vogel. "Warm-Season Grass Establishment with Atrazine." Agronomy Journal. 74 (1982): 916-20.

Martin, W. S. "Grass Covers in their Relation to Soil Structure." <u>Empire Journal of Experimental</u> <u>Agriculture</u>. 112 (1944): 21-32.

Masters, R. A., K. P. Vogel, P. E. Reese, D. Bauer. "Sand Bluestem and Prairie Sandreed Establishment." Journal of Range Management. 43 (1990): 540-44.

McGinnies, William J. "Effects of Moisture Stress and Temperature on Germination of Six Range Grasses." <u>Agronomy Journal</u>. 52 (1960): 159-62.

Mathis, G. W., M. M. Kothman, W. J. Waldrip. "Influence of Rootplowing and Seeding on Composition and Forage Production of Native Grasses." Journal of Range Management. 24 (1971): 43-7.

McGinnies, William J. "Effect of Post-emergence Weed Control on Grass Established in North Central Colorado." Journal of Range Management. 21 (1961): 126-8.

McGinnies, William J. "Effect of Seed-bed Firming on the Establishment of Crested Wheatgrass Seedlings." Journal of Range Management. 15 (1962): 230-4.

McGregor, Ronald. "Seed Dormancy and Germination in the Annual Cleistogamous Species of *Sporobolus* (Poaceae)." <u>Transactions of the Kansas Academy of Science</u>. 93 (1990): 8-11.

McKendrich, J. E., C. E. Owensby, R. M. Hyde. "Big Bluestem and Indiangass, Vegetative Reproduction and Annual Reserve CH20 and Nitrogen Cycles." <u>Agro-Ecosystems</u>. 2 (1975): 75-93.

McMillan, Calvin. "Nature of the Plant Community. II Variations in Flowering Behavior within Populations of Andropogon scoparius." American Journal of Botany. 43 (1956): 429-36.

McMillan, Calvin. "Cytogeography of *Panicum virgtatum* in Central North America." <u>American Journal</u> of Botany. 46 (1959): 590-3.

McMillan, Calvin. "Ecotypic Differentiation Within Four North American Prairie Grasses. I. Morphological Variation Within Transplanted Community Fractions." <u>American Journal of Botany</u>. 51 (1964): 1119-28.

McMillan, Calvin. "Ecotypic Differentiation Within Four North American Prairie Grasses. II Behaviorial Variation within Transplanted Community Fractions." <u>American Journal of Botany</u>. 52 (1965): 55-65.

McWilliams, J. L. "Mechanical Treatment and Age of Seed Affect Germination of Western Grasses." Crops and Soils. 2 (1950): 27.

Miller, Bonita, J. T. Curtis. "Differential Responses to Clipping of Six Prairie Grasses in Wisconsin." Ecology. 37 (1956): 355-65.

Miller, R. V. <u>Ecotypic Variation in Andropogon scoparius and Bouteloua gracilis</u>. Ph.D. at Colorado State University, 1967.

Mobberley, D. G. "Taxonomy and Distribution of the Genus Spartina." <u>Iowa State College Journal of</u> <u>Science</u>. 30 (1956): 471-574.

Mueller, I. M., J. E. Weaver. "Relative Drought Resistence of Seedlings of Dominant Prairie Grasses." <u>Ecology</u>. 23 (1942): 387-98.

Mueller-Dombois, D., H. P. Sims. "Response of Three Grasses to Two Soils and a Water Table Depth Gradient." Ecology. 47 (1966): 644-8.

Munro, P. E. "Inhibition of Nitrite-oxidizers by Roots of Grass." Journal of Applied Ecology. 3 (1966): 227-9.

Munro, P. E. "Inhibition of Nitrifiers by Grass Root Extracts." Journal of Applied Ecology. 3 (1966): 231-8.

Neiland, B. M., J. T. Curtis. "Differential Responses to Clipping of Six Prairie Grasses in Wisconsin." <u>Ecology</u>. 37 (1956): 355-65.

Newmann, P. R., L. E. Moser. "Seedling Root Development and Morphology of Cool- and Warm-Season Grasses." Crop Science. 28 (1988): 148-51.

Nicholson, J. W. G., J. E. Langille. "The Comparative Nutrative Value of Spartina pectinata and Timothy at Several Stages of Growth." <u>Canadian Journal of Animal Science</u>. 45 (1965): 157-63.

Nielsen, E. L., L. M. Humphrey. "Grass Studies. I Chromosome Numbers in Certain Members of the Tribes Festuceae, Hordeae, Aveneae, Agristideae, Chlorideae, Phalarideae, and Tripsaceae." <u>American</u> Journal of Botany. 24 (1937): 276-9.

Nielsen, Etlar. "Analysis of Variation in Panicum virgatum." Journal of Agricultural Research. 69 (1944): 327-53.

Nielsen, Etlar. "Polyploidyand Winter Survival in Panicum virgatum L." <u>Agronomy Journal</u>. 39 (1947): 822-7.

Norris, E. L. "Testing of Native Grass Seeds of the Kansas State Seed Laboratory." <u>Proceedings of Association of Seed Analysts of North America</u>. 31 (1940): 101-4.

Nyhan, J. W. <u>Decomposition of Bouteloua gracilisPlant Materials in a Grassland Ecosystem</u>. Ph.D. at Colorado State University, 1972.

Oaks, A. J. Ornamental Grasses and Grasslike Plants. New York: Van Nostrand / Reinhold, 1990.

Olmsted, C. E. "Growth and Development in Range Grasses. I. Early Development of *Bouteleona* curtipendula in Relation to Water Supply." <u>Botanical Gazette</u>. 102 (1941): 499-519.

Olmsted, C. E. "Growth and Development in Range Grasses. II. Early Development of Bouteleona curtipendula as Affected by Drought Periods." <u>Botanical Gazette</u>. 103 (1942): 531-42.

Olmsted, C. E. "Growth and Development in Range Grasses. III. Photoperiodic Responses in the Genus *Bouteleona*." <u>Botanical Gazette</u>. 105 (1943): 165-81.

Olmsted, C. E. "Growth and Development in Range Grasses. IV. Photoperiodic Responses in Twelve Geographic Strains of Side-Oats Grama." <u>Botanical Gazette</u>. 106 (1944): 46-74.

Olmsted, C. E. "Growth and Development in Range Grasses. IV. Photoperiodic Responses of Clonal Divisions of Three Latitudinal Strains of Side-Oats Grama." <u>Botanical Gazette</u>. 106 (1945): 382-401.

Pastor, J., M. A. Stillwell, D. Tilman. "Little Bluestem Litter Dynamics in Minnesota Old Fields." Oecologia. 72 (1987): 327-30.

Pattel, K. R., F. W. Albertson, G. Tamanek. "Microclimate and Vegetation Responses on Three Big Bluestem (*Andropogon gerardi*Vitman) Habits near Hays Kansas." <u>Transactions of the Kansas Academy</u> of Science. 67 (1964): 41-9.

Peet, M., R. Anderson, M. S. Adams. "Effect of Fire on Big Bluestem Production." <u>American Midland</u> <u>Naturalist</u>. 94 (1975): 15-26.

Pinck, L. A., F. E. Allison. "The Effect of Nitrogen Application Upon the Weight and Nitrogen Content of the Roots of Sudan Grass." <u>Agronomy Journal</u>. 39 (1947): 634-7.

Pladeck, Mildred. "The Testing of Buffalo Grass Seed, Buchloe dactyloides Engelm." <u>Agronomy</u> Journal. 32 (1940): 486-94.

Plumb, G. "Atrazine of Little Value on a Native Grassland Reseeding (South Dakota)." <u>Restoration</u> and <u>Management Notes</u>. 6 (1988): 90-91.

Porter Jr., Clyde. "An Analysis of Variation between Upland and Lowland Switchgrass, *Panicum virgatum L.*, in Central Oklahoma." <u>Ecology</u>. 47 (1966): 980-2.

Pumphrey, F. V. "Residue Management in Kentucky Bluegrass (*Poa pratensis*) and Red Fescue (*Festuca rubra*) Seed Fields." <u>Agronomy Journal</u>. 57 (1965): 559-61.

Pyrah, G. L. "Taxonomic and Distribution Studies in *Leersia* (Gramineae)." <u>Iowa State College Journal</u> of Science. 44 (1969): 215-70.

Quinn, J. A. <u>Ecotypic Variation in Switchgrass (Panicum virgatum) and Sand Dropseed (Sporobolus cryptandrus</u>). Ph.D. at Colorado State University, 1966.

Quinn, J. A., R. T. Ward. "Ecological Differentiation in Sand Dropseed (Sporobolus cryptandrus)." <u>Ecological Monographs</u>. 39 (1969): 61-78.

Ramundo, R. A., T. D. Shapley, C. L. Turner, M. I. Dyer, T. R. Seastedt. "Effects of Manipulation of Floiage Characteristics of *Andropogon Gerardii* Vitman." In <u>Proceedings of the Eleventh North American Prairie Conference: Prairie Pioneers: Ecology, History, and Culture</u>. Ed. by J. Stubbendieck, T. Bragg, 143-46. Lincoln, NB: University of Nebraska, 1988.

Rauzi, Frank L., A. K. Dobrenz. "Seasonal Variation of Chlorophyll in Western Wheatgrass and Blue Grama." Journal of Range Management. 23 (1970): 372-.

Rechinthin, William E. "Elementary Morphology of Grass Growth and How it Affects Utilization." Journal of Range Management. 9 (1956): 167-70.

Reed, J. L., D. D. Dwyer. "Blue Grama Response to Nitrogen and Clipping Under Two Soil Moisture Levels." Journal of Range Management. 24 (1971): 47-51.

Rehm, G. W. "Yield and Quality of a Warm-Season Grass Mixture Treated with N, P, and Atrazine." Agronomy Journal. 76 (1984): 731-33.

Rice, Elroy. "Growth and Floral Development of Five Species of Range Grasses in Central Oklahoma." <u>Botanical Gazette</u>. 111 (1950): 361-77.

Rice, Elroy. "Inhibition of Nitrogen-fixing and Nitrifying Bacteria by Seed Plants. V Inhibitors Produced by *Bromus japonicus*." Southwestern Naturalist. 21 (1967): 97-103.

Riegel, D. Andrew. "Life History and Habits of Blue Grama." <u>Transactions of the Kansas Academy</u> of Science. 44 (1941): 76-83.

Riegel, D. Andrew, F. W. Albertson, H. H. Hopkins. "Yields and Utilization of Forage on a Mixed Prairie in West Central Kansas." <u>Transactions of the Kansas Academy of Science</u>. 53 (1950): 455-72.

Riegel, D. Andrew, F. W. Albertson, G. W. Tomanek, F. E. Kinsinger. "Effects of Grazing and Protection on a Twenty Year Old Seeding." Journal of Range Management. 16 (1963): 60-3.

Riegel, P. Andrew. "A Study of Variations in the Growth of Blue Grama Grass from Seed Produced in Various Sections of the Great Plains Region." <u>Transactions of the Kansas Academy of Science</u>. 43 (1940): 155-71.

Risser, P. G., F. L. Johnson. "Carbon Dioxide Exchange Characteristics of Some Prairie Grass Seedlings." <u>Southwestern Naturalist</u>. 18 (1973): 85-91.

Robertson, J. H. "Effect of Frequent Clipping on the Development of Certain Grass Seedlings." <u>Plant</u> <u>Physiology</u>. 8 (1936): 425-7.

Robocker, W. C., J. T. Curtis, H. L. Ahlgren. "Some Factors Affecting Emergence and Establishment of Native Grass Seedlings in Wisconsin." <u>Ecology</u>. 34 (1953): 194-9.

Robocker, W. C., Bonita Miller. "The Effects of Burning, Clipping, and Competiton on Establishment and Survival of Native Grasses in Wisconsin." Journal of Range Management. 8 (1955): 117-20.

Rogler, George. "Grass and Legume Introductions in the Northern Great Plains." In <u>Proceedings of</u> the Great Plains Agricultural Council. College Station, TX: 1967.

Rogler, George A. "Response of Geographical Strains of Grasses to Low Temperatures." <u>Agronomy</u> <u>Journal</u>. 36 (1943): 487-96.

Ross, J. G., S. S. Bullis, R. A. Moore. <u>Grass Performance in South Dakota</u>. Bulletin 536 Agricultural Experiment Station, Brookings, 1966.

Roundy, B. A., J. A. Young, R. A. Evans. "Germination of Basin Wildrye and Tall Wheatgrass in Relation to Osmotic and Matric Potential." <u>Agronomy Journal</u>. 77 (1985): 129-35.

Rummel, R. S. "Some Effects of Competition from Cheatgrass Brome on Crested Wheatgrass and Bluestem Wheatgrass." <u>Ecology</u>. 27 (1946): 159-66.

Runyon, N. R. "The Effect of Season of Growth and Clipping on the Chemical Composition of Blue Grama *Bouteloua gracilis*at Hays, Kansas." <u>Transactions of the Kansas Academy of Science</u>. 46 (1943): 116-21.

Savage, D. A., D. F. Costello. "Range Management." In <u>Grass: Yearbook of Agriculture</u>. Ed. by A. Stefferud, 522-37. Washington D.C.: u.S. Government Printing Office, 1948.

Savage, D. A., L. A. Jacobson. "The Killing Effect of Heat and Drought on Buffalo Grass and Blue Grama at Hays, Kansas." <u>Agronomy Journal</u>. 27 (1935): 566-82.

Schlatterer, E. F. <u>Establishment and Survival of Three Native Grasses Under Natural and Artificial</u> <u>Conditions</u>. Ph.D. at Univ. of Idaho, 1968.

Seamans, H. L., C. W. Farstad. "Notes on Agropyron smithii Rybd. and Cephus cinctus Nort." Ecology. 19 (1938): 350.

Seneca, Ernest D. "Germination Response to Temperature and Salinity of Four Dune Grasses from the Outer Banks of North Carolina." <u>Ecology</u>. 50 (1969): 45-53.

Simpson, G. M. Seed Dormancy in Grasses. New York: Cambridge University Press, 1990.

Smika, D. E., H. J. Haas, J. F. Power. "Effects of Moisture and Nitrogen Fertilizer on Growth and Water-use by Native Grass." <u>Agronomy Journal</u>. 57 (1965): 483-86.

Smith, D. C. "Pollination and Seed Formation in Grasses." Journal of Agricultural Research. 68 (1944): 79-95.

Smith, D. C., E. L. Nielson, H. L. Ahlgren. "Variation of Ecotypes of *Poa pratensis*." <u>Botanical Gazette</u>. 108 (1946): 143-66.

Smith, E. F., V. A. Young. "The Effect of Burning on the Chemical Composition of Little Bluestem." Journal of Range Management. 12 (1959): 139-41.

Smith, W. <u>Status Report on Poa paludigena (Bog Bluegrass) in Minnesota</u>. Minnesota Department of Natural Resources - Biological Report No. 3, 1989.

Smoliak, S., A. Johnston. "Germination and Early Growth of Grasses at Four Root-zone Temperatures." <u>Canadian Plant Sciences</u>. 48 (1968): 119-28.

Snetselaar, K., L. H. Tiffany. "Diseases of Big Bluestem Caused by Smut Fungi." In <u>Proceedings of the</u> <u>Twelfth North American Prairie Conference: Recapturing a Vanishing Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 17-20. Cedar Falls: University of Northern Iowa, 1992.

Snyder, L. A., J. R. Harlan. "A Cytological Study of *Bouteloua gracilis* from Western Texas and Eastern New Mexico." <u>American Journal of Botany</u>. 40 (1953): 702-.

Sosebee, R. E., H. H. Wiebe. "Effect of Water Stress and Clipping on Photosynthate Translocation in Two Grasses." <u>Agronomy Journal</u>. 63 (1971): 14-17.

Staten, H. W. Seeding Native Grasses. Oklahoma Agricultural Experiment Station Circular No. C-108, 1943.

Stevenson, T. M., W. J. White. "Root Fiber Production of Some Perennial Grasses." <u>Scientific</u> <u>Agriculturalist</u>. 22 (1941): 108-8.

Stoddart, Laurence. "How Long do Roots of Grasses Live?" Science. 81, N.S.,, (1935): 544.

Stoddart, Laurence, K. J. Wilkinson. "Inducing Germination in Oryzopsis hymenoides for Range Reseeding." <u>Agronomy Journal</u>. 30 (1938): 763-8.

Stubbendieck, J. L., D. F. Burzlaff. "Effects of Temperature and Daylength on Axillary Bud and Tiller Development in Blue Grama." Journal of Range Management. 23 (1970): 63-6.

Stubbendieck, J. L., D. F. Burzlaff. "Nature of Phytometer Growth in Blue Grama." Journal of Range Management. 24 (1971): 154-6.

Stuckey, I. H. "Sea al Growth of Grass Roots." <u>American Journal of Botan</u> 28 (1941): 486-91.

Thurston, J. "Some Experiments and Field Observations on the Germination of Wild Oats (Avena fatua and A. ludoviciana) Seeds in the Soil and Emergence of the Seedlings." <u>Annual of Applied Biology</u>. 38 (1951): 812-32.

Thurston, J. "A Comparative Study of the Growth of Wild Oats (Avena fatua and A. ludoviciana) and Cultivated Cereals and Varied Nitrogen Supply." <u>Annual of Applied Biology</u>. 47 (1959): 716-39.

Tilman, D., D. Wedin. "Dynamics of Nitrogen Competition Between Successional Grasses." <u>Ecology</u>. 72 (1991): 1038-49.

Tilman, D., D. Wedin. "Plant Traits and Resource Reduction for Five Grasses Growing on a Nitrogen Gradient." <u>Ecology</u>. 72 (1991): 685-700.

Tinney, Fred W. "Cytologyof parthenogensis in *Poa praetensis*." Journal of Agricultural Research. 60 (1940): 351-60.

Tode, E. H. "Factors Affecting the Germination of Various Drop-Seed Grasses." Journal of Agricultural Research. 63 (1941): 691-715.

Toole, V. K. "Factors Affecting the Germination of Various Drop-seed Grasses (Sporobolus sp.)." Journal of Agricultural Research. 62 (1941): 691-715.

US Department of Agriculture. <u>Grass Seed Production and Harvest in the Great Plains</u>. Farmer's Bulletin No. 2226, U.S. Govt. Printing Office, 1967.

Van Amburg, G. L., J. D. Dodd. "Soil Characteristics and Grass Rooting Habits in Two Soil Types in East-Central Texas." <u>Southwestern Naturalist</u>. 14 (1970): 377-87.

Vogel, K. P. "Seeding Rates for Establishing Big Bluestem and Switchgrass with Preemergence Atrazine Application." <u>Agronomy Journal</u>. 79 (1987): 509-12.

Vogel, W. G., A. J. Bjugstad. "Effects of Clipping on Yield and Tillering of Little Bluestem, Big Bluestem, and Indiangrass." Journal of Range Management. 21 (1968): nn.

Weaver, J. E. "Effect of Different Intensities of Grazing on Depth and Quantity of Roots of Grasses." Journal of Range Management. 3 (1950): 100-13.

Weaver, J. E., W. W. Hansen. "Increase of *Sporobolus cryptandrus* in Pastures of Eastern Nebraska." <u>Ecology</u>. 20 (1939): 374-81.

Weaver, J. E., I. M. Mueller. "Relative Drought Resistence of Seedlings of Dominant Prairie Grasses." Ecology. 23 (1942): 387-98.

Weaver, R. J. "Water Usage of Certain Native Grasses in Prairie and in Pasture." <u>Ecology</u>. 22 (1941): 175-91.

Wedin, D. A. <u>Nitrogen Cycling and Competition Among Grass Species</u>. Ph.D. at University of Minnesota, Minneapolis, 1990.

Wedin, D. A., D. Tilman. "Species Effects on Nitrogen Cycling: A Test with Perennial Grasses." Oecologia. 84 (1990): 433-1.

Welbank, P. J. "Toxin Production from Agropyron repens." In <u>Biology of Weeds</u>. Ed. by J. L. Harper, 158-66. Oxford: n.p., 1960.

Welch, N. H., E. Burnett, E. B. Hudspeth. "Effect of Fertilizer on Seedling Emergence and Growth of Several Grass Species." Journal of Range Management. 15 (1962): 94-8.

Wenger, L. E. "Soaking Buffalograss Seed to Improve its Germination." <u>Agronomy Journal</u>. 33 (1941): 135-41.

Wurster, M. J., L. D. Kamstra, J. G. Ross. "Evaluation of Cool Season Grass Species and Varieties Using In Vivo and In Vitro Techniques." Agronomy Journal. 63 (1971): 241-5.

Zedler, J. B., O. L. Loucks. "Differential Burning Response of *Poa praetensis* Fields and *Andropogon scoparius* Prairies in Central Wisconsin." <u>American Midland Naturalist</u>. 81 (1969): 341-52.

SEEDS: COLLECTION, HANDLING, GERMINATION

Anderson, Alan C. <u>Germination of Prairie Species</u>. Unpublished data. Madison: Department of Landscape Architecture at University of Wisconsin, 1974.

A. O. S. A. "Rules for Testing Seeds." Proceedings of Official Seed Analysts. 60 (1970): 1-116.

Atwater, Betty Ransom. "Germination, Dormancy, and Morphology of the Seeds of Herbaceous Ornamental Plants." Seed Science Technology. 8 (19??): 523-73.

Bakke, A. L., E. P. Sylvester. "Seed Retention of Some Prairie Plants." <u>Proceedings of the Iowa</u> <u>Academy of Science</u>. 60 (1954): 82-5.

Ballard, L. A. T. "Germination." In <u>Grasses and Grasslands</u>. Ed. by C. Barnard, 73-88. London: Macmillan, 1966.

Barr, Claude. "The Germination of Great Plains Species." <u>Bulletin of American Rock Garden Society</u>. 16 (1958): 9-11.

Barton, L. V. Bibliography of Seeds. New York: Columbia University Press, 1969.

Barton, L. V. Seed Preservation and Longevity. New York: Interscience Publications, 1961.

Baskin. "Germination Ecophysiology of Herbaceous Plant Species in a Temperate Region." <u>American</u> Journal of Botany. 75 (1988): 286-305.

Bewley, J. D., M. Black. <u>Physiology and Chemistry of Seeds in Relation to Germination</u>. Berlin: Springer Verlag, 1982.

Bewley, J. D., M. Black. <u>Seeds: Physiology of Development and Germination</u>. NY: Plenum Books, 1985.

Blake, A. Kincaid. "Viability and Germination at Seed and Early Life Histories of Prairie Plants." <u>Ecological Monographs</u>. 5 (1935): 405-60.

Bradbeer, J. W. Seed Dormancy and Germination. New York: Blackie and Son Ltd., 1988.

Bradford, K. J. "Manipulation of Seed Water Relations via Osmotic Priming to Improve Germination Under Stress Conditions." <u>HortScience</u>. 21 (1986): 1105-12.

Bratkowski, H. <u>Pregermination Treatments</u>. Research Paper. PNW 156 Pacific Northwest Forest and Range Experiment Station, Portland, OR, 1973.

Brown, Richard J. "Wildflower Seed Mixtures: Supply and Demand in the Horticultural Industry." In <u>Biological Habitat Reconstruction</u>. Ed. by G. P. Buckley, 201-. London: Belhaven Press, 1989.

Canadian Department of Agriculture. <u>Methods and Procedures for Testing Seed</u>. Ottowa: Seed Bio Lab, Lab Service Division, 1979.

Chambers, J. C., J. A. MacMahan, R. N. Brown. "Alpine Seedling Establishment: The Influence of Disturbance Type." <u>Ecology</u>. 71 (1990): 1323-41.

Christiansen, P. A., R. Q. Landers. "Notes on Prairie Species in Iowa: 1. Germination and Establishment of Several Species." Proceedings of the Iowa Academy of Science. 73 (1966): 51-59.

Christiansen, Paul. "Notes on Prairie Species in Iowa: 2. Establishment by Sod and Seedling Transplants." <u>Proceedings of the Iowa Academy of Science</u>. 76 (1969): 94-104.

Copeland, L. O. <u>Principles of Seed Science and Technology</u>. Minneapolis: Burgess Publishing Company, 1976.

Copeland, L. O. "Rules for Testing Seeds." Journal of Seed Technology. 6 (1981): 1-126.

Copeland, L. O. ed. "Rules for Testing Seed." Journal of Seed Technology. 3 (1978): 1-126.

Cox, R. A., J. E. Klett. "Seed Germination Requirements of Native Colorado Plants for Use in the Landscape." <u>Plant Propagation</u>. 30 (UNKNOWN YEAR): 6-10.

Crocker, W., L. V. Barton. <u>Physiology of Seeds: An Introduction to Experiment and Study of Seed and</u> Germination Problems. Waltham MA: Chronica Botany Co., 1957.

Cushwa, C. T., R. E. Martin, R. L. Miller. "The Effects of Fire on Seed Germination." Journal of Range Management. 29 (1968): 250-4.

Deno, Norman. <u>Seed Germination Theory and Practice</u>. State College, PA: Penn State University, 1991.

Department of the Interior. <u>Guide for Collecting and Seeding Native Forbes</u>. Wildlife leaflet 513. Washington DC, 19??

Dickerson, J. A., W. G. Longren, E. K. Hadle. "Native Forb Seed Production." In <u>The Prairie Peninsula</u> -- <u>In the "Shadow" of Transeau: Proceedings of the Sixth North American Prairie Conference</u>. Ed. by R. L. Stuckey, K. Reese, 218-22. Columbus, OH: College of Biological Sciences: Ohio State University, 1981.

Dickie, J. B., R. H. Ellis, H. L. Kraak, K. Ryder, P. B. Tompsett. "Temperature and Seed Storage Longevity." <u>Annals of Botany</u>. 65 (1990): 197-204.

Drobney, Pauline. "Effects of Stratification Time on the Germination Rate of Prairie Forbs." In Proceedings of the Eighth North American Prairie Conference. 169. 1984.

Drobney, Pauline. "Germination, Transportation, and Winter Storage of Iowa Prairie Forbs: Some Observations." In <u>Proceedings of the Eighth North American Prairie Conference</u>. 169. 1984.

Dullforce, Winifred. <u>Symposium on Seed Problems in Horticulture</u>. The Hague: International Society of Horticultural Science, 1970.

Eddleman, Lee E., P. L. Meinhardt. "Seed Viability and Seedling Vigor in Selected Prairie Plants." In <u>The Prairie Peninsula -- In the "Shadow" of Transeau: Proceedings of the Sixth North American Prairie</u> <u>Conference</u>. Ed. by R. L. Stuckey, K. Reese, 213-17. Columbus, OH: College of Biological Sciences: Ohio State University, 1981.

Ellis, R. H. <u>Revised Table of Seed Storage Characteristics</u>. Plant Genetic Resources Newsletter Bulletin 58. Food and Agriculture Organization of the U. N.; Rome, Italy, 1984.

Emery, Dara. "Seed Propagation of Native California Plants." <u>Leaflets of the Santa Barbara Botanical</u> <u>Garden</u>. 1 (1964): 80-96.

Erwin, John. "Temperature and Light Effects on Seed Germination." <u>MN Flower Growers Bulletin</u>. 40 (1991): 16-23.

Fenner, Michael. Seed Ecology. New York: Chapman and Hall, 1985.

Fenner, Michael. <u>Seeds: The Ecology of Regeneration in the Plant Community</u>. NY: CAB International, 1991.

Goodchild, N. A., M. G. Walker. "A Method of Measuring Seed Germination." <u>Annals of Botany</u>. 35 (1971): 615-21.

Greene, H. C., J. T. Curtis. "Germination Studies of Wisconsin Prairie Plants." <u>American Midland</u> <u>Naturalist.</u> 43 (1950): 186-94.

Griswold, S. M. "Effect of Alternate Moistening and Drying on Germination of Seeds of Western Range Plants." <u>Botanical Gazette</u>. 98 (1936): 243-69.

Halinar, Marlene. <u>Prairie Seed-Weight and Germination Rates</u>. Unpublished Data. Madison, Wisconsin: Dept of Landscape Architecture at University, 1976.

Halinar, Marlene. "Germination Studies and Purity Determinations on Native Wisconsin Prairie Seeds." In <u>The Prairie Peninsula in the "Shadow" of Transeau:</u> <u>Proceedings of the Sixth North American Prairie</u> <u>Conference</u>. Ed. by R. L. Stuckey, K. J. Reese, 227-31. Columbus, OH: College of Biological Sciences, Ohio State, 1981.

Harkness, Bernard. Seedlist Handbook. Portland OR: Timber Press, 1986.

Harmond, J. E., N. R. Brandenberg, L. M. Klein. <u>Mechanical Seed Cleaning and Handling</u>. Handbook #354. Washington D.C.: U. S. D. A, 1968.

Harmond, J. E., J. E. Smith, J. K. Park. "Harvesting the Seeds of Grasses and Legumes." In <u>Seeds:</u> <u>Yearbook of Agriculture</u>. 181-8. Washington DC: U.S.D.A., 1961.

Harper, J. L., J. T. Williams, G. R. Sagar. "The Behavior of Seeds in Soil." Journal of Ecology. 51 (1965): 273-86.

Harrington, J. F. "Problems of Seed Storage." In <u>Seed Ecology</u>. Ed. by W. Heydecker, 251-64. State College: Penn State University Press, 1973.

Hendricks, S. B., R. B. Taylorson. "Promotion of Seed Germination by Nintrate, Nitrite, Hydroxylamine and Ammonium Salts." <u>Plant Physiology</u>. 54 (1974): 304-9.

Hesse, M. C. <u>Germination of Seven Species of Wildflowers as Affected by Different Pre-germination</u> <u>Conditions</u>. Lincoln: University of Nebraska, 1973.

Heydecker, W. Seed Ecology: Proceedings. University Park PA: Penn State University Press, 1973.

Heydecker, W., B. M. Gibbons. "The 'Priming' of Seeds." Acta Hort. 83 (1978): 213-23.

Heydecker, W., J. Higgins, V. J. Turner. "Invigoration of Seeds." <u>Seed Science Technology</u>. 3 (1975): 881-88.

Heydecker, W., P. Codbear. "Seed Treatments for Improved Performance - Survey and Attempted Prognosis." <u>Seed Science Technology</u>. 5 (1977): 353-425.

Hoffman, G. R., M. B. Hogan, L. D. Stanley. "Germination of Plant Species Common to Reservoir Shores in the Northern Great Plains." <u>Bulletin of Torrey Botanical Club</u>. 107 (1980): 506-13.

Jelitto, Klaus. "Finding, Collecting and Storing Seeds." In <u>Proceedings 1986 Herbaceous Perennial</u> Symposium. Ed. by Steven Still, 35-7. Columbus Ohio: Perennial Plant Association, 1986.

Jelitto, Klaus. "Seed Germination." In <u>Proceedings 1986 Herbaceous Perennial Symposium</u>. Ed. by Steven Still, 38-45. Columbus Ohio: Perennial Plant Association, 1986.

Johnson, James, Martin Beutler. <u>Proceedings of Northern Plains Grass Seed Symposium</u>. Brookings: SDSU Cooperative Extension Service, 1988.

Justice, O. L., L. N. Bass. <u>Principles and Practices of Seed Storage</u>. Agricultural Handbook 506. Washington D. C.: U. S. D. A, 1978.

Kaspar, M. J., E. L. McWilliams. "Effects of Temperature on the Germination of Selected Wildflower Seeds." <u>HortScience</u>. 17 (1982): 595-96.

Khan, A. Physiology and Biochemistry of Seed Dormancy and Germination. NY: Elsevier Pub, 1977.

Kirt, Russell. "Quantitative Trends in Progression Toward a Prairie State by Use of Seed Broadcast and Seedling Transplant Methods." In <u>Proceedings of the Twelfth North American Prairie Conference</u>. Ed. by D. D. Smith, J. A. Jacobs, 183-87. Cedar Falls: University of Nothern Iowa, 1992.

Lavin, Fred, D. Jameson, F. B. Gomm. "Juniper Extract and Deficient Aeration Effects on Germination of Six Range Species." Journal of Range Management. 21 (1968): 262-3.

Lawrence, D. B., E. G. Lawrence, A. L. Seim. "Data Essential to Completeness of Reports on Seed Germination of Native Plants." <u>Ecology</u>. 28 (1947): 76-8.

Lincoln Jr, W. C. "Laboratory Germination Methods of Some Native Herbaceous Plant Species." <u>Newsletter of Association of Official Seed Analysts</u>. 57 (1983): 29-31, 83-86.

Lippert, Robert, Harold Hopkins. "Study of Viable Seeds in Various Habitats in Mixed Prairie." <u>Transactions of the Kansas Academy of Science</u>. 53 (1950): 355-64.

Longland, David. "Collecting Wild Seed." American Horticulturalist Magazine. 58 (1979): 23-25, 44.

Maguire, J. D., A. Overland. <u>Laboratory Germination of Seeds of Weedy and Native Plants</u>. Circular 349, Washington Experimental Station, 1959.

Mahler, D. B., J. C. Walther. "The Importance of Wild Seed: A New Harvesting Tool." In <u>The Prairie:</u> <u>Roots of Our Culture; Foundation of Our Economy. Proceedings of the Tenth North American Prairie</u> <u>Conference</u>. Ed. by A. Davis, G. Stanford, Art. 03.05. Dallas TX: Native Plant Association of Texas, 1988.

Martin, R. E., C. T. Cushwa. "Effects of Heat and Moisture on Leguminous Seed." <u>Proceedings Tall</u> <u>Timbers Fire Ecology Conference</u>. 5 (1966): 159-75.

Mattson, Lyle, R. H. Pemble. <u>Germination Response of Selected Prairie Species to Some Simulated</u> <u>Prairie Fire Conditions</u>. Minnesota Academy of Science, 41st Annual Meeting. St. Olaf College, Northfield MN, 1973.

Mayer, A. M., A. Poljakoff-Mayber. <u>The Germination of Seeds</u>. 4th. New York: Pergamon Press, 1989.

Mayer, A. M., Y. Shain. "Control of Seed Germination." <u>Annual Review of Plant Physiology</u>. 25 (UNKNOWN YEAR): 167-93.

Mirov, N. T., Charles Kraebel. <u>Collecting and Handling Seeds of Wild Plants</u>. Washington D.C.: Civilian Conservation Corps - Forestry Publication #5, 1939.

Mitchell, E. "Germination of Seeds of Plants Native to Dutchess County, New York." <u>Botanical</u> <u>Gazette</u>. 81 (1926): 108-12.

Nichols, G. E. "The Influence of Exposure to Winter Temperatures Upon Seed Germination in Various Native American Plants." <u>Ecology</u>. 15 (1934): 364-73.

Nikolaeva, M. G. <u>Physiology of Deep Dormancy in Seeds</u>. Jerusalem: Israel Program Scientific Translations, 1969.

Ode, Arthur. "Some Aspects of Establishing Prairie Species by Direct Seed." In <u>Proceedings of a</u> <u>Symposium on Prairie and Prairie Restoration (First Midwest Conference)</u>. Ed. by Peter Schramm, 52-60. Galesburg II: Knox College, 1970.

Olson, W. W. "Large Scale Seed Harvest of Native Tallgrass Prairie." In <u>The Prairie: Past, Present</u> and Future: Proceedings of the Ninth North American Prairie Conference. Ed. by Gary K. Clambey, Richard Pemble, 213-5. Fargo ND: Tri-College University Center for Environmental Studies, 1986.

Ovcharov, K. E. Physiological Basis of Seed Germination. NY?: Amerind Publishing Co., 1977.

Paul, K. B., J. L. Crayton, P. K. Bisuas. "Germination Behavior of Florida Pusley seeds. II Effects of Germination-stimulating Chemicals." <u>Weed Science</u>. 24 (1974): 349-51.

Perry, Leonard, Ann Bove. "Herbaceous Perennial Seed Propagation." <u>Perennial Plant Association</u> <u>Quarterly Newsletter</u>. VI (1986): 10-2. Picker, P. L. "The Seeds of Wildflowers." In <u>Seeds: The Yearbook of Agriculture</u>. Washington DC: U.S.D.A., 1961.

Pinnell, M. M., A. M. Armitage, D. Seaborn. <u>Germination Needs of Common Perennial Seed</u>. University of Georgia Agricultural Experiment Station. Bulletin #331, 1985.

Plummer, A. P. "The Germination and Early Development of 12 Range Grasses." <u>Agronomy Journal</u>. 35 (1943): 19-33.

Pohl, Richard. How to Know the Grasses. Dubuque Iowa: WM Brown Co., 1968.

Pourrat, Yvonne, Roger Jacques. "Photoperiod Condition on Mother Plant and Morphology of Seeds." Plant Science Letters. 4 (1975): 273-79.

Priestley, D. A. Seed Aging. Ithaca, NY: Cornell University Press, 1986.

Roberts, E. H. Viability of Seeds. Syracuse NY: Syracuse University Press, 1972.

Salac, S. S. <u>Collection, Propagation, Culture, Evaluation, and Maintenance of Plant Materials for</u> <u>Highway Improvement</u>. Nebraska Department of Roads: Study 64-2. Lincoln, Nebraska, 1977.

Salac, S. S., M. C. Hesse. "Effects of Storage and Germination Conditions on Germination of Four Species of Wild Flowers." <u>HortScience</u>. 100 (1975): 359-61.

Scwarzmeier, Jerry. <u>Data on Seed Weight and Germination</u>. Mimeographed sheet at the University of Wisconsin, 19??

Smreciu, A., R. Currah. "Germination of Grassland Forb Seeds Tested." <u>Restoration and Management</u> <u>Notes</u>. 1 (1983): 24.

Sorenson, J. T. <u>Germination and Vegetative Propagation of Native Prairie Forbs</u>. MS at University of South Dakota, Brookings, 1972.

Sorenson, J. T., D. J. Holden. "Germination of Native Prairie Forb Seeds." Journal of Range Management. 27 (1974): 123-6.

Swingle, Charles. <u>Seed Propogation of Tress Shrubs and Forbs for Conservation Planting</u>. Report TP-27. Washington D.C.: USDA, 1939.

Taylorson, R. B., S. B. Hendricks. "Promoting Seed Germination by Cyanide." <u>Plant Physiology</u>. 52 (1973): 23-27.

Tolstead, W. L. "Germination Habits of Certain Sand-Hill Plants in Nebraska." <u>Ecology</u>. 22 (1941): 393-97.

Ungar, Irwin A. "Influence of Salintity and Temperature on Seed Germination." <u>Ohio Journal of Science</u>. 67 (1967): 120-3.

Villiers, T. A., D. J. Edgcumbe. "On the Cause of Seed Deterioration in Dry Storage." <u>Seed Science</u> <u>Technology</u>. 3 (1975): 761-74.

Voight, J. W. "Seed Germination of True Prairie Forbs." Journal of Range Management. (1977): 439-41.

Wolff, Simon E. <u>Harvesting and Cleaning Grass and Legume Seed</u>. U. S. D. A. Soil Conservation Service, Agric. Handbook, Sec. 6, 1950.

Wood, Raymond. <u>Watersoaking Pregermination Treatment of Seed</u>. at Forestry, University of Minnesota, 1949.

Young, J. A., R. A. Evans, B. L. Kay. "Germination Characteristics of Range Legumes." Journal of Range Management. 23 (1970a): 98-103.

Young, James, Cheryl Young. <u>Collecting, Processing, and Germinating Seed of Wildland Plants</u>. Portland: Timber Press, 1986.

ASEXUAL PROPAGATION

Bennerup, Pierre. "Division and Root Cutting Propagation." In <u>Proceedings 1986 Herbaceous</u> <u>Perennial Symposium</u>. Ed. by Steven Still, 24-7. Columbus Ohio: Perennial Plant Association, 1986.

Brumback, Bill. "Wildflower Propagation." <u>Perennial Plant Association Quarterly Newsletter</u>. 2 (1985): 5-6.

Brumback, William. "Ethical Propagation of Wildflowers for the Commercial Nursery." In <u>Proceedings</u> <u>1991 Perennial Plant Symposium</u>. Ed. by Steven Still, 42-3. Hilliard, Ohio: Perennial Plant Association, 1991.

Busse, Ainie. "Propagation by Division." In <u>1984 Herbaceous Perennial Plant Symposium</u>. Ed. by Steven Still, 20-23. Columbus Ohio: Perennial Plant Association, 1984.

Chen, C. H., D. J. Holden. "Cloning Lilium philadelphicum L. by Tissue Culture." <u>Proceedings South</u> <u>Dakota Academy of Science</u>. 54 (1975): 143-47.

Chen, C. H., N. E. Stenburg, J. G. Ross. "Clonal Propagation of Big Bluestem (Andropogon gerardi) by Tissue Culture." <u>Crop Science</u>. 17 (1977): 847-50.

Coupland, R. T., R. E. Johnson. "Rooting Characteristics of Native Grassland Species in Saskatchewan." Journal of Ecology. 57 (1965): 475-507.

Curtis, Will C. <u>Propagation of Wildflowers</u>. Framingham, MA: New England Wildflower Society, Inc., 19??

Dowie, J. Prairie Grass Dividing. Rock Island, IL: U. ILL, 1959.

Ellis, B. E. <u>Propagation of Selected Native Prairie Plants by Tissue Culture</u>. MS at S. D. University; Brookings, 1975.

Fischer, Kenneth. "Present Day Practices in the Propagation and Culture of Perennials." <u>Proceedings</u> of International Plant Propagators. 7 (1957): 54-60.

Free, Montague. <u>Plant Propagation in Pictures</u>. Garden City: American Garden Guild and Doubleday, 1957.

Hartmann, H. T., D. E. Kester. Plant Propagation. 4th. Englewood Cliffs NJ: Prentice-Hall, 1975.

Hartnett, David. "Size-dependent Allocation to Seed and Vegetative Reproduction in Four Clonal Compsites." Oecologia. 84 (1990): 254-59.

Hendricks, Dale. "Taking the Mystery out of Propagating Perennials by Cuttings." In <u>Proceedings 1989</u> <u>Perennial Plant Symposium</u>. Ed. by Stephen Still, 83-90. Hilliard, Ohio: Perennial Plant Association, 1989.

Holden, D. J., B. E. Ellis, C. H. Chen. "Cloning Native Prairie Plants by Tissue Culture." In <u>Proceeding</u> of the Fifth Midwest Prairie Conference. Ed. by David Glenn-Lewin, Roger Landers, 92-5. Ames, Iowa: University of Iowa Press, 1978.

Kearns, S. K. "A Comparison of Transplanting Times and Methods for Salvaging Prairie Forbs and Grasses." In <u>The Prairie: Past, Present, and Future: Proceedings of the Ninth North American Prairie</u> <u>Conference</u>. Ed. by Gary K. Clambey, Richard Pemble, 197-200. Fargo, ND: Tri-College University Center for Environmental Studies, 1986.

Mahlstede, J. P., E. S. Haber. Plant Propagation. London: Wiley Co., 1957.

Murashige, T. "Plant Propagation Through Tissue Culture." <u>Annual Review of Plant Physiology</u>. 25 (1974): 135-66.

New England Wild Flower Society. <u>Propagation of Wildflowers</u>. Framingham, MA: Garden in the Woods, 1986.

Phillips, Harry. Growing and Propagating Wildflowers. Chapel Hill: University of N. C. Press, 1985.

Phillips, Harry. "Propagation of Native Perennial Plants." In <u>Proceedings 1987 Perennial Plant</u> <u>Symposium</u>. Ed. by Steven Still, 7-11. Columbus Ohio: Perennial Plant Association, 1987. Rock, Harold W. <u>Prairie Propagation Handbook</u>. 6th. Wehr Nature Center, Whitehall Park, Milwaukee County Dept. of Parks, Recreation, and Culture, 1981.

Roderick, Wayne, W. Richard Hildreth. "Propagation of Native Plants with Bulbs, Tubers, Corms, Rhizomes, and Rootstocks." Fremontia. 3 (1975): 3-12.

Schulenberg, Ray. "Notes on the Propagation of Prairie Plants." In <u>Third Northern Illinois Prairie</u> <u>Workshop</u>. Ed. by Russell Kirt, 1-16. Batavia, IL: Fermi National Accelerator Lab, 1978.

Schulenberg, Raymond. <u>Notes on the Propagation of Prairie Plants</u>. Lisle Illinois: Morton Arboretum, unpublished, 1967.

Simon, Richard. "Propagation by Tip Cuttings." In <u>1984 Herbaceous Perennial Plant Symposium</u>. Ed. by Steven Still, 28-30. Columbus Ohio: Perennial Plant Association, 1984.

Simon, Richard. "Propagation by Tip Cuttings." In <u>Proceedings 1986 Herbaceous Perennial Symposium</u>. Ed. by Steven Still, 28-34. Columbus Ohio: Perennial Plant Association, 1986.

Sullivan, Gene A., Richard H. Daley. <u>Directory to Resources on Wildflower Propagation</u>. Missouri Botanical Garden: National Council of State Garden Clubs Inc., 1981.

Van Dyke, Margaret, R. Currah. "Container Production of Prairie Forbs." <u>Restoration and</u> <u>Management Notes</u>. 1 (1983): 24.

Van Dyke, Margaret, R. Currah. "Vegetative Propagation of Prairie Forbs." <u>Restoration and</u> <u>Management Notes</u>. 1 (1983): 25.

Van Dyke, Margaret, R. Currah. "Vegetative Propagation of Prairie Forbs Native to Southern Alberta." <u>Plant Propagation</u>. 28 (1983): 12-14.

Viette, Andre. "Propagation by Root Cutting." In <u>1984 Herbaceous Perennial Plant Symposium</u>. Ed. by Steven Still, 24-5. Columbus Ohio: Perennial Plant Association, 1984.

Walters, John. "Propagation of Herbaceous Perennials." <u>Proceedings of International Plant Propagators</u>. 32 (1982): 583-8.

Winder, Bobby. How to Propagate. Springfield, IL: Winder's Native Wildflowers, 1979.

Zilis, Mark. "A Careful Look at Tissue Cultures." In <u>1984 Herbaceous Perennial Plant Symposium</u>. Ed. by Steven Still, 5-8. Columbus, Ohio: Perennial Plant Association, 1984.

Zimmerman, J. "Propagation of Spring Prairie Plants." In <u>Proceedings of the Second Midwest Prairie</u> <u>Conference</u>. Ed. by James Zimmerman, 153-61. Madison, Wisconsin: University of Wisconsin, 1972.

TECHNICALISSUES

Aldon, E. "Seed Sources, Species Selection, Current Research on Species Adaptation for Mine Soil Reclamation." In <u>Reclamation of Western Surface Mined Lands: Proceedings</u>. Ed. by Kimery C. Vories, . Fort Collins, CO: Ecological Consultant Inc., 1976.

Allard, H. A., W. W. Garner. <u>Further Observations on the Response of Various Plants to Length of</u> Day. U.S.D.A. Agricultural Technical Bulletin. 727: 1-64, 1940.

Anderson, R. C., Schelfhout. "Phenological Patterns Among Tallgrass Prairie Plants and their Implications for Pollinator Competition." <u>American Midland Naturalist</u>. 104 (1980): 255-63.

Bartos, D., A. S. Jameson. <u>A Dynamic Root Model</u>. US IBP Grassland Biome Preprint No. 38. Fort Collins: Colorado State University, 1972.

Bartos, D. L. <u>Root-rhizome Production in a Mixed Prairie Grass-land in Western Kansas</u>. MS at Fort Hays State College., 1968.

Bartos, D. L., P. L. Sims. "Root Dynamics of a Shortgrass Ecosystem." Journal of Range Management. 27 (1974): 33-6.

Blum, U. Inhibition of Symbiotic Nitrogen-fixation by Gallic and Gallotannic Acids and Possible Roles in Old-field Succession. Ph.D. at University of Oklahoma, Norman, 1968.

Bragg, L. H. "Chromosome Counts and Cytological Observations of Certain Texas Gramineae Under Transplanted Conditions." <u>Southwestern Naturalist</u>. 9 (1964): 306-8.

Bray, J. Roger. "The Chlorophyll Content of some Native and Managed Plant Communities in Central Minnesota." <u>Canadian Journal of Botany</u>. 38 (1960): 313-3.

Bray, J. Roger. "Root Production and the Estimation of Net Productivity." <u>Canadian Journal of Botany</u>. 41 (1963): 65-72.

Brown, William L. "Chromosome Complements of Five Species of *Poa* with an Analysis of Variation in *Poa pratensis*." <u>American Journal of Botany</u>. 26 (1939): 717-23.

Buckley, G. P. Biological Habitat Reconstruction. London: Belhaven Press, 1989.

Butler, J. E. Interrelations of Autoecological Characteristics of Prairie Herbs. Ph.D. at University of Wisconsin, Madison, 1954.

Cameron, Arthur. "Bare-root Storage of Herbaceous Perennials: Problems and Remedies." In <u>Proceedings 1985 Herbaceous Perennial Symposium</u>. Ed. by Steven Still, 75-9. Columbus Ohio: Perennial Plant Association, 1985.

Erdman, James. <u>Elemental Composition of Selected Native Plants and Associated Soils</u>. Washington D.C.: Department of the Interior, 1976.

Gliessman, S. R. "Allelopathic Interactions in Crop-Weed Mixtures: Applications for Weed Management." Journal of Chemical Ecology. 9 (1983): 991-99.

Grant, Verne. Genetics of Flowering Plants. NY: Columbia University Press, 1975.

Griffiths, Anthony, Fred Ganders. <u>Wildflower Genetics: A Field Guide for British Columbia and the</u> <u>Pacific Northwest</u>. Vancouver: University of British Columbia Flight Press, 1983.

Halevy, A. C. R. C. Handbook of Flowering. Boca Raton FL: CRC Press, 1985.

Hartl, D. C. Principles of Population Genetics. 2nd. Sunderland, MA: Sinauer Association, 1989.

Knievel, D. P. "Procedure for Estimating Ratio of Live to Dead Root Dry Matter in Root Core Samples." <u>Crop Science</u>. 13 (1973): 124-6.

Kramer, P. J., N. C. Turner. <u>Adaptation of Plants to Water, and High Temperature Stress</u>. NY: Wiley Co., 1980.

Kramer, Paul J. Water Relations of Plants. NY: Academic Press, 1983.

Leopold, C. A., P. E. Kriederman. Plant Growth and Development. NY: McGraw Hill, 1975.

Marsh, Frank. <u>Water Content and Osmotic Pressure of Certain Prairie Plants in Relation to their</u> Environment. Lincoln, NB: 1940.

Moore, J. N., D. H. Scott. "Effects of Gibberellic Acid and Blossom Removal on Runner Production of Strawberry Varieties." Proceedings American Society of Horticultural Science. 87 (1965): 240-44.

Mueller, I. M. "An Experimental Study of Rhizomes of Certain Prairie Plants." <u>Ecological Monographs</u>. 11 (1941): 165-88.

Newbould, P. J. "Methods of Estimating Root Production." In <u>Functioning in Terrestrial Ecosystems</u> at the Primary Production Level. Ed. by F. E. Eckhardt, 187-90. Paris: UNESCO, 1968.

Paleg, L. G., D. Aspinall. <u>Physiology and Biochemistry of Drought Resistant Plants</u>. NY: Academic Press, 1981.

Rice, E. L. "Chemical Warfare Between Plants." Bioscience. 38 (1967): 67-74.

Rice, E. L. Allelopathy. 2nd. San Francisco: Academic Press, 1984.

Rice, Elroy. "Inhibition of Nitrogen-fixing and Nitrifying Bacteria by Seed Plants." <u>Ecology</u>. 45 (1964): 112-6.

Rice, Elroy. "Inhibition of Nitrogen-fixing and Nitrifying Bacteria by Seed Plants. III Comparison of Three Species of Euphorbia." Proceedings of the Oklahoma Academy of Science. 45 (1965): 43-4.

Rice, Elroy. "Inhibition of Nitrogen-fixing and Nitrifying Bacteria by Seed Plants. IV Characterization and Identification of Inhibitors." <u>Physiology of Plant</u>. 18 (1965): 255-68.

Romans, R. C. <u>Floristic Similarities</u>, <u>Differences</u>, and <u>Geographical Affinities</u>. n.p.: Plenuym Publishing Co., 1981.

Russell, S. R. <u>Plant Root Systems: Their Function and Interactions With the Soil</u>. NY: McGraw Hill, 1977.

SCS. Improved Plant Material. Soil Conservation Service, in cooperation with U.S.D.A, 1986.

Simpson, G. Water Stress on Plants. NY: Praeger, 1981.

Singh, J. S., D. C. Coleman. "A Technique for Evaluating Functional Root Biomass in Grassland Ecosystem." <u>Canadian Journal of Botany</u>. 51 (1973): 1867-70.

Stevens, R., K. R. Davis, J. N. Jorgenson. "Viability of Seed from 32 Shrub Species Through 15 Years of Warehouse Storage." Great Basin Naturalist. 41 (1981): 274-78.

Timson, I. "New Method of Recording Germination Data." Nature. 207 (1965): 216-17.

Vince-Prue, D. Photoperiodism of Plants. New York: McGraw Hill, 1975.

Vince-Prue, D., B. Thomas, K. E. Cockshull. <u>Light and Flowering Process</u>. London: Academic Press, 1984.

Weaver, J. E. Ecological Relations of Roots. Washington: Carnegie Institute, 1919.

Whittaker, R. H., P. P. Feeny. "Allelochemics: Chemical Interactions Between Species." <u>Science</u>. 171 (1971): 757-70.

Wilson, R. E. "The Role of Allelopathy in Old-Field Succession on Grassland in Areas of Central Oklahoma." In <u>Proceedings of a Symposium on Prairie and Prairie Restoration (First Midwest</u> <u>Conference</u>). Ed. by Peter Schramm, 24-25. Galesburg, IL: Knox College, 1970.

GARDENING WITH WILDFLOWERS (general books)

Abbot, C. How to Know and Grow Texas Wildflowers. 2nd. Keriville TX: Green Horizons Press, 1979.

Aiken, George. Pioneering with Wildflowers. Prentice Hall, 1968.

Airhart, Douglas, Kathleen M. Falls, Trina Hosmer. "Developing Wildflower Sods." <u>HortScience</u>. 18 (1983): 89-91.

Art, Henry. <u>A Garden of Wildflowers - 101 Native Species</u>. Pownal VT: Storey Communications, 1986.

Art, Henry. Wildflower Gardener's Guide. Pownal VT: Storey Communications, 1987.

Arund, George D. "A Backyard Prairie." In <u>Eighth North American Prairie Conference Proceedings</u>. Ed. by Richard Brewer, 119-20. Kalamazoo, MI: 1982.

Austin, Richard. <u>Wild Gardening: Strategies and Procedures Using Native Plantings</u>. New York: Simon and Schuster, 1986.

B.B.G. "Gardening with Native Plants." Plants and Gardens. 18 (1964): .

Beam, James. "Production of Perennials." Ohio Florist Association Bulletin. 605 (1980): 8-10.

Beattie, David. "Getting Started in the Perennial Business." In <u>Proceedings 1986 Herbaceous Perennial</u> <u>Symposium</u>. Ed. by Steven Still, 1-10. Columbus Ohio: Perennial Plant Association, 1986.

Beckett, Kenneth. Growing Hardy Perennials. London: Croom Helm, 1981.

Bennett, Jennifer. Harrowsmith Northern Gardener. Rev. Camden, Ontario: Camden House, 1987.

Birdseye, C., E. Birdseye. Growing Woodland Plants. New York: Dover, 1951.

Bluhm, Wilbur. "Northwest Native Herbaceous Perennials of Garden Merit." In <u>Proceedings 1988</u> <u>Perennial Plant Symposium</u>. Ed. by Stephen Still, 57-63. Columbus, Ohio: Perennial Plant Association, 1988.

Bruce, H. <u>How to Grow Wild Flowers, Wild Shrubs, and Wild Trees in Your Own Garden</u>. New York: Van Nostrand / Reinhold, 1976.

Brumback, W. E., D. R. Langland. <u>Garden-in-the-Woods Cultivation Guide</u>. Framingham MA: New England Wild Flower Society, 1962.

Brumback, William. "Wild Flowers and Native Plants for Landscape Use." In <u>1984 Herbaceous</u> <u>Perennial Plant Symposium</u>. Ed. by Steven Still, 67-73. Columbus Ohio: Perennial Plant Association, 1984.

Busse, Ainie. "Growing Perennials in Raised Beds." In <u>Proceedings 1986 Herbaceous Perennial</u> <u>Symposium</u>. Ed. by Steven Still, 46-8. Columbus Ohio: Perennial Plant Association, 1986.

Butcher, J. K. "Prairie Wildflowers on the Horizon." Soil Conservation. 42 (1959): 16-17.

Costello, David. The Prairie World. Minneapolis: University of MN Press, 1969.

Crockett, James Underwood. Wildflower Gardening. Alexandria VA: Time-Life Books, 1977.

Dawson, E. Yale. How to Know and Grow Cacti. Dubuque: Brown, 1963.

Diboll, Neil. "Prairie Plants and Their Use in the Landscape." In <u>Proceedings 1987 Perennial Plant</u> Symposium. Ed. by Steven Still, 38-51. Columbus Ohio: Perennial Plant Association, 1987.

Dickerson, J. A., E. K. Hadle. "Wildflowers: Beautiful but Tough." Soil Conservation. 42 (1977): 14-15.

Dietz, Marjorie. <u>The Concise Encyclopedia of Favorite Wildflowers: 100 to Appreciate and Grow</u>. Garden City, NJ: Doubleday Books, 1965.

Donaldson, Anthony, Rene Donaldson. "Prairie, A Landscape Alternative." <u>Garden Magazine</u>. 5 (1981): 14-19.

Dupont, Elizabeth. <u>Landscaping with Native Plants in the Mid-Atlantic Region</u>. Chads Ford, PA: Brandeywine Conservancy, 1978.

Durand, Herbert. Taming the Wildlings. New York: G. P. Putnam, 1923.

Durand, Herbert. Wildflowers and Ferns: In Their Homes and in Our Gardens. New York: Putnam, 1923.

Frese, Paul. "The Return of Wildflowers." Flower and Garden Magazine. 28 (1984): 50-53, 56.

Gould, T. "Prairie Reborn." American Nurseryman. 168 (1988): 36-48.

Hebb, Robert. "Low Maintenance Perennials." In <u>1984 Herbaceous Perennial Plant Symposium</u>. Ed. by Steven Still, 39-45. Columbus Ohio: Perennial Plant Association, 1984.

Heger, Michael. "Herbaceous Perennial Ground Covers: Beyond Ivy and Vinca." In <u>Proceedings 1989</u> <u>Perennial Plant Symposium</u>. Ed. by Stephen Still, 75-82. Hilliard, Ohio: Perennial Plant Association, 1989.

Hessey, J. Wildflowers to Know and Grow. Princeton NJ: Van Nostrand, 1964.

Hoepfner, E. "Meadows." Harrowsmith. 2 (1987): 80-89.

Hoover, Robert, Betty Hoover. Native Plants in Our Gardens. Blake Printery, 1972.

House, Homer. Wildflowers. New York: MacMillan, 1961.

Hull, H. S. Handbook of Gardening with Wildflowers. Brooklyn NY: Brooklyn Potanic Garden, 1982.

Hylander, Clarence. The MacMillan Wild Flower Book. New York: MacMillan, 1954.

Iversen, Richard. "Forcing Perennials for Out-of-Season Use." In <u>Proceedings 1988 Perennial Plant</u> <u>Symposium</u>. Ed. by Stephen Still, 84-89. Columbus, Ohio: Perennial Plant Association, 1988.

Jones, Samuel. "The Best Among the Native Wild Flowers for Landscape Use." In <u>Proceedings 1989</u> <u>Perennial Plant Symposium</u>. Ed. by Stephen Still, 91-8. Hilliard, Ohio: Perennial Plant Association, 1989.

Jones, Samuel, Leonard Foot. Gardening with Native Wild Flowers. Portland: Timber Press, 1990.

Kelaidis, Panayoti. "Rock Garden Plants for Perennial Growers." In <u>Proceedings</u> 1988 Perennial Plant <u>Symposium</u>. Ed. by Stephen Still, 38-46. Columbus, Ohio: Perennial Plant Association, 1988.

Kenfield, Warren G. The Wild Gardener in the Wild Landscape. New York: Hofner, 1970.

Kindscher, Kelly. <u>An Ethnobotanical Guide: Edible Wild Plants of the Prairie</u>. Lawrence KS: University Press of Kansas, 1987.

Kindscher, Kelly. <u>Medicinal Wild Plants of the Prairie: An Ethnobotanical Guide</u>. Lawrence: University of Kansas Press, 1992.

Koller, Gary. "Little Used Perennials and Ground Cover Varieties." In <u>Proceedings 1991 Perennial</u> <u>Plant Symposium</u>. Ed. by Steven Still, 53-66. Hilliard, Ohio: Perennial Plant Association, 1991.

Kopolow, Carol. Wildflowers Jan 79 - Dec 91. Beltsville, MD: National Agricultural Library, 1992.

Kramer, Jack. The Natural Gardens: Gardening with Native Plants. New York: Scribner, 1923.

Krenan, John. Introduction to Wild Flowers. New York: Hanover, 1952.

Kruckeberg, A. R. <u>Gardening with Native Plants of the Pacific Northwest</u>. Seattle, WA: University of Washington Press, 1982.

Martin, Laura. Wildflower Folklore. Charlotte NC: East Woods Press, 1984.

Martin, Laura. <u>The Wildflower Meadow Book: A Gardener's Guide</u>. Charlotte, NC: Eastwoods Press, 1986.

Miles, Bebe. <u>Bluebells and Bittersweet: Gardening with Native American Plants</u>. New York: Van Nostrand, 1968.

Miles, Bebe. Wildflower Perennials for Your Garden. New York: Hawthorn Books, 1976.

Minnesota Roadside Wildflower Task-Force. <u>Report and Recommendations</u>. Minnesota: 1988.

Morrison, D. G. "Designing with Native Plants: Potentials and Challenges." <u>Wildflower: Journal of the</u> National Wildflower Research Center. 1 (1988): 13-18.

Natural Vegetation Committee. <u>Landscaping with Native Arizona Plants</u>. Tuscon: University of Arizona, 1973.

New England Wild Flower Society. <u>Nursery Sources: Native Plants and Wildflowers</u>. Framingham MA: New England Wild Flower Society, 1987.

New England Wild Flower Society. <u>Meadows and Meadow Gardening</u>. Framingham MA: New England Wildflower Society, 1990.

Noakes, Jill. <u>How to Grow Native Plants of Texas and the Southwest</u>. Austin, TX: Texas Monthly Press, 1986.

Northington, D. "Wildflower Focus." <u>Wildflower: Journal of the National Wildflower Research Center</u>. 1 (1988): 4-5.

Nuzzo, V. Our Native Plants. ?: ?, 1977.

O'Kennon, Lou Ellen. Texas Wildflower Portraits. Austin TX: Texas Monthly Press, 1987.

Pellett, Frank. Flowers of the Wild: The Culture and Requirements. NY: De le Mare, 1931.

Pellett, Frank C. Success with Wildflowers. New York: Dodd, Meade, and Co., 1947.

Penn, Cordelia. Landscaping with Native Plants. Winston-Salem: Blair, 1982.

Perry, Leonard, Marjorie Duarte. "Choose the Right Production System for Perennials." <u>Greenhouse</u> <u>Grower</u>. (1986): 41-42.

Phillips, Norma. The Root Book: How to Plant Wildflowers. Grand Rapids, MN: 1984.

Phillips, Norma. <u>Adventures of a "WildPlants Woman" in Pursuit of Native Plant Preservation</u>. Grand Rapids, MN: Little Bridge Pub. Co., 1988.

Platt, Dwight, Lorna Harder. <u>How to Grow Wildflowers - A Handbook for Growing Kansas</u> <u>Wildflowers</u>. Topeka: Kansas Wildflower Society, 1991.

Ricker, P. L. "Wildflower Conservation." <u>Wild Flower Magazine (Wildflower Preservation Society)</u>. 36 (1960): 35-46.

Robert, J., B. S. Smith. The Prairie Garden. Madison WI: University of Wisconsin Press, 1986.

Rose, Graham. <u>The Sunday Times Book of Woodland and Wildflower Gardening</u>. North Pomfret, Vt: David and Charles, 1988.

Salac, S. S., J. M. Traeger, P. N. Jensen. "Seeding Dates and Field Establishment of Wildflowers." <u>HortScience</u>. 17 (1982): 805-6.

Schmidt, Marjorie. Growing California Native Plants. Berkeley, CA: Univ. of CA Press, 1980.

Simon, Richard. "Ornamental Grasses for Landscape Use." In <u>1984 Herbaceous Perennial Plant</u> <u>Symposium</u>. Ed. by Steven Still, 56-64. Columbus Ohio: Perennial Plant Association, 1984.

Smith, J. Robert, B. S. Smith. <u>Prairie Gardening: 70 Native Plants Which Can Grow in Town or</u> <u>Country</u>. Madison WI: Univ. of WI Press, 1980.

Smith, Karl. "Planting Prairie with a Tine-Harrow." Restoration and Management Notes. 1 (1983): 19.

Smithberg, Margaret, May L. Wright. "Growing Wildflowers from Seed." <u>American Horticulturalist</u> <u>Magazine</u>. 55 (1976): 12-13, 32.

Snyder, Leon. <u>Native Plants for Northern Gardens</u>. vol. 1. Minnesota Arboretum: University of Minnesota Press, 1991.

Soil Conservation Branch of National Park Service. Native Plants for Parks. 1987.

Soil Conservation Society of America. <u>Sources of Native Seeds and Plants</u>. n.p.: Soil Conservation Society of America, 1972.

Sperka, M. Growing Wildflowers. New York: Scribner, 1973.

Stark, O. J. "A Natural Wild Garden Built by Order." <u>American Horticulturalist Magazine</u>. 59 (1977): 4-12.

Steffek, E. F. Wildflowers and How to Grow Them. New York: Crown Publishers, 1954.

Steffek, Ed. The New Wild Flowers and How to Grow Them. Revised. Portland: Timber Press, 1983.

Stevens, John. National Trust Book of Wildflower Gardening. London: Dorling Kindersley, 1987.

Taylor, K. S., S. F. Hamblin. <u>Handbook of Wildflower Cultivation</u>. NY: Collier Books, 1976.

Tenenbaum, Frances. Gardening with Wild Flowers. New York: Scribner, 1973.

Thomas, J. "New Seeding Techniques for Planting Native Wildflowers: The J-Thom 80 Wildseeder." In <u>The Prairie: Roots of Our Culture; Foundation of Our Economy. Proceedings of the Tenth North</u> <u>American Prairie Conference</u>. Ed. by A. Davis, G. Stanford, Art. 03.03. Dallas TX: Native Plant Association of Texas, 1988.

Welch, Robert. "Get to Know our Native Americans." <u>Perennial Plant Association Quarterly</u> <u>Newsletter</u>. XXIV (1990): 11-2. Wilson, J. <u>Landscaping with Wildflowers: An Environmental Approach to Gardening</u>. Boston: Houghton Mifflin, 1992.

Wilson, W. H. Landscaping with Wildflowers and Native Plants. CA: Ortho Books, 1984.

Young, Dorothy. <u>Redwood Empire Wildflower Jewels</u>. Healdsburg, CA: Naturegraph Pub., 1970.

RESEARCH ON SPECIFIC PLANTS

Adams II, R. M., W. J. Dress. "Nodding Lilium Species of Eastern North America (Liliaceae)." <u>Baileya</u>. 21 (1982): 165-88.

Albrecht, Mary Lewes. "Daylength, Cold Storage, and Plant Production Method Influence Growth and Flowering of Asclepias tuberosa." HortScience. 26 (1991): 120-21.

Albrecht, Mary Lewes, C. Smith-Jochum. "Germination and Establishment of *Echinacea spp*. (Compositae.)." Wildflower: Journal of the National Wildflower Research Center. 3 (1990): 6-11.

Andersen, E. "A Field Survey of Chromosome Numbers in the Species of Tradescantia Closely Allied to Tradescantia virginica." <u>Annals of the Missouri Botanical Garden</u>. 41 (1954): 305-27.

Anderson, E., R. E. Woodson. "The Species of *Tradescantia* Indigenous to the United States." Contributions to the Arnold Arboretum. 9 (1935): 1-132.

Andrews, D. M. "A Garden of Penstemons." National Horticultural Magazine. 12 (1933): 284-91.

Banks, J. "The Reproductive Biology of Erythronium propullans Gray and Sympatic Populations of E. albidum (Liliaceae)." <u>Bulletin of Torrey Botanical Club</u>. 109 (1980): 169-76.

Barber, S. C. "Taxonomic Studies in the Verbena stricta Complex (Verbenaceae)." <u>Systematic Botany</u>. 7 (1982): 433-56.

Barneby, R. C. "Pugillus Astragalorum xix: Notes on *A. seicoleucus* Gray and its Immediate Relatives." American Midland Naturalist. 55 (1956): 504-7.

Barneby, R. C. "Atlas of North American Astragulus." <u>Memoirs of the New York Botanical Garden</u>. 13 (1964): 1-1188.

Barr, Claude. "Astragalous tridactylicus." <u>Bulletin of American Rock Garden Society</u>. 1 (1943): 75-78.

Barr, Claude. "Anemone caroliniana." Bulletin of American Rock Garden Society. 2 (1944): 90-91.

Barr, Claude. "The Best Soils for Penstemons: Experiments." <u>Bulletin American Penstemon Society</u>. 2 (1946): 52-55.

Barr, Claude. "How to Succeed with Plains Penstemon." <u>Bulletin American Penstemon Society</u>. 2 (1946): 39-40.

Barr, Claude. "Hypoxis hirsuta." National Horticultural Magazine. 23 (1944): 235.

Barr, Claude. "Oenothera serrulata: A Group Species." <u>Gardener's Chronicle of America</u>. 42 (1938): 173.

Barr, Claude. "Penstemon albidus." Bulletin of American Rock Garden Society. 6 (1948): 62.

Barr, Claude. "Townsendia parryi." Bulletin of American Rock Garden Society. 1 (1943): 107-10.

Barton, L. V. "Storage of Seeds of Lobelia cardinalis L." <u>Contributions of the Boyce Thompson</u> <u>Institute</u>. 20 (1960): 395-401.

Bazzaz, F. A. "Photosynthesis of Ambrosia artemistiifolia Plants Grown in the Greenhouse and in the Field." <u>American Midland Naturalist</u>. 90 (1973): 186-90.

Bazzaz, F. A. "Secondary Dormancy in the Seeds of Common Ragweed Ambrosia artemesiifolia." Bulletin of Torrey Botanical Club. 97 (1970): 302-5.

Beaman, J. H. "Systematics and Evolution of *Towsendia*." <u>Contributions of the Grey Herbarium</u>. 183 (1957): 1-151.

Beetle, A. A. <u>A Study of Sagebrush: The Section Tridentatae of Artemisia</u>. Wyoming: Agricultural Experiment Station, University of Wyoming, 1960.

Betz, R. F., H. F. Lamp. "Flower, Pod, and Seed Production in Eighteen Species of Milkweeds." In <u>Proceedings of the Twelfth North American Prairie Conference: Recapturing a Vanishing Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 25-30. Cedar Falls: University of Northern Iowa, 1992.

Bieber, G. L., C. S. Hoveland. "Phytotoxicity of Plant Materials on Seed Germination on Crownvetch (Coronilla varia)." <u>Agronomy Journal</u>. 60 (1968): 185-8.

Bjugstad, Ardell, William Fortune. "The Western Prairie Fringed Orchid (*Plantauthera praeclara*): Monitoring and Research." In <u>Proceedings of the Eleventh North American Prairie Conference: Prairie</u> <u>Pioneers: Ecology, History, and Culture</u>. Ed. by J. Stubbendieck, T. B. Bragg, 197-99. Lincoln, NB: University of Nebraska, 1988.

Bjugstad, R., A. Bjustadt. "Do You Know *Platanthera Praeclara*?" In <u>Proceedings of the Eleventh North</u> <u>American Prairie Conference: Prairie Pioneers: Ecology, History, and Culture</u>. Ed. by J. Stubbendieck, T. B. Bragg, 201-2. Lincoln, NB: University of Nebraska, 1988. Black, J. N. "An Assessment of the Role of Plant Density in the Competition Between Red Clover (*Trifolium pratense*) and Lucern (*Medicago sativa*) in the Early Vegetative Stage." <u>Oikos</u>. 11 (1960): 26-42.

Blaisdell, James P., Joseph Pechanen. "Effects of Herbage Removal at Various Dates on Vigor of Bluebunch Wheatgrass and Arrowleaf Balsomroot." <u>Ecology</u>. 30 (1949): 298-305.

Boules, M. L. "Tallgrass Prairie Orchids *Platanthera leucophaea* and *Cypripedeum candidum*: Some Aspects of Their Status, Biology, and Ecology, and Implications Toward Management." <u>Natural Areas</u> <u>Journal</u>. 3 (1983): 14-37.

Bowles, M. L. "The Tallgrass Prairie Orchids *Platanthera leucophaea* and *Cypripedium candidum*: Some Aspects of their Status, Biology, and Ecology and Implications Towards Management." <u>Natural Areas</u> <u>Journal</u>. 3 (1983): 14-37.

Brainerd, Era. <u>Violets of North America</u>. Bennington: Vermont Agricultural Experiment Station, 1921.

Brumback, Bill. "Our Native Ranunculaceae: Beauty and the Beast." <u>Perennial Plant Association</u> <u>Quarterly Newsletter</u>. VII (1986): 16-7.

Bugbee, R. E., A. Riegel. "The Cactus Moth, *Melitara dentata* (Grote) and its Effect on *Opuntia* macroorhiza in Western Kansas." <u>American Midland Naturalist</u>. 33 (1945): 117-23.

Burns, R. E. "Effect of Acid Scarification on Lupine Seed Impermeability." <u>Plant Physiology</u>. 34 (1959): 107-8.

Burton, J. C. "Nodulation and Symbiotic Nitrogen Fixation by Prairie Legumes." In <u>Proceedings of the</u> <u>Second Midwest Prairie Conference</u>. Ed. by James Zimmerman, 116-9. Madison, WI: University of Wisconsin Press, 1972.

Butters, F. K. "The American Variety of Saxifraga aizoon." Rhodora. 46 (1944): 61-9.

Campbell, G. R. "The genus *Myosurus* (Ranunculaceae) in North America." <u>El Aliso</u>. 2 (1952): 389-403.

Carpenter, W. J., E. R. Ostmark. "Growth Regulators and Storage Temperature Govern Germination of *Coreopsis* seed." <u>HortScience</u>. 27 (1992): 1190-93.

Caruso, John L. "Early Seedling Survival of Meliotus in Bluegrass Sod." Ecology. 51 (1970): 553-4.

Cavigelli, M. "The Effect of Maximiliam Sunflower (*Helianthus maximiliani*) on Naturally Occurring Weeds." In <u>The Prairie: Roots of Our Culture; Foundation of Our Economy. Proceedings of the Tenth</u> <u>North American Prairie Conference</u>. Ed. by A. Davis, G. Stanford, Art. 01.15. Dallas TX: Native Plant Association of Texas, 1988. Chansler, Walter S. "Twinleaf." Wildflower (Washington DC). 29 (1953): 38.

Chansler, Walter S. "A Vanishing Wildling." Wildflower (Washington DC). 31 (1955): 49-50.

Chansler, Walter S. "White Trout-Lily." Wildflower (Washington DC). 29 (1953): 70.

Chinnappa, C. C., J. K. Morton. "Studies on the *Stellaria longipes* complex (Caryophyllaceae) - Biosystematics." <u>Systematic Botany</u>. 9 (1984): 60-73.

Clausen, Jens. "Cytotaxonomy and Distribution Ecology of Western American Violets." <u>Madrona</u>. 17 (1964): 173-97.

Core, E. L. "North American Species of Paronychia." <u>American Midland Naturalist</u>. 26 (1941): 369-97.

Creasy, M. T., N. F. Sommer. "The Growth of *Fragariavesca* Receptacles in Vitro with Reference to Gibberellin Inhibition by Unfertilized Carpels." <u>Physiology of Plant</u>. 17 (1964): 710-16.

Cruise, J. E. "Biosystematic Studies of Three Species in the Genus Liatris." <u>Canadian Journal of</u> <u>Botany</u>. 42 (1964): 1445-55.

Currier, P. "Response of Prairie Fringed Orchid to Fire and Reduction in Grazing." <u>Restoration and</u> <u>Management Notes</u>. 2 (1984): 28.

Curtis, J. T. "The Germination of Some Native Orchid Seeds." <u>Bulletin of American Orchid Society</u>. 5 (1936): 42-47.

Curtis, J. T. "Germination and Development in Five Species of Cypripedium L." <u>American Journal of</u> <u>Botany</u>. 30 (1943): 199-206.

Curtis, J. T. "Use of Mowing in Management of White Ladyslipper." Journal of Wildlife Management. 10 (1946): 303-8.

Davis, M., K. M. Lemon, A. Dybvig. "Impact of Prescribed Burning and Herbivorous Insects on Seed Production and Viability of Two Prairie Forbs." In <u>The Prairie: Roots of Our Culture; Foundation of</u> <u>Our Economy. Proceedings of the Tenth North American Prairie Conference</u>. Ed. by A. Davis, G. Stanford, Art. 20.04. Dallas TX: Native Plant Association of Texas, 1988.

Davis, R. J. "The North American Perennial Species of Claytonia." Brittonia. 18 (1966): 193-284.

Dayton, William. Range Plant Handbook. Washington DC: US Government Publishing Service, 1937.

Dayton, William A. Notes on Western Range Forbs Equisetaceae through Fumariaceae. Ag. Handbook 161. Washington D.C.: U. S. D. A, 1960.

Dixon, M. "Please Don't Trample the Trilium." <u>Wild Flower Magazine (Wildflower Preservation</u> Society). 36 (1960): 19-23.

Dress, William. "Notes on Cultivated Compositae: 8. Thelesperma, Bidens, Coreopsis." Baileya. 13 (1965): 21-42.

Elwes, Henry. Lilies: A Revision of . NY: Universe Books, 1980.

Espinosa, I., W. Healey. "Influence of Photoperiod on *Liatris spicata* Generative Shoot Growth." <u>Perennial Plant Association Quarterly Newsletter</u>. XXXI (1992): 33.

Farmer Jr, R. E. "Propagation of a Southern Population of Fringed Gentian." <u>Torrey Botanical Club</u> <u>Bulletin</u>. 105 (1978): 139-42.

Fassett, N.C. "Dodecatheon in Eastern North America." <u>American Midland Naturalist</u>. 31 (1944): 455-86.

Felippe, G. M. "Germination of Light Sensitive Seeds of Cucumis anguria and Rumex obtusifolius: Effects of Temperature." New Phytologist. 84 (1980): 439-48.

Fessenden, G. R. "Loddige's Rattlesnake-plantain." Wildflower (Washington DC). 28 (1952): 20-22.

Finnerty, T. L., J. M. Zajicek, M. A. Hussey. "Use of Seed Priming to Bypass Stratification Requirements of Three Aquilegia Species." HortScience. 27 (1992): 310-13.

Forbes, Richard. "Germination and Early Development of the Silky Prairie Clover." Journal of the Minnesota Academy of Science. 34 (1967): 84-7.

Fosberg, F. R., L. Artz. "The varieties of Monarda fistulosa L." Castanea. 18 (1953): 128-30.

Friesner, Ray. "The Genus Solidago in Northeastern North America." <u>Butler University Botanical</u> <u>Studies</u>. 3 (1933): 1-64.

Gaiser, L. O. "The Genus Liatris." <u>Rhodora</u>. 48 (1946): 165-83,216-83,273-326,331-82,393-412.

Gaiser, L. O. "Chromosome Studies in *Liatris*. I Spicatae and Pycnostachyae." <u>American Journal of</u> <u>Botany</u>. 36 (1950): 122-35.

Gaiser, L. O. "Chromosome Studies in *Liatris*. II Graminifoliae and Pauciflorae." <u>American Journal</u> of Botany. 37 (1950): 414-23.

Gaiser, L. O. "Chromosome Studies in *Liatris*. II Punctatae." <u>American Journal of Botany</u>. 37 (1950): 763-7.

Gaiser, L. O. "Evidence for Intersectional Field Hybrids in Liatris." Evolution. 5 (1951): 52-67.

Gebben, A. I. <u>The Ecology of Common Ragweed</u>, <u>Ambrosia artimissifolia L. in Southwestern Michigan</u>. Ph.D. at University of Michigan, Ann Arbor, 1965.

Gibbens, R. "Root and Top Development of Five Native Kansas Legumes During First Season of Growth." <u>Transactions of the Kansas Academy of Science</u>. 57 (1954): 23-40.

Gill, L. S. "A Cytosystematics Study of the Genus Monarda (Labiatae) in Canada." <u>Caryologia</u>. 30 (1978): 381-94.

Gillet, J. M. "A Revision of the North American Species of Gentianella Moench." <u>Annals of the</u> <u>Missouri Botanical Garden</u>. 44 (1957): 195-269.

Gillett, G. W. "A Systematic Treatment of the *Phacelia franklinii* Group." <u>Rhodora</u>. 62 (1960): 205-2.

Gladstones, J. S. "Some Recent Developments in the Understanding, Improvement and Use of Lupines." In <u>Advances in Legume Science</u>. Ed. by R. J. Summerfield, A. H. Bunting, 603-12. London: HMSO, 1980.

Glaser, P. H. "Eleocharis rostellata and its Relation to Spring Fens in Minnesota." Michigan Botanist. 22 (1983): 19-21.

Goldberg, D. H., P. A. Werner. "The Effect of Size of Opening in Vegetation and Litter Cover on Seedling Establishment of Goldenrods (*Solidago spp.*)." <u>Oecologia</u>. 60 (1983): 149-55.

Gould, F. W., M. A. Ali, D. E. Fairbrothers. "A Revision of *Echinochloa* in the United States." <u>American Midland Naturalist</u>. 87 (1972): 37-59.

Grant, Verne. Flower Polination in the Phlox Family. NY: Columbia University Press, 1965.

Grant, Verne. Natural History of the Phlox Family. Hague: Nijhoff, 1969.

Gravis, Auguste. <u>Recherches anatomiques et physiologiques sur le Tradescantia virginiana</u>. Brussels: Hague, 1898.

Grether, David F. "Independent Assortment of Environmentally Influenced Characters of Canada Mayflower in the Post Glacial Prairie Peninsula." In <u>Proceedings of the Fifth Midwest Prairie Conference</u>. Ed. by David C. Glenn-Lewin, Roger Q. Landers, 82-5. Ames, Iowa: Iowa State University, 1978.

Habner, E. "A Comparative Study of *Pyrola minor x Pyrola asarifolia* (Ericaceae) and its Parental Species in North America." <u>Canadian Journal of Botany</u>. 62 (1984): 1054-61.

Hadley, E. B., D. A. Levin. "Habitat Difference of Three *Liatris* Species and their Hybrid Derivatives in an Interbreeding Population." <u>American Journal of Botany</u>. 54 (1967): 550-9.

Hayward, G. "Bee Balm." Horticulture. 61 (1983): 16-19.

Heiser, C. B. "The North American Sunflowers (Helianthus)." Memoirs of the Torrey Botanical Club. 22 (1969) no. 3: 1-218.

Heitlinger, M. E. "Burning a Protected Tallgrass Prairie to Suppress Sweetclover *Melilotus alba*." In <u>Prairie: A Multiple View (4th Midwest Prairie Conference)</u>. Ed. by Mohan Wali, 123-32. Grand Forks: The University of North Dakota Press, 1975.

Henderson, R. "Effects of Spring Fire Timing on Pasque-Flower (Anemone Patens) Flower-Bud Survival." In <u>Proceedings of the Twelfth North American Prairie Conference: Recapturing a Vanishing</u> <u>Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 117-20. Cedar Falls: University of Northern Iowa, 1992.

Hendrix, Stephen. "Population Demography of *Pastinaca sativa*." <u>American Journal of Botany</u>. 79 (1992): 365-75.

Hendrix, Stephen et al. "Are Seedlings from Small Seeds Always Inferior to Seedlings from Large Seeds? Effects of Seed Biomass on Seedling Growth in *Pastinaca sativa* L." <u>New Phytologist</u>. 119 (1991): 299-305.

Herman, F.J. <u>Notes on Western Range Forbs Cruciferae through Compositae</u>. Agricultural Handbook 296, Forest Service. Washington D. C.: U. S. D. A, 1966.

Hermann-Parker, Sharon. "Life History of *Psoralea Esculenta* (Leguminosae): Reproductive Biology and Interactions with a Curculinoid Weevil." In <u>Proceedings of the Fifth Midwest Prairie Conference</u>. Ed. by David C. Glenn-Lewin, Roger Q. Landers, 86-91. Ames, Iowa: Iowa State University, 1978.

Hipps, C. B. "Purple Coneflower." Horticulture. 66 (1988): 46-49.

Hitchcock, C. L. "The *Tofieldia glutinosa* Complex of Western North America." <u>American Midland</u> <u>Naturalist</u>. 31 (1944): 487-98.

Hodgins, James. "The Incomparable Eastern Columbine." <u>Wild Flower (Canada's National Magazine</u> of Wild Flower Flora). 1 (1985): 6.

Hopkins, M. "Arabis in Eastern and Central North America." <u>Rhodora</u>. 39 (1937): 63-98, 106-48, 155-86.

Horr, W. H., R. L. McGregor. "Kansas Plants New to Kansas Herbaria VI: Including a new Form of *Liatris punctata*." <u>Transactions of the Kansas Academy of Science</u>. 54 (1951): 2127.

Horr, W. H., R. L. McGregor. "Kansas Plants New to Kansas Herbaria VI: Including a new Form of *Zinnia grandiflora* and Petalostemum purpureum." <u>Transactions of the Kansas Academy of Science</u>. 55 (1952): 172-5.

Hulewicz, S. B., J. Wioncek, B. Dys. "The Germination of Red Clover Seeds as Affected by Different Growth Substances." <u>Seed Science Technology</u>. 3 (1974): 581-86.

Iltis, H. H., S. Kawano. "Cytotaxonomy of Napaea dioica (Malvaceae)." <u>American Midland Naturalist</u>. 72 (1964): 76-81.

Iltis, H. H. "The Genus Gentianopsis: Transfers and Phytogeographic Comments." Sida. 2 (1965): 129-53.

Iltis, H. H. "Napaea dioica (Malvaceae); When Came This Type?" <u>American Midland Naturalist</u>. 70 (1963): 90-109.

Ingram, John. "Notes on Cultivated Primulaceae: 2. Dodecatheon." Baileya. 11 (1963):69-90.

Inyamah, G. C. <u>Population Trends of Insects on Melilotus officinalis (L) Lam. on the Pawness</u> <u>Grassland</u>. MS at Colorado State University, 1969.

Isely, D., S. L. Welsh. "Petalostemon candidum and P. occidentale (Leguminosae)." Brittonia. 12 (1960): 114-18.

Isely, D. I. "Leguminosae of the North-Central States 4. Psoralaea." <u>Iowa State College Journal of Science</u>. 37 (1962): 103-62.

Iverson, L. R., M. K. Wali. "Population dynamics of Kochia scoparia." <u>American Association for the</u> <u>Advancement of Science</u>. 79 (1982): 109.

Iverson, Louis. "Competitive Seed Dispersal and Water Relationships of Winterfat (*Ceratoides lanata*) in Western North Dakota." In <u>The Prairie: Past, Present and Future: Proceedings of the Ninth North</u> <u>American Prairie Conference</u>. Ed. by Gary Clambey, Richard Pemble, 25-31. Fargo, N.D.: Tri-College University Center for Environmental Studies, 1986.

Jacobsen, T. D. "Numerical Analysis of Variation Between Allium cernuum and Allium stellatum (Liliaceae)." Taxon. 28 (1979): 517-23.

Jensen, Paul, G. L. Jacobson, David Willard. "Effects of Mowing and Raking on Collembola." <u>Ecology</u>. 54 (1973): 564-72.

Johnson, D. M. "Systematics of New World Species of Marsilea (Marsileaceae)." Systematic Botany. 11 (1986): 1-87.

Johnson, M. C. "Notes on Erythronium." <u>Wild Flower Magazine (Wildflower Preservation Society)</u>. 37 (1961): 33.

Jones, Almut. "A Classification of the New World Species of Aster (Asteraceae)." <u>Brittonia</u>. 32 (1980): 230-39.

Jones, Almut. "Aster and Brachyactis in Illinois." <u>Illinois Natural History Survey Bulletin</u>. 34 (1989): 139-94.

Keller, Carl. "The Genus Liatris in Indiana." Butler University Botanical Studies. 9 (1950): 218-6.

Kershaw, Frank. "Plant of the Season: Virginia Bluebells." <u>Wild Flower (Canada's National Magazine</u> of Wild Flower Flora). 1 (1985): 6.

Kerster, H. W. "Population Age Structure in the Prairie Forb Liatris aspera." <u>Bioscience</u>. 18 (1968): 430-2.

Kidd, F., C. West, G. E. Briggs. "A Quantitative Analysis of the Growth of *Helianthus annuus*." <u>Proceedings of the Royal Society London</u>. B 92 (1921): 368-84.

Kitchen, S. G. <u>Germination Studies with Fifteen Species of Inter-Mountain Penstemons</u>. MS at Brigham Young: Provo Utah, 1988.

Kline, V. M. "Response of Sweet Clover (*Melilotus Alba*) and Associated Prairie Vegetation to Seven Experimental Burning and Mowing Treatments." In <u>The Prairie: Past Present and Future: Proceedings</u> of the Ninth North American Prairie Conference. Ed. by Gary K. Clambey, Richard Pemble, 149-52. Fargo ND: Tri-College University Center for Environmental Studies, 1986.

Kraal, R. "Xyris (Xridaceae) of the Continental United States and Canada." Sida. 2 (1966): 177-260.

Kucera, Clair. "Flowering Variations in Geographic Selections of *Eupatorium rugosum* Houtt." <u>Bulletin</u> of Torrey Botanical Club. 85 (1958): 40-9.

Kumar, M. U., K. S. K. Sastry. "Effect of Growth Regulators in Dormant Sunflower Seeds." Seed Research. 3 (1975): 61-65.

Kunelius, H. T., U. C. Gupta. "Effects of Seed Inoculation with Peat-Based Rhizobium melibus on Alfalfa." <u>Canadian Journal Plant Sciences</u>. 55 (1975): 555-63.

Laing, C. C. "Studies in the Ecology of Ammophila breviligulata; Seedling Survival and its Relation to Population Increase and Dispersal." <u>Botanical Gazette</u>. 119 (1958): 208-16.

Lakela, O. "Sparganium glomeratum in Minnesota." Rhodora. 43 (1941): 83-5.

Lakela, O. "Rediscovery of Caltha natans in Minnesota." Rhodora. 45 (1943): 53-5.

Lakela, O. "The Occurance of *Eleocharis nitida* in the Lake Superior Region." <u>Rhodora</u>. 49 (1947): 81-82.

Lakela, O. "A Variety of Western Polemonium in Minnesota." Rhodora. 49 (1947): 118.

Lakela, O. "Distribution of *Littorella americana* in the mid-arrowhead Region of Minnesota." <u>Rhodora</u>. 60 (1958): 33-7.

Lazenby, A. "Germination and Establishment of *Juncus effusus*. II. The Interaction Effects of Moisture and Competition." Journal of Ecology. 43 (1955): 595-605.

Lee, P. K., D. P. Carew, J. Rosazza. "Apocynum cannabinum Tissue Culture: Growth and Chemical Analysis." Lloydia. 35 (1972): 150-56.

Levin, D. A. "The *Phlox pilosa* Complex: Crossing and Chromosome Relations." <u>Brittonia</u>. 18 (1966): 142-62.

Levin, D. A. "Variation in Phlox divaricata." Evolution. 21 (1967): 92-108.

Levin, D. A. "An Analysis of Hybridization of Liatris." Brittonia. 19 (1967): 248-60.

Lindgren, D. T. "'Prairie Snow' Penstemon." HortScience. 25 (1990): 489.

Lindgren, D. T. "Traits of Dalea purpurea Vent. (Purple Prairie Clover)." HortScience. 27 (1992): 927.

Lindgren, Dale T., B. McCown. "Multiplication of Four Penstemon Species in Vitro." <u>HortScience</u>. 27 (1992): 182.

Loeschke, M. J. <u>Fire and Life History of Shooting Star Dodecatheon meadia</u>, in Iowa Tallgrass Prairie. MS at Iowa State University, Ames, 1986.

Long, R. W. "Convergent Patterns of Variation in Ruellia caroliniensis and R. humilis (Acanthaceae)." Bulletin of Torrey Botanical Club. 88 (1961): 387-96.

Lowry, P. P., Almut Jones. "Systematics of Osmorhiza Raf. (Apiaceae)." <u>Annals of the Missouri</u> Botanical Garden. 71 (1984): 1128-71.

Maguire, B. "A Monograph of the Genus Arnica." Brittonia. 44 (1943): 386-510.

Malcolm, W. M. "Culture of Astilleja Coccinea a Root-parasitic Flowering Plant." Michigan Botanist. 1 (1962): 77-9.

Marfleet, F. C. Taxonomy and Ecology of Grassland Sedges. University of Alberta, 1950.

McNaughton, S. J. "Ecotype Function in the Typha Community-type." <u>Ecological Monographs</u>. 36 (1966): 297-325.

Menhusen, Bernadette. <u>Variation in the Puncatae Series of the Genus Liatris</u>. Ph.D. at University of Kansas, 1963.

Menhusen, Bernadette. "Ecology of the Prairie Species of the Genus Liatris." In <u>Proceedings of the</u> <u>Third Midwest Prairie Conference</u>. Ed. by L. C. Hulbert, 60-2. Manhatten: Kansas State University, 1973.

Meyer, F. G. "Valeriana in North America and the West Indies (Valerianaceae)." <u>Annals of the</u> Missouri Botanical Garden. 38 (1951): 377-503.

Minnesota DNR, Nancy Sather. <u>Minnesota Dwarf Trout Lily: An Endangered Minnesota Wildflower</u>. Office of Endangered Species, Minneapolis, 1990.

Minnesota DNR, Nancy Sather. <u>Prairie Bush Clover: A Threatened Midwestern Prairie Plant</u>. Office of Endangered Species, Minneapolis, 1990.

Minnesota DNR, Nancy Sather. <u>Western Prairie Fringed Orchid: A Threatened Midwestern Prairie</u> <u>Plant</u>. Office of Endangered Species, Minneapolis, 1991.

Moore, R. J., C. Frankton. "An Evaluation of the Status of Cirsium pumilum and Cirsium hilii." Canadian Journal of Botany. 44 (1966): 581-95.

Morley, Thomas. "Flowering Frequency and Vegetative Reproduction in *Erythronium albidum* and *E. propullans*, and Related Observations." <u>Bulletin of Torrey Botanical Club</u>. 109 (1982): 169-76.

Mountain, Wilbur. "Common Chickweed." <u>Perennial Plant Association Quarterly Newsletter</u>. XV (1988): 30-1.

Moyle, J. "Wild Rice in Minnesota." Journal of Wildlife Management. 8 (1944): 177-84.

Mulligan, G. A. "Cytotaxonomic Studies of *Draba glabella* and its Close Allies in Canada and Alaska." <u>Canadian Journal of Botany</u>. 48 (1970): 1431-7.

Munz, Philip. "Onagraceae." North American Flora Series II. 5 (1965): 1-278.

Musselman, L. J. "The Orobanchaceae of Virginia." Castanea. 47 (1982): 266-75.

Neptad, Daniel C. "Apion rostrum Infestation of Baptisia leucantha Seed Pods: Its Positive Effect on Seed Germination." In Eighth North American Prairie Conference. 172. 1984.

Nesom, G. L. "Biology of Trillium nivale (Liliaceae)." Canadian Journal of Botany. 63 (1985): 7-14.

Oliveri, A. M., S. K. Jain. "Effects of Temperature and Light Variations on Seed Germination in Sunflower Species." <u>Weed Science</u>. 26 (1978): 277-83.

Ordway, Ellen. "The Phenology and Pollination Biology of Anemone patens (Ranunculaceae) in Western Minnesota." In <u>The Prairie: Past Present and Future: Proceedings of the Ninth North American Prairie</u> <u>Conference</u>. Ed. by Gary K. Clambey, Richard Pemble, 31-4. Fargo ND: Tri-College University Center for Environmental Studies, 1986. Parenti, R. <u>Inhibitional Effects of Digitarias anguinalis and Possible Role in Oldfield Succession</u>. Ph.D. at Univesity of Oklahoma, 1968.

Percy, R. W. <u>Physiological and Varied Environment Studies of Ecotypes of Deschampsia caespitosa (L.)</u> <u>Beauv</u>. Ph.D. at Colorado State University, 1969.

Piehl, M. A. "Studies of Root Parasitism in *Pedicularis lanceolata*." <u>Michigan Botanist</u>. 4 (1965): 75-81.

Pippin, Richard W., Kim A. Chapman. "Comparison of Morphological Characters Between Regional Habitats of *Cacalia Plantaginea* (Asteraceae)." In <u>The Prairie: Past Present and Future: Proceedings</u> of the Ninth North American Prairie Conference. Ed. by Gary K. Clambey, Richard Pemble, 34-43. Fargo ND: Tri-College University Center for Environmental Studies, 1986.

Platt, W. J., G. R. Hill, S. Clark. "Seed Production in a Prairie Legume (Astragalus canadensis)." Oecologia. 17 (1974): 55-63.

Pringle, James. "The White Gentian of the Prairies (Gentiana alba)." Michigan Botanist. 4 (1965): 43-7.

Raven, P. H., D. P. Gregory. "A Revision of the genus Gaura (Onograceae)." <u>Memoirs of the Torrey</u> <u>Botanical Club</u>. 23 (1972) no. 1: 1-96.

Reznicek, A. A., P. M. Ball. "The Taxonomy of *Carex*, Section Stellulatae, in North America." <u>Contributions of the University of Michigan Herbarium</u>. 14 (1980): 153-203.

Reznicek, A. A., R. E. Whiting. "Bartonia (Gentianaceae) in Ontario." <u>Canadian Field-Naturalist</u>. 90 (1976): 67-9.

Rice, Elroy. "Inhibition of Nitrogen-fixing and Nitrifying Bacteria by Seed Plants. IV The inhibitors produced by *Ambrosia elatior* and *Ambrosia psilostachya*." <u>Southwestern Naturalist</u>. 10 (1965): 248-55.

Richardson, J. W. "The Genus *Euphorbia* in the High Plains of Kansas and the Prairie Plains of Kansas, Nebraska, North and South Dakota." <u>Bulletin of University of Kansas</u>. 48 (1968): 45-112.

Robocker, W. C. "Germination of Seeds of Common Yarrow and its Herbicidal Control." Weed Science. 25 (1977): 456-59.

Rosendahl, C., A. Cronquist. "The Goldenrods of Minnesota: A Floristic Study." <u>American Midland</u> <u>Naturalist</u>. 33 (1945): 244-53.

Rosendahl, C., A. Cronquist. "The Asters of Minnesota: A Floristic Study." <u>American Midland</u> <u>Naturalist.</u> 42 (1949): 502-12. Rosendahl, C. O. "Studies in Chrysosplenium, with Special Reference to Taxonomic Status and Distribution of C. iowense." <u>Rhodora</u>. 49 (1947): 25-35.

Rothrock, Paul. "The Identity of Carex albolutescens, C. festucacea, and C. longii (Cyperaceae)." Rhodora. 93 (1991): 51-66.

Russell, N. H. "The Violets of Minnesota." <u>Proceedings of Minnesota Academy of Science</u>. 25/6 (1957-8): 126-99.

Russell, N. H. "Regional Variation Patterns in Stemless White Violets." <u>American Midland Naturalist</u>. 56 (?): 491-503.

Russell, Norman H. "The Violets of Central and Eastern U. S." Sida. 1 (1965): 1-113.

Sakamoto, S. "Arisaema triphyllum, Jack-in-the-Pulpit, in Minnesota, especially in the Cedar Creek Natural History Area." Proceedings of Minnesota Academy of Science. 29 (1961): 153-68.

Samfield, Dina Margaret, Jayne M. Zajieck, B. Gregg Cobb. "Germination of *Coreopsis lanceloata* and *Echinaceae purpurea* Seeds Following Priming and Storage." <u>Perennial Plant Association Quarterly</u> <u>Newsletter</u>. XXVII (1991): 28-30.

Samimy, C. A., A. Kahn. "Effect of Field Application of Growth Regulators on Secondary Dormancy of Common Ragweed Seeds." <u>Weed Science</u>. 31 (1983b): 299-303.

Sather, N. <u>Lespedeza leptostachya in Minnesota: A 1990 Update on Status, Inventory, and Monitoring</u>. Minnesota Department of Natural Resources - Biological Report No. 24, 1990.

Sather, N. Lespedeza leptostachya in Minnesota: A 1991 Update on Status, Inventory, and Monitoring. Minnesota Department of Natural Resources - Biological Report No. 34, 1991.

Sather, Nancy. <u>Minnesota Trout Lily: Mapping Censusing and Monitoring</u>. Minnesota Department of Natural Resources - Biological Report No. 35, 1991.

Sather, N. <u>Platanthera praeclara in Minnesota: An Update on Status, Inventory, and Monitoring</u>. Minnesota Department of Natural Resources - Biological Report No. 33, 1991.

Sather, Nancy. <u>Platantherapraeclarain Minnesota: A 1990 Update on Status, Inventory and Monitoring</u>. Minnesota Department of Natural Resources - Biological Report No. 15, 1990.

Sather, N. <u>Prairie Bush Clover Inventory and Preserve Design</u>. Minnesota Department of Natural Resources - Biological Report No. 12, 1989.

Sather, N. <u>Results of a Survey for Polemonium occidentale var. lacustre (Western Jacob's Ladder) in</u> the Chippewa National Forest. Minnesota Department of Natural Resources - Biological Report No. 32, 1991. Sather, N., K. van Norman. <u>Results of a Survey for Sparaganium glomeratum (Clustered bur reed) in</u> the Chippewa National Forest. Minnesota Department of Natural Resources - Biological Report No. 2, 1988.

Schaffner, John H. "Spreading of *Opuntia* in Overgrazed Pastures in Kansas." <u>Ecology</u>. 19 (1938): 348-50.

Schlatterer, Edward F., E. W. Tisdale. "Effects of Litter of Artemisia, Chrysomanthus, and Tortula on Germination and Growth of Three Perennial Grasses." <u>Ecology</u>. 50 (1969): 869-73.

Schonbeck, M. W., G. H. Egley. "Redroot Pigweed Seed Germination Responses to After Ripening, Temperature, Thylene, and Some Other Environmental Factors." <u>Weed Science</u>. 28 (1980): 543-48.

Schuyler, A. E. "Chromosome Observations of Some Eastern North American *Eleocharis* (Cyperaceae)." <u>Brittonia</u>. 29 (1977): 129-33.

Scora, R. W. "Interspecific Relations in the Genus Monarda (Labiatae)." <u>Univ. Calif. Publ. Bot.</u> 41 (1967): 1-59.

Semanza, R. J., J. A. Young, R. A. Evans. "Influence of Light and Temperature on the Germination and Seed Bed Ecology of Common Mullein (Verbascum thapsus)." Weed Science. 26 (1978): 577-81.

Shah, R. H., L. Constance. "The Genus Sanicula (Umbelliferae) in the Old World and New." University of California Publications in Botany. 25 (1951): 1-75.

Sheviak, C. J., M. L. Bowles. "The Prairie Fringed Orchids: A Pollinator-isolated Species Pair." Rhodora. 88 (1986): 267-90.

Shumaker, K., G. R. Babble. "Patterns of Allozymic Similarity in Ecologically Central and Marginal Populations of *Hordeum jubatum* in Utah." <u>Evolution</u>. 34 (1980): 110-6.

Shure, Donald J., Alan J. Lewis. "Dew Formation and Stem Flow on Common Ragweed Ambrosia artimisifolia." Ecology. 54 (1973): 1153-5.

Sing-Chi, C. "Two Pairs of Vicarious Species of Cyprepedium (Orchidaceae) from Eastern Asia and Eastern North America." <u>Brittonia</u>. 35 (1983): 159-63.

Singh, M., N. R. Achireddy. "Germination Ecology of Milkweed Vine." <u>Weed Science</u>. 32 (1984): 781-85.

Smith, B. H. "Demography of *Floerkea proserpinacoides* a Forest-Floor Annual 1. Density-dependent Growth and Mortality." Journal of Ecology. 71 (1983): 391-404.

Smith, C. C. "The Distribution of Energy into Sexual and Asexual Reproduction in Wild Strawberries *Fragaria virginiana*." In <u>Proceedings of the Third Midwest Prairie Conference</u>. Ed. by L. C. Hulbert, 55-60. Manhatten: V sas State University, 1973.

Smith, D. W. <u>The Influence of Top Growth Removals on the Root and Vegetative Development of</u> Sweet Clover. Ph.D. at Wisconsin Agricultural Experiment Station, 1947.

Smith, W. <u>Minnesota Trout Lily (Erythronium propullans)</u>: Inventory, Mapping, Census, and Monitoring. Minnesota Department of Natural Resources - Biological Report No. 13, 1989.

Smith, W. <u>Minnesota Trout Lily Population Monitoring</u>. Minnesota Department of Natural Resources -Biological Report No. 25, 1988.

Smith, W. R. "A Range Extension of Scleria verticillata in Minnesota." <u>Michigan Botanist</u>. 22 (1983): 27-30.

Smith, Welby. <u>Status Report on Chrysoplenium iowense (Golden saxifrage) in Minnesota</u>. Minnesota Department of Natural Resources - Biological Report No. 7, 1989.

Smith, W. <u>Status Report on Napaea dioica (Glade mallow) in Minnesota</u>. Minnesota Department of Natural Resources - Biological Report No. 6, 1989.

Snaydon, R. W. "The Growth and Competitive Ability of Natural Populations of *Trifolium repens* on Calcerous and Acid Solis." Journal of Ecology. 50 (1962): 439-7.

Snaydon, R. W. "Micro-distribution of *Trifolium repens* and its Relation to Soil Factors." Journal of Ecology. 50 (1962): 133-43.

Snure, P. <u>Chromosome Numbers and Morphological Characters in Liatris punctata forms</u>. MA at McMaster University, Hamilton Ontario, 1935.

Sorenson, Paul. "Propagation of Shooting Star, Dodecatheon meadia." In <u>Proceedings of the Twelfth</u> <u>North American Prairie Conference: Recapturing a Vanishing Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 21-24. Cedar Falls: University of Northern Iowa, 1992.

Stanford, G. "Silphium Perfoliatum (Cup Plant) As a New Forage." In <u>Proceedings of the Twelfth North</u> <u>American Prairie Conference: Recapturing a Vanishing Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 33-37. Cedar Falls: University of Northern Iowa, 1992.

Stern, K. R. "A Revision of Dicentra." Brittonia. 13 (1961): 1-57.

Stevens, O. A. <u>Russian Thistle History and Growth</u>. Bulletin 326 Agricultural Experiment Station, North Dakota Agricultural College, 1943.

Stimart, Dennis. <u>Invitro and Post-invitro Environmental Effects on Lilium Bulb Physiology</u>. Ph.D. at Univ. of Minn., 1979.

Stoutamire, W. P. "Seeds and Seedlings of Native Orchids." Michigan Botanist. 3 (1964): 107-19.

Stuckey, R. L. "Taxonomy and Distribution of the Genus Rorippa (Cruciferae) in North America." Sida. 4 (1972): 279-430.

Symons-Jeune, Bertram. Phlox: A Flower Monograph. New York: Van Nostrand, 1953.

Taylorson, R. B. "Photocontrol of Rough Cinquefoil Seed Germination and its Enhancement by Temperature Manipulation and KNO3." <u>Weed Science</u>. 17 (1969): 144-48.

Thievet, J. W. "Orobanchaceae in the Southeastern United States." Journal of the Arnold Arboretum. 52 (1971): 404-34.

Threlfall, Anna. "Studies on the Germination of *Dodecatheon meadia*." In <u>Proceedings of the Second</u> <u>Midwest Prairie Conference</u>. Ed. by James Zimmerman, 162-65. Madison, Wisconsin: University of Wisconsin, 1970.

Tomb, A. S. "Shinnersoseris (Compositae: Chichorieae)." Sida. 5 (1973): 183-9.

Trent, J. A. "Eryngium yuccifolium: Ecological Distribution and Some Morphological Irregularities." <u>Transactions of the Kansas Academy of Science</u>. 41 (1938): 155-63.

Umbanhowar Jr, C. E. "Distribution of Floodman' Thistle and its Responses to Different Disturbances." In <u>Proceedings of the Eleventh North American Prairie Conference: Prairie Pioneers: Ecology, History,</u> and <u>Culture</u>. Ed. by J. Stubbendieck, T. B. Bragg, 193-95. Lincoln, NB: University of Nebraska, 1988.

Vail, J., P. Kulakow, L. Benson. "Illinois Bundleflower; Prospects for a Perennial Seed Crop." In <u>Proceedings of the Twelfth North American Prairie Conference: Recapturing a Vanishing Heritage</u>. Ed. by D. D. Smith, C. A. Jacobs, 31-32. Cedar Falls: University of Northern Iowa, 1992.

van Norman, K. <u>Status Report on Cirsium hilii (Hill's Thistle) in MInnesota</u>. Minnesota Department of Natural Resources - Biological Report No. 19, 1990.

Wadehamper, Julius. "Hybridizing and Growing Lilies." In <u>Proceedings 1986 Herbaceous Perennial</u> <u>Symposium</u>. Ed. by Steven Still, 84-93. Columbus Ohio: Perennial Plant Association, 1986.

Wakeman, Nelli. The Monardas: A Phytochemical Study. Madison, WI: n.p., 1911.

Ward, R. T. "Ecotypic Variation in Deschampsia caespitosa (L.) Beauv. from Colorado." Ecology. 50 (1969): 519-22.

Weber, M. <u>Reproduction in Chrysosplenium iowense</u>. Eleventh Annual Meeting of the Mississippi River Research Consortium, 1978.

Wemple, D. K. "Revision of the Genus *Petalostemon* (Leguminosae)." <u>Iowa State College Journal of</u> <u>Science</u>. 45 (1970): 1-202.

Werner, P. A., W. J. Platt. "Ecological Relationships of Co-occuring Goldenrods (Solidago: Compositae)." <u>American Naturalist</u>. 110 (1976): 959-71.

Wheeler, G. A. "Carexformosa in North Dakota." Michigan Botanist. 22 (1983): 162.

Wherry, Edgar. The Genus Phlox. Philadelphia: Morris Arboretum, 1955.

Example of Bibliography with Abstract and Notecard

Abstract:

10. Albrecht, Mary Lewes (1991): Daylength, Cold Storage, and Plant Production Method Influence Growth and Flowering of Asclepias tuberosa. Journal American Society of Hort. Science 26(2), 120-121.
< Forcing plants for the florists trade, optimum photoperiod, temp., etc. to bring flowers to bloom. >

[PRODUCTION TREATMENTS; SPECIFIC PLANT]

* Reference has 1 notecard *

Notecard:

Asclepias tuberosa

(10. Albrecht 1991)

Plants grown in the greenhouse produced more flowers than those produced in the field. 9 hr daylength forced plants to produce flower stalks that aborted without blooming. 13 hr day-length reduced production of flower heads on 18 month old plants from 71 to 61 days. 17 hr day-length delayed fieldproduced plants flowering by 15 days in comparison to the 13 hr. plants. For greenhouse produced plants, best to store plants in cold storage 4C for 12-14 weeks, plants never sprouted if held at 10C for a period.

[SPECIFIC PLANT]

TABLE 2: NON-WC DY PLANTS NATIVE TO MINNESOTA

The following list is from the book entitled <u>VASCULAR PLANTS OF MINNESOTA</u>: <u>A CHECKLIST</u> <u>AND ATLAS</u> by Gerald Ownbey and Thomas Morley, Minneapolis: University of Minnesota, 1991.

Index:

81

Name	Family	Map#	Page	<u>Comments*</u>
Agrohordeum macounii	Gramineae	890	184	
Acalypha rhomboidea	Euphorbiaceae	849	180	
Achillea sibirica	Compositae	329	122	Threatened
Acorus calamus	Araceae	154	103	
Actaea pachypoda	Ranunculaceae	1525	255	
Actaea rubra	Ranunculaceae	1526	255	
Adlumia fungosa	Fumariaceae	869	182	
Agalinis aspera	Scrophulariaceae	1739	279	
Agalinis auriculata	Scrophulariaceae	1740	279	Endangered
Agalinis gattingeri	Scrophulariaceae	1741	279	Threatened
Agalinis paupercula	Scrophulariaceae	1742	279	
Agalinis purpurea	Scrophulariaceae	1743	279	
Agalinis tenuifolia	Scrophulariaceae	1744	279	
Agastache foeniculum	Labiatae	1132	211	
Agastache nepetoides	Labiatae	1133	211	
Agastache scrophulariaefolia	Labiatae	1134	211	
Agoseris glauca	Compositae	330	122	
Agrimonia gryposepala	Rosaceae	1575	260	ý
Agrimonia striata	Rosaceae	1576	261	
Agropyron repens	Gramineae	892	185	Secondary
				Noxious Weed
Agropyron smithii	Gramineae	893	185	
Agropyron trachycaulum	Gramineae	894	185	
Agrostis geminata	Gramineae	895	185	Special Concern
Agrostis hyemalis	Gramineae	896	185	
Agrostis perennans	Gramineae	897	185	
Agrostis scabra	Gramineae	898	185	
Agrostis stolonifera v. major	Gramineae	899	185	
Agrostis stolonifera v. palustris	Gramineae	900	185	
Alisma gramineum	Alismataceae	122	99	
Alisma subcordatum	Alismataceae	123	99	
Alisma triviale	Alismataceae	124	99	
Allium burdickii	Liliaceae	1246	224	
Allium canadense	Liliaceae	1247	224	
Allium cernuum	Liliaceae	1248	224	Threatened
Allium schoenoprasum				

v. sibiricum	Liliaceae	1249	224	Special Concern
Allium stellatum	Liliaceae	1250	224	•
Allium textile	Liliaceae	1251	224	
Allium tricoccum	Liliaceae	1252	225	
Alopecurus aequalis	Gramineae	901	186	
Alopecurus carolinianus	Gramineae	902	186	
Amaranthus albus	Amaranthaceae	132	100	
Amaranthus tamariscinus	Amaranthaceae	137	101	
Amaranthus tuberculatus	Amaranthaceae	138	101	
Ambrosia artemisiifolia	Compositae	331	122	Secondary Noxious Weed
Ambrosia coronopifolia	Compositae	332	122	
Ambrosia trifida	Compositae	333	122	Secondary
	componiat			Noxious Weed
Amerorchis rotundifolia	Orchidaceae	1350	235	Protected
Ammannia coccinea	Lythraceae	1289	229	
Ammophila breviligulata	Gramineae	904	186	Threatened
Amorpha canescens	Leguminosae	1164	215	
Amorpha fruticosa	Leguminosae	1165	215	
Amorpha nana	Leguminosae	1166	215	
Amphicarpaea bracteata	Leguminosae	1167	215	
Anaphalis margaritacea	Compositae	334	123	
Andropogon gerardii	Gramineae	905	186	
Androsace occidentalis	Primulaceae	1501	252	
Androsace septentrionalis				
ssp puberulenta	Primulaceae	1502	252	Threatened
Anemone canadensis	Ranunculaceae	1527	255	
Anemone caroliniana	Ranunculaceae	1528	255	
Anemone cylindrica	Ranunculaceae	1529	255	
Anemone multifida	Ranunculaceae	1530	255	Endangered
Anemone quinquefolia v. bifolia	Ranunculaceae	1531	256	
Anemone riparia	Ranunculaceae	1532	256	
Anemone virginiana	Ranunculaceae	1533	256	
Anemonella thalictroides	Ranunculaceae	1534	256	
Angelica atropurpurea				
v. occidentalis	Umbelliferae	1811	287	
Antennaria microphylla	Compositae	335	123	
Antennaria neglecta	Compositae	336	123	
Antennaria neodioica	Compositae	337	123	
Antennaria parlinii	Compositae	338	123	
Antennaria parvifolia (A. aprica)	Compositae	339	123	Special Concern
Antennaria plantaginifolia	Compositae	340	123	
Apios americana	Leguminosae	1168	215	

Aplectrum hyemale	Orchidaceae	1351
Apocynum androsaemifolium	Apocynaceae	148
Apocynum cannabinum	Apocynaceae	149
Apocynum medium	Apocynaceae	150
Apocynum sibiricum	Apocynaceae	151
Aquilegia canadensis	Ranunculaceae	1535
Arabis canadensis	Cruciferae	554
Arabis divaricarpa	Cruciferae	555
Arabis drummondii	Cruciferae	556
Arabis glabra	Cruciferae	557
Arabis hirsuta	Cruciferae	558
Arabis holboellii v. retrofracta	Cruciferae	559
Arabis laevigata	Cruciferae	560
Arabis lyrata	Cruciferae	561
Arabis perstellata v. shortii	Cruciferae	562
Aralia hispida	Araliaceae	159
Aralia nudicaulis	Araliaceae	160
Aralia racemosa	Araliaceae	161
Arceuthobium pusillum	Loranthaceae	1288
Arctostaphylos uva-ursi	Ericaceae	833
Arenaria dawsonensis	Caryophyllaceae	259
Arenaria lateriflora	Caryophyllaceae	260
Arenaria macrophylla	Caryophyllaceae	261
Arethusa bulbosa	Orchidaceae	1352
.		166
Arisaema dracontium	Araceae	155
Arisaema tripnyllum	Araceae	156
Aristida basiramea	Gramineae	907
Aristida dichotoma v. curtissii	Gramineae	908
Aristida oligantha	Gramineae	909
Aristida purpurea v. longiseta	Gramineae	910
Aristida tuberculosa	Gramineae	911
Arnica lonchophylla	a b	~ • • •
(A. chionopappa)	Compositae	345
Arrhenatherum elatius	Gramineae	912
Artemisia campestris	Compositae	348
Artemisia dracunculus	Compositae	349
Artemisia trigida	Compositae	350
Artemisia ludoviciana	Compositae	351
Artemisia serrata	Compositae	352
Asarum canadense	Aristolochiaceae	164
Asciepias amplexicaulis	Asclepiadaceae	165
Asclepias exaltata	Asclepiadaceae	166

000	Destant
230	Protected
102	
102	
102	
102	
256	
147	
147	
147	
147	
147	
148	Threatened
148	
148	
148	
103	
103	-3 <u>-</u>
103	
229	
178	
114	Special Concern
114	
114	Threatened
236	Threatened,
	Protected
103	
103	
186	
186	
186	
187	Special Concern
187	Special Concern
124	Threatened
187	
124	
124	
124	
124	
125	
104	
104	Special Concern
104	-

Asclepias hirtella	Asclepiadaceae	167	104	Threatened
Asclepias incarnata	Asclepiadaceae	168	104	
Asclepias lanuginosa	Asclepiadaceae	169	104	
Asclepias ovalifolia	Asclepiadaceae	170	104	
Asclepias speciosa	Asclepiadaceae	171	104	
Asclepias stenophylla	Asclepiadaceae	172	105	Endangered
Asclepias sullivantii	Asclepiadaceae	173	105	Threatened
Asclepias syriaca	Asclepiadaceae	174	105	Secondary
	_			Noxious Weed
Asclepias tuberosa	Asclepiadaceae	175	105	
Asclepias verticillata	Asclepiadaceae	176	105	
Asclepias viridiflora	Asclepiadaceae	177	105	
Aster borealis	Compositae	353	125	
Aster brachyactis	Compositae	354	125	
Aster ciliolatus	Compositae	355	125	
Aster cordifolius	Compositae	356	125	
Aster drummondii	Compositae	358	125	
Aster ericoides	Compositae	359	125	
Aster falcatus ssp. commutatus	Compositae	360	126	
Aster hesperius	Compositae	361	126	
Aster laevis	Compositae	362	126	
Aster lanceolatus	Compositae	363	126	
Aster lateriflorus	Compositae	364	126	
Aster macrophylius	Compositae	366	126	
Aster modestus	Compositae	367	126	
Aster novae-angliae	Compositae	368	126	
Aster oblongifolius	Compositae	369	126	
Aster ontarionis	Compositae	370	127	
Aster oolentangiensis	Compositae	371	127	
Aster pilosus	Compositae	372	127	
Aster prenanthoides	Compositae	373	127	
Aster puniceus ssp. firmus	Compositae	374	127	
Aster puniceus ssp. puniceus	Compositae	375	127	
Aster sericeus	Compositae	376	127	
Aster shortii	Compositae	377	127	Special Concern
Aster umbellatus	Compositae	378	127	-
Aster urophyllus	Compositae	357	125	
Aster x longulus	Compositae	365	126	
Astragalus adsurgens v. robustior	Leguminosae	1169	215	
Astragalus agrestis	Leguminosae	1170	215	
Astragalus canadensis	Leguminosae	1171	216	
Astragalus crassicarpus	Leguminosae	1172	216	
Astragalus flexuosus	Leguminosae	1173	216	vecial Concern

Astragalus lotiflorus	Leguminosae	1174	216		Calamagrostis lacustris	Gramineae	931	189	Endangered
Astragalus missouriensis	Leguminosae	1175	216	Special Concern	Calamagrostis montanensis	Gramineae	932	189	-
Astragalus neglectus	Leguminosae	1176	216	Special Concern	Calamagrostis neglecta	Gramineae	933	189	
Astragalus racemosus	Leguminosae	1177	216	-	Calamagrostis purpurascens	Gramineae	934	189	Endangered
Astragalus tenellus	Leguminosae	1178	216		Calamovilfa longifolia	Gramineae	935	189	U
Aureolaria grandiflora v. pulchra	Scrophulariaceae	1745	279		Calla palustris	Araceae	157	103	
Aureolaria pedicularia	Scrophulariaceae	1746	279		Callitriche hermaphroditica	Callitrichaceae	222	110	
Bacopa rotundifolia	Scrophulariaceae	1747	280	Special Concern	Callitriche heterophylla	Callitrichaceae	223	110	
Baptisia alba v. macrophylla	Leguminosae	1179	216	•	Callitriche verna	Callitrichaceae	224	110	
Baptisia bracteata v. glabrescens	Leguminosae	1180	217	Special Concern	Calopogon tuberosus	Orchidaceae	1353	236	Protected
Barbarea orthoceras	Cruciferae	564	148	•	Caltha natans	Ranunculaceae	1536	256	Endangered
Bartonia virginica	Gentianaceae	875	183	Endangered	Caltha palustris	Ranunculaceae	1537	256	U
Beckmannia syzigachne			•	C C	Calylophus serrulata	Onagraceae	1327	233	
v. baicalensis	Gramineae	915	187		Calypso bulbosa v. americana	Orchidaceae	1354	236	Protected
Berula pusilla	Umbelliferae	1812	287		Campanula americana	Campanulaceae	225	110	
Besseya bullii	Scrophulariaceae	1748	280	Endangered	Campanula aparinoides	Campanulaceae	226	111	
Bidens cernua	Compositae	380	128	U	Campanula rotundifolia	Campanulaceae	228	111	
Bidens comosa	Compositae	381	128		Cardamine bulbosa	Cruciferae	573	149	
Bidens connata	Compositae	382	128		Cardamine parviflora v. arenicola	Cruciferae	574	149	
Bidens coronata	Compositae	383	128		Cardamine pensylvanica	Cruciferae	575	149	
Bidens discoidea	Compositae	384	128		Cardamine pratensis v. palustris	Cruciferae	576	149	
Bidens frondosa	Compositae	385	128		Carex abdita	Cyperaceae	607	153	
Bidens vulgata	Compositae	386	128		Carex adusta	Cyperaceae	608	153	
Blephila hirsuta	Labiatae	1135	212		Carex aenea	Cyperaceae	609	153	
Boehmeria cylindrica	Urticaceae	1839	290		Carex albursina	Cyperaceae	610	153	
Boltonia asteroides v. recognita	Compositae	387	128		Carex alopecoidea	Cyperaceae	611	153	
Bouteloua curtipendula	Gramineae	916	187		Carex amphibola v. turgida	Cyperaceae	612	153	
Bouteloua gracilis	Gramineae	917	187		Carex angustior	Cyperaceae	613	154	
Bouteloua hirsuta	Gramineae	918	187		Carex annectens	Cyperaceae	614	154	Special Concern
Brachyelytrum erectum	Gramineae	919	188		Carex aquatilis	Cyperaceae	615	154	-
Brasenia schreberi	Nymphaeaceae	1317	232		Carex arcta	Cyperaceae	616	154	
Bromus ciliatus	Gramineae	920	188		Carex arctata	Cyperaceae	617	154	
Bromus kalmii	Gramineae	923	188		Carex assiniboinensis	Cyperaceae	618	154	
Bromus latiglumis	Gramineae	924	188		Carex atherodes	Cyperaceae	619	154	
Bromus pubescens	Gramineae	925	188		Carex aurea	Cyperaceae	620	154	
Buchloë dactyloides	Gramineae	928	189	Special Concern	Carex backii	Cyperaceae	621	154	
Bulbostylis capillaris	Cyperaceae	606	153		Carex bebbii	Cyperaceae	622	155	
Cacalia muhlenbergii	Compositae	388	129		Carex bicknellii	Cyperaceae	623	155	
Cacalia plantaginea	Compositae	389	129	Threatened	Carex blanda	Cyperaceae	624	155	
Cacalia suaveolens	Compositae	390	129	Endangered	Carex brevior	Cyperaceae	625	155	
Calamagrostis canadensis	Gramineae	929	189		Carex bromoides	Cyperaceae	626	155	
Calamagrostis inexpansa					Carex brunnescens				
v. brevior	Gramineae	930	189		v. sphaerostachya	Cyperaceae	627	155	

Page 5

0

÷

.81

Page 6
Carex buxbaumii	[•] Cyperaceae	628	155		Carex heliophila	Cyperaceae	671	160	
Carex canescens	Cyperaceae	629	155		Carex hirtifolia	Cyperaceae	672	160	
Carex capillaris v. major	Cyperaceae	630	155		Carex hitchcockiana	Cyperaceae	673	160	
Carex castanea	Cyperaceae	631	156		Carex houghtoniana	Cyperaceae	674	160	
Carex cephalantha	Cyperaceae	632	156		Carex hystericina	Cyperaceae	675	160	
Carex cephaloidea	Cyperaceae	633	156		Carex interior	Cyperaceae	676	161	
Carex cephalophora	Cyperaceae	634	156		Carex intumescens v. fernaldii	Cyperaceae	677	161	
Carex chordorrhiza	Cyperaceae	635	156		Carex jamesii	Cyperaceae	678	161	
Carex communis	Cyperaceae	636	156		Carex katahdinensis	Cyperaceae	679	161	Endangered
Carex comosa	Cyperaceae	637	156		Carex lacustris	Cyperaceae	680	161	0
Carex conjuncta	Cyperaceae	638	156	Threatened	Carex laeviconica	Cyperaceae	681	161	
Carex conoidea	Cyperaceae	639	156		Carex laevivaginata	Cyperaceae	682	161	Special Concern
Carex convoluta	Cyperaceae	640	157		Carex lanuginosa	Cyperaceae	683	161	
Carex crawei	Cyperaceae	641	157		Carex lasiocarpa v. americana	Cyperaceae	684	161	
Carex crawfordii	Cyperaceae	642	157		Carex laxiculmis v. copulata	Cyperaceae	685	162	Special Concern
Carex crinita	Cyperaceae	643	157		Carex lenticularis	Cyperaceae	686	162	
Carex cristatella	Cyperaceae	644	157		Carex leptalea	Cyperaceae	687	162	
Carex crus-corvi	Cyperaceae	645	157	Endangered	Carex leptonervia	Cyperaceae	688	162	
Carex cryptolepis	Cyperaceae	646	157	-	Carex limosa	Cyperaceae	689	162	
Carex davisii	Cyperaceae	647	157	Threatened	Carex livida v. radicaulis	Cyperaceae	690	162	
Carex debilis v. rudgei	Cyperaceae	648	157		Carex lupulina	Cyperaceae	691	162	
Carex deflexa	Cyperaceae	649	158		Carex lurida	Cyperaceae	692	162	
Carex deweyana	Cyperaceae	650	158		Carex meadii	Cyperaceae	693	162	
Carex diandra	Cyperaceae	651	158		Carex media	Cyperaceae	694	163	
Carex disperma	Cyperaceae	652	158		Carex merritt-fernaldii	Cyperaceae	695	163	
Carex eburnea	Cyperaceae	653	158		Carex michauxiana	Cyperaceae	696	163	Threatened
Carex eleocharis	Cyperaceae	654	158		Carex molesta	Cyperaceae	697	163	
Carex emoryi	Cyperaceae	655	158		Carex muhlenbergii	Cyperaceae	698	163	
Carex exilis	Cyperaceae	656	158	Special Concern	Carex muskingumensis	Cyperaceae	699	163	
Carex festucacea	Cyperaceae	657	158	-	Carex normalis	Cyperaceae	700	163	
Carex filifolia	Cyperaceae	658	159		Carex obtusata	Cyperaceae	701	163	Special Concern
Carex flava	Cyperaceae	659	159		Carex oligocarpa	Cyperaceae	702	163	•
Carex foenea	Cyperaceae	660	159		Carex oligosperma	Cyperaceae	703	164	
Carex formosa	Cyperaceae	661	159	Endangered	Carex ormostachya	Cyperaceae	704	164	
Carex garberi	Cyperaceae	662	159	Endangered	Carex pallescens v. neogaea	Cyperaceae	705	164	Endangered
Carex gracillima	Cyperaceae	663	159		Carex pauciflora	Cyperaceae	706	164	U
Carex granularis v. haleana	Cyperaceae	664	159		Carex paupercula	Cyperaceae	707	164	
Carex gravida	Cyperaceae	665	159		Carex peckii	Cyperaceae	708	164	
Carex grayi	Cyperaceae	666	159		Carex pedunculata	Cyperaceae	709	164	
Carex gynandra	Cyperaceae	667	160		Carex pensylvanica	Cyperaceae	710	164	
Carex gynocrates	Cyperaceae	668	160		Carex plantaginea	Cyperaceae	711	164	Threatened
Carex hallii	Cyperaceae	669	160	Threatened	Carex praegracilis	Cyperaceae	712	165	
Carex haydenii	Cyperaceae	670	160		Carex prairea	Cyperaceae	713	165	

Page 7

Page	9	
	-	

Threatened

Endangered

Special Concern

Threatened

Endangered

Special Concern

Endangered

,

	0	71
Carex praticola	Cyperaceae	714
Carex projecta	Cyperaceae	715
Carex pseudocyperus	Cyperaceae	/16
Carex retrorsa	Cyperaceae	/1/
Carex richardsonii	Cyperaceae	/18
Carex rosea	Cyperaceae	719
Carex rossii	Cyperaceae	720
Carex rostrata v. utriculata	Cyperaceae	721
Carex sartwelli	Cyperaceae	722
Carex saximontana	Cyperaceae	723
Carex scirpiformis	Cyperaceae	724
Carex scoparia	Cyperaceae	725
Carex sparganioides	Cyperaceae	726
Carex sprengelii	Cyperaceae	727
Carex sterilis	Cyperaceae	728
Carex stipata	Cyperaceae	729
Carex stricta	Cyperaceae	730
Carex supina v. spaniocarpa	Cyperaceae	731
Carex sychnocephala	Cyperaceae	732
Carex tenera	Cyperaceae	733
Carex tenuiflora	Cyperaceae	734
Carex tetanica	Cyperaceae	735
Carex tonsa	Cyperaceae	736
Carex torreyi	Cyperaceae	737
Carex tribuloides	Cyperaceae	738
Carex trichocarpa	Cyperaceae	739
Carex trisperma	Cyperaceae	740
Carex tuckermanii	Cyperaceae	741
Carex typhina	Cyperaceae	742
Carex umbellata	Cyperaceae	743
Carex vaginata	Cyperaceae	744
Carex vesicaria	Cyperaceae	745
Carex viridula	Cyperaceae	746
Carex vulpinoidea	Cyperaceae	747
Carex woodii	Cyperaceae	748
Carex xerantica	Cyperaceae	749
Castilleja coccinea	Scrophulariaceae	1749
Castilleja septentrionalis	Scrophulariaceae	1750
Castilleja sessiliflora	Scrophulariaceae	1751
Caulophyllum thalictroides	Berberidaceae	181
Cenchrus longispinus	Gramineae	936
Cerastium arvense	Caryophyllaceae	262
Cerastium brachypodum	Caryophyllaceae	263

r: *

Cerastium nutans	Caryophyllaceae	265	115	
Ceratophyllum demersum	Ceratophyllaceae	295	118	
Ceratophyllum echinatum	Ceratophyllaceae	296	118	
Chamaecrista fasciculata	Leguminosae	1181	217	
Chamaedaphne calyculata				
v. angustifolia	Ericaceae	834	178	
Chamaesaracha grandiflora	Solanaceae	1786	284	
Chelone glabra	Scrophulariaceae	1753	280	
Chenopodium capitatum	Chenopodiaceae	300	119	
Chenopodium desiccatum	Chenopodiaceae	301	119	
Chenopodium rubrum	Chenopodiaceae	303	119	
Chenopodium simplex	Chenopodiaceae	304	119	
Chenopodium standleyanum	Chenopodiaceae	305	119	
Chimaphila umbellata				
v. cisatlantica	Pyrolaceae	1515	254	
Chrysosplenium americanum	Saxifragaceae	1714	276	
Chrysosplenium iowense	Saxifragaceae	1715	276	Endangered
Cicuta bulbifera	Umbelliferae	1814	287	
Cicuta maculata	Umbelliferae	1815	287	
Cinna arundinacea	Gramineae	937	190	
Cinna latifolia	Gramineae	938	190	
Circaea alpina	Onagraceae	1328	233	
Circaea lutetiana ssp. canadensis	Onagraceae	1329	233	
Cirsium altissimum	Compositae	398	130	
Cirsium discolor	Compositae	400	130	
Cirsium flodmanii	Compositae	401	130	
Cirsium hillii	Compositae	402	130	Special Concern
Cirsium muticum	Compositae	403	130	
Cladium mariscoides	Cyperaceae	750	169	Special Concern
Claytonia caroliniana	Portulacaceae	1469	249	Special Concern
Claytonia virginica	Portulacaceae	1470	249	
Clematis occidentalis	Ranunculaceae	1538	256	
Clematis virginiana	Ranunculaceae	1539	256	
Clintonia borealis	Liliaceae	1254	225	
Coeloglossum viride v. virescens	Orchidaceae	1355	236	Protected
Collomia linearis	Polemoniaceae	1412	242	
Comandra umbellata	Santalaceae	1711	276	
Commelina erecta	Commelinaceae	323	121	
Convolvulus sepium	Convolvulaceae	532	145	
Convolvulus spithamaeus	Convolvulaceae	533	145	
Conyza canadensis	Compositae	405	130	
Conyza ramosissima	Compositae	406	131	
Coptis groenlandica	Ranunculaceae	1540	257	

Corallorhiza maculata	Orchidaceae	1356	236	Protected	Cypripedium calceolus				
Corallorhiza odontorhiza	Orchidaceae	1357	236	Protected	v. pubescens	Orchidaceae	1363	237	Protected
Corallorhiza striata	Orchidaceae	1358	236	Protected	Cypripedium candidum	Orchidaceae	1364	237	Protected
Corallorhiza trifida	Orchidaceae	1359	236	Protected	Cypripedium reginae	Orchidaceae	1365	237	Special Concern,
Coreopsis palmata	Compositae	408	131						Protected
Cornus canadensis	Cornaceae	545	146		Dalea leporina	Leguminosae	1184	217	
Corydalis aurea	Fumariaceae	870	182		Danthonia spicata	Gramineae	940	190	
Corydalis micrantha	Fumariaceae	871	182		Decodon verticillatus v. laevigatus	Lythraceae	1290	229	Special Concern
Corydalis sempervirens	Fumariaceae	872	182		Delphinium virescens	Ranunculaceae	1541	257	-
Coryphantha vivipara	Cactaceae	219	110	Threatened	Dentaria laciniata	Cruciferae	577	150	
Crepis runcinata	Compositae	410	131		Deschampsia cespitosa v. glauca	Gramineae	941	190	
Crotalaria sagittalis	Leguminosae	1183	217		Deschampsia flexuosa	Gramineae	942	190	Special Concern
Cryptotaenia canadensis	Umbelliferae	1816	287		Descurainia pinnata				-
Cuscuta gronovii	Convolvulaceae	538	145		v. brachycarpa	Cruciferae	578	150	
Cuscuta campestris	Convolvulaceae	534	145		Descurainia richardsonii	Cruciferae	579	150	
Cuscuta cephalanthi	Convolvulaceae	535	145		Desmanthus illinoensis	Leguminosae	1185	217	Special Concern
Cuscuta coryli	Convolvulaceae	536	145		Desmodium canadense	Leguminosae	1186	217	-
Cuscuta glomerata	Convolvulaceae	537	145		Desmodium cuspidatum	-			
Cuscuta obtusiflora v. glandulosa	Convolvulaceae	539	145		v. longifolium	Leguminosae	1187	217	Special Concern
Cuscuta pentagona	Convolvulaceae	540	145		Desmodium glutinosum	Leguminosae	1188	217	-
Cuscuta polygonorum	Convolvulaceae	541	146		Desmodium illinoense	Leguminosae	1189	218	Threatened
Cuscuta umbrosa	Convolvulaceae	542	146		Desmodium nudiflorum	Leguminosae	1190	218	Special Concern
Cycloloma atriplicifolium	Chenopodiaceae	309	120		Dicentra canadensis	Fumariaceae	873	182	Special Concern
Cymopteris acaulis	Umbelliferae	1817	287	Special Concern	Dicentra cucullaria	Fumariaceae	874	183	-
Cynoglossum boreale	Boraginaceae	198	107		Didiplis diandra	Lythraceae	1291	229	
Cyperus acuminatus	Cyperaceae	751	169	Special Concern	Dioscorea villosa	Dioscoreaceae	818	176	
Cyperus aristatus	Cyperaceae	752	169		Diplachne fascicularis	Gramineae	945	190	
Cyperus diandrus	Cyperaceae	753	169		Distichlis stricta	Gramineae	946	191	
Cyperus engelmannii	Cyperaceae	754	169		Dodecatheon amethystinum				
Cyperus erythrorhizos	Cyperaceae	755	169		(D. pulchellum)	Primulaceae	1503	252	Special Concern
Cyperus houghtonii	Cyperaceae	757	170		Dodecatheon meadia	Primulaceae	1504	253	Special Concern
Cyperus lupulinus	Cyperaceae	758	170		Draba arabisans	Cruciferae	581	150	Special Concern
Cyperus lupulinus x					Draba nemorosa	Cruciferae	582	150	
C. schweinitzii	Cyperaceae	759	170		Draba norvegica	Cruciferae	583	150	Endangered
Cyperus odoratus	Cyperaceae	760	170		Draba reptans	Cruciferae	584	150	
Cyperus rivularis	Cyperaceae	761	170		Dracocephalum parviflorum	Labiatae	1136	212	
Cyperus schweinitzii	Cyperaceae	763	170		Drosera anglica	Droseraceae	820	177	Threatened
Cyperus strigosus	Cyperaceae	764	170		Drosera intermedia	Droseraceae	821	177	
Cypripedium acaule	Orchidaceae	1360	237	Protected	Drosera linearis	Droseraceae	822	177	Threatened
Cypripedium arietinum	Orchidaceae	1361	237	Endangered,	Drosera rotundifolia	Droseraceae	823	177	
				Protected	Dulichium arundinaceum	Cyperaceae	765	170	
Cypripedium calceolus					Echinacea angustifolia	Compositae	413	131	
v. parviflor	Orchidaceae	1362	237	ntected	Echinochloa muricata	Gramineae	948	191	

,

Page	13
I UDV	15

-# - #-

ý B

Echinochloa walteri	Gramineae	949	191	Special Concern	Erigeron annuus	Compositae	417	132	
Echinocystis lobata	Cucurbitaceae	604	153		Erigeron glabellus v. pubescens	Compositae	418	132	
Elatine minima	Elatinaceae	828	177		Erigeron lonchophyllus	Compositae	419	132	
Elatine triandra	Elatinaceae	829	178		Erigeron philadelphicus	Compositae	420	132	
Eleocharis acicularis	Cyperaceae	766	171		Erigeron pulchellus	Compositae	421	132	
Eleocharis compressa	Cyperaceae	767	171		Erigeron strigosus	Compositae	422	132	
Eleocharis elliptica	Cyperaceae	768	171		Eriocaulon septangulare	Eriocaulaceae	848	180	
Eleocharis engelmannii	Cyperaceae	769	171		Eriophorum angustifolium	Cyperaceae	782	172	
Eleocharis erythropoda	Cyperaceae	770	171		Eriophorum chamissonis	Cyperaceae	783	172	
Eleocharis intermedia	Cyperaceae	771	171		Eriophorum gracile	Cyperaceae	784	173	
Eleocharis macrostachya	Cyperaceae	772	171		Eriophorum spissum	Cyperaceae	785	173	
Eleocharis nitida	Cyperaceae	773	171	Threatened	Eriophorum tenellum	Cyperaceae	786	173	
Eleocharis obtusa	Cyperaceae	774	171		Eriophorum virginicum	Cyperaceae	787	173	
Eleocharis olivacea	Cyperaceae	775	172	Threatened	Eriophorum viridi-carinatum	Cyperaceae	788	173	
Eleocharis ovata	Cyperaceae	776	172		Eryngium yuccifolium	Umbelliferae	1819	288	Special Concern
Eleocharis parvula v. anachaeta	Cyperaceae	777	172	Threatened	Erysimum asperum	Cruciferae	586	151	
Eleocharis pauciflora v. fernaldii	Cyperaceae	778	172	Special Concern	Erysimum inconspicuum	Cruciferae	588	151	
Eleocharis rostellata	Cyperaceae	779	172	Threatened	Erythronium albidum	Liliaceae	1255	225	
Eleocharis smallii	Cyperaceae	780	172		Erythronium americanum	Liliaceae	1256	225	
Eleocharis wolfii	Cyperaceae	781	172	Endangered	Erythronium propullans	Liliaceae	1257	225	Endangered
Ellisia nyctelea	Hydrophyllaceae	1082	206		Eupatorium altissimum	Compositae	423	132	
Elymus canadensis	Gramineae	950	191		Eupatorium maculatum	Compositae	424	133	
Elymus diversiglumis	Gramineae	951	191		Eupatorium perfoliatum	Compositae	425	133	
Elymus hystrix	Gramineae	952	191		Eupatorium purpureum	Compositae	426	133	
Elymus villosus	Gramineae	955	192		Eupatorium rugosum	Compositae	427	133	
Elymus virginicus	Gramineae	956	192		Eupatorium sessilifolium	Compositae	428	133	Threatened
Elymus wiegandii	Gramineae	957	192		Euphorbia corollata	Euphorbiaceae	850	180	
Empetrum atropurpureum	Empetraceae	830	178	Endangered	Euphorbia cyathophora	Euphorbiaceae	851	180	
Empetrum nigrum	Empetraceae	831	178	Endangered	Euphorbia dentata	Euphorbiaceae	853	180	
Epigaea repens v. glabrifolia	Ericaceae	835	178	Protected	Euphorbia geyeri	Euphorbiaceae	854	180	
Epilobium angustifolium	Onagraceae	1330	233		Euphorbia glyptosperma	Euphorbiaceae	855	180	
Epilobium ciliatum	Onagraceae	1331	233		Euphorbia maculata	Euphorbiaceae	856	181	
Epilobium coloratum	Onagraceae	1332	233		Euphorbia marginata	Euphorbiaceae	857	181	
Epilobium glandulosum	Onagraceae	1333	234		Euphorbia nutans	Euphorbiaceae	858	181	
Epilobium leptophyllum	Onagraceae	1334	234		Euphorbia serpyllifolia	Euphorbiaceae	860	181	
Epilobium palustre	Onagraceae	1335	234		Euphorbia spathulata	Euphorbiaceae	861	181	
Epilobium strictum	Onagraceae ·	1336	234		Euphrasia hudsoniana v. ramosior	Scrophulariaceae	1755	280	Special Concern
Eragrostis frankii	Gramineae	959	192		Euthamia graminifolia	Compositae	429	133	
Eragrostis hypnoides	Gramineae	960	192		Euthamia gymnospermoides	Compositae	430	133	
Eragrostis pectinacea	Gramineae	961	192		Festuca obtusa	Gramineae	966	193	
Eragrostis spectabilis	Gramineae	962	192		Festuca rubra	Gramineae	969	193	
Erechtites heiracifolia	Compositae	415	132		Festuca saximontana	Gramineae	967	193	
Erigeron acris v. asteroides	Compositae	416	132	Special Concern	Fimbristylis autumnalis	Cyperaceae	789	173	

Fimbristylis puberula v. interior	Cyperaceae	790	173		Geum triflorum	Rosaceae	1614	265	
Floerkea proserpinacoides	Limnanthaceae	1283	228	Special Concern	Glaux maritima	Primulaceae	1505	253	Special Concern
Fragaria vesca ssp. americana	Rosaceae	1607	264	-	Glyceria borealis	Gramineae	970	193	-
Fragaria virginiana	Rosaceae	1608	264		Glyceria canadensis	Gramineae	971	193	
Froelichia floridana v. campestris	Amaranthaceae	139	101		Glyceria grandis	Gramineae	972	193	
Gaillardia aristata	Compositae	431	133		Glyceria striata	Gramineae	973	194	
Galearis spectabilis	Orchidaceae	1366	237	Protected	Glycyrrhiza	Leguminosae	1192	218	
Galium aparine	Rubiaceae	1674	271		Gnaphalium obtusifolium	Compositae	434	134	
Galium asprellum	Rubiaceae	1675	272		Gnaphalium uliginosum	Compositae	435	134	
Galium boreale ssp. septentrionale	Rubiaceae	1676	272		Gnaphalium viscosum	Compositae	436	134	
Galium brevipes	Rubiaceae	1677	272		Goodyera pubescens	Orchidaceae	1367	237	Protected
Galium concinnum	Rubiaceae	1678	272		Goodyera repens v. ophioides	Orchidaceae	1368	237	Protected
Galium labradoricum	Rubiaceae	1679	272		Goodyera tesselata	Orchidaceae	1369	238	Protected
Galium obtusum	Rubiaceae	1680	272		Gratiola neglecta	Scrophulariaceae	1756	281	
Galium tinctorium	Rubiaceae	1681	272		Grindelia squarrosa	Compositae	437	134	Secondary
Galium trifidum	Rubiaceae	1682	272		-	-			Noxious Weed
Galium triflorum	Rubiaceae	1683	272		Hackelia deflexa v. americana	Boraginaceae	201	108	
Gaultheria hispidula	Ericaceae	836	178		Hackelia virginiana	Boraginaceae	202	108	
Gaultheria procumbens	Ericaceae	837	178		Halenia deflexa	Gentianaceae	886	184	
Gaura biennis	Onagraceae	1337	234	Special Concern	Haplopappus spinulosus	Compositae	438	134	Special Concern
Gaura coccinea	Onagraceae	1338	234	-	Hedeoma hispida	Labiatae	1139	212	•
Gentiana affinis	Gentianaceae	877	183	Special Concern,	Hedyotis longifolia	Rubiaceae	1685	273	
				Protected	Helenium autumnale	Compositae	439	134	
Gentiana alba	Gentianaceae	878	183	Protected	Helianthemum bicknellii	Cistaceae	316	121	
entiana andrewsii	Gentianaceae	879	183	Protected	Helianthemum canadense	Cistaceae	317	121	
Gentiana paberulenta	Gentianaceae	880	183	Protected	Helianthus annuus	Compositae	440	134	Secondary
Gentiana rubricaulis	Gentianaceae	881	183	Protected		-			Noxious Weed
Gentianella amarella ssp. acuta	Gentianaceae	882	183	Special Concern,	Helianthus giganteus	Compositae	441	134	
				Protected	Helianthus grosseserratus	Compositae	442	135	
Gentianella quinquefolia					Helianthus hirsutus	Compositae	443	135	
ssp occidentalis	Gentianaceae	883	184	Protected	Helianthus maximilani	Compositae	444	135	
Gentianopsis crinita	Gentianaceae	884	184	Protected	Helianthus nuttallii ssp. rydbergii	Compositae	445	135	Special Concern
Gentianopsis procera	Gentianaceae	885	184	Protected	Helianthus occidentalis	Compositae	446	135	-
Geocaulon lividum	Santalaceae	1712	276	Special Concern	Helianthus petiolaris	Compositae	447	135	
Geranium bicknellii	Geraniaceae	887	184		Helianthus rigidus	Compositae	448	135	
Geranium carolinianum	Geraniaceae	888	184		Helianthus strumosus	Compositae	449	135	Secondary
Geranium maculatum	Geraniaceae	889	184			-			Noxious Weed
Geum aleppicum v. strictum	Rosaceae	1609	264		Helianthus tuberosus	Compositae	450	135	
Geum canadense	Rosaceae	1610	264		Helictotrichon hookeri	Gramineae	974	194	
Geum laciniatum v. trichocarpum	Rosaceae	1611	264		Heliopsis helianthoides				
Geum macrophyllum					ssp. occidentalis	Compositae	451	136	
v. perincisun	n Rosaceae	1612	265		Hemicarpha micrantha	Cyperaceae	791	173	
Geum rivale	Rosaceae ⁻	1613	265		Hepatica acutiloba	Ranunculaceae	1542	257	

Hepatica americana	Ranunculaceae	1543	257		Juncus effusus	Juncaceae	1111	209	
Heracleum lanatum	Umbelliferae	1820	288		Juncus filiformis	Juncaceae	1112	209	
Heterotheca villosa	Compositae	452	136		Juncus gerardi	Juncaceae	1113	209	
Heuchera richardsonii	Saxifragaceae	1716	276		Juncus greenei	Juncaceae	1115	209	
Hieracium kalmii	Compositae	455	136		Juncus interior	Juncaceae	1116	209	
Hieracium longipilum	Compositae	456	136		Juncus longistylis	Juncaceae	1117	210	
Hieracium scabriusculum	Compositae	458	136		Juncus marginatus	Juncaceae	1118	210	Threatened
Hieracium scabrum	Compositae	459	136		Juncus nodosus	Juncaceae	1119	210	
Hierochloë odorata ssp. hirta	Gramineae	975	194		Juncus pelocarpus	Juncaceae	1120	210	
Hippuris vulgaris	Hamamelidaceae	1078	205		Juncus stygius v. armericana	Juncaceae	1121	210	Special Concern
Hordeum jubatum	Gramineae	976	194		Juncus tenuis	Juncaceae	1122	210	•
Hordeum pusillum	Gramineae	977	194		Juncus torreyi	Juncaceae	1123	210	
Hudsonia tomentosa	Cistaceae	318	121		Juncus vasevi	Juncaceae	1124	210	
Humulus lupulus	Moraceae	1305	230		Juncus x gracilescens	Juncaceae	1114	209	
Hydrastis canadensis	Ranunculaceae	1544	257	Endangered	Koeleria macrantha	Gramineae	978	194	
Hydrocotyle americana	Umbelliferae	1821	288	Special Concern	Krigia biflora	Compositae	461	137	
Hydrophyllum appendiculatum	Hydrophyllaceae	1083	206		Kuhnia eupatorioies	•			
Hydrophyllum virginianum	Hydrophyllaceae	1084	206		v. corymbulosa	Compositae	462	137	
Hypericum boreale	Hypericaceae	1086	206		Lactuca biennis	Compositae	463	137	
Hypericum ellipticum	Hypericaceae	1087	206		Lactuca canadensis	Compositae	464	137	
Hypericum majus	Hypericaceae	1088	206		Lactuca ludoviciana	Compositae	465	137	
Hypericum punctatum	Hypericaceae	1090	207		Lactuca pulchella	Compositae	466	137	
Hypericum pyramidatum	Hypericaceae	1091	207		Laportea canadensis	Urticaceae	1840	290	
Hypoxis hirsuta	Amaryllidaceae	140	101		Lathyrus japonicus v. glaber	Leguminosae	1194	218	
Impatiens capensis	Balsaminaceae	178	105		Lathyrus ochroleucus	Leguminosae	1195	218	
Impatiens pallida	Balsaminaceae	179	105		Lathyrus palustris	Leguminosae	1196	218	
Iodanthus pinnatifidus	Cruciferae	590	151	Special Concern	Lathyrus venosus v. intonsus	Leguminosae	1197	218	
Iris versicolor	Iridaceae	1093	207	*	Lechea intermedia	Cistaceae	319	121	
Iris virginica v. shrevei	Iridaceae	1094	207		Lechea stricta	Cistaceae	320	121	
Isanthus brachiatus	Labiatae	1140	212		Lechea tenuifolia	Cistaceae	321	121	
Isopyrum biternatum	Ranunculaceae	1545	257		Leersia lenticularis	Gramineae	979	194	Special Concern
Iva xanthifolia	Compositae	460	137	Secondary	Leersia oryzoides	Gramineae	980	194	-
	•			Noxious Weed	Leersia virginica	Gramineae	981	194	
Jeffersonia diphylla	Berberidaceae	182	106	Threatened	Lepidium densiflorum	Cruciferae	592	151	
Juncus alpinoarticulatus	Juncaceae	1102	208		Lepidium virginicum	Cruciferae	593	151	
Juncus articulatus	Juncaceae	1103	208		Leptoloma cognatum	Gramineae	982	195	
Juncus balticus v. littoralis	Juncaceae	1104	208		Lespedeza capitata	Leguminosae	1198	219	
Juncus brachycarpus	Juncaceae	1105	208		Lespedeza capitata x	•			
Juncus brevicaudatus	Juncaceae	1106	208		L. leptostachya	Leguminosae	1199	219	
Juncus bufonius	Juncaceae	1107	208		Lespedeza leptostachya	Leguminosae	1200	219	Endangered
Juncus canadensis	Juncaceae	1108	209		Lesquerella ludoviciana	Cruciferae	594	151	Endangered
Juncus compressus	Juncaceae	1109	209		Liatris aspera	Compositae	469	138	-
Juncus dudleyi	Juncaceae	1110	209		Liatris cylindracea	Compositae	470	138	

1

0

ē.

iatris ligulistylis	Compositae	471	138	
Liatris punctata	Compositae	472	138	
Liatris pycnostachya	Compositae	473	138	
Lilium michiganense	Liliaceae	1259	225	Protected
Lilium philadelphicum v. andinum	n Liliaceae	1260	225	Protected
Limosella aquatica	Scrophulariaceae	1757	281	Special Concern
Linaria canadensis	Scrophulariaceae	1758	281	
Lindernia anagallidea	Scrophulariaceae	1761	281	
Lindernia dubia	Scrophulariaceae	1762	281	
Linum rigidum	Linaceae	1285	228	
Linum sulcatum	Linaceae	1286	228	
Liparis liliifolia	Orchidaceae	1370	238	Protected
Liparis loeselii	Orchidaceae	1371	238	Protected
Listera auriculata	Orchidaceae	1372	238	Endangered,
				Protected
Listera convallarioides	Orchidaceae	1373	238	Protected
Listera cordata	Orchidaceae	1374	238	
Lithospermum canescens	Boraginaceae	205	108	
Lithospermum caroliniense				
ssp. croceum	Boraginaceae	206	108	
Lithospermum incisum	Boraginaceae	207	108	
Lithospermum latifolium	Boraginaceae	208	109	
Littorella americana	Plantaginaceae	1402	241	Endangered
Lobelia cardinalis	Campanulaceae	229	111	
Lobelia dortmanna	Campanulaceae	230	111	
Lobelia inflata	Campanulaceae	231	111	
Lobelia kalmii	Campanulaceae	232	111	
Lobelia siphilitica	Campanulaceae	233	111	
Lobelia spicata	Campanulaceae	234	111	
Lomatium orientale	Umbelliferae	1822	288	
Lophotocarpus calycinus	Alismataceae	125	99	
Lotus purshianus	Leguminosae	1202	219	
Ludwigia palustris	Onagraceae	1339	234	
Ludwigia polycarpa	Onagraceae	1340	234	
Lupinus perennis	Leguminosae	1203	219	
Luzula acuminata	Juncaceae	1125	210	
Luzula multiflora	Juncaceae	1127	211	
Luzula parviflora v. melanocarpa	Juncaceae	1128	211	Threatened
Lycopus americanus	Labiatae	1142	212	
Lycopus asper	Labiatae	1143	212	
Lycopus uniflorus	Labiatae	1144	213	
Lycopus virginicus	Labiatae	1145	213	
Lygodesmia juncea	Compositae	474	138	

,

Lysimachia ciliata	Primulaceae	1506	253	
Lysimachia hybrida	Primulaceae	1507	253	
Lysimachia quadriflora	Primulaceae	1509	253	
Lysimachia quadrifolia	Primulaceae	1510	253	
Lysimachia terrestris	Primulaceae	1511	253	
Lysimachia thyrsiflora	Primulaceae	1512	253	
Lythrum alatum	Lythraceae	1292	229	
Maianthemum canadense	Liliaceae	1261	226	
Malaxis monophylla v. brachypod	a Orchidaceae	1375	238	Protected
Malaxis paludosa	Orchidaceae	1376	238	Endangered,
-				Protected
Malaxis unifolia	Orchidaceae	1377	238	Protected
Megalodonta beckii	Compositae	476	138	
Melampyrum lineare	Scrophulariaceae	1763	281	
Melica nitens	Gramineae	984	195	Threatened
Menispermum canadense	Menispermaceae	1302	230	
Mentha arvensis v. glabrata	Labiatae	1146	213	
Menyanthes trifoliata v. minor	Menyanthaceae	1303	230	
Mertensia paniculata	Boraginaceae	209	109	
Mertensia virginica	Boraginaceae	210	109	
Milium effusum v. cisatlanticum	Gramineae	985	195	
Mimulus glabratus v. fremontii	Scrophulariaceae	1764	281	
Mimulus ringens	Scrophulariaceae	1765	282	
Mirabilis hirsuta	Nyctaginaceae	1314	231	
Mirabilis linearis	Nyctaginaceae	1315	232	
Mirabilis nyctaginea	Nyctaginaceae	1316	232	
Mitchella repens	Rubiaceae	1686	273	
Mitella diphylla	Saxifragaceae	1717	276	
Mitella nuda	Saxifragaceae	1718	276	
Monarda fistulosa	Labiatae	1148	213	
Monarda punctata v. villicaulis	Labiatae	1149	213	
Moneses uniflora	Pyrolaceae	1516	254	
Monolepis nuttalliana	Chenopodiaceae	311	120	
Monotropa hypopitys	Pyrolaceae	1517	254	
Monotropa uniflora	Pyrolaceae	1518	254	
Montia chamissoi	Portulacaceae	1471	249	Endangered
Muhlenbergia asperifolia	Gramineae	987	195	
Muhlenbergia cuspidata	Gramineae	988	195	
Muhlenbergia frondosa	Gramineae	989	195	Secondary
				Noxious Weed
Muhlenbergia glomerata	Gramineae	990	195	
Muhlenbergia mexicana	Gramineae	991	196	
Muhlenbergia racemos ²	Gramineae	992	196	

Muhlenbergia richardsonis	Gramineae	993	196		Oxypolis rigidior	Umbelliferae	1827	288	
Muhlenbergia schreberi	Gramineae	994	196		Oxytropis campestris v. dispar	Leguminosae	1209	220	
Muhlenbergia sylvatica	Gramineae	995	196		Oxytropis lambertii	Leguminosae	1210	220	
Muhlenbergia uniflora	Gramineae	996	196	Threatened	Oxytropis viscida	Leguminosae	1211	220	Endangered
Myosotis laxa	Boraginaceae	212	109		Panax guinguefolium	Araliaceae	162	103	Special Concern
Myosotis verna	Boraginaceae	214	109		Panax trifolium	Araliaceae	163	104	
Myosurus minimus	Ranunculaceae	1546	257	Special Concern	Panicum boreale	Gramineae	1001	197	
Napaea dioica	Malvaceae	1300	230	Endangered	Panicum capillare	Gramineae	1002	197	
Nelumbo lutea	Nymphaeaceae	1318	232	Protected	Panicum columbianum	Gramineae	1003	197	
Nothocalais cuspidata	Compositae	477	138		Panicum commonsianum				
Nuphar luteum ssp. pumilum	Nymphaeaceae	1319	232		v. euchlamydeum	Gramineae	1004	197	
Nuphar luteum ssp. variegatum	Nymphaeaceae	1320	232		Panicum depauperatum	Gramineae	1005	197	
Nymphaea odorata	Nymphaeaceae	1321	232		Panicum dichotomiflorum	Gramineae	1006	197	Secondary
Nymphaea tetragona	Nymphaeaceae	1322	232	Threatened					Noxious Weed
Nymphaea tuberosa	Nymphaeaceae	1323	232		Panicum lanuginosum				
Oenothera biennis	Onagraceae	1341	234		v. fasciculatur	nGramineae	1007	197	
Oenothera clelandii	Onagraceae	1342	235		Panicum lanuginosum				
Oenothera laciniata	Onagraceae	1343	235		v. implicatum	Gramineae	1008	197	
Oenothera nuttallii	Onagraceae	1344	235		Panicum lanuginosum				
Oenothera oakesiana	Onagraceae	1345	235		v. praecocius	Gramineae	1009	198	
Oenothera parviflora	Onagraceae	1346	235		Panicum latifolium	Gramineae	1010	198	
Oenothera perennis	Onagraceae	1347	235		Panicum leibergii	Gramineae	1011	198	
Oenothera rhombipetala	Onagraceae	1348	235	Special Concern	Panicum linearifolium	Gramineae	1012	198	
Oenothera villosa	Onagraceae	1349	235	-	Panicum meridionale	Gramineae	1013	198	
Onosmodium molle	C C				Panicum oligosanthes	Gramineae	1015	198	
ssp. hispidissimum	Boraginaceae	215	109		Panicum perlongum	Gramineae	1016	198	
Onosmodium molle	-				Panicum philadelphicum	Gramineae	1017	198	
ssp. occidentale	Boraginaceae	216	109		Panicum virgatum	Gramineae	1018	199	
Opuntia fragilis	Cactaceae	220	110		Panicum wilcoxianum	Gramineae	1019	199	
Opuntia macrorhiza	Cactaceae	221	110	Special Concern	Panicum xanthophysum	Gramineae	1020	199	
Orthocarpus luteus	Scrophulariaceae	1766	282		Parietaria pensylvanica	Urticaceae	1841	290	
Oryzopsis asperifolia	Gramineae	997	196		Parnassia glauca	Saxifragaceae	1719	276	
Oryzopsis hymenoides	Gramineae	998	196	Endangered	Parnassia palustris v. neogaea	Saxifragaceae	1720	277	
Oryzopsis pungens	Gramineae	999	196		Paronychia canadensis	Caryophyllaceae	269	115	Special Concern
Oryzopsis racemosa	Gramineae	1000	197		Paronychia fastigiata	Caryophyllaceae	270	115	Special Concern
Osmorhiza chilensis	Umbelliferae	1823	288	Endangered	Parthenium integrifolium	Compositae	478	139	Endangered
Osmorhiza claytonii	Umbelliferae	1824	288		Paspalum ciliatifolium				
Osmorhiza longistylis	Umbelliferae	1825	288		v. stramineum	Gramineae	1021	199	
Osmorhiza obtusa	Umbelliferae	1826	288	Threatened	Pedicularis canadensis	Scrophulariaceae	1767	282	
Oxalis dillenii	Oxalidaceae	1396	241		Pedicularis lanceolata	Scrophulariaceae	1768	282	
Oxalis montana	Oxalidaceae	1397	241		Penstemon albidus	Scrophulariaceae	1769	282	
Oxalis stricta	Oxalidaceae	1398	241		Penstemon gracilis	Scrophulariaceae	1771	282	
Oxalis violacea	Oxalidaceae	1399	241		Penstemon grandiflorus	Scrophulariaceae	1772	282	

Page 21

Page 22

ф р . .

Penthorum sedoides	Crassulaceae	549	146		Poa glauca	Gramineae	1031	200	
Petalostemon candidum	Leguminosae	1212	220		Poa interior	Gramineae	1032	200	
Petalostemon occidentale	Leguminosae	1213	220		Poa languida	Gramineae	1033	200	
Petalostemon purpureum	Leguminosae	1214	220		Poa paludigena	Gramineae	1035	200	Endangered
Petalostemon villosum	Leguminosae	1215	220		Poa palustris	Gramineae	1036	201	-
Petasites frigidus v. palmatus	Compositae	479	139		Poa pratensis	Gramineae	1037	201	
Petasites sagittatus	Compositae	480	139		oa saltuensis	Gramineae	1038	201	
Petasites x vitifolius	Compositae	481	139		Poa sylvestris	Gramineae	1039	201	
Phacelia franklinii	Hydrophyllaceae	1085	206	Threatened	Poa wolfii	Gramineae	1042	201	Special Concern
Phalaris arundinacea	Gramineae	1022	199		Poa x tormentuosa	Gramineae	1040	201	-
Phlox divaricata ssp. laphamii	Polemoniaceae	1413	242		Podophyllum peltatum	Berberidaceae	183	106	
Phlox maculata	Polemoniaceae	1414	243		Pogonia ophioglossoides	Orchidaceae	1388	240	Protected
Phlox pilosa ssp. fulgida	Polemoniaceae	1416	243		Polanisia dodecandra	Capparaceae	237	112	
Phragmites australis	Gramineae	1025	199		Polanisia jamesii	Capparaceae	238	112	Endangered
Phryma leptostachya	Phrymaceae	1401	241		Polemonium occidentale				U
Phyla lanceolata	Verbenaceae	1847	291		ssp. lacustre	Polemoniaceae	1417	243	
Physalis heterophylla	Solanaceae	1787	284		Polemonium reptans	Polemoniaceae	1418	243	
Physalis virginiana	Solanaceae	1788	284		Polygala cruciata v. aquilonia	Polygalaceae	1419	243	Endangered
Physocarpus opulifolius	Rosaceae	1615	265	•	Polygala paucifolia	Polygalaceae	1420	243	C C
Physostegia virginiana	Labiatae	1151	213		Polygala polygama v. obtusata	Polygalaceae	1421	243	
Pilea fontana	Urticaceae	1842	290		Polygala sanguinea	Polygalaceae	1422	243	
Pilea pumila	Urticaceae	1843	290		Polygala senega	Polygalaceae	1423	244	
Plagiobotrys scopulorum	Boraginaceae	217	110		Polygala verticillata v. isocycla	Polygalaceae	1424	244	
Plantago aristata	Plantaginaceae	1403	241		Polygonatum commutatum	Liliaceae	1262	226	
Plantago elongata	Plantaginaceae	1404	241	Threatened	Polygonatum pubescens	Liliaceae	1263	226	
Plantago eriopoda	Plantaginaceae	1405	242		Polygonella articulata	Polygonaceae	1427	244	
Plantago rugelii	Plantaginaceae	1410	242		Polygonum achoreum	Polygonaceae	1428	244	
Plantago virginica	Plantaginaceae	1411	242		Polygonum amphibium				
Platanthera clavellata	Orchidaceae	1378	239	Special Concern,	v. stipulaceur	nPolygonaceae	1429	244	
				Protected	Polygonum arenastrum	Polygonaceae	1430	244	
Platanthera dilatata	Orchidaceae	1379	239	Protected	Polygonum arifolium v. pubescens	Polygonaceae	1431	244	Special Concern
Platanthera flava v. herbiola	Orchidaceae	1380	239	Endangered,	Polygonum careyi	Polygonaceae	1434	245	Endangered
	•			Protected	Polygonum cilinode	Polygonaceae	1435	245	-
Platanthera hookeri	Orchidaceae	1381	239	Protected	Polygonum coccineum	Polygonaceae	1436	245	
Platanthera hyperborea	Orchidaceae	1382	239	Protected	Polygonum cristatum	Polygonaceae	1438	245	
Platanthera lacera	Orchidaceae	1383	239	Protected	Polygonum douglasii	Polygonaceae	1439	245	
Platanthera obtusata	Orchidaceae	1384	239	Protected	Polygonum erectum	Polygonaceae	1440	245	
Platanthera orbiculata	Orchidaceae	1385	239	Protected	Polygonum hydropiper	Polygonaceae	1441	246	
Platanthera praeclara	Orchidaceae	1386	239	Endangered,	Polygonum hydropiperoides	Polygonaceae	1442	246	
				Protected	Polygonum lapathifolium	Polygonaceae	1443	246	
Platanthera psycodes	Orchidaceae	1387	240	Protected	Polygonum pensylvanicum	Polygonaceae	1444	246	Secondary
Poa alsodes	Gramineae	1026	199						Noxious Weed
Poa arida	Gramineae	1028	200		Polygonum punctatur	Polygonaceae	1446	246	

۰.

Page 23

Polygonum ramosissimum	Polygonaceae	1447	246	i -	Potentilla norvegica	Rosaceae	1626	266	
Polygonum sagittatum	Polygonaceae	1448	246		Potentilla palustris	Rosaceae	1627	266	
Polygonum scandens	Polygonaceae	1450	247		Potentilla paradoxa	Rosaceae	1628	266	
Polygonum tenue	Polygonaceae	1451	247		Potentilla pensylvanica	Rosaceae	1629	266	
Polygonum virginianum	Polygonaceae	1452	247		Potentilla pentandra	Rosaceae	1631	267	
Polygonum viviparum	Polygonaceae	1453	247	Special Concern	Potentilla rivalis	Rosaceae	1631	267	
Polymnia canadensis	Compositae	482	139	-	Potentilla simplex	Rosaceae	1632	267	
Polytaenia nuttallii	Umbelliferae	1829	289	Endangered	Potentilla tridentata	Rosaceae	1633	267	
Potamogeton alpinus	Potamogetonaceae	1475	249	-	Prenanthes alba	Compositae	483	139	
Potamogeton amplifolius	Potamogetonaceae	1476	249		Prenanthes aspera	Compositae	484	139	
Potamogeton bicupulatus	Potamogetonaceae	1477	250		Prenanthes crepidinea	Compositae	485	139	
Potamogeton diversifolius	Potamogetonaceae	1479	250		Prenanthes racemosa	Compositae	486	139	
Potamogeton epihydrus	Potamogetonaceae	1480	250		Primula mistassinica	Primulaceae	1513	254	
Potamogeton filiformis	Potamogetonaceae	1481	250		Prunella vulgaris	Labiatae	1152	213	
Potamogeton foliosus	Potamogetonaceae	1482	250		Psoralea argophylla	Leguminosae	1216	221	
Potamogeton friesii	Potamogetonaceae	1483	250		Psoralea esculenta	Leguminosae	1217	221	
Potamogeton gramineus	Potamogetonaceae	1484	250		Psoralea tenuiflora	Leguminosae	1218	221	Special Concern
Potamogeton illinoensis	Potamogetonaceae	1486	251		Puccinellia nuttalliana	Gramineae	1043	201	
Potamogeton natans	Potamogetonaceae	1487	251		Pulsatilla nuttalliana	Ranunculaceae	1547	257	
Potamogeton nodosus	Potamogetonaceae	1488	251		Pycnanthemum virginianum	Labiatae	1153	214	
Potamogeton obtusifolius	Potamogetonaceae	1489	251		Pyrola asarifolia	Pyrolaceae	1519	254	
Potamogeton pectinatus	Potamogetonaceae	1490	251		Pyrola chlorantha	Pyrolaceae	1520	254	
Potamogeton praelongus	Potamogetonaceae	1491	251		Pyrola elliptica	Pyrolaceae	1521	254	
Potamogeton pusillus v. pusillus	Potamogetonaceae	1492	251		Pyrola minor	Pyrolaceae	1522	255	Special Concern
Potamogeton pusillus					Pyrola rotundifolia v. americana	Pyrolaceae	1523	255	-
v. tenuissimus	Potamogetonaceae	1493	251		Pyrola secunda	Pyrolaceae	1524	255	
Potamogeton richardsonii	Potamogetonaceae	1494	251		Ranunculus abortivus	Ranunculaceae	1548	257	
Potamogeton robbinsii	Potamogetonaceae	1495	252		Ranunculus aquatilis				
Potamogeton spirillus	Potamogetonaceae	1496	252		v. capillaceus	Ranunculaceae	1550	258	
Potamogeton strictifolius	Potamogetonaceae	1497	252		Ranunculus circinatus				
Potamogeton vaginatus	Potamogetonaceae	1498	252		v. subrigidus	Ranunculaceae	1551	258	
Potamogeton vaseyi	Potamogetonaceae	1499	252	Special Concern	Ranunculus cymbalaria	Ranunculaceae	1552	258	
Potamogeton x haynesii	Potamogetonaceae	1485	250	-	Ranunculus fascicularis	Ranunculaceae	1553	258	
Potamogeton zosteriformis	Potamogetonaceae	1500	252		Ranunculus flabellaris	Ranunculaceae	1554	258	
Potentilla anserina	Rosaceae	1616	265		Ranunculus flammula	Ranunculaceae	1555	258	
Potentilla arguta	Rosaceae	1618	265		Ranunculus gmelini	Ranunculaceae	1556	258	
Potentilla bipinnatifida	Rosaceae	1619	265		Ranunculus hispidus				
Potentilla effusa	Rosaceae	1620	265		v. caricetorur	n Ranunculaceae	1557	258	
Potentilla finitima	Rosaceae	1621	266		Ranunculus hispidus v. nitidus	Ranunculaceae	1558	259	
Potentilla fruticosa	Rosaceae	1622	266		Ranunculus lapponicus	Ranunculaceae	1559	259	Special Concern
Potentilla gracilis	Rosaceae	1623	266		Ranunculus longirostris	Ranunculaceae	1560	259	
Potentilla millegrana	Rosaceae	1631	267		Ranunculus macounii	Ranunculaceae	1561	259	
Potentilla nicolletii	Rosaceae	1625	266		Ranunculus pensylvanicus	Ranunculaceae	1562	259	

,

Page 25

-91

ø

Ranunculus recurvatus	Ranunculaceae
Ranunculus rhomboideus	Ranunculaceae
Ranunculus sceleratus	Ranunculaceae
Ratibida columnifera	Compositae
Ratibida pinnata	Compositae
Rhynchospora alba	Cyperaceae
Rhynchospora capillaceae	Cyperaceae
Rhynchospora fusca	Cyperaceae
Rorippa islandica	Cruciferae
Rorippa sinuata	Cruciferae
Rotala ramosior	Lythraceae
Rudbeckia hirta v. pulcherrima	Compositae
Rudbeckia laciniata	Compositae
Rudbeckia triloba	Compositae
Rumex altissimus	Polygonaceae
Rumex maritmus v. fueginus	Polygonaceae
Rumex mexicanus	Polygonaceae
Rumex orbiculatus	Polygonaceae
Rumex verticillatus	Polygonaceae
Ruppia occidentalis	Ruppiaceae
Sagina nodosa ssp. borealis	Caryophyllaceae
Sagina procumbens	Caryophyllaceae
Sagittaria brevirostra	Alismataceae
Sagittaria cristata	Alismataceae
Sagittaria cuneata	Alismataceae
ittaria graminea	Alismataceae
Sagittaria latifolia	Alismataceae
Sagittaria rigida	Alismataceae
Salicornia rubra	Chenopodiaceae
Salvia reflexa	Labiatae
Sanguinaria canadensis	Papaveraceae
Sanicula canadensis	Umbelliferae
Sanicula gregaria	Umbelliferae
Sanicula marilandica	Umbelliferae
Sanicula trifoliata	Umbelliferae
Sarracenia purpurea	Sarraceniaceae
Satureja vulgaris v. neogaea	Labiatae
Saxifraga aizoon v. neogaea	Saxifragaceae
Saxifraga cernua	Saxifragaceae
Saxifraga pensylvanica	Saxifragaceae
Saxifraga virginiensis	Saxifragaceae
Schedonnardus paniculatus	Gramineae

259	<i>e</i>
259	
259	
140	
140	
173	
174	Threatened
174	Special Concern
152	•
152	
229	Threatened
140	
140	
140	Special Concern
247	
248	
248	
248	
248	
273	
116	Endangered
116	
99	
100	
100	
100	
100	
100	
120	Threatened
214	
241	n 10
289	Special Concern
289	
289	
289	Special Concern
270	
214 270	Threatened
270	Endangered
210	Linuangereu
278	
270	Special Concern
201	Special Concern

Scheuchzeria palustris				
v. americana	Juncaginaceae	1129	211	
Schizachne purpurascens	Gramineae	1045	202	
Schizachyrium scoparium				
v. frequens	Gramineae	1046	202	
Scirpus acutus	Cyperaceae	795	174	
Scirpus atrocinctus	Cyperaceae	796	174	
Scirpus atrovirens	Cyperaceae	797	174	
Scirpus cespitosus v. callosus	Cyperaceae	798	174	
Scirpus clintonii	Cyperaceae	799	174	
Scirpus cyperinus	Cyperaceae	800	174	
Scirpus fluviatilis	Cyperaceae	801	174	
Scirpus georgianus	Cyperaceae	802	175	
Scirpus hattorianus	Cyperaceae	803	175	
Scirpus heterochaetus	Cyperaceae	804	175	
Scirpus hudsonianus	Cyperaceae	805	175	
Scirpus microcarpus	Cyperaceae	806	175	
Scirpus pallidus	Cyperaceae	807	175	
Scirpus paludosus	Cyperaceae	808	175	
Scirpus pedicellatus	Cyperaceae	809	175	
cirpus pungens	Cyperaceae	810	175	
Scirpus purshianus	Cyperaceae	811	176	
Scirpus smithii	Cyperaceae	812	176	
Scirpus subterminalis	Cyperaceae	813	176	
Scirpus torreyi	Cyperaceae	814	176	
Scirpus validus v. creber	Cyperaceae	815	176	
Scleria triglomerata	Cyperaceae	816	176	Endangered
Scleria verticillata	Cyperaceae	817	176	Threatened
Scolochloa festucacea	Gramineae	1047	202	
Scrophularia lanceolata	Scrophulariaceae	1774	283	
Scrophularia marilandica	Scrophulariaceae	1775	283	
Scutellaria galericulata	Labiatae	1156	214	
Scutellaria lateriflora	Labiatae	1157	214	
Scutellaria leonardi	Labiatae	1158	214	
Scutellaria ovata ssp. versicolor	Labiatae	1159	214	Special Concern
Scutellaria parvula	Labiatae	1160	214	
Sedum integrifolium ssp. leedyi	Crassulaceae	551	147	Endangered
Senecio aureus	Compositae	492	140	
Senecio canus	Compositae	493	140	
Senecio congestus	Compositae	494	140	
Senecio indecorus	Compositae	495	140	
Senecio integerrimus	Compositae	496	141	
Senecio pauperculus	Compositae	497	141	

Searce processes Space space Space space space space Space space	Senecio plattensis	Compositae	498	141		Sparganium americanum	Sparganiaceae	1793	285	
v. semicolitatis Longostite 9/9 14/1 Threatened Spargamine digitationi Spargamine centre 1795 285 Sintersoets rotation Composite 501 141 Threatened Spargamine curvaryami Spargamine curvaryamine curvaryami Spargamine curvaryamine	Senecio psuedaureus	a ''	400	1 4 1		Sparganium androcladum	Sparganiaceae	1794	285	
Shuttersserts rostrata Composition State First and the second processing of the second procesing processing of the second processing processing of	v. semicordatus	Compositae	499	141		Sparganium angustifolium	Sparganiaceae	1795	285	
Sixyoa ngulantasCucur Microcethe90313Sparganium durunasSparganium curu sparganiacene179285Silen en turunondiiCaryophyllacene275116Sparganium durunasSparganium glomeratuuSparganium glom	Shinnersoseris rostrata	Compositae	501	141	Threatened	Sparganium chlorocarpum	Sparganiaceae	1796	285	
Silene drummondiiCaryophyllacea275116Sparganium (instructuansSparganiaceae1798285Silene drummondiiCaryophyllacea281117TureatenedSparganium minimumSparganiaceae1800285Silene stillataCaryophyllaceae281117TureatenedSpartania gracilitaGramineae1055203Silphum perfolistumCompositue502141Spheropholis futureaMalvacae101230Silphum perfolistumCompositue1095207Spheropholis futurea1081231Silphum perfolistumIridaceae1096207Spheropholis futurea0761 didaceae1389240Silphum perfolistumIridaceae1097207Spharathes acronaOrchidaceae1389240Silphum perfolistumIridaceae1264226Spirathes merinaOrchidaceae1391240ProtectedSimilatin racemosaLiliaceae1262226Spirathes merinicamporumOrchidaceae1392240ProtectedSimilatin trifoliaLiliaceae1262226Sporobolis septrafingGramineae1061231Similatin trifoliaLiliaceae1270227Sporobolis meglectusGramineae1061231Sinilati kaiomaLiliaceae1270227Sporobolis meglectusGramineae1061234Solama performanceSolanace1798244Sporobolis seplantisLabiatae1161234 <td>Sicyos angulatus</td> <td>Cucurbitaceae</td> <td>605</td> <td>153</td> <td></td> <td>Sparganium eurycarpum</td> <td>Sparganiaceae</td> <td>1797</td> <td>285</td> <td></td>	Sicyos angulatus	Cucurbitaceae	605	153		Sparganium eurycarpum	Sparganiaceae	1797	285	
Silten drummondiiCaryophyllaceaP39116Sparganium gionneratumSparganiaceae1799285HendageredSilten eivaCaryophyllacea281117ThreatenedSpartina graciliusGramineae1055203Special ConcernSilten eivaCaryophyllaceae503141Spartina pecinitatoGramineae1057203Special ConcernSiltyinin baricina moristruIridaceae1096207Sphaenopholis interrationaGramineae1058203Sigyrinchiun montanumIridaceae1096207Spirathein moristruGramineae1058203Sigyrinchiun montanumIridaceae1096207Spirathein moristruGramineae1058203Sigyrinchiun moristruIridaceae1263226Spirathein manzenfianaOrchidaceae1391240ProtectedSigurinchiun moristruLiliaceae1263226Spirathein manzenfianaOrchidaceae1391240ProtectedSinaliacia tellataLiliaceae1263226Sporobolus septerGramineae1061203Smilacia tellataLiliaceae1269226Sporobolus septerlosingGramineae1061203Smilacia tellataLiliaceae1270227Sporobolus septerlosingGramineae1061204Smilacia tellataLiliaceae1790244ScondaryStabaria tellasinge1061204Smilacia tellataLiliaceae1791244 <t< td=""><td>Silene antirrhina</td><td>Caryophyllaceae</td><td>275</td><td>116</td><td></td><td>Sparganium fluctuans</td><td>Sparganiaceae</td><td>1798</td><td>285</td><td></td></t<>	Silene antirrhina	Caryophyllaceae	275	116		Sparganium fluctuans	Sparganiaceae	1798	285	
Silter stillate Silter sti	Silene drummondii	Caryophyllaceae	279	116		Sparganium glomeratum	Sparganiaceae	1799	285	Endangered
Silent sellataCaryophilaceae2831/7Sparina parcialisGraminaeae105203Special ConcernSilphium parfoilatumCompositae503141Sphaeralea coccincaMalvaceae105203Silphium parfoilatumCompositae1096207Sphaeralea coccincaMalvaceae1050203Sisyrinchium montanumIndaceae1096207Sphaeralea coccincaMalvaceae1080203Sisyrinchium montanumIndaceae1096207Sphaeralea coccincaGramineae1080203Sisyrinchium montanumIndaceae1096207Spiranthes magnicamporumOrchidaceae1380204ProtectedSimiacina racemosaLiliaceae1266226Spiranthes magnicamporumOrchidaceae1392203ProtectedSinilar cirintaLiliaceae1266226Sporobius septGraminaea1060203ProtectedSinilar cirintaLiliaceae1268226Sporobius septGraminaea1061203ProtectedSinilar kisrintaLiliaceae1270227Sporobius septGraminaea1061204ProtectedSolamun pytcantum crintenseSolanaeae1780248SecondaryStellaria horgfiolaCaryophyllaceae286117Solamun pytcantumCompositae506142Special ConcernStellaria horgfiolaCaryophyllaceae286117Solanae pytcantumCompositae506	Silene nivea	Caryophyllaceae	281	117	Threatened	Sparganium minimum	Sparganiaceae	1800	285	
Silphium paciniatumComposite502141Spartina pactinataGraminaze1056203Silphium pacificitumComposite1095207Spheanpolois intermediaGraminaze1068203Sisyrinchium moronatumIridaceae1096207Spheanpolois obustasGraminaze1058203Sisyrinchium mucronatumIridaceae1097Spiranthes accruaOrchidaceae1390240ProtectedSisyrinchium mucronatumIridaceae1264226Spiranthes magnicamporumOrchidaceae1391240ProtectedSimilaria racemosaLiliaceae1264226Spiranthes magnicamporumOrchidaceae1392240ProtectedSimilaria trifoliaLiliaceae1264226Sporobolus terpolandsGraminaze1060203Smilaria trifoliaLiliaceae126226Sporobolus terpolandsGraminaze1061204Smilaria trifoliaLiliaceae1270227Sporobolus terpolandsGraminaze1061214Salax kisrineuraLiliaceae1271227Stapty statisfisLabiatae1161214Solamu carolineusSolanaceae179244ScondaryStapty statisfisLabiatae1162215Solamu carolineusSolanaceae179244ScondaryStapty statisfisLabiatae1161215Solamu carolineusComposite505142Stapty statisfiaCaropolyliaceae286117<	Silene stellata	Caryophyllaceae	283	117		Spartina gracilis	Gramineae	1055	203	Special Concern
Silphium perfoliatum Silphium perfoliatum montanum Iridaceae503141Sphenopholis intermedia Sphenopholis intermedia Sphenopholis intermedia Sphenopholis intermedia Spirankhes acemaaMalvaceae100207Silyrinchium montanum Sigvinchium montanum Sigvinchium montanum Iridaceae106207Sphenopholis intermedia Spirankhes acemaaOrchidaceae139200ProtectedSim surve Similacina raceame Similacina raceame1265226Spiranthes reanna Spronblus apprintermony Spronblus apprintermony Spronblus apprintermony Graminaea1061203ProtectedSimilacina raceame Sinilax cirificitaLiliaceae1266226Sporoblus sper Spronblus heterolepisGraminaea1061203Sinilax infificiaLiliaceae1268226Sporoblus sper Sporoblus sperGraminaea1061203Sinilax infificiaLiliaceae1270227Sporoblus sper Sporoblus speritificitaLabiatae1162216Solarum grycamtum solarum carolinenseSolarum grycamtum Solarum grycamtum (S. nigum)Solarum grycamtum Solarum grycamtum (S. nigum)1162117117Solidago grandenisCompositae506142StaphyteritificitaLabiatae1162116Solidago grandenisCompositae506142StaphyteritificitaCaroyphyllacea287117Solidago grandenisCompositae506142StaphyteritificitaCaroyphyllacea287117Solidago grigantaCompos	Silphium laciniatum	Compositae	502	141		Spartina pectinata	Gramineae	1056	203	
Sixyrinchium campestreIridaceae1095207Sphenopholis intermediaGraminace1057203Sixyrinchium mucronatumIridaceae1097207Spiranthes negnicamporumOrchidaceae1389240ProtectedSium suaveUmbelliferae1844242Spiranthes magnicamporumOrchidaceae1392240ProtectedSimilacina reemosaLiliaceae1264226Spiranthes magnicamporumOrchidaceae1392240ProtectedSinilacina reemosaLiliaceae1263226Spiranthes magnicamporumOrchidaceae1392240ProtectedSinilacina trifoliaLiliaceae1264226Sporobolus seprerGraminaea1060203Sinilacina trifoliaLiliaceae1269226Sporobolus neglectusGraminaea1060203Sinilax hispidaLiliaceae1270227Sporobolus neglectusGraminaea1061214Spiranthes magnicamporumGraminaea1061214Spiranthes magnicamporumGraminaea1061214Spiranthes magnicamporumGraminaea1061214Spiranthes magnicamporumGraminaea1062215Spiranthes magnicamporumGraminaea1061214Spiranthes magnicamporumGraminaea1061214Spiranthes magnicamporumGraminaea1061214Spiranthes magnicamporumGraminaea1062215Spiranthes magnicamporumGraminaea1062215Spiranthes magnicamporumGraminaea106221	Silphium perfoliatum	Compositae	503	141		Sphaeralcea coccinea	Malvaceae	1301	230	
Sixyrinchium montanum Sixyrinchium mucronatum Indacace10%207Sphenopholis obussataGramineae Nindacace1082.03Sixyrinchium mucronatum SinunsuaveIndacace184289Spiranthes nagricanporumOrchidacace1390240ProtectedSinulacina racemosaLiliacea126226Spiranthes magricanporumOrchidacace1392240ProtectedSmilacina trifoliaLiliacea126226Spiranthes magricanporumOrchidacace1392203ProtectedSmilacina trifoliaLiliacea126226Sporobolus styperGramineae106003StrifaceSmilacina trifoliaLiliacea126226Sporobolus neglectusGramineae106103StrifaceSmilax herbaceaLiliacea1270227Sporobolus neglectusGramineae106203StrifaceSmilax herbaceaLiliaceac1270227Stachys palustrisLabiatac116221StrifaceSolamu carcinitenesSolanacea179244SecondaryStachys trifoliaStaphyleaccae180126Stachys trifoliaStaphyleaccae180217Solidago discussificCompositae505142Stellaria horealisCaryophyllaccae28711Stellaria horealis270418Solidago dispidaCompositae507142Stellaria horealisCaryophyllaccae28717Stellaria horealis166024Stellaria h	Sisyrinchium campestre	Iridaceae	1095	207		Sphenopholis intermedia	Gramineae	1057	203	
Sixyrinchium nucronium Sixm nuxronIndecace1097207Spiranthes scernuaOrchidaceae1389240ProtectedSmilacina racemosaLiliacea1264226Spiranthes magnicamporumOrchidaceae1391240ProtectedSmilacina trifoliaLiliacea1264226Spiranthes manzoffianaOrchidaceae1391201ProtectedSmilacina trifoliaLiliacea1266226Sporobolus spert Graminaea1060203ProtectedSmilac trifoliaLiliacea1267226Sporobolus spertopisofGraminaea1061203ProtectedSmilax trifoliaLiliacea1269226Sporobolus spertopisofGraminaea1061204ProtectedSmilax trifoliaLiliacea1270227Sporobolus vaginifionsGraminaea1062204ProtectedSmilax trifoliaLiliacea1270227Sporobolus vaginifionsGraminaea1062204ProtectedSolanuc continensSolanucea1790284ScondaryStaby senutrifiaLiliacea1612145ProtectedSolanue continensSolanueSolanue1790284ScondaryStellaria toratifiaCaryophyllacea286117Soladago graneComposita505142Stellaria toratificCaryophyllacea287117Solidago princeSondago misoriensisComposita506142Stellaria toratificCaryophyllacea28611	Sisyrinchium montanum	Iridaceae	1096	207		Sphenopholis obtusata	Gramineae	1058	203	
Sium saveUmbelliferae1834289Spiranthes sace: Spiranthes magnicingOrchidaccae190240ProtectedSmilacina stellataLiliacea1265226Spiranthes magnicingOrchidaccae139220ProtectedSmilacina trifoliaLiliacea1266226Sporobolas sperGramineae106003ProtectedSmilar trifoliaLiliacea1266226Sporobolas sperGramineae106003ProtectedSmilar kerinareaLiliacea1268226Sporobolas terolepisGramineae1061203ProtectedSmilar kerinareaLiliacea1270227Sporobolas terolepisGramineae1061214ProtectedSmilar kerinareaLiliacea1270227Sporobolas veglentinesGramineae1061214ProtectedSolanum carolinenseSolanacea178284SecondaryStachys tenufoliaStaphylea trifoliaStaphyleaceae816117ProtectedSolango canadensisCompositae507142Stellaria lanisCaryophyllaceae285117ProtectedSolidago fiscicalisCompositae507142Stellaria longipesCaryophyllaceae287118ProtectedSolidago priserieSono118Protected118Protected118Protected118ProtectedSolidago priserieCompositae507142Stellaria longipesCaryophyllaceae287 <td< td=""><td>Sisyrinchium mucronatum</td><td>Iridaceae</td><td>1097</td><td>207</td><td></td><td>Spiranthes cernua</td><td>Orchidaceae</td><td>1389</td><td>240</td><td>Protected</td></td<>	Sisyrinchium mucronatum	Iridaceae	1097	207		Spiranthes cernua	Orchidaceae	1389	240	Protected
Smilacina racemosaLiliaceae12626Spiranthes magnicamporumOrchidaceae139240ProtectedSmilacina stellataLiliaceae126226Spiranthes romanazoffianaOrchidaceae139220ProtectedSmilacina infoliaLiliaceae126226Sporobolus sepertoGramineae1062323Smilar herbaceaLiliaceae1268226Sporobolus neglectusGramineae1062323Smilar herbaceaLiliaceae1269226Sporobolus neglectusGramineae1062424Smilar haisoneuraLiliaceae1270227Sporobolus neglectusLabiatae1162124Solanu procendineneeSolanaceae1789244ScondaryStachys palustrisLabiatae116121215Solanu procendinenesSolanaceae1789244ScondaryStachys palustrisLabiatae1161214116215Solang of procendeSolanaceae1789244ScondaryStachys palustrisCaryophyllaceae285117117Soladgo flexicaulisCompositae506142Stellaria longifoliaCaryophyllaceae287117118Solidago ripidaCompositae507142Stellaria longifoliaCaryophyllaceae289118116216Solidago princeiCompositae510142Stellaria longifoliaCaryophyllaceae106242424<	Sium suave	Umbelliferae	1834	289		Spiranthes lacera	Orchidaceae	1390	240	Protected
Smilacina stellataLiliacea126226Spiranthes romanzoffianaOrkidaceae1392240ProtectedSmilac cirina trifoliaLiliaceae1266226Sporobolus cryptandrusGramineae106123Smilax herbaceaLiliaceae1268226Sporobolus cryptandrusGramineae106123Smilax herbaceaLiliaceae1269226Sporobolus regulectusGramineae106224Smilax highidaLiliaceae1270227Sporobolus regulectusGramineae106224Solanur carolinenesSolanaceae178928ScondaryStachys palustrisLabiata116224Solanur proteinenesSolanaceae179128ScondaryStalphyelaceae1802817Solidago canadensisCompositae505142Stellaria atsineCaropophyllaceae28517Solidago figataCompositae508142Stellaria longipesCaropophyllaceae28611Solidago pigataCompositae508142Stellaria longipesCaropophyllaceae29018Solidago pigataCompositae508142Stellaria longipesCaropophyllaceae29018Solidago pigataCompositae510142Special ConcernStipa spartea1066204Solidago pigatoCompositae513142Streptopus mensitofiiaCaropophyllaceae12021Solidago princinciesComp	Smilacina racemosa	Liliaceae	1264	226		Spiranthes magnicamporum	Orchidaceae	1391	240	Protected
Smilax introfiaLiliacea126226Sporobolus asperGramineae105923Smilax critrataLiliacea1267226Sporobolus neterolepisGramineae1061203Smilax hrbaceaLiliacea1268226Sporobolus neterolepisGramineae1061203Smilax hispidaLiliacea1269227Sporobolus neterolepisGramineae1062204Smilax hispidaLiliacea171227Stochys palustrisLabiatae1161214Solanu progenatura (S. nigrum)Solanacea1781228SecondaryStachys tenrifoliaStaphyleaceae1801286Solanu progenatura (S. nigrum)Solanacea1791228SecondaryStalaria alsineCaryophyllaceae286117Solidago faxicantisCompositae505142Stellaria longiposCaryophyllaceae286117Solidago giganteaCompositae508142Stellaria longiposCaryophyllaceae280118Solidago prizeaCompositae508142Stellaria longiposCaryophyllaceae290118Solidago prizeaCompositae509142Stellaria longiposCaryophyllaceae200118Solidago prizeaCompositae510142Stellaria longiposCaryophyllaceae200118Solidago prizeaCompositae510142Stepposuposuposuposuposuposuposuposuposupos	Smilacina stellata	Liliaceae	1265	226		Spiranthes romanzoffiana	Orchidaceae	1392	240	Protected
Smilax cirrataLiliaceae1267226Sporobolus cryptadrusGramineae1060203Smilax hispidaLiliaceae1268226Sporobolus heterolepisGramineae1061203Smilax hispidaLiliaceae1269226Sporobolus neglectusGramineae1061204Smilax hispidaLiliaceae1270227Sporobolus neglectusGramineae1063204Solanuc carolinenseSolanaceae1789284Stachys tenuifoliaLabiatae1162215Solanu ng vonthum (S. nigrum)Solanaceae1789284ScondaryStachys tenuifoliaStaphylaceae1801286Solidago canadensisCompositae505142Stellaria alsineCaryophyllaceae286117Solidago giganteaCompositae506142Stellaria longifolsCaryophyllaceae289118Solidago giganteaCompositae508142Stellaria longifolsCaryophyllaceae290118Solidago junceaCompositae508142Stellaria longifolsCaryophyllaceae290118Solidago pinsouriensisCompositae510142Stellaria longifolsCaryophyllaceae1066204Solidago pinsouriensisCompositae510142Stellaria longipesCaryophyllaceae12021Solidago pingidaCompositae513142Streptopus melpic/foliaLiliaceae127227Solidago pingidaCo	Smilacina trifolia	Liliaceae	1266	226		Sporobolus asper	Gramineae	1059	203	
Smilax herbaceaLiliacea1268226Sporobolus heterolepisGramineae1061203Smilax hispidaLiliacea1279226Sporobolus vaginiflorusGramineae1062203Smilax hispidaLiliacea1270227Sporobolus vaginiflorusGramineae1061214Solanum carolinenseSolanaceae1789284SecondaryStachys palustrisLabiatae1162215Solanum ptycanthum (S. nigrum)Solanaceae1799284SecondaryStachys tenufoliaStaphyleaceae285117Solidago canadensisCompositae505142Stellaria alsineCaryophyllaceae286117Solidago giganeaCompositae506142Stellaria longifoliaCaryophyllaceae286117Solidago pispidaCompositae507142Stellaria longifoliaCaryophyllaceae286118Solidago pispidaCompositae509142Stellaria longifoliaCaryophyllaceae289118Solidago pinceaCompositae510142Special ConcernStipa comataGramineae1065204Solidago missouriensisCompositae510142Special ConcernStipa sparteaGramineae1065204Solidago motilisCompositae511142Special ConcernStipa sparteaGramineae1065204Solidago rigidaCompositae512143Special ConcernStipa sparteaGram	Smilax ecirrata	Liliaceae	1267	226		Sporobolus cryptandrus	Gramineae	1060	203	
Smilax hispidaLiliaceae1269226Sporobolus neglectusGramineae1062203Smilax hispidaLiliaceae1270227Sporobolus vaginiflorusGramineae1063204Smilax hispidaLiliaceae1270227Stachys palustinsLabiatae1161214Solana carolinenseSolanaceae1789284Stachys palustinsLabiatae1162215Solanu ptycanthum (S. nigrum)Solanaceae1791284SecondaryStaphylea trifoliaStaphyleaceae180286Solidago canadensisCompositae505142Stellaria lasineCaryophyllaceae286117Solidago giganteaCompositae506142Stellaria longifoliaCaryophyllaceae289118Solidago insouriensisCompositae507142Stellaria longifosCaryophyllaceae290118Solidago insouriensisCompositae509142Stellaria longifosCaryophyllaceae290118Solidago insouriensisCompositae510142Stellaria longifosCaryophyllaceae290118Solidago primociaCompositae511142Special ConcernStipa sparteaGramineae1065204Solidago rideliiCompositae513142Stipa sparteaGramineae1065204Solidago rideliago rideliaCompositae514143Special ConcernStipa sparteaGramineae1065204	Smilax herbacea	Liliaceae	1268	226		Sporobolus heterolepis	Gramineae	1061	203	
Smilax illinoensisLiliaceae1270227Sporobolus vaginiflorusGramineae1063204Smilax lasioneuraLiliaceae1271227Stachys palustrisLabiatae1161214Solanuc corolineneeSolanaceae1780284SecondaryStachys palustrisLabiatae1161215Solanum ptycanthum (S. nigrum)Solanaceae1791284SecondaryStaphylea trifoliaStaphyleaceae1801286Solidago canadensisCompositae506142Stellaria lasineCaryophyllaceae286117Solidago flexicaulisCompositae506142Stellaria longifoliaCaryophyllaceae289118Solidago flexicaulisCompositae507142Stellaria longifoliaCaryophyllaceae289118Solidago inspidaCompositae509142Stellaria longifoliaCaryophyllaceae290118Solidago inscouriensisCompositae510142Stellaria longifoliaCaryophyllaceae290118Solidago nissouriensisCompositae510142Stipa sparteaGramineae1065204Solidago norolisCompositae511142Streptopus amplexifoliusLiliaceae1272227Solidago redidelliiCompositae513142Streptopus roseus v. longipesLiliaceae1202221Solidago redidelliiCompositae515143Special ConcernStreptopus roseus v. longipesL	Smilax hispida	Liliaceae	1269	226		Sporobolus neglectus	Gramineae	1062	203	
Smilax lasioneuraLiliaceae1271227Siachys palusTrisLabiatae1161214Solanum carolinenseSolanaceae1789284Stachys tenuifoliaLabiatae1162215Solanum ptycanthum (S. nigrum)Solanaceae1791284SecondaryStaphylea trifoliaStaphyleaceae285117Solidago canadensisCompositae505142Stellaria alsineCaryophyllaceae286117Solidago flexiculisCompositae505142Stellaria crassifoliaCaryophyllaceae287117Solidago flexiculisCompositae506142Stellaria longifoliaCaryophyllaceae287117Solidago flexiculisCompositae507142Stellaria longifoliaCaryophyllaceae287117Solidago insouriensisCompositae508142Stellaria longifoliaCaryophyllaceae280118Solidago insouriensisCompositae509142Special ConcernStipa sparteaGramineae1064204Solidago nisouriensisCompositae510142Special ConcernStipa sparteaGramineae1065204Solidago prateinciodesCompositae511142Special ConcernStreptopus amplexifoliusLiliaceae1273227Solidago ptarmicoidesCompositae513142Special ConcernStreptopus amplexifoliusLiliaceae1273227Solidago pigidaCompositae515143 </td <td>Smilax illinoensis</td> <td>Liliaceae</td> <td>1270</td> <td>227</td> <td></td> <td>Sporobolus vaginiflorus</td> <td>Gramineae</td> <td>1063</td> <td>204</td> <td></td>	Smilax illinoensis	Liliaceae	1270	227		Sporobolus vaginiflorus	Gramineae	1063	204	
Solanum carolinenseSolanaceae1789284Stachys tenuifoliaLabiatae1162215Solanum ptycanthum (S. nigrum)Solanaceae1791284Scondary Noxious WeedStaphylea trifoliaStaphyleaccae1801286Solidago canadensisCompositae505142Stellaria alsineCaryophyllaccae286117Solidago giganteaCompositae506142Stellaria torealisCaryophyllaccae287117Solidago giganteaCompositae506142Stellaria longifoliaCaryophyllaccae289118Solidago hispidaCompositae508142Stellaria longifoliaCaryophyllaccae290118Solidago nispidaCompositae509142Stellaria longifoliaCaryophyllaccae290118Solidago nuccaCompositae510142Stellaria longifoliaCaryophyllaccae290118Solidago nuccaCompositae510142Stellaria longifoliaCaryophyllaccae290118Solidago nuccaCompositae510142Stellaria longifoliaCaryophyllaccae204204Solidago nuccaCompositae510142Stellaria longifoliaCaryophyllaccae12024Solidago nuccaCompositae511142Steptopus amplexifoliusLiliaccae1272227Solidago nuccaCompositae513142Strophostyles helvulaLeguninosae1220221Soli	Smilax lasioneura	Liliaceae	1271	227		Stachys palustris	Labiatae	1161	214	
Solanum ptycanthum (S. nigrum)Solanaceae1791284Secondary Noxious WeedStaphylea trifoliaStaphylea ceae1801286Solidago canadensisCompositae505142Stellaria alsineCaryophyllaceae285117Solidago flexicaulisCompositae506142Stellaria alsineCaryophyllaceae287117Solidago iganteaCompositae507142Stellaria crassifoliaCaryophyllaceae287117Solidago iganteaCompositae508142Stellaria longifoliaCaryophyllaceae289118Solidago junceaCompositae508142Stellaria longifoliaCaryophyllaceae289118Solidago junceaCompositae510142Special ConcernStipa sparteaGramineae1066204Solidago nonlisCompositae510142Special ConcernStipa sparteaGramineae1066204Solidago nonlisCompositae511142Special ConcernStipa sparteaGramineae1066204Solidago ptarmicoidesCompositae513142Streptopus roscus v. longipesLiliaceae1272227Solidago rigidaCompositae514143Special ConcernSuade calceoliformisChenopdiaceae120211Solidago rigidaCompositae515143Special ConcernSuade calceoliformisChenopdiaceae122221Solidago rigidaCompositae516	Solanum carolinense	Solanaceae	1789	284		Stachys tenuifolia	Labiatae	1162	215	
Noxious WeedStellaria alsineCaryophyllaceae285117Solidago canadensisCompositae505142Stellaria lorealisCaryophyllaceae286117Solidago flexicaulisCompositae506142Stellaria longifoliaCaryophyllaceae287117Solidago giganteaCompositae507142Stellaria longifoliaCaryophyllaceae287118Solidago jispidaCompositae508142Stellaria longifoliaCaryophyllaceae289118Solidago junceaCompositae509142Stellaria longifoliaCaryophyllaceae290118Special ConcernSolidago inscouriensisCompositae510142Stellaria longifoliaGramineae1064204Solidago nemoralisCompositae511142Special ConcernStipa sparteaGramineae1066204Solidago nemoralisCompositae513142Streptopus noscus v. longipesLiliaceae1273227Solidago riddelliCompositae513142Streptopus roscus v. longipesLiliaceae1220221Solidago riddelliCompositae516143Special ConcernSuaeda calceoliformisChemopodiaceae315120Solidago riddelliCompositae516143Special ConcernSuaeda calceoliformisChemopodiaceae315120Solidago rigidaCompositae516143Special ConcernSuaeda calceoliformisChemopo	Solanum ptycanthum (S. nigrum)	Solanaceae	1791	284	Secondary	Staphylea trifolia	Staphyleaceae	1801	286	
Solidago canadensisCompositae505142Stellaria borealisCaryophyllaceae286117Solidago fiexicaulisCompositae506142Stellaria crassifoliaCaryophyllaceae287117Solidago giganteaCompositae507142Stellaria longifoliaCaryophyllaceae289118Solidago inspidaCompositae509142Stellaria longipesCaryophyllaceae289118Solidago inssouriensisCompositae509142Stellaria longipesCaryophyllaceae200118Special ConcernSolidago nuceaCompositae510142Special ConcernStipa comataGramineae1065204Solidago nulisCompositae511142Special ConcernStipa viridulaGramineae1065204Solidago nuceaCompositae511142Special ConcernStreptopus amplexifoliusLiliaceae1272227Solidago nuceaCompositae513142Streptopus roseus v. longipesLiliaceae120221Solidago riddelliiCompositae515143Special ConcernSueada calcolifornisChenopodiaceae315120Solidago sciaphilaCompositae516143Special ConcernSueada calcolifornisChenopodiaceae315120Solidago sciaphilaCompositae516143Special ConcernSueada calcolifornisChenopodiaceae315120Solidago seciosaComposi					Noxious Weed	Stellaria alsine	Caryophyllaceae	285	117	
Solidago flexicaulisCompositae506142Stellaria crassifoliaCaryophyllaceae287117Solidago giganteaCompositae507142Stellaria longifoliaCaryophyllaceae289118Solidago hispidaCompositae508142Stellaria longipesCaryophyllaceae290118Special ConcernSolidago junceaCompositae509142Stellaria longipesCaryophyllaceae290118Special ConcernSolidago missouriensisCompositae510142Stipa comataGramineae1064204Solidago nollisCompositae511142Special ConcernStipa sparteaGramineae1066204Solidago nemoralisCompositae512142Streptopus amplexifoliusLiliaceae1272227Solidago rigidaCompositae513142Streptopus roscus v. longipesLiliaceae1220221Solidago rigidaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago sciaphilaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago speciosaCompositae517143Subularia aquatica sp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Subularia aquatica sp. americanaCruciferae602152EndangeredSolidago uliginosa <td>Solidago canadensis</td> <td>Compositae</td> <td>505</td> <td>142</td> <td></td> <td>Stellaria borealis</td> <td>Caryophyllaceae</td> <td>286</td> <td>117</td> <td></td>	Solidago canadensis	Compositae	505	142		Stellaria borealis	Caryophyllaceae	286	117	
Solidago giganteaCompositae507142Stellaria longifoliaCaryophyllaceae289118Solidago hispidaCompositae508142Stellaria longipesCaryophyllaceae290118Special ConcernSolidago junceaCompositae509142Stipa comataGramineae1064204Solidago missouriensisCompositae510142Stipa sparteaGramineae1065204Solidago mollisCompositae511142Special ConcernStipa sparteaGramineae1066204Solidago parmicoidesCompositae512142Streptopus roseus v. longipesLiliaceae1272227Solidago rigidaCompositae514143Streptopus roseus v. longipesLiliaceae1220221Solidago rigidaCompositae515143Streptopus roseus v. longipesLiliaceae315120Solidago sciaphilaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago speciosaCompositae517143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae<	Solidago flexicaulis	Compositae	506	142		Stellaria crassifolia	Caryophyllaceae	287	117	
Solidago hispidaCompositae508142Stellaria longipesCaryophyllaceae290118Special ConcernSolidago junceaCompositae509142Stipa comataGramineae1064204Solidago missouriensisCompositae510142Stipa sparteaGramineae1065204Solidago mollisCompositae511142Special ConcernStipa sparteaGramineae1066204Solidago neoralisCompositae512142Streptopus amplexifoliusLiliaceae1272227Solidago riddelliiCompositae513142Streptopus roseus v. longipesLiliaceae1220221Solidago rigidaCompositae515143Streptopus roseus v. longipesLeguminosae1220221Solidago sciaphilaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago speciosaCompositae518143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Symplocarpus foetidusAraceae1737278EndangeredSolidago uliginosaCompositae519143Symplocarpus foetidusAraceae158103104Solidago uliginosaCompositae519143Symplocarpus foetidusAraceae158103Solidago v bernardiiCompositae519143Symplocarpus fo	Solidago gigantea	Compositae	507	142		Stellaria longifolia	Caryophyllaceae	289	118	
Solidago junceaCompositae509142Stipa comataGramineae1064204Solidago missouriensisCompositae510142Stipa comataGramineae1065204Solidago mollisCompositae511142Special ConcernStipa viridulaGramineae1066204Solidago nemoralisCompositae512142Streptopus amplexifoliusLiliaceae1272227Solidago ptarmicoidesCompositae513142Streptopus roseus v. longipesLiliaceae1220221Solidago rigidaCompositae515143Strophostyles helvulaLeguminosae1221221Solidago sciaphilaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago speciosaCompositae517143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Subularia renifoliaSaxifragaceae1737278EndangeredSolidago uliginosaCompositae519143Symplocarpus foetidusAraceae158103Solidago v bernardiiCompositae519143Symplocarpus foetidusAraceae158103Solidago v bernardiiCompositae519143Symplocarpus foetidusAraceae158103Solidago v bernardiiCompositae519143Symplocarpus foetidusAraceae158<	Solidago hispida	Compositae	508	142		Stellaria longipes	Caryophyllaceae	290	118	Special Concern
Solidago missouriensisCompositae510142Stip sparteaGramineae1065204Solidago mollisCompositae511142Special ConcernStipa viridulaGramineae1066204Solidago nemoralisCompositae512142Streptopus amplexifoliusLiliaceae1272227Solidago ptarmicoidesCompositae513142Streptopus roseus v. longipesLiliaceae1273227Solidago rigidaCompositae514143Strophostyles helvulaLeguminosae1220221Solidago sciaphilaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago speciosaCompositae517143Subularia quatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Subularia quatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae519143Suplicarput specifiusAraceae1737278EndangeredSolidago v bernardiiCompositae519143Symplocarput specifiusAraceae158103Solidago v bernardiiCompositae519143Symplocarput specifiusAraceae1835289	Solidago juncea	Compositae	509	142		Stipa comata	Gramineae	1064	204	•
Solidago mollisCompositae511142Special ConcernStipa viridulaGramineae1066204Solidago nemoralisCompositae512142Streptopus amplexifoliusLiliaceae1272227Solidago ptarmicoidesCompositae513142Streptopus roseus v. longipesLiliaceae1273227Solidago rigidaCompositae514143Streptopus roseus v. longipesLiliaceae1220221Solidago rigidaCompositae515143Streptopus roseus v. longipesLeguminosae1221221Solidago sciaphilaCompositae516143Special ConcernSueda calceoliformisChenopodiaceae315120Solidago speciosaCompositae517143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae519143Sulivantia renifoliaSaxifragaceae1737278EndangeredSolidago ulmifoliaCompositae519143Symplocarpus foetidusAraceae158103Solidago v bernardiiCompositae519141Taenidia integerrimaUmbelliferae1835289	Solidago missouriensis	Compositae	510	142		Stipa spartea	Gramineae	1065	204	
Solidago nemoralisCompositae512142Streptopus amplexifoliusLiliaceae1272227Solidago ptarmicoidesCompositae513142Streptopus roseus v. longipesLiliaceae1273227Solidago riddelliiCompositae514143Streptopus roseus v. longipesLiliaceae1220221Solidago rigidaCompositae515143Streptopus roseus v. longipesLeguminosae1221221Solidago sciaphilaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago speciosaCompositae517143Special ConcernSueda calceoliformisChenopodiaceae315120Solidago uliginosaCompositae518143Special ConcernSuellivantia renifoliaSaxifragaceae1737278EndangeredSolidago uliginosaCompositae519143Symplocarpus foetidusAraceae158103Solidago x bernardiiCompositae504141Taenidia integerrimaUmbelliferae1835289	Solidago mollis	Compositae	511	142	Special Concern	Stipa viridula	Gramineae	1066	204	
Solidago ptarmicoidesCompositae513142Streptopus roscus v. longipesLiliaceae1273227Solidago riddelliiCompositae514143Strophostyles helvulaLeguminosae1220221Solidago rigidaCompositae515143Strophostyles helvulaLeguminosae1221221Solidago sciaphilaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago speciosaCompositae517143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Subularia renifoliaSaxifragaceae1737278EndangeredSolidago uliginosaCompositae519143Symplocarpus foetidusAraceae158103Solidago x bernardiiCompositae504141Taenidia integerrimaUmbelliferae1835289	Solidago nemoralis	Compositae	512	142		Streptopus amplexifolius	Liliaceae	1272	227	
Solidago ridelliiCompositae514143Strophostyles helvulaLeguminosae1220221Solidago rigidaCompositae515143Strophostyles leiospermaLeguminosae1221221Solidago sciaphilaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago speciosaCompositae517143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Sullivantia renifoliaSaxifragaceae1737278EndangeredSolidago ulmifoliaCompositae519143Symplocarpus foetidusAraceae158103Solidago x bernardiiCompositae504141Taenidia integerrimaUmbelliferae1835289	Solidago ptarmicoides	Compositae	513	142		Streptopus roseus v. longipes	Liliaceae	1273	227	
Solidago rigidaCompositae515143Strophostyles leiospermaLeguminosae1221221Solidago sciaphilaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago speciosaCompositae517143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Sullivantia renifoliaSaxifragaceae1737278EndangeredSolidago ulmifoliaCompositae519143Symplocarpus foetidusAraceae158103Solidago x bernardiiCompositae504141Taenidia integerrimaUmbelliferae1835289	Solidago riddellii	Compositae	514	143		Strophostyles helvula	Leguminosae	1220	221	
Solidago sciaphilaCompositae516143Special ConcernSuaeda calceoliformisChenopodiaceae315120Solidago speciosaCompositae517143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Sullivantia renifoliaSaxifragaceae1737278EndangeredSolidago uliginosaCompositae519143Symplocarpus foetidusAraceae158103Solidago x bernardiiCompositae504141Taenidia integerrimaUmbelliferae1835289	Solidago rigida	Compositae	515	143		Strophostyles leiosperma	Leguminosae	1221	221	
Solidago speciosaCompositae517143Subularia aquatica ssp. americanaCruciferae602152EndangeredSolidago uliginosaCompositae518143Sullivantia renifoliaSaxifragaceae1737278EndangeredSolidago uliginosaCompositae519143Symplocarpus foetidusAraceae158103Solidago x bernardiiCompositae504141Taenidia integerrimaUmbelliferae1835289	Solidago sciaphila	Compositae	516	143	Special Concern	Suaeda calceoliformis	Chenopodiaceae	315	120	
Solidago uliginosaCompositae518143Sullivantia renifoliaSaxifragaceae1737278EndangeredSolidago ulmifoliaCompositae519143Symplocarpus foetidusAraceae158103Solidago x bernardiiCompositae504141Taenidia integerrimaUmbelliferae1835289	Solidago speciosa	Compositae	517	143	- F	Subularia aquatica ssp. americana	Cruciferae	602	152	Endangered
Solidago ulmifoliaCompositae519143Symplocarpus foetidusAraceae158103Solidago x bernardiiCompositae504141Taenidia integerrimaUmbelliferae1835289	Solidago uliginosa	Compositae	518	143		Sullivantia renifolia	Saxifragaceae	1737	278	Endangered
Solidago x bernardii Compositae 504 141 Taenidia integerrima Umbelliferae 1835 289	Solidago ulmifolia	Compositae	519	143		Symplocarpus foetidus	Araceae	158	103	
	Solidago x bernardii	Compositae	504	141		Taenidia integerrima	Umbelliferae	1835	289	
Sorghastrum nutans Gramineae 1054 203 Talinum parviflorum Portulacaceae 1473 249	Sorghastrum nutans	Gramineae	1054	203		Talinum parviflorum	Portulacaceae	1473	249	

Page 29

÷

-

Talinum rugospermum	Portulacaceae	1474	249	Endangered	Veronica catenata	Scrophulariaceae	1779	283	
Tephrosia virginiana	Leguminosae	1222	221	Special Concern	Veronica officinalis	Scrophulariaceae	1781	283	
Teucrium canadense	Labiatae	1163	215		Veronica peregrina	Scrophulariaceae	1782	283	
Thalictrum dasycarpum	Ranunculaceae	1567	260		Veronica scutellata	Scrophulariaceae	1783	284	
Thalictrum dioicum	Ranunculaceae	1568	260		Veronicastrum virginicum	Scrophulariaceae	1785	284	
Thalictrum venulosum	Ranunculaceae	1569	260		Vicia americana	Leguminosae	1229	222	
Thaspium barbinode	Umbelliferae	1836	289		Viola adunca	Violaceae	1853	291	
Tillaea aquatica	Crassulaceae	553	147	Endangered	Viola affinis	Violaceae	1854	291	
Tofieldia glutinosa	Liliaceae	1274	227	Special Concern	Viola canadensis v. rugulosa	Violaceae	1855	292	
Tofieldia pusilla	Liliaceae	1275	227	Endangered	Viola conspersa	Violaceae	1856	292	
Torrevochloa pallida	Gramineae	1067	204	C	Viola cucullata	Violaceae	1857	292	
Tradescantia bracteata	Commelinaceae	324	121		Viola incognita	Violaceae	1858	292	
Tradescantia occidentalis	Commelinaceae	325	122		Viola labradorica	Violaceae	1859	292	
Tradescantia ohiensis	Commelinaceae	326	122	Special Concern	Viola lanceolata	Violaceae	1860	292	Special Concern
Triadenum fraseri	Hypericaceae	1092	207		Viola macloskevi ssp. pallens	Violaceae	1861	292	
Trientalis borealis	Primulaceae	1514	254		Viola missouriensis	Violaceae	1862	292	
Triglochin maritima	Juncaginaceae	1130	211		Viola nephrophylla	Violaceae	1863	292	
Triglochin palustris	Juncaginaceae	1131	211	Special Concern	Viola novae-angliae	Violaceae	1864	293	Special Concern
Trillium cernuum	Liliaceae	1276	227	Protected	Viola nuttallii	Violaceae	1865	293	Special Concern
Trillium flexipes	Liliaceae	1277	227	Protected	Viola pedata	Violaceae	1866	293	
Trillium grandiflorum	Liliaceae	1278	227	Protected	Viola pedatifida	Violaceae	1867	293	
Trillium nivale	Liliaceae	1279	228	Special Concern.	Viola pratincola	Violaceae	1868	293	
				Protected	Viola pubescens	Violaceae	1869	293	
Triodanis leptocarpa	Campanulaceae	235	112		Viola renifolia	Violaceae	1870	293	
Triodanis perfoliata	Campanulaceae	236	112		Viola sagittata	Violaceae	1871	293	
Triosteum perfoliatum	Caprifoliaceae	253	114		Viola selkirkii	Violaceae	1872	293	
Triplasis purpurea	Gramineae	1068	204	Special Concern	Viola sororia	Violaceae	1873	294	
Trisetum spicatum	Gramineae	1069	204	1	Vulpia octoflora v. glauca	Gramineae	1070	204	
Typha angustifolia	Typhaceae	1804	286		Waldsteinia fragarioides	Rosaceae	1672	271	Special Concern
Typha latifolia	Typhaceae	1805	286		Xanthium strumarium	Compositae	530	144	Secondary
Uvularia grandiflora	Liliaceae	1280	228						Noxious Weed
Uvularia sessilifolia	Liliaceae	1281	228		Xvris montana	Xvridaceae	1879	294	Special Concern
Urtica dioica ssp. gracilis	Urticaceae	1844	290		Xvris torta	Xvridaceae	1880	294	Threatened
Vaccinium macrocarpon	Ericaceae	843	179		Zannichellia palustris v. major	Zannichelliaceae	1881	294	
Vaccinium oxycoccus	Ericaceae	845	179		Zanthoxylum americanum	Rutaceae	1688	273	
Valeriana edulis ssp. ciliata	Valerianaceae	1845	290	Threatened	Zigadenus elegans	Liliaceae	1282	228	
Verbena bracteata	Verbenaceae	1848	291		Zigadenus glaucus	Liliaceae	1282	228	
Verbena hastata	Verbenaceae	1849	291		Zizania palustris	Gramineae	1071	204	
Verbena simplex	Verbenaceae	1850	291	Special Concern	Zizia aptera	Umbelliferae	1837	290	
Verbena stricta	Verbenaceae	1851	291	- r	Zizia aurea	Umbelliferae	1838	290	
Verbena urticifolia	Verbenaceae	1852	291						
Vernonia fasciculata	Compositae	529	144		* Sources for these comments as	re:			

Agronomy Service of Weed Control, 1991. Leaflet AG-FO-5620-S. None of the primary noxious weeds are native to Minnesota, but a number of native plants have been placed on the secondary list and may be defined as "Noxious" by individual counties.

2. Coffin, Barbara, L. Pfannmuller. <u>Minnesota Endangered Flora and Fauna</u>, Minneapolis: University of Minnesota Press, 1988. Coffin and Pfannmuller define three grades of endangered plants, those that have been designated as "Endangered" and "Threatened" by the state, and those that are in enough ecological danger to warrant a designation of "Special Concern" and monitoring.

3. The designation of protected plants is according to the State Wildflower Law, Section 17.23 "Conservation of Certain Wildflowers."

TABLE 3: 1991 ANL 1992 SEED COLLECTIONS - PRODUCTION RESEARCH

1991 SEED COLLECTIONS					SCIENTIFIC NAME	COMMON NAME	SAMPLE NUM	SAMPLE NUMBERDATE LOCATION			
SCIENTIFIC NAME	COMMON NAME	SAMPLE NUM	<u>BERDATE L</u>	OCATION	Onosmodium molle	False Gromwell	D4	10-1-91	34		
Grasses					Veronicastrum virginicum	Culver's Root	C42	9-11-91	8		
Andropogon gerardii	Big Bluestem	C27	9-10-91	5		1992 SEED COLLE	CTIONS				
Muhlenbergia cf. mexicana	Muhly	C33	9-11-91	7		,					
Schizachyrium scoparium	Little Bluestem	C20	9-10-91	6	SCIENTIFIC NAME	COMMON NAME	SAMPLE NUM	BERDATE LO	OCATION		
		C28	9-10-91	5							
Spartina pectinata	Prairie Cordgrass	C37	9-11-91	7	Grasses						
	-	D3	10-1-91	33							
Sporobolus heterolepis	Prairie Dropseed	C34	9-11-91	7	Andropogon gerardii	Big Bluestem	92F8	10-3-92	BL		
	-				1.1.5		92T1	10-3-92	TW		
Forbs							92A8	10-14-92	3		
					Koeleria pyramidata	Junegrass	92S2	9-2 -92	SC		
Amorpha canescens	Leadplant	C18	9-10-91	6		e	92O3	9-3-92	OR		
en e	-	C46	9-11-91	7			92F4	10-3-92	FR		
		C60	9-12-91	21	Muhlenbergia spp.	Muhly	92F13	10-3-92	BL		
Asclepias tuberosa	Butterflyweed	D1	9-18-91	26	0 11	•	92T4	10-3- 92	TW		
Aster sericeus	Silky Aster	D5	10-1-91	3	Schizachyrium scoparium	Little Bluestem	92F15	10-3-92	BL		
Astragalus canadensis	Canada Milk Vetch	B3	9-9-91	3			92T5	10-3-92	TW		
C		C67	9-12-91	18			92G7	10-4-92	OT		
Coreopsis palmata	Prairie Coreopsis	A20	8-24-91	D	Spartina pectinata	Prairie Cordgrass	92F14	10-3-92	BL		
Petalostemum candida	White Prairie Clover	B7	9-9-91	3	• •	C	92T6	10-3-92	TW		
N		C48	9-11-91	8			92G2	10-4-92	RE		
		C50	9-11-91	S			92G8	10-4-92	ОТ		
Petalostemum purpurea	Purple Prairie Clover	A56	9-4-91	2	Sporobolus heterolepis	Prairie Dropseed	9207	9-3-92	OR		
	-	B 6	9-9-91	3		-					
		C2	9-10-91	5	Forbs						
		C32	9-11-91	7							
		C47	9-11-91	8	Amorpha canescens	Leadplant	92F1	10-3-92	FR		
		C68	9-12-91	18	*	*	92F7	10-3-92	BL		
Galium boreale	Northern Bedstraw	C6	9-10-91	5	Aster sericeus	Silky Aster	92F9	10-3-92	BL		
Gentiana cf. andrewsii	Bottle Gentian	C62	9-12-91	21		2	92A12	10-21-9	3		
		C3	9-10-91	5	Astragalus canadensis	Canada Milk Vetch	92T2	10-3-92	TW		
Liatris cf. punctata	Dotted Blazingstar	C69	9-12-91	19	0		92G3	10-4-92	WE		
Liatris pycnostachya	Prairie Blazingstar	B5	9-9-91	3			92A10	10-14-92	3		
Lilium philadelphicum	Wood Lilv	C71	9-12-91	16	Coreopsis palmata	Prairie Coreopsis	9201	9-3-92	OR		
Monarda fistulosa	Bergamot	A11	8-24-91	В	F F	- F	92B1	9-14-92	BU		
	0	A54	9-4-91	1	Petalostemum candida	White Prairie Clover	92A6	10-9-92	3		
		C22	9-10-91	6			92A7	10-14-9	3		
		D11	10-1-91	34	Petalostemum purpureum	Purple Prairie Clover	92B3	9-14-92	BU		

Page 2

Page 3

.

SCIENTIFIC NAME	COMMON NAME	SAMPLE NUMBE	<u>RDATE</u> LC	OCATION
Petalostemum nurnureum	Purple Prairie Clover	92F2	10-3-92	FR
i curoscontant parpareant		92F10	10-3-92	BL
		92G4	10-4-92	WE
		92G6	10-4-92	OT
		92A9	10-14-92	3
Galium boreale	Northern Bedstraw	92O2	9-3-92	OR
		92S1	9-2-92	SC
		92B2	9-14-92	BU
		92F3	10-3-92	FR
Galium boreale	Northern Bedstraw	92F12	10-3-92	BL
Gentiana andrewsii	Bottle Gentian	92F11	10-3-92	BL
Liatris pycnostachya				
Lilium philadelphicum	Wood Lily	92T3	10-3-92	TW
		92G1	10-4-92	RE
Lithospermum carolinense	Puccoon	92O4	9-3-92	OR
Phlox pilosa	Prairie Phlox	92Z1	8-1-92	PE
		92S0	9-2-92	SC
		9206	9-3-92	OR
Onosmodium molle	False Gromwell	9205	9-3-92	OR
Pycnanthemum virginicum	Virginia Mint			
Verbena hastata	Blue Vervain			
Verbena stricta	Hoary Vervain	92F5	10-3-92	FR
Veronicastrum virginicum	Culver's Root	92F16	10-3-92	BL
		92T7	10-3-92	TW
Zizia aurea	Golden Alexander	9285	9-2-92	SC
		92B6	9-14-92	BU

•

TABLE 4: 1991 AND 1992 SEED COLLECTIONS - GENETIC DIVERSITY RESEARCH

SCIENTIFIC NAME	COMMON NAME	POPULATION NUMBER	DATE	LOCATION
Grasses				
Andropogon gerardii	Big Bluestem	AG-4	9-10-91	4
		AG-5	9-10-91	5
		AG-6	9-10-91	6
		AG-7	9-11-91	7
		AG-8	9-11-91	8
		AG-9	9-11-91	9
		AG-12	9-12-91	12
		AG-14	9-12-91	14
		AG-17	9-12-91	17
		AG-18	9-12-91	18
		AG-20	9-12-91	20
		AG-21	9-12-91	21
		AG-22	9-12-91	22
		AG-23	9-12-91	23
		AG-24	9-18-91	24
		AG-25	9-18-91	25
		AG-26	9-18-91	26
		AG-28	9-18-91	28
		AG-29	9-18-91	30
		AG-31	9-18-91	31
		AG-32	9-20-91	32
		AG-33	10-1-91	33
		AG-34T	10-1-91	34
		AG-34B	10-1-91	34
		AG-36	10-1-91	36
		AG-TW	10-3-92	TW
		AG-BL	10-3-92	BL
		AG-WE	10-4-92	WE
		AG-OT	10-4-92	OT
Schizachyrium				
scoparium	Little Bluestem	SS-4	9-10-91	4
-		SS-6	9-10-91	6
•		SS-7	9-11-91	7
		SS-8	9-11-91	8
		SS-14	9-12-91	14
		SS-17	9-12-91	17
		SS-22	9-12-91	22
		SS-23	9-12-91	23

SCIENTIFIC NAME	COMMON NAME	POPULATION NUMBER	DATE	LOCATION
Schizachyrium				
scoparium	Little bluestem	SS-26	9-18-91	26
		SS-27	9-18-91	27
		SS-33	10-1-91	33
		SS-34.1	10-1-91	34
		SS-34.2	10-1-91	34
		SS-36	10-1-91	36
		SS-36	10-1-91	36
		SS-FR	10-3-92	FR FR
		SS-BL	10-3-92	BL
		SS-WE	10- 4-92	WE
		SS-OT	10-4-92	OT
Forbs				
Liatris aspera	Rough Blazing Star	LA-37	10-3-91	37
-		LA-FR	10-3-92	FR
		LA-BL	10-3-92	BL
Liatris ligulistylis	Meadow Blazing Star	LL-BU	9-14-92	BU
Liatris aspera		L-3	9-9-91	3
or ligulistylis		L-4	9-10-91	4
		L-5.1	9-10-91	5
		L-5.2	9-10-91	5
		L-5.3	9-10-91	5
		L-6.1	9-1 0-91	6
		L-6.2	9-10-91	6
		L-7.1	9-11-91	7
		L-7.2	9-11-91	7
		L-8	9-11-91	8
		L-13.1	9-12-91	13
		L-13.2	9-12-91	13
		L-17	9-12-91	17
		L-33.1	10-1-91	33
		L-33.2	10-1-91	33
		L-34.1	10-1-91	34
		L-34.2	10-1-91	34
		L-34.3	10-1-91	34
		L-34.4	10-1-91	34

				r ugo 5	
SCIENTIFIC NAME	COMMON NAME	POPULATION NUMBER	DATE L	<u>OCATION</u>	
Liatris punctata	Dotted Blazing Star	LPU-6	9-10-91	6	
-	-	LPU-19	9-12-91	19	
		LPU-FR	10-3-92	FR	
Liatris punctata	Dotted Blazing Star	LPU-BL	10-3-92	BL	
Liatris					
pycnostachya	Prairie Blazing Star	LPY-3	9-9-91	3	
		LPY-4	9-10-91	4	
		LPY-5	9-10-91	5	
		LPY-15	9-12-91	15	
		LPY-16	9-12-91	16	
		LPY-17	9-12-91	17	
		LPY-20	9-12-91	20	
		LPY-35	9-?-91	35	
		LPY-TW	10-3-92	TW	
		LPY-BL	10-3-92	BL	
		LPY-RE	10-4-92	RE	
		LPY-WE	10-4-92	WE	
		LPY-OT	10-4-92	0T	
Monarda fistulosa	Wild Bergamot	MF-1	9-4-92	1	
		MF-5	9-10-91	5	
		MF-6	9-10-91	6	
		MF-8	9-11-91	8	
		MF-26	9-18-91	26	
		MF-27	9-18-91	27	
		MF-34	10-1-91	34	
		MF-37	10-3-91	37	

TABLE 5: LOCATION KEY FOR SEED COLLECTION LIST

- 1 Roadside, Hwy 8, .25 miles south of Taylor's Falls. Chisago Co.
- 2 Roadside, at junction of Oriole Ave. and River Rd., Co. Rd. 71. Chisago Co.
- 3 University of Minnesota Landscape Arboretum. Carver Co.
- 4 Roadside, Hwy. 102 at mile marker no. 7. Polk Co.
- 5 Roadside, 2.5 miles west of Hwy 102 on Co. 41. Polk Co.
- 6 Roadside, 4 miles east of Hwy 102 on Co. 45. Polk Co.
- Remnant prairie leased by Oscar Carlson, Marsh Grove Township, SE and W1/2 of section 36.
 Marshall Co.
- 8 Privately owned prairie, Clow Township, NE corner of NW1/4 of section 35, T164N, R49W. Kittson Co.
- 9 Roadside, St. Joseph Township, SW1/4 Section 27, T163N, R47W. Kittson Co.
- 11 Roadside, Gravel Rd. approximately 1 mile south of Co. Rd. 3, 3 mile from Hwy 32. Pennington Co.
- 12 Roadside, Hwy. 32, 1 mile south of the Pennington/Red Lake Co. line. Red Lake Co.
- 13 Roadside, Hwy. 32, 1.5 miles south of Pennington/Red Lake Co. line. Red Lake Co.
- 14 Roadside, Hwy. 9, 3 miles north of Lockhart. Norman Co.
- 15 Roadside, Hwy. 9, 1 mile north of Lockhart. Norman Co.
- 16 Roadside, Co. Rd. 39 about 4 miles west of Syre. Norman Co.
- 17 Roadside, Hwy 32, 2 miles north of Syre. Norman Co.
- 18 Roadside, 2 miles west of Ulen on Co. Rd. 34. Clay Co.
- 19 Roadside, Co. Rd. 27, 2 miles south of Co. 34. Clay Co.
- 20 Roadside, Hwy 9 just south of Downer. Clay Co.
- 21 Roadside, 1 mile south of Barnesville on Co. Rd. 52. Clay Co.
- 22 Roadside, Co. Rd. 52, 2 miles south of Barnesville. Wilkin Co.
- 23 Roadside, Co. Rd. 52, just south of Carlisle. Ottertail Co.
- 24 Roadside, Hwy. 316, 2 miles SE of Hastings. Dakota Co.
- 25 Roadside, Hwy 61, 1.5 miles north of Lake Pepin. Goodhue Co.
- 26 Roadside, Hwy 74, 2 miles southwest of Hwy 61. Wabasha Co.
- 27 Roadside, Hwy 74, .5 miles south of Elba. Winona Co.
- 28 Roadside, Hwy 76, 5.5 miles NW of Caledonia. Houston Co.
- 29 Roadside, Co. Rd. 8, .25 miles from junction of Hwy 44. Houston Co.
- 30 Roadside adjacent to Riceford Our Saviour Lutheran Church near Co. Rd. 8. Houston/Fillmore Co.
- 31 Roadside, gravel road .25 miles from Co. Rd. 24 near Lenora. Fillmore Co.
- 32 Roadside, 2 miles south of Co. Rd. 8A. Washington Co.
- Railroad right of way between Co. Rd. 32 and Hwy. 23, south of Cottonwood. Lyon Co.
- 34 Remnant prairie leased by Robert Mohn, approximately 8 miles south of Minneota. Lyon Co.
- 35 Collection by Robert Mohn, south of Lakefield. Jackson Co.
- 36 Collection by Roy Robison. Ramsey Co.
- 37 Collection by Roy Robison. Ramsey Co.

- B Roadside, Co. N, 1 mile north of Colfax, Wisconsin. Dunn Co.
- D Roadside, Co. A NE of Colfax, Wisconsin.
- S Vacant Lot, town of Halma
- BL Blazing Star Prairie, TNC
- BU Prairie leased by Wayne Feder, Butternut MN
- FR Frenchman's Bluff Scientific and Natural Area
- OR Ordway Prairie, TNC
- OT Ottertail Prairie Scientific and Natural Area
- PE Roadside, Hwy 12 westbound, at mile marker 68
- RE Rice Elliotte Prairie Scientific and Natural Area
- SC Schaeffer Prairie, TNC
- TW Twin Valley Prairie Scientific and Natural Area
- WE Western Prairie South Scientific and Natural Area

TABLE6: COLUMNS DEFINITIONS AND EXAMPLE FOR LOTUS 123 SPREDSHEET.

A. Name **B.** Family **Example of a Spread-Sheet Entry** C. Map # in Ownbey and Morley D. Noxious Weed Asclepias tuberosa L. (Butterfly-Weed) E. Endangered/Protected F. Fruiting Structure A. Name Asclepias tuberosa G. Harvest Time **B.** Family Asclepiadaceae H. Seed Yield C. Map # 175 I. % Viable D. Noxious Weed No J. Seed Type E. Endangered/Protected No K. Storage Requirements F. Fruiting Structure Hairy, spindle-shaped pod L. Reference for Seed Data (columns F-K) G. Harvest Time As soon as seed ripens but before pod splits, 6-8 weeks after M. Seed Treatment 1 flowering. N. Reference H. Seed Yield No information O. Seed Treatment 2 I. % Viable No information P. Reference J. Seed Type No information Q. Light/Dark/Heat Germination Requirement K. Storage Requirements Regrows well after storage at 28 to 34, or 41 C. R. Reference L. Reference for Seed Data 790, 258, 1035 S. Comments for Seed Propagation M. Seed Treatment 1 Plant seed as soon as pod opens: needs cold/warm period. T. Cutting Technique N. Reference 811 U. Reference O. Seed Treatment 2 Germinates best if planted in soil mix of equal parts peat, perlite, and loamy soil, amended with nutrients; germinates poorly if V. Division pretreated with water-soak or provided bottom heat during W. Reference X. Tissue Culture germination. Y. Reference P. Reference 422 Z. Other Asexual Propagation Q. Light/Dark/Heat Requirement Best germination was at 30C with constant light. Germinated only when temperature in range 25-30 C. AA. Comments AB. Reference R. Reference 109 S. Comments for Seed Propagation Seed never germinated if held at or below 10 C - Ref. 10 AC. Allelopathy or Complimentary Plant Associations AD. Production Treatment 1 T. Cutting Technique Tip cuttings; or cuttings made at end of dormant season. Success AE. Reference rate: good. 811,258 AF. Production Treatment 2 U. Reference AG. Reference V. Division Taproot can be sliced into pieces. Success rate: only partly successful since taproot does not like to be disturbed. AH. Preferred Soil AI. Preferred Sun W. Reference 804, 492 AJ. Preferred Moisture X. Tissue Culture No information **AK.** Cultivation Comments Y. Reference No information AL. Reference for Cultivation Comments (columns AH-AK) Z. Other Asexual Propagation No further information AM. Root Structure AA. Comments No further comments AN. Reference AB. Reference No information AO. Genetic Information AC. Allelopathy or Complimentary No information AP. Reference AD. Production Treatment 1 Responds with increased vigor to burning: will bloom second time **AQ.** Further Comments after a July burn. AR. Research Conducted at University of Minnesota AE. Reference 902 AF. Production Treatment 2 Tolerates mowing through the end of May and will still bloom in

July.

AG. Reference 258 Well- drained, pH 5-7, usually prefers sandy, loamy or rocky-limestone-derived soil: prairie or open woods. AH. Preferred Soil AI. Preferred Sun Exposed sunny areas AJ. Preferred Moisture Dry Responds well in cultivation. 911, 494, 1035 AK. Cultivation Comments AL. Reference (AH-AK) AM. Root Structure Fast-growing, long, taproot, branched crown. 804, 132 AN. Reference No information AO. Genetic Information AP. Reference No information Plants grown in greenhouse bloom more profusely than those AQ. Further Comments grown in field. Ref. 10 AR. Research Conducted at U.of M. No research for this project

TABLE 7: SLIDES _AKEN FOR SEED AND SEEDLING IDENTIFICATION MATERIALS

	SPECIES	SEEDLING	SEED	SPECIES	SEEDLING
	Agastache foeniculum	x	X	Physalis spp.	
	Allium stellatum		х	Potentilla arguta	
	Anemone canadensis		X	Psoralea esculenta	Х
	Anemone cylindrica	х	х	Pycnanthemum flexuosum	
	Apocynum cf. androsaemifolium	Х	x	Ratibida columnifera	
	Asclepias incarnata	x	X	Ratibida pinnata	Х
	Asclepias tuberosa		Х	Rudbeckia hirta	Х
	Asclepias verticillata	Х	х	Ruellia humilis	
	Aster oolentangiensis	Х	Х	Silphium laciniatum	
	Aster sericeus	Х	Х	Sorghastrum nutans	Х
	Astragalus canadensis		Х	Spartina pectinata	Х
	Astragalus crassicarpus	х	Х	Sporobolus asper	
	Baptisia leucantha	Х	х	Sporobolus heterolepis	
	Bouteloua gracilis	Х		Thalictrum spp.	Х
	Campanula rotundifolia	х	Х	Tradescantia occidentalis	
	Ceanothus americanus		Х	Tradescantia ohiensis	Х
	cf. Heterotheca villosa		X	Verbena hastata	Х
	Coreopsis palmata	Х	X	Verbena stricta	Х
	Petalostemum candidum	Х		Vernonia spp.	Х
	Petalostemum purpureum	х	Х	Veronicastrum virginicum	
	Delphinium virescens	Х	X	Zizia aurea	X
	Desmodium canadense		X		
	Echinacea spp.	Х			
	Elymus canadensis		X		
	Eryngium yuccifolium	Х	X		
	Eupatorium spp.	Х	X		
	Euphorbia corollata	х	X		
	Galium boreale	Х	X		
	Gentiana andrewsii		X		
	Geum triflorum		X		
	Heuchera richardsonii	Х	X		
	Hypericum cf. pyramidatum		X		
	Liatris aspera	Х			
	Liatris punctata		X		
	Liatris pycnostachya	Х	X		
	Lilium michiganense		X		
	Lilium philadelphicum	Х	X		
	Monarda fistulosa		Х		
	Oenothera biennis		Х		
I	Onosmodium molle	Х	Х		
	Panicum virgatum	Х	Х		
	Phlox pilosa	Х	Х		

SEED X X X X X X X X X X X X

> X X X X X X X X X X X X X X X

•

TABLE 8: ADDITIC...AL SPECIES FOR WHICH GERMINATION TRIALS HAVE BEEN CONDUCTED

	TREA	ATMENT	'S APPLIED:			
<u>SPECIES</u>	ACCESSIONS S	CARIFY	STRATIFY A	FTER-RIPEN	LEACH	<u>GA</u>
Amorpha canescens	C18, C60, AW1, AW2	2 X				х
Aster oolentangiensis	AW3, AW4		X			Х
Aster sericeus	92F9, 92A12, CP		Х			Х
Astragalus canadensis	WF	Х				
Coreopsis palmata	92B1, 92O1,					
	AW9, AW10		Х			
Desmodium canadense	WF	Х				
Galium boreale	C6, AW11		х			
Gentiana andrewsii	C62, AW13		Х			
Koeleria macrantha	AW39, AW40		Х	Х		
Liatris pycnostachya	B5		Х			х
Lilium philadelphicum	C71, 92G1, AW14		Х			
Lithospermum carolinense	AW15	Х	Х			
Onosmodium molle	92O5, AW16, AW17	Х	Х			
Petalostemum candidum	C48, AW18	Х				
Petalostemum purpureum	C47, C68, 92A9, 92G	6,				
	WF, AW19, AW20, P	ΡX				
Phlox pilosa	WF91, WF92, 92SE,					
	92Z1		Х			Х
Pycnanthemum						
virginianum	AW24		Х			Х
Spartina pectinata	C37, AW42, CP		Х	Х		Х
Sporobolus heterolepis	C34, AW43,					
	AW44, AW47	Х	Х		Х	
Tradescantia occidentalis	AW25		Х			Х
Tradescantia ohiensis	92A11		Х			
Verbena hastata	AW26, AW27		Х			
Verbena stricta	AW28, AW29		Х			
Veronicastrum virginicum	AW31, AW32		Х			
Zizia aurea	AW34, AW35		Х		Х	

TABLE 9: PRELIN ARY ISOZYME ANALYSIS

Population	AAT	ACP	ADH	EST	<u>G6PDH</u>	GDH	IDH	MDH	PGD	PGI	PGM	PRX_
AG - 4	0	i	i	i	i	0	0	0	i	i	+	i
AG - 5	i -	i	i	i	i	0	0	0	i	i	+	i
AG - 7	i	i	i	i	i	0	0	0	i	i	+	i
AG - 9	i	i	i	i	i	0	0	0	i	i	+	i
AG - 12	i	i	i	i	i	0	0	0	i	i	+	i
AG - 14	i	i	i	i	i	0	0	0	i	i	+	i
AG - 20	i	i	i	i	i	0	0	0	i	i	+	i
55 - 4	0	i	i	i	i	i	i	0	÷	i	i	i
SS - 7	Ő	i	i	i	i	i	i	0	i	i	i	i
SS - 17	Ő	i	i	i	i	i	i	+	i	i	i	i
SS - 23	Õ	i	i	i	i	i	i	, O	i	i	i	i
SS - 27	° Õ	i	i	i	i	i	i	+	i	i	i	i
SS - 34 1	Ŭ.	i	i	i	i	i	i	+	i	i	i	i
SS - 36	0	i	i	i	i	i	i	+	i	i	i	i
LPU-6	+	+	+	i	i	i	i	0	0	0	+	i
LPU - 19	+	+	i	i	i	i	i	ů 0	Ő	Ő	+	i
L - 7.1	i	i	+	i	i	i	i	0	0	0	+	i
LPY - 3	i	i	+	i	i	i	i	0	0	0	+	i
LPY - 4	i	i	+	i	i	i	i	0	0	0	+	i
LPY - 15	i	i	+	i	i	i	i	0	0	0	+	i
LPY - 17	i	i	+	i	i	i	i	0	0	0	+	i
LPY - 20	i	i	+	i	i	i	i	0	0	0	+	i

+ - polymorphic; 0 - monomorphic; i - inconclusive.

TABLE 10: MORPH JLOGICAL DIFFERENCES OBSERVED

Population	Heigl	Height (cm)		f Stems	No. of In	No. of Inflorescences	
•	Mean	St. Dev.	Mean	St. Dev.	Mean	St. Dev.	
AG - 4	63.72	12.93	6.56	4.55	11.78	7.37	
AG - 5	65.83	18.00	12.33	6.62	16.00	9.44	
AG - 6	72.63	12.91	6.13	3.40	12.13	6.31	
AG - 7	73.60	11.93	7.40	3.44	15.20	7.95	
AG - 8	55,90	11.03	5.45	2.30	10.18	5.84	
AG - 9	65.00	4.24	8.00	2.83	15.00	9.90	
AG - 11	67.23	9.60	8.69	4.71	15.15	8.20	
AG - 17	66.86	5.24	6.86	1.57	12.86	3.98	
AG - 20	75.38	11.78	7.00	3.39	10.38	5.21	
AG - 22	68.75	4.57	8.25	8.54	15.50	18.45	
AG - 24	79.75	16.58	5.38	3.96	10.38	5.76	
AG - 26	88,15	14.80	8.75	3.86	17.30	7.83	
AG - 29	82.13	14.15	6.88	4.32	11.25	5.75	
AG - 31	87.13	20.26	9.78	4.54	14.43	5.73	
AG - 33	71.71	20.54	9.00	4.65	13.06	6.99	
AG - 34B	63.29	15.18	10.57	6.39	14.07	7.36	
SS - 4	29.95	7.08	5.18	5.84	14.59	17.33	
SS - 6	25.67	6.23	10.28	8.23	24.00	16.97	
SS - 8	18.00	2,83	8.00	8.49	18.00	15.56	
SS - 23	41.00	8,88	7.50	4.45	30.79	20.37	

Grasses

Forbs

Population	Number	Number of Leaves		Leaf Length (cm)		Leaf Width (cm)		Dry Weight (g)	
-	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	
L - 5.2	3.00	2.19	4.07	1.36	0.42	0.10	0.11	0.08	
L - 6.1	5.50	4.20	4.78	1.51	0.48	0.10	0.17	0.07	
L - 8	3.33	2.06	4.33	2.29	0.51	0.20	0.09	0.03	
L - 13.1	4.11	2.42	5.10	1.81	0.69	0.20	0.21	0.13	
L - 17	3.00	2.71	6.03	1.37	0.73	0.10	0.28	0.30	
L - 33.1	6.20	2.59	7.92	2.37	0.88	0.19	0.62	0.39	
LA - 37	5.25	2.63	8.63	1.10	1.20	0.33	0.38	0.40	
LPY - 3	10.75	6.70	10.68	2.89	0.75	0.20	1.07	0.88	
LPY - 4	8.88	7.97	10.13	1.50	0.63	0.26	0.71	0.80	
LPY - 5	6.33	2.52	3.73	1.44	0.40	0.17	0.22	0.10	

Forbs (continued)

Population	Number	of Leaves	Leaf Length (cm)		Leaf Width (cm)		Dry Weight (g)	
	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
LPY - 15	13.00	6.24	10.53	1.70	0.63	0.05	0.70	0.44
LPY - 17	9.67	5.86	10.43	1.26	0.57	0.05	0.79	0.41
LPY - 20	10.22	6.57	14.37	2.19	0.83	0.36	1.15	0.77
LPY - 35	9.50	6.36	10.60	3.82	0.50	0.00	0.79	0.65
LPU - 6	4.40	1.95	4.08	0.99	0.24	0.05	0.10	0.07
LPU - 19	5.00	2.16	3.95	0.91	0.23	0.05	0.14	0.04

TABLE 11: NATIVE GRASS AND WILDFLOWER SEED PRODUCER QUESTIONNAIRE

I. Producer Information

Name	
Business/Farm Name	
Address	
City/Stata/Zin	
Phone Number	
Fax Number	

1. I am presently producing native wildflower crops.

□Yes □No

2. I am presently producing native grass crops.

□Yes □No

3. In which counties and state(s) are your native wildflower/grass seed production located?

 (county) and	(state).
 (county) and	(state).
(county) and	(state).
(county) and	(state).
(county) and	(state).

 \Box I do not currently have native wildflower/grass seed production.

4. During 1991, how much time did you devote to native wildflower/grass seed production?

Full-time
Part-time
Hobby farm
None

• If you currently have native wildflower/grass seed crops in production please skip to question number 6 below.

5. If you do not currently have a native wildflower/grass seed crop, how many years until your crop will be in production?

_____ years

• Since you do not currently have a crop, please skip to Section IV on page 6.

II. Production Information

6. How many years has your native wildflower crop been in production?

_____ years

7. How many years has your native grass crop been in production?

_____ years

8. In 1991, how many acres did you have in wildflower production?

acres in cultivation
acres in wild

9. In 1991, how many acres did you have in native grass production?

_____ acres in cultivation _____ acres in wild

10. In 1991, what was your total wildflower production in pounds?

_____ pounds from cultivation _____ pounds from wild

11. In 1991, what was your total native grass production in pounds?

_____ pounds from cultivation ______ pounds from wild

- 12. From which of the following sources do you receive your native wildflower/grass seed? (Please check all that apply.)
 - □ I collect the seed from wild or other natural sites.
 - \Box I collect the seed from my own crop.
 - □ I purchase the seed from other native wildflower/grass seed producers.
 - □ Other (please identify)
- 13. Please identify your 1991 production by species and variety, including both the actual yield, amount available for sale, and the county of seed origin. Attach additional sheets if necessary. (If you publish a catalog, please send us a copy.)

	Native Grass or Wildflower Seed Species and Variety	Actual Yield (Pounds)	Salable Quantity (Pounds)	County of Origin
1)		<u> </u>	1	
2)				
3)				
4)				
5)				
6)				
7)				
8)				
9)				
10)				
11)				
12)				
13)			L	
14)				
15)		L		

_	Native Grass orWildflower Seed Species and Variety	Pounds Sold	Years in Production	Years for Sale
1)				
2)				
3)		1		
4)				
5)				
6				
τ				
8)				
9				**************************************
10)				

III. Marketing/Processing Information

15. How is your native wildflower/grass seed processed or conditioned prior to selling? (Please check all that apply.)

□ Cleaned	□ Graded
Packaged	□ Mixed
Certified or Tested	□ Other (please identify)
□ I do not process or condition	the seed prior to selling.

16. Is the seed processed or conditioned:

□ In-house (by you or an employee) □ By another processor or conditioner.

17. Please identify the types of products you sell: (Check all that apply)

Pure Seed by Pounds	Pure Seed by Ounces
Seed Mix by Pounds	□ Seed Mix by Ounces
□ Seedlings	□ Plants
□ Other (please identify)	

18. Do you sell all your native wildflower/grass seed crops in a typical year?

□ Yes

- \Box No. (Please estimate the percentage of your crop that is typically carried over. ___%)
- 19. What percentage of your product is sold to: (Total should add to 100%)

Page 4

14. In 1991 what were your ten best-selling (in pounds) native wildflower/grass seed species and varieties \how long have those species been in production and availing for sale?

Page 5

22. Please identify your short-term and long-term production plans for native wildflower/grass seed by species and variety. (Please add additional pages if necessary.)

	1992	Acreage	1995	Acreage	1997	Acreage
Native Grass or Wildflower Seed Species and Variety	Seed	Seedling s	Seed	Seedling s	Seed	Seedling s
				<u> </u>		ļ
	+			1		1
	1					1
	_					ļ
	+					
				1		1

23. Please identify and discuss what you believe to be obstacles in the expansion of your native wildflower/grass seed production. Topics may include financial, technical, production management, seed source, availability of markets, and marketing issues among others. (Feel free to add pages or use additional space on the back of this questionnaire.)

Obstacle #1 - *Topic* (*please identify*)

Obstacle #2 - Topic (please identify)

Off-Farm Sales Location (farmers' markets, roadside stands, etc.) Mail Order Other (please identify) Wholesale Lanscaping Firms Retail Garden/Nursery Centers Other Businesses Other (please identify) Government **Federal Agencies** State Agencies Local Agencies

On-Farm Sales Location

In-House

Retail

Used In-House for Own Seed Source 100% TOTAL

- 20. What percentage of your product is sold in the following states? (Total should add to 100%)
 - Minnesota Iowa North Dakota South Dakota Wisconsin Other U.S. States Canada Other (please identify) 100% **TOTAL**
- 21. What percentage of your product is sold within the following areas of production? (Total should add to 100%)

0-50 Mile Radius 51-100 Mile Radius 101-200 Mile Radius Over 200 Mile Radius 100% **TOTAL**

Obstacle #3 - Topic (please identify)____

Obstacle #4 - Topic (please identify)_____

Obstacle #5 - Topic (please identify)_____

24. Please rank the importance of your answers in question number 23, with "1" being the biggest obstacle to expansion, "2" being the second biggest obstacle, and so on.

 Obstacle #1 (see question 23)
 Obstacle #4 (see question 23)

 Obstacle #2 (see question 23)
 Obstacle #5 (see question 23)

 Obstacle #3 (see question 23)
 Obstacle #5 (see question 23)

V. Other

25. Additional comments and remarks:

Name	 		
Address	 		
City/State/Zip	 	····	
Phone			

Name	
Business/Farm Name	
Address	
City/State/Zip	

Name		
Business/Farm Name		
Address		
City/State/Zip		

Name	
Business/Farm Name	
Address	
City/State/Zip	

27. The next step in the research process will be identifying and surveying native wildflower/grass seed consumers. Would you please help us by identifying the names and addresses of any consumers of whom you are aware in the space provided below?

26. Please identify the names and addresses of other native wildflower/grass seed producers in the space provided below.

Name	
Business/Farm Name	
Address	
City/State/Zip	

Name	
Business/Farm Name	
Address	
City/State/Zip	

Name	
Business/Farm Name	
Address	
City/State/Zip	

Name	
Business/Farm Name	
Address	
City/State/Zip	

~

TABLE 12: FIGURE . - MINNESOTA NATIVE GRASS AND WILDFLOWER SEED REGIONS

FIGURE 2 - MINNESOTA NATIVE GRASS AND WILDFLOWER SEEDS, COUNTY PRODUCTION SITES

FIGURE 4 - FULL-TIME, PART-TIME, AND HOBBY FARMS: THEIR SHARE IN NATIVE SEED PRODUCTION

FIGURE 3 - 1991 PRODUCTION, MAJOR SPECIES

FIGURE 6 - NATIVE SEED SALES: MINNESOTA AND OUT-OF-STATE MARKETS

.

Page 5

Page 6

Minnesota Sales

68%

FIGURE 7 - OBSTACLES TO PRODUCTION EXPANSION

FIGURE 8 - NATIVE GRASS AND WILDFLOWER SEED PRODUCTION AND UTILIZATION RATIO

FIGURE 9 - NATIVE SEED UTILIZATION

FIGURE 10 - GEOGRAPHIC DISTRIBUTION OF NATIVE GRASS AND WILDFLOWER USERS

- Commercial/Residential Landscaping
 Parks & Recreations
- Roadside & Highway
- Land Improvement/Set-Aside
- Seed Production & Other Uses

FIGURE 12 - OBSTACLES IN NATIVE SEED UTILIZATION

TABLE 13: NATIVE GRASSES AND WILDFLOWERS BY ID CODE

			6000043	CACALIA ATRIPLICIFOLIA	PALE INDIAN PLANTAIN
6000001	AGASTACHE NEPETOIDES	YELLOW GIANT HYSSOP	60000044	CACALIA MUHLENBERGII	GREAT INDIAN PLANTAIN
6000002	AGASTACHE SCROPHULARIAEFOLIA	PURPLE GIANT HYSSOP	6000045	CACALIA SUAVEOLENS	SWEET INDIAN PLANTAIN
6000003	AGOSERIS CUSPIDATA	PRAIRIE DANDELION	6000046	CALLIRHOE TRAINGULATA	CLUSTERED POPPY MALLOW
6000004	ALLIUM CANADENSE	WILD GARLIC	6000047	CALTHA PALUSTRIS	MARSH MARIGOLD
6000005	ALLIUM CERNUUM	NODDING ONION	60000048	CAMASSIA SCILLOIDES	WILD HYACINTH
60000006	ALLIUM STELLATUM	PRAIRIE ONION	60000049	CAMPANULA AMERICANA	TALL BELLFLOWER
60000007	ALLIUM TRICOCCUM	WILD LEEK	60000050	CAMPANULA ROTUNDIFOLIA	HAREBELL
60000008	AMORPHA CANESCENS	LEAD PLANT	60000051	CASSIA FASCICULATA	PARTRIDGE PEA
60000009	AMORPHA FRUTICOSA	FALSE INDIGO	60000052	CASSIA HEBECARPA	WILD SENNA
60000010	AMORPHA NANA	FRAGRANT FALSE INDIGO	60000053	CASSIA MARILANDICA	MARYLAND SENNA
60000011	ANEMONE CANADENSIS	CANADA ANEMONE	60000054	CEANOTHUS AMERICANUS	NEW JERSEY TEA
60000012	ANFMONE CYLINDRICA	THIMBLE WEED	60000055	CEANOTHUS OVATUS	RED ROOT
60000012	ANFMONE PATENS WOLFGANGIANA	PASOLIE FLOWER	60000056	CELASTRUS SCANDENS	BITTERSWEET
60000014	ANGELICA ATROPURPURFA	ANGELICA	60000057	CEPHALANTHUS OCCIDENTALIS	BUTTONBUSH
60000015	ANTENNARIA NEGLECTA	CAT'S PAW	60000058	CHELONE GLABRA	TURTLEHEAD
60000016	ANTENNARIA PLANTAGINIFOLIA	PUSSYTOES	60000059	CHRYSOPSIS CAMPORUM	GOLDEN ASTER
60000017	AOUILEGIA CANADENSIS	COLUMBINE	6000060	CICUTA MACULATA	WATER HEMLOCK
60000018	ARALIA RACEMOSA	SPIKENARD	6000061	CLEMATIS VIRGINIANA	VIRGIN'S BOWER
60000019	ARFNARIA STRICTA	STIFF SANDWORT	6000062	COREOPSIS LANCEOLATA	SAND CORFOPSIS
60000020	ARTEMISIA LUDOVICIANA	PRAIRIE SAGE	6000063	CORFOPSIS PALMATA	PRAIRIE COREOPSIS
60000020	ASARUM CANADENSE	WILD GINGER	6000064	CORFOPSIS TRIPTERIS	TALL COREOPSIS
60000022	ASCLEPIAS INCARNATA	SWAMP MILKWEED	6000065	CROTALARIA SAGITTALIS	RATTLEBOX
60000022	ASCLEPIAS TUBEROSA	BUTTERFLY WEED	6000066	CRYPTOTAENIA CANADENSIS	HONEWORT
60000025	ASCLEPIAS VERTICILLATA	WHORLED MILKWEED	6000067	DELPHINIUM VIRESCENS	PRAIRIELARKSPUR
60000025	ASTER AZUREUS	SKY BLUE ASTER	6000068	DESMANTHUS ILLINOENSIS	ILLINOIS BUNDLE FLOWER
60000026	ASTER ERICOIDES	HEATH ASTER	6000069	DESMODIUM CANADENSE	SHOWY TICK TREFOIL
60000027	ASTER LAEVIS	SMOOTH BLUE ASTER	60000070	DESMODIUM GLUTINASUM	POINTED-LEAF TICK TREFOIL
60000028	ASTER LINARIIFOLIUS	STIFF ASTER	60000071	DESMODIUM ILLINOENSE	ILLINOIS TICK TREFOIL
60000029	ASTER NOVAE-ANGLIAE	NEW ENGLAND ASTER	60000072	DESMODIUM SESSILIFOLIUM	SESSILE TICK TREFOIL
60000030	ASTER OBLONGIFOLIUS	AROMATIC ASTER	60000073	DODECATHEON AMETHYSTINUM	AMETHYST SHOOTING STAR
6000031	ASTER PTARMICOIDES	UPLAND WHITE ASTER	60000074	DODECATHEON MEADIA	MIDLAND SHOOTING STAR
60000032	ASTER PUNICEUS	SWAMP ASTER	60000075	ECHINACEA ANGUSTIFOLIA	NARROW-PURPLE
6000033	ASTER SERICEUS	SILKY ASTER			CONEFLOWER
6000034	ASTER SIMPLEX	PANICLED ASTER	60000076	ECHINACEA PALLIDA	PALE PURPLE CONEFLOWER
6000035	ASTER UMBELLATUS	FLAT-TOPPED ASTER	6000077	ECHINACEA PURPUREA	PURPLE CONEFLOWER
6000036	ASTRAGALUS CANADENSIS	CANDIAN MILK VETCH	6000078	EPILOBIUM ANGUSTIFOLIUM	FIREWEED
6000037	BAPTISIA AUSTRALIS	BLUE WILD INDIGO	6000079	ERYNGIUM YUCCIFOLIUM	RATTLESNAKE MASTER
6000038	BAPTISIA LEUCANTHA	WHITE WILD INDIGO	6000080	EUPATORIUM ALTISSIMUM	TALL BONESET
6000039	BAPTISIA LEUCOPHAEA	CREAM WILD INDIGO	6000081	EUPATORIUM MACULATUM	JOE PYE WEED
60000040	BIDENS CERNUA	NODDING BUR MARIGOLD	60000082	EUPATORIUM PERFOLIATUM	BONESET
60000041	BLEPHILIA CILIATA	DOWNY WOOD MINT	60000083	EUPATORIUM PURPUREUM	SWEET JOE PYE WEED
60000042	BLEPHILIA HIRSUTA	HAIRY WOOD MINT	60000084	EUPATORIUM RUGOSUM	WHITE SNAKEROOT

6000085	EUPHORBIA COROLLATA	FLOWERING SPURGE	60000128	LILIUM MICHIGANESE	TURK'S CAP LILY
60000086	FILIPENDULA RUBRA	QUEEN OF THE PRAIRIE	60000129	LILIUM PHILDELPHICUM	WOOD LILY
60000087	FRAGARIA VIRGINIANA	WILD STRAWBERRY	60000130	LINUM SULCATUM	GROOVED YELLOW FLAX
60000088	FROELICHIA FLORIDANA	COTTONWEED	60000131	LOBELIA CARDINALIS	CARDINAL FLOWER
6000089	GALIUM BOREALE	NORTHERN BEDSTRAW	60000132	LOBELIA INFLATA	INDIAN TOBACCO
60000090	GAURA BIENNIS	GAURA	60000133	LOBELIA SIPHILITICA	GREAT BLUE LOBELIA
60000091	GENTIANA ANDREWSII	BOTTLE GENTIAN	60000134	LOBELIA SIPHILITICA ALBA	WHITE GREAT BLUE LOBELIA
60000092	GENTIANA CRINITA	FRINGED GENTIAN	60000135	LOBELIA SPICATA	PALE SPIKED LOBELIA
60000093	GENTIANA FLAVIDA	CREAM GENTIAN	60000136	LUPINUS PERENNIS	WILD LUPINE
60000094	GENTIANA PUBERULA	PRAIRIE GENTIAN	60000137	LYSIMACHIA QUADRIFLORA	PRAIRIE LOOSESTRIFE
60000095	GENTIANA QUINQUEFOLIA	STIFF GENTIAN	60000138	LYTHRUM ALATUM	WINGED LOOSESTRIFE
60000096	GERANIUM MACULATUM	WILD GERANIUM	60000139	MIMULUS RINGENS	MONKEY FLOWER
60000097	GERARDIA TENUIFOLIA	SLENDER GERARDIA	60000140	MONARDA FISTULOSA	WILD BERGAMOT
60000098	GEUM ALEPPICUM	YELLOW AVENS	60000141	MONARDA PUNCTATA	SPOTTED BEE BALM
60000099	GEUM TRIFLORUM	PRAIRIE SMOKE	60000142	NAPAEA DIOICA	GLADE MALLOW
60000100	GLYCYRRHIZA LEPIDOTA	WILD LICORICE	60000143	NICOTIANA RUSTICA	MIDEWIWAN SACRED
60000101	GNAPHALIUM OBTUSIFOLIUM	SWEET EVERLASTING			TOBACCO
60000102	HELENIUM AUTUMNALE	SNEEZEWEED	60000144	OENOTHERA BIENNIS	EVENING PRIMROSE
60000103	HELIANTHUS GROSSESERRATUS	SAW-TOOTH SUNFLOWER	60000145	OENOTHERA RHOMBIPETALA	SMALL-FLOWERED PRIMROSE
60000104	HELIANTHUS LAETIFLORUS	SHOW SUNFLOWER	60000146	OPUNTIA HUMIFUSA	PRICKLY PEAR CACTUS
60000105	HELIANTHUS MAXIMILLIANI	MAXIMILLIAN SUNFLOWER	60000147	OSMORHIZA CLAYTONI	SWEET CICELY
60000106	HELIANTHUS MOLLIS	DOWNY SUNFLOWER	60000148	OXYPOLIS RIGIDIOR	COWBANE
60000107	HELIANTHUS OCCIDENTALIS	WESTERN SUNFLOWER	60000149	PARTHENIUM INTEGRIFOLIUM	WILD QUININE
60000108	HELIOPSIS HELIANTHOIDES	EARLY SUNFLOWER	60000150	PEDICULARIS CANADENSIS	WOOD BETONY
60000109	HERACLEUM MAXIMUM	COW PARSNIP	60000151	PEDICULARIS LANCEOLATA	MARSH BETONY
60000110	HEUCHERA RICHARDSONII	PRAIRIE ALUMROOT	60000152	PENSTEMON DIGITALIS	FOXGLOVE BEARDTONGUE
60000111	HIERACIUM CANADENSE	CANADA HAWKWEED	60000153	PENSTEMON GRACILIS	SLENDER BEARDTONGUE
60000112	HIERACIUM LONGIPILUM	HAIRY HAWKWEED	60000154	PENSTEMON GRANDIFLORUS	LARGE-FLOWER
60000113	HYDROPHYLLUM VIRGINIANUM	VIRGINIA WATERLEAF			BEARDTONGUE
60000114	HYPERICUM PYRAMIDATUM	GREAT ST. JOHN'S WORT	60000155	PENSTEMON PALLIDUS	PALE BEARDTONGUE
60000115	HYPOXIS HIRSUTA	YELLOW STAR GRASS	60000156	PETALOSTEMUM CANDIDUM	WHITE PRAIRIE CLOVER
60000116	IRIS PRISMATICA	SLENDER BLUE FLAG IRIS	60000157	PETALOSTEMUM FOLIOSUM	LEAFY PRAIRIE CLOVER
60000117	IRIS VIRGINICA SHREVEI	BLUE FLAG IRIS	60000158	PETALOSTEMUM PURPUREUM	PURPLE PRAIRIE CLOVER
60000118	IRIS VERSICOLOR	WILD IRIS	60000159	PETALOSTEMUM VILLOSUM	SILKY PRAIRIE CLOVER
60000119	JEFFERSONIA DIPHYLLA	TWINLEAF	60000160	PHLOX DIVARICATA	WILD BLUE PHLOX
60000120	KUHNIA EUPATORIOIDES	FALSE BONESET	60000161	PHLOX GLABERRIMA INTERIOR	MARSH PHLOX
60000121	LESPEDEZA CAPITATA	ROUND-HEADED BUSH CLOVER	60000162	PHLOX PILOSA	PRAIRIE PHLOX
60000122	LIATRIS ASPERA	BUTTON BLAZING STAR	60000163	PHYSOCARPUS OPULIFOLUS	PRAIRIE NINEBARK
60000123	LIATRIS CYLINDRACEA	DWARF BLAZING STAR	60000164	PHYSOTEGIA VIRGINIANA	OBEDIENT PLANT
60000124	LIATRIS LIGULISTYLIS	MEADOW BLAZING STAR	60000165	PLANTAGO PURSHII	WOOLLY PLANTAIN
60000125	LIATRIS PUNCTATA	DOTTED BLAZING STAR	60000166	POLEMONIUM REPTANS	JACOB'S LADDER
60000126	LIATRIS PYCNOSTACHYA	PRAIRIE BLAZING STAR	60000167	POLYGALA POLYGAMA	SAND MILKWORT
60000127	LI/ ¬`` IS SPICATA	MARCH BLA TING STAR	60000168	POLV~ ONATUM CANALICULATUM	SOLOMON'S \L

Page 4

60000169	POLYTAENIA NUTTALLII
60000170	POTENTILLA ARGUTA
60000171	PRENANTHES ALBA
60000172	PRENANTHES RACEMOSA
60000173	PSORALEA TENUIFLORA
60000174	PYCNANTHEMUM TENUIFOLIUM
60000175	PYCNANTHEMUM VIRGINIANUM
60000176	RANUNCULUS RHOMBOIDEUS
60000177	RANUNCULUS PENSYLVANICUS
60000178	RATIBIDA COLUMNIFERA
60000179	RATIBIDA PINNATA
60000180	ROSA ARKANSANA
60000181	ROSA SETIGERA
60000182	RUDBECKIA HIRTA
60000183	RUDBECKIA LACINIATA
60000184	RUDBECKIA SUBTOMENTOSA
60000185	RUDBECKIA TRILOBA
60000186	RUELLIA HUMILIS
60000187	SANGUISORBA CANADENSIS
60000188	SAXIFRAGA PENSYLVANICA
60000189	SILENE REGIA
60000190	SILPHIUM INTEGRIFOLIUM
60000191	SILPHIUM LACINIATUM
60000192	SILPHIUM PERFOLIATUM
60000193	SILPHIUM TEREBINTHINACEUM
60000194	SISYRINCHIUM CAMPESTRE
60000195	SISYRINCHIUM CAMPESTRE ALBA
60000196	SMILACINA RACEMOSA
60000197	SMILACINA STELLATA
60000198	SOLIDAGO GRAMINIFOLIA
60000199	SOLIDAGO NEMORALIS
60000200	SOLIDAGO RIDDELLII
60000201	SOLIDAGO RIGIDA
60000202	SOLIDAGO SPECIOSA
60000203	SOLIDAGO ULMIFOLIA
60000204	TAENIDIA INTEGERRINA
60000205	TEPHROSIA VIRGINIANA
60000206	TEUCRIUM CANADENSE
60000207	THALICTRUM DASYCARPUM
60000208	THALICTRUM DIOICUM
60000209	THASPIUM TRIFOLIATUM
60000210	TRADESCANTIA BRACTEATA
60000211	TRADESCANTIA OCCIDENTALIS

PRAIRIE PARSLEY PRAIRIE CINQUEFOIL LION'S FOOT **RATTLESNAKE ROOT** SCURFY PEA SLENDER MOUNTAIN MINT **MOUNTAIN MINT** PRAIRIE BUTTERCUP BRISTLY CROWFOOT LONG-HEADED CONEFLOWER YELLOW CONEFLOWER PASTURE ROSE **ILLINOIS ROSE BLACK-EYED SUSAN GREEN-HEADED CONEFLOWER** SWEET BLACK-EYED SUSAN **BROWN-EYED SUSAN** WILD PETUNIA AMERICAN BURNET SWAMP SAXIFRAGE **ROYAL CATCHFLY ROSIN WEED** COMPASS PLANT **CUP PLANT** PRAIRIE DOCK **BLUE-EYED GRASS** WHITE BLUE-EYED GRASS SOLOMON'S PLUME STARRY SOLOMON'S PLUME **GRASS-LEAVED GOLDENROD** OLD FIELD GOLDENROD **RIDDELL'S GOLDENROD** STIFF GOLDENROD SHOWY GOLDENROD **ELM-LEAVED GOLDENROD** YELLOW PIMPERNEL **GOAT'S RUE** GERMANDER PURPLE MEADOW RUE EARLY MEADOW RUE MEADOW PARSNIP PRAIRIE SPIDERWORT WESTERN SPIDERWORT

60000212	TRADESCANTIA OHIENSIS
60000213	VALERIANA EDULIS
60000214	VERBENA HASTATA
60000215	VERBENA STRICTA
60000216	VERNONIA FASCICULATA
60000217	VERNONIA MISSURICA
60000218	VERONICASTRUM VIRGINICUM
60000219	VIOLA CONSPERSA
60000220	VIOLA ERIOCARPA
60000221	VIOLA PALMATA
60000222	VIOLA PAPILIONACEA
60000223	VIOLA PEDATA
60000224	VIOLA PEDATIFIDA
60000225	VIOLA SAGITTATA
60000226	WULFENIA BULLII
60000227	ZIZIA APTERA
60000228	ZIZIA AUREA
60000229	ACHILLEA MILLEFOLIUM
60000230	AGASTACHE FOENICULUM
60000231	ASTER SAGITTIFOLIUS
60000232	ASTAGALUS CRASSICARPUS
60000233	CIRSIUM MUTICUM
60000234	EPILOBIUM COLORATUM
60000235	GERARDIA PAUPERCULA
60000236	HELIANTHEMUM BICKNELLII
60000237	HELIANTHUS DIVARICATUS
60000238	HELIANTHUS GIGANTEUS
60000239	HELIANTHUS TUBEROSUS
60000240	HETEROTHECA VILLOSA
60000241	HOUSTONIA LONGIFOLIA
60000242	HYPERICUM MAJUS
60000243	LILIUM SUPERBUM
60000244	LYSIMACHIA CILIATA
60000245	OENOTHERA SURRULATA
60000246	POTENTILLA FRUTICOSA
60000247	SAGITTARIA LATIFOLIA
60000248	SENECIO AUREUS
60000249	SENECIO PLATTENSIS
60000250	SENECIO PAUPERCAULIS
60000251	SOLIDAGO MISSOURIENSIS
60000252	STACHYS PALUSTRIS
60000253	

VALERIAN BLUE VERVAIN HOARY VERVAIN IRONWEED MISSOURI IRONWEED CULVER'S ROOT DOG VIOLET YELLOW VIOLET EARLY BLUE VIOLET COMMON BLUE VIOLET **BIRD'S FOOT VIOLET** PRAIRIE VIOLET **ARROWLEAF VIOLET KITTENTAILS** HEART-LEAF GOLDEN ALEX **GOLDEN ALEXANDER** YARROW FRAGRANT GIANT HYSSOP ARROW LEAVED ASTER PRAIRIE PLUM SWAMP THISTLE WILLOW-HERB SMALL-FLOWERED GERARDIA **FROSTWEED** WOODLAND SUNFLOWER GIANT SUNFLOWER JERUSALEM ARTICHOKE **GOLDEN ASTER** LONG-LEAVED BLUETS SMALL ST. JOHN'S WORT TURK'S CAP LILY FRINGED LOOSESTRIFE TOOTH-LEAVED PRIMROSE SHRUBBY CINQUEFOIL ARROW-HEAD **GOLDEN RAGWORT** PRAIRIE RAGWORT **BALSAM RAGWORT** MISSOURI GOLDENROD WOUNDWORT OXEYE

OHIO SPIDERWORT

60000254		MARSH MILKWEED	60000292		CUTTING GARDEN
60000255		BLAZING STAR	60000293		FLORAL GROUNDCOVER
60000256		CREAM FALSE INDIGO	60000294		NATIVE HARVEST
60000257		TALL BLAZING STAR	60000295		MIXED NATIVE FORBS
60000258	CASTILLEJA SESSIFLORA		60000296		SHOWY PENSTEMON
60000259	POLYGALA SENEGA		60000297		STIFF SUNFLOWER
60000260	ACORUS CALAMUS	SWEET FLAG	60000298		COLUMNAR CONEFLOWER
60000261		ROUGH BLZING STAR	60000299		PRAIRIE BUSH CLOVER
60000262		GIANT HYSSOP	60000300		NARROW-LEAVED MILKWEED
60000263		STIFF TIC-SEED	60000301		DOTTED MINT
60000264		NEWPORT BLUEGRASS	60000302	DICENTRA CUCULLARIA	DUTCHMAN'S BREECHES
60000265		PARK BLUEGRASS	60000303	SPIREA ALBA ROSEA	MEADOWSWEET
60000266		PERENNIAL RYE	60000304	CORNUS STOLONIFERA	RED OSIER DOGWOOD
60000267		CREEP RED FESCUE	7000001	AGROPYRON SMITHII	WESTERN WHEAT GRASS
60000268		OLD MIDWEST WILDFLOWER	7000002	AGROPYRON TRACHYCAULUM	SLENDER WHEAT GRASS
		MIX	7000003	ANDROPOGON GERARDI	BIG BLUESTEM
60000269		SHORT DRY WILDFLOWER MIX	7000004	ANDROPOGON HALLII	SAND BLUESTEM
		#1	7000005	ANDROPOGON SCOPARIUS	LITTLE BLUESTEM
60000270		NK NORTH AMERICAN	7000006	BOUTELOUA CURTIPENDULA	SIDE-OATS GRAMA
		WILDFLOWERS	7000007	BOUTELOUA GRACILIS	BLUE GRAMA
60000271		MESIC MIX	7000008	BOUTELOUA HIRSUTA	HAIRY GRAMA
60000272		MESIC WILDFLOWER MIX	7000009	BROMUS KALMII	PRAIRIE BROME
60000273		ROSA SPECIES	70000010	BROMUS PURGANS	HAIRY WOOD CHESS
60000274	OSMUNDO CINNAMOMEA		70000011	BUCHLOE DACTYLOIDES	BUFFALO GRASS
60000275	ADIANTUM PEDATUM		70000012	CALAMAGROSTIS CANADENSIS	BLUE JOINT GRASS
60000276	ATHYRIAM FELIXIFEMINA		70000013	CAREX ALOPECOIDEA	FOXTAIL SEDGE
60000277	MERTENSIA VIRGINICA	VIRGINIA BLUEBELLS	7000014	CAREX ANNECTENS XANTHOCARPA	YELLOW-FRUITED SEDGE
60000278		BLANKET FLOWER	70000015	CAREX HYSTICINA	BOTTLEBRUSH SEDGE
60000279		UPRIGHT PRAIRIE	7000016	CAREX PENSYLVANICA	PENNSYLVANIA SEDGE
		CONEFLOWER	70000017	CAREX SCOPARIA	POINTED BROOM SEDGE
60000280		GREYHEAD PRAIRIE	7000018	CAREX SPRENGELII	LONG-BEAKED SEDGE
		CONEFLOWER	70000019	CAREX STIPATA	AWL-FRUITED SEDGE
60000281		DANE'S ROCKET	7000020	CAREX VULPINOIDEA	FOX SEDGE
60000282		ROUGH OXEYE	70000021	ELYMUS CANADENSIS	CANADA WILD RYE
60000283		THICKSPIKE GAYFEATHER	70000022	ELYMUS VIRGINICUS	VIRGINIA WILD RYE
60000284		SPIKED GAYFEATHER	7000023	HIERCHLOE ODORATA	SWEET GRASS
60000285		WHITE YARROW	7000024	HYSTRIX PATULA	BOTTLEBRUSH GRASS
60000286		PITCHER SAGE	7000025	JUNCUS TENUIS	PATH RUSH
60000287		LANCE LEAF COREOPSIS	7000026	KOELERIA CRISTATA	JUNE GRASS
60000288		MEXICAN RED HAT	7000027	PANICUM VIRGATUM	SWITCH GRASS
60000289		COMMON VETCH	7000028	PASPALUM CILIATIFOLIUM	HAIRY LENS GRASS
60000290		COUNTRY WILDFLOWERS	7000029	SCIRPUS ATROVIRENS	DARK-GREEN BULRUSH
60000291		BUTTERFLY	7000030	SCIR PUS VALIDUS	GREAT BULF Y

Page 8

70000031	SORGHASTRUM NUTANS	INDIAN GRASS
70000032	SPARTINA PECTINATA	CORD GRASS
70000033	SPOROBOLUS ASPER	ROUGH DROPSEED
7000034	SPOROBOLUS HETEROLEPIS	NORTHERN DROPSEED
70000035	STIPA SPARTEA	PORCUPINE GRASS
7000036	STIPA VIRIDULA	GREEN NEEDLE GRASS
70000037	BROMUS CILIATUS	FRINGED BROME
7000038	CALAMOVILFA LONGIFOLIA	SAND REED GRASS
70000039	JUNCUS GREENEI	GREENE'S RUSH
70000040	MUHLENBERGIA CUSPIDATA	STONYHILLS MUHLY
70000041	MUHLENBERGIA GLOMERATA	SWAMP SATIN GRASS
70000042	PHRAGMITES COMMUNIS	REED GRASS
70000044	TYPHA LATIFOLIA	CATTAIL
70000045		BIG BLUESTEM ROUNDTREE
70000046		BUG BLUESTEM BONILLA
70000047		NATIVE TALL GRASS PRAIRIE
		SEED
70000048		TALL GRASS MIX
70000049		BLUEGRASS MIX
70000050		MN/DOT 150
70000051		MN/DOT 300
70000052		SHORT DRY MIX (GRASSES)
70000053		MESIC GRASS MIX
70000054		MN/DOT 500
70000055		LOCAL MIXED PRAIRIE
70000056		SAND DROPSEED
70000057		PRAIRIE DROPSEED

Page 9

.

TABLE 14: NATIV GRASS AND WILDFLOWER SEED CONSUMER SUL, EY.

For the purpose of this survey, native grasses and wildflowers are defined as an unaltered or naturally occurring herbaceous plant species indigenous to Minnesota.

I. General Information

State:	Zip:	
	Fax Number:	
	State:	State: Zip: Fax Number:

1. During 1991, did you purchase and/or use native wildflower seeds?

□ Yes

🛛 No

2. During 1991, did you purchase and/or use native grass seeds?

□ Yes □ No

If you checked "NO" to both questions 1 and 2, please skip to question number 12 on page 5. II. Usage Information

3. For how many years have you been purchasing and/or using native wildflower seeds?

□ Years □ I have not purchased or used native wildflower seeds.

4. For how many years have you been purchasing and/or using native grass seeds?

 $\Box _ Years \Box I have not purchased or used native grass seed$

5. Please complete the following table. For each species of native grass or wildflower seed, provide the quantity purchased in pounds, the quantity used in pounds, and the geographic region in which the seed was used or planted (see enclosed map for regions).

	1989		1990		1991		
Species	Purchased	Used	Purchased	Used	Purchased	Used	Region
				1			

6. For which of the following uses have you been purchasing native grass and wildflower seeds?

- Highway Projects
 Residential Landscaping
 Commerical Landscaping
 Park and Recreation Areas
 Land Improvement
 Set-Aside Acres
 Native Wildflower/Grass Seed Production
 Other (please identify)
- 7. What is the distance between your place of business and your native wildflower or grass seed supplier? (Please check all that apply.)

Minnesota Suppliers

0-50 Mile Radius
51-100 Mile Radius
101-200 Mile Radius
Over 200 Mile Radius

Non-Minnesota Suppliers

North Dakota
South Dakota
□ Wisconsin
Other U.S. States (please identify)
Other Countries (please identify)

8. What percentage of the wildflowers or grass seed that you purchase is from suppliers within Minnesota and what percentage is from suppliers outside Minnesota?

Wil	dflower	· Seeds

Grass Seeds

<u>% Minnesota Suppliers</u> Non-Minnesota Suppliers <u>100</u>% TOTAL ____% Minnesota Suppliers
___% Non-Minnesota Suppliers
_100 % TOTAL

9. What type and in what form do you purchase native grass and wildflower seed products?

Wildflowers Grasses □ Pure Seed by Pounds □ Pure Seed by Pounds □ Pure Seed by Ounces □ Pure Seed by Ounces □ Seed Mix by Pounds □ Seed Mix by Pounds □ Seed Mix by Ounces □ Seed Mix by Ounces □ Seedlings □ Seedlings □ Plants □ Plants □ Other (identify) □ Other (identify)

10. Do you require your native wildflower or grass seed to be (please check all that apply):

Cleaned & Conditioned
 Tested
 Certified According to an Official Seed Certifying Agency Standards
 Treated with a Pesticide

11. Please supply the name, address and phone number of your major native wildflower or grass seed suppliers. (Attach additional sheets if necessary.)

Name:		
Contact:		
Address:	 	
City/State/Zip:		
Telephone:		

Name:	
Contact:	
Address:	
City/State/Zip:	
Telephone:	

III. Future Usage Projections

12. Please identify your short term and long term usage plans for wildflower and grass seed. For each species estimate the number of pounds you plan to use (or the number of seedlings) and the region of origin you require (see enclosed map for regions). If no plans, go to question 13 on page 6.

	1992 Pr	ojections	1995 Pr	ojections	1997 Projections		
Species	Seed	Seedlings	Seed	Seedlings	Seed	Seedlings	Region of Origin
						· ·	
		· · ·					
			: -				

13. Please identify which of the following categories classifies you the best:

Government

Wholesale

□ Landscaping Firm □ Seed Company □ Other (please identify)_

Retail

On-Farm Sales Location
 Off-Farm Sales Location (farmers' market, roadside stand, etc.)
 Retail Garden/Nursery Center
 Mail Order
 Other (please identify)

Other

 Image: Description of the stand of

14. Please identify and discuss what you believe to be obstacles in purchasing and using wildflower and grass seed. Topics may include financial, technical, seed source and geographic production of seed among others. (Feel free to add pages or use additional space on the back of this questionnaire.)

Obstacle #1 - Topic (please identify)____

Obstacle #2 - Topic (please identify)

17. Additional comments and remarks:

Obstacle #3 - Topic (please identify)_____

Obstacle #4 - Topic (please identify)_____

- 15. Please rank the importance of your answers in question number 14, with "1" being the biggest obstacle to purchasing/using wildflower and grass seed, "2" being the second biggest obstacle, and soon.
 - Obstacle #1 (see question 14)

 Obstacle #2 (see question 14)

 Obstacle #3 (see question 14)

 Obstacle #4 (see question 14)
- 16. Please use the following space to make a "Wish List" for wildflower and grass seeds. What are your special requirements for seeds? What services would you like to receive from suppliers? What can be improved?

Thank you for your assistance!

ł

TABLE 15: NATIV JRASS AND WILDFLOWER USER SPECIES

I. WILDFLOWER SPECIES

Agastache nepetoides Agoseris cuspidata Allium canadense Allium cernuum Allium stellatum Allium tricoccum Amorpha canescens Amorpha fruticosa Amorpha nana Anemone canadensis Anemone cylindrica Anemone patens wolfgangiana Angelica atropurpurea Antennaria neglecta Antennaria plantaginifolia Aquilegia canadensis Aralia racemosa Arenaria stricta Artemisia ludoviciana Asarum canadense Asclepias incarnata Asclepias tuberosa Asclepias verticillata Aster azureus Aster ericoides Aster laevis Aster linariifolius Aster novae-angliae Aster oblongifolius Aster ptarmicoides Aster puniceus Aster sericeus Aster simplex Aster umbellatus Astragalus canadensis Baptisia australis Baptisia leucantha Baptisia leucophaea Bidens cernua Blephilia ciliata Blephilia hirsuta

Cacalia atriplicifolia Cacalia muhlenbergii Cacalia suaveolens Callirhoe traingulata Caltha palustris Camassia scilloides Campanula americana Campanula rotundifola Cassia fasciculata Cassia hebecarpa Cassia marilandica Ceanothus americanus Ceanothus ovatus Celastrus scandens Cephalanthus occidentalis Chelone glabra Chrysopsis camporum Cicuta maculata Clematis virginiana Coreopsis lanceolata Coreopsis palmata Coreopsis tripteris Crotalaria sagittalis Cryptotaenia canadensis Delphinium virescens Desmanthus illinoensis Desmodium canadense Desmodium glutinasum Desmodium illinoense Desmodium sessilifolium Dodecatheon amethystinum Dodecatheon meadia Echinacea angustifolia Echinacea pallida Echinacea purpurea Epilobium angustifolium Eryngium yuccifolium Eupatorium altissimum Eupatorium maculatum Eupatorium perfoliatum Eupatorium purpureum Eupatorium rugosum

Euphorbia corollata Filipendula rubra Fragaria virginiana Froehlichia floridana Galium boreale Gaura biennis Gentiana andrewsii Gentiana crinita Gentiana flavida Gentiana puberula Gentiana quinquefolia Geranium maculatum Gerardia tenuifolia Geum aleppicum Geum triflorum Glycyrrhiza lepidota Gnaphalium obtusifolium Helenium autumnale Helianthus grosseserratus Helianthus laetiflorus Helianthus maximilliani Helianthus mollis Helianthus occidentalis Heliopsis helianthoides Heracleum maximum Heuchera richardsonii Hieracium canadense Hieracium longipilum Hydrophyllum virginianum Hypericum pyramidatum Hypoxis hirsuta Iris prismatica Iris shrevei Iris versicolor Jeffersonia diphylla Kuhnia eupatorioides Lespedeza capitata Liatris aspera Liatris cylindracea Liatris ligulistylis Liatris punctata Liatris pycnostachya Liatris spicata

Lilium michiganese Lilium phildelphicum Linum sulcatum Lobelia cardinalis Lobelia inflata Lobelia siphilitica Lobelia siphilitica alba Lobelia spicata Lupinus perennis Lysimachia quadriflora Lythrum alatum Mimulus ringens Monarda fistulosa Monarda punctata Napaea dioica Nicotiana rustica Oenothera biennis Oenothera rhombipetala **Opuntia humifusa** Osmorhiza claytoni Oxypolis rigidior Parthenium integrifolium Pedicularis canadensis Pedicularis lanceolata Penstemon digitalis Penstemon gracilis Penstemon grandiflorus Penstemon pallidus Petalostemum candidum Petalostemum foliosum Petalostemum purpureum Petalostemum villosum Phlox divaricata Phlox glaberrima interior Phlox pilosa Physocarpus opulifolus Physotegia virginiana Plantago purshii Polemonium reptans Polygala polygama Polygonatum canaliculatum Polytaenia nuttallii Potentilla arguta

Prenanthes alba Prenanthes racemosa Psoralea tenuislora Pycnanthemum tenuifolium Pycnanthemum virginianum Ranunculus rhomboideus Ranunculus pensylvanic Ratibida columnifera Ratibida pinnata Rosa arkansana Rosa setigera Rudbeckia hirta Rudbeckia laciniata Rudbeckia subtomentosa Rudbeckia triloba Ruellia humilis Sanguisorba canadensis Saxifraga pensylvanica Silene regia Silphium integrifolium Silphium laciniatum Silphium perfoliatum Silphium terebinthinaceum Sisyrinchium campestre Sisyrinchium campestre alba Smilacina racemosa Smilacina stellata Solidago graminifolia Solidago nemoralis Solidago riddellii Solidago rigida Solidago speciosa Solidago ulmifolia Taenidia integerrina Tephrosia virginiana Teucrium canadense Thalictrum dasycarpum Thalictrum dioicum Thaspium trifoliatum Tradescantia bracteata Tradescantia occidentalis Tradescantia ohiensis Valeriana edulis

Verbena hastata Verbena stricta Vernonia fasciculata Vernonia missurica Veronicastrum virginicum Viola conspersa Viola eriocarpa Viola palmata Viola papilionacea Viola pedata Viola pedatifida Viola sagittata Wulfenia bullii Zizia aptera Zizia aurea Achillea millefolium Agastache foeniculum Aster sagittifolius Astagalus crassicarpus Cirsium muticum Epilobium coloratum Gerardia paupercula Helianthemum bicknelli Helianthus divaricatus Helianthus giganteus Helianthus tuberosus Heterotheca villosa Houstonia longifolia Hypericum majus Lilium superbum Lysimachia ciliata Oenothera surrulata Potentilla fruticosa Sagittaria latifolia Senecio aureus Senecio plattensis Senecio paupercaulis Solidago missouriensis Stachys palustris Oxeve) (Marsh Milkweed) (Blazing Star)

(Tall Blazing Star) Castilleja sessiliflor Polvgala senega (Azure Aster) (Rough Blazing Star) (Giant Hyssop) (Stiff Tic-Seed) (Olds Midwest Wildflower Mix) (Short Dry Wildflower Mix #1) (NK North American Wildflowers) (Mesic Mix) (Mesic Wildflower Mix) (Rosa Species) Osmundo cinnamomea Adiantum pedatum Athyriam felixfemina Merlinsia verginica (Blanket Flower) (Upright Prairie Coneflower) (Greyhead Prairie Coneflower) (Danes Rocket) (Rough Oxeve) (Thickspike Gayfeather) (Spiked Gavfeather) (White Yarrow) (Pitcher Sage) (Lance Leaf Coreopsis) (Mexican Red Hat) (Common Vetch) (Country Wildflower) (Butterfly) (Cutting Garden) (Floral Ground Cover) (Native Harvest Mix) (Mixed Native Forbs) (Showy Penstemon) (Stiff Sunflower) (Columnar Coneflower) (Prairie Bush Clover) (Narrow-Leaved Milkweed) Generic Wildflower Mix

(Cream False Indigo)

II. GRASSES

Agropyron smithii Agropyron trachycaulum Andropogon gerardi Andropogon hallii Andropogon scoparius Bouteloua curtipendula Bouteloua gracilis Bouteloua hirsuta Bromus kalmii Bromus purgans **Buchloe dactyloides** Calamagrostis candensis Carex alopecoidea Carex annectens xanthocarpa Carex hysticina Carex pensylvanica Carex scoparia Carex sprengelii Carex stipata Carex vulpinoidea Elymus canadensis Elymus virginicus Hierchloe odorata Hystrix patula Juncus tenuis Koeleria cristata Panicum virgatum Paspalum ciliatifolium Scirpus atrovirens Scirpus validus Sorghastrum nutans Spartina pectinata Sporobolus asper Sporobolus heterolepis Stipa spartea Stipa viridula Bromus ciliatus Calamovilfa longifolia Juncus greenei Muhlenbergia cuspidata Muhlenbergia glom

Phragmites communis Typha latifolia (Big bluestem roundtree) (Big bluestem bonilla) (Native tall grass prairie seed) (Tall Grass Mix) (Blue Grass Mix) (Mn/DOT 150) (Mn/DOT 300) (Short Dry Mix) (Mesic Grass Mix) (Wetland Prairie Mix) (Mn/DOT 500) (Local Mixed Prairie) (Prairie Dropseed) Generic Grass Seed Mix (Newport Bluegrass) (Park Bluegrass) (Perennial Rye) (Creep Red Fescue)

4 1. B. K.

Page 5

.

TABLE 16: GERM ATION METHOD TESTING RESULTS

A. The following seven species will be included in the trials:

Koeleria macrantha Spartina pectinata Petalostemum purpureum Verbena stricta Liatris pycnostachya Sporobolus heterolepis Zizia aurea

The following data is from the testing done by the Minnesota State Seed Laboratory as a part of the LCMR project Native Grass and Wildflower Seed.

B. Germination percentages achieved under various temperatures and methods:

KOELERIA MACRANTHA (CRISTATA)

	TEMPERATURES-CELSIUS							
METHODS	15	15-25	10-30	15-30	20-30			
5 DAY - (KNO ₃)								
PRECHILL	60%	88%	84%	77%	84%			
5 DAY - (H ₂ O)								
PRECHILL	56%	87%	83%	77%	78%			
5 DAY PRECHILL								
GIBBERELLIC ACID	86%	85%	86%	83%	77%			
14 DAY- (KNO ₃)								
PRECHILL	70%	80%	62%	39%	65%			
14 DAY - (H ₂ O)								
PRECHILL	62%	72%	51%	49%	54%			
14 DAY PRECHILL								
GIBBERELLIC ACID	83%	83%	82%	66%	81%			
NO PRECHILL - (KNO3)								
	68%	86%	86%	79%	84%			
NO PRECHILL - (H ₂ O)								
× 2 ×	67%	86%	86%	39%	83%			
NO PRECHILL								
GIBBERELLIC ACID	86%	84%	86%	74%	80%			

<u>SPARTINA PECTINATA</u>

	TEMPERATURES-CELSIUS							
METHODS	15	15-25	10-30	15-30	20-30			
5 DAY PRECHILL								
(KNO ₃)	2%	11%	11%	12%	13%			
5 DAY PRECHILL								
(H ₂ O)	1%	24%	16%	10%	12%			
5 DAY PRECHILL								
GIBBERELLIC ACID	3%	17%	8%	6%	8%			
4 DAY PRECHILL								
(KNO3)	1%	8%	14%	7%	7%			
4 DAY PRECHILL					- 101 <u></u> 1010			
(H ₂ O)	5%	9%	8%	5%	14%			
4 DAY PRECHILL		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
GIBBERELLIC ACID	6%	9%	11%	5%	8%			
NO PRECHILL								
(KNO ₃)	3%	22%	21%	22%	22%			
NO PRECHILL		····						
H ₂ O)	1%	27%	30%	25%	22%			
NO PRECHILL					· · · · · · · · · · · · · · · · · · ·			
GIBBERELLIC ACID	2%	26%	25%	25%	23%			

PETALOSTEMUM PURPUREUM

	TEMPERATURES-CELSIUS							
METHODS	15	15-25	10-30	15-30	20-30 3%			
NO CHILL - (KNO3)	3%	1%	5%	3%				
5 DAY PRECHILL - (KNO3)	2% (82 HARD)	4%	3%	5%	2% (80 HARD)			
14 DAY PRECHILL - (KNO3)	3%	3%	5%	5%	4%			
HOT WATER TREATMENT								
(KNO ₃)	6%	2%	3%	5%	2%			
ACID SCARIFICATION								
(KNO ₃)	9% (38 HARD)	5% (65 HARD)	10% (36 HARD)	4% (59 HARD)	7% (62 HARD)			
GIBBERELLIC ACID		<u> </u>						
(KNO ₃)	3%	3%	3%	4%	4%			
PHYSICAL SCARIFICATION								
(KNO ₃)	41% (15 HARD)	72% (14 HARD)	58% (10 HARD)	64% (6_HARD)	56% (8 HARD)			
24 HOUR FREEZE								
(KNO ₃)	6%	9%	8%	13%	15%			
-	(34 HARD)	(51 HARD)	(53 HARD)	(56 HARD)	(55 HARD)			

	TEMPERATURES-CELSIUS						
METHODS	15	15-25	10-30	15-30	20-30	15-25(dark)	
NO CHILL - (H ₂ O)							
	0%	1%	3%	0%	0%	0%	
5 DAY PRECHILL - (H ₂ O)							
	0%	2%	5%	3%	0%	1%	
14 DAY PRECHILL - (H2O)							
	0%	8%	7%	4%	2%	3%	
NO CHILL - (KNO ₂)							
(0%	4%	5%	5%	4%	4%	
5 DAY PRECHILL - (KNO ₂)							
(0%	6%	6%	6%	3%	6%	
14 DAY PRECHILL - (KNO ₂)							
(11,03)	0%	8%	4%	10%	8%	13%	
24 HOUR FREEZE - (H2O)							
	0%	1%	3%	1%	1%	0%	
24 HOUR FREEZE - (KNO2)							
	0%	1%	7%	4%	0%	2%	
24 HOUR FREEZE							
GIBBERELLIC ACID	4%	9%	12%	9%	7%	8%	
28 DAY PRECHILL - (H ₂ O)							
20 2000 File Children (1120)	0%	9%	11%	8%	3%	8%	
28 DAY PRECHILL - (KNO ₂)							
	1%	14%	10%	10%	8%	13%	
28 DAY PRECHILL						15/0	
GIBBERELLIC ACID	11%	14%	18%	14%	9%	18%	
CLIP SEED DISTAL END - (HaO)	A A / V	A , , , U				10/0	
	0%	11%	9%	9%	10%	7%	

1

<u>VERBENA STRICTA</u>

Page 5

LIATRIS PYCNOSTACHYA

100

	TEMPERATURES-CELSIUS							
METHODS	15	15-25	10-30	15-30	20-30			
NO PRECHILL - (H ₂ O)								
	2%	24%	28%	41%	47%			
5 DAY PRECHILL - (H ₂ O)								
· · ·	10%	31%	30%	49%	49%			
NO PRECHILL - (KNO3)								
	4%	19%	13%	24%	37%			
5 DAY PRECHILL - (KNO3)								
·	8%	32%	32%	47%	56%			
NO PRECHILL								
GIBBERELLIC ACID	11%	42%	38%	49%	65%			
5 DAY PRECHILL								
GIBBERELLIC ACID	15%	50%	44%	61%	71%			

	TEMPERATURES-CELSIUS						
METHODS	15	15-25	10-30	15-30	20-30		
5 DAY PRECHILL - (KNO3)		1			······································		
	45%	82%	80%	81%	77%		
5 DAY PRECHILL - (H ₂ O)							
	44%	80%	82%	80%	79%		
5 DAY PRECHILL							
GIBBERELLIC ACID	55%	85%	81%	81%	81%		
14 DAY PRECHILL - (KNO3)							
	56%	83%	85%	76%	83%		
14 DAY PRECHILL - (H ₂ O)							
	49%	84%	78%	76%	88%		
14 DAY PRECHILL							
GIBBERELLIC ACID	62%	86%	84%	79%	87%		
NO PRECHILL - (KNO3)							
	30%	76%	77%	79%	78%		
NO PRECHILL - (H2O)							
	22%	73%	71%	71%	78%		
NO PRECHILL							
GIBBERELLIC ACID	25%	47%	52%	74%	74%		

ŧ.,

SPOROBOLUS HETEROLEPIS

Page 6

<u>ZIZEA AUREA</u>

	TEMPERATURES-CELSIUS							
METHODS	15	15-25	10-30	15-30	20-30			
DOUBLE 5 DAY PRECHILL			· · · · · · · · · · · · · · · · · · ·					
7 DAY INTERVAL - (H ₂ O)	0% (98 DORM)	15% (82 DORM)	39% (55 DORM)	26% (69 DORM)	10% (87 DORM)			
MECHANICAL	-							
SCARIFICATION - (H ₂ O)	0% (97 DORM)	10% (87 DORM)	40% (58 DORM)	12% (86 DORM)	7% (91 DORM)			
ACID				1				
SCARIFICATION - (H ₂ O)	0%	9%	31%	26%	7%			
	(98 DORM)	(88 DORM)	(66 DORM)	(71 DORM)	(91 DORM)			
NICK SEED COAT								
(H ₂ O)	0% (97 DORM)	11% (86 DORM)	34% (60 DORM)	28% (71 DORM)	7% (91 DORM)			
NO PRECHILL	haddendardar exerciter for the second							
(H ₂ O)	0% (97 DORM)	8% (90 DORM)	34% (65 DORM)	11% (88 DORM)	5% (93 DORM)			
5 DAY PRECHILL								
(H ₂ O)	0% (99 DORM)	8% (90 DORM)	22% (76 DORM)	18% (80 DORM)	2% (97 DORM)			
14 DAY PRECHILL								
(H ₂ O)	1% (96 DORM)	26% (71 DORM)	30% (65 DORM)	23% (72 DORM)	4% (94 DORM)			
24 HOUR FREEZE			• • • • • • • • • •					
(H ₂ O)	0% (98 DORM)	6% (93 DORM)	26% (72 DORM)	16% (82 DORM)	3% (97 DORM)			