08 - 0369

# THE PUBLIC WATER SUPPLY SYSTEM: INVENTORY AND THE POSSIBILITY OF SUBREGIONAL INTERCONNECTION

Working Paper No. 4 For The Long-Term Water Supply Plan

May, 1991

by

Gary L. Oberts Natural Resources and Parks Division



METROPOLITAN COUNCIL Mears Park Centre, 230 East Fifth Street, St. Paul, Minnesota 55101 Publication No. 590-91-010

> Purusant to 1989 Laws, Ch 335, Art 1 - Sec 248 & coded as MS 473.156 -Working Paper #4 of 8 Working Papers

я

3

#### METROPOLITAN COUNCIL MEMBERS

Mary Anderson, Chair

Liz Anderson, District 1 Dede Wolfson, District 2 James W. Senden, District 3 Carol Kummer, District 4 David F. Fisher, District 5 Donald B. Riley, District 6 Esther Newcome, District 7 Susan E. Anderson, District 8 Ken Kunzman, District 9 James J. Krautkremer, District 10 Dottie Rietow, District 11 Sondra R. Simonson, District 12 Dirk devries, District 13 Bonita D. Featherstone, District 14 Margaret Schreiner, District 15 E. Craig Morris, District 16

The Metropolitan Council coordinates the planning and development of the seven-county Metropolitan Area. The Council is authorized by state and federal laws to plan for highways and transit, sewers, parks and open space, airports, land use, air and water quality, health, housing, aging and arts.

JUN 4: 1991

-

# CONTENTS

ŧ

| About This Report 1                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction                                                                                                                                                                                                                                                                                                                                                          |
| Municipal Water Supply System Inventory                                                                                                                                                                                                                                                                                                                               |
| Commercial and Industrial Use of Municipal Water                                                                                                                                                                                                                                                                                                                      |
| Per Capita Use of Municipal Water 8                                                                                                                                                                                                                                                                                                                                   |
| Pricing of Water by Municipal Suppliers                                                                                                                                                                                                                                                                                                                               |
| Interconnection of Municipal Systems 13                                                                                                                                                                                                                                                                                                                               |
| Municipal Supply Problems Encountered 18                                                                                                                                                                                                                                                                                                                              |
| Conservation Measures                                                                                                                                                                                                                                                                                                                                                 |
| Non-Municipal, Public Water Use 22                                                                                                                                                                                                                                                                                                                                    |
| Summary 24                                                                                                                                                                                                                                                                                                                                                            |
| AppendicesA - Municipal Water Supply InventoryB - Municipally-Supplied Commercial/Industrial Use and Per Capita UseC - Municipal Water Supply PricingD - Metering By Municipal SuppliersE - Municipal Sewer Service ChargesF - Municipal Water Supply Interconnection InventoryG - Municipal Water Supply ProblemsH - Miscellaneous Information From Supplier Surveys |
| FIGURES       1. Active Municipal Wells, 1990       4         2. Status of Water System Interconnections       14         3. Potential Subregional Water Systems       17                                                                                                                                                                                             |
| TABLES1. Municipal Water Supply Summary32. Sources of Municipal Ground Water53. Summary of Water Pricing in the Region94. Water and Sewer Prices from Others Regions115. Potential Subregional Water Distribution Systems16                                                                                                                                           |

TABLES, cont.

| 6. | Drought-Related Ground Water Supply Problems                      | 18 |
|----|-------------------------------------------------------------------|----|
| 7. | Conservation Measures Used by Municipal Water Suppliers           | 20 |
| 8. | Water Use in the Metropolitan Area - Non-Municipal, Public System | 23 |

#### **ABOUT THIS REPORT**

This report is Working Paper No. 4 in a series of eight. The reports are being prepared as background technical studies for the preparation of a long-term water supply plan for the Metropolitan Area. The long-term plan preparation was required by the 1989 legislature and must be presented to the legislature on February 1, 1992. Preparation of the long-term plan follows completion of a short-term plan, which was delivered to the legislature on February 1, 1990.

The other technical reports in the series are:

- No. 1. <u>Alternative Sources of Water for the Twin Cities Metropolitan Area</u>. Metropolitan Council Report No. 590-91-011.
- No. 2. <u>Water Demand in the Twin Cities Metropolitan Area</u>. Council Report No. 590-91-009.
- No. 3. <u>Water Availability in the Twin Cities Metropolitan Area: The Water Balance</u>. Card Report No. 590-91-008.
- No. 5. <u>Water Conservation in the Twin Cities Metropolitan Area</u>. Council Report No. 590-91-020.
- No. 6. <u>The Effects of Low Flow on Water Quality in the Metropolitan Area</u>. Council Report No. 590-91-054.
- No. 7. The Economic Value of Water. Council Report No. 590-91-065.
- No. 8. The Institutional Framework for Water Supply Management. Council Report No. 590-91-064.

The report was prepared by Gary L. Oberts of the Council's Natural Resources and Parks Division. Questions on the content of the study can be directed to him at (612) 291-6484. Data for the report were also collected by Judy Hartsoe, Deborah Schreiner and Susan Norenberg. Graphics were prepared by Craig Skone.

### **INTRODUCTION**

The public water supply system in the Metropolitan Area is composed of municipal utilities that supply water to a community or group of communities, and non-municipal systems that independently supply water to enclaves of development that otherwise would not be served. Examples of non-municipal systems would include mobile home parks, camps, and private institutions. Most attention in this report is given to municipal systems because of the tremendous volume of water that they supply, especially when compared to the much smaller non-municipal systems. Approximately 200,000 people in the Metropolitan Area get their potable water from their own wells, and are therefore not mentioned in this report.

The municipal water supply system of the Metropolitan Area has always provided an adequate supply of good quality water to the citizens of the region. The drought of 1987-1989, however, showed us that our supply of water is not unlimited and that conditions might worsen as a growing number of users vie for this finite volume of water.

The short-term water supply plan, prepared by the Metropolitan Council and submitted to the legislature in February 1990, summarized a number of problems that arose in the most recent drought, and pointed to the senseless repetition of these mistakes because of the lack of foresight and good planning. As the population of the region continues to grow, pressure to supply water to an expanding urban perimeter will present possibly the greatest water supply challenge we have yet seen. The reason for this is the thinning-out and actual termination of the Prairie du Chien-Jordan Aquifer in the substrata underlying much of this growth (see also discussion in Working Papers No. 1 and 2).

The time has come in the Metropolitan Area to look into the twenty-second century and devise a system that will meet this water supply challenge. We have never really had a shortage of water; rather, we have a distribution problem with getting the large volume of surface and ground water that we have to those who want to use it. This report assembles information on the municipal infrastructure that exists in the region to withdraw and distribute water. It is one of several technical reports that serve as input into the development of a long-term water supply plan required of the Metropolitan Council under Minnesota Statutes, Ch. 473.156.

The data used for this report come from several sources. Basic data on the municipal water suppliers were obtained from Minnesota Department of Health (MDH) files and were verified with a Metropolitan Council survey of suppliers in the summer and fall of 1990. Total water use was compared with information from the Department of Natural Resources' (DNR) water appropriation permit files. The problem with obtaining data from different sources is that each source has its own criteria for reporting, which results in different temporal reference points. In order to compare data, a period spanning 1987-90 was used, primarily because of MDH's program of collecting data every few years in a staggered format.

#### MUNICIPAL WATER SUPPLY SYSTEM INVENTORY

The municipal water supply system in the Twin Cities Metropolitan Area has always been operated by a reliable group of independently operated utilities. Table 1 summarizes the data for the 111 municipal suppliers. The table does not include data from a 112th supplier, Lakeland, which will begin service on approximately September 1, 1991. The details of each community system are contained in Appendix A. The total system serves a population just over 2,000,000 and contains about 540,000 residential, commercial, institutional and industrial service connections.

| CHARACTERISTIC       | TOTAL                                 |
|----------------------|---------------------------------------|
| Population Served    | 2,019,894                             |
| Connections          | 539,832                               |
| Design Capacity      | 904.191 Million Gallons Per Day (MGD) |
| Average Daily Demand | 277.428 MGD                           |
| Highest Daily Demand | 709.234 MGD                           |
| Storage Capacity     | 494.8401 Million Gallons              |
| Number of Wells      | 490                                   |
| Well Capacity        | 703 MGD                               |

| Table 1          |       |               |         |  |  |
|------------------|-------|---------------|---------|--|--|
| <b>MUNICIPAL</b> | WATER | <b>SUPPLY</b> | SUMMARY |  |  |

As noted in Appendix A, the water utilities of Minneapolis and St. Paul also serve several surrounding suburbs. The Minneapolis Water Works relies entirely upon the Mississippi River to supply about 380,000 people in Minneapolis, plus an additional 91,500 people in Columbia Heights, Hilltop, Golden Valley, New Hope, and Crystal. A portion of the city's supply for Bloomington and Edina are also provided by the Minneapolis Water Works. The St. Paul Water Utility relies upon the Mississippi River for an average of about 70% of its supply to about 275,000 people in St. Paul, plus about 112,000 additional people in Lauderdale, Falcon Heights, Roseville, Arden Hills, Little Canada, West St. Paul, Maplewood and Mendota Heights. The remaining 30% comes from a combination of surface water sources in the Vadnais Lake chain of lakes (through which the Mississippi River water is also diverted) and the Rice Creek chain of lakes, and from a well system at the Utility's Vadnais Heights facility. Figure 1 shows the service areas for these two utilities that rely substantially upon surface water. The unshaded portion of the figure relies upon ground water for its source of water.



The information contained in Appendix A was collected from the Minnesota Department of Health and verified by the Metropolitan Council through direct contact with the suppliers and through DNR permit records. The data indicate an average daily municipal demand of about 277 million gallons per day (MGD) from a supply system with a total design capacity of 904 MGD. The system capacity exceeds by about 200 MGD the sum of the highest daily demands of the suppliers (709 MGD). This comparison is academic since the likelihood of all suppliers experiencing peak demands and pumping their system at its capacity is extremely low. The excess capacity indicates the preparedness of suppliers to meet peak demands, although localized problems do occur. DNR permit records for the period 1984-1989 show that more water was pumped (303 MGD) than the averages reported by the suppliers. The reason for this was the dry weather that occurred from 1986 through 1988. Increased use during this period is not reflected in the "average" use figures reported to MDH and contained in Table 1.

The Metropolitan Area system contains a total of 490 wells that withdraw ground water from throughout the region and from various aquifers. Another 29 wells are currently planned for installation in the early 1990s. Specifics on these wells were not available as this report was being prepared. Appendix A lists the wells that each supplier uses to meet their demand. Figure 1 displays the location of the municipal wells. The combined capacity of the 490 wells is about 703 MGD, again only an illustrative number since the likelihood of all systems running at capacity is extremely low. The aquifers from which the suppliers withdraw ground water and the percentage of municipal water they supply are noted in Table 2.

| SOURCE AQUIFER          | PERCENTAGE OF<br>TOTAL<br>MUNICIPAL<br>GROUND WATER<br>SUPPLY* | VOLUME OF<br>MUNICIPAL<br>GROUND WATER<br>SUPPLIED*<br>(Million gallons per<br>day, MGD) |
|-------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Drift                   | 9.8                                                            | 68.6                                                                                     |
| Prairie du Chien-Jordan | 66.5                                                           | 467.2                                                                                    |
| St. Lawrence-Franconia  | 0.9                                                            | 6.3                                                                                      |
| Ironton-Galesville      | 1.9                                                            | 13.1                                                                                     |
| Mt.Simon-Hinckley       | 7.1                                                            | 49.8                                                                                     |
| Multi-aquifer           | 13.2                                                           | 92.7                                                                                     |
| Unknown                 | 0.6                                                            | 4.4                                                                                      |

 Table 2

 SOURCES OF MUNICIPAL GROUND WATER

\* Numbers apply to design volumes

The Prairie du Chien-Jordan Aquifer supplies (66.5%) by far the largest volume of ground water to municipalities in the Metropolitan Area. Surprisingly, multi-aquifer wells that pass through several units are the second largest supplier (13.2%); most of the multi-aquifer wells take full advantage of the deep system and pass from an upper unit through to the Mt. Simon or Hinckley formation. The drift and Mt. Simon-Hinckley wells follow at 9.8% and 7.1%, respectively.

Most of the population living in the suburban Twin Cities area obtains its water from ground water sources. As the population continues to grow outward from the urban center, a demand for ground water will therefore occur. Unfortunately, the Prairie du Chien-Jordan Aquifer is absent or thin in much of the area into which this population growth will occur. This means that these communities will rely upon the drift, Ironton-Galesville Aquifer, or Mt. Simon-Hinckley Aquifer to meet their needs. As discussed in Working Papers No. 1 and 2, this could present some water supply problems because the drift is relatively unprotected from contamination at the land surface, and the other aquifers (including the drift) are not capable of supplying as large a volume of water as the Prairie du Chien-Jordan. An analysis of this potential supply problem will occur in Working Paper No. 8 on the institutional evaluation of meeting future water demand.

#### COMMERCIAL AND INDUSTRIAL USE OF MUNICIPAL WATER

Although much of the need for commercial and industrial water is met by privately-owned wells, 87 MGD of the water supplied by municipal suppliers also goes to these uses. Appendix B contains details on the portion of water from each municipal system that goes toward supplying commercial and industrial uses, which also include institutional uses. Reference to Appendix B shows that close to one-third (30.3%) of water supplied by municipalities in the Metropolitan Area goes for commercial-industrial uses. Portions of local community supplies going for these uses vary from zero to 65%. Data on the amount of water used by self-supplied users are contained in Working Paper No. 2.

Seventy-four of the 99 municipal suppliers responding to a survey question, indicated that they had an inventory of commercial-industrial users. Eighteen of the respondents did not have an inventory, and another seven had too few such users to be concerned. Twelve suppliers did not respond to this question. Because much of the direct input on the commercial/industrial use is estimated either by the supplier, the Council or the MDH, caution is advised on using the numbers for other than general analysis when a supplier has not identified a specific percentage in Appendix B.

A total of 100 suppliers responded to a question concerning commercial-industrial shut-off in a supply emergency. Forty-eight of the respondents indicated they would shut-off commercial-industrial uses in an emergency, while 32 said they definitely would not. An additional six suppliers said they could not easily shut these uses off and another five said it would depend upon circumstances. The same seven as noted above said they had too few commercial-industrial users to worry about it. Many of the "no" respondents said they knew who the commercial-industrial users were, but that they would not be willing to shut-off supply to them. There was no apparent relationship between size of municipal supply and willingness to shut-off commercial-industrial users.

#### PER CAPITA USE OF MUNICIPAL WATER

Appendix B also contains a calculation of per capita use of water, broken down for all uses and for residential uses only. The mean per capita use with all uses included is 128 gallons, while the residential-only use rate is 102 gallons. Per capita usage for all uses for peak demand for each municipality was also calculated in Appendix B and averaged 328 gallons, or about 2.5 times the average daily demand. Peak per capita use for residences only cannot be determined because it is not possible to determine which fraction of peak municipal use comes from just residential use, as opposed to commercial/industrial.

Caution is advised while using the overall per capita figures because of the variability of the commercial/industrial component in the number. As noted previously, many of the commercial and industrial numbers are estimates by the suppliers, or in lieu of their opinion, an estimate by the Council or MDH.

#### PRICING OF WATER BY MUNICIPAL SUPPLIERS

The municipal water supply survey also asked the price the municipality charged for water, and whether the price varies by volume and by type of use. The results of this survey question are tabulated in Appendix C, along with three examples of the price for a certain volume of water. Table 3 summarizes the information in the appendix. In order to interpret Appendix C, a few definitions are needed. "Single block" pricing means that only one rate is charged for all of the water used during a billing period. "Decreasing block" and "increasing block", respectively, are lowered per unit (usually 1,000 gallons) and higher per unit rates as volume used increases. "Flat rates" mean that there is one charge during a billing period, no matter how much water is used.

| USE TYPE AND MODE                                                   | AVERAGE PRICE (RANGE)         |
|---------------------------------------------------------------------|-------------------------------|
| Residential, 30,000 gallons per quarter                             | \$34.75 (\$10.50 - \$89.20)   |
| Commercial/Industrial, 30,000 gallons per quarter                   | \$35.35 (\$10.50 - \$89.20)   |
| Commercial/Industrial, 100,000 gallons per quarter                  | \$110.38 (\$37.00 - \$281.70) |
| Modes: Decreasing Block<br>Increasing Block<br>Single Block<br>Flat | 45<br>7<br>54<br>5            |

 Table 3

 SUMMARY OF WATER PRICING IN THE REGION

Many communities do not apply a single method, but instead use, for example, a single block with a service charge or a minimum volume of water that must be paid for in a billing period. Theoretically, it would seem from a wise use of water standpoint that the increasing block is the best pricing method because it encourages conservation in order to avoid escalating per unit costs. However, use of increasing block pricing with prices that start low as a beginning point might not in fact save any water at all. For example, reference to Appendix C shows that Blaine uses an increasing block structure, but begins pricing at an extremely low \$0.35 per thousand gallons. When compared to Bloomington, which uses a single block price of \$1.20 per thousand gallons plus service and minimum charges, we find that Blaine charges only 25% as much as Bloomington for the same volume of water. Therefore, one can certainly ask "Does increased block pricing really save water?" The answer is obviously, "Only when started at a reasonable base price."

Some of the same type of questions can be raised for decreasing block pricing, which has always been assumed to be counter-conservation oriented. Carrying the above figures one more step, we can see that Carver uses decreasing blocks, but charges about seven times as much as Blaine for the same volume of water. Again, the comparison for flat rate pricing, such as with Belle Plaine charging three times as much as Blaine for 30,000 gallons, can be confusing. Of course Belle Plaine would charge the same price no matter how much water the customer used. A single block is generally thought

to be fairly neutral because it neither encourages nor discourages high use to obtain favorable pricing; yet as with the other methods, it depends on where the method places its base price.

Appendix C shows that of the 111 communities in our survey, most (54) use a single block pricing approach. Forty-five communities still give preferential pricing to larger water users with decreasing blocks, while five charge a flat rate for all of the water that a user wants to use. Only seven communities in the Metropolitan Area price water using an increasing block method.

Any attempt to reduce water use through pricing is meaningless if a community does not meter the amount of water used by its customers. The municipal water suppliers survey showed that most of the Metropolitan Area's municipal systems do meter their customers. Appendix D lists whether the city has metering and if it does, the year in which it began to meter. Of the 111 surveyed suppliers, only five do not fully meter. Of the five that do not fully meter, one meters 15% of the community and another meters the commercial accounts only. Mandatory metering would certainly be a good first step that the legislature could undertake to assure wise use of water in the region.

Table 3 shows that the average quarterly cost to a residential household for 30,000 gallons of water supplied by a municipality in the region is \$34.75, or \$1.16 per thousand gallons, or slightly over one-tenth of a cent per gallon (0.1 cent/gallon). The per gallon cost ranges from a low of about 0.04 cent/gallon to a high of only 0.3 cent/gallon. The residential figure rises only slightly to \$35.35 or \$1.18 per thousand gallons if the user is a commercial or industrial customer. For larger commercial-industrial customers using 100,000 gallons of water, the average price is \$110.38. These numbers indicate that water generally costs just slightly over \$1.10 per 1,000 gallons, or about 0.1 cent/gallon, in this region for any use.

Table 4 shows water and sewer prices from several metropolitan centers around the country. The data show that with few exceptions, water prices in the Twin Cities area are comparable to prices elsewhere, even the apparently water-short West. Sewer rates were included in the table for informational purposes so that a comparison with Metropolitan Area sewer prices contained in Appendix E can be made by those interested.

A Metropolitan Council survey of municipal water suppliers in 1979 can be used to make some comparisons and note our progress over a decade. A tabulation of 108 respondents in 1979 showed that 65 were using single block pricing, 34 decreasing block, 9 flat charges and zero increasing block. These numbers show that even though we have begun a slight movement toward increasing block pricing, we have actually increased the number of decreasing block communities and lost only a few flat rates. The residential price for 30,000 gallons charged by 106 respondents in 1979 was \$16.93, or about one-half of the current price.

One of the survey questions asked this year was the technique used to arrive at a price for water. By far, the most common response was the need to cover all capital, operational and administrative costs of supplying the water without losing any money. Some communities survey adjoining communities to see what they are charging, and price their's accordingly. Those communities served by another utility, such as the St. Paul Water Utility or the Minneapolis Water Works, merely tag-on appropriate costs to the wholesale price they pay to the supplier. In some cases, the larger supplier actually bills the customers directly.

| CITY              | WATER RATE                                                                                                                                                                         | SEWER RATE                                               |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
| Atlanta, GA       | \$2.27/1000 gallons                                                                                                                                                                | \$1.60/1000 gallons                                      |  |
| Austin, TX        | \$5.46/1st 2000 gallons<br>\$3.58/1000 gallons over 2000                                                                                                                           | \$5.61/1st 2000 gallons<br>\$3.58/1000 gallons over 2000 |  |
| Chicago, IL       | \$0.89/1000 gallons                                                                                                                                                                | \$0.71/1000 gallons                                      |  |
| Columbus, OH      | approx. \$25.00/person/quarter                                                                                                                                                     | sewer included in water price                            |  |
| Fargo, ND         | \$10.80/0-6000 gallons<br>\$1.80/1000 gallons over 6000                                                                                                                            | \$23.10 quarterly                                        |  |
| Las Virgenes, CA  | \$0.22/1000 gallons for 0-1875<br>\$0.81/ " " 1876-9375<br>\$0.96/ " " 9376-19875<br>\$1.09/ " " over 19875                                                                        | No information                                           |  |
| Los Angeles, CA   | \$0.78/1000 gallonswinter<br>\$0.88/1000 gallonssummer<br>- base charge \$4.50/month<br>- discounts for seniors                                                                    | No information                                           |  |
| New York City, NY | \$1.27/1000 gallons                                                                                                                                                                | \$1.42/ 1000 gallons                                     |  |
| San Diego, CA     | \$0.89/1000 gallons for 0-7500<br>\$1.03/ " over 7500                                                                                                                              | No information                                           |  |
| Santa Barbara, CA | \$1.29/1000 gallonssummer<br>\$1.11/1000 gallonsrest of<br>year                                                                                                                    | No information                                           |  |
| Tucson, AZ        | VolumeWinterSummer<br>(gallons)<br>0-3750\$1.07\$1.07<br>3751-7500\$1.20\$1.20<br>7501-15K\$1.43\$1.65<br>15-22.5K\$1.63\$2.05<br>22.5-37.5K\$1.80\$2.32<br>over 37.5K\$2.00\$2.61 | No information                                           |  |
| Washington, DC    | \$3.82/1000 gallons                                                                                                                                                                | \$3.82/1000 gallons                                      |  |

# Table 4WATER AND SEWER PRICES FROM OTHER REGIONS

¢

It would seem quite obvious in reviewing the information contained in Appendix C that we could obtain some savings in overall water demand if we made a major switch toward increasing block pricing, but only if the starting price is close to the overall regional average price. Establishing an increasing block structure at a low beginning price does not lead to any cost incentive, as evidenced by the numbers in Appendix C.

To test whether overall demand is a function of block pricing structure, a regression analysis was performed, with cost regressed as an independent variable against water demand for the municipal suppliers. The analysis showed that currently is no discernible relationship ( $r^2 = -.05$ ) between cost and demand in the region. However, the small number of increasing block communities meant that the input data were few for the increasing block pricing approach.

The anomalously low base prices previously noted also tend to confuse data on pricing structure. We do not want to suggest that we abandon efforts to move in the direction of increased block pricing, rather, that it makes sense to use this type of pricing to achieve water savings only if the base price is set at a high enough price to economically motivate consumers to conserve. Setting the base price extremely low does not encourage anyone to reduce use because they pay so little anyway.

If a shift were to occur, and more people began to be charged based on volume starting at a reasonable base price, water demand reduction as a function of cost could be affected. Currently, however, the price of water is so low that substantial increases would likely be needed to induce people to reduce their use. At an average of only \$1.15 per 1,000 gallons, there is little incentive to cut water use. In any event, a resource-oriented wise use or conservation program should have increased pricing as an integral component so that users recognize the true value of water as their use goes up.

Further details on the economic aspects of water are included in another technical report in this series. Working Paper No.7 addresses the economic value of water in much greater detail than contained in this report.

#### INTERCONNECTION OF MUNICIPAL SYSTEMS

Perhaps the question most often asked pertaining to the Metropolitan Area municipal water supply system is, "Why don't these 100-plus suppliers connect their systems so that we have fewer suppliers and a better-planned approach to the withdrawal of water?" Further significance was given to this question when the U.S. Geological Survey reported, as part of its ground water modeling of the Twin Cities Basin, that we cannot extract an optimum amount of water from the ground water system because we do not go about it in an efficient manner. That is, we have over 100 independent suppliers all obtaining water within their own boundaries, wherever their particular needs happen to be. Fortunately, the problems associated with this disjointed approach have not yet caused any serious supply problems.

The existing and possible system interconnections among the 100-plus suppliers were inventoried as part of the water supplier survey undertaken in conjunction with this report. We found that there are a surprising number of system interconnections in the region. We also found many conflicting opinions as to whether particular cities were in fact interconnected at all; typically in these cases, one city claims an interconnection to an adjacent city that has no knowledge of any such interconnection. These discrepancies will be detailed later in this section.

Pursuant to the receipt of the survey responses, individual contact was made with all of the suppliers to query them further. Initial tabulation of these responses (Appendix F) indicates that we have 62 municipal suppliers that somehow claim an interconnection to a neighboring supplier. An additional 31 state that they are not currently interconnected, but are interested in it, with many of them having studied the possibility. Only 23 suppliers stated no interest in interconnecting, and most of these were because of the large distance that separates them from the nearest potential supplier. The vast majority of the connections listed in Appendix F are small connections (12" or less) for "emergency use only", and in fact could not meet the entire demand of either of the participants for an extended period of time.

Figure 2 summarizes the follow-up responses contained in Appendix F. The most striking feature of Figure 2 is the tremendous percentage of municipal suppliers who are either currently interconnected or are interested in pursuing system interconnections. It seems the drought of the late 1980s might have had some impact on how municipalities view their "finite" source of water. Of additional note in Figure 2 is the fact that the Lakeland-Lakeland Shores-Lake St. Croix Beach system is included for informational purposes, although it is not yet operational.

One of the dominant themes that came from a Metropolitan Council day-long conference (December 1, 1989) on the water supply of the Metropolitan Area was the need to pursue regional approaches to solving our water supply problems. Among the most commonly mentioned options for instituting such an approach was the development of regional or subregional water distribution systems, planned regionally but operated by the parties participating in each subregion. A key factor in arriving at this approach was the fact that surface water flowing into the region was far greater than needed most of the time. Reference to previous work in this water supply planning effort (Working Paper No. 3) documents the extremely high inflow relative to demand for our river system. Relying on this surface water system makes a great deal of resource sense, since failure to use it as it flows through the area means that it is lost to us forever. The logical complement to this approach is that our



ground water system then can be relied upon to supply water during those few occasions when surface water cannot meet demand.

Working Papers No. 1 and 2 of this water plan series indicated that a five-year average of about 165 MGD of Mississippi River water is used to meet municipal demand. The remaining approximately 140 MGD of municipal demand is met by ground water sources, as shown in Table 1 of this report. Meeting the entire demand of about 305 MGD from the river would be very easy most of the time (Working Paper No. 3). Under this water use focus, ground water would be kept for periods of peak demand and for periods when surface water could not be used for some reason, such as a contamination event or an extreme drought.

Obviously, a shift to a system that supplies all urban communities with water from the Mississippi River and ground water during low flow would require a substantial amount of time and infrastructure change. The existing system of interconnections could not meet the need because of the small size of most of the connections. If a long-term decision is made to pursue regional water supply, a river withdrawal and far-reaching distribution network would be needed to not only distribute surface water outward, but also to reverse this in order to get ground water toward the center of the system during periods of need. The most direct approach to accomplish this would be for the cities currently withdrawing, that is Minneapolis and St. Paul, to enlarge their intake capabilities and serve as regional water distributors. The city of Brooklyn Center also has a permit from DNR to withdraw water from the Mississippi River, although the city has never used it. Large-scale distribution of surface water outward could occur via a pipeline system that could feed the raw (or possibly finished) water to the subregional systems, which in turn treat and distribute it to the system members.

Difficulties with a regional distribution approach could be substantial. Perhaps the most serious drawback is the potential cost of the infrastructure. Most municipal water systems have been developed with the current mode of distribution in mind, and therefore, have not structured their system to receive and/or distribute water that comes from a regional source. Exceptions to this are, of course, the Minneapolis and St. Paul suburban systems. As a result of the large expenditures and planning that communities have invested in their systems, a changeover to a different mode of supply might be difficult to justify. Options for regional system development that acknowledge these conditions are, for example, existing, older systems that serve communities not experiencing growth could continue to rely upon their wells, whereas rapidly growing communities at or beyond the limits of the Prairie du Chien-Jordan Aquifer could look at future infrastructure development in a subregional context. Any large-scale move towards subregional distribution systems would have to long-term, occurring over the next 20 or more years.

Other difficulties with subregional systems include differing system pressures and costs of supplying treated water, loss of system autonomy, a wider impact from contamination of a supply, and revenue distribution. Each of these difficulties would have to be addressed on a cooperative system basis before coordinated efforts could ever proceed.

Possibilities for subregional system development could include shared ground or surface water systems wherein several suppliers get together to plan source development and distribution. The Minneapolis and St. Paul suburban approach is a good example of this, as is the New Hope-Golden Valley-Crystal arrangement for the distribution of Minneapolis-supplied water. Based on the survey responses from the municipal suppliers and their interest or current participation in interconnecting, different groupings of potential subregional systems can be made. One such example grouping in Table 5 lists the various systems and Figure 3 portrays them. Each of these groups could be linked to share water sources and distribution, with water coming from internal supplies and/or external sources. The current demand listed in Table 5 will obviously change as some of the more rapidly growing communities develop their water supply systems to meet growth expectations. This characterization is an example of potential linkages that could be made: details of any such proposal would need to be analyzed with engineering level studies.

| Table 5               |       |              |         |  |  |
|-----------------------|-------|--------------|---------|--|--|
| POTENTIAL SUBREGIONAL | WATER | DISTRIBUTION | SYSTEMS |  |  |

| SYSTEM    | CURRENT DEMAND<br>(mgd) | POSSIBLE SOURCES                             |
|-----------|-------------------------|----------------------------------------------|
| Northwest | 26.1                    | Ground water; surface water from Minneapolis |
| Southwest | 49.2                    | Ground water; surface water from Minneapolis |
| East      | 14.8                    | Ground water; surface water from St. Paul    |
| North     | 28.0                    | Ground water; surface water from St. Paul    |
| South     | 25.9                    | Ground water; surface water from St. Paul    |
| St. Croix | 2.5                     | Ground water                                 |

Another difficulty that would need to be overcome if suppliers rely on different sources of water at different times is the treatment of this water. Each community has developed its system to treat the chemical and physical characteristics of surface or ground water. St. Paul is the only supplier to treat a mix of both sources. Bloomington treats ground water and then mixes it with surface water from Minneapolis in the distribution system.

Difficulties in mixing sources might arise, for example, from the introduction of a lower pH (ground water) source that would be more corrosive than a high pH surface water. It would seem as though this problem would only occur during a source-reversal for the Minneapolis and St. Paul supplies and could be addressed by introducing the "raw" water prior to the treatment process. If there is an emergency and ground water would have to be directly introduced to the distribution system, the inconvenience of a high iron content for a short period, for example, would be far easier than living with no water. If the replacement water resulted in water not totally safe, perhaps it could be used for non-potable uses only, thus easing at least part of the emergency condition.

Obviously, the development of any subregional system that routes water from surface sources outward and ground water sources inward, requires a great deal of planning and a long time to implement. The problems encountered in a severe drought and the likelihood of ground water shortages as the region grows outward, however, merit such an evaluation.

## Figure 3 POTENTIAL **SUBREGIONAL** WATER SYSTEMS

Shaded areas represent possible subregional water systems

subregional demand in mgd

direction of supply



#### MUNICIPAL SUPPLY PROBLEMS ENCOUNTERED

The municipal survey also asked water suppliers if they encountered any supply problems with their wells during the recent drought and what problems, if any, they encounter in their normal operations. The responses to the drought-related question are contained in Table 6 (see also Working Paper No. 1) and the normal operating problems are summarized in Appendix G.

The drought of 1986-1989 presented many problems to many different water suppliers, but among the most serious were the well drawdown problems that some suppliers experienced. These problems were not experienced by all ground water suppliers, but seemed to occur in some rapidly growing suburbs and in some communities at the outer edge of the Prairie du Chien-Jordan. Table 6 summarizes the drought-related problems.

| COMMUNITY     | PROBLEM ENCOUNTERED                                                                   |  |  |
|---------------|---------------------------------------------------------------------------------------|--|--|
| Blaine        | Well levels seem to be dropping 1' per year                                           |  |  |
| Burnsville    | One well broke in 1988                                                                |  |  |
| Chanhassen    | Noticed lowering of static levels                                                     |  |  |
| Coon Rapids   | All wells experienced decline in capacity, ranging from 5-<br>50%; one well shut-down |  |  |
| Edina         | Pump bowls lowered 40-60' in several wells                                            |  |  |
| Farmington    | Static levels dropped 3-4' in wells                                                   |  |  |
| Fridley       | Excessive drawdown                                                                    |  |  |
| Long Lake     | Noticeable lowering of static water levels                                            |  |  |
| Maple Grove   | Static levels lower by 10'                                                            |  |  |
| Mounds View   | Two wells lowered 40' to get sufficient water                                         |  |  |
| Norwood       | Dropped 3' in well #1 and lost well #2                                                |  |  |
| Plymouth      | One well failure to draw water                                                        |  |  |
| Rockford      | Noticeable lowering of water levels                                                   |  |  |
| St. Paul Park | Three wells could not keep pace with demand                                           |  |  |
| Spring Park   | No problem but noticed 2' drop in static levels                                       |  |  |
| Tonka Bay     | Experienced some minor static level lowering                                          |  |  |
| Woodbury      | Pumping at maximum daily to meet demand                                               |  |  |

# Table 6 DROUGHT-RELATED GROUND WATER SUPPLY PROBLEMS

It is important to note that the problems listed in Table 6 are not a reflection of poor system management, but are rather an indication of local ground water system limitations in keeping up with demand under drought conditions, when demand is high. Also, the communities listed in Table 6 are those that were not reluctant to identify their difficulties; other communities might not have been so willing, resulting in a somewhat lesser number of identified problems than actually exist.

Many communities (35) responded that they have encountered no problems in their water supply. The most common (53) routine problem noted in Appendix G is the high level of iron (Fe) and manganese (Mn) in ground water. This problem, although common to many supplies, can be overcome by filtration or treatment with polyphosphates. An associated "rotten egg" smell, usually hydrogen sulfide, and other taste, odor and color problems were noted by nine suppliers. Some communities (4) have begun to report radium as a problem, and several others (10) reported problems associated with an aging infrastructure, such as leakage and breaks. Other problems that were mentioned include various chemical problems (3) and excessive hardness (2). Eight suppliers did not respond to the question.

Overall, the ground water supply system in the Metropolitan Area operates with few problems other than the ability of the resource to locally keep up with high demand. Unfortunately, a fair amount of the growth expected in the region for the next 20 years will occur in areas that occur at or beyond the lateral extent of the Prairie du Chien-Jordan Aquifer. This is likely to mean that supply problems such as those noted in Table 6 will become more common. Again, a possible solution to this is a series of subregional systems tied in to a surface water supply source.

#### **CONSERVATION MEASURES**

Yet another question asked in the municipal water suppliers survey was what, if any, conservation measures used during a drought or routinely to avoid demand problems. Table 7 summarizes the responses. Note that the numbers in the table are not additive because many suppliers listed more than one measure.

| CONSERVATION<br>MEASURE                      | NUMBER OF<br>COMMUNITIES USING<br>MEASURE | COMMENTS                                 |
|----------------------------------------------|-------------------------------------------|------------------------------------------|
| Sprinkling restrictions                      | 71                                        | Most restrictions are odd/even as needed |
| Public education                             | 24                                        | Usually instituted with other measures   |
| Leak detection and repair                    | 19                                        | To reduce system losses                  |
| Pricing                                      | 15                                        | Pay more for water                       |
| Indication of program but no details offered | 7                                         | Specifics unknown                        |
| Reuse/recycling                              | 6                                         | Mostly industrial programs               |
| Pressure reduction                           | 5                                         | Reduce service pressures                 |
| Plumbing code revisions                      | 4                                         | No details given                         |
| Low water landscaping                        | 3                                         | For public areas                         |
| No program                                   | 23                                        | No measures instituted                   |

| Table 7                      |      |    |                  |       |                  |
|------------------------------|------|----|------------------|-------|------------------|
| <b>CONSERVATION MEASURES</b> | USED | BY | <b>MUNICIPAL</b> | WATER | <b>SUPPLIERS</b> |

By far the most commonly used measure to reduce demand is the use of sprinkling restrictions. The variety of restrictions is quite large, but most communities use an odd/even approach on an as-needed basis; that is, when demand gets high in the summer and the city begins to notice some difficulty in keeping up with it, the water utility implements restrictions. Several communities have instituted permanent bans because of the difficulty they have had in meeting seasonal demands. Permanent restrictions can assist a community by eliminating the need to build very expensive pumping and storage facilities for short-term, seasonal demand peaks (see also Working Paper No. 5). During wet years, the need for restrictions lessens as demand for outside use drops.

Many communities have supplemented their conservation programs with public information. This type of conservation approach can be easily accomplished through brochures sent to consumers with their quarterly bills. A tremendous amount of information is available to municipal suppliers to assemble educational programs for homeowners, schools, commerce and industry.

System upkeep and maintenance efforts are also used in the region, but not nearly as much as sprinkling restrictions. Leak detection and repair, pressure reduction to service connections or service areas, reuse/recycling, low water public landscaping, and plumbing code revisions are all methods to achieve water use reductions.

The 15 responses claiming to use pricing to achieve water reduction are confusing because the pricing systems to which most refer are not thought of as "conservation pricing". Perhaps the pricing reform to which the communities referred is indicative of changes in their pricing systems from several years ago rather than a concerted effort to price water in order to achieve demand reduction. Of the 15 respondents claiming pricing as a means to achieve conservation, one actually uses a flat rate structure, which is the least water-efficient pricing method; five use decreasing block pricing, which is not much better than a flat rate; eight use single block pricing; and only one (Burnsville) uses the water-efficient increasing block method, but the overall low cost of Burnsville's water because of a low starting price were noted earlier in this report. Of the eight single block utilities claiming price controls their water demand, only three actually charge more than the regional average for 30,000 gallons of water. Obviously, many utilities that claim pricing reform still encourage water use to achieve cheaper per unit prices.

Of final note in Table 7 is the surprisingly high number of communities (23) that have not instituted any use reduction programs at all. It is surprising that a supply system could make it through the recent drought without a need to reduce demand in their system. It is also surprising that these communities did not respond to the statewide call for water use reduction with even an informational program for their customers. Equally surprising is the total number of suppliers (66) noting that they have no emergency plan for their system. These findings are a good indication of the work that remains to be done in the region to attain wise and efficient water use, and preparation for future shortages.

#### NON-MUNICIPAL PUBLIC WATER USE

Another category of public use of water regulated by the Minnesota Department of Health (MDH) is non-municipal use. These typically small systems serve such uses as mobile home parks, small developments, and public and private institutions. Table 8 summarizes the non-municipal, public use of water. Most of the use information on these 65 permitted systems has not been provided to MDH, so a total amount of water used is not available. However, it appears that over 27,000 people are served by 103 wells. Applying the regional municipal system residential per capita use rate of 102 gallons from Appendix B yields an estimate of daily use of approximately 2.75 million gallons. There is a total storage capacity of about 1.4 million gallons in these systems.

| COUNTY     | NO. OF<br>PERMITS | YEAR          | POPL.<br>SERVED | CONNECTS. | DESIGN<br>CAPAC.<br>(mgd) | AVE.<br>DAILY<br>(mgd) | HIGHEST<br>DAILY**<br>(mgd) | EMERG.<br>CAPAC.<br>(mgd) | STORAGE<br>CAPAC.<br>(gal) | NO. OF<br>WELLS | WELL<br>CAPAC.<br>(gpm) |
|------------|-------------------|---------------|-----------------|-----------|---------------------------|------------------------|-----------------------------|---------------------------|----------------------------|-----------------|-------------------------|
| ANOKA      | 12                | 1988          | 6590            | 2189      | D1***                     | 0.45                   | 0.01-<br>0.15               | 0                         | 130460                     | 18              | ÐI                      |
| CARVER     | 4                 | 1988          | 1450            | 278       | DI                        | DI                     | 0.02-<br>0.05               | 0.625                     | 22600                      | 6               | DI                      |
| DAKOTA     | 6                 | 1988          | 1870            | 690       | DI                        | 0.188                  | 0.01-<br>0.134              | 0.296                     | 261500                     | 9               | DI                      |
| HENNEPIN   | 17                | 1987-<br>1988 | 8598            | 1537      | DI                        | DI                     | 0.01-<br>0.115              | 0.288                     | 376860                     | 29              | DI                      |
| RAMSEY     | 10                | 1987-<br>1988 | 3344            | 1338      | DI                        | DI                     | 0.015-<br>0.13              | 0                         | 138400                     | 19              | 3034                    |
| SCOTT      | 6                 | 1987-<br>1988 | 1573            | 380       | DI                        | DI                     | 0.006-<br>0.018             | 0                         | 19220                      | 9               | DI                      |
| WASHINGTON | 10                | 1987-<br>1988 | 4036            | 967       | DI                        | DI                     | 0.0025-<br>0.7              | 0                         | 449619                     | 13              | DI                      |
| TOTAL      | 65                |               | 27461           | 7379      |                           |                        |                             |                           | 1398659                    | 103             |                         |

Table 8 WATER USE IN THE METROPOLITAN AREA - NON-MUNICIPAL, PUBLIC SYSTEMS

\* Data include institutional connections that serve many people \*\* Among those reporting highest use \*\*\* Data incomplete

Source: Minnesota Department of Health, August 1989

### SUMMARY

Because this is a working data report, conclusions and recommendations will not be drawn. Rather, the information and analysis contained herein will be used in subsequent reports on the needs of the Metropolitan Area relative to water supply. The following items summarize information contained in the body and appendices of this report.

1. There are 111 municipal water suppliers in the region, serving a combined population of 2,015,994 through 538,125 residential, commercial, industrial and institutional connections. A 112th system is currently being built by the city of Lakeland to serve itself, Lakeland Shores and Lake St. Croix Beach, raising the population served by 4,500 after September, 1991.

2. The average municipal water demand for all uses is about 277.5 million gallons per day (MGD) from a supply system with a total capacity of 904 MGD. Because of several years of dry weather, the average DNR-reported daily use rose to slightly over 300 MGD (see Working Paper No.1). The sum of the highest daily demand figures experienced by the municipal suppliers is 709 MGD, or 200 MGD less than the system capacity.

3. There are 490 municipal water wells in the region, with a combined capacity of 702 MGD. The Prairie du Chien-Jordan Aquifer supplies 66.5% of the capacity from these wells, with multi-aquifer wells, the surficial drift and the Mt. Simon-Hinckley Aquifer supplying an additional 13.2%, 9.8% and 7.1%, respectively. Small additional amounts come from the St. Lawrence-Franconia and Ironton-Galesville units. Less than one percent of the capacity of the system comes from unknown ground water units.

4. Projections for the Metropolitan Area show that a large portion of the future growth is likely to occur in communities that are located at the terminus or beyond the limits of the Prairie du Chien-Jordan Aquifer. Some communities in these locations have already experienced some symptoms of limited ground water availability.

5. About 87 MGD of the water supplied by municipal suppliers goes for industrial, commercial and institutional uses. This comprises about one-third (30.3%) of the total municipal water supplied. Although many suppliers stated that they would cut-off supply to these users in an emergency, many indicated an intention not to do so under any condition because of the disruption that would occur.

6. Mean per capita water use by municipal water consumers is 128 gallons when all uses are considered, or 102 gallons for just residential use. Peak per capita demand for all uses averaged 328 gallons. Peak per capita use for residential uses only is not available.

7. The average cost of water in the region for residential and industrial uses is between \$1.10 and \$1.20 per thousand gallons, or slightly over 0.1 cent/gallon. Most suppliers surveyed (54) price their water using a single block structure, followed by decreasing block (45). Five municipalities still charge a flat rate for all of the water a consumer can use. Only seven municipalities price water according to an increasing block rate structure that charges more per unit as use increases. These prices are substantially more than the \$0.56 per thousand gallon rate of 1979 in the region.

8. Only five municipal supply systems in the Metropolitan Area do not fully meter their customers.

The first step in assuring wise use of water in the region should be complete service area metering by suppliers.

9. With the current system of pricing water, there is no discernible relationship ( $r^2 = -.05$ ) between cost and demand. This analysis, however, is confusing because of the starting base price from which a particular pricing method begins; that is, increasing block systems that use an extremely low base price charge far less for a given volume than a single or even a decreasing block system that uses higher base prices. The use of increasing block pricing to achieve demand reduction must incorporate a reasonable base price or the goal of reduction will not be achieved. The trend between pricing and demand could become better established if there was a more even mix of pricing methods and if there were not so many anomalies in the base prices.

10. Sixty-two municipal suppliers responded that they are interconnected in some fashion to another supplier; most of these are small emergency connections. Another 31 stated that they are not currently interconnected, but are interested in pursuing possibilities to do so. Only 23 suppliers indicated no interest in interconnecting, and most of these were because of the large distance to the closest possible connecting supplier.

11. A system of interconnection on a subregional basis is feasible. Several groupings of municipal suppliers could be instituted to share water on a permanent or emergency basis. The long-term option of routing excess surface water outward and ground water into the central part of the region is an option that merits further attention. Such an approach would assure adequate volumes of water to out-lying communities that are now, or might be in the future, experiencing water shortages. However, before pursuing a regional or subregional supply system, much additional work would need to be done to justify and design it.

12. Difficulties in putting together a subregional system of interconnected users include cost, differing system pressures, loss of system autonomy, altered revenue distribution, and varied treatment requirements.

13. Several communities experienced difficulties with lowered ground water during the recent drought. Typically, these problems occurred in rapidly growing communities or in communities on or beyond the outer edge of the Prairie du Chien-Jordan Aquifer. This may be symptomatic of problems that will plague communities expected to grow without this aquifer as a source of water.

14. The most common routine problem encountered by those suppliers identifying problems is the high level of iron and manganese in ground water. Other noted problems include "rotten egg" odors, an aging infrastructure, and radium.

15. 71 suppliers in the region use some method of sprinkling restriction when seasonal demand gets high. Public education and leak detection and repair are also commonly used to decrease demand. Most municipalities responding that they use pricing to control demand do not use a conservation-pricing approach, so the benefit of their efforts is questionable. Twenty-three of the surveyed municipalities do not have any type of conservation program in effect and 66 suppliers have no emergency plan in the event of shortage.

16. There are 65 permitted non-municipal, public supplies in the region, serving 27,461 people. Water for these supplies comes from 103 wells, with an estimated demand of 2.75 MGD.

.

## WUNICIPAL WATER SUPPLY INVENTORY

K.,

## **VDDENDIX V**

Source: Prepared by Metropolitan Council from Minnesota Department of Health data, August 1989; updated by Met. Council through Oct.1990

1 1 1

|                          |       |        |           | DESIGN | AVE.  | HIGHEST | EMERG.  | STORAGE   |        |           |       |           | WELL     |          |
|--------------------------|-------|--------|-----------|--------|-------|---------|---------|-----------|--------|-----------|-------|-----------|----------|----------|
|                          |       | POPL.  |           | CAPAC. | DAILY | DAILY   | CAPAC.  | CAPAC.*   |        | YEAR      | WELL  | CASING    | CAPAC.** | GEOLOGIC |
| CITY                     | MOYR  | SERVED | CONNECTS. | (mgd)  | (mgd) | (mgd)   | (mgd)   | (mg)      | WELL # | INSTALLED | DEPTH | DEPTH     | (gpm)    | UNIT***  |
| ANDOVER                  | Dec89 | 3809   | 1138      | 2.4    | 0.49  | -       | 0       | 1-0.0075T | 1      | 81        | 601   | 368       | 850P     | MTS-H    |
|                          |       |        |           |        |       |         |         | 1-0.58    | 2      | 86        | 525   | 387       | 850P     | MTS-H    |
|                          |       |        |           |        |       |         |         | 1-1.0E    | 3      | 87        | 547   | 447       | 850P     | MTS-H    |
| ANOKA                    | Nov88 | 15950  | 5000      | 9.2    | 2.6   | 7.8     | 1.44    | 2-0.5E    | 1      | 20        | 400   | 250       | 500E     | F-D      |
|                          |       |        |           |        |       |         |         | 1-0.4E    | 2      | 42        | 170   | 170       | 500E     | DRIFT    |
|                          |       |        |           |        |       |         |         |           | 3      | 52        | 452   | 71        | 1000P    | S-G      |
|                          |       |        |           |        |       |         |         |           | 4      | 59        | 660   | 522       | 1200P    | D-H      |
|                          |       |        |           |        |       |         |         |           | 5      | 65        | 444   | 238       | 1500P    | F-1      |
|                          |       |        |           |        |       |         |         |           | 6      | 76        | 640   | 387       | 1700P    | I-MTS    |
|                          |       |        |           |        |       |         |         |           | 7      | 89        | 450   | 370       | 1700P    | MTS      |
| APPLE VALLEY             | Mar88 | 30000  | 10248     | 17     | 5     | 14.3    | 3.3     | 1-4.0G    | 1      | 63        | 520   | 445       | 450P     | J        |
|                          |       |        |           |        |       |         |         | 1-3.2G    | 2      | 64        | 529   | 431       | 950P     | J        |
|                          |       |        |           |        |       |         |         | 1-2.0G    | 3      | 59        | 584   | 476       | 1000P    | J        |
|                          |       |        |           |        |       |         |         |           | 4      | 71        | 497   | 400       | 1100P    | J        |
|                          |       |        |           |        |       |         |         |           | 5      | 75        | 487   | 425       | 1200P    | J        |
|                          |       |        |           |        |       |         |         |           | 6      | 76        | 507   | 426       | 1300P    | J        |
|                          |       |        |           |        |       |         |         |           | 7      | 77        | 494   | 405       | 1200P    | J        |
|                          |       |        |           |        |       |         |         |           | 8      | 79        | 506   | 432       | 1200P    | J        |
|                          |       |        |           |        |       |         |         |           | 9      | 81        | 515   | 428       | 1200P    | 1        |
|                          |       |        |           |        |       |         |         |           | 10     | 82        | 502   | 426       | 1200P    | J        |
|                          |       |        |           |        |       |         |         |           | 11     | 86        | 493   | 408       | 1400P    | J        |
|                          |       |        |           |        |       |         |         |           | 12     | 89        | 494   | 418       | 1600P    | J        |
|                          |       |        |           |        |       |         |         |           | 13     | 89        | 516   | 420       | 1600P    | J        |
|                          |       |        |           |        |       |         |         |           | 14     | 90        | 1120  | 510(est.) | 1000P    | MTS-H    |
| ARDEN HILLS<br>(ST.PAUL) | May88 | 9100   | 2304      | 1.99   | 0.86  | -       | See St. | Paul      |        |           |       |           |          |          |
| BAYPORT                  | Nov87 | 2000   | 600       | 3      | 0.3   | 0.7     | 0.6     | 1-0.13G   | 2      | 47        | 315   | 193       | 620P     | STL-F    |
|                          |       |        |           |        |       |         |         |           | 3      | 52        | 299   | 118       | 500P     | STL-F    |
|                          |       |        |           |        |       |         |         |           | 4      | 64        | 260   | 136       | 1000P    | F        |
| BELLE PLAINE             | Mar89 | 3010   | 825       | 1.4    | 0.4   | 1       | 0       | 1-0.075E  | E      | 50        | 287   | 257       | 425P     | ย        |
|                          |       |        |           |        |       |         |         | 1-0.4E    | W      | 55        | 287   | 257       | 425P     | U        |

A-1

|                 |       |        |           | DESIGN      | AVE.  | HIGHEST | EMERG. | STORAGE |        |           |       |        | WELL           |          |
|-----------------|-------|--------|-----------|-------------|-------|---------|--------|---------|--------|-----------|-------|--------|----------------|----------|
|                 |       | POPL.  |           | CAPAC.      | DAILY | DAILY   | CAPAC. | CAPAC.* |        | YEAR      | WELL  | CASING | CAPAC.**       | GEOLOGIC |
| CITY            | MOYR  | SERVED | CONNECTS. | (mgd)       | (mgd) | (mgd)   | (mgd)  | (mg)    | WELL # | INSTALLED | DEPTH | DEPTH  | (gpm)          | UNIT***  |
| BLAINE          | Nov88 | 35560  | 10000     | 22.5        | 5     | 14.4    | 2      | 3-1.0E  | 1      | 59        | 675   | 224    | 650P           | F-MTS    |
|                 |       |        |           |             |       | •       |        | 1-5.0G  | 2      | 60        | 665   | 229    | 585P           | F-MTS    |
|                 |       |        |           |             |       |         |        |         | 3      | 60        | 681   | 221    | 750P           | J-MTS    |
|                 |       |        |           |             |       |         |        |         | 4      | 65        | 524   | 227    | 650P           | J-EC     |
|                 |       |        |           |             |       |         |        |         | 5      | 66        | 686   | 323    | 700P           | F-MTS    |
|                 |       |        |           |             |       |         |        |         | 6      | 68        | 741   | 300    | 500P           | F-MTS    |
|                 |       |        |           |             |       |         |        |         | 7      | 69        | 487   | 213    | 1500P          | F-EC     |
|                 |       |        |           |             |       |         |        |         | 8      | 71        | 500   | 222    | 1600P          | I-G      |
|                 |       |        |           |             |       |         |        |         | 9      | 72        | 480   | 300    | 800P           | I-G      |
|                 |       |        |           |             |       |         |        |         | 10     | 71        | 480   | 257    | 400P           | F        |
|                 |       |        |           |             |       |         |        |         | 11     | 74        | 735   | 245    | 1050P          | F-MTS    |
|                 |       |        |           |             |       |         |        |         | 12     | 76        | 228   | 188    | 1500P          | DRIFT    |
|                 |       |        |           |             |       |         |        |         | 13     | 77        | 355   | 308    | 1600P          | F-MTS    |
|                 |       |        |           |             |       |         |        |         | 14     | 78        | 736   | 414    | 1600P          | F-MTS    |
|                 |       |        |           |             |       |         |        |         | 16     | 87        | 505   | 298    | 1500P          | F-G      |
|                 |       |        |           |             |       |         |        |         | 17     | 90s       | -     | -      | -              | -        |
| BLOOMINGTON     | May89 | 83870  | 24057     | 38.6        | 12.55 | 39.6    | 30     | 2-10.0G | 1      | 73        | 440   | 345    | 1750P          | J        |
|                 |       |        |           | (MAX.30 MGD |       |         | 6.33P  | 2-1.5E  | 2      | 73        | 392   | 315    | 2400P          | S-J      |
|                 |       |        |           | FROM MPLS.) |       |         |        | 1-3.0G  | 3      | 74        | 963   | 450    | 2000P          | F-MTS    |
|                 |       |        |           |             |       |         |        | 1-4.0G  | 4      | 78        | 376   | 282    | 1800P          | S-J      |
| BROOKLYN CENTER | 0ct87 | 31500  | 8800      | 15.5        | 4.5   | 12.6    | 0      | 1-1.0E  | 2      | 59        | 340   | 255    | 11 <b>3</b> 0s | J        |
|                 |       |        |           |             |       |         |        | 1-0.5E  | 3      | 61        | 319   | 248    | 1175P          | J        |
|                 |       |        |           |             |       |         |        | 1-1.5E  | 4      | 61        | 316   | 245    | 1320s          | J        |
|                 |       |        |           |             |       |         |        |         | 5      | 66        | 317   | 242    | 1400P          | J        |
|                 |       |        |           |             |       |         |        |         | 6      | 66        | 316   | 247    | 1440P          | J        |
|                 |       |        |           |             |       |         |        |         | 7      | 71        | 317   | 248    | 1450P          | J        |
|                 |       |        |           |             |       |         |        |         | 8      | 77        | 316   | 241    | 1400P          | J        |
|                 |       |        |           |             |       |         |        |         | 9      | 83        | 320   | 244    | 1560P          | J        |
| BROOKLYN PARK   | 0ct87 | 45000  | 13500     | 20          | 6     | 17.6    | 2.5    | 2-1.0E  | 1      | 61        | 736   | 563    | 650P           | D-MTS    |
|                 |       |        |           |             |       |         |        | 1-2.0G  | 2      | 61        | 595   | 330    | 580P           | F-MTS    |
|                 |       |        |           |             |       |         |        | 1-6.0G  | 3      | 72        | 234   | 163    | 660P           | J        |
|                 |       |        |           |             |       |         |        |         | 4      | 67        | 655   | 236    | 575P           | F-MTS    |
|                 |       |        |           |             |       |         |        |         | 5      | 70        | 182   | 149    | 295P           | J        |
|                 |       |        |           |             |       |         |        |         | 6      | 66        | 672   | 253    | 810P           | F-MTS    |
|                 |       |        |           |             |       |         |        |         | 7      | 70        | 241   | 151    | 690P           | 1        |
|                 |       |        |           |             |       |         |        |         | 8      | 75        | 171   | 120    | 1250P          | DRIFT    |
|                 |       |        |           |             |       |         |        |         | 9      | 76        | 274   | 210    | 1750P          | DRIFT    |
|                 |       |        |           |             |       |         |        |         | 10     | 81        | 271   | 201    | 2610P          | DRIFT    |
|                 |       |        |           |             |       |         |        |         | 11     | 81        | 213   | 134    | 2800P          | DRIFT    |
|                 |       |        |           |             |       |         |        |         | 12     | 82        | 276   | 202    | 1210P          | S-J      |
|                 |       |        |           |             |       |         |        |         | 13     | 87        | 280   | 240    | 2500P          |          |
|                 |       |        |           |             |       |         |        |         | 14     | 87        | 280   | 240    | 2500P          | DRIFT    |
|                 |       |        |           |             |       |         |        |         | 15     | 89        | 550?  | 450?   | 725            | MTS-H    |

A-2

(
|             |       | POPL.  |           | DESIGN<br>CAPAC. | AVE.<br>DAILY        | HIGHEST<br>DAILY | EMERG.<br>CAPAC. | STORAGE<br>CAPAC.* |        | YEAR       | WELL  | CASING | WELL<br>CAPAC.** | GEOLOGIC |
|-------------|-------|--------|-----------|------------------|----------------------|------------------|------------------|--------------------|--------|------------|-------|--------|------------------|----------|
| CITY        | MOYR  | SERVED | CONNECTS. | (mgd)            | (mgd)                | (mgd)            | (mgd)            | (mg)               | WELL # | INSTALLED  | DEPTH | DEPTH  | (gpm)            | UNIT***  |
| BURNSVILLE  | Sep87 | 44353  | 12058     | 23               | 5.5                  | 21               | 11               | 1-1.8G             | 1      | 64         | 298   | 218    | 1200P            | J        |
|             |       |        |           | (30.0P)          |                      |                  |                  | 1-1.1E             | 2      | 66         | 306   | 225    | 1200P            | L        |
|             |       |        |           |                  |                      |                  |                  | 1-7.0E             | 3      | 69         | 420   | 338    | 1300P            | J        |
|             |       |        |           |                  |                      |                  |                  | 1-7.0G             | 4      | 69         | 314   | 234    | 1200P            | Ŀ        |
|             |       |        |           |                  |                      |                  |                  | 1-1.6E             | 5      | 70         | 335   | 260    | 1500P            | L        |
|             |       |        |           |                  |                      |                  |                  | 1-0.5G             | 6      | 70         | 264   | 187    | 1200P            | J        |
|             |       |        |           |                  |                      |                  |                  |                    | 7      | 72         | 356   | 282    | 1200P            | J        |
|             |       |        |           |                  |                      |                  |                  |                    | 8      | 72         | 557   | 272    | 1500P            | J        |
|             |       |        |           |                  |                      |                  |                  |                    | 9      | /5<br>75   | 957   | 428    | 1500P            | STL-H    |
|             |       |        |           |                  |                      |                  |                  |                    | 10     | 75         | 386   | 299    | 1200P            | J        |
|             |       |        |           |                  |                      |                  |                  |                    | 11     | 0 I<br>9 0 | 984   | 728    | 1500P            | MIS-H    |
|             |       |        |           |                  |                      |                  |                  |                    | 12     | 00<br>79   | 402   | 341    | 12000            | J        |
|             |       |        |           |                  |                      |                  |                  |                    | 1/     | /0         | 407   | 324    | 12000            | J        |
|             |       |        |           |                  |                      |                  |                  |                    | 15     | 90         | -     | -      | -                | -        |
| CARVER      | Dec87 | 523    | 177       | 0.29             | 0.035                | 0.075            | -                | 1-0.4E             | 1      | 86         | 738   | 600    | 200P             | MTS      |
| CENTERVILLE | Feb89 | 450    | 175       | 0.1              | 0.034<br>(estimated) | -                | -                | 1-0.1E             | 1      | 88         | 267   | 202    | 400P             | J        |
| CHAMPLIN    | Mar90 | 15000  | 5050      | 7.9              | 1.5                  | 7.5              | 2                | 2-1.0F             | 1      | 74         | 700   | 275    | 12000            | E-U      |
|             |       |        | -         |                  |                      | • • •            | -                | 1-0.006T           | 2      | 74         | 620   | 195    | 12000            | F-MTS    |
|             |       |        |           |                  |                      |                  |                  |                    | 3      | 77         | 602   | 201    | 500P             | F-MTS    |
|             |       |        |           |                  |                      |                  |                  |                    | 4      | 84         | 505   | 153    | 500P             | F-MTS    |
|             |       |        |           |                  |                      |                  |                  |                    | 5      | 84         | 550   | 381    | 1000P            | MTS      |
|             |       |        |           |                  |                      |                  |                  |                    | 6      | 87         | 301   | 190    | 550P             | J        |
|             |       |        |           |                  |                      |                  |                  |                    | 7      | 87         | 450   | 430    | 1000P            | MTS      |
|             |       |        |           |                  |                      |                  |                  |                    | 8      | 90s        |       |        | 750              |          |
|             |       |        |           |                  |                      |                  |                  |                    | 9      | 90s        |       |        | 750              |          |
|             |       |        |           |                  |                      |                  |                  |                    | 10     | 90s        |       |        | 1000             |          |
|             |       |        |           |                  |                      |                  |                  |                    | 11     | 90s        |       |        | 1000             |          |
|             |       |        |           |                  |                      |                  |                  |                    | 12     | 90s        |       |        | 1000             |          |
|             |       |        |           |                  |                      |                  |                  |                    | 13     | 90s        |       |        | 1000             |          |
| CHANHASSEN  | Nov88 | 10000  | 3000      | 3.2              | 1.2                  | 2.3              | 0                | 1-0.1E             | 2      | 69         | 471   | 325    | 1000P            | S        |
|             |       |        |           |                  |                      |                  |                  | 1-0.2E             | 3      | 73         | 500   | 317    | 1000P            | S        |
|             |       |        |           |                  |                      |                  |                  | 1-3.5G             | 4      | 81         | 665   | 289    | 1000P            | PDC-J    |
|             |       |        |           |                  |                      |                  |                  |                    | JH     | 63         | 501   | 419    | 150E             | S-J      |
|             |       |        |           |                  |                      |                  |                  |                    | 5      | 90         | 215   | 185    | 700P             | DRIFT    |
| CHASKA      | May90 | 11000  | 2454      | 7.6              | 3.18                 | 4                | 0                | 1-0.35G            | 4      | 73         | 813   | 448    | 1750P            | F-H      |
|             |       |        |           |                  |                      |                  |                  | 1-0.3E             | 5      | 76         | 773   | 494    | 1750P            | F-H      |
|             |       |        |           |                  |                      |                  |                  | 1-1.5E             | 6      | 84         | 817   | 687    | 1800P            | MTS-H    |

0.5 1.5 2.6 1-0.5E

2 3 61 67 321 270 302 181 1000P DRIFT 1100P J CIRCLE PINES

Nov88

4800

1611

2.6

| CITY                                      | MOYP  | POPL. | CONNECTS | DESIGN<br>CAPAC. | AVE.<br>DAILY<br>(mod) | HIGHEST<br>DAILY<br>(mod) | EMERG.<br>CAPAC. | STORAGE<br>CAPAC.* | UFII #   | YEAR     | WELL | CASING    | WELL<br>CAPAC.** | GEOLOGIC |
|-------------------------------------------|-------|-------|----------|------------------|------------------------|---------------------------|------------------|--------------------|----------|----------|------|-----------|------------------|----------|
|                                           | Sep88 | 610   | 215      | 0.43             | 0.075                  | 0.16                      | 0                | 1-0.75E            | <u></u>  | 34       | 344  | 160       | 120P             | U        |
| 00200M2                                   | Uupuu | 0.0   | 215      |                  |                        | 0110                      | ·                |                    | 2        | 11       | 725  | 550       | 225P             | U        |
| COLUMBIA HTS.                             | Jun90 | 20000 | 8300     | 6.8              | 1.85                   | 5                         | 20               | 1-0.25E            |          |          |      |           |                  |          |
| (MINNEAPOLIS)                             |       |       |          |                  |                        |                           |                  | 1-6.75G            |          |          |      |           |                  |          |
|                                           |       |       |          |                  |                        |                           |                  | (20.25 in          | emergenc | y)       |      |           |                  |          |
| COON RAPIDS                               | Sep89 | 45700 | 14000    | 22               | 3.92                   | 13.2                      | 5.8              | 1-1.0E             | 2        | 59       | 685  | 220       | 400E             | F-MTS    |
|                                           |       |       |          |                  |                        |                           |                  | 1-0.5E             | 4        | 60       | 602  | 233       | 1000P            | F-D      |
|                                           |       |       |          |                  |                        |                           |                  | 2-5.8G             | 5        | 61       | 695  | 265       | 500P             | F-MTS    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 6        | 61       | 158  | 118       | 250E             | J        |
|                                           |       |       |          |                  |                        |                           |                  |                    | 7        | 64       | 632  | 189       | 1300P            | F-D      |
|                                           |       |       |          |                  |                        |                           |                  |                    | 8        | 65       | 702  | 283       | 1000P            | F-MTS    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 9        | 69       | 500  | 294       | 1000P            | F-D      |
|                                           |       |       |          |                  |                        |                           |                  |                    | 10       | 71       | 684  | 272       | 1000P            | F-MTS    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 11       | 73       | 627  | 157       | 1100P            | F-MTS    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 12       | ()<br>77 | 604  | 209       | 900P             | F-MTS    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 13       | 77       | 643  | 373       | 9000             | F-MIS    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 14       | 77       | 615  | 328       | 12000            | F-MIS    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 12       | //<br>01 | 457  | 225       | 12000            | F-MIS    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 10       | 81       | 121  | 373<br>91 | 12000            | P-MIS    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 18       | 87       | 400  | 575       | 10000            | DRIFT    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 10       | 89       | 135  | 115       | 12000            | NDICT    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 20       | 80       | 135  | 05        | 11000            | DRIFT    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 21       | 90       | -    | -         | 1200est          | DRIFT    |
|                                           |       |       |          |                  |                        |                           |                  |                    | 22       | 90       | -    | -         | 900est.          | DRIFT    |
|                                           |       |       |          |                  |                        |                           |                  |                    |          |          |      |           |                  |          |
| COTTAGE GROVE                             | Oct87 | 21000 | 5700     | 14.8             | 2.3                    | 8.5                       | 2                | 1-0.15E            | 1        | 58       | 325  | 238       | 670P             | J        |
|                                           |       |       |          |                  |                        |                           |                  | 1-1.5E             | 2        | 58       | 350  | 248       | 420P             | J        |
|                                           |       |       |          |                  |                        |                           |                  | 1-1.0G             | 3        | 60       | 388  | 312       | 780P             | J        |
|                                           |       |       |          |                  |                        |                           |                  | 1-3.0G             | 4        | 62       | 418  | 340       | 880P             | J        |
|                                           |       |       |          |                  |                        |                           |                  | 1-0.5E             | 5        | 67       | 358  | 283       | 1120P            | J        |
|                                           |       |       |          |                  |                        |                           |                  |                    | 6        | 74       | 427  | 344       | 1090P            | ł        |
|                                           |       |       |          |                  |                        |                           |                  |                    | 7        | 76       | 370  | 281       | 490P             | J        |
|                                           |       |       |          |                  |                        |                           |                  |                    | 8        | 77       | 400  | 313       | 1230P            | J        |
|                                           |       |       |          |                  |                        |                           |                  |                    | 9        | 79       | 380  | 321       | 1530P            | J        |
|                                           |       |       |          |                  |                        |                           |                  |                    | 10       | 85       | 284  | 220       | 1800P            | J        |
| CRYSTAL<br>(MINNEAPOLIS)<br>(SEE NOTE #1) | Mar90 | 23000 | 7514     | 6.0              | 5.0                    | 18.7                      | 20               | See<br>New Hope    |          |          |      |           |                  |          |

1 1 1

Colorador -

|              |        |        |           | DESIGN  | AVE.  | HIGHEST | EMERG. | STORAGE |        |           |       |        | WELL     |          |
|--------------|--------|--------|-----------|---------|-------|---------|--------|---------|--------|-----------|-------|--------|----------|----------|
|              |        | POPL.  |           | CAPAC.  | DAILY | DAILY   | CAPAC. | CAPAC.* |        | YEAR      | WELL  | CASING | CAPAC.** | GEOLOGIC |
| CITY         | MOYR   | SERVED | CONNECTS. | (mgd)   | (mgd) | (mgd)   | (mgd)  | (mg)    | WELL # | INSTALLED | DEPTH | DEPTH  | (gpm)    | UNIT***  |
| EAGAN        | Jul 88 | 42000  | 10000     | 15.26   | 6.1   | 17.3    | 2.9    | 1-0.5E  | 1      | 68        | 402   | 346    | 1400P    | J        |
|              |        |        |           | (12.0P) |       |         |        | 1-2.0G  | 2      | 71        | 435   | 358    | 1200P    | J        |
|              |        |        |           |         |       |         |        | 1-5.0G  | 3      | 73        | 394   | 336    | 1250P    | J        |
|              |        |        |           |         |       |         |        | 1-4.0G  | 4      | 76        | 392   | 348    | 1300P    | J        |
|              |        |        |           |         |       |         |        | 1-0.6G  | 5      | 78        | 500   | 406    | 1200P    | J        |
|              |        |        |           |         |       |         |        |         | 6      | 80        | 420   | 356    | 1300P    | J        |
|              |        |        |           |         |       |         |        |         | 7      | 82        | 475   | 393    | 1400P    | J        |
|              |        |        |           |         |       |         |        |         | TL     | 61        | 498   | 394    | 500E     | Ĵ        |
|              |        |        |           |         |       |         |        |         | CG     | 59        | 450   | 348    | 500P     | J        |
|              |        |        |           |         |       |         |        |         | CG     | 64        | 444   | 349    | 500P     | 1        |
|              |        |        |           |         |       |         |        |         | 8      | 82        | 1075  | 850    | 1350P    | MTS      |
|              |        |        |           |         |       |         |        |         | ō      | 87        | 483   | 403    | 1350P    |          |
|              |        |        |           |         |       |         |        |         | 10     | 87        | 535   | 405    | 1350P    |          |
|              |        |        |           |         |       |         |        |         | 11     | 88        | 1048  | 758    | 12000    | MTS      |
|              |        |        |           |         |       |         |        |         | 12     | 80        | /.72  | 795    | 12000    | 1        |
|              |        |        |           |         |       |         |        |         | 12     | 80        | 412   | 202    | 12000    | J<br>1   |
|              |        |        |           |         |       |         |        |         | 14     | 07        | 492   | 302    | 12000    | 3        |
|              |        |        |           |         |       |         |        |         | 14     | 90        | •     | -      | -        | 1        |
|              |        |        |           |         |       |         |        |         | 12     | 90        | •     | -      | -        | J        |
| EDEN PRAIRIE | Feb89  | 34000  | 11000     | 18      | 3.4   | 15.8    | 2      | 2-1.06  | 1      | 71        | 405   | 227    | 1400P    | ¢        |
|              |        |        |           |         |       |         | -      | 1-1-0E  | 2      | 71        | 304   | 210    | 14000    | 6        |
|              |        |        |           |         |       |         |        | 1-2.26  | 3      | 78        | 302   | 207    | 14000    | 5        |
|              |        |        |           |         |       |         |        |         | 4      | 82        | 370   | 207    | 14000    | 5        |
|              |        |        |           |         |       |         |        |         | 5      | 81        | 307   | 210    | 14000    | 3        |
|              |        |        |           |         |       |         |        |         | 5      | 01        | 700   | 219    | 1400P    | 5        |
|              |        |        |           |         |       |         |        |         | 7      | 01        | 200   | 230    | 1400P    | 5        |
|              |        |        |           |         |       |         |        |         |        | 0/        | 202   | 300    | 21000    | PUL-J    |
|              |        |        |           |         |       |         |        |         | 0      | 00        | 281   | 318    | 2100P    | PDC-J    |
|              |        |        |           |         |       |         |        |         | ¥      | 00        | 405   | 319    | 2100P    | PDC-J    |
|              |        |        |           |         |       |         |        |         | 10     | 88        | 401   | 308    | 2100P    | PDC-J    |
| EDINA        | Dec88  | 46000  | 13360     | 21.8    | 7.4   | 21      | 0      | 1-4.0G  | 2      | 35        | 460   | 250    | 1000P    | s        |
|              |        |        |           |         |       |         |        | 2-1.0E  | 3      | 49        | 496   | 265    | 8000     | s        |
|              |        |        |           |         |       |         |        | 2-0.5E  | 4      | 50        | 495   | 265    | 6500     | ç        |
|              |        |        |           |         |       |         |        |         | 5      | 54        | 443   | 257    | 8500     | s        |
|              |        |        |           |         |       |         |        |         | 6      | 54        | 505   | 316    | 10000    | 5        |
|              |        |        |           |         |       |         |        |         | 7      | 55        | 547   | 350    | 0000     | 3        |
|              |        |        |           |         |       |         |        |         | 8      | 53        | 1.72  | 550    | 900P     | 5        |
|              |        |        |           |         |       |         |        |         | 0      | 57        | 4/2   | 232    | 9008     | 5        |
|              |        |        |           |         |       |         |        |         | 10     | 51<br>47  | 1001  | 202    | 0502     | F        |
|              |        |        |           |         |       |         |        |         | 11     | 63        | 704   | 701    | 8500     |          |
|              |        |        |           |         |       |         |        |         | 11     | 63        | 321   | 321    | 12000    | J        |
|              |        |        |           |         |       |         |        |         | 12     | 64        | 1081  | 995    | 850P     | H        |
|              |        |        |           |         |       |         |        |         | 13     | 04        | 496   | 427    | 1000P    | J        |
|              |        |        |           |         |       |         |        |         | 14     | 64        | 420   | 325    | 900P     | J        |
|              |        |        |           |         |       |         |        |         | 15     | 67        | 405   | 275    | 600P     | S        |
|              |        |        |           |         |       |         |        |         | 16     | 67        | 280   | 265    | 1200P    | S        |
|              |        |        |           |         |       |         |        |         | 17     | 70        | 461   | 373    | 1050P    | J        |
|              |        |        |           |         |       |         |        |         | 18     | 73        | 446   | 365    | 650P     | J        |
|              |        |        |           |         |       |         |        |         | 19     | 90        | 540   | -      | 1000P    | J        |

|                                |       |              |           | DESIGN | AVE.  | HIGHEST | EMERG.  | STORAGE   |        |           |       |        | WELL     |          |
|--------------------------------|-------|--------------|-----------|--------|-------|---------|---------|-----------|--------|-----------|-------|--------|----------|----------|
|                                |       | POPL.        |           | CAPAC. | DAILY | DAILY   | CAPAC.  | CAPAC.*   |        | YEAR      | WELL  | CASING | CAPAC.** | GEOLOGIC |
| CITY                           | MOYR  | SERVED       | CONNECTS. | (mgd)  | (mgd) | (mgd)   | (mgd)   | (mg)      | WELL # | INSTALLED | DEPTH | DEPTH  | (gpm)    | UNIT***  |
| ELKO                           | May88 | 125          | 35        | 0.33   | 0.009 | 0.035   | 0       | 1-0.0026T | 1      | 70        | 487   | 320    | 150P     | U        |
| EMPIRE                         | Mar89 | 450          | 193       | 1.8    | 0.055 | 0.21    | 0       | 2-0.007T  | 1      | 73        | 410   | 340    | 750P     | J        |
|                                |       |              |           |        |       |         |         |           | 2      | 81        | 457   | 355    | 500P     | J        |
| EXCELSIOR                      | Apr88 | 2860         | 1300      | 2.3    | 0.434 | 0.775   | 0.3     | 1-0.3G    | 1      | 57        | 465   | 303    | 350P     | S-J      |
|                                |       |              |           | (1.OP) |       |         |         | 1-0.25E   | 2      | 59        | 448   | 290    | 500P     | S-J      |
|                                |       |              |           |        |       |         |         |           | 3      | 73        | 465   | 302    | 750P     | S-J      |
| FALCON HTS.<br>(ST.PAUL)       | Feb90 | 5386         | 2084      | -      | 0.7   | -       | See St. | Paul      |        |           |       |        |          |          |
| FARMINGTON                     | Aug89 | <b>565</b> 0 | 1650      | 3.4    | 0.8   | 2.8     | 0.65    | 1-0.675G  | 1      | 38        | 402   | 284    | 800E     | S-ON     |
|                                |       |              |           |        |       |         |         |           | 2      | 52        | 402   | 284    | 450E     | ON       |
|                                |       |              |           |        |       |         |         |           | 3      | 60        | 430   | 130    | 1000P    | J        |
|                                |       |              |           |        |       |         |         |           | 4      | 73        | 477   | 392    | 1000P    | Ŀ        |
| FOREST LAKE                    | Dec89 | 5400         | 1600      | 2.1    | 0.69  | 2.15    | 0       | 1-0.1E    | 1      | 24        | 678   | 143    | 500P     | F-H      |
|                                |       |              |           |        |       |         |         | 1-0.5E    | 3      | 65        | 630   | 310    | 890P     | I - H    |
|                                |       |              |           |        |       |         |         |           | 4      | 92        | -     | -      | 700-1000 |          |
| FRIDLEY                        | Nov88 | 29423        | 7884      | 20     | 6.5   | 15.7    | 5       | 1-0.5E    | 1      | 57        | 925   | 389    | 670P     | H-L      |
|                                |       |              |           |        |       |         |         | 1-1.5G    | 2      | 61        | 842   | 675    | 820P     | MTS-H    |
|                                |       |              |           |        |       |         |         | 1-3.0G    | 3      | 61        | 840   | 752    | 870P     | MTS-H    |
|                                |       |              |           |        |       |         |         |           | 4      | 61        | 830   | 663    | 750P     | MTS-H    |
|                                |       |              |           |        |       |         |         |           | 5      | 61        | 845   | 656    | 780P     | F-H      |
|                                |       |              |           |        |       |         |         |           | 6      | 64        | 250   | 153    | 1600P    | S        |
|                                |       |              |           |        |       |         |         |           | 7      | 66        | 262   | 138    | 1060P    | S        |
|                                |       |              |           |        |       |         |         |           | 8      | 66        | 265   | 138    | 1600P    | S        |
|                                |       |              |           |        |       |         |         |           | 9      | 66        | 264   | 145    | 1600P    | s        |
|                                |       |              |           |        |       |         |         |           | 10     | 69        | 199   | 128    | 1000P    | DRIFT    |
|                                |       |              |           |        |       |         |         |           | 11     | 70        | 669   | 325    | 10000    | 1-5      |
|                                |       |              |           |        |       |         |         |           | 12     | 70        | 276   | 223    | 15500    | 3°F      |
|                                |       |              |           |        |       |         |         |           | 17     | 70        | 272   | 101    | 10000    | J        |
|                                |       |              |           |        |       |         |         |           | 13     | 70        | 225   | 191    | 900P     | 5        |
| GOLDEN VALLEY                  | Nov88 | 24200        | 6915      | -      | 37    | 78      | ٥       | 500       |        |           |       |        |          |          |
| (MINNEAPOLIS)<br>(SEE NOTE #1) |       |              | 0,13      |        | 5.1   | 1.0     | U       | New Hope  |        |           |       |        |          |          |
| HAMBURG                        | Senge | / 85         | 147       | 0.2    | 0.0/  | 0 475   | •       |           |        |           |       |        |          |          |
| annooka                        | sehoo | 407          | 103       | 0.2    | 0.04  | 0.135   | U       | 1-0.04E   | 1      | 43        | 745   | 180    | 80P      | J-MTS    |
|                                |       |              |           |        |       |         |         |           | 2      | 41        | 838   | 381    | 125P     | U        |
| HAMPTON                        | Aug88 | 390          | 100       | 0.575  | 0.06  | 0.08    | 0       | 1-0.075E  | 2      | 65        | 302   | 248    | 440P     | L        |

|                           |       |                   |           | DESIGN | AVE.  | HIGHEST | EMERG.   | STORAGE         |        |           |          |        | WELL     |             |
|---------------------------|-------|-------------------|-----------|--------|-------|---------|----------|-----------------|--------|-----------|----------|--------|----------|-------------|
|                           |       | POPL.             |           | CAPAC. | DAILY | DAILY   | CAPAC.   | CAPAC.*         |        | YEAR      | WELL     | CASING | CAPAC.** | GEOLOGIC    |
| <u>CITY</u>               | MOYR  | SERVED            | CONNECTS. | (mgd)  | (mgd) | (mgd)   | (mgd)    | (mg)            | WELL # | INSTALLED | DEPTH    | DEPTH  | (gpm)    | UNIT***     |
| HASTINGS                  | Jan88 | 14432             | 4130      | 6.8    | 2.26  | 5.5     | 2.2      | 1-0.75E         | 1      | 29        | 575      | 275    | 465P     | 3           |
|                           |       |                   |           |        |       |         |          | 1-0.15E         | 2      | 33        | 195      | 100    | 665P     | J           |
|                           |       |                   |           |        |       |         |          | 1-0.3E          | 3      | 56        | 300      | 211    | 720P     | J           |
|                           |       |                   |           |        |       |         |          | 1-0.75G         | 4      | 61        | 400      | 312    | 630P     | j           |
|                           |       |                   |           |        |       |         |          |                 | 5      | 70        | 356      | 277    | 1225P    | Ĵ           |
|                           |       |                   |           |        |       |         |          |                 | 6      | 72        | 328      | 240    | 1010P    | 1           |
|                           |       |                   |           |        |       |         |          |                 | 7      | 90        | 386      | 300    | 1200P    | J           |
| HILLTOP<br>(MINNEAPOLIS)  | Feb88 | 781               | 433       | -      | 0.1   | -       | See Minn | neapolis        |        |           |          |        |          |             |
| HOPKINS                   | Dec88 | 16800             | 3000      | 12     | 2.1   | 7       | 5.76     | 1-1.7G          | 1      | 20        | 780      | 281    | 850P     | S-D         |
|                           |       |                   |           |        |       | •       | 2        | 1-0.56          | ż      | 48        | 475      | 280    | 90006    | 5-1         |
|                           |       |                   |           |        |       |         |          | 2-0 5F          | 5      | 54        | 548      | 352    | 26000    | 5-5         |
|                           |       |                   |           |        |       |         |          | 2 0.70          | 5      | 47        | 500      | 292    | 17000    | 5-3         |
|                           |       |                   |           |        |       |         |          |                 | ,<br>, | 77        | 5/5      | 302    | 22000    | 5-J         |
|                           |       |                   |           |        |       |         |          |                 | o      |           | 242      | 374    | 22000    | 2-J         |
| HUGO                      | Feb89 | 1000              | 300       | 0.6    | 0.075 | 0.2     | -        | 1-0.1E          | 1      | 62        | 320      | 242    | 430P     | J           |
| INVER GROVE               | Feb88 | 20000             | 4300      | 6.7    | 1.5   | 3.5     | 0        | 1-0.4E          | 1      | -         | 431      | 288    | 500P     | Ł           |
| HEIGHTS                   |       |                   |           |        |       |         |          | 1-2.0E          | 2      | 61        | 438      | 350    | 525P     | J           |
|                           |       |                   |           |        |       |         |          | 1-5.0G          | 3      | 72        | 407      | 310    | 1425P    | J           |
|                           |       |                   |           |        |       |         |          | 1-1.0E          | 4      | 72        | 360      | 280    | 1300P    | J           |
|                           |       |                   |           |        |       |         |          |                 | 5      | 80        | 452      | 358    | 1450P    | J           |
|                           |       |                   |           |        |       |         |          |                 | 6      | 87        | 1044     | 802    | 1000P    | н           |
| JORDAN                    | Nov88 | 2600              | 625       | 1.4    | 0.32  | 0.8     | 0        | 1-0.3E          | 3      | 50        | 563      | 221    | 600R     | F-H         |
|                           |       |                   |           |        |       |         | _        |                 | ž      | 54        | 560      | 370    | 3000     | D-#         |
|                           |       |                   |           |        |       |         |          |                 | 5      | 00.0      | -        | 510    | JUUP     | <b>D</b> -n |
|                           |       |                   |           |        |       |         |          |                 | 6      | 90s       | -        | •      | -        |             |
| LAKE ELMO                 | Feb89 | 800               | 245       | 0.74   | 0.049 | 0.15    | 0        | 1-0.75E         | 1      | 61        | 805      | 277    | 550P     | F-H         |
| LAKELAND<br>(see note #2) | Sep91 | 4500<br>(planned) | -         | 1.08   | -     | -       | 0        | 1-0 <b>.3</b> E | 1      | 90        | 380      | 210    | 1200P    | MTS         |
| LAKEVILLE                 | Feb88 | 15000             | 4800      | 8.15   | 2     | 5.1     | 0        | 2-0.6G          | 2      | 64        | 517      | 636    | 8000     |             |
|                           |       |                   |           |        |       |         | •        | 1-0.56          | 3      | 68        | 460      | 747    | 11250    | 3           |
|                           |       |                   |           |        |       |         |          | 1-2 06          | 6      | 60        | 505      | 303    | 10500    | 4           |
|                           |       |                   |           |        |       |         |          | 1-0 755         | 7      | 80        | 400      | 434    | 10500    | J           |
|                           |       |                   |           |        |       |         |          | 1 0.156         | 7      | 00        | 002      | 221    | 1400P    | J           |
|                           |       |                   |           |        |       |         |          |                 | 8      | 04<br>80  | 4/Y<br>- | 375    | 1200P    | J           |
|                           | E.LOO | 700               |           | a /=-  |       |         |          |                 | -      |           |          | -      | IZUUP    | J           |
| LANUTALL                  | redöy | 702               | 5/5       | U.432  | 0.078 | -       | 0        | 1-0.0051        | 3      | -         | 518      | 438    | 300P     | U           |
| LAUDERDALE<br>(ST. PAUL)  | Feb90 | 2307              | 1227      | -      | 0.22  | -       | See St.  | Paul            |        |           |          |        |          |             |

d an

|                                                               |                                 |               |           | DESIGN | AVE.  | HIGHEST | EMERG.      | STORAGE                                   |        |           |            |        | WELL     |          |
|---------------------------------------------------------------|---------------------------------|---------------|-----------|--------|-------|---------|-------------|-------------------------------------------|--------|-----------|------------|--------|----------|----------|
|                                                               |                                 | POPL.         |           | CAPAC. | DAILY | DAILY   | CAPAC.      | CAPAC.*                                   |        | YEAR      | WELL       | CASING | CAPAC.** | GEOLOGIC |
| CITY                                                          | MOYR                            | SERVED        | CONNECTS. | (mgd)  | (mgd) | (mgd)   | (mgd)       | (mg)                                      | WELL # | INSTALLED | DEPTH      | DEPTH  | (gpm)    | UNIT***  |
| LEXINGTON<br>(Emergency inte<br>w/ Blaine and                 | May88<br>erconnect<br>Circle Pi | 2100<br>ines) | 592       | 1.37   | 0.175 | 0.5     | See<br>note | 1-0.1E<br>(1.0 MG<br>AVAIL.<br>FR.BLAINE) | 1      | 66        | 306        | 275    | 950P     | DRIFT    |
| LINO LAKES                                                    | Sep88                           | 425           | 200       | 0.7    | 0.034 | 0.059   | 0           | See Circle                                | 1      | 72        | 306        | 152    | 500P     | 51       |
|                                                               |                                 |               |           |        |       |         | -           | Pines                                     | 2      | 87        | 250        | 163    | 600P     | J        |
| LITTLE CANADA<br>(ST.PAUL)<br>(Emergency int<br>w/ Roseville) | Jun88<br>erconnect              | 8600          | 1350      | 3.7    | 0.8   | 2       | See<br>note |                                           |        |           |            |        |          |          |
| LONG LAKE                                                     | Mar88                           | 1900          | 600       | 1.58   | 0.285 | 0.5     | 0           | 1-0.2E                                    | 1      | 48        | 340        | 188    | 550P     | S-J,     |
|                                                               |                                 |               |           |        |       |         |             |                                           | 2      | 66        | 448        | 366    | 550P     | J \$     |
| LORETTO                                                       | Sep87                           | 310           | 117       | 0.5    | 0.045 | 0.22    | 0           | 1-0.05E                                   | 1      | 40        | 500        | 200    | 100s     | F        |
|                                                               |                                 |               |           |        |       |         |             |                                           | 2      | 63        | 317        | 287    | 250P     | F        |
| MANTOMED I                                                    | 0ct87                           | 4300          | 1350      | 2.8    | 0.384 | -       | 0.5         | 2-0.06E                                   | 2      | 40        | 440        | 250    | 350E     | S-J      |
| (ALSO SERVES                                                  |                                 |               |           |        |       |         |             |                                           | 2      | 57        | 394        | 2/5    | 800P     | J        |
| willen                                                        |                                 |               |           |        |       |         |             |                                           | 5      | 88        | 435<br>470 | 275    | 1500P    | ן<br>2-1 |
| MAPLE GROVE                                                   | May90                           | 36000         | 11000     | 16     | 4.2   | 15      | 3.5         | 1-1.5E                                    | 1      | 72        | 680        | 282    | 600P     | MTS-H    |
|                                                               |                                 |               |           |        |       |         |             | 2-1.0E                                    | 2      | 73        | 230        | 170    | 2400P    | DRIFT    |
|                                                               |                                 |               |           |        |       |         |             |                                           | 3      | 78        | 157        | 157    | 2300P    | DRIFT    |
|                                                               |                                 |               |           |        |       |         |             |                                           | 4      | 81        | 197        | 118    | 2600P    | DRIFT    |
|                                                               |                                 |               |           |        |       |         |             |                                           | 5      | 83        | 715        | 605    | 1000P    | MTS-H    |
|                                                               |                                 |               |           |        |       |         |             |                                           | 6      | 85        | 197        | 197    | 2700P    | DRIFT    |
|                                                               |                                 |               |           |        |       |         |             |                                           | 7      | 89        | 158        | 75     | (capped) | DRIFT    |
|                                                               |                                 |               |           |        |       |         |             |                                           | 8      | 89        | 234        | 134    | 2200P    | DRIFT    |
|                                                               |                                 |               |           |        |       |         |             |                                           | 9      | 90        | -          | -      | -        | DRIFT    |
|                                                               |                                 |               |           |        |       |         |             |                                           | 10     | 90        | -          | -      | -        | DRIFT    |
| MAPLE PLAIN                                                   | Jun88                           | 1550          | 540       | 1      | 0.26  | 0.425   | 0           | 1-0.4E                                    | 1      | 39        | 418        | -      | 125E     | F-D      |
|                                                               |                                 |               |           |        |       |         |             |                                           | 2      | 58        | 435        | 241    | 400P     | F-D      |
|                                                               |                                 |               |           |        |       |         |             |                                           | 3      | 78        | 404        | 333    | 400P     | F-D      |
| MAPLEWOOD<br>(ST. PAUL)                                       | Feb90                           | 24615         | 9834      | -      | 4.05  | •       | See St.     | Paul                                      |        |           |            |        |          |          |
| MAYER                                                         | Jan89                           | 420           | 155       | 0.25   | 0.033 | 0.055   | 0           | 1-0.5E                                    | 1      | 61        | 280        | 202    | 260P     | STL      |

and the second second

|                  |                     |           |             | DESIGN  | AVE.       | HIGHEST | EMERG.  | STORAGE  |              |           |       |        | WELL     |          |
|------------------|---------------------|-----------|-------------|---------|------------|---------|---------|----------|--------------|-----------|-------|--------|----------|----------|
|                  |                     | POPL.     |             | CAPAC.  | DAILY      | DAILY   | CAPAC.  | CAPAC.*  |              | YEAR      | WELL  | CASING | CAPAC.** | GEOLOGIC |
| CITY             | MOYR                | SERVED    | CONNECTS.   | (mgd)   | (mgd)      | (mgd)   | (mgd)   | (mg)     | WELL #       | INSTALLED | DEPTH | DEPTH  | (gpm)    | UNIT***  |
| MEDINA           | Jun88               | 1360      | 380         | 1.65    | 0.25       | 0.28    | 0       | 1-0.004T | H2           | 78        | 601   | 353    | 150P     | F-D      |
| (INCLUDES HAMEL  |                     |           |             |         |            |         |         | 1-0.003T | HЗ           | 83        | 590   | 420    | 150P     | 1-G      |
| MORNINGSIDE AND  |                     |           |             |         |            |         |         | 1-0.475E | 11           | 76        | 240   | 200    | 600P     | DRIFT    |
| INDEPENDENCE)    |                     |           |             |         |            |         |         |          | 12           | 89        | 250   | 200    | 2000     | DRIFT    |
|                  |                     |           |             |         |            |         |         |          | 114          | 61        | 205   | 187    | 1000     | DDIET    |
|                  |                     |           |             |         |            |         |         |          | 2M           | 41        | 205   | 197    | 2200     | DRIFT    |
|                  |                     |           |             |         |            |         |         |          | 219          | 01        | 205   | 107    | 2200     | DRIFI    |
|                  | r-400               | 7044      | 2070        |         | 4 / 0      |         | 0 O .   | David    |              |           |       |        |          |          |
| MENDULA HIS.     | rebyu               | 7011      | 2939        | -       | 1.40       | -       | see st. | Paul     |              |           |       |        |          |          |
| (SI. PAUL)       |                     |           |             |         |            |         |         |          |              |           |       |        |          |          |
|                  |                     | ( 77 0 77 | 407074      |         | 70.05      |         |         |          |              |           |       |        |          |          |
| MINNEAPOLIS      | Feb89               | 473073    | 105851      | 200     | 72.25      | 158.2   | 200     | 1-32.0G  |              |           |       |        |          |          |
| WATER WORKS      |                     | (381,592* | ')(75,384*) | (120 to | (54.3*)    |         |         | 1-55.0G  |              |           |       |        |          |          |
| (see note #3)    |                     |           |             | 170P)   | (could sup | xply    |         | 1-40.0G  |              |           |       |        |          |          |
| (* = Minneapolis | s only)             |           |             |         | up to 30 m | ngd     |         |          |              |           |       |        |          |          |
|                  |                     |           |             |         | to Bloomin | ngton)  |         |          |              |           |       |        |          |          |
|                  |                     |           |             |         |            |         |         |          |              |           |       |        |          |          |
| MINNETONKA       | May88               | 41600     | 14100       | 22      | 6.24       | 15.8    | -       | 2-0.5E   | 3            | 64        | 465   | 393    | 1000P    | J        |
|                  |                     |           |             |         |            |         |         | 1-0.1E   | 6            | 67        | 488   | 397    | 900P     | J        |
|                  |                     |           |             |         |            |         |         | 1-1.0E   | 7            | 67        | 486   | 397    | 800P     | 3        |
|                  |                     |           |             |         |            |         |         | 1-2.0E   | 10           | 69        | 505   | 305    | 1000P    | s        |
|                  |                     |           |             |         |            |         |         | 1-3.0F   | 11           | 70        | 408   | 282    | 12000    | 5        |
|                  |                     |           |             |         |            |         |         | 1-0.056  | 12           | 71        | 535   | 772    | 11000    | 5-0      |
|                  |                     |           |             |         |            |         |         | 1 0.000  | 17           | 70        | /75   | 302    | 1500R    | 5-0      |
|                  |                     |           |             |         |            |         |         |          | 1/           | 72        | 4/3   | 292    | 15002    | S-J      |
|                  |                     |           |             |         |            |         |         |          | 14           | 12        | 222   | 307    | 1000P    | S-J      |
|                  |                     |           |             |         |            |         |         |          | 15           | (5        | 450   | 235    | 1250P    | S-J      |
|                  |                     |           |             |         |            |         |         |          | 1 <b>3</b> A | 78        | 464   | 274    | 1500P    | S-J      |
|                  |                     |           |             |         |            |         |         |          | 14A          | 78        | 575   | 395    | 1000P    | S-J      |
|                  |                     |           |             |         |            |         |         |          | 15A          | 78        | 444   | 238    | 1250P    | S-J      |
|                  |                     |           |             |         |            |         |         |          | 3A           | 81        | 458   | 254    | 1000P    | S-J      |
|                  |                     |           |             |         |            |         |         |          | 10 <b>A</b>  | 81        | 486   | 302    | 1000P    | S-J      |
|                  |                     |           |             |         |            |         |         |          | 12 <b>A</b>  | 85        | 506   | 340    | 1000P    | S-J      |
|                  |                     |           |             |         |            |         |         |          | 11A          | 89        | 492   | 292    | 1000P    | S-J      |
|                  |                     |           |             |         |            |         |         |          |              |           |       |        |          |          |
| MINNETONKA       | Sep88               | 590       | 222         | 0.504   | 0.06       | 0.225   | See     | 1-0.05E  | 1            | 58        | 403   | 385    | 400P     | J        |
| BEACH            |                     |           |             |         |            |         | note    | 1-0.125G | 2            | 59        | 393   | 359    | 400P     | 1        |
| (Emergency inter | <pre>`connect</pre> | t         |             |         |            |         |         |          |              |           |       |        |          | •        |
| w/ Orono)        |                     |           |             |         |            |         |         |          |              |           |       |        |          |          |
|                  |                     |           |             |         |            |         |         |          |              |           |       |        |          |          |
|                  |                     |           |             |         |            |         |         |          |              |           |       |        |          |          |
| MINNETRISTA      | Aug89               | 320       | 118         | 2.2     | 0.045      | 0.18    | 0       | 1-0.01T  | 1            | 71        | 675   | 264    | 750P     | F-G      |
|                  |                     |           |             |         |            |         |         | 2-0.005T | 2            | 60s       | 470   | 122    | 70F      | .1-F     |
|                  |                     |           |             |         |            |         |         |          | 3            | 80        | 785   | 340    | 7500     | E-MTS    |
|                  |                     |           |             |         |            |         |         |          | -            |           |       | - 10   | 1 501    |          |
| MOUND            | Jan89               | 9950      | 3150        | 4       | 0.65       | 5.8     | 0       | 2-0.3E   | 1            | 34        | 293   | 285    | 3000     | DRIFT    |
|                  |                     |           |             |         |            |         |         | 1-0.08E  | 3            | 50        | 296   | 163    | 450P     | DOIET    |
|                  |                     |           |             |         |            |         |         |          | ž            | 62        | 720   | 600    | 7505     | MIC      |
|                  |                     |           |             |         |            |         |         |          | Å            | 76        | 175   | 1/1    | 1908     | M13      |
|                  |                     |           |             |         |            |         |         |          | 7            | 10        | 1/2   | 141    | OUUK     | DRIFT    |
|                  |                     |           |             |         |            |         |         |          | 1            | 11        | 194   | 155    | BUUP     | DRIFT    |

a herene a

and and area

-

| 0.1 <b>.</b> Y                             | NOVE       | POPL.     | CONNECTO        | DESIGN<br>CAPAC.        | AVE.<br>DAILY | HIGHEST<br>DAILY     | EMERG.<br>CAPAC. | STORAGE<br>CAPAC.*                                          |                            | YEAR     | WELL       | CASING     | WELL<br>CAPAC.**       | GEOLOGIC   |
|--------------------------------------------|------------|-----------|-----------------|-------------------------|---------------|----------------------|------------------|-------------------------------------------------------------|----------------------------|----------|------------|------------|------------------------|------------|
|                                            |            | 12550     | 2850            | <u>. (liigo)</u><br>6.5 |               | <u>(ingu)</u><br>3 0 | <u>(inga)</u>    | 1-0 355                                                     | <u>WELL #</u>              | A1       | 855        | /07        | 10000                  | E-H        |
| MOUNDS VIEW                                | 30100      | 12330     | 2000            | 0.5                     | 1.4           | 3.7                  | 1.44             | 1-0.552                                                     | 2                          | 62       | 875        | 471        | 0000                   | Г-п<br>D-М |
|                                            |            |           |                 |                         |               |                      |                  | 1-2.06                                                      | 7                          | 70       | 358        | 269        | 925P                   | .1         |
|                                            |            |           |                 |                         |               |                      |                  | 1 2.00                                                      |                            | 70       | 680        | 470        | 10005                  | E-MTS      |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 5                          | 70       | 350        | 100        | 10003                  | 5-1        |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 6                          | 70       | 679        | 333        | 950P                   | F-MTS      |
| NEW BRIGHTON                               | Jan89      | 23500     | 5225            | 7.7                     | 2.5           | 7.4                  | 0                | 2-0.75E                                                     | 3                          | 55       | 500        | 411        | 740C                   | J          |
|                                            |            |           |                 |                         |               |                      |                  | 1-0.8E                                                      | 4                          | 55       | 495        | 410        | 900C                   | Ŀ          |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 5                          | 63       | 501        | 430        | 850E                   | J          |
| 18 J.14                                    |            |           |                 |                         |               |                      |                  |                                                             | 6                          | 63       | 521        | 445        | 1000E                  | J          |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 7                          | 68       | 437        | 361        | 850S                   | J          |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 8                          | 82       | 900        | 285        | 900s                   | MTS-H      |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 9                          | 82       | 937        | 782        | 8005                   | MTS-H      |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 10                         | 83       | 930        | 780        | 1100P                  | MTS-H      |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 11                         | 83       | 800        | 775        | 700P                   | MTS-H      |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 12                         | 84       | 790        | 730        | 1000P                  | MTS-H      |
| NEW GERMANY                                | Sep88      | 370       | 140             | 0.165                   | 0.03          | 0.064                | 0.165            | 1-0.05E                                                     | 1                          | 60       | 432        | 375        | 115P                   | F-D        |
| NEW HOPE<br>(MINNEAPOLIS)<br>(see note #1) | Aug87      | 23500     | 5285            | (NOTE #1)               | 7.3           | 18.2                 | (Note #1         | )Joint Wat<br>Commissio<br>3 towers<br>19 mill.<br>capacity | er<br>n has<br>w/<br>gall. |          |            |            |                        |            |
| NEW MARKET                                 | Jul90      | 310       | 103             | 0.093                   | 0.016         | 0.033                | 0.025            | 1-0.04E                                                     | 1<br>2                     | 13<br>88 | 410<br>465 | -          | 50E<br><del>9</del> 0P | DRIFT<br>U |
| NEWPORT                                    | Nov87      | 3600      | <del>9</del> 50 | 2.6                     | 0.34          | 0.882                | 0                | 1-0.25G                                                     | 1<br>2                     | 64<br>73 | 261<br>285 | 185<br>195 | 1000P<br>900P          | L<br>L     |
| NEW TRIER                                  | Mar89      | 140       | 35              | 0.1                     | 0.023         | •                    | 0                | 1-0.03E                                                     | 1<br>2                     | 66<br>90 | 560        | 455<br>-   | 75P<br>-               | J          |
| NO.ST.PAUL                                 | Mar88      | 14000     | 4000            | 7                       | 1.5           | 3.38                 | 1.5              | 1-0.3E                                                      | 1                          | 35       | 470        | 259        | 675P                   | S-J        |
| (serves small a                            | area in Ma | aplewood) | )               |                         |               |                      |                  | 1-0.5E                                                      | 2                          | 42       | 473        | 259        | 600P                   | S-J        |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 3                          | 57       | 470        | 375        | 1200P                  | 1          |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 4                          | 64       | 475        | 390        | 1100P                  | 7          |
|                                            |            |           |                 |                         |               |                      |                  |                                                             | 5                          | 77       | 531        | 457        | 1350P                  | J          |
| NORWOOD                                    | Sep88      | 1386      | 450             | 0.9                     | 0.21          | 0.525                | See              | 1-0.07E                                                     | 1                          | 26       | 675        | 345        | 250P                   | J-G        |
| CEMErgency Int                             | erconnect  |           |                 |                         |               |                      | note             | 1-0.03G                                                     | 2                          | 50       | 448        | 425        | 4250S                  | J          |
| w/ toung Ameria                            | ca)        |           |                 |                         |               |                      |                  |                                                             | 3                          | 90       | 950        | 817        | 700P                   | MTS-H      |

and and

Control of the state of the sta

|               |           |           |           | DESIGN  | AVE.        | HIGHEST | EMERG. | STORAGE  |        |           |       |        | WELL     |            |
|---------------|-----------|-----------|-----------|---------|-------------|---------|--------|----------|--------|-----------|-------|--------|----------|------------|
|               |           | POPL.     |           | CAPAC.  | DAILY       | DAILY   | CAPAC. | CAPAC.*  |        | YEAR      | WELL  | CASING | CAPAC.** | GEOLOGIC   |
| CITY          | MOYR      | SERVED    | CONNECTS. | (mgd)   | (mgd)       | (mgd)   | (mgd)  | (mg)     | WELL # | INSTALLED | DEPTH | DEPTH  | (gpm)    | UNIT***    |
| OAK PARK HTS. | Mar89     | 3700      | 800       | 2.5     | 0.357       | 0.814   | 0      | 1-0.25E  | 1      | 68        | 310   | 230    | 850P     | J          |
|               |           |           |           |         |             |         |        |          | 2      | 75        | 291   | 230    | 850P     | J          |
|               |           |           |           |         |             |         |        |          | 3      | 91        | -     | -      | -        |            |
| OAKDALE       | Apr89     | 16500     | 4685      | 7.5     | 2           | 5.8     | 0      | 1-0.3E   | 1      | 58        | 581   | 501    | 975P     | Ŀ          |
| (serves areas | in N.St.P | aul and L | k.Elmo)   |         |             |         |        | 1-0.6E   | 2      | 64        | 542   | 464    | 950P     | 1          |
|               |           |           |           |         |             |         |        | 1-1.0E   | 3      | 69        | 510   | 424    | 635P     | .1         |
|               |           |           |           |         |             |         |        |          | 5      | 78        | 520   | 436    | 925P     |            |
|               |           |           |           |         |             |         |        |          | 6      | 85        | 470   | 387    | 1650P    | .1         |
|               |           |           |           |         |             |         |        |          | 7      | 91        | -     | -      | -        |            |
| ORONO         | Feb88     | 2150      | 710       | 18      | 0 248       | 0 307   | n      | 1-0 2F   | 1      | 71        | 785   | 715    | 10000    |            |
| OKONO         |           | 2130      | 110       | 1.0     | 0.240       | 0.371   | v      | 1 0.22   | 2      | 71        | 305   | 380    | 2750     | 3          |
|               |           |           |           |         |             |         |        |          | 6      | 11        | 390   | 300    | 2758     | J          |
| OSSEO         | Apr88     | 3000      | 792       | 1.65    | 0.423       | 1.11    | 0      | 1-0.05E  | 1      | 60        | 197   | 177    | 550P     | DRIFT      |
|               |           |           |           |         |             |         |        | 1-0.25E  | 2      | 45        | 234   | 214    | 600P     | DRIFT      |
| PLYMOUTH      | Nov88     | 47000     | 11000     | 17.9    | 7.5         | 14.24   | 2.5    | 2-1.0E   | 1      | 65        | 505   | 442    | 800S     | 1          |
|               |           |           |           | (10.5P) |             |         |        | 2-0.5E   | 2      | 70        | 409   | 280    | 1800P    | S          |
|               |           |           |           | •       |             |         |        | 1-2.0E   | 3      | 72        | 448   | 276    | 1500P    | s          |
|               |           |           |           |         |             |         |        | 1-3.0E   | 4      | 75        | 470   | 274    | 18000    | s          |
|               |           |           |           |         |             |         |        | 1-0.5G   | 5      | 79        | 437   | 252    | 1800P    | s          |
|               |           |           |           |         |             |         |        |          | 6      | 80        | 415   | 260    | 2000P    | S1         |
|               |           |           |           |         |             |         |        |          | FS     | 66        | 390   | 301    | 10005    | .1         |
|               |           |           |           |         |             |         |        |          | 7      | 82        | 455   | 271    | 17000    | 5-1        |
|               |           |           |           |         |             |         |        |          | 8      | 87        | 416   | 192    | 18000    | S-1        |
|               |           |           |           |         |             |         |        |          | °,     | 88        | 418   | 223    | 18000    | 55         |
|               |           |           |           |         |             |         |        |          | 10     | 80        | 353   | 108    | 18000    | 5.5        |
|               |           |           |           |         |             |         |        |          | 11     | 00        | -     | 170    | TOOOF    | 5-1        |
|               |           |           |           |         |             |         |        |          | 12     | 90        | -     | -      | -        | 3-J<br>5-1 |
|               |           |           |           |         |             |         |        |          | 13     | 90e       | -     | -      | _        | 3 3        |
|               |           |           |           |         |             |         |        |          | 14     | 90s       | -     | -      | -        |            |
| PRIOR LAKE    | Dec89     | 11320     | 3414      | 4,16    | 0.8         | 3.88    | 0      | 1-0 75E  | 3      | 70        | 361.  | 268    | 11500    |            |
|               |           |           |           |         |             | 0.00    | •      | 1-1 OF   | 4      | 75        | 3/5   | 200    | 11500    | J          |
|               |           |           |           |         |             |         |        | 1 1.02   | 5      |           | 770   | 204    | 1150P    | J          |
|               |           |           |           |         |             |         |        |          | ,      | 00        | 512   | 290    | 1450P    | J          |
| RAMSEY        | Feb88     | 500       | 150       | -       | 0.05        | -       | -      | 1-0.008T | . 1    | 85        | 323   | 243    | 500P     | I-G        |
| (NEW SYSTEM)  |           |           |           |         | (estimated) |         |        | 1-0.5E   | 2      | 87        | 320   | 240    | 300P     | 1-G        |
| RANDOLPH      | Jan89     | 250       | 92        | 0.8     | 0.025       | 0.104   | 0      | 1-0.1E   | 1      | 79        | 356   | 258    | 560P     | J          |

and a second of the

-

|                         |         |           |           | DESIGN | AVE.  | HIGHEST | EMERG. | STORAGE  |        |           |       |        | WELL     |          |
|-------------------------|---------|-----------|-----------|--------|-------|---------|--------|----------|--------|-----------|-------|--------|----------|----------|
|                         |         | POPL.     |           | CAPAC. | DAILY | DAILY   | CAPAC. | CAPAC.*  |        | YEAR      | WELL  | CASING | CAPAC.** | GEOLOGIC |
| CITY                    | MOYR    | SERVED    | CONNECTS. | (mgd)  | (mgd) | (mgd)   | (mgd)  | (mg)     | WELL # | INSTALLED | DEPTH | DEPTH  | (gpm)    | UNIT***  |
| RICHFIELD               | Apr88   | 37800     | 11600     | 14.4   | 4.6   | 14.7    | 3      | 1-1.0E   | 1      | 62        | 435   | 343    | 1800P    | L        |
|                         |         |           |           |        |       |         |        | 1-1.5E   | 2      | 62        | 435   | 343    | 2000P    | J        |
|                         |         |           |           |        |       |         |        | 1-2.5G   | 3      | 63        | 425   | 226    | 2000P    | S-J      |
|                         |         |           |           |        |       |         |        |          | 4      | 63        | 405   | 207    | 2000P    | S-J      |
|                         |         |           |           |        |       |         |        |          | 5      | 63        | 408   | 225    | 2000P    | S-J      |
|                         |         |           |           |        |       |         |        |          | 6      | 63        | 422   | 225    | 2000P    | J        |
|                         |         |           |           |        |       |         |        |          | 7      | 77        | 1036  | 631    | 1500P    | 1-H      |
| ROBBINSDALE             | May88   | 14460     | 4960      | 6.8    | 1.51  | 2.13    | 1.3    | 1-0.125E | 1      | 38        | 624   | 162    | 1000P    | STP-F    |
|                         |         |           |           |        |       |         |        | 1-0.5E   | 2      | 44        | 600   | 269    | 750P     | S-F      |
|                         |         |           |           |        |       |         |        | 1-0.75G  | 3      | 48        | 471   | 295    | 1000P    | S-J      |
|                         |         |           |           |        |       |         |        | 1-0.5G   | 4      | 53        | 404   | 213    | 1000P    | S-J      |
|                         |         |           |           |        |       |         |        |          | 5      | 56        | 467   | 280    | 1000P    | S-J      |
| ROCKFORD                | Mar88   | 2800      | 400       | 2      | 0.26  | 1       | 0      | 1-0.075E | 1      | 55        | 142   | 122    | 140P     | DRIFT    |
| (Note: only 18%         | of popu | lation in | n TCMA)   |        |       |         |        | 1-0.003T | 2      | 71        | 130   | 105    | 260P     | DRIFT    |
|                         |         |           |           |        |       |         |        | 1-0.4E   | 3      | 76        | 210   | 170    | 100P     | F        |
|                         |         |           |           |        |       |         |        |          | 4      | 76        | 310   | 241    | 150P     | F        |
|                         |         |           |           |        |       |         |        |          | 5      | 82        | 130   | 92     | 800P     | DRIFT    |
| ROGERS                  | Aug90   | 746       | 187       | 0.6    | 0.1   | 0.2     | 0      | 1-0.05E  | 1      | 55        | 360   | 223    | 330P     | F-D      |
|                         |         |           |           |        |       |         |        |          | 2      | 66        | 356   | 210    | 330P     | F-D      |
|                         |         |           |           |        |       |         |        |          | 3      | 84        | 370   | 319    | 500P     | I - G    |
| ROSEMOUNT               | Jun88   | 5409      | 1479      | 3.3    | 0.567 | 1.6     | 0.72   | 1-0.5E   | 3      | 62        | 471   | 388    | 500P     | J        |
|                         |         |           |           |        |       |         |        | 1-1.0E   | 6      | 65        | 485   | 398    | 575P     | J        |
|                         |         |           |           |        |       |         |        |          | 7      | 76        | 490   | 400    | 1100P    | J        |
|                         |         |           |           |        |       |         |        |          | 8      | 90        | 480   | -      | 1000P    | L        |
|                         |         |           |           |        |       |         |        |          | 9      | 90-91     | -     | -      | -        | J        |
| ROSEVILLE<br>(ST. PAUL) | Aug90   | 35800     | 9992      | 47.5   | 5     | 12.5    | 5      | 1-1.5E   |        |           |       |        |          |          |
| ST. ANTHONY             | Mar88   | 7981      | 2200      | 4.75   | 0.974 | 2.9     | 1.4    | 1-0.25E  | 3      | 58        | 541   | 321    | 1200P    | S-1      |
|                         |         |           |           |        |       |         |        | 1-2.2G   | 4      | 60        | 540   | 467    | 1200P    | J        |
|                         |         |           |           |        |       |         |        |          | 5      | 61        | 475   | 387    | 1200P    | t        |
| ST. BONIFACIUS          | Feb88   | 1070      | 355       | 0.9    | 0.12  | 0.34    | 0      | 1-0.3E   | 1      | 72        | 480   | 336    | 375P     | F        |
|                         |         |           |           |        |       |         |        |          | 2      | 58        | 880   | 184    | 320P     | H-L      |
|                         |         |           |           |        |       |         |        |          | -      |           |       |        | 222.     |          |
| ST. FRANCIS             | Mar88   | 800       | 283       | 0.46   | 0.15  | 0.35    | 0.16   | 1-0.075E | 1      | 74        | 416   | 168    | 320P     | MIS      |
|                         |         |           |           |        |       |         |        | 1-0.25E  | 2      | 82        | 421   | 338    | 500P     | H        |
|                         |         |           |           |        |       |         |        |          |        |           |       |        |          |          |

Red Maldower alle a de la service de la s

A-12

and the first of the sector of t

|                 |           |           |            | DESIGN     | AVE.    | HIGHEST | EMERG. | STORAGE |        |           |       |        | WELL     |             |
|-----------------|-----------|-----------|------------|------------|---------|---------|--------|---------|--------|-----------|-------|--------|----------|-------------|
|                 |           | POPL.     |            | CAPAC.     | DAILY   | DAILY   | CAPAC. | CAPAC.* |        | YEAR      | WELL  | CASING | CAPAC.** | GEOLOGIC    |
| CITY            | MOYR      | SERVED    | CONNECTS.  | (mgd)      | (mgd)   | (mgd)   | (mgd)  | (mg)    | WELL # | INSTALLED | DEPTH | DEPTH  | (gpm)    | UNIT***     |
| ST. LOUIS PARK  | Jan89     | 43463     | 13420      | 12.7       | 7       | 12.5    | 1      | 1-0.5E  | 3      | 38        | 286   | 103    | 900P     | STP-S       |
|                 |           |           |            |            |         | -       |        | 3-1.5G  | 4      | 46        | 503   | 415    | 900C     | J           |
|                 |           |           |            |            |         |         |        | 2-1.0E  | 5      | 47        | 465   | 305    | 1200C    | J           |
|                 |           |           |            |            |         |         |        | 1-2.0G  | 6      | 48        | 480   | 430    | 1000P    | J           |
|                 |           |           |            |            |         |         |        |         | 7      | 52        | 446   | 247    | 1200P    | 51          |
|                 |           |           |            |            |         |         |        |         | 8      | 55        | 507   | 314    | 1000P    | 1           |
|                 |           |           |            |            |         |         |        |         | ŏ      | 55        | 1.73  | 280    | 12000    | S- 1        |
|                 |           |           |            |            |         |         |        |         | 10     | 55        | 500   | 215    | 8000     |             |
|                 |           |           |            |            |         |         |        |         | 11     | 41        | 1005  | 212    | 10000    | J<br>MTC II |
|                 |           |           |            |            |         |         |        |         | 12     | 47        | 1075  | 000    | 1000P    | MTC 1       |
|                 |           |           |            |            |         |         |        |         | 12     | 63        | 1090  | 900    | 1000P    | MIS-11      |
|                 |           |           |            |            |         |         |        |         | 15     | 04        | 1050  | 891    | 1000P    | MIS-H       |
|                 |           |           |            |            |         |         |        |         | 14     | 65        | 485   | 389    | 1000P    | J           |
|                 |           |           |            |            |         |         |        |         | 15     | 69        | 503   | 398    | 1200P    | J           |
|                 |           |           |            |            |         |         |        |         | 16     | 73        | 500   | 425    | 1000P    | ال          |
|                 |           |           |            |            |         |         |        |         | 17     | 83        | 1085  | 818    | 800P     | S-MTS-H     |
| ST. PAUL        | Jan89     | 385000    | 100000     | 144        | 50.6    | 112.9   | 120    | 1-30.0G | В      | 77        | 438   | 170    | 2200P    | S           |
| WATER UTILITY   |           | (273,160* | )(61,870*) |            | (35.8*) |         |        | 1-20.0G | С      | 77        | 422   | 130    | 4000P    | S           |
| (see note #4)   |           |           |            |            |         |         |        | 1-18.0G | D      | 82        | 456   | 145    | 1100P    | S           |
| (* = St. Paul o | mly)      |           |            |            |         |         |        | 2-10.0G | E      | 84        | 463   | 140    | 3600P    | s           |
|                 | •         |           |            |            |         |         |        | 1-6.0G  | -      |           |       |        |          | •           |
|                 |           |           |            |            |         |         |        | 1-5.06  |        |           |       |        |          |             |
|                 |           |           |            |            |         |         |        | 2-2.06  |        |           |       |        |          |             |
|                 |           |           |            |            |         |         |        | 1-2 3F  |        |           |       |        |          |             |
|                 |           |           |            |            |         |         |        | 4-1 55  |        |           |       |        |          |             |
|                 |           |           |            |            |         |         |        | 1-1 05  |        |           |       |        |          |             |
|                 |           |           |            |            |         |         |        | 2-0.25  |        |           |       |        |          |             |
|                 |           |           |            |            |         |         |        | 2-0.25  |        |           |       |        |          |             |
| ST. PAUL PARK   | 0ct87     | 4900      | 1296       | 1.9        | 0.5     | 1.6     | 1.3    | 1-0.75E | 1      | 54        | 260   | 179    | 450P     | J           |
|                 |           |           |            |            |         |         |        | 1-0.5E  | 2      | 57        | 322   | 239    | 425P     | J ·         |
|                 |           |           |            |            |         |         |        |         | 3      | 63        | 338   | 258    | 475P     | J           |
|                 |           |           |            |            |         |         |        |         | 4      | 88        | 360   | 261    | 900P     |             |
| 041465          |           | 7007      |            | <b>.</b> . |         |         |        |         | ·      |           |       | 201    | ,001     | •           |
| SAVAGE          | пагуџ     | /89/      | 2677       | 5.4        | 0.5     | 2.1     | See    | 1-0.3E  | 1      | 61        | 225   | 150    | 600P     | ſ           |
| (emergency inte | erconnect |           |            |            |         |         | note   | 1-1.0E  | 2      | 69        | 846   | 660    | 1200P    | MTS-H       |
| W/ BURNSVILLE)  | )         |           |            |            |         |         |        |         | 3      | 85        | 393   | 302    | 1200P    | L           |
|                 |           |           |            |            |         |         |        |         | 4      | 90        | 147   | 122    | 700P     | DRIFT       |
|                 |           |           |            |            |         |         |        |         | 5      | 90        | 152   | 132    | 700P     | DRIFT       |
|                 |           |           |            |            |         |         |        |         | 6      | 90        | 205   | 172    | 700P     | DRIFT       |
| SHAKOPEE        | Jan89     | 10783     | 3081       | 9.2        | 2.2     | 6       | 1.1    | 1-0.25E | 1      | 11        | 715   | 216    | 3200     | 6-D         |
|                 |           |           |            |            |         | -       |        | 1-2.0F  | 2      | 45        | 730   | 297    | 5000     | r-U<br>5-D  |
|                 |           |           |            |            |         |         |        | 1-1 55  | -<br>7 | 75<br>54  | 790   | 207    | 7705     | F-D         |
|                 |           |           |            |            |         |         |        |         |        | 71        | 100   | 200    | 1302     | F-D         |
|                 |           |           |            |            |         |         |        |         | 4<br>E | 71        | 239   | 184    | QUOS     | J           |
|                 |           |           |            |            |         |         |        |         | 7      | /1        | 223   | 185    | 880P     | J           |
|                 |           |           |            |            |         |         |        |         | 0      | 81        | 222   | 147    | 1130P    | J           |
|                 |           |           |            |            |         |         |        |         | 7      | 86        | 215   | 145    | 1130P    | J           |
|                 |           |           |            |            |         |         |        |         | 8      | 89        | 265   | 173    | 1050P    | 1           |

al ar

|                  |           |        |           | DESIGN | AVE.  | HIGHEST | EMERG. | STORAGE  |          |           |       |            | WELL         |              |
|------------------|-----------|--------|-----------|--------|-------|---------|--------|----------|----------|-----------|-------|------------|--------------|--------------|
|                  |           | POPL.  |           | CAPAC. | DAILY | DAILY   | CAPAC. | CAPAC.*  |          | YEAR      | WELL  | CASING     | CAPAC.**     | GEOLOGIC     |
| CITY             | MOYR      | SERVED | CONNECTS. | (mgd)  | (mgd) | (mgd)   | (mgd)  | (mg)     | WELL #   | INSTALLED | DEPTH | DEPTH      | (gpm)        | UNIT***      |
| SHOREVIEW        | Jun88     | 24500  | 6500      | 13     | 1.7   | 10.6    | 0      | 1-2.5E   | 2        | 69        | 395   | 251        | 1925P        | ON-J         |
|                  |           |        |           |        |       |         |        | 1-1.0G   | 3        | 72        | 413   | 340        | 1650P        | J            |
|                  |           |        |           |        |       |         |        |          | 4        | 74        | 439   | 332        | 1850P        | ON-J         |
|                  |           |        |           |        |       |         |        |          | 5        | 81        | 468   | 336        | 2000P        | ال           |
|                  |           |        |           |        |       |         |        |          | 6        | 85        | 414   | 325        | 1650P        | J            |
|                  |           |        |           |        |       |         |        |          | 7        | 87        | 442   | 325        | 1000P        | J            |
| SHOREWOOD        | Sep89     | 1356   | 452       | 3.45   | 0.056 | 0.172   | 0      | 1-0.009T | 1        | 73        | 528   | 244        | 500P         | STP-J        |
| (see note #5)    |           |        |           |        |       |         |        | 1-0.004T | 2        | 79        | 480   | 296        | 300P         | S-J          |
|                  |           |        |           |        |       |         |        | 1-0.005T | 3        | 81        | 372   | 332        | 500P         | S-J          |
|                  |           |        |           |        |       |         |        | 1-0.015E | 4        | 81        | 640   | 398        | 500P         | F-G          |
|                  |           |        |           |        |       |         |        | 1-0.4E   | 5        | 81        | 640   | 399        | 500P         | F-G          |
|                  |           |        |           |        |       |         |        |          | 6        | 82        | 326   | 276        | 100P         | S            |
| SO. ST. PAUL     | Jun89     | 23000  | 6625      | 14.7   | 2.8   | 5.5     | 3.5    | 2-1.0G   | 1        | 61        | 404   | 322        | 600P         | Ŀ            |
|                  |           |        |           |        |       |         |        | 1-0.4E   | 2        | 73        | 436   | 352        | 900P         | S-J          |
|                  |           |        |           |        |       |         |        | 1-0.75E  | 3        | 37        | 339   | 125        | 2100P        | S-J          |
|                  |           |        |           |        |       |         |        |          | 4        | 46        | 342   | 240        | 1700P        | 1            |
|                  |           |        |           |        |       |         |        |          | 6        | 72        | 484   | 399        | 1900P        | 1            |
|                  |           |        |           |        |       |         |        |          | 7        | 71        | 255   | 175        | 1350P        | e<br>.l      |
|                  |           |        |           |        |       |         |        |          | 8        | 75        | 498   | 131        | 1000P        | .1           |
|                  |           |        |           |        |       |         |        |          | 9        | 79        | 360   | 110        | 100005       | 1            |
| SPRING LAKE PK.  | Sep88     | 6881   | 1872      | 4.5    | 1     | 2.5     | n      | 1-0.25F  | 1        | 61        | 7/ 1  | 350        | 5000         | E_4          |
|                  |           |        |           |        | •     | 215     | Ŭ      | 1-0.5F   | 2        | 65        | 600   | 330        | 050p         | r-n<br>r-u   |
|                  |           |        |           |        |       |         |        | 1-0.JE   | <u>ک</u> | 70        | 720   | 200        | 9000         | r-n<br>c_u   |
|                  |           |        |           |        |       |         |        |          | 4        | 82        | 726   | 677<br>577 | 0000         | r-n<br>NTC-U |
|                  |           |        |           |        |       |         |        |          | -        | 02        | 120   | 233        | 900P         | MI3-N        |
| SPRING PARK      | Jun88     | 1465   | 300       | 1.5    | 0.224 | 0.375   | See    | 1-0.05E  | 1        | 64        | 567   | 418        | 215P         | F-G          |
| (Emergency inter | rconnects |        |           |        |       |         | note   | 1-0.1E   | 2        | 64        | 391   | 341        | 250P         | J            |
| w/ Mound and Oi  | rono)     |        |           |        |       |         |        |          | 3        | 80        | 790   | 660        | 630P         | MTS-H        |
|                  |           |        |           |        |       |         |        |          |          |           |       |            |              |              |
| STILLWATER       | Mar89     | 12770  | 4000      | 6      | 1.8   | 3.3     | 2.5    | 1-0.5G   | 1        | 1888      | 83    | 45         | <b>8</b> 55P | J            |
|                  |           |        |           |        |       |         |        | 1-0.75E  | 5        | 63        | 220   | 155        | 815P         | 1            |
|                  |           |        |           |        |       |         |        | 1-0.5E   | 6        | 67        | 271   | 202        | 465P         | 3            |
|                  |           |        |           |        |       |         |        |          | 7        | 72        | 236   | 166        | 1750R        | J(capped)    |
|                  |           |        |           |        |       |         |        |          | 8        | 74        | 242   | 166        | 1110P        | J            |
|                  |           |        |           |        |       |         |        |          | 9        | 78        | 305   | 224        | 1005P        | -            |
|                  |           |        |           |        |       |         |        |          | 10       | 90s       | 300   | -          | 1200P        | J(test well) |
| TONKA BAY        | Jul88     | 1453   | 595       | 1.58   | 0.2   | 0.523   | 0.9    | 1-0.3G   | 1        | 72        | 423   | 328        | 650P         | J            |
|                  |           |        |           | (0.8P) |       |         |        | 1-0.015T | 2        | 73        | 448   | 332        | 650P         | -            |
|                  |           |        |           |        |       |         |        | 1-0.25E  |          |           |       |            | 0201         | -            |

1 1 1 -

(

|                             |       | POPL . |           | DESIGN<br>CAPAC. | AVE.<br>DAILY | HIGHEST | EMERG.<br>CAPAC. | STORAGE<br>CAPAC.* |        | YEAR      | VELL  | CASING   | WELL  | GEOLOGIC |
|-----------------------------|-------|--------|-----------|------------------|---------------|---------|------------------|--------------------|--------|-----------|-------|----------|-------|----------|
| CITY                        | MOYR  | SERVED | CONNECTS. | (mqd)            | (mad)         | (mad)   | (mad)            | (mq)               | WELL # | INSTALLED | DEPTH | DEPTH    | (gpm) | UNIT***  |
| VADNAIS HTS.                | Sep88 | 6785   | 2700      | 4.4              | 1.2           | 5.4     | 0                | 2-1.0E             | 1      | 77        | 490   | 307      | 650P  | S-J      |
|                             | •     |        |           |                  |               |         |                  |                    | 2      | 77        | 470   | 382      | 1200P | J        |
|                             |       |        |           |                  |               |         |                  |                    | 3      | 72        | 495   | 242      | 500P  | S-J      |
|                             |       |        |           |                  |               |         |                  |                    | 4      | 78        | 476   | 404      | 700P  | Ŀ        |
| VERMILLION                  | Nov87 | 500    | 165       | 0.5              | 0.038         | -       | 0                | 1-0.05E            | 1      | 87        | 816   | 658      | 350P  | MTS      |
| (NEW SYSTEM)                |       |        |           |                  | (estimate     | d)      |                  |                    |        |           |       |          |       |          |
| VICTORIA                    | Mar88 | 150    | 63        | 0.35             | 0.05          | 0.05    | 0                | 1-0.004T           | 1      | 75        | 640   | 298      | 225P  | U        |
|                             |       |        |           |                  |               |         |                  | 1-0.1E             | 2      | 87        | 430   | 402      | 1000P | U        |
| ACONIA                      | Oct88 | 3600   | 1200      | 2.8              | 0.7           | 1.3     | 1.2              | 1-0.075E           | 1      | 25        | 680   | 460      | 950P  | J        |
|                             |       |        |           |                  |               |         |                  | 1-0.25E            | 2      | 48        | 847   | 460      | 325P  | J        |
|                             |       |        |           |                  |               |         |                  |                    | 3      | 71        | 250   | Screened | 350P  | DRIFT    |
|                             |       |        |           |                  |               |         |                  |                    | 4      | 71        | 254   | Screened | 520P  | DRIFT    |
| JATERTOWN                   | Jun87 | 2200   | 576       | 1.4              | 0.25          | 0.398   | 0                | 1-0.05E            | 1      | 25        | 164   | U        | 200E  | DRIFT    |
|                             |       |        |           |                  |               |         |                  | 1-0.3E             | 2      | 55        | 153   | U        | 200P  | DRIFT    |
|                             |       |        |           |                  |               |         |                  |                    | 3      | 43        | 209   | 132      | 400P  | DRIFT    |
| WAYZATA                     | Sep88 | 3900   | 1090      | 4.3              | 0.854         | 1.625   | 3.5              | 1-0.5E             | 2      | 54        | 140   | 110      | 350P  | DRIFT    |
|                             |       |        |           |                  |               |         |                  |                    | 3      | 65        | 100   | 70       | 880P  | DRIFT    |
|                             |       |        |           |                  |               |         |                  |                    | 4      | 71        | 507   | 284      | 1600P | S-H      |
| WEST ST. PAUL<br>(ST. PAUL) | Feb90 | 18220  | 8400      | •                | 2.18          | -       | See St.          | Paul               |        |           |       |          |       |          |
| WHITE BEAR LAKE             | Mar88 | 24000  | 8125      | 10.5             | 2.4           | 8.1     | 2.2              | 1-3.0G             | 8      | 56        | 463   | 371      | 475E  | J        |
| (INCLUDES                   |       |        |           | (7.2P)           |               |         |                  | 1-1.0G             | 1      | 59        | 490   | 400      | 1100P | 1        |
| WILLERNIE)                  |       |        |           |                  |               |         |                  | 1-1.0E             | 2      | 62        | 963   | 700      | 1500P | D-H      |
|                             |       |        |           |                  |               |         |                  |                    | 3      | 66        | 513   | 289      | 2300P | S-J      |
|                             |       |        |           |                  |               |         |                  |                    | 4      | 69        | 476   | 267      | 2400P | S-J      |
| WHITE BEAR TWSP             | Sep88 | 8000   | 2529      | 3.6              | 0.689         | -       | 0                | 1-0.1E             | 1      | 56        | 445   | 365      | 500P  | J        |
|                             |       |        |           |                  |               |         |                  | 1-0.75E            | 2      | 60        | 430   | 375      | 225P  | J        |
|                             |       |        |           |                  |               |         |                  |                    | 3      | 76        | 372   | 200      | 1200P | S-J      |
|                             |       |        |           |                  |               |         |                  |                    | 4      | 76        | 408   | 325      | 650P  | S-J      |
|                             |       |        |           |                  |               |         |                  |                    | 5      | 90        | 412   | 230      | 1700P | 5-1      |

. ....

,

| CLTV                                                                                                                        | MOVR                                                                                    | POPL.   | CONNECTS  | DESIGN<br>CAPAC.                                                                                                                                                                  | AVE.<br>DAILY                                                                                    | HIGHEST<br>DAILY<br>(mod)                                                                                                         | EMERG.<br>CAPAC.    | STORAGE<br>CAPAC.*         |                                                                                                                                                                                         | YEAR                                                                                                                                                                                                                                                                             | WELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CASING                                                                                                                                                                                           | WELL<br>CAPAC.**                                                                                                                                                                                    | GEOLOGIC                                             |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| WOODBURY                                                                                                                    | Dec88                                                                                   | 18500   | 5260      | 6                                                                                                                                                                                 | 2.5                                                                                              | 6.9                                                                                                                               | 0                   | 1-3.0G<br>1-1.0G<br>1-0.5E | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                               | 73<br>79<br>85<br>89<br>90<br>91                                                                                                                                                                                                                                                 | 517<br>481<br>512<br>480<br>480<br>505<br>495<br>510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 444<br>396<br>425<br>398<br>405<br>406<br>404<br>-                                                                                                                                               | 800P<br>750P<br>1000P<br>1000P<br>1000P<br>1200P<br>1200P                                                                                                                                           | لیر<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا               |
| YOUNG AMERICA<br>(Emergency in<br>w/ Norwood)                                                                               | Aug88<br>terconnect                                                                     | 1300    | 425       | 0.432                                                                                                                                                                             | 0.109                                                                                            | 0.2                                                                                                                               | See<br>note         | 1-0.05E                    | 2                                                                                                                                                                                       | 78                                                                                                                                                                                                                                                                               | 943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 666                                                                                                                                                                                              | 300P                                                                                                                                                                                                | I-H                                                  |
| TOTALS<br>(adjusted for<br>M-SP suburban<br>supplies)                                                                       |                                                                                         | 2019894 | 539832    | 904.191                                                                                                                                                                           | 277.428                                                                                          | 709.234<br>(few smal<br>systems<br>missing)                                                                                       | ι                   | 494.8401                   | 490<br>(additio<br>29 plann<br>for 1990                                                                                                                                                 | onal<br>Ned<br>Vs)                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                  | 487525 gp<br>(702 mgd                                                                                                                                                                               | m<br>)                                               |
| * E = elevated<br>G = ground n<br>T = pressure<br>** P = permane<br>E = emergen<br>S = seasone<br>C = contam<br>OS = out of | d reservoir<br>reservoir<br>e tank<br>ent use<br>ncy use<br>al use<br>inated<br>service | r       | *** Geolo | gic Units<br>DRIFT = g<br>STP = St.<br>PDC = Pra<br>J = Jorda<br>STL = St.<br>F = Franc<br>I = Iront<br>G = Gales<br>EC = Eau<br>MTS = Mt.<br>D (Dresba<br>H = Hinck<br>U = unkno | (<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) | ift<br>ndstone<br>hien Group<br>pee dolomit<br>ne<br>sandstone<br>stone<br>one<br>dstone<br>ndstone<br>ndstone<br>EC, MTS<br>tone | te (PDC)<br>e (PDC) |                            | NOTES:<br>1) Cryst<br>Join<br>the<br>capa<br>2) Lakel<br>and<br>Lake<br>3) Minne<br>citi<br>Vall<br>of E<br>4) St. P<br>of L<br>Hill<br>Mend<br>The<br>of i<br>from<br>Rice<br>5) Shore | al, Golden<br>at Water Co<br>Minneapolis<br>city of 51<br>and will be<br>will also<br>s St. Croix<br>es of Colur<br>ey, New Ho<br>dina and B<br>aul Water I<br>auderdale,<br>s, Little (<br>lota Hts., a<br>Water Util<br>ts water fi<br>groundwate<br>creek rese<br>wood suppli | Valley :<br>mmission<br>s Water 1<br>.0 mgd.<br>egin ser<br>serve La<br>Beach<br>er Works<br>be, Crys<br>loomingt<br>Utility :<br>Falcon 1<br>Canada, 1 | and New H<br>to buy w<br>Works at<br>vice abou<br>keland Sh<br>also supp<br>tal and p<br>on.<br>also supp<br>Hts., Ros<br>West St. H<br>rtion of<br>draws app<br>Mississip<br>10% from<br>ystem. | ope formed<br>ater from<br>a design<br>t Sept.199<br>ores and<br>plies the<br>p, Golden<br>ortions<br>lies the c<br>eville, Ar<br>Paul, Mapi<br>St. Anthon<br>roximately<br>pi River,<br>the Center | ities<br>den<br>ewood,<br>y.<br>70%<br>20%<br>ville- |

d es

i.e.

7

### VAD BEK CVBILV ARE WARGEBETTA-SABBLIED COMMERCIET/INDASLENT ARE

**VPPENDIX B** 

| <u>CITY</u>                     | POPL.<br>SERVED | AVG.<br>DAILY<br>(mgd) | %<br><u>COMM</u> . | %<br>IND. | %<br>Total C+1 | AVG.<br>DAILY<br>C and I<br>(mgd) | AVG.GALL.<br>PER CAPITA<br>PER DAY-<br>ALL USES | PEAK GALL.<br>PER CAPITA<br>PER DAY-<br>ALL USES | AVG.GALL.<br>PER CAPITA<br>PER DAY-<br>RESIDENTIAL |
|---------------------------------|-----------------|------------------------|--------------------|-----------|----------------|-----------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------|
| EAGAN                           | 42000           | 6.1                    | 1.8                | 1.1       | 2.9            | 0.18                              | 145                                             | 412                                              | 141                                                |
| EDEN PRAIRIE                    | 34000           | 3.4                    | 35% C+I            | -         | 35             | 1.19                              | 100                                             | 465                                              | 65                                                 |
| EDINA                           | 46000           | 7.4                    | 25% C+I            | -         | 25             | 1.85                              | 161                                             | 456                                              | 121                                                |
| ELKO                            | 125             | 0.009                  | 2% C+I             | -         | 2              | 0.00                              | 72                                              | 280                                              | 71                                                 |
| EMPIRE                          | 450             | 0.055                  | 0                  | 0         | 0              | 0.00                              | 122                                             | 467                                              | 122                                                |
| EXCELSIOR                       | 2860            | 0.434                  | 39                 | 0         | 39             | 0.17                              | 152                                             | 271                                              | 93                                                 |
| FALCON HTS.*<br>(ST.PAUL)       | 5386            | 0.7                    | N.R.               | N.R.      | 5              | 0.04                              | 130                                             |                                                  | 123                                                |
| FARMINGTON                      | 5650            | 0.8                    | 12%C+I             | -         | 12             | 0.10                              | 142                                             | 440                                              | 125                                                |
| FOREST LAKE                     | 5400            | 0.69                   | 12% C+I            | -         | 12             | 0.08                              | 128                                             | 398                                              | 112                                                |
| FRIDLEY                         | 29423           | 6.5                    | 50% C+I            | -         | 50             | 3.25                              | 221                                             | 534                                              | 110                                                |
| GOLDEN VALLEY*<br>(MINNEAPOLIS) | 24200           | 3.7                    | N.A.               | N.A.      | 23             | 0.85                              | 153                                             | -                                                | 118                                                |
| HAMBURG                         | 485             | 0.04                   | 5                  | 0         | 5              | 0.00                              | 82                                              | 278                                              | 78                                                 |
| HAMPTON                         | 390             | 0.06                   | 40                 | 0         | 40             | 0.02                              | 154                                             | 205                                              | 92                                                 |
| HASTINGS*                       | 14432           | 2.26                   | N.A.               | N.A.      | 10             | 0.23                              | 157                                             | 388                                              | 141                                                |
| HILLTOP<br>(MINNEAPOLIS)        | 781             | 0.1                    | 25% C+1            | -         | 25             | 0.03                              | 128                                             | -                                                | 96                                                 |
| HOPKINS                         | 16800           | 2.1                    | 35% C+I            | -         | 35             | 0.74                              | 125                                             | 417                                              | 81                                                 |
| HUGO*                           | 1000            | 0.075                  | N.A.               | N.A.      | 15             | 0.01                              | 75                                              | 200                                              | 64                                                 |
| INVER GROVE<br>HEIGHTS          | 20000           | 1.5                    | 9.9                | 1.3       | 11.2           | 0.17                              | 75                                              | 175                                              | 67                                                 |
| JORDAN                          | 2600            | 0.32                   | 10% C+I            | -         | 10             | 0.03                              | 123                                             | 308                                              | 111                                                |
| LAKE ELMO                       | 800             | 0.049                  | 10                 | 0         | 10             | 0.00                              | 61                                              | 188                                              | 55                                                 |
| LAKEVILLE                       | 15000           | 2                      | 7                  | 9         | 16             | 0.32                              | 133                                             | 340                                              | 112                                                |
| LANDFALL                        | 702             | 0.078                  | 10% C+I            | -         | 10             | 0.01                              | 111                                             | -                                                | 100                                                |
| LAUDERDALE*                     | 2307            | 0.22                   | N.R.               | N.R.      | ້ມ             | 0.04                              | 95                                              | -                                                | 76                                                 |

B-2

|                             | POPL.<br>SERVED | AVG.<br>DAILY<br>(mgd) | %<br><u>COMM.</u> | %<br>IND. | %<br>Total C+1 | AVG.<br>DAILY<br>C and I<br>( (mgd) | AVG.GALL.<br>PER CAPITA<br>PER DAY-<br>ALL USES | PEAK GALL.<br>PER CAPITA<br>PER DAY-<br>ALL USES | AVG.GALL.<br>PER CAPITA<br>PER DAY-<br>RESIDENTIAL |
|-----------------------------|-----------------|------------------------|-------------------|-----------|----------------|-------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------|
| LEXINGION                   | 2100            | 0.175                  | 3% (+1            | -         |                | 0.01                                | 65                                              | 236                                              | 01                                                 |
| LINO LAKES                  | 425             | 0.034                  | 1                 | 0         | 1              | 0.00                                | 80                                              | 139                                              | 79                                                 |
| LITTLE CANADA<br>(ST.PAUL)  | 8600            | 0.8                    | 20                | 5         | 25             | 0.20                                | 93                                              | -                                                | 70                                                 |
| LONG LAKE                   | 1900            | 0.285                  | 15                | 35        | 50             | 0.14                                | 150                                             | 139                                              | 75                                                 |
| LORETTO                     | 310             | 0.045                  | 12                | 3         | 15             | 0.01                                | 145                                             | city wc                                          | 123                                                |
| MAHTOMEDI                   | 4300            | 0.384                  | 10                | 1         | 11             | 0.04                                | 89                                              | -                                                | 79                                                 |
| MAPLE GROVE                 | 36000           | 4.2                    | 4                 | 6         | 10             | 0.42                                | 117                                             | 417                                              | 105                                                |
| MAPLE PLAIN                 | 1550            | 0.26                   | 35% C+I           | -         | 35             | 0.09                                | 168                                             | 274                                              | 109                                                |
| MAPLEWOOD<br>(ST. PAUL)     | 24615           | 4.05                   | Est. 50%          | -         | 50             | 2.03                                | 165                                             | -                                                | 82                                                 |
| MAYER                       | 420             | 0.033                  | 25                | 0         | 25             | 0.01                                | 79                                              | 131                                              | 59                                                 |
| MEDINA                      | 1360            | 0.25                   | 7                 | 10        | 17             | 0.04                                | 184                                             | 206                                              | 153                                                |
| MENDOTA HTS.<br>(ST. PAUL)  | 7811            | 1.48                   | 15                | 15        | 30             | 0.44                                | 189                                             | -                                                | 133                                                |
| MINNEAPOLIS*<br>(city only) | 381592          | 54.3                   | 45% C+I           | -         | 45             | 24.44                               | 142                                             | 334<br>(system)                                  | 78                                                 |
| MINNETONKA                  | 41600           | 6.24                   | 40% C+I           | -         | 40             | 2.50                                | 150                                             | 380                                              | 90                                                 |
| MINNETONKA<br>BEACH         | 590             | 0.06                   | 25                | 0         | 25             | 0.02                                | 102                                             | 381                                              | 76                                                 |
| MINNETRISTA                 | 320             | 0.045                  | 10                | 0         | 10             | 0.01                                | 234                                             | 562                                              | 211                                                |
| MOUND*                      | 9950            | 0.65                   | N.A.              | N.A.      | 10             | 0.07                                | 65                                              | 583                                              | 59                                                 |
| MOUNDS VIEW                 | 12550           | 1.4                    | 8                 | 1         | 9              | 0.13                                | 112                                             | 311                                              | 102                                                |
| NEW BRIGHTON                | 23500           | 2.5                    | 3                 | 0         | 3              | 0.08                                | 106                                             | 315                                              | 103                                                |
| NEW GERMANY                 | 370             | 0.03                   | 10                | 29        | 39             | 0.01                                | 81                                              | 173                                              | 49                                                 |
| NEW HOPE<br>(MINNEAPOLIS)   | 23500           | 7.3                    | 25% C+I           | -         | 25             | 1.83                                | 311                                             | -                                                | 233                                                |
| NEW MARKET                  | 310             | 0.016                  | 5                 | 0         | 5              | 0.00                                | 52                                              | 106                                              | 49                                                 |
| NEWPORT                     | 3600            | 0.34                   | 30                | 5         | 35             | 0.12                                | 94                                              | 245                                              | 61                                                 |

61

a a e

.

111111111111111111

NOT THE PERSON AND THE PERSON OF

| CITY                        | POPL.         | AVG.<br>DAILY | %<br>COMM | %    | %<br>Total Cti    | AVG.<br>DAILY<br>C and I | AVG.GALL.<br>PER CAPITA<br>PER DAY- | PEAK GALL.<br>PER CAPITA<br>PER DAY- | AVG.GALL.<br>PER CAPITA<br>PER DAY- |
|-----------------------------|---------------|---------------|-----------|------|-------------------|--------------------------|-------------------------------------|--------------------------------------|-------------------------------------|
| NEW TRIER                   | 140           | 0.023         | 10        | 0    | 10                | 0.00                     | 164                                 | -                                    | 148                                 |
| NO.ST.PAUL                  | 14000         | 1.5           | 25% C+I   | -    | 25                | 0.38                     | 107                                 | 241                                  | 80                                  |
| NORWOOD                     | 1386          | 0.21          | 25% C+I   | -    | 25                | 0.05                     | 152                                 | 379                                  | 114                                 |
| OAK PARK HTS.               | 3700          | 0.357         | 19.4      | 0    | 19.4              | 0.07                     | 96                                  | 220                                  | 78                                  |
| OAKDALE                     | 16500         | 2             | 7.2       | 0.1  | 7.3               | 0.15                     | 121                                 | 352                                  | 112                                 |
| ORONO                       | 2150          | 0.248         | 5% C+I    | -    | 5                 | 0.01                     | 115                                 | 185                                  | 110                                 |
| OSSEO                       | 3000          | 0.423         | 25% C+1   | -    | 25                | 0.11                     | 141                                 | 370                                  | 106                                 |
| PLYMOUTH                    | 47000         | 7.5           | 32% C+1   | -    | 32                | 2.40                     | 160                                 | 303                                  | 109                                 |
| PRIOR LAKE                  | 11320         | 0.8           | 7         | 0    | 7                 | 0.06                     | 71                                  | 299                                  | 66                                  |
| RAMSEY<br>(ESTIM.DAILY US   | 500<br>E)     | 0.05          | 3.5       | 0    | 3.5               | 0.00                     | 100                                 | -                                    | 97                                  |
| RANDOLPH                    | 250           | 0.025         | 0         | 0    | 0                 | 0.00                     | 100                                 | 416                                  | 100                                 |
| RICHFIELD                   | 37800         | 4.6           | 5         | 1    | 6                 | 0.28                     | 122                                 | 389                                  | 114                                 |
| ROBBINSDALE*                | 14460         | 1.51          | N.A.      | N.A. | 5                 | 0.08                     | 104                                 | 147                                  | 99                                  |
| ROCKFORD<br>(only 18% in TC | 2800<br>Ma)   | 0.26          | 20% C+I   | -    | 20                | 0.05                     | 93                                  | -                                    | 74                                  |
| ROGERS                      | 746           | 0.1           | 50        | 15   | 65                | 0.07                     | 134                                 | 268                                  | 47                                  |
| ROSEMOUNT                   | 5409          | 0.567         | 9         | 2    | 11                | 0.06                     | 105                                 | 296                                  | 93                                  |
| ROSEVILLE<br>(ST. PAUL)     | <b>358</b> 00 | 5             | 35% C+I   | -    | 35                | 1.75                     | 140                                 |                                      | 91                                  |
| ST. ANTHONY                 | 7981          | 0.974         | 25% C+1   | -    | 25                | 0.24                     | 122                                 | 363                                  | 92                                  |
| ST. BONIFACIUS              | 1070          | 0.12          | 9% C+I    | -    | 9                 | 0.01                     | 112                                 | 318                                  | 102                                 |
| ST. FRANCIS*                | 800           | 0.15          | N.A.      | N.A. | 15                | 0.02                     | 188                                 | 438                                  | 159                                 |
| ST. LOUIS PARK              | 43463         | 7             | 51% C+I   | -    | 51                | 3.57                     | 161                                 | 288                                  | 79                                  |
| ST. PAUL<br>(city only)     | 273160        | 35.8          | 50% C+I   | -    | 50                | 17.90                    | 131                                 | 293<br>(system)                      | 66                                  |
| ST. PAUL PARK               | 4900          | 0.5           | 15        | 10   | $\langle \rangle$ | 0.13                     | 102                                 | 326                                  | 77                                  |
| SAVAGE                      | 7897          | 0.5           | 7         | 13   | 20                | 0.10                     | 63                                  | 266                                  | 51                                  |

(1999) (1999) (1999) (1999) (1999) (1997) (1997)

and and

|                               |                  |         |         |      |                 | AVG.                         | AVG.GALL.     | PEAK GALL.                          | AVG.GALL.     |
|-------------------------------|------------------|---------|---------|------|-----------------|------------------------------|---------------|-------------------------------------|---------------|
|                               |                  | AVG.    |         |      |                 | DAILY                        | PER CAPITA    | PER CAPITA                          | PER CAPITA    |
|                               | POPL.            | DAILY   | %       | %    | %               | C and I                      | PER DAY-      | PER DAY-                            | PER DAY-      |
| CITY                          | SERVED           | (mgd)   | COMM.   | IND. | <u>Total C+</u> | I (mgd)                      | ALL USES      | ALL USES                            | RESIDENTIAL   |
| SHAKOPEE                      | 10783            | 2.2     | 14      | 40   | 54              | 1.19                         | 204           | 556                                 | 94            |
| SHOREVIEW                     | 24500            | 1.7     | 2.8     | 6.8  | 9.6             | 0.16                         | 69            | 433                                 | 63            |
| SHOREWOOD                     | 1356             | 0.056   | 9% C+I  | -    | 9               | 0.01                         | 41            | 302                                 | 38            |
| SO. ST. PAUL                  | 23000            | 2.8     | 25% C+I | -    | 25              | 0.70                         | 122           | 239                                 | 91            |
| SPRING LAKE PK.               | 6881             | 1       | 10.7    | 1.4  | 12.1            | 0.12                         | 145           | 363                                 | 128           |
| SPRING PARK                   | 1465             | 0.224   | 32      | 0    | 32              | 0.07                         | 153           | 256                                 | 104           |
| STILLWATER                    | 12770            | 1.8     | 8       | 4    | 12              | 0.22                         | 141           | 258                                 | 124           |
| TONKA BAY                     | 1453             | 0.2     | 6       | 0    | 6               | 0.01                         | 138           | 360                                 | 129           |
| VADNAIS HTS.                  | 6785             | 1.2     | 27% C+I | -    | 27              | 0.32                         | 177           | (peak assoc.w/<br>system malfunctio | 129<br>on)    |
| VERMILLION<br>(ESTIM. DAILY U | 500<br>SE)       | 0.038   | 2       | 0    | 2               | 0.00                         | 76            | -                                   | 74            |
| VICTORIA                      | 150              | 0.05    | 1       | 0    | 1               | 0.00                         | 333           | 333                                 | 330           |
| WACONIA                       | 3600             | 0.7     | 14      | 19   | 33              | 0.23                         | 194           | 361                                 | 130           |
| WATERTOWN                     | 2200             | 0.25    | 0       | 0    | 0               | 0.00                         | 114           | 181                                 | 114           |
| WAYZATA*                      | 3900             | 0.854   | N.A.    | N.A. | 9               | 0.08                         | 219           | 417                                 | 199           |
| WEST ST. PAUL*<br>(ST. PAUL)  | 18220            | 2.18    | N.A.    | N.A. | 11              | 0.24                         | 120           | -                                   | 106           |
| WHITE BEAR LAKE               | 24000            | 2.4     | 15      | 5    | 20              | 0.48                         | 100           | 338                                 | 80            |
| WHITE BEAR TWSP               | 8000             | 0.689   | 2.5     | 5    | 7.5             | 0.05                         | 86            | -                                   | 80            |
| WOODBURY                      | 18500            | 2.5     | 11      | 6    | 17              | 0.43                         | 135           | 373                                 | 112           |
| YOUNG AMERICA                 | 1300             | 0.109   | 7       | 5    | 12              | 0.01                         | 84            | 154                                 | 74            |
| TOTAL                         | 20 <b>1989</b> 4 | 277.428 |         |      |                 | 87.03<br>(30.3% of<br>total) | 128<br>(mean) | 328<br>(mean)                       | 102<br>(mean) |

\* No response from city or city does not know percentage so percentage C/I estimated from previous Minnesota Dept. of Health study or from city's comprehensive plan

\*\* N.A. = data not available in city records
 N.R. = no response received from city



| CLTX                                      | QUARTERLY<br>WATER<br>PRICE                              | PRICING                                             | RESIDENTIAL<br>PRICE FOR<br>30,000 Gall. | COMMERCIAL<br>PRICE FOR<br>30,000 GALL. | COMMERCIAL<br>PRICE FOR<br>100,000 GALL. |
|-------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|
| ANDOVER                                   | \$0.94 plus \$5 service<br>charge; \$7 minimum           | single block                                        | 33.20                                    | 33.20                                   | 102.00                                   |
| ANOKA                                     | \$0.53 plus \$12<br>service charge                       | single block                                        | 27.90                                    | 27.90                                   | 65.00                                    |
| APPLE VALLEY                              | <b>\$0.656</b> for 1-250<br><b>\$0.606</b> over 250      | decreasing block                                    | 19.68                                    | 19.68                                   | 65.60                                    |
| ARDEN HILLS<br>(ST.PAUL)                  | \$1.27 all volumes                                       | decreasing block                                    | 38.10                                    | 38.10                                   | 127.00                                   |
| BAYPORT                                   | \$2 all volumes                                          | single block                                        | 60.00                                    | 60.00                                   | 200.00                                   |
| BELLE PLAINE                              | Resid.\$8 per capita<br>C+I \$1 single block             | flat                                                | 32.00                                    | 30.00                                   | 100.00                                   |
| BLAINE                                    | \$0.35 for 0-50<br>\$0.39 for 51-250<br>\$0.43 over 250  | increasing block                                    | 10.50                                    | 10.50                                   | 37.00                                    |
| BLOOMINGTON<br>(MAX.30 MGD<br>FROM MPLS.) | <pre>\$1.30 with min.charge and \$4.88 service fee</pre> | single block with<br>service and minimum<br>charges | 43.88                                    | 43.88                                   | 134.88                                   |
| BROOKLYN CTR.                             | <b>\$0.47</b> all volumes                                | single block                                        | 14.10                                    | 14.10                                   | 47.00                                    |
| BROOKLYN PK.                              | \$1.29 for 0-6<br>\$0.75 over 6                          | decreasing block                                    | 25.74                                    | 25.74                                   | 78.24                                    |
| BURNSVILLE                                | <b>\$0.94</b> for 0-50<br><b>\$1.20</b> over 50          | increasing block                                    | 28.20                                    | 28.20                                   | 107.00                                   |
| CARVER                                    | \$2.70 for 0-20<br>\$1.70 over 20                        | decreasing block                                    | 71.00                                    | 71.00                                   | 190.00                                   |
| CENTERVILLE                               | <pre>\$1.50 plus \$15 service charge</pre>               | single block with<br>service charge                 | 60.00                                    | NC***                                   | NC                                       |
| CHAMPLIN                                  | <b>\$2.27</b> for 0-2<br><b>\$0.71</b> over 2            | decreasing block                                    | 24.42                                    | 24.42                                   | 74.12                                    |
| CHANHASSEN                                | \$8 for first 10<br>\$0.85 over 10                       | increasing block<br>after min. volume               | 25.00                                    | 25.00                                   | 84.50                                    |

# APPENDIX C. PRICING METHODS AND PRICES FOR MUNICIPAL WATER Compiled by Metropolitan Council (10/90)

|                                | QUARTERLY                                                       |                                       | RESIDENTIAL  | COMMERCIAL                  | COMMERCIAL                |
|--------------------------------|-----------------------------------------------------------------|---------------------------------------|--------------|-----------------------------|---------------------------|
|                                | WATER                                                           | 0010100                               | PRICE FOR    | PRICE FOR                   | PRICE FOR                 |
| CLTV                           |                                                                 | PRICING                               | 30,000 Gall. | 30,000 GALL.                | 100,000 GALL.             |
| CHASKA                         | \$0.80 for 1-7<br>\$0.65 over 7                                 | decreasing block                      | 20.55        | (\$ for 1.5" pipe)<br>20.55 | (\$ for 5" pipe)<br>66.05 |
| CIRCLE PINES                   | Resid.\$0.75 plus \$3.50<br>Comm.\$0.75 plus \$5.50             | single block with<br>service charge   | 26.00        | 28.00                       | 80.50                     |
| COLOGNE                        | \$1.75 all volumes                                              | single block                          | 52.50        | 52.50                       | 175.00                    |
| COLUMBIA HTS.<br>(MINNEAPOLIS) | \$24 for first 13.5<br>\$0.85 over 13.5                         | decreasing block<br>after min. volume | 38.02        | 38.02                       | 97.52                     |
| COON RAPIDS                    | \$0.98 all volumes                                              | single block                          | 29.40        | 29.40                       | 98.00                     |
| COTTAGE GROVE                  | \$17.85 for first 15<br>\$0.85 over 15                          | decreasing block<br>after min. volume | 30.60        | 30.60                       | 90.10                     |
| CRYSTAL<br>(MINNEAPOLIS)       | \$1.04 with minimum charge based on size                        | single block<br>with minimum          | 31.20        | 39.50                       | 118.85                    |
| EAGAN                          | \$14.50 for first 10<br>\$0.80 over 10                          | decreasing block<br>after min. volume | 30.50        | 30.50                       | 86.50                     |
| EDEN PRAIRIE                   | \$0.95 all volumes                                              | single block                          | 28.50        | 28.50                       | 95.00                     |
| EDINA                          | \$0.56 all volumes                                              | single block                          | 16.80        | 16.80                       | 56.00                     |
| ELKO                           | \$18 for first 9<br>\$2 over 9                                  | single block with<br>min. volume      | 60.00        | 60.00                       | 200.00                    |
| EMPIRE                         | \$42 unlimited                                                  | flat                                  | 42.00        | NC                          | NC                        |
| EXCELSIOR                      | \$22.09 for first 13<br>\$1.13 over 13                          | decreasing block<br>after min. volume | 41.30        | 41.30                       | 120.40                    |
| FALCON HTS.<br>(ST.PAUL)       | \$1.51 for 0-374<br>1.48 over 374                               | decreasing block                      | 45.30        | 45.30                       | 151.00                    |
| FARMINGTON                     | \$0.65 for metered (C+I)<br>\$22 unmetered (resid.)             | flat                                  | 22.00        | 19.50                       | 65.00                     |
| FOREST LAKE                    | \$2.00 for 0-5<br>\$1.20 6-10<br>\$1.00 11-20<br>\$0.90 over 20 | decreasing block                      | 35.00        | 35.00                       | 98.00                     |

- **1** - 1 - 1 - 1

-

envertagese

|                                | QUARTERLY                                                                                                             |                                       | RESIDENTIAL  | COMMERCIAL         | COMMERCIAL       |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|--------------------|------------------|
|                                | WATER                                                                                                                 |                                       | PRICE FOR    | PRICE FOR          | PRICE FOR        |
|                                | PRICE                                                                                                                 | PRICING                               | 30,000 Gall. | 30,000 GALL.       | 100,000 GALL.    |
| CITY                           | PER 1000 GAL.                                                                                                         | METHOD*                               | (\$)         | (\$ for 1.5" pipe) | (\$ for 3" pipe) |
| FRIDLEY                        | \$0.69 for 1-10<br>\$0.53 for 11-30<br>\$0.47 for 31-50<br>\$0.40 for 51-100<br>\$0.38 for 101-200<br>\$0.35 over 200 | decreasing block                      | 17.50        | 17.50              | 46.90            |
| GOLDEN VALLEY<br>(MINNEAPOLIS) | \$0.98 all volumes                                                                                                    | single block                          | 29.40        | 29.40              | 98.00            |
| HAMBURG                        | <b>\$9</b> for first 4<br><b>\$1.</b> 50 over 4                                                                       | decreasing block<br>after min. volume | 48.00        | 48.00              | 153.00           |
| HAMPTON                        | Res\$0.40 all vols.<br>Comm\$0.60 all vols.                                                                           | single block                          | 12.00        | 18.00              | 60.00            |
| HASTINGS                       | \$0.73 all volumes                                                                                                    | single block                          | 21.90        | 21.90              | 73.00            |
| HILLTOP<br>(MINNEAPOLIS)       | \$1.14 all volumes                                                                                                    | single block                          | 34.20        | 34.20              | 114.00           |
| HOPKINS                        | \$0.85 all volumes                                                                                                    | single block                          | 25.50        | 25.50              | 85.00            |
| HUGO                           | \$11.50 for first 15<br>\$0.60 over 15                                                                                | decreasing block<br>after min. volume | 20.50        | 20.50              | 62.50            |
| INVER GROVE<br>HEIGHTS         | \$1.20 all volumes                                                                                                    | single block                          | 36.00        | 36.00              | 120.00           |
| JORDAN                         | \$5 for first 5<br>\$1.54 over 5                                                                                      | increasing block<br>after min. volume | 43.50        | NC                 | NC               |
| LAKE ELMO                      | \$1.00 all volumes                                                                                                    | single block                          | 30.00        | 30.00              | 100.00           |
| LAKEVILLE                      | <pre>\$0.77 plus \$2.50 service charge</pre>                                                                          | single block with<br>service charge   | 25.60        | 25.60              | 79.50            |
| LANDFALL                       | Part of rental fee for<br>trailer lot                                                                                 | flat                                  |              |                    |                  |
| LAUDERDALE<br>(ST. PAUL)       | \$1.45 for 0-67<br>\$1.42 over 67                                                                                     | decreasing block                      | 43.50        | 43.50              | 90.36            |
| LEXINGTON                      | \$12.50 for first 10<br>\$0.75 over 10                                                                                | decreasing block<br>after min. volume | 27.50        | 27.50              | 80.00            |

and a second second

1 .....

\_

C-3

|                                         | QUARTERLY<br>WATER<br>PRICE                                                                          | PRICING                                    | RESIDENTIAL<br>PRICE FOR<br>30,000 Gall. | COMMERCIAL<br>PRICE FOR<br>30,000 GALL. | COMMERCIAL<br>PRICE FOR<br>100,000 GALL. |
|-----------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|
|                                         | PER 1000 GAL.                                                                                        | METHOD*                                    | (\$)                                     | (\$ for 1.5" pipe)                      | (\$ for 3" pipe)                         |
| LINO LAKES                              | a) Resid.\$1.20 plus<br>\$20 user fee<br>b) Comm. same plus<br>0.06% tax<br>c) Sunset Road \$0.77    | single block with<br>service charge        | 33.10                                    | 59.36                                   | 148.40                                   |
|                                         | plus \$10 user fee<br>in 1990                                                                        |                                            | 12                                       |                                         |                                          |
| (ST.PAUL)                               | \$1.50 all volumes                                                                                   | Single block                               | 45.00                                    | 45.00                                   | 150.00                                   |
| LONG LAKE                               | \$2.25 all volumes                                                                                   | single block                               | 67.50                                    | 67.50                                   | 225.00                                   |
| LORETTO                                 | \$1 for 0-4<br>\$1.07 over 4                                                                         | increasing block                           | 28.82                                    | 28.82                                   | 106.72                                   |
| MAHTOMEDI<br>(ALSO SERVES<br>WILLERNIE) | \$1.30 all volumes                                                                                   | single block                               | 39.00                                    | 39.00                                   | 130.00                                   |
| MAPLE GROVE                             | \$0.90 with \$9<br>minimum                                                                           | single block with<br>minimum               | 27.00                                    | 27.00                                   | 90.00                                    |
| MAPLE PLAIN                             | \$5 service charge plus<br>\$1.75 for 1-8<br>\$1.55 for 9-92<br>\$1.35 for 92-900<br>\$1.25 over 900 | decreasing block<br>with service<br>charge | 53.10                                    | 53.10                                   | 158.45                                   |
| MAPLEWOOD<br>(ST. PAUL)                 | \$1.74 for 0-374<br>\$1.70 over 374                                                                  | decreasing block                           | 52.20                                    | 52.20                                   | 174.00                                   |
| MAYER                                   | \$5.75 for 0-4<br>\$0.70 over 4                                                                      | decreasing block<br>after min. volume      | 23.95                                    | 23.95                                   | 72.95                                    |
| MEDINA                                  | \$1.95 all volumes                                                                                   | single block                               | 58.50                                    | 58.50                                   | 195.00                                   |
| MENDOTA HTS.<br>(ST. PAUL)              | \$1.60 0-374<br>\$1.56 over 374                                                                      | decreasing block                           | 48.00                                    | 48.00                                   | 160.00                                   |
| MINNEAPOLIS                             | \$1.14 direct bill in city<br>\$1.34 other direct bill<br>min. charge based on size                  | single block<br>with min.charge            | 34.20                                    | 34.20                                   | 114.00                                   |
| MINNETONKA                              | \$0.80 all volumes                                                                                   | single block                               | 24.00                                    | 24.00                                   | 80.00                                    |
| MINNETONKA<br>BEACH                     | \$1.27 all volumes                                                                                   | single block                               | 38.10                                    | 38.10                                   | 127.00                                   |

en monten

anzenski som

|               | QUARTERLY                               |                   | RESIDENTIAL  | COMMERCIAL         | COMMERCIAL       |
|---------------|-----------------------------------------|-------------------|--------------|--------------------|------------------|
|               | WATER                                   |                   | PRICE FOR    | PRICE FOR          | PRICE FOR        |
|               | PRICE                                   | PRICING           | 30,000 Gall. | 30,000 GALL.       | 100,000 GALL.    |
| CITY          | PER 1000 GAL.                           | METHOD*           | (\$)         | (\$ for 1.5" pipe) | (\$ for 3" pipe) |
| MINNETRISTA   | \$17 for first 10                       | decreasing block  | 47.00        | 47.00              | 152.00           |
|               | \$1.50 over 10                          | after min. volume |              |                    |                  |
|               |                                         |                   |              |                    |                  |
| MOUND         | \$1 all volumes                         | single block      | 30.00        | 30.00              | 100.00           |
|               |                                         |                   |              |                    |                  |
| MOUNDS VIEW   | \$0.90 all volumes                      | single block      | 27.00        | 27.00              | 90.00            |
|               |                                         |                   |              |                    |                  |
| NEW BRIGHTON  | \$0.55 all volumes                      | single block      | 16.50        | 16.50              | 55.00            |
|               |                                         | decession black   | 27.25        | 24.25              | 70 75            |
| NEW GERMANT   | \$3 TOF TIFSE 4                         | decreasing block  | 20.20        | 20.25              | 18.15            |
|               | \$1 TOF 3*13<br>\$0 75 over 15          | arter min. volume |              |                    |                  |
|               | \$0.15 OVEL 15                          |                   |              |                    |                  |
| NEW HOPE      | \$3.60 for first 1                      | decreasing block  | 31 15        | 31 15              | 07 65            |
| (MINNEAPOLIS) | \$0.95 over 1                           | after min. volume | 51115        | 511.15             | 71.05            |
| •••••••       |                                         |                   |              |                    |                  |
| NEW MARKET    | \$1 all volumes                         | single block      | 30.00        | 30.00              | 100.00           |
|               |                                         | -                 |              |                    |                  |
| NEWPORT       | \$1.06 0-10                             | increasing block  | 32.00        | 32.00              | 96.00            |
|               | \$1.31 11-15                            |                   |              |                    |                  |
|               | \$1.98 16-25                            |                   |              |                    |                  |
|               | \$3.20 26-42                            |                   |              |                    |                  |
|               | #/E for first 10                        |                   | <b>(5</b> 00 | (5.00              |                  |
| NEW IKIEK     | \$45 TOF TIEST IU<br>\$1 over 10        | decreasing block  | 65.00        | 65.00              | 135.00           |
|               | al over to                              | arter unn. votume |              |                    |                  |
| NO.ST.PAUL    | \$2.80 for first 4                      | single block      | 21 00        | 21 00              | 70 00            |
|               | \$0.70 over 4                           | with min. volume  | 21100        | 21.00              | 70.00            |
|               |                                         |                   |              |                    |                  |
| NORWOOD       | \$10 for first 5                        | decreasing block  | 41.25        | 41.25              | 128,75           |
|               | \$1.25 over 5                           | after min. volume |              |                    |                  |
|               |                                         |                   |              |                    |                  |
| OAK PARK HTS. | \$0.93 0-15                             | decreasing block  | 27.45        | 27.45              | 90.45            |
|               | \$0.90 over 15                          |                   |              |                    |                  |
|               | the 75 pt volumes                       | aingle black      | 22.50        | 22 50              |                  |
| UNRUALL       | Joing all volumes                       | Single block      | 22.50        | 22.50              | 75.00            |
| ORONO         | Area 1- \$1,17 plus                     | single block plus | <b>(7 00</b> | (7.00              | 120.00           |
|               | \$12.80/gtr. charge                     | service charge    | 47.50        | 47.90              | 129.00           |
|               | Area 2- \$2.75 plus \$6.70              | berviet endige    | 89 20        | 89 20              | 281 70           |
|               | Area 3- \$1.40 plus \$5.35              |                   | 47.35        | 47 35              | 145 75           |
|               | • • • • • • • • • • • • • • • • • • • • |                   |              |                    | CC.CFI           |
| OSSEO         | \$0.85 for 0-10                         | decreasing block  | 23.50        | 23.50              | 76.00            |
|               | \$0.75 for 10-100                       |                   |              |                    |                  |
|               | \$0.70 over 100                         |                   |              |                    |                  |

. .

с-2

(\*)~\*(%)[\*13

л

| CITY                    | QUARTERLY<br>WATER<br>PRICE<br>PER 1000 GAL.                                      | PRICING<br>METHOD*                    | RESIDENTIAL<br>PRICE FOR<br>30,000 Gall.<br>(\$) | COMMERCIAL<br>PRICE FOR<br>30,000 GALL.<br>(\$ for 1.5" pipe) | COMMERCIAL<br>PRICE FOR<br>100,000 GALL.<br>(\$ for 3" pipe) |
|-------------------------|-----------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
| PLYMOUTH                | Resid.\$4.50 plus \$0.75;<br>large users flat fee<br>from \$72 - \$720            | single block plus<br>service charge   | 27.00                                            | 72.00                                                         | 225.00                                                       |
| PRIOR LAKE              | \$1.40 all volumes                                                                | single block                          | 42.00                                            | 42.00                                                         | 140.00                                                       |
| RAMSEY<br>(NEW SYSTEM)  | \$1 all volumes                                                                   | single block                          | 30.00                                            | 30.00                                                         | 100.00                                                       |
| RANDOLPH                | \$10 for first 10<br>\$0.70 over 10                                               | decreasing block<br>after min. volume | 24.00                                            | NC                                                            | NC                                                           |
| RICHFIELD               | \$1.15 all volumes                                                                | single block                          | 34.50                                            | 34.50                                                         | 115.00                                                       |
| ROBBINSDALE             | \$0.95 for 0-8<br>\$0.90 over 8                                                   | decreasing block                      | 29.16                                            | 29.16                                                         | 90.40                                                        |
| ROCKFORD                | \$1.15 with minimum<br>charge \$10.35                                             | single block with<br>minimum          | 34.50                                            | 34.50                                                         | 115.00                                                       |
| ROGERS                  | Res\$10 for first 10<br>\$0.95 over 10<br>C/I-\$25 for first 10<br>\$0.95 over 10 | decreasing block<br>after min. volume | 29.00                                            | 44.00                                                         | 110.50                                                       |
| ROSEMOUNT               | \$1.10 all volumes                                                                | single block                          | 33.00                                            | 33.00                                                         | 110.00                                                       |
| ROSEVILLE<br>(ST. PAUL) | \$1.09 all volumes                                                                | single block                          | 32.70                                            | 32.70                                                         | 109.00                                                       |
| ST. ANTHONY             | \$0.80 all volumes                                                                | single block                          | 24.00                                            | 24.00                                                         | 80.00                                                        |
| ST. BONIFACIUS          | \$7.75 for 0-5<br>\$1.05 over 5                                                   | decreasing block<br>after min. volume | 34.00                                            | 34.00                                                         | 107.50                                                       |
| ST. FRANCIS             | \$1.30 with<br>\$6.80 base charge                                                 | single block with service charge      | 45.80                                            | 45.80                                                         | 136.80                                                       |
| ST. LOUIS PARK          | \$0.72 for 1-22.5<br>\$0.67 over 22.5                                             | decreasing block                      | 21.22                                            | 21.22                                                         | 68.12                                                        |

application provides and the set of the second s

. . . .

C-6

|                 | QUARTERLY                      |                     | RESIDENTIAL  | COMMERCIAL         | COMMERCIAL       |
|-----------------|--------------------------------|---------------------|--------------|--------------------|------------------|
|                 | WATER                          |                     | PRICE FOR    | PRICE FOR          | PRICE FOR        |
|                 | PRICE                          | PRICING             | 30,000 Gall. | 30,000 GALL.       | 100,000 GALL.    |
| CITY            | PER 1000 GAL.                  | METHOD*             | (\$)         | (\$ for 1.5" pipe) | (\$ for 3" pipe) |
| ST. PAUL        | <b>\$1.27</b> for 0-200        | decreasing block    | 41.30        | 54.30              | 209.50           |
| (city only)     | includes surcharge;            | w/ service charge   |              |                    |                  |
|                 | price decreases w/use          |                     |              |                    |                  |
|                 | plus demand charge             |                     |              |                    |                  |
|                 | of \$5.20 resid.               |                     |              |                    |                  |
|                 | \$10.20 TOP 1.5"               |                     |              |                    |                  |
|                 | \$62.00 101 5"                 |                     |              |                    |                  |
| ST. PAUL PARK   | \$11 for first 10              | decreasing block    | 31.00        | 31.00              | 101.00           |
|                 | \$1 over 10                    | after min. volume   |              |                    |                  |
|                 |                                |                     |              |                    |                  |
| SAVAGE          | \$1 plus                       | single block plus   | 40.50        | 55.20              | 125.20           |
|                 | \$10.50 residential            | service charge      |              |                    |                  |
|                 | \$25.20 C+1                    |                     |              |                    |                  |
| SHAKOPEE        | \$5 for first 6                | decreasing block    | 18.90        | 18.90              | 50.20            |
|                 | <b>\$0.60</b> for <b>7</b> -20 | after min. volume   |              |                    |                  |
|                 | <b>\$0.55</b> for 21-40        |                     |              |                    |                  |
|                 | \$0.43 over 40                 |                     |              |                    |                  |
| SHOREVIEW       | \$13.50 for first 15           | single block with   | 27 00        | 27 00              | 90.00            |
|                 | \$0.90 over 15                 | min. volume         | 27.00        | 21.00              | 90.00            |
|                 |                                |                     |              |                    |                  |
| SHOREWOOD       | \$22 for first 10              | decreasing block    | 50.00        | 50.00              | 148.00           |
|                 | <b>\$1.40</b> over 10          |                     |              |                    |                  |
| SO. ST. PAUL    | \$0.62 for 1-30                | decreasing block    | 18 60        | 18 60              | 67 30            |
|                 | \$0.41 next 470                | acor cability brock | 10.00        | 10.00              | 47.50            |
|                 | \$0.23 over 500                |                     |              |                    |                  |
|                 |                                |                     |              |                    |                  |
| SPRING LAKE PK. | \$16.40 for first 18           | decreasing block    | 24.68        | 24.68              | 72.98            |
|                 | \$0.69 over 18                 | after min. volume   |              |                    |                  |
| SPRING PARK     | \$7.50 for first 5             | decreasing block    | 32.50        | 32,50              | 102 50           |
|                 | \$1 over 5                     | after min. volume   |              |                    | 102.30           |
| 07111111750     |                                | • • • • • • •       |              |                    |                  |
| STILLWATER      | \$10 for first 10              | single block with   | 30.00        | 30.00              | 100.00           |
|                 | al over 10                     | min. volume         |              |                    |                  |
| TONKA BAY       | \$1.80 plus                    | single block with   | 59.00        | 59.00              | 185 00           |
|                 | \$5 service fee                | service charge      |              | 27.00              | 105.00           |
| VADNAIS HTS     | ¢0.00 all valuess              | ainsta blast        | 27.00        |                    |                  |
| ADDIALO 110.    | DU. TU dit VOLUMES             | Single DLOCK        | 27.00        | 27.00              | 90.00            |
| VERMILLION      | <b>\$0.25</b> plus             | single block with   | 25.50        | 25.50              | 43.00            |
| (NEW SYSTEM)    | \$18 maint.fee                 | service charge      |              |                    |                  |

- a -

.

C-7

-1979-19-balanceses

|                  | QUARTERLY                                        |                   | RESIDENTIAL         | COMMERCIAL         | COMMERCIAL       |
|------------------|--------------------------------------------------|-------------------|---------------------|--------------------|------------------|
|                  | WATER                                            |                   | PRICE FOR           | PRICE FOR          | PRICE FOR        |
|                  | PRICE                                            | PRICING           | <b>30,000</b> Gall. | 30,000 GALL.       | 100,000 GALL.    |
| CITY             | PER 1000 GAL.                                    | METHOD*           | (\$)                | (\$ for 1.5" pipe) | (\$ for 3" pipe) |
| VICTORIA         | \$20 for first 15                                | decreasing block  | 34.40               | 34.40              | 101.60           |
|                  | \$0.96 over 15                                   | after min. volume |                     |                    |                  |
| WACONIA          | \$11 for first 4                                 | decreasing block  | 39.60               | 39.60              | 116.60           |
|                  | <b>\$1.10</b> over 4                             | after min. volume |                     |                    |                  |
| WATERTOWN        | \$1.25 all volumes                               | single block      | 37.50               | 37.50              | 125.00           |
| WAYZATA          | Base charge \$3.33                               | increasing block  | 24.33               | 24.33              | 125.33           |
|                  | <b>\$0.70</b> for 0-35                           | with service      |                     |                    |                  |
|                  | \$1.50 over 35                                   | charge            |                     |                    |                  |
| WEST ST. PAUL    | \$1.45 0-374                                     | decreasing block  | 43.50               | 43.50              | 145.00           |
| (ST. PAUL)       | \$1.42 375-3740                                  |                   |                     |                    |                  |
|                  | \$1.38 over 3740                                 |                   |                     |                    |                  |
| WHITE BEAR LK.   | \$1.13 all volumes                               | single block      | 33.90               | 33.90              | 113.00           |
| WHITE BEAR       | \$45 unlimited for resid.<br>C/I being developed | flat              | 45.00               |                    |                  |
|                  |                                                  |                   |                     |                    |                  |
| WOODBURY         | \$8 for first 8                                  | decreasing block  | 20.10               | 20.10              | 58.60            |
|                  | \$0.55 over 8                                    | after min. volume |                     |                    |                  |
| YOUNG AMERICA    | \$15 for 0-5                                     | decreasing block  | 50.00               | 50.00              | 148.00           |
|                  | \$1.40 over 5                                    | after min. volume |                     |                    |                  |
|                  |                                                  |                   | • • •               |                    |                  |
|                  |                                                  |                   | 146                 | 146                | 140              |
| MINIMUM COST     |                                                  |                   | 34.73               | 55.55              | 110.38           |
| MAYIMUM COST     |                                                  |                   | 10.50               | 10.50              | 37.00            |
| MAATMUM CUST     |                                                  |                   | 89.20               | 89.20              | 281.70           |
| * Method summary | /: 45 decreasing block                           |                   |                     |                    |                  |
|                  | 7 increasing block                               |                   |                     |                    |                  |
|                  | 54 single block                                  |                   |                     |                    |                  |
|                  | 5 flat                                           |                   |                     |                    |                  |

. . . . . .

\*\* NR = no response to survey
\*\*\* NC = no commercial accounts

C-8

## WELLEKING BX WONICIEVT SOLEFIEKS

**VPPENDIX D** 

× .

| CITY             | COUNTY | YEAR METERED |
|------------------|--------|--------------|
| Andover          | Anoka  | 1981         |
| Anoka            |        | 1928         |
| Blaine           |        | 1962         |
| Centerville      |        | yes          |
| Circle Pines     |        | 1964         |
| Columbia Heights |        | 1930s        |
| Coon Rapids      |        | 1955         |
| Fridley          |        | 1960         |
| Hilltop          |        | 1950s        |
| Lexington        |        | 1965         |
| Lino Lakes       |        | 1974         |
| Ramsey           |        | 1984         |
| St. Francis      |        | 1975         |
| Spring Lake Park |        | 1964         |
| Carver           | Carver | 1986         |
| Chanhassen       |        | 1958         |
| Chaska           |        | 1965         |
| Cologne          |        | 1934         |
| Hamburg          |        | 1960         |
| Mayer            |        | 1971         |
| New Germany      |        | 1960         |
| Norwood          |        | 1926         |
| Victoria         |        | 1976         |
| Waconia          |        | 1958         |
| Watertown        |        | 1955         |

| CITY                   | COUNTY   | YEAR METERED |
|------------------------|----------|--------------|
| Young America          |          | 1979         |
| Apple Valley           | Dakota   | 1964         |
| Burnsville             |          | 1965         |
| Eagan                  |          | 1972         |
| Empire                 |          | none         |
| Farmington             |          | none         |
| Hampton                |          | 1954         |
| Hastings               |          | yes          |
| Inver Grove<br>Heights |          | 1965         |
| Lakeville              |          | 1970s        |
| Mendota Heights        |          | 1985         |
| New Trier              |          | yes          |
| Randolph               |          | yes          |
| Rosemount              |          | 1972         |
| South St. Paul         |          | 1930s        |
| Vermillion             |          | 1987         |
| West St. Paul          |          | 1985         |
| Bloomington            | Hennepin | 1960         |
| Brooklyn Center        |          | 1960         |
| Brooklyn Park          |          | yes          |
| Champlin               |          | 1974         |
| Crystal                |          | 1970         |
| Eden Prairie           |          | 1971         |
| Edina                  |          | 1924         |
| Excelsior              |          | 1958         |

| CITY             | COUNTY | YEAR METERED |
|------------------|--------|--------------|
| Golden Valley    |        | 1962         |
| Hopkins          |        | 1960s        |
| Long Lake        |        | 1948         |
| Loretto          |        | 1989         |
| Maple Grove      |        | 1972         |
| Maple Plain      |        | 1939         |
| Medina           |        | 1960s        |
| Minneapolis      |        | 1950s        |
| Minnetonka       |        | 1960         |
| Minnetonka Beach |        | 1932         |
| Minnetrista      |        | 15% metered  |
| Mound            |        | 1970s        |
| New Hope         |        | yes          |
| Orono            |        | 1970         |
| Osseo            |        | 1915         |
| Plymouth         |        | yes          |
| Richfield        |        | 1962         |
| Robbinsdale      |        | 1950s        |
| Rockford         |        | yes          |
| Rogers           |        | 1960         |
| St. Anthony      |        | 1940s        |
| St. Bonifacius   |        | 1971         |
| St. Louis Park   |        | yes          |
| Shorewood        |        | yes          |
| Spring Park      |        | 1963         |
| Tonka Bay        |        | 1974         |

| CITY            | COUNTY     | YEAR METERED                        |
|-----------------|------------|-------------------------------------|
| Wayzata         |            | 1929                                |
| Arden Hills     | Ramsey     | yes                                 |
| Falcon Heights  |            | 1950s                               |
| Lauderdale      |            | yes                                 |
| Little Canada   |            | 1970                                |
| Maplewood       |            | 1985                                |
| Mounds View     |            | 1964                                |
| New Brighton    |            | yes                                 |
| North St. Paul  |            | 1930s                               |
| Roseville       |            | 1960s                               |
| St. Paul        |            | 1985                                |
| Shoreview       |            | 1969                                |
| Vadnais Heights | ·<br>·     | 1978                                |
| White Bear Lake |            | 1988                                |
| White Bear Twp. |            | no residential<br>yes in commercial |
| Belle Plaine    | Scott      | 1988                                |
| Elko            |            | 1987                                |
| Jordan          |            | 1940                                |
| New Market      |            | 1930s                               |
| Prior Lake      |            | 1970                                |
| Savage          |            | 1978                                |
| Shakopee        |            | 1930s                               |
| Bayport         | Washington | 1930s                               |
| Cottage Grove   |            | 1958                                |
| Forest Lake     |            | 1951                                |

| CITY             | COUNTY | YEAR METERED |
|------------------|--------|--------------|
| Hugo             |        | 1961         |
| Lake Elmo        |        | 1962         |
| Landfall         |        | no           |
| Mahtomedi        |        | 1940         |
| Newport          |        | 1963         |
| Oakdale          |        | 1959         |
| Oak Park Heights |        | 1967         |
| St. Paul Park    |        | 1954         |
| Stillwater       |        | 1927         |
| Woodbury         |        | 1956         |


# **WUNICIPAL SEWER SERVICE CHARGES**

**VPPENDIX E** 

|               | QUARTERLY                                       |              |
|---------------|-------------------------------------------------|--------------|
|               | SEWER                                           | PRICE FOR    |
|               | PRICE                                           | 20,000 Gall. |
| CITY          | PER 1000 GAL.                                   | (\$)         |
| ANDOVER       | A. \$4.50/month                                 | 13.50        |
|               | 8. \$8.50/month                                 | 25.50        |
| ANOKA         | \$1.78 plus \$4                                 | 39.60        |
|               | service charge                                  |              |
| APPLE VALLEY  | \$0.95/1000                                     | 19.00        |
|               | \$2.60 base                                     |              |
| ARDEN HILLS   | \$31.23/qtr.                                    | 31.23        |
| BAYPORT       | \$2/1000                                        | 40.00        |
| BELLE PLAINE  | \$8/capita/qtr.                                 | 24.00        |
| BLAINE        | \$21.90/qtr.                                    | 21.90        |
| BLOOMINGTON   | \$7.50/month                                    | 22.50        |
| BROOKLYN CTR. | N.R.                                            |              |
| BROOKLYN PK.  | \$32/qtr.                                       | 32.00        |
| BURNSVILLE    | \$18.15/qtr. first 10,000<br>\$1.04 over 10,000 | 28.55        |
| CARVER        | \$3.57/1000                                     | 71.40        |
| CENTERVILLE   | \$36/qtr.                                       | 36.00        |
| CHAMPLIN      | N.R.                                            |              |
| CHANHASSEN    | \$9.50 for first 5,000<br>\$2.15 over 5,000     | 41.75        |
| CHASKA        | \$1.70/1000                                     | 34.00        |
| CIRCLE PINES  | \$1.10/1000                                     | 27.50        |
|               | plus \$4 service charge                         |              |
| COLOGNE       | \$1.50/1000                                     | 30.00        |

#### APPENDIX E PRICING METHODS AND PRICES FOR MUNICIPAL SEWER Compiled by Metropolitan Council (3/91)

12024-02

. ......

| COLUMBIA HTS.          | \$1.13/1000                                      | 22.60  |
|------------------------|--------------------------------------------------|--------|
| COON RAPIDS            | \$20/qtr.                                        | 20.00  |
| COTTAGE GROVE          | \$28.50/qtr.                                     | 28.50  |
| CRYSTAL                | \$26/qtr.                                        | 26.00  |
| EAGAN                  | \$15.45 for first 10,000<br>\$1.35/1000 >10,000  | 28.95  |
| EDEN PRAIRIE           | \$1.90/1000                                      | 38.00  |
| EDINA                  | \$1.73/1000                                      | 34.60  |
| ELKO                   | \$5.90/1000                                      | 118.00 |
| EMPIRE                 | \$25/qtr.                                        | 25.00  |
| EXCELSIOR              | N.R.                                             |        |
| FALCON HTS.            | \$27/qtr.                                        | 27.00  |
| FARMINGTON             | \$47.75/qtr.                                     | 47.75  |
| FOREST LAKE            | \$1.80/1000 for 0-10,000<br>\$1.75 > 10,000      | 35.50  |
| FRIDLEY                | \$24.65/qtr.                                     | 24.65  |
| GOLDEN VALLEY          | \$0.82/1000                                      | 16.40  |
| HAMBURG                | \$12/qtr.                                        | 12.00  |
| HAMPTON                | \$1.00/1000                                      | 20.00  |
| HASTINGS               | \$1.49/1000                                      | 29.80  |
| HILLTOP                | N.R.                                             | ·      |
| HOPKINS                | \$1.75/1000                                      | 35.00  |
| HUGO                   | \$32 for first 15,000<br>\$0.60 > 15,000         | 35.00  |
| INVER GROVE<br>HEIGHTS | \$15.45 for first 10,000<br>\$1.25/1000 > 10,000 | 25.00  |

. .....

.

| JORDAN              | \$1.02/1000                                       | 20.40 |
|---------------------|---------------------------------------------------|-------|
| LAKEVILLE           | \$1.77/1000<br>plus \$2.50 service charge         | 37.90 |
| LAUDERDALE          | \$24/qtr.                                         | 24.00 |
| LEXINGTON           | \$32/qtr.                                         | 32.00 |
| LINO LAKES          | \$36/qtr.                                         | 36.00 |
| LITTLE CANADA       | \$32.50/unit                                      | 32.50 |
| LONG LAKE           | \$1.95/1000                                       | 39.00 |
| LORETTO             | N.R.                                              |       |
| MAHTOMEDI           | \$2.77/1000                                       | 55.40 |
| MAPLE GROVE         | \$32/qtr.                                         | 32.00 |
| MAPLE PLAIN         | \$1.88/1000 for 0-8,000<br>\$2.75/1000 for >8,000 | 48.04 |
| MAPLEWOOD           | \$31.20/qtr. plus<br>\$3.60 service charge        | 34.80 |
| MAYER               | \$6.75 for first 4,000<br>\$0.70/1000 >4,000      | 17.95 |
| MEDINA              | \$3.35/1000                                       | 67.00 |
| MENDOTA HTS.        | \$26 min. plus<br>\$1.10/1000 >15,000             | 31.50 |
| MINNEAPOLIS         | \$1.89/1000                                       | 37.80 |
| MINNETONKA          | \$1.10/1000<br>\$16.50 min. charge                | 22.00 |
| MINNETONKA<br>BEACH | \$42.50/qtr.                                      | 42.50 |
| MINNETRISTA         | \$45/qtr.                                         | 45.00 |
| MOUND               | \$25.4 for first 10,000<br>\$1.67/1000 >10,000    | 42.10 |

- **h** - 1 - 1 - 1

~

M

E-3

| MOUNDS VIEW   | \$36.75/qtr.                                                                                              | 36.75          |  |
|---------------|-----------------------------------------------------------------------------------------------------------|----------------|--|
| NEW BRIGHTON  | \$1.30/1000                                                                                               | 26.00          |  |
| NEW GERMANY   | \$5 for first 4,000<br>\$1/1000 for 5-15,000<br>\$0.75 >19,000                                            | 20.75          |  |
| NEW HOPE      | <b>\$4</b> for first 1000<br><b>\$1.44/1000 &gt;1000</b>                                                  | 31.36          |  |
| NEW MARKET    | \$6.75/1000                                                                                               | 135.00         |  |
| NEWPORT       | \$33/qtr. if 0-10,000<br>\$41/qtr. if 10-15,000<br>\$62/qtr. if 15-25,000<br>Variable depending on volume | 62.00          |  |
| NEW TRIER     | No sewers                                                                                                 |                |  |
| NO.ST.PAUL    | \$34.92/qtr.                                                                                              | 34.92          |  |
| NORWOOD       | \$2.20/1000                                                                                               | 44.00          |  |
| OAK PARK HTS. | \$23/qtr. for 15,000<br>\$1.33/1000 >15,000                                                               | 29.65          |  |
| OAKDALE       | \$1.63/1000                                                                                               | 32.60          |  |
| ORONO         | Area 1- \$51.15/qtr.<br>Area 2- \$1.90/1000 plus<br>\$2.90 service charge                                 | 51.15<br>40.90 |  |
| OSSEO         | \$35.75/qtr.                                                                                              | 35.75          |  |
| PLYMOUTH      | \$1.56/1000                                                                                               | 31.20          |  |
| PRIOR LAKE    | \$1.40/1000                                                                                               | 28.00          |  |
| RAMSEY        | \$32/qtr.                                                                                                 | 32.00          |  |
| RANDOLPH      | No sewers                                                                                                 |                |  |
| RICHFIELD     | \$0.90/1000                                                                                               | 18.00          |  |
| ROBBINSDALE   | \$23.20/qtr.                                                                                              | 23.60          |  |
| ROCKFORD      | \$1.20/1000                                                                                               | 24.00          |  |

. . . .

E-4

-

Stational Station and station

· (

| ROGERS          | \$0.90/1000                                              | 18.00 |
|-----------------|----------------------------------------------------------|-------|
| ROSEMOUNT       | \$1.85/1000                                              | 37.00 |
| ROSEVILLE       | \$25.48/qtr.                                             | 25.48 |
| ST. ANTHONY     | \$1.32/1000                                              | 26.40 |
| ST. BONIFACIUS  | \$12 for first 1000<br>\$1/1000 >1000                    | 31.00 |
| ST. FRANCIS     | \$1.55/1000 plus<br>\$8.60 base charge                   | 39.60 |
| ST. LOUIS PARK  | \$1.30/1000                                              | 26.00 |
| ST. PAUL        | \$2.19/1000 for 0-750,000<br>Variable by volume >750,000 | 43.80 |
| ST. PAUL PARK   | N.R.                                                     |       |
| SAVAGE          | \$25.20/qtr.                                             | 25.20 |
| SHAKOPEE        | \$1.22/1000 plus<br>\$3/month service charge             | 33.40 |
| SHOREVIEW       | \$32.50/qtr.                                             | 32.50 |
| SHOREWOOD       | \$49.75/qtr.                                             | 49.75 |
| SO. ST. PAUL    | \$2.03/1000                                              | 40.60 |
| SPRING LAKE PK. | N.R.                                                     |       |
| SPRING PARK     | \$15 min. for 0-5000<br>\$2.35/1000 >5000                | 50.25 |
| STILLWATER      | \$39 min. for 0-10,000<br>\$2.10/1000 >10,000            | 60.00 |
| TONKA BAY       | \$38/qtr.                                                | 38.00 |
| VADNAIS HTS.    | N.R.                                                     |       |
| VERMILLION      | \$24/qtr.                                                | 24.00 |
| VICTORIA        | \$38/qtr.                                                | 38.00 |
| WACONIA         | \$2.58/1000                                              | 51.60 |

1 ....

ш -У

| WATERTOWN             | \$1.25/1000                                     | 25.00 |
|-----------------------|-------------------------------------------------|-------|
| WAYZATA               | \$0.90/1000 for 0-35,000<br>\$2.50/1000 >35,000 | 18.00 |
| WEST ST. PAUL         | \$27.60/qtr.                                    | 27.60 |
| WHITE BEAR LK.        | \$0.95/1000                                     | 19.00 |
| WHITE BEAR<br>TWNSHP. | \$45/qtr.                                       | 45.00 |
| WOODBURY              | \$34.20/qtr.                                    | 34.20 |
| YOUNG AMERICA         | N.R.                                            |       |

| AVERAGE |      | 34.83  | (\$1.74/1000) |
|---------|------|--------|---------------|
| MINIMUM | COST | 12.00  |               |
| MAXIMUM | COST | 135.00 |               |

1. ....

N.R. = no response to this survey question

# WUUICIPAL WATER SUPPLY INTERCONNECTION INVENTORY

**VPPENDIX F** 

. .

 $\bigcirc$ 

ı

.

·

#### ANALYSIS OF INTERCONNECTIONS OF MUNICIPAL WATER SUPPLIERS

#### I. SAMPLE DATA

- Data based on direct phone contact with suppliers.
- 111 communities responded to survey of existing municipal interconnections.
- 39/111 communities are interconnected; 35.1% of the sample; the new Lakeland system will add one more to this total since it also serves Lakeland Shores and Lake St. Croix Beach).
- 17/111 communities supply or receive water from another community; 15.3% of the sample.
- 48/111 communities are not interconnected; 43.2% of the sample.
- 7/111 communities could interconnect hydrant-to-hydrant; 6.3% of the sample.
- Reasons for no interconnections:
  - a) distance
  - b) funding
  - c) neighboring supplier does/not soften
  - d) St. Paul or Minneapolis supplies the water
  - e) neighboring supply not adequate
  - f) neighboring supplier does/not chlorinate
  - g) topography differing elevations, terrain, etc.
  - h) politics
  - i) no interest; would drill another well before interconnecting
  - j) different pressure zones
  - k) neighboring supplier has contaminated water related to landfills
  - 1) surrounding cities do not have municipal water systems
  - \*\*) denotes the community has thought about the possibility of interconnecting in the future.

#### **II. DISCREPANCIES**

- Many (20) discrepancies exist between suppliers. The reasons include:
  - Personnel familiar with interconnections might no longer be with supplier, particularly if the connection is old; documentation of old connections could be poor.
  - Interconnection lines could be considered abandoned by one community but not by the other, especially if the lines have not been used for long time.
  - Some communities consider hydrant-to-hydrant as "interconnection", while others do not.
  - City on contributing end of a one-way connection might not consider themselves as interconnected.
- Many of the sizes of the interconnecting lines are not consistent, probably because of the age of the hs and the respondents' personal unfamiliarity with them.

**F-1** 

### ANOKA COUNTY

| CITY                               | INTERCONNECTION SPECIFICS                                                                                                                                                                                                             |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANDOVER                            | - Coon Rapids, 8", 1981, emergency only<br>- Anoka, 8", 1981, emergency only                                                                                                                                                          |
| ANOKA (note discrepancy w/Andover) | - None (i)                                                                                                                                                                                                                            |
| BLAINE                             | <ul> <li>Coon Rapids, 8", 1988, emergency only</li> <li>Spring Lake Park, 6", 1971, emergency only</li> <li>Circle Pines, 6", 1970s emergency only</li> <li>Supplies part of Lexington via 6" main</li> </ul>                         |
| CENTERVILLE                        | - None **; note no reference to Hugo connection                                                                                                                                                                                       |
| CIRCLE PINES                       | <ul> <li>Blaine, 1970, emergency only</li> <li>Lexington, 1970, emergency only</li> <li>Shoreview, 1988, emergency only</li> <li>Lino Lakes, supplied by Circle Pines</li> </ul>                                                      |
| COLUMBIA HEIGHTS                   | - Supplied by Minneapolis; no other connections (d)<br>- Note lack of reference to New Brighton connection                                                                                                                            |
| COON RAPIDS                        | <ul> <li>Andover, 6", 1988 (note discrepancy with Andover), emergency only</li> <li>Blaine, 6", 1986 (note date and size discrepancy with Blaine),<br/>emergency only</li> </ul>                                                      |
| FRIDLEY                            | - Mounds View, 2 mgd capacity, 1960, emergency only                                                                                                                                                                                   |
| HILLTOP                            | - No response; served by Minneapolis                                                                                                                                                                                                  |
| LEXINGTON                          | - Circle Pines, 1500 gpm, 1970, emergency only<br>- Portion supplied by Blaine at 1000 gpm for part of year                                                                                                                           |
| LINO LAKES                         | <ul> <li>Circle Pines, 2000 gpm, 1987, emergency only (note discrepancy with Circle Pines response)</li> <li>Lino Lakes purchases water from Shoreview via a 1200 gpm line built in 1987 (note discrepancy with Shoreview)</li> </ul> |
| RAMSEY                             | - Anoka, hydrant-to-hydrant, emergency only                                                                                                                                                                                           |
| ST. FRANCIS                        | - None (l)                                                                                                                                                                                                                            |
| SPRING LAKE PARK                   | - Blaine, 6", 1970s emergency only                                                                                                                                                                                                    |

# **CARVER COUNTY**

| CITY          | INTERCONNECTION SPECIFICS                 |
|---------------|-------------------------------------------|
| CARVER        | - None (a, g) **                          |
| CHANHASSEN    | - Shorewood, 8", 1987, emergency only     |
| CHASKA        | - None (a) **                             |
| COLOGNE       | - None (a)                                |
| HAMBURG       | - None (a)                                |
| MAYER         | - None (a) **                             |
| NEW GERMANY   | - None (a)                                |
| NORWOOD       | - Young America, 6", 1975, emergency only |
| VICTORIA      | - None (a)                                |
| WACONIA       | - None (a) **                             |
| WATERTOWN     | - None (a)                                |
| YOUNG AMERICA | - Norwood, 6", 1975, emergency only       |

# DAKOTA COUNTY

| CITY                   | INTERCONNECTION SPECIFICS                                                                                                                               |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPLE VALLEY           | - Rosemount, 6", 1982, emergency only                                                                                                                   |
| BURNSVILLE             | - None (j), but supplies portions of Savage, Lakeville, and Eagan.                                                                                      |
| EAGAN                  | <ul> <li>None (j) ** (note discrepancy with Burnsville)</li> <li>Sells some water to Inver Grove Heights</li> </ul>                                     |
| EMPIRE                 | - None **                                                                                                                                               |
| FARMINGTON             | - None (b) **                                                                                                                                           |
| HAMPTON                | - None (a) **                                                                                                                                           |
| HASTINGS               | - None (a)                                                                                                                                              |
| INVER GROVE<br>HEIGHTS | <ul> <li>So.St.Paul, 6", 1962, emergency only</li> <li>Note no reference to water from Eagan</li> </ul>                                                 |
| LAKEVILLE              | - None (a, b) **                                                                                                                                        |
| MENDOTA HEIGHTS        | - Supplied by St.Paul via W. St. Paul                                                                                                                   |
| NEW TRIER              | - None (a, l)                                                                                                                                           |
| RANDOLPH               | - None                                                                                                                                                  |
| ROSEMOUNT              | - Apple Valley, 6", 1982, emergency only                                                                                                                |
| SOUTH ST PAUL          | <ul> <li>West St.Paul, 8", 1935, emergency only</li> <li>St.Paul, 8", 1925, emergency only</li> <li>Note no reference to Inver Grove Heights</li> </ul> |
| VERMILLION             | - None (a)                                                                                                                                              |
| WEST ST PAUL           | - None (g); note no reference to So. St. Paul                                                                                                           |

# HENNEPIN COUNTY

| CITY            | INTERCONNECTION SPECIFICS                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLOOMINGTON     | <ul> <li>None (e), although can receive up to 30 mgd from Minneapolis<br/>under current contract</li> <li>Note no reference to Edina connection</li> </ul>                                                                                                                                                                                                                                                                                       |
| BROOKLYN CENTER | - None (1) **                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BROOKLYN PARK   | - Connection with Maple Grove                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CHAMPLIN        | - Can connect hydrant-to-hydrant with Maple Grove in emergency                                                                                                                                                                                                                                                                                                                                                                                   |
| CRYSTAL         | - Supplied by Minneapolis; in Joint Water Commission with Golden Valley and New Hope                                                                                                                                                                                                                                                                                                                                                             |
| EDEN PRAIRIE    | - None (h); note discrepancy with Edina                                                                                                                                                                                                                                                                                                                                                                                                          |
| EDINA           | <ul> <li>Bloomington, 12", 1960s, emergency only</li> <li>Eden Prairie, 12", 1960s, emergency only</li> <li>Note no reference to Minneapolis supply of Morningside</li> </ul>                                                                                                                                                                                                                                                                    |
| EXCELSIOR       | <ul> <li>None, but supplies part of Greenwood &amp; Shorewood via 6" mains<br/>since 1980</li> </ul>                                                                                                                                                                                                                                                                                                                                             |
| GOLDEN VALLEY   | <ul> <li>Supplied by Minneapolis; in Joint Water Commission with Crystal<br/>and New Hope</li> <li>Note no reference to Plymouth connection</li> </ul>                                                                                                                                                                                                                                                                                           |
| HOPKINS         | - Minnetonka, 6", 1965, emergency only                                                                                                                                                                                                                                                                                                                                                                                                           |
| LONG LAKE       | - Can supply Orono via 8" main but flow cannot be reversed                                                                                                                                                                                                                                                                                                                                                                                       |
| LORETTO         | - None (a) **                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MAPLE GROVE     | <ul> <li>Osseo, 8", 1973, emergency only</li> <li>Brooklyn Park, 12", 1976, emergency only</li> <li>Will connect with Plymouth in 1991-2</li> </ul>                                                                                                                                                                                                                                                                                              |
| MAPLE PLAIN     | - None (a) **                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MEDINA          | - None (a) **                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MINNEAPOLIS     | <ul> <li>Bloomington supplied up to 30 mgd via 36-42" main since 1960</li> <li>Golden Valley, Crystal, and New Hope supplied via 16-36" mains</li> <li>Edina Morningside supplied via 12" main</li> <li>Hilltop supplied via 6" main</li> <li>Columbia Heights supplied via 24" main</li> <li>Airport supplied by 12-18" mains</li> <li>Note none of these are emergency connections that could supply adequate volume to Minneapolis</li> </ul> |

| CITY             | INTERCONNECTION SPECIFICS                                                                                                                                                                                            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MINNETONKA       | - Hopkins, St.Louis Park, Plymouth, Wayzata, and Shorewood all connected via 8" pipes for emergency only                                                                                                             |
| MINNETONKA BEACH | - Orono, 6-8", emergency only                                                                                                                                                                                        |
| MINNETRISTA      | - None (a)                                                                                                                                                                                                           |
| MOUND            | - Spring Park, 10", 1982, emergency only (note size discrepancy with Spring Park response)                                                                                                                           |
| NEW HOPE         | - Supplied by Minneapolis; in Joint Water Commission with Crystal and Golden Valley                                                                                                                                  |
| ORONO            | <ul> <li>Spring Park, 6-8", 1970s, emergency only</li> <li>Minnetonka Beach, 6-8", 1970s, emergency only</li> <li>Long Lake and Wayzata supply water to parts of Orono via 6-8" mains</li> </ul>                     |
| OSSEO            | - No response to survey; see Maple Grove response                                                                                                                                                                    |
| PLYMOUTH         | - Minnetonka, Wayzata, St.Louis Park, Golden Valley, and Maple<br>Grove all connected via 6-12" pipes for emergency only                                                                                             |
| RICHFIELD        | - None (i) **                                                                                                                                                                                                        |
| ROBBINSDALE      | - None (i) **                                                                                                                                                                                                        |
| ROCKFORD         | - None (l)                                                                                                                                                                                                           |
| ROGERS           | - None (e)                                                                                                                                                                                                           |
| ST. BONIFACIUS   | - None (a, e, i)                                                                                                                                                                                                     |
| ST. LOUIS PARK   | <ul><li>Plymouth, 8", 1975, emergency only</li><li>Note no reference to Minnetonka connection</li></ul>                                                                                                              |
| SHOREWOOD        | <ul> <li>Chanhassen, 8", 1987, emergency only</li> <li>Minnetonka, 8", 1970s, emergency only</li> <li>8" connection with Tonka Bay closed and unusable</li> <li>Supplied in portions of city by Excelsior</li> </ul> |
| SPRING PARK      | - Mound, 6", 1986, emergency only<br>- Orono, 6", 1970, emergency only                                                                                                                                               |
| TONKA BAY        | - 8" connection with Shorewood closed & unusable **                                                                                                                                                                  |
| WAYZATA          | <ul> <li>Plymouth, 12", 1920, emergency only</li> <li>Minnetonka, 8", 1920, emergency only</li> <li>Note no reference to supplying part of Orono</li> <li>Note both connections currently closed</li> </ul>          |

ε

### **RAMSEY COUNTY**

| CITY           | INTERCONNECTION SPECIFICS                                                                                                                                                                                                                                                                                                      |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ARDEN HILLS    | - Supplied by St. Paul<br>- No response to survey; see Shoreview                                                                                                                                                                                                                                                               |
| FALCON HEIGHTS | - Supplied by St. Paul<br>- Roseville, 6", 1970s, emergency only                                                                                                                                                                                                                                                               |
| LANDFALL       | - None; self-supplied trailer community                                                                                                                                                                                                                                                                                        |
| LAUDERDALE     | - Supplied by St. Paul                                                                                                                                                                                                                                                                                                         |
| LITTLE CANADA  | <ul> <li>Supplied by St. Paul</li> <li>Roseville, 6-24" (?), 1981, emergency only</li> <li>Note lack of reference to Maplewood</li> </ul>                                                                                                                                                                                      |
| MAPLEWOOD      | <ul> <li>Supplied by St. Paul</li> <li>Provides water to parts of North St. Paul via 6-24" (?) main, Little<br/>Canada via 12" main, and Woodbury via 8" main</li> </ul>                                                                                                                                                       |
| MOUNDS VIEW    | <ul> <li>Fridley, 12", 1970, emergency only</li> <li>Spring Lake Park, 1000 gpm, 1970s, emergency only (note no reference to this by Spring Lake Park)</li> <li>Note no reference to connections with New Brighton</li> </ul>                                                                                                  |
| NEW BRIGHTON   | <ul> <li>Roseville, 6", 1980, emergency only</li> <li>Columbia Heights, 6", 1982, emergency only</li> <li>Mounds View, 6", 1980, emergency only (note discrepancy with<br/>Mounds View)</li> </ul>                                                                                                                             |
| NORTH ST PAUL  | - None (e) **; note lack of reference to Maplewood connection                                                                                                                                                                                                                                                                  |
| ROSEVILLE      | <ul> <li>Supplied by St. Paul</li> <li>St. Anthony, 12", 1960, emergency only</li> <li>Supplies water to Arden Hills routinely; could use Arden Hills tanks to reverse supply to Roseville; not emergency only supply</li> <li>Note lack of reference to Falcon Heights, Little Canada, New Brighton, and Shoreview</li> </ul> |
| ST. ANTHONY    | - Roseville, 10", 1983, emergency only                                                                                                                                                                                                                                                                                         |
| ST. PAUL       | <ul> <li>Supplies water to Roseville, Lauderdale, Little Canada, Falcon<br/>Heights, West St. Paul, Mendota Heights, Maplewood and a<br/>portion of St. Anthony</li> <li>South St. Paul, 6-8", emergency only, could not supply needs of St.<br/>Paul</li> </ul>                                                               |

63322

| CITY                   | INTERCONNECTION SPECIFICS                                                                                                                                                                            |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHOREVIEW              | <ul> <li>Roseville, 8", 1976, emergency only</li> <li>Arden Hills, 8", 1988, emergency only</li> <li>Circle Pines, 8", 1986, emergency only</li> <li>Lino Lakes, 8", 1976, emergency only</li> </ul> |
| VADNAIS HEIGHTS        | - None (h) **; can connect hydrant-to-hydrant if necessary                                                                                                                                           |
| WHITE BEAR LAKE        | - Supplies Birchwood and parts of White Bear Township **                                                                                                                                             |
| WHITE BEAR<br>TOWNSHIP | - Birchwood, 6", 1981, emergency only                                                                                                                                                                |

Č.

### SCOTT COUNTY

| CITY         | INTERCONNECTION SPECIFICS              |
|--------------|----------------------------------------|
| BELLE PLAINE | - None (a)                             |
| ELKO         | - None (b) **                          |
| JORDAN       | - None (a, e)                          |
| NEW MARKET   | - None (a, e)                          |
| PRIOR LAKE   | - None                                 |
| SAVAGE       | - Burnsville, 8", 1984, emergency only |
| SHAKOPEE     | - None (a)                             |

#### WASHINGTON COUNTY

| СІТҮ                                   | INTERCONNECTION SPECIFICS                                            |
|----------------------------------------|----------------------------------------------------------------------|
| BAYPORT                                | - None (b)                                                           |
| COTTAGE GROVE                          | - None (f) **                                                        |
| FOREST LAKE                            | - None (a)                                                           |
| HUGO                                   | - Centerville (?); note no connection noted by Centerville           |
| LAKE ELMO                              | - None (a, k)                                                        |
| LAKELAND (begins service<br>Sept.1991) | - Will also serve Lakeland Shores and Lake St. Croix Beach           |
| MAHTOMEDI                              | - None (c); could connect hydrant-to-hydrant if needed               |
| NEWPORT                                | - None; could connect hydrant-to-hydrant with St Paul Park if needed |
| OAKDALE                                | - None (b) **; supplies portions of North St. Paul and Lake Elmo     |
| OAK PARK HEIGHTS                       | - None (h) **; could connect hydrant-to-hydrant with Stillwater      |
| ST. PAUL PARK                          | - None (f) **; could connect hydrant-to-hydrant if needed            |
| STILLWATER                             | - None (h) **                                                        |
| WOODBURY                               | - None (k) **                                                        |

F-9

.

()

Ċ

# WUNICIPAL WATER SUPPLY PROBLEMS

 $\bigcirc$ 

**VDEENDIX C** 

.

.

# PROBLEMS ENCOUNTERED WITH EACH MUNICIPAL WATER SYSTEM

| CITY             | PROBLEMS ENCOUNTERED                                                         |
|------------------|------------------------------------------------------------------------------|
| ANDOVER          | None                                                                         |
| ANOKA            | None                                                                         |
| BLAINE           | Fe                                                                           |
| CENTERVILLE      | None                                                                         |
| CIRCLE PINES     | None                                                                         |
| COLUMBIA HEIGHTS | See Minneapolis                                                              |
| COON RAPIDS      | Fe, Mn; radium *                                                             |
| EAST BETHEL      | Fe, Mn; nitrate and coliform in shallow wells<br>too close to septic systems |
| FRIDLEY          | None                                                                         |
| HILLTOP          |                                                                              |
| LEXINGTON        | None                                                                         |
| LINO LAKES       | None                                                                         |
| RAMSEY           | None                                                                         |
| ST. FRANCIS      | Fe **                                                                        |
| SPRING LAKE PARK | None                                                                         |

# ANOKA COUNTY

\* = filter water; \*\* = use polyphosphate

G-1

# **CARVER COUNTY**

| CITY          | PROBLEMS ENCOUNTERED                     |
|---------------|------------------------------------------|
| CARVER        | Fe, Mn                                   |
| CHANHASSEN    | Fe, Mn                                   |
| CHASKA        | Fe, Mn; rotten egg odor; age of system * |
| COLOGNE       | Fe, Mn **                                |
| HAMBURG       | Fe *                                     |
| MAYER         | Fe, Mn *                                 |
| NEW GERMANY   | None                                     |
| NORWOOD       | Fe, Mn                                   |
| VICTORIA      | Fe, Mn                                   |
| WACONIA       | Fe, Mn *                                 |
| WATERTOWN     | Fe; hardness *                           |
| YOUNG AMERICA | None                                     |

\* = filter water; \*\* = use polyphosphates

 $\bigcirc$ 

G-2

### DAKOTA COUNTY

| CITY                | PROBLEMS ENCOUNTERED                                                              |
|---------------------|-----------------------------------------------------------------------------------|
| APPLE VALLEY        | Fe *                                                                              |
| BURNSVILLE          | Fe, radium *                                                                      |
| EAGAN               | Fe, Mn *                                                                          |
| EMPIRE              |                                                                                   |
| FARMINGTON          | Fe, Mn *                                                                          |
| HAMPTON             | None                                                                              |
| HASTINGS            | VOCs in 1989; TCE                                                                 |
| INVER GROVE HEIGHTS | Fe, Mn, radium **                                                                 |
| LAKEVILLE           | Fe, Mn **                                                                         |
| MENDOTA HEIGHTS     | Water hammers; system not looped                                                  |
| NEW TRIER           | Nitrates                                                                          |
| RANDOLPH            |                                                                                   |
| ROSEMOUNT           | Sulfur smell                                                                      |
| SOUTH ST. PAUL      | Fe, Mn (use chlorine dioxide); occasional infrastructure problems (leaks, breaks) |
| VERMILLION          | None                                                                              |
| WEST ST. PAUL       | None                                                                              |

\* = filter water; \*\* = use polyphosphates

# **HENNEPIN COUNTY**

| CITY                | PROBLEMS ENCOUNTERED |
|---------------------|----------------------|
| BLOOMINGTON         | None                 |
| BROOKLYN CENTER     | Fe, Mn               |
| BROOKLYN PARK       | Fe, Mn *             |
| CHAMPLIN            | Fe, Mn **            |
| CRYSTAL             | None                 |
| EDEN PRAIRIE        | Fe, Mn *             |
| EDINA               | Fe *                 |
| EXCELSIOR           | None                 |
| GOLDEN VALLEY       | None                 |
| HOPKINS             | Fe *                 |
| LONG LAKE           | None *               |
| LORETTO             | Fe, Mn               |
| MAPLE GROVE         | Fe, Mn *             |
| MAPLE PLAIN         | Fe, Mn *             |
| MEDINA              | Fe, Mn               |
| MINNEAPOLIS         | None *               |
| MINNETONKA **       | Fe, Mn **            |
| MINNETONKA BEACH ** | Fe, Mn **            |
| MINNETRISTA         | Fe                   |
| MOUND               | None                 |
| NEW HOPE            | None                 |
| ORONO               | Fe, Mn *             |
| OSSEO               | None                 |
| PLYMOUTH            | Fe, Mn *             |

\* = filter water; \*\* = use polyphosphates

# HENNEPIN COUNTY (continued)

| CITY           | PROBLEMS ENCOUNTERED                                      |
|----------------|-----------------------------------------------------------|
| RICHFIELD      | Fe, Mn *                                                  |
| ROBBINSDALE    | None                                                      |
| ROCKFORD       | Fe, Mn; brown water **                                    |
| ROGERS         | Fe, Mn; age of system; residents soften water privately * |
| ST. BONIFACIUS | Fe                                                        |
| ST. LOUIS PARK | None                                                      |
| SHOREWOOD      | Fe, Mn; brown water; power surges                         |
| SPRING PARK    | Fe, Mn *                                                  |
| TONKA BAY      | Fe, Mn                                                    |
| WAYZATA        | None                                                      |

\* = filter water; \*\* = use polyphosphates

# **RAMSEY COUNTY**

| CITY                | PROBLEMS ENCOUNTERED                                                            |
|---------------------|---------------------------------------------------------------------------------|
| ARDEN HILLS         | No response                                                                     |
| FALCON HEIGHTS      | Fe; see also St. Paul                                                           |
| LAUDERDALE          | No response                                                                     |
| LITTLE CANADA       | None                                                                            |
| MAPLEWOOD           | Bad taste & smell; see also St. Paul                                            |
| MOUNDS VIEW         | Fe, Mn *                                                                        |
| NEW BRIGHTON        | Fe, Mn; * deep wells; ** in other part of system                                |
| NORTH ST PAUL       | None                                                                            |
| ROSEVILLE           | Taste and smell in the summer; see also St.<br>Paul                             |
| SHOREVIEW           | Fe, Mn                                                                          |
| ST. ANTHONY         | Fe, MN, TCE *                                                                   |
| ST. PAUL            | None; note communities supplied have observed problems                          |
| VADNAIS HEIGHTS     | None                                                                            |
| WHITE BEAR LAKE     | None                                                                            |
| WHITE BEAR TOWNSHIP | Distance between systems; i.e., two separate water systems separated by 3 miles |

\* = use polyphosphates; \*\* = filter water

¢

3

G-6

### SCOTT COUNTY

٩.,

e

| CITY         | PROBLEMS ENCOUNTERED            |
|--------------|---------------------------------|
| BELLE PLAINE | Fe, Mn                          |
| ELKO         | None                            |
| JORDAN       | Radium; brown water             |
| NEW MARKET   | Leakage (serial lines no loops) |
| PRIOR LAKE   | Brown water; Fe, Mn             |
| SAVAGE       | Fe                              |
| SHAKOPEE     | Age of system                   |

# WASHINGTON COUNTY

| CITY             | PROBLEMS ENCOUNTERED               |
|------------------|------------------------------------|
| BAYPORT          | Hardness; brown water              |
| COTTAGE GROVE    | None                               |
| FOREST LAKE      | Fe, Mn *                           |
| HUGO             | None                               |
| LAKE ELMO        | Fe, Mn                             |
| MAHTOMEDI        | Fe                                 |
| NEWPORT          | Deep wells; distance between wells |
| OAKDALE          | None                               |
| OAK PARK HEIGHTS | None                               |
| ST. PAUL PARK    | Frequent water main breaks         |
| STILLWATER       | None                               |
| WOODBURY         | Age of parts of system             |

\* = filter water

# WISCELLANEOUS INFORMATION FROM SUPPLIER SURVEYS

# **VPPENDIX H**

APPENDIX H. MISCELLANEOUS INFORMATION FROM SUPPLIER SURVEYS.

| CITY                | COUNTY    | CAR WASHES |              | PARKS  |           |         | FIRE       | HYDRANTS    | IRRIGATION | SYSTEMS    | SYSTEM    | LEAKAGE |
|---------------------|-----------|------------|--------------|--------|-----------|---------|------------|-------------|------------|------------|-----------|---------|
|                     |           | Number     | Water        | Number | Restrooms | Water   | Number     | Water       | Number     | Water      | Known     | Water   |
|                     |           |            | Use GPD      |        |           | Use GPD |            | Flushed MGY |            | Use GPD    |           | Lost    |
| Andover             | Anoka     | 1          | 3943         | 50     | 0         | 0       | 300        | 6           | 0          | 0          | no        | NR      |
| Anoka               | Anoka     | 1          | NR           | 15     | 28        | NR      | 682        | 3           | yes        | NR         | yes       | <5%     |
| Blaine              | Anoka     | 4          | 4196         | 38     | 16        | 60      | 1330       | 0.5         | 4          | 4500       | NR        | NR      |
| Centerville         | Anoka     | 1          | NR           | NR     | NR        | NR      | 20         | 0.1         | 0          | 0          | yes       | NR      |
| Circle Pines        | Anoka     | 0          | 0            | 13     | 8         | 5       | 163        | 9           | 4          | 130        | no        | NR      |
| Columbia Heights    | Anoka     | 2          | 7000         | 14     | 11        | 330     | 516        | 1.29        | yes        | 450        | no        | NR      |
| Coon Rapids         | Anoka     | NR         | NR           | NR     | NR        | NR      | NR         | NR          | NR         | NR         | NR        | NR      |
| Fridley             | Anoka     | 5          | 4881         | 40     | 8         | NR      | 1050       | 26          | yes        | 211        | no        | NR      |
| Hilltop             | Anoka     | 0          | 0            | 0      | 0         | 0       | 12         | NR          | NR         | NR         | NR        | NR      |
| Lexington           | Anoka     | 1          | NR           | 2      | NR        | NR      | 62         | 0.125       | 0          | 0          | no        | NR      |
| Lino Lakes          | Anoka     | 0          | 0            | 7      | 4         | NR      | 140        | 0.5         | 2          | 50         | NR        | NR      |
| Ramsey              | Anoka     | 1          | 438          | 0      | 0         | 0       | 80         | 0.5         | 0          | 0          | yes       | NR      |
| Spring Lake Park    | Anoka     | 1          | NR           | 5      | 2         | NR      | 250        | 4           | yes        | 200        | no        | NR      |
| St. Francis         | Anoka     | 1          | NR           | 3      | NR        | NR      | 87         | NR          | 0          | 0          | NR        | NR      |
| Carver              | Carver    | Ó          | 0            | 2      | 2         | 100     | 39         | 0.9         | 0          | 0          | no        | NR      |
| Chanhassen          | Carver    | 1          | NR           | 1      | 2         | 0       | 1000       | NR          | 1          | NR         | NR        | NR      |
| Chaska              | Carver    | NR         | NR           | NR     | NR        | NR      | NR         | NR          | NR         | NR         | NR        | NR      |
| Cologne             | Carver    | 1          | 400          | 2      | 1         | NR      | 34         | 0.12        | NR         | NR         | ves       | NR      |
| Hamburg             | Carver    | 1          | 500          | 3      | 2         | NR      | 20         | 0.02        | 0          | 0          | no        | NR      |
| Mayer               | Carver    | 1          | 68           | 1      | 2         | NR      | 28         | 0.05        | 0          | õ          | ves       | 0       |
| New Germany         | Carver    | Ō          | 0            | 3      | 2         | NR      | 18         | 0.025       | 0          | Ő          | ,         | NR      |
| Norwood             | Carver    | 2          | NR           | 5      | ō         | NR      | 67         | 0.07        | 5          | NR         | no        | NR      |
| Victoria            | Carver    | ĩ          | NR           | 5      | 1         | 100     | 80         | 0.2         | 0<br>0     | 0          | 00        | NR      |
| Waconia             | Carver    | 3          | NR           | · 4    | 2         | NR      | 164        | NR          | Ô          | õ          | no        | NR      |
| Watertown           | Carver    | 1          | NR           | Ś      | NR        | NR      | NP         | NR          | ň          | ň          | VAS       | <5%     |
| Young America       | Carver    | Ō          | 0            | 2      | 3         | NR      | 77         | 0.03        | ň          | ň          | yes<br>no | ND      |
| Apple Valley        | Dakota    | 5          | 3500         | 42     | 14        | 800     | 1375       | 20          | Ves        | 60000      | Vec       | 48 MGY  |
| Burnsville          | Dakota    | 10         | NR           | 71     | 6         | NP      | 3900       | NR          | Ves        | NP         | VAC       | <5¥     |
| Eagan               | Dakota    | 10         | NR           | 48     | 18        | ND      | 2500       | 6           | 280        |            | yes       | ND      |
| Empire              | Dakota    | 0          | n.<br>O      | 0      | 0         | 0       | 32         | 0.2         | VAC        |            | 10        |         |
| Farmington          | Dakota    | 2          | NR           | ŏ      | ž         | NP      | 252        | 6           | yes<br>0   | 0          | yes       | ND      |
| Hampton             | Dakota    | ō          | 0            | 1      | 1         | 200     | 25         | NP          | ő          | ő          | 10        |         |
| Hastings            | Dakota    | ND         | NP           | ND     | NP        | ND      | ND         | NIC NO      | ND         | 10         | 110       |         |
| Inver Grove Heights | Dakota    | 4          | 8160         | 12     | R         |         | 1200       | 7           | 7          | 85<br>7390 | MK        | NR      |
| Lakeville           | Dakota    | ND         | ND           | ND     | NP        | ND      | ND         | ND          |            | 3200       | no        | NK      |
| Mendota Heights     | Dakota    | 0          | ык.<br>О     | 0      | 0         | 0       | 450        | MR. 5       | <b>n</b> K | NK         | NK        | NK      |
| New Trier           | Dakota    | n o        | 0            | 1      | 0         | ND      | 10         | 5           | 0          | U          | no        | NK      |
| Randol ph           | Dakota    | 0          | 0            | 1      | 1         | NK      | 10         |             | NK         | NK         | yes       | U       |
| Rosemount           | Dekote    | 5          | 427          | 15     | 2         | U       | 22         | NK<br>1 /   | NK         | NK         | NR        | NK      |
| South St. Paul      | Dakota    | ر<br>د     | ND           | 10     | <u>د</u>  | NK<br>O | 2/0<br>950 | 1.4<br>ND   | 0          | 12000      | no        | NK      |
| Vermillion          | Dakota    | 0          | мт.<br>Л     | 1      | 0         | 0       | 020        |             | U          | U          | yes       | U       |
| West St. Paul       | Dakota    | 6          | ND           | 4      | 6         | U       | 20         | U.3         | U          | U          | yes       | 0       |
| Bloomington         | Hennenin  |            | NT.<br>/E107 | 10     | ·*<br>/ 7 | NK      | NK 7050    | NK          | U          | U<br>745-1 | no        | NR      |
| - countrigeon       | nennehill | 2          | 43107        | 17     | 44        | NK      | 2222       | NK          | ves        | 71534      | Ves       | 47 MGY  |

1 . 64.0

| Brooklyn Center     | Hennepin | NR       | NR        | NR        | NR      | NR   | NR        | NR            | NR       | NR      | NR  | NR     |
|---------------------|----------|----------|-----------|-----------|---------|------|-----------|---------------|----------|---------|-----|--------|
| Brooklyn Park       | Hennepin | 7        | NR        | 51        | 20      | NR   | 1661      | 6.5           | NR       | NR      | no  | NR     |
| Champlin            | Hennepin | 3        | 4000      | 3         | 3       | 200  | 1000      | 0.015         | yes      | 16000   | yes | 1%     |
| Crystal             | Hennepin | 3        | NR        | 22        | 11      | NR   | 1170      | NR            | 4        | NR      | no  | NR     |
| Eden Prairie        | Hennepin | NR       | NR        | NR        | NR      | NR   | NR        | NR            | NR       | NR      | NR  | NR     |
| Edina               | Hennepin | 4        | NR        | 34        | 31      | NR   | 1750      | NR            | 4        | NR      | no  | NR     |
| Excelsion           | Hennepin | 1        | NR        | 2         | 2       | NR   | 81        | 0.6           | yes      | NR      | no  | NR     |
| Golden Valley       | Hennepin | NR       | NR        | NR        | NR      | NR   | NR        | NR            | NR       | NR      | NR  | NR     |
| Hopkins             | Hennepin | 6        | 19726     | 15        | 5       | NR   | 525       | 5             | yes      | NR      | no  | NR     |
| Long Lake           | Hennepin | 2        | NR        | 4         | 2       | 20   | 115       | 0.2           | 0        | 0       | no  | NR     |
| Loretto             | Hennepin | 0        | 0         | 2         | 3       | 1200 | 29        | 0.095         | yes      | 800     | no  | NR     |
| Maple Grove         | Hennepin | 1        | 2772      | 10        | 20      | NR   | 2190      | 18            | ves      | 27385   | NR  | NR     |
| Maple Plain         | Hennepin | 1        | NR        | 4         | 2       | NR   | 98        | NR            | ves      | NR      | no  | NR     |
| Medina              | Hennepin | 0        | 0         | 1         | 6       | 4000 | 153       | 1.5           | 0        | 0       | no  | NR     |
| Minneapolis         | Hennepin | NR       | NR        | NR        | NR      | NR   | 8100      | NR            | NR       | NR      | ves | 10%    |
| Minnetonka          | Hennepin | 2        | 12000     | 33        | 5       | 70   | 1976      | 11            | Ves      | 986     | no  | NR     |
| Minnetonka Beach    | Hennepin | 0        | 0         | 3         | Ō       | 0    | 38        | 0.03          | NR       | NR      | n0  | NR     |
| Minnetrista         | Hennepin | Ő        | Ő         | Ō         | Õ       | Ō    | 125       | NR            | 0        | 0       | Ves | <2%    |
| Mound               | Hennepin | õ        | Ő         | 19        | 2       | NR   | 363       | 1.8           | Ő        | 0       | Ves | 22     |
| New Hope            | Hennepin | 7        | 15000     | NR        | NR      | NR   | 405       | NR            | ů<br>N   | ů       | ,00 | ND     |
| Orono               | Hennepin | 2        | NR        | 9         | NR      | NR   | 150       | NR            | 1        | ND      | 00  | ND     |
| Osseo               | Hennepin | 1        | NR        | Š         | 2       | NR   | 81        | NR            | NP       | MP      | NP  | ND     |
| Plymouth            | Hennenin | NR       | NR        | NR        | NR      | NP   | NP        | ND            | VAC      | ND      | MAC | <5%    |
| Richfield           | Hennepin | 8        | 3491      | 25        | 21      | 72   | 1009      | 10            | Ves      | 1774    | ND  | ND     |
| Robbinsdale         | Hennepin | 1        | NR        | 15        | 12      | ND   | 310       | 23            | yes      | ND ND   | MAR | 10-15% |
| Rockford            | Hennepin | 1        | ND        | 2         | 1       | ND   | 100       | 2.J<br>ND     | yes<br>0 | 0       | yes | 29     |
| Rogers              | Hennenin | 2        | 10275     | 1         | 2       | ND   | 88        | ND            | 0        | ñ       | yes |        |
| St. Anthony         | Kennenin | 2        | ND        | 1         | Å       | ND   | 300       | 2             | 0        | 0       | 110 |        |
| St. Bonifacius      | Hennepin | 1        | 605       | 3         | 1       | ND   | 66        | <u>د</u><br>۲ | ND       | U<br>ND | yes |        |
| St. Louis Park      | Hennepin | Å        | 10564     | 52        | 10      | 200  | 1550      | 4.3           | NK       | 777     | no  | NK     |
| Shorewood           | Hennenin | 1        | ND        | ND        | ND      | ND   | 250       | 0.J           | yes      |         | NO  | NK     |
| Soring Park         | Hennenin | 2        | 2388      | 2         | 0       | 0    | 5/        | MK 0.5        | NK<br>O  | RK 0    | NK  | NK     |
| Tonka Bay           | Hennenin | ົ        | 2300      | <u> </u>  | 0       | ů    | 105       | 0.5           | 0        | 0       | no  | NK     |
| Vavzata             | Hennenin | र        | 27/0      | 3         | 4       | ND   | 105       | 0.075         | U        | 0       | no  | NK     |
| Falcon Heights      | Pansav   | 1        | 2740      |           | 2       |      | 175       | NK            | yes      | 4010    | no  | NK     |
| little Canada       | Pansay   | z        |           |           | 2       |      | 725       | NK            | U        | U       | no  | NK     |
| Mani evood          | Pameau   | ND       | ND        |           | U AID   | 0    | 230       | NK            | 0        | U       | no  | NR     |
| Mounds View         | Pameau   | 4        | 20/0      |           | NK<br>Z | NK   | NK<br>(00 | NK<br>7       | NK       | NR      | NR  | NR     |
| New Brighton        | Pancav   | 1        | 2740      | ND        | 4       | NK   | 400       | 7             | yes      | NR      | no  | NR     |
| North St Paul       | Pancov   | 2        | 8407      | 17        | 7       | NK 7 | 500       | NK<br>A.E     | NK       | NK      | no  | NR     |
| Poseville           | Pansay   |          | 047J      | 21        | 3       | 1    | 499       | 1.5           | yes      | 68500   | yes | NR     |
| St. Paul            | Pameev   | 20       | 80        | 21        | 20      | NK   | 1650      | 20            | 3        | NR      | NR  | NR     |
| Shoreview           | Pameau   | 20       | 80        | - J<br>10 | 50      | NK   | 0500      | 25            | yes      | NR      | no  | NR     |
| Vadoais Heights     | Dameou   | 7        | NK        | 10        | 7       | U    | 1560      | 3             | 5        | 6000    | yes | 22 MGY |
| Uhite Rear Laka     | Pomeey   | 2        | NK        | 17        | 2       | NK   | 500       | 2             | 0        | 0       | no  | NR     |
| White Rear Tourchin | Domoor   | 2        | NK<br>O   | 10        | ¥       | NK   | 1460      | NR            | NR       | NR      | NR  | NR     |
| Rollo Disino        | Scott    | U<br>2   | U<br>461  | 10        | 2       | NR   | 502       | 10            | 0        | 0       | no  | NR     |
|                     |          | <u>د</u> | 034       | 2         | 2       | NR   | NR        | 0.5           | 0        | 0       | no  | NR     |
| Jordan              | Scott    | U<br>D   | U<br>7800 | 2         | 2       | NR   | 2         | 60            | 0        | 0       | yes | NR     |
|                     | SCOLL    | 2        | 2000      | 5         | 3       | NR   | 160       | 0.2           | yes      | 1000    | no  | 15-25% |

d and

-E

|                  |            | v  | U     | I  | 2  | 15   | 10  | 0.02 | U   | U    | no  | NR     |
|------------------|------------|----|-------|----|----|------|-----|------|-----|------|-----|--------|
| Prior Lake       | Scott      | 3  | 2134  | 18 | 6  | 80   | 574 | 25   | yes | NR   | no  | NR     |
| Savage           | Scott      | 3  | NR    | 13 | 0  | 0    | 456 | 4    | 0   | 0    | no  | NR     |
| Shakopee         | Scott      | 6  | 1800  | 11 | 14 | 1200 | 850 | 4    | 0   | 0    | yes | 52 MGY |
| Bayport          | Washington | 0  | 0     | 3  | 2  | NR   | 105 | 0.1  | 0   | 0    | yes | 18%    |
| Cottage Grove    | Washington | NR | NR    | NR | NR | NR   | NR  | NR   | NR  | NR   | NR  | NR     |
| Forest Lake      | Washington | 2  | NR    | 4  | 1  | 50   | 250 | 1    | yes | NR   | yes | 0      |
| Hugo             | Washington | 0  | 0     | 2  | 1  | NR   | 58  | 0.1  | 0   | 0    | no  | NR     |
| Lake Elmo        | Washington | 0  | 0     | 9  | 0  | 0    | 40  | 0.04 | 0   | 0    | no  | NR     |
| Mahtomedi        | Washington | NR | · NR  | NR | NR | NR   | NR  | NR   | NR  | NR   | NR  | NR     |
| Newport          | Washington | 2  | NR    | 4  | 3  | NR   | 165 | 2    | 2   | NR   | no  | NR     |
| Oakdale          | Washington | 2  | 12000 | 1  | 2  | NR   | 900 | NR   | 0   | 0    | yes | 13%    |
| Oak Park Heights | Washington | 1  | 10000 | 3  | 6  | NR   | 85  | NR   | yes | 2000 | no  | NR     |
| St. Paul Park    | Washington | NR | NR    | NR | NR | NR   | NR  | NR   | NR  | NR   | NR  | NR     |
| Stillwater       | Washington | 2  | 5000  | 10 | 6  | NR   | 627 | 0.1  | yes | 2400 | yes | 10%    |
| Woodbury         | Washington | 2  | 14245 | 25 | 2  | NR   | 600 | NR   | yes | NR   | no  | NR     |