MINNESOTA DEPARTMENT OF NATURAL RESOURCES DIVISION OF ECOLOGICAL SERVICES

Aeration Permit Program Annual Report 2005-2006

STAFF REPORT 41

Aeration Permit Program Annual Report 2005-2006

by

Marilyn Danks Aquatic Biologist

Minnesota Department of Natural Resources

Division of Ecological Services

Table of Contents

	rage
Introduction	1
Aeration Equip	oment
Program Admi	nistration2
Regulations	
Discussion	
Regional Aera	tion Summary4
	Results6
Literature Cite	d8
Tables	
Table 1.	Aerated Acres 2005-06
	2005-06 Aerated Lakes/Permits
Table 3.	Region I lakes with public access aerated to prevent winterkill, 2005-06
Table 4.	Summary by county of protected waters in Region I, under aeration permit issued to private hatchery operators in 2005-06
Table 5.	Region II lakes with public access aerated to prevent winterkill, 2005-06
Table 6.	Region III lakes with public access aerated to prevent winterkill, 2005-06
Table 7.	Region IV lakes with public access aerated to prevent winterkill 2005-06
Table 8.	Operational Characteristics of Some Aeration Systems, Winter 2005-06

Table of Contents (Continued)

	, sans en comismos (comismos),	Page
Figures		•
Figure 1.	Number of lakes opened to "liberalized" fishing, by county, for the winter of 2005-06	
Figure 2.	Trends in lake aeration permits issued 1978-2005	18
Figure 3.	Aeration permits issued by DNR region, 1978-2005	19
Figure 4.	Number of lakes with public access, by county, issued aeration permits in 2005-2006	20
Figure 5.	Distribution by County of ponds aerated under permits issued to Private hatchery operators in 2005-06	21
Appendices		22
Appendix 1		23
Appendix 2		24-44

INTRODUCTION

Minnesota has many lakes with a history of winterkill due to oxygen depletion. However, more significant than the number of lakes that winterkill is their location. The majority of Minnesota's winterkill lakes are in the southern half of the state, an area with the "fewest number of fishing lakes and the majority of the population" (Scidmore 1970). Aeration systems have been used in Minnesota to prevent winterkill for many years. More recently, the uses for aeration have expanded to include shoreline property protection, providing open water for captive waterfowl and water quality improvement.

The Department of Natural Resources has regulated the use of aeration in public waters since 1974 due to the potential for user conflicts and the open water hazard created by winter operation of aeration systems. The two major objectives of the aeration permit program are:

- 1. To ensure the safe winter operation of aeration systems; and
- 2. To ensure the appropriate use of aeration technology.

This report summarizes work done under the Aeration Permit Program of the Minnesota Department of Natural Resources during the 2005-06 permit year (1 October 2005 – 30 September 2006). Work was partially funded under Federal Aid Project FW-9-T.

For a more detailed explanation of winterkill and the history of aeration in Minnesota, see Enger (1988). Pederson (1982) provides a comprehensive review of the program through 1978-81. Annual staff reports detailing the aeration program are also available (Danks 2006; Danks 2005; Danks 1999; Danks 1998; Danks 1996; Danks 1995; Danks 1994; Danks 1992; Danks, 1992; Enger-Danks 1992).

AERATION EQUIPMENT

Aeration equipment, originally designed for wastewater treatment facilities, has proven to be an effective method of winterkill prevention. The four methods of aeration described below are commonly used in Minnesota:

1. <u>Sub-surface bubblers</u>: Sub-surface bubblers consist of a diffuser(s), weighted air lines and a compressor or high volume, low pressure blower. The diffuser is placed on the lake bottom, near the deepest part of the lake. Air is pumped from the shore-housed compressor or blower through air lines to the diffuser. The diffuser breaks the air stream into small bubbles that rise, lifting warm bottom water to the surface. This warmer water melts the ice cover, exposing a portion of the lake surface to the atmosphere. Oxygen is added to the lake from wind and wave action and photosynthesis. The most efficient and effective method of operation is to group the diffusers so that one open water area is created during normal winter weather (MN Rules Chapter 6116.0020, subp. 3). Sub-surface bubbler systems are best suited to lakes that winterkill frequently. To sustain a gamefish population in these lakes, the aeration system will probably require annual operation for extended periods.

- Air injection systems: Air injection aeration systems function similarly to subsurface bubblers. However, the pontoon-mounted injection system introduces air just beneath the surface of the lake. Again, the oxygen is provided by removing ice cover and exposing the surface of the lake to the atmosphere and sunlight. Air injection systems are also well suited to lakes, which winterkill frequently, where annual and lengthy operation is likely.
- 3. Mechanical surface agitators: Mechanical surface agitators are basically submersible or floating pumps which spray water into the air, producing a fountain-like effect. Oxygen is added to the water sprayed into the air, some oxygen is added as the droplets agitate the lake surface, as well as from the open water area created. These systems affect rather small areas and are best suited to small bodies of water.
- 4. Pump and baffle systems: Pump and baffle aeration systems usually consist of a pontoon-mounted high-volume pump, about 150 feet of hose and a chute or flume. The pump is placed in the lake as far from the chute as possible. Lake water is pumped to the top of the chute where it cascades over a series of baffles, absorbing oxygen before returning to the lake. This type of aeration system does not create, nor does it require, a large open water area to prevent winterkill. Aeration takes place in the chute and the aerated water is returned to the lake.

Pump and baffle systems are more energy intensive to operate than air pumping systems, but they do not have to be started as early in the winter. Pump and baffle systems are generally best suited to lakes which winterkill infrequently.

All of these systems function by creating a refuge area with adequate dissolved oxygen where fish can survive until ice out in the spring. They do not, nor are they intended to, aerate the entire lake basin.

PROGRAM ADMINISTRATION

The Division of Ecological Services (MDNR) has primary responsibility for administration of the Aeration Permit Program. This program allows individuals, organizations and units of government to operate aeration systems on public waters for winterkill prevention, water quality improvement, shoreline property protection and wintering captive waterfowl. An aquatic biologist in St. Paul reviews permit applications, prepares permits for signature and serves as liaison between groups and individuals involved in lake aeration and the department. Regional and area fisheries personnel are often the initial contacts for people interested in lake aeration. Applicants send completed applications to the Regional Fisheries Manager for initial review, the Regional Wildlife Manager, and the Regional Enforcement Supervisor also review aeration permit applications. Upon completion of regional review, the application is sent to St. Paul with recommendation for issuance or denial. After final review by central office staff, the application is reviewed by the Director of the Division of Ecological Services and either approved or denied.

REGULATIONS

Aeration system operation in public waters is regulated by Minnesota Statutes Section 103G.611 and Minnesota Rules 1988 parts 6116.0010 to 6116.0070. The statute describes permittee responsibility to post warning signs at access points to the lake, post signs around areas of open water and thin ice, and publish notice of the commencement of operation. The rule describes when permits are required, application procedures, criteria for permit issuance, permit conditions and other related items.

The aeration rule, which went into effect November 30, 1988, replaced Commissioners' Orders 2194 and 2258. An operational order outlining departmental procedures to ensure rule requirements are met was developed and became effective August 1989 (MN Rules 6116). The Statute, 103G.611 was revised in 2003 to include an annual permit fee for winter time aeration. The Statute was again revised in 2006 to clarify operation of a system on protected waters without public access.

Aeration systems are inspected for compliance with safety regulations by area fisheries personnel and conservation officers. This involves the inspection of all aeration systems, including those operated by private hatchery operators.

DISCUSSION

Area fisheries supervisors monitor the dissolved oxygen concentration of lakes in their areas throughout the winter. When winterkill of fish appears to be imminent, a lake may be opened to "liberalized fishing". Under "liberalized fishing" status, regulations regarding limits and methods of capture are relaxed to allow fish that would probably die due to oxygen depletion to be taken by anglers. The number of lakes opened to "liberalized fishing" is a rough indicator of winter severity. During the worst winterkill season of record (1955-56), 308 lakes were opened to "liberalized fishing" (Scidmore 1970). Due to a series of mild winters, an average of five lakes statewide are opened to "liberalized fishing" each year. Last winter (2005-06), two lakes were opened to "liberalized fishing" (Figure 1).

A total of 290 aeration permits were issued during the 2005-06 season. This includes 284 renewals (98% of the permits issued) and six (6) new permits. One permittee from the previous season (2004-05) did not reapply for an aeration permit in 2005-06.

The overall trend has been a steady increase in the number of permits issued in the last twenty-five years, with a slight increase in permit numbers occurring last year (Figure 2). The same trend is true for the regions as well (Figure 3).

The 290 permits issued in 2005-06 authorized aeration in 284 lakes, of which 179 permits were issued for public waters with access for winterkill prevention (see MN. Rules 1988, part 6116.0010, subpart 6 for definition of public access), for a total of 147,867 acres (Table 1; Figure 4). All acreages listed are from "An inventory of Minnesota Lakes" MN DNR Bulletin 25 (Div. of Waters 1968). Pump and baffle systems were operated in 33 of these lakes, Aire 0₂ units were operated in 57 lakes, mechanical surface agitators operated in 10 lakes, and diffuser systems operated in 65 lakes. Bait

dealers and commercial hatchery operations were permitted to operate in 35 public water bodies totaling 1,773 acres. One hundred twelve (112) other public waters were aerated for other purposes including: shoreline protection; providing open water for captive waterfowl; and preventing winterkill and improving water quality combined. Table 2 provides a detailed analysis of permit issuance for 2005-06.

There have been seven fatalities at aeration system sites, the last occurring in 1999. No deaths resulted from accidents at aeration system sites in 2005-06.

REGIONAL AERATION SUMMARY

REGION I (Bemidji)

There were 62 aeration permits issued in Region 1 during the 2005-06 season, 21.4% of the total number of permits issued. Of the 62 permits issued, 59 (95%) were renewals and three were new permits.

The 62 permits issued in Region I authorized aeration in 68 public waters, or 23.7% of the total public waters aerated statewide. Private hatchery operators accounted for 47% of the aeration permitted water bodies in Region I. Private hatchery operators received six permits for 32 (1,599 acres) public waters (11.2% of the statewide total lakes permitted or 0.01% of the total acres permitted) (Figure 5). Appendix 1 lists water bodies under aeration permit issued to private hatchery operators. Private organizations and municipalities were issued 16 aeration permits to prevent winterkill in 16 lakes (9,858 acres) with public access. Thirty aeration permits were issued to private individuals on eight lakes (24,343 acres) to prevent shoreline property damage due to ice expansion. Three permits were issued to the State covering 5,631 acres. Five other aeration permits were issued to private groups to prevent winterkill in five public waters (356 acres) without public access. No aerated lakes were reported to have experienced winterkill according to questionnaire results. For more details, including acreage of water under aeration permit, permittee, and purpose of operation see Tables 3 and 4.

REGION II (Grand Rapids)

Lakes in Region II are generally deeper and less fertile than in other areas of the state and very few winterkill. The abundance of lakes in this region, which do not winterkill greatly outnumber those lakes that do.

The reorganization of the regions from six to four in 2002 lead to a redistribution of aeration permits between the regions. Region II increased from zero permits in 2001 to ten in 2002 to seven in 2005. Most of these permits were absorbed from old Region III. There were no new permits requested.

Of these seven permits, which represent 2.4% of the total number of permits issued, three were operated on lakes with access, one was operated on a lake without access, and two were operated to protect marinas. No aerated lakes reported winterkill according to questionnaire results. For more information, see Table 5.

REGION III (St. Paul)

There were 118 aeration permits issued for 115 lakes/ponds (36,107 acres) in Region III last season (40.2% of the total number of permits issued), 116 renewals (99%), and two new permits. Pine Tree and Moore lakes have two permits each.

Region III, the Metropolitan area, is the most densely populated region of the state. Lakes and ponds receive nutrient run-off from a variety of sources. As a result, many lakes are hypereutrophic. Aeration has been employed to serve a variety of purposes in Region III. Sixty-seven permits were issued to municipalities for operation of aeration systems in 66 lakes (22,687 acres) with public access. Three permits (597 acres) were issued to municipalities for lakes without public access. Seventeen permits (4,731 acres) were issued to clubs for lakes with public access, and seven permits (449 acres) were issued to clubs operating aeration systems in lakes without public access. Eighteen permits for 17 lakes (6,560 acres) were issued to private individuals. The Minnesota Zoological Garden received one permit to operate three aeration systems (17 acres) for waterfowl and water quality. One permit was issued to Fort Snelling State Park for prevention of winterkill in Snelling Lake. One permit was issued to a private hatchery operator to aerate one (77 acres) public water. Three lakes experienced winterkill in Region III according to questionnaire results. For a more detailed breakdown of permit issuance in Region III, see Table 6.

REGION IV (New Ulm)

Region IV has 35% of the permits issued statewide. Last season, 103 permits (66,876 acres) were issued in Region IV; 101 were renewals (99%). Two new permits were issued. The 103 aeration permits issued in Region IV authorized the aeration of 98 public waters. Lakes are less common in this area of the state and many are small and shallow. Soils are fertile and agriculture is extensive. Erosion deposits large amounts of soil, fertilizer and agricultural chemicals into lakes, accelerating eutrophication and creating high oxygen demand. These conditions are typical of Midwestern lakes (Schneberger, 1970). Many anglers reside in this area of the state and winterkill lakes are an important fisheries resource. Eighty-nine permits were issued to private organizations and municipalities to prevent winterkill of fish in 88 lakes (51,936 acres) with public access. Two permits were issued to prevent winterkill in two protected water without public access. Five permits were issued to municipalities and clubs to improve water quality.

According to the questionnaires returned, two aerated lakes experienced some degree of winterkill last season in Region IV. For a detailed breakdown of permit issuance in Region IV including acreages, purpose of operation, permittees (private, clubs, municipalities) and lake location (county), see Table 7.

QUESTIONNAIRE RESULTS

Completed questionnaires were received from 273 of 290 permittees, a 94% return. Operational information is summarized in Table 8, whereas, Appendix 2 lists operational information for individual aerated lakes. Questionnaire information is incomplete and

subjective, making it difficult to determine specific system efficiency in preventing winterkill. Ninety-eight (98) respondents indicated their aeration system was not operated last winter.

The average cost for insurance (n=55) was \$488.25. This figure includes all permittees operating an aeration system in lakes with or without public access. The range in insurance premiums for the 2005-06 season was \$5.00-\$1,647.00. Two respondents indicated there was difficulty in acquiring the required insurance.

One hundred seventy-five (175) of the respondents indicated their aeration system was operated last winter and 50 of those indicated that waterfowl over wintered on the lake. Of these, seven respondents are located in Region I, 26 in Region III, and 17 in Region IV. An estimated 5,500 waterfowl used the open water areas provided by aeration systems (range 2-600). Most of the birds were mallards and Canada geese.

Of the 175 permittees that responded and operated their systems last winter, 163 (93%) indicated they were satisfied with system performance. Sixty-three percent (63%) of permittees operating Clean-Flo systems indicated they were satisfied with their systems' performance. Forty-two percent (42%) of the permittees operating pump and baffle systems were satisfied, 51% of mechanical surface agitators, 73% of Helixor diffusers and 47% of the Aire 0_2 systems were satisfied with their systems. Complaints ranged from mechanical failures to undersized and ineffective equipment. Six respondents indicated safety problems with their aeration systems.

Some aerated lakes experienced partial winterkill last season. Five of the 175 respondents that operated their aeration systems last winter reported some evidence of winterkill at ice out. Of these, two were diffuser systems, one was a Clean-Flo system, one was a pump and baffle, and one was an Aire 0_2 .

Some respondents indicated there were mechanical difficulties with the equipment or that they were dissatisfied with the location of the system. Some systems may have been ineffective if started too late in the season and there may be differences in reporting among the different permittees.

Based on the responses to the questionnaire as summarized in Table 8, Aire- 0_2 systems were on average the least expensive to operate per acre, whereas the Clean-Flo systems were the most expensive. Helixors were least expensive to operate based on the horsepower of the system and the length of time they were operated. Helixor systems were used in larger lakes (average area = 668.7), whereas, Clean-Flo systems were used in smaller lakes (average 134.6 acres).

LITERATURE CITED

- Danks, M.A. 2006. Aeration Permit Program Annual Report, 2004-05. Minn. Dept. Nat. Res., Div. Ecol. Serv. Staff Report.
- Danks, M.A. 2005. Aeration Permit Program Annual Report, 2003-04. Minn. Dept. Nat. Res., Div. Fish Wild., Ecol. Serv. Sec. Staff Report.
- Danks, M.A. 1999. Aeration Permit Program Annual Report 1997-98. Minn. Dept. Nat. Res., Div. Fish Wildl., Ecol. Serv. Sec. Staff Report.
- Danks, M.A. 1998. Aeration Permit Program Annual Report 1996-97. Minn. Dept. Nat. Res., Div. Fish Wildl., Ecol. Serv. Sec. Staff Report.
- Danks, M.A. 1996. Aeration Permit Program Annual Report 1995-96. Minn. Dept. Nat. Res., Div. Fish Wildl., Ecol. Serv. Sec. Staff Report.
- Danks, M.A. 1995. Aeration Permit Program Annual Report 1994-95. Minn. Dept. Nat. Res., Div. Fish Wildl., Ecol. Serv. Sec. Staff Report.
- Danks, M.A. 1994. Aeration Permit Program Annual Report 1993-94. Minn. Dept. Nat. Res., Div. Fish Wildl., Ecol. Serv. Sec. Staff Report.
- Danks, M.A. 1994. Aeration Permit Program Annual Report 1992-93. Minn. Dept. Nat. Res., Div. Fish Wildl., Ecol. Serv. Sec. Staff Report.
- Danks, M.A. 1992. Aeration Permit Program Annual Report 1990-91. Minn. Dept. Nat. Res., Div. Fish Wildl., Ecol. Serv. Sec. Staff Report.
- Danks, M.A. 1992. Aeration Permit Program Annual Report 1991-1992. Minn. Dept. Nat. Res., Div. Fish Wildl., Ecol. Serv. Sec. Staff Report.
- Division of Waters, Soils and Minerals. 1968. An Inventory of Minnesota Lakes. Minnesota Conservation Department, Bulletin No. 25.
- Enger, S.M. 1988. Aeration Permit Program Annual Report 1987-88. Minn. Dept. Nat. Res., Div. Fish Wildl., Ecol. Serv. Sec. Staff Report 1.
- Enger, S.M. and M.A. Danks, 1992. Aeration Permit Program Annual Report 1989-1990. Minn. Dept. Nat. Res., Div. Fish. Wildl., Ecol. Serv. Sec. Staff Report.
- Pederson, D.W. 1982. Aeration and mixing systems in Minnesota lakes. Minn. Dept. Nat. Res., Div. Fish Wildl., Spec. Pub. No. 133.
- Schneberger, E., ed. 1970. A symposium on the management of midwestern winterkill lakes. Special Publication, North Central Division, American Fisheries Society.
- Scidmore, W.J. 1970. Using winterkill to advantage. Pages 47-51 <u>in</u>: E. Schneberger, ed. A symposium on the management of midwestern winterkill lakes. Am. Fish. Soc. Spec. Publ., North Central Div.

Table 1. Aerated Acres 2005-06.

ACRES	REGION 1	REGION 2	REGION 3	REGION 4	OVERALL
Lakes with public access	36,752	859	34,416	65,621	137,648
Lakes without public access	5,682	260	1,691	2,586	10,218
TOTAL	42,434	1,119	36,107	68,207	147,867

Table 2. 2005-06 Aerated Lakes/Permits.

	,		Winte										
D 1	Lakes		Perm			Bait D				reline		her	Total
Region	w/access	С	M	S	Р	Ponds	Pe	ermits	Lakes	Permit	Lakes	Permit	Permits
1	18	12	4	2	0	32		6	8	30	8	8	62 (21%)
11	2	2	0	0	0	0		0	0	0	5	5	7 (2.4%)
AH .	65	12	51	1	1	1		1 .	2	2	48	50	118 (40.3%
IV .	89	44	49	0	1	0	•	0	. 0	0	6	9	103 (35%)
Totals	174	69	104	3	2	33	• .	7	10	32	67	72	290
										_akes	Ac	res	Permit
Protecte	d waters wit	h acc	ess fo	r win	terki	II prevent	ion	=-		174	74,	800	17
	d waters un							=		33	1,0	676	
	e Protection							=	•	10	28,	786	3
Other**								=	_	67	42,	605	7
										284	147,		29
Total nu	mber of perr	nite fo	ar prote	acta	d wa	ters with							
	or winterkill				4 VV CI	COLO WILLI		= .		177			
	mber of perr ss for winter				d wa	ters witho	ut	= .		17			
290 tota	l permits, ne	w per	mits			•		=		6			٠
04-05 pe	ermits not re	issue	d d					=		1			**

Other includes – Protected waters with no public access.

Protected waters with public access for wintering waterfowl, and water quality.

Summer only systems.

C = Clubs; M = Municipalities; S = State; P = Privately Operated

Table 3. Region I lakes with public access aerated to prevent winterkill, 2005-06.

•						
County	С	Permittee M	S	Total No. of lakes	Total Acres	Average Size (acres)
Becker	3	0	0	3	2,621	873.7
	٠ .					
Clay	1	1	0	2	139	69.5
Clearwater	0	.1	0 .	. 1	1,465	1,465
Douglas	0	0	, 0	. 0	0	0
Marshall	0 .	. 1	0	1 .	42	42
Otter Tail	2	1 :	0	3	1,165	388.3
Polk	3	0	0	3	1,821	607
Pope	· · 1	0	.2	3	1,761	587
Stevens	1	. 0	0	1	488	488
Wadena	1	.0	0.	1	356	356
Totals	12	4	2	18	9,858	N/A

lakes with public access aerated to prevent winterkill

Total Acreage

Average lake size (acres)

Permits issued to Municipalities for lakes with access

Permits issued to Clubs for lakes with access

Permits issued to the State w/access

Permits issued for shoreline protection

Melissa Lake - 1,827 acres - 7 permits

Lida Lake - 7,277 acres - 6 permits

Lizzie Lake - 4,145 acres - 2 permits

Little McDonald Lake - 1,506 acres - 1 permit

Permits issued to Bait Dealers, & P. Hatchery operators

Permits issued to private individuals to prevent winterkill

for lakes without access

Permits issued to the State without access

Permits issued to private individuals to improve water

quality for lakes with access

Total Permits issued

18 (C = 12; M = 4; S = 2)

9,858

547.7

4 (1,767 acres)

12 (6,846 acres)

2 (1,245 acres)

30 (8 lakes; 24,343 acres)

Fish Lake – 284 acres – 1 permit

Big Cormorant Lake-3,380 acres-3 permits

Pelican - 4,314 acres - 9 permits

Marion - 1,610 acres - 1 permit

6 (32 ponds; 1,599 acres)

5 (356 acres)

1 (4,386 acres)

2 (1,892 acres)

62 (42,434 acres) in 66 lakes and ponds

^{*}C = Club; M = Municipality; S = State

Table 4. Summary by county of protected waters in Region I, under aeration permit issued to private hatchery operators in 2005-06.

County	Total No. of Ponds	Total Acres	Average Size Pond (Acres) Per County
Becker	1	242	242.0
Clay	1	36	36.0
Douglas	3	47	15.6
Grant	4	230	57.5
Otter Tail	16	740	46.3
Polk	4	145	36.2
Pope	2	90	45.0
Todd	1	69	69.0
Totals	32	1,599	N/A

Averages:

Bait dealers permitted = 6 (6 permits)

Average number of ponds/permit = 5.3

Average size of ponds = 49.9 acres (range 6 to 242 acres)

Average number of acres/permit = 266.5

Table 5. Region II lakes with public access aerated to prevent winterkill, 2005-06.

	Permitte			Total No. of lakes	Total Acres	Average Size (acres)	
County	С	M	Р	_ rotal No. or lakes	Total Acres	(acres)	
Aitkin	0	0	0	0	0	. 0	
Cass	2	0	0	2	330	165	
Crow Wing	0	0	0	0	0	. 0	
Lake	0	0	0	0	0	0	
Totals	2	0	0	2	330	N/A	

7 (1,119 total acres in 6 lakes/ponds)

Lakes with public access aerated to prevent winterkill 2 Total Acreage 330 = Average lake size (acres) 165.0 Permits issued to Municipalities for lakes without Permits issued to Municipalities for lakes with access 0 Permits issued to Clubs for lakes with access 2 (330 acres) Permits issued to Clubs for lakes without access 1 (260 acres) Privately operated systems for lakes with access 1 (213 acres) Privately operated systems for lakes without access Permits issued to State with access 3 (316 acres) (2 – protect dock stations) (1 – induce winterkill)

C = Club; M = Municipality; P = Privately Operated

Total Permits issued

Table 6. Region III lakes with public access aerated to prevent winterkill, 2005-06.

,	,	Perm	ittee		Total No. of		Average Size
County	С	М	Р	S	lakes	Total Acres	(acres)
Anoka	0	- 9	0	0	9	3,192	354.7
Carver	0	2	0	0	2	323	161.5
Dakota	0	16	0	0	16	1,056	66.0
Hennepin	1	8	0	1 .	10	990	99.0
Kanabec	.// 1	0	0	0	1	1,127	1,127.0
Pine	0	0.,	1	0	. 1	50	50.0
Ramsey	0	7	0	0	7	806	115.1
Scott	4	4	. 0	0	8	1,512	189.0
Sherburne	1	1 .	0	0	2	692	346.0
Stearns	0	1	0 .	0	1	222	222.0
Washington	0	3	0	0	3	213	71.0
Wright	5	0	0	0	5	1,117	223.4
Totals	12	51	1	1	65	11,300	N/A

Lakes with public access aerated to prevent winterkill	•.	=	65
Total Acreage		=	11,300
Average lake size (acres)		=	173.85
Permits issued to Municipalities for lakes without access		=	3 (597 acres)
Permits issued to Municipalities for lakes with access (2 permits in Moore Lake)	-	= .	67 (22,687 acres)
Permits issued to Clubs for lakes with access		= .	17 (4,731 acres)
Permits issued to Clubs for lakes without access		=	7 (449 acres)
Privately operated systems for lakes with access (Shoreline protection – 2 permits/2 lakes (4,443)	*	=	5 (6,050 acres)
Privately operated systems for lakes without access (2 permits in Pine Tree Lake)		=	13 (510 acres)
Private Hatchery Operator permits for lakes with access		_ =	1 (77 acres)
Permits issued to State with access		===	2 (838 acres)
Permits issued to State without access		= ,	3 (168 acres)
Total Permits issued		=	118 (36,107 total acres in 115 lakes/ponds)
			(,,,

C = Club; M = Municipality; P = Privately Operated, S = State

Table 7. Region IV lakes with public access aerated to prevent winterkill 2005-06.

		Peri	mittee		Total No. of	Average Size		
County	С	. M	Р	S	lakes	Total Acres	(acres)	
					,		•	
Big Stone	2	1	0	0	3	2,561	853.6	
Blue Earth	4	0	0	<u>,</u> 0	. 4	2,714	678.5	
Brown	2	- 2	0	0	3	2,459	819.7	
Cottonwood	6	0	0	0	5	.1,716	343.2	
Faribault	1	0	0	0.	1	268	268.0	
Freeborn	0	4	0 .	0	3	3,230	1,076.6	
Jackson	6	0 -	0	0	6	2,948	491.3	
Kandiyohi	0	9	. 0	0	9	7,627	847.4	
LeSueur	4	0	0	0	4	1,768	442.0	
Lincoln	4	: 0	0	0	4	4,693	1,173.3	
Lyon	0	9	0 .	. 0	9	2,518	279.8	
Martin	2	3	0	0	5	717	143.4	
McLeod	. 2	1	0	0	3	1,505	501.6	
Meeker	1	0	1	0	2	774	387.0	
Murray	1	10	0	0	10	6,450	645.0	
Nobles	- 1	. 5	0	0	6	3,903	650.5	
Pipestone	0	1	0	0	1	80	80.0	
Rice	. 2	0	0	. 0	2	1,233	616.5	
Sibley	1	0	0	0	1 .	697	697.0	
Steele	. 0	1	0	0	1 .	11	11.0	
Waseca	-1	1	Ō	0	2	2,581	1,290.5	
Watonwan	3	0	Ō	ō ;	3	819	273.0	
Yellow Medicine	Ō	2	Ō	Ō	2	664	332.0	
Totals	43	49	. 1	0	89	51,936	N/A	

Lakes with public access	aerated to prevent winterkill
	Total Acreage
	Average lake size (acres)

Permits issued to Municipalities for lakes with access

Permits issued to Clubs for lakes with access

Permits issued to Clubs for lakes without access
Private Hatchery Operator
Privately Owned Systems with public access
Privately Owned Systems without public access
Permits issued to State for lakes with public access
Permits issued to Municipalities for lakes without access
Permits issued to State for lakes without public access
Total Permits Issued

C=Club; M=Municipality; P=Privately Operated, S=State

= 89 = 51,936 = 583.5

> 52 (28,050 acres) (2 permits for Albert Lea & Wilson lakes)

= 45 (24,257 acres) (2 permits for Double & Hanska lakes)

= 2 (120 acres)

= 0

1 (220 acres)

= 0 (0 acres)

= 1 (13,094 acres)

= 1 (8 acres) = 1 (1.127 acres)

= 103 (66,876 acres; 98 lakes)

Table 8. Operational Characteristics of Some Aeration Systems, Winter 2005-06.

		· · · · · · · · · · · · · · · · · · ·					
·	Total hp	Lake Area (A)	hp/A	\$/A/mo	\$/hp/mo	KWH/hp/mo	KWH/hp/A
Range	3-30	21-2,462	0.006-0.143	\$ 0.13 – 8.26	\$ 9.46-57.84	95.65-770.37	0.11-136.44
Mean (x)	13.25	668.7	0.040	\$ 1.44	\$ 30.17	415.99	10.71
n	30	28	28	19	19	18	18
Range	0.5-9.0	10-1,263	0.007-0.400	\$ 0.41-102.13	\$ 36.48-178.57	246.45-1,325.49	13.41-97.83
Mean (x)	2.78	134.6	0.069	\$ 15.21	\$ 91.14	671.61	35.62
n	21	20	20	9	9	5	5
İ			<u> </u>	2			
Range	1.0-9.0	37-1,043	0.004-0.049	\$ 0.16-5.68	\$ 13.89-163.34	75.0-1,702.36	0.29-19.24
Mean (x)	3.94	279.2	0.021	\$ 0.98	\$ 45.22	449.37	4.76
n	29	29	29	12	12	11	12
I .							
Range	3.0-30.0	3-1,445	0.020-1.667	\$ 0.25-52.78	\$ 11.88-94-87	14.30-1,090.21	0.16-113.33
Mean (x)	11.42	255.4	0.237	9.98	39.40	424.9	35.09
n	13	12	12	10	10	8	8
	Mean (x) n Range Mean (x) n Range Mean (x) n Range Mean (x)	Range 3-30 Mean (x) 13.25 n 30 Range 0.5-9.0 Mean (x) 2.78 n 21 Range 1.0-9.0 Mean (x) 3.94 n 29 Range 3.0-30.0 Mean (x) 11.42	Range 3-30 21-2,462 Mean (x) 13.25 668.7 n 30 28 Range 0.5-9.0 10-1,263 Mean (x) 2.78 134.6 n 21 20 Range 1.0-9.0 37-1,043 Mean (x) 3.94 279.2 n 29 29 Range 3.0-30.0 3-1,445 Mean (x) 11.42 255.4	Range 3-30 21-2,462 0.006-0.143 Mean (x) 13.25 668.7 0.040 n 30 28 28 Range 0.5-9.0 10-1,263 0.007-0.400 Mean (x) 2.78 134.6 0.069 n 21 20 20 Range 1.0-9.0 37-1,043 0.004-0.049 Mean (x) 3.94 279.2 0.021 n 29 29 Range 3.0-30.0 3-1,445 0.020-1.667 Mean (x) 11.42 255.4 0.237	Range 3-30 21-2,462 0.006-0.143 \$ 0.13 - 8.26 Mean (x) 13.25 668.7 0.040 \$ 1.44 n 30 28 28 19 Range 0.5-9.0 10-1,263 0.007-0.400 \$ 0.41-102.13 Mean (x) 2.78 134.6 0.069 \$ 15.21 n 21 20 20 9 Range Mean (x) 3.94 279.2 0.021 \$ 0.98 n 29 29 12 Range Range 3.0-30.0 3-1,445 0.020-1.667 \$ 0.25-52.78 Mean (x) 11.42 255.4 0.237 9.98	Range 3-30 21-2,462 0.006-0.143 \$ 0.13 - 8.26 \$ 9.46-57.84 Mean (x) 13.25 668.7 0.040 \$ 1.44 \$ 30.17 n 30 28 28 19 19 Range 0.5-9.0 10-1,263 0.007-0.400 \$ 0.41-102.13 \$ 36.48-178.57 Mean (x) 2.78 134.6 0.069 \$ 15.21 \$ 91.14 n 21 20 20 9 9 Range 1.0-9.0 37-1,043 0.004-0.049 \$ 0.16-5.68 \$ 13.89-163.34 Mean (x) 3.94 279.2 0.021 \$ 0.98 \$ 45.22 n 29 29 12 12 Range 3.0-30.0 3-1,445 0.020-1.667 \$ 0.25-52.78 \$ 11.88-94-87 Mean (x) 11.42 255.4 0.237 9.98 39.40	Range 3-30 21-2,462 0.006-0.143 \$ 0.13 - 8.26 \$ 9.46-57.84 95.65-770.37 Mean (x) 13.25 668.7 0.040 \$ 1.44 \$ 30.17 415.99 n 30 28 28 19 19 18 Range 0.5-9.0 10-1,263 0.007-0.400 \$ 0.41-102.13 \$ 36.48-178.57 246.45-1,325.49 Mean (x) 2.78 134.6 0.069 \$ 15.21 \$ 91.14 671.61 n 21 20 20 9 9 5 Range 1.0-9.0 37-1,043 0.004-0.049 \$ 0.16-5.68 \$ 13.89-163.34 75.0-1,702.36 Mean (x) 3.94 279.2 0.021 \$ 0.98 \$ 45.22 449.37 n 29 29 12 12 11 Range 3.0-30.0 3-1,445 0.020-1.667 \$ 0.25-52.78 \$ 11.88-94-87 14.30-1,090.21 Mean (x) 11.42 255.4 0.237 9.98 39.40 424.9

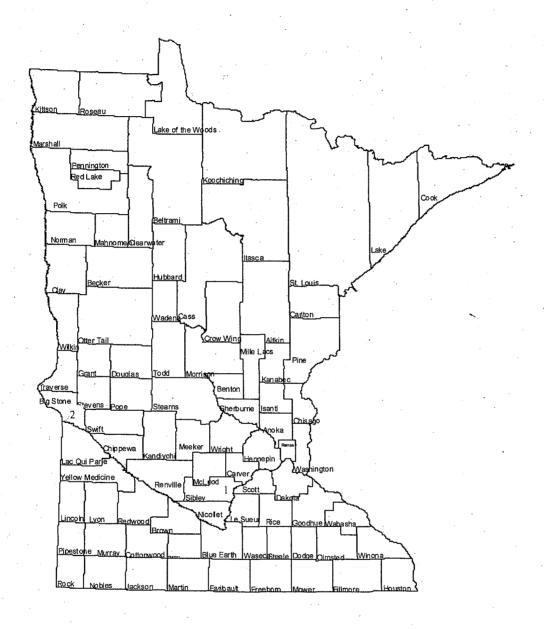


Figure 1. Number of lakes opened to "liberalized" fishing, by county, for the winter of 2005-06.

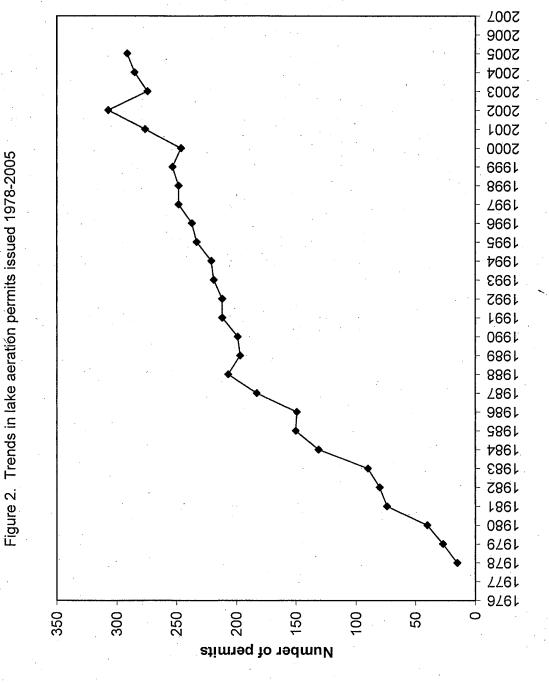


Figure 2. Trends in lake aeration permits issued 1978-2005.

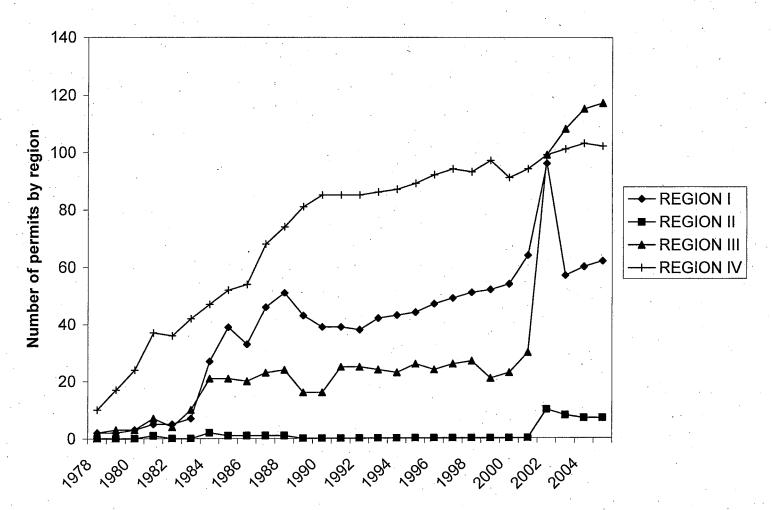


Figure 3. Aeration permits issued by DNR region, 1978-2005.

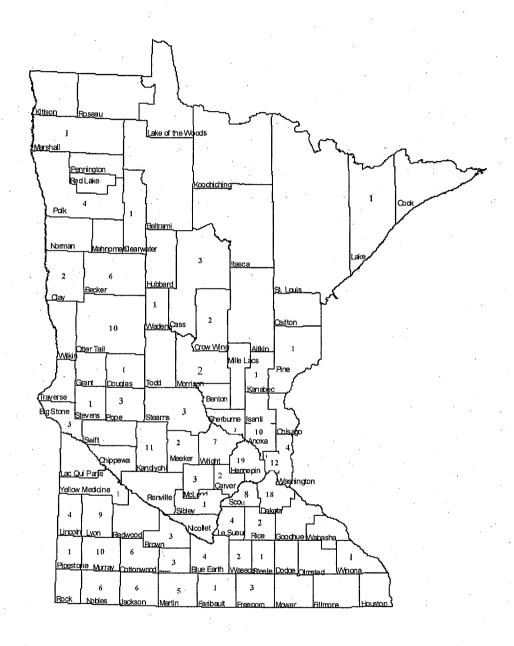


Figure 4. Number of lakes with public access, by county, issued aeration permits in 2005-2006.

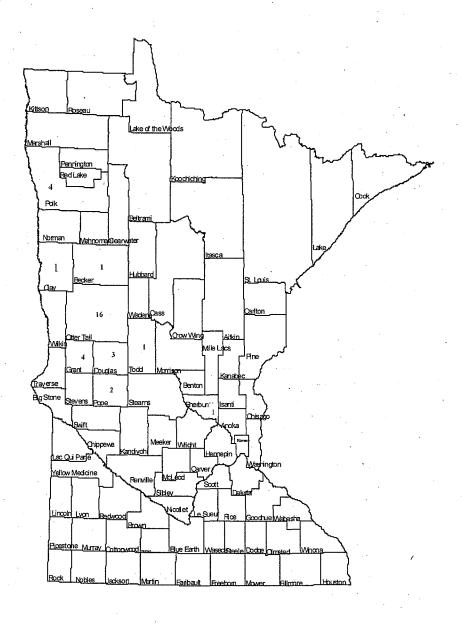


Figure 5. Distribution by County of ponds aerated under permits issued to private hatchery operators in 2005-06.

APPENDICES

Appendix 1. Private hatchery operators and protected waters under the permits 2005-06.

Permit #	Last Name	County	D.O.W.	Acres
Region 1			•	
F0561032	P. Koep	Douglas	21-74	17
			21-116	24
•	•	Grant	26-141	62
		Otter Tail	56-714	. 59
`			56-720	30
			56-136	34
•		•	56-85	19
			56-258	21
	•	·	56-883	21
			56-155	21
			56-234	34
F0561038	Jeff Koep	Douglas	Gravel Pit	6
	•	Grant	26-8	31
			26-33	44
1.4		Otter Tail	56-1183	10
	•		56-23	87
			56-25	73
			56-29	53
	•		56-49	43
		•	56-858	43
		•	56-1182	12
	*	Pope	61-63	28
		• • • • • • • • • • • • • • • • • • •	61-22	62
	•	Todd	77-52	69
F0561042	Wertish	Polk	60-392	10
1 000 10 12	VVOICION	1 OIII	60-157	41
*		•	60-172	48
			60-141	46
F0561092	Joe Koep	Otter Tail	56-149	180
F0561103	Goeden	Becker	3-269	242
F0301103	Goeden	Grant	26-114	93
	.			
F0561192	Scholtes	Clay	14-350	36
Region 3				• •
	MaDanald	Chamberne -	74 400	77
F0563100	McDonald	Sherburne	71-129	77

Appendix 2. Questionnaire results of aeration systems operated to prevent winterkill in lakes with or without public access, 2005-06.

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Polcon Helixo	<u>ors</u>							
Artichoke (6-2)	Big Stone	2,011	Save A Lake Aeration	2-15 HP motor/blowers 12 diffusers	did	l not return qu	uestionnaire	
East Toqua (6-138)	Big Stone	440	City of Graceville	1 diffuser 1-10 HP motor/blower	2,200.00	275.00	2.3	Y
Clear (8-11)	Brown	325	New Ulm Area Sportfisherman	1-10 HP motor/blower 7 diffusers	did	l not return qu	uestionnaire	
Hanska (8-26)	Brown	1,844	Brown Co. Park Dept.	1-15 HP blower 6 diffusers	3,160.0	316.00	1.3	N
Hanska (8-26)	Brown	1,844	Lake Hanska Area Association	1-15 HP Helixor	1,840.0	186.05	1.8	N
Sleepy Eye (8-45)	Brown	290	City of Sleepy Eye	2-5 HP motor/blowers 4 diffusers		did not op	erate	
Bingham (17-7)	Cottonwood	274	Cottonwood County Game & Fish League	1-5 HP blower 4 diffusers	-	- -	2.8	·N
Cottonwood (17-22)	Cottonwood	146	Cottonwood County Game & Fish League	1-5 HP motor/blower 3 diffusers	-	- -	2.9	N
Rebecca (19-3)	Dakota	35	City of Hastings	1-5 HP blower 2 diffusers	2,233.0	147.02	3.1	N
Fountain (24-18)	Freeborn	555	City of Albert Lea	2-7.5 HP blowers 6 diffusers	did	not return qu	estionnaire	
Morin (24-43)	Freeborn	21	City of Alden	1-3 HP blower 1 diffuser	8,596.0	642.00	3.7	N

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Polcon Helixon	<u>rs</u> (Con't.)					•		
Round (27-71)	Hennepin	34	City of Eden Prairie	1-7.5 HP blower 1 diffuser		did not op	erate	
Loon (32-20)	Jackson	738	Jackson County Conservation League	2-7.5 HP motor/blowers 9 diffusers	8,300.0	575.00	2.2	N
Pearl (32-33)	Jackson	117	Jackson County Conservation League	1-7.5 HP blower 3 diffusers	10,400.0	700.00	1.8	· N
Round (32-69)	Jackson	947	Round Lake Sportsmen's Club	2-7.5 HP motor/blowers 9 diffusers	1,780.0	124.41	0.8	N
East Solomon (34-246)	Kandiyohi	;733	Kandiyohi County	1-10 HP motor 6 diffusers	18,334.0	1,188.53	2.7	N
Foot (34-181)	Kandiyohi	576	Willmar Parks Department	1-25 HP motor/blower 6 diffusers	31,561.0	2,188.88	2.5	N
Long (34-192)	Kandiyohi	1,715	Kandiyohi County	2-10 HP motors 12 diffusers	28,532.0	1,821.39	2.5	N
Mud (Monongalia) M Fk Crow R. (34-158)	Kandiyohi	2,516	Kandiyohi County	1-15 HP motor 6 diffusers	13,451.0	844.52	2.8	N
Ringo (34-172)	Kandiyohi	774	Kandiyohi County	1-10 HP motor 9 diffusers	11,457.0	798.31	2.2	N
Swenson (34-321)	Kandiyohi	123	Kandiyohi County	1-7.5 HP motor 5 diffusers	10,257.0	714.70	2.8	N
Wagonga (34-169)	Kandiyohi	1,792	Kandiyohi County	2-15 HP blowers 12 diffusers	38,300	2,409.71	3.0	N

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Polcon Helixo	<u>rs</u> (Con't.)							•
Willmar (34-180)	Kandiyohi	761	Willmar Public Works	1-15 HP blower 6 diffusers	18,977.0	1,353.39	2.5	N
Clear (40-79)	LeSueur	282	Lexington Sportsmen's Club	1-7.5 HP motor 3 diffusers		did not op	erate	
Gorman (40-32)	LeSueur	590	Izaak Walton League	1-7.5 HP compressor 3 diffusers		did not op	erate	
Greenleaf (40-20)	LeSueur	306	Montgomery Sportsmen's Club	1-5 HP compressor 3 diffusers		did not op	erate	
Cottonwood (42-14)	Lyon	383	Lyon County	1-15 HP motor 6 diffusers	<u>.</u> .	500.00	1.2	N
East Twin (42-70)	Lyon	280	Lyon County	1-7 HP blower 2 diffusers		did not op	erate	
West Twin (42-74)	Lyon	237	Lyon County	1-7.0 HP motor/blower 2 diffusers		did not op	erate	
George (46-24)	Martin	82	City of Fairmont	1-5 HP blower 2 diffusers		did not op	erate	
Sisseton (46-25)	Martin	139	City of Fairmont	1-15 HP blower 2 diffusers		did not op	erate	
Swan (43-41)	McLeod	482	Silver Lake Sportsmen's Club	1-7HP blower 3 diffusers	· · · · · · · · · · · · · · · · · ·	· -	2.3	N
Bloody (51-40)	Murray	248	Murray County	1-7.5 HP blower 2 diffusers		did not op	erate	

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Polcon Helixor	rs (Con't.)							
First Fulda (South) (51-21)	Murray	122	Murray County	2-7.5 HP motor/blowers 4 diffusers	•	- '	1.7	N
Sarah (51-83)	Murray	1,176	Murray County	1-7.5 HP motor/blower 4 diffusers	<u>.</u>	· -	1.3	N
East Graham (53-20)	Nobles	523	Nobles County Parks Department	1-10 HP blower 4 diffusers	· +	- -	0.5	N
Indian (53-7)	Nobles	204	Round Lake Sportsmen's Club	1-10 HP blower 4 diffusers	1,710.0	139.07	0.6	N
Okabena (53-28)	Nobles	785	City of Worthington	2-7.5 HP blowers 9 diffusers	16,468.0	1,160.79	2.3	N
West Graham (53-21)	Nobles	526	Nobles County Parks Department	2-7.5 HP blowers 6 diffusers	-	-	2.5	N
Cedar (70-91)	Scott	749	New Prague Sportsmen's Club	1-20 HP pump 12 Helixor diffuers	did	not return qu	estionnaire	
Becker (73-156)	Stearns	222	Sauk River Watershed District	1-15 HP blower 9 diffusers	16,571.00	1,800.36	2.3	N
Elysian (81-95)	Waseca	2,462	Smith's Mill-Janesville Sportsmen's Club	3-7.5 HP blowers 15 diffusers	· -	50.00	- .	N
Winona (85-11)	Winona	318	City of Winona	3-7.5 HP compressors 6 diffusers	54,891.0	3,419.21	4.0	N
Wood (87-30)	Yellow Medicine	484	Yellow Medicine County	1-15 HP compressor 6 diffusers	-	- -	2.3	N

Lake		Lake Area		System description	Electrical Consumption	Electrical costs	Number Months	Winterkill
(DOW #)	County	(A)	Permittee	(No. of units, rating)	(KWH)	(\$)	operated	(Y or N)
Clean-Flo Syst	<u>ems</u>							
Shack Eddy (2-109)	Anoka	22	Armstrong Kennels	1-0.5 HP blower 1 diffuser		did not op	erate	
Crystal (7-98)	Blue Earth	396	Crystal and Loon Lake Rec., Inc.	2-0.75 HP compressors 4 diffusers		did not op	erate	
lda (7-90)	Blue Earth	120	Lura Lake Aeration Corp.	1-5 HP compressor 8 diffusers	did	not return qu	estionnaire	
Loon (7-96)	Blue Earth	818	Crystal and Loon Lake Rec., Inc.	4-0.75 HP compressors 8 diffusers		did not op	erate	
Lura (7-79)	Blue Earth	1,263	Lura Lake Aeration Corp.	1-5 HP & 1-4 HP Clean Flo, 12 diffusers		did not op	erate	•
Alimagnet (19-21)	Dakota	113	City of Apple Valley	1-2 HP compressor 6 diffusers	- -	250.00	0.7	Ń
Arrowhead (27-45)	Hennepin	23	City of Edina	1-1.5 HP compressor 3 diffusers	<u>-</u>	·	3.0	N
Crystal (27-34)	Hennepin	74	City of Robbinsdale	8-0.5 HP compressors 16 diffusers		-	4.0	N
Indianhead (27-44)	Hennepin	13	City of Edina	4-0.5 HP compressors 4 diffusers		~ .	3.0	, N
Gleason (27-95)	Hennepin	167	Gleason Lake Improvement Assn	4-0.5 HP compressors 16 diffusers	- -	-	3.2	N
Hadley (27-109)	Hennepin	39	Hadley Lake Improvement Assn	6-0.5 HP compressors 7 diffusers	_	1,800.00	3.5	. N
Irene (27-189)	Hennepin	29		2-0.5 HP compressors 4 diffusers	9,480.00	900.00	• • • • • • • • • • • • • • • • • • •	N

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Clean-Flo Syste	ems (Con't.)							,
Sweeney-Twin (27-35)	Hennepin	96	Sweeney Lake Assn	3-0.5 HP to 7-0.75 HP compressors, 18 diffusers	<u> </u>	1,466.70	4.0	N
Unnamed (Upper) (34-28)	Kandiyohi	22	City of Atwater	2-2 HP compressors 4 diffusers	3,056.0	594.81	3.1	N
Unnamed (Tadd) (34-376)	Kandiyohi	10	City of Atwater	2-2 HP compressors 4 diffusers	3,913.0	452.30	3.1	N
Mabel (40-11)	LeSueur	103	Lucky 13 Sportsmen's Club	2-0.5 compressors 4 diffusers	-	190.00	2.1	N
Unnamed (40-58)	LeSueur	18		1-0.75 compressor 2 diffusers /		200.00	4.0	N
Unnamed (58-141)	Pine	23		1-0.75 compressor 2 diffusers	- .	· · · · · · · · · · · · · · · · · · ·	2.8	N
Birch (62-24)	Ramsey	127	Birch Lake Improvement Assn	1-1 HP compressor 3 diffusers	did	not return qu	estionnaire	
Willow (62-40)	Ramsey	75	Natural Preserve Foundation	3-0.5 compressors 6 diffusers	_	-	3.3	Υ
Cody (66-61)	Rice	257	Wheatland Twin Lakes Sportsmen's Club	4-0.5 and 2-0.75 HP compressors, 12 diffusers	12,062.0	1,102.00	2.6	N
Kronz (Sunset) (70-09)	Scott	15		1-HP compressor 2 diffusers	• • • • • • • • • • • • • • • • • • •	- -	2.5	N
Unnamed (Fawn) (71-110)	Sherburne	33	Carefree Country Club	2-0.5 HP – 4 diffusers 1-0.75 HP – 2 diffusers		-	2.1	N

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Clean-Flo Sys	tems (Con't.)						•	
Loon (81-15)	Waseca	119	City of Waseca	1-5 HP compressor 9 diffusers	10,212.0	909.08	2.6	N .
Benz (82-120)	Washington	36	Benz Lake Homeowners Association	3-0.75 HP, 1-0.33 HP 8 diffusers		· · -	3.9	N .
Pinetree (82-122)	Washington	174		1-0.5 HP compressor 2 diffusers	4,110.0	300.00	4.0	N
Sunset (82-153)	Washington	124	Sunset Lake Homeowners Association	2-0.5 HP compressor 4 diffusers	· · · · · · · · · · · · · · · · · · ·	did not op	erate	
Unnamed (82-330)	Washington	9		1-0.5 HP compressors 2 diffusers	1,300.0	100.0	4.0	N
Other Bubble	<u>rs</u>	4						• .
Bijou (3-638)	Becker	229	Cormorant Lake Sportsmen's Club	4-Wifle Webber diffusers 2-pumps	did	not return qu	estionnaire	
Little Cormorant (3-506)	Becker	939	Cormorant Lake Sportsmen's Club	3-1 Hp pumps 6 ceramic brick diffusers	did	not return qu	estionnaire	
Ewert's (4-205)	Beltrami	34		2-2 HP compressors 4 diffusers	did	not return qu	estionnaire	
Mills (7-97)	Blue Earth	237	Crystal and Loon Lake Recreation	2-0.75 HP compressors 4 diffusers		did not op	erate	
Oak (10-93)	Carver	185		4-1 HP compressors 8 diffusers	-	- .	3.4	N

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Other Bubble	rs (Con't.)					a e		÷
Eagle (11-342)	Cass	110	Eagle Lake Association	1-0.5 HP pump 2 diffusers	0	149.60	2.1	N
Blue Eagle (14-93)	Clay	11	City of Barnesville	2-1/2 HP pumps 4 diffusers	; ;	- , ·	3.0	N
Lake Fifteen (14-30)	Clay	128	Cormorant Lake Sportsmen's Club	2-1 HP motor 4 ceramic diffusers	did	not return qu	ıestionnaire	
Pine (15-149)	Clearwater	1,465	Red Lake Watershed District	Bubbler	did	not return qu	uestionnaire	
Main (19-203)	Dakota	6	MN Zoological Gardens	0.75 HP compressor 16 diffusers	did	not return qu	uestionnaire	
Rice (22-7)	Faribault	268	Wells Rifle & Pistol Club	2-0.75 compressors 9 diffusers	. -	-	2.5	N
Albert Lea (24-14)	Freeborn	2,654	Freeborn County	2-1 HP compressors diffuser tubing		did not op	erate	
Scotch (40-109)	LeSueur	590	German-Jefferson Sportsmen's Club	2-0.75 compressors 9 diffusers	1,635.0	141.00	2.7	N
Marion (43-84)	McLeod	616	Brownton Rod and Gun Club	1-5 HP blower 3 mat diffusers	10,367.0	933.22	1.9	N
Shamineau (49-127)	Morrison	1,453		Regiair Vane blower 1.5 HP	did	not return qu	estionnaire	
Ocheda (53-24)	Nobles	1,778	Nobles County	1-0.5 HP portable blower	-	·	2.5	Υ
Pete (56-294)	Otter Tail	34		1-0.75 HP compressor		did not op	erate	

Appendix 2. (Con't.)

Lake (DOW #)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Other Bubbler	<u>s</u> (Con't.)	•	•					
Lena (58-18)	Pine	50	Lake Lena Acres Assn	2-0.25 HP bubbler	·	· _	1.7	N
Cable (60-293)	Polk	129	Cable Lake Association	3-0.25 HP pump	2,988.0	179.28	2.7	N
Pleasant (62-46)	Ramsey	585	City of St. Paul Water Utility	2-30 HP compressors 2 diffusers	did	not return qu	estionnaire	
Ann (71-69)	Sherburne	226	Ann Lake Improvement Club, Inc.	15 HP compressor 2 copper diffusers	•	did not op	erate	
Kohlmeier (74-19)	Steele	11	City of Owatonna	2-0.75 HP compressors 3 diffusers	<u>.</u>		3.0	N .
Stocking (80-37)	Wadena	356	Stocking Lake Boosters, Inc.	2 Gast compressors 5 diffusers	-	250.00	4.8	N
Mud (Battle Creek) (82-91)	Washington	103	City of Woodbury	2-1 HP compressors 6 diffusers	2.157.0	225.43	1.9	N ·
Unnamed Pond (82-257)	Washington	7		0.50 HP blower 2 diffusers		-	4.5	N .
Pump and Baff	<u>fle</u>							
Centerville (2-6)	Anoka	464	Anoka County Parks and Recreation Dept.	1-20 HP pump and baffle		did not op	erate	
Crooked (2-84)	Anoka	130	City of Coon Rapids	1-10 HP pump and baffle	÷.	did not op	erate	•

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Pump and Baf	fle (Con't.)			e e e e e e e e e e e e e e e e e e e				
Golden (2-45)	Anoka	50	City of Circle Pines	1-7.5 HP permanent pump and baffle	18,591.3	1,644.61	4.0	N
Martin (2-34)	Anoka	218	Anoka County Parks and Recreation	1-10 HP pump and baffle		did not op	erate	
Moore, West (2-75)	Anoka	110	City of Fridley	1-10 HP pump and baffle	- · · · · · · · · · · · · · · · · · · ·	-	4.6	N
Peltier (2-4)	Anoka	483	Anoka County Parks and Recreation	1-20 HP pump and baffle	· · · · · · · · · · · · · · · · · · ·	did not op	erate	•
Wolf (3-101)	Becker	1,453	Wolf Lake Sportsmen's Club	2-10 HP pump and baffle	did	not return qu	estionnaire	
Susan (10-13)	Carver	93	City of Chanhassen	1-7.5 HP pump and baffle		did not op	erate	
Platte (18-88)	Crow Wing	1,486	Platte Lake Association	1-7.5 HP pump and baffle		did not op	erate	
Marion (19-26)	Dakota	489	City of Lakeville	1 pump and baffle 20 HP homemade		did not op	erate	. •
Roger's (19-80)	Dakota	116	City of Mendota Heights	1-10 HP pump and baffle	13,888.0	1,040.00	2.4	N
Hyland (27-48)	Hennepin	87	Three Rivers Park District	Permanently install. 7.5 HP pumps	did	not return qu	estionnaire	
Mitchell (27-70)	Hennepin	116	City of Eden Prairie	1-7.5 HP Crisafulli pump and baffle	did	not return qu	estionnaire	

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Pump and Baff	le (Con't.)					,		. •
Penn (27-4)	Hennepin	47	City of Bloomington	15 HP pump and baffle	27,867.0	1,955.74	2.8	N
Powderhorn (27-14)	Hennepin	. 11	Mpls. Park & Recr. Board	Pump and baffle 4HP	did	not return qu	estionnaire	
Red Rock (27-76)	Hennepin	83	City of Eden Prairie	1-7.5 HP pump and baffle	did	not return qu	estionnaire	
Wirth (7-37)	Hennepin	37	Mpls. Park & Recr. Board	1-5.0 HP pump and baffle	did	not return qu	estionnaire	
Wolfe (27-664)	Hennepin	3	City of St. Louis Park	Built in waterfall– 5 HP	566.7	63.30	4	N
Wolf (29-81)	Hubbard	274		1-5 HP pump and baffle	. -	600.00	2.6	N
Knife (33-28)	Kanabec	1,127	Knife Lake Improvement District	1-10 HP pump and baffle 1-20 HP pump and baffle		did not op	erate	
Unnamed (Florian Res.) (45-119)	Marshall .	42	Marshall County Park Board	1-9 HP pump and baffle	did	not return qu	estionnaire	
Jennie (47-15)	Meeker	1,089	Lake Jennie Improvement Corp.	1 pump and baffle system 2,000 gpm pump		did not op	erate	
Adley (56-31)	Otter Tail	249	Parker's Prairie Sportsmen's Club	1-15 HP pump and baffle	. •	1,400.00	2.7	N
Fish (56-66)	Otter Tail	500	Parkers Prairie Sportsmen's Club	10-HP pump and baffle	<u>-</u> ******	950.00	3.7	N

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Pump and Ba	ffle (Con't.)				*	•		
Badger (60-214)	Polk	247	Erskine Lions Club	CORE Project pump and baffle		did not op	erate	
Maple (60-305)	Polk	1,445	Maple Lake Improvement District	3-5 HP pump and baffle	6,792.0	427.56	1.2	N
Pelican (61-111)	Pope	516	Pelican Lake Association, Inc.	1-20 HP pump and baffle		did not op	erate	
Beaver (62-16)	Ramsey	65	Ramsey County Public Works Dept.	1-7.5 HP pump and baffle		did not op	erate	
Island (62-75)	Ramsey	63	Ramsey County Public Works Dept.	1-20 HP pump and baffle		did not op	erate	
Loeb (62-231)	Ramsey	10	City of St. Paul	1-5 HP pump and baffle		-	3.4	· N
Owasso (62-56)	Ramsey	360	Ramsey County Public Works Dept.	1-20 HP pump and baffle		did not op	erate	
Silver (East) (62-1)	Ramsey	68	Ramsey County Public Works Dept.	1-15 HP pump and baffle	4,030.0	290.00	1.2	N
Silver (62-83)	Ramsey	67	City of Columbia Heights	1-10 HP pump and baffle	286.0	740.00	2.0	Υ
Cleary (70-22)	Scott	137	Three Rivers Park District	1-7.5 HP pump and baffle	did	not return qu	uestionnaire	
McMahon (Carls) (70-50)	Scott	136	New Market Sportsmen's Club	1-10 HP pump and baffle		did not op	erate	

Lake (DOW #)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Pump and Ba	ffle (Con't.)							
Hattie (75-200)	Stevens	488	Save A Lake Aeration, Inc.	1-10 HP pump and baffle	did	not return qu	estionnaire	
Goose (82-59)	Washington	83	Town of New Scandia	1-3 HP pump and baffle	2,275.0	294.36	2.4	N
Shields (82-162)	Washington	27	City of Forest Lake	CORE pump and baffle 3 HP	5,233.0	455.40	1.6	N
Aire-02								
Cedar (1-165)	Aitkin	260	Cedar Lake Assn	3-2 HP Aeromix tornado	dic	l not return qu	uestionnaire	
Coon (2-42)	Anoka	1,507	Anoka County Parks	3-2 HP Aeromix tornadoes		did not op	erate	•
Ham (2-53)	Anoka	193	Anoka County Parks	3-2 HP Aeromix tornadoes		did not op	perate_	•
Spring (2-71)	Anoka	37	City of Spring Lake Park	1-2 HP Aeromix	<u>-</u>	. -	1.9	N
Long Tom (6-29)	Big Stone	110	Save A Lake Aeration	2-2 HP Aqua tornadoes	dic	i not return qu	uestionnaire	
Eagle (10-121)	Carver	230	Carver County Public Works Dept.	4-2 HP Aire-02 aerators	35,409.0	3,397.49	2.6	N
Loon (11-226)	Cass	, 220,	Loon Lake Property Owners	2-2 HP Aeromix tornadoes	6,205.0	572.00	2.5	N
Birch Pond (19-202)	Dakota	: 3	School of Environmental Studies	Neptune air injection system	dic	l not return qu	ıestionnaire	

Lake (DOW #)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Aire-02 (Con't.	1							•
Blackhawk (19-59)	Dakota	39	City of Eagan	1-2 HP air injection system	dio	d not return qu	uestionnaire	
Burr Oak (19-259)	Dakota	19	City of Eagan	1-2 HP pump	dio	d not return qu	uestionnaire	
Farquar (19-23)	Dakota	74	City of Apple Valley	1-2 HP air injection system		did not or	perate	
Fish (19-57)	Dakota	28	City of Eagan	1-2 HP air injection system	dio	d not return qu	uestionnaire	
Gun Club (19-245)	Dakota	8	City of Inver Grove Heights	1-2 HP Aeromix tornado	dio	d not return q	uestionnaire	
Hay (19-62)	Dakota	20	City of Eagan	1-2 HP air pump	dio	d not return qu	uestionnaire	
Heine (19-153)	Dakota	7	City of Eagan	1-2 HP pump	dio	d not return qu	uestionnaire	
LeMay (19-55)	Dakota	44	City of Eagan	1-2 HP air injection system	dio	d not return qu	uestionnaire	
Manor (19-64)	Dakota	14	City of Eagan	1-2 HP air injection system	dio	i not return qu	uestionnaire	
Pickerel (19-79)	Dakota	51	City of St. Paul	1-2 HP Neptune pump	• • • • • • • • • • • • • • • • • • •	-	-	Υ
East Thomas (19-161)	Dakota	39	City of Eagan	1-0.1 HP solar powered pump	dic	i not return qu	uestionnaire	· .
Thomas (19-67)	Dakota	56	City of Eagan	1-2 HP air injection pump	dic	d not return qu	uestionnaire	

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
<u>Air-02</u> (Con't.)	• •							
Thompson (19-48)	Dakota	10	Dakota County Parks	1-2 HP Neptune pump	_	50.00	0.7	N
Unnamed (Schwartz)	Dakota	13	City of Eagan	1-2 HP air injection pump	dio	d not return q	uestionnaire	
(19-63)								
Aldrich (21-222)	Douglas	173		2-2 HP Aeromix tornadoes	- -	1,340.00	4.3	N
Albert Lea (24-14)	Freeborn	2,654	Shellrock River Watershed District	2-Aeromix systems		did not o	perate	· · · · ·
Pottery Pond (25-38)	Goodhue	8	City of Red Wing	Kasco aeration 1-0.75 HP	300.0	216.00	1.0	N
Bass (27-98)	Hennepin	175	Bass Lake Improvement Assn	2-2 HP Aire-02		did not o	perate	
Rebecca (27-192)	Hennepin	290	Three Rivers Park District	3-2 HP Aire-02 aerators	dic	d not return q	uestionnaire	-
Rice (27-116)	Hennepin	306	Rice Lake Area Association	1-2 HP Aire-02		did not o	perate	
Petite (29-147)	Hubbard	58	Wonewok Conference Center	1-2 HP air injection system	- -	-	4.0	N
Crow River (34-158)	Kandiyohi	2,516	City of New London	2-2 HP Aeromix systems		did not op	perate	
Elizabeth (34-22)	Kandiyohi	1,153	Kandiyohi County	2-2 HP Aeromix tornadoes		did not op	perate	

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Aire-02 (Con't.)							
Dead Coon (41-21)	Lincoln	555	Tyler Rod & Gun Club	2-2 HP Aire-02	dio	d not return qu	uestionnaire	.
Hendricks (41-110)	Lincoln	1,634	Lake Hendricks Improvement Assn	4-2 HP Aire-02 aerators		did not op	erate	•;
Shaokotan (41-89)	Lincoln	1,043	Shaokotan Sportsmen's Club	2-2 HP Power House Aerators	1,200.0	650.00	4.0	N
Stay (41-34)	Lincoln	220	Arco Sportsmen's Club	2-2 HP Aeromix tornadoes	dio	d not return qu	ıestionnaire	
Clear (42-55)	Lyon	68	Lyon County	1-2 HP Aire-02	2,390.0	367.00		N
East Goose (42-93)	Lyon	151	Lyon County	2-2 hp Aire-02	760.0	251.00	2.0	N
Lady Slipper (42-20)	Lyon	262	Lyon County	2-2 HP Aeromix tornadoes		did not ope	erate	•
Rock (42-52)	Lyon	422	Lyon County	2-2 HP Aire-02	1,813.0	326.00	- : .	N
School Grove (42-2)	Lyon	333	Lyon County	2-3 HP Aire-02		did not ope	erate	
Yankton (42-27)	Lyon	382	Lyon County	3-3 HP Aire-02	2,500.0	250.00	2.0	N
Big Twin (46-133)	Martin	457	Trimont Area Conservation Club	2-1 HP Aire-02	did	not return que	estionnaire	
Buffalo (46-146)	Martin	116	Mt. Lake-Odin-Ormsby Sportsmen's Club	1-3 HP Aire-02	did	not return que	estionnaire	

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Aire-02 (Con't.)		÷.				•	•	•
Cedar (46-121)	Martin	710	Trimont Area Conservation Club	1-2 HP Aire-02	did	not return qu	estionnaire	
Fish (46-145)	Martin	156	Watonwan Game and Fish	1-2 HP Aire-02	1,800.0	136.00	1.9	N
Winsted (43-12)	McLeod	407	City of Winsted	6-2 HP Aire-02		did not op	erate	· · · · · ·
Star (47-129)	Meeker	554	Star Lake Association	3-2 HP Aire-02	. .	-	1.2	N
Corabelle (51-54)	Murray	99	Murray County	1-2 HP Aire-02		did not op	erate	
Kinbrae (53-16)	Nobles	87	Nobles County Park	1-1 HP Aeromix tornado	· · · <u>-</u>	· <u>-</u>	2.5	N
Tamarac (59-931)	Otter Tail	416	Tamarac Lake Association	2-2 HP aspirating aerators	7,850.0	714.81	3.0	N
Split Rock (59-1)	Pipestone	80	Split Rock Creek State Park	2-2 HP Aeromix tornadoes		did not op	erate	
Johanna (61-6)	Pope	1,204	DNR Fisheries	2-5 HP Aire-02's	did	not return qu	estionnaire	***
Signalness (61-149)	Pope	41	Glacial Lakes State Park	1-2 HP Aire-02		did not op	erate	
Otter (2-3)	Ramsey/Anoka	173	Ramsey County Public Works	3-2 HP Aeromix tornadoes	3,227.0	250.00	2.2	N
Circle (66-27)	Rice	976	Tri-Lakes Sportsmen's Club	3-2 HP Aeromix tornadoes	10,000.0	1,000.00	3.0	N

Appendix 2. (Con't.)

Lake (DOW #)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Aire-02 (Con't.))							•
O'Dowd (70-95)	Scott	256	O'Dowd Lakes Chain Assn	3-2 HP Aire-02	4,200.0	300.00	2.6	N
Thole (70-120)	Scott	131	O'Dowd Lakes Chain Association	1-2 HP Aire-02	3,090.0	285.00	2.6	N
McColl (70-17)	Scott	20	City of Savage	2-2 HP Aeromix tornadoes		did not op	erate	
Murphy (70-10)	Scott	70	Hennepin Parks	2-2 HP Aeromix tornadoes	did	not return qu	estionnaire	
Birch (71-57)	Sherburne	149	Birch Lake Association	1-2 HP Aire-02	did	not return qu	estionnaire	
Fremont (71-16)	Sherburne	466	City of Zimmerman	2-2 HP Aire-02's	3,298.0	311.70	2.1	, N
Silver (72-13)	Sibley	697	Silver Lake Conservation Club	3-2 HP Aire-02	6,895.0	367.61	2.0	N
Black Oak (73-241)	Stearns	121	Green Grove Sportsmen's Club	1-2 HP Aire-02	7	180.00	1.4	N
Unnamed (Cloverdale)	Washington	39	Cloverdale Farms	2-1 HP Aeromix systems	did	not return qu	estionnaire	
(82-9)		•		*: .	••			
McDonald (82-10)	Washington	37		1-1 HP Aeromix tornado	did	not return qu	estionnaire	
Sand (82-67)	Washington	46	Sand Lake Lakeshore Association	1-2 HP Aeromix tornado		did not op	erate	
			•	<u>-</u>			•	

Appendix 2. (Con't.)

Lake (DOW #)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Aire-02 (Con't.)						· .		
Kansas (83-36)	Watonwan	388	Watonwan Game and Fish Club	3-2 HP Aire-02		did not ope	erate	
St. James (83-43)	Watonwan	252	Watonwan Game and Fish Club	2-2 HP Aire-02	2,490.0	209.91	2.8	N
Fedji (83-21)	Watonwan	179	Madelia Sportsmen's Club	3-1 HP Powerhouse systems		360.00	2.5	N
Crawford (86-46)	Wright	.117	Crawford Lake Improvement Assn	2-2 HP Aire-02	3,890.0	315.09	2.4	N
Dean (86-41)	Wright	204	Dean Lake Club Assn	2-2 HP Aire-02	did	not return qu	estionnaire	
Little Waverly (86-106)	Wright	336	Little Waverly Lake Association	1-2 HP Propeller aspirator	did	not return qu	estionnaire	
Mink (86-229)	Wright	304	Assn of Mink & Somers Lakes	1-2 HP Aire-02		did not ope	erate	
Somers (86-230)	Wright	156	Assn of Mink & Somers Lakes	1-2 HP Aire-02		did not ope	erate	
Tyson (87-19)	Yellow Medicine	180	Yellow Medicine County	2-2 HP Aire-02		did not ope	erate	
Sprayers						· · · · · · · · · · · · · · · · · · ·	÷	
Lakefront Park Pond (70-169)	Scott	13	City of Prior Lake	3 HP Otterbine	. -	333.33	4.0	N
Dullinger (73-103)	Stearns	21		1-1 HP Kallep floating aerator	- -	- -	2.5	. N

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Mixed Systems	<u>\$</u>					•		
Mountain (17-3)	Cottonwood	241	Mountain Lakes Area Sportsmen's Club	5-0.5 HP compressors 2-2 HP Aeromix Tornadoes	<u>-</u> 1	· · · · · · · · · · · · · · · · · ·	3.0	N
Carlson (19-66)	Dakota	14	City of Eagan	1-3 HP lift station Air injection pump	di	d not return qu	uestionnaire	
Snelling (27-1)	Hennepin	110	Fort Snelling State Park	2-5 HP sump pumps	*	-	1.3	N
Clear (32-22)	Jackson	415	Jackson County Conservation League	2-5 HP motor/blowers 6 diffusers, 3-3 HP Ice Eaters	4,790.0	341.00	0.8	N
Independence (32-17)	Jackson	97	Jackson County Conservation League	1-5 HP Helixor 3-3 HP Ice Eater	5,570.0	470.0	1.4	N
Little Spirit (32-24)	Jackson	634	Little Spirit Lake Conservation Club	2-7.5 HP motors 6 diffusers; 3-3 HP Ice Eaters	8,780.0	881.00	1.3	N
Thompson (47-159)	Meeker	220	Meeker County Parks	1-20 HP pump and baffle 2-2 HP Tornadoes	di	d not return qu	ıestionnaire	
Shetek (51-63)	Murray	3,596	Murray County	3-7.5 HP motor/blowers 12 diffusers, 2 Ice Eaters	-	- .	1.6	N
Perch (56-95)	Otter Tail	57		1-0.75 HP, 1 diffuser 1 pusher	di	d not return qu	estionnaire	
Bennett (62-48)	Ramsey	41	Roseville Parks and Recr.	3-0.5 HP blower and 6 diffusers, baffle system	9,639.0	3,951.00	4.0	N

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Hypolimnetic A	<u>Aerators</u>							
Moore (East) (2-75)	Anoka	110	City of Fridley	1-7.5 HP Palatek compressor	- -		-	N
Como (62-55)	Ramsey	69 ·	Ramsey County Public Works Dept.	1-7.5 HP Hypo system	16,451.0	1,226.00	2.8	N
Vadnais (62-38)	Ramsey	477	City of St. Paul Water Utility	2-30.0 HP Atlas Copco	did	not return qu	uestionnaire	
Marie (Maria) (73-14)	Stearns	145	Clearwater River Watershed District	1-15 HP Atlas Copco	did	not return qu	uestionnaire	
Augusta (86-284)	Wright	186	Clearwater River Watershed District	1-20 HP Atlas Copco	did	not return qu	uestionnaire	
Louisa (86-282)	Wright	183	Clearwater River Watershed District	1-10 HP Atlas Copco	did	not return qu	uestionnaire	
Other (Mechan	iical Surface Agi	tators, hon	nemade, etc.)					
Leech (11-203)	Cass		Coborn's Leech Lake Cruises	2-3/4 HP Kasco de-icers	did	not return qu	uestionnaire	·.
Bean (17-54)	Cottonwood	141	Red Rock Sportsmen's Club	1-5 HP Ice Eater		did not op	erate	
Double (17-56)	Cottonwood	227	Red Rock Sportsmen's Club	1-5 HP Ice Eater	-	. e s [€]	2.0	· N.
South Double (17-56)	Cottonwood	227	Red Rock Sportsmen's Club	1-5 HP Ice Eater	. -	.	2.0	N
Talcott (17-60)	Cottonwood	928	Red Rock Sportsmen's Club	1-5 HP Ice Eater		did not op	erate	

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
			nemade, etc.) (Con't.)	(rvo. or armo, rading)	(KWIII)	(Ψ)	·	(1 01 14)
Nisswa (18-399)	Crow Wing	213		1-3/4 HP Ice Eater	• • • • • • • • • • • • • • • • • • •	· · · · · ·	3.6	N
Silver (40-48)	LeSueur	17	N. Elysian Silver Lakers Sportsmen's Club	1-0.75 HP motored propeller	1,991.0	170.00	2.9	N
Benton (41-43)	Lincoln	2,875	Lake Benton Sportsmen's Club	5-2 HP Ice Eaters		did not op	erate	
Budd (46-30)	Martin	224	City of Fairmont	Water plant pumps		did not op	erate	
Buffalo (51-18)	Murray	124	Murray County	2-0.75 HP Ice Eaters		did not op	erate	
Currant (51-82)	Murray	394	Murray County	3-0.75 HP Ice Eaters		did not op	erate	
Lime (51-24)	Murray	316	Murray County	3-0.75 HP Ice Eaters		-	1.9	. N
Louisa (51-6)	Murray	211	Murray County	1-0.75 HP Ice Eater		did not op	erate	
Wilson (51-81)	Murray	164	Murray County	1-0.75 HP Ice Eater	-		2.1	N
Wilson (South) (51-81)	Murray	164	Murray County	1-0.75 HP Ice Eater		-	2.1	N
Community Center Pond (62-63)	Ramsey	2	City of Shoreview	3-1 HP Kasco agitators		did not op	erate	

Appendix 2. (Con't.)

Lake (DOW#)	County	Lake Area (A)	Permittee	System description (No. of units, rating)	Electrical Consumption (KWH)	Electrical costs (\$)	Number Months operated	Winterkill (Y or N)
Other (Mech	anical Surface Ag	itators, hon	nemade, etc.) (Con't.)					
Legends (70-287)	Scott	29	Legends Club	1-HP Aqua control surface pump	-	-	4.0	N
Masford (71-126)	Sherburne	90	DNR Fisheries	2-1 HP mechanical surface agitators	did	not return qu	uestionnaire	

			•	•
			•	•
			•	
• *		•	•	
		•		- 10 mg
•				
			•	
			•	
				-
	•			
		•		
		·		•
				•
*.	•			
			and the second s	. 13
			•	
			•	Section 1.
			•	
			•	
			•	